Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
1:1 SOAP COMPOSITIONS OF ACIDS AND AMINES OR AMMONIA USEFUL IN REMOVAL AND PREVENTION OF SCALE
Document Type and Number:
WIPO Patent Application WO/1995/034511
Kind Code:
A1
Abstract:
A method for the removal and prevention of scale using a soap composition of a 1:1 stoichiometric ratio equivalent of an acid and a base. The acid, for example, is an organic carboxylic acid or a mineral acid. The base is an amine or ammonia. The organic acids consist of formic, acetic, propionic, citric, glycolic, lactic, tartaric, polyacrylic, succinic, sulfonic, gluconic, benzoic, salicyclic, and mixtures thereof. The mineral acids consist of hydrochloric, nitric, phosphoric, polyphosphoric, hydrofluoric, boric, sulfuric, and sulfurous, and mixtures thereof.

Inventors:
HIEATT ALLEN C
LUDWIG JEROME H
Application Number:
PCT/US1995/007534
Publication Date:
December 21, 1995
Filing Date:
June 13, 1995
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HERC PROD INC (US)
International Classes:
C02F5/12; B08B9/02; C02F5/00; C02F5/08; C02F5/10; C11D7/08; C11D7/26; C11D7/32; C11D9/02; C11D11/00; (IPC1-7): C02F5/12
Domestic Patent References:
WO1992020629A11992-11-26
WO1991005742A11991-05-02
WO1995010485A11995-04-20
Foreign References:
US5342510A1994-08-30
US5332494A1994-07-26
Download PDF:
Claims:
CLAIMS "1 6"
1. A method for the removal of water scale deposits containing calcium or magnesium carbonate, oxide, or hydroxide from a surface comprising: providing a stoichiometric equivalent of an acid selected from the group consisting of mineral acid and organic carboxylic acid, and mixtures thereof, with a corresponding stoichiometric equivalent of a base selected from the group consisting of an amine and ammonia, and mixtures thereof, in the presence of water to yield a 1 :1 aqueous neutral reaction product, wherein an effective amount of free acid is present in solution to react with said calcium or magnesium carbonate, oxide or hydroxide present in water scale to form the respective metallic soap thereof; treating a surface having said water scale deposits with an effective amount of said aqueous neutral reaction product for reaction with said calcium or magnesium carbonate, oxide or hydroxide to form said soap; and rinsing said treated surface with water to provide said surface with said deposits removed.
2. The method of claim 1 wherein said mineral acid is selected from the group consisting of hydrochloric, nitric, phosphoric, polyphosphoric, hydrofluoric, boric, sulfuric, and sulfurous, and mixtures thereof.
3. The method of claim 1 wherein said organic acid is selected from the group consisting of formic, acetic, propionic, citric, glycolic, lactic, tartaric, polyacrylic, succinic, gluconic, benzoic, salicylic, and mixtures thereof.
4. A method of claim 1 wherein said mineral acid is selected from the group consisting of hydrochloric, nitric, phosphoric, polyphosphoric, hydrofluoric, boric, sulfuric, and sulfurous, and mixtures thereof, said organic acid is selected from the group consisting of formic, acetic, propionic, citric, glycolic, lactic, tartaric, polyacrylic, succinic, gluconic, benzoic, salicylic, and mixtures thereof.
5. The method of claim 1 wherein said amine is an alkanolamine.
6. The method of claim 1 wherein said amine is selected from the group consisting of monoisopropanolamine, diisopropanolamine, triisopropanolamine, monoethanolamine, diethanolamine, triethanolamine, isopropanolamine, diethylamine, morpholine, imidazole, and 3picoline, and mixtures thereof.
7. A method of removing and preventing in aqueous media scale containing calcium, magnesium carbonate, oxide or hydroxide, comprising: adding to said aqueous media a neutral reaction product of a 1 :1 stoichiometric equivalent of an acid selected from the group consisting of mineral acid and organic carboxylic acid, and a base selected from the group consisting of amine and ammonia, and mixtures of said acids and bases, wherein an effective amount of free acid is present in solution to react with said calcium, magnesium carbonate, oxide, or hydroxide present in said aqueous media to form the respective metallic soap thereof.
8. The method of claim 7 wherein said mineral acid is selected from the group consisting of hydrochloric, nitric, phosphoric, polyphosphoric, hydrofluoric, boric, sulfuric, and sulfurous, and mixtures thereof.
9. The method of claim 7 wherein said organic acid is selected from the group consisting of formic, acetic, propionic, citric, glycolic, lactic, tartaric, polyacrylic, succinic, gluconic, benzoic, salicylic, and mixtures thereof.
10. A method of claim 7 wherein said mineral acid is selected from the group consisting of hydrochloric, nitric, phosphoric, polyphosphoric, hydrofluoric, boric, sulfuric, sulfurous, and mixtures thereof, said organic acid is selected from the group consisting of formic, acetic, propionic, citric, glycolic, lactic, tartaric, polyacrylic, succinic, gluconic, benzoic, salicylic, and mixtures thereof.
11. The method of claim 7 wherein said amine is an alkanolamine.
12. The method of claim 7 wherein said amine is selected from the group consisting of monoisopropanolamine, diisopropanolamine, triisopropanolamine, monoethanolamine, diethanolamine, triethanolamine and isopropanolamine and diethylamine, morpholine, imidazole, and 3picoline, and mixtures thereof.
Description:
1 :1 SOAP COMPOSITIONS OF ACIDS AND AMINES OR AMMONIA USEFUL IN REMOVAL AND PREVENTION OF SCALE

RELATED APPLICATIONS

This application is a continuation-in-part of application

Serial No. 700,780, filed May 16, 1991 , now U.S. Patent No.

5,322,635, and the disclosure of that application is incorporated herein by reference. BACKGROUND OF THE INVENTION

Compositions for removal and prevention of scale are well developed in the patent art. "Scale" is a term that applies to deposits on surfaces such as bath tubs, shower tiles, cooling towers, heat exchangers, evaporative coolers, swimming pools, fountains, hydraspas, water purification systems, and the like. Scale deposits usually include compounds such as metal carbonates, oxides, bicarbonates and hydroxides primarily of Ca, Mg, Fe which deposit on surfaces in contact with water generally as a result of exceeding the limit of solubility of such materials in water. A considerable number of patents have issued covering compositions for the removal or

prevention of scale including U.S. Pats. Nos. 3,447,965; 3,490,741 ;

3,639,279; 3,671 ,448; 4,435,303; 4,595,517; 4,686,067;

4,797,220 and 4,802,990. These patents are not the only patents

related to the subject matter of this invention and they are not

represented to be the most pertinent prior art. They are merely illustrative of various descaling and scale prevention compositions that have been disclosed in prior patents.

Many formulations disclosed in the above mentioned

patents are acidic or alkaline in nature and have many disadvantages,

such as irritation to the skin, eyes and mucous membranes during use.

Additionally, prior formulations tend to react with the surfaces with which they come into contact during use including metal, ceramic and grout surfaces. Other known compositions tend to rapidly generate carbon dioxide gas as a result of their reaction with metal carbonate during use. Another disadvantage of current compositions is their

potential reactivity with chlorine-containing materials with which they

may be used to generate chlorine gas during use or storage.

In particular, for example, U.S. Pat. No. 4,797,220

discloses an aqueous composition of hydroxyacetic acid and triethanolamine at volume percentages of 0.7 to 10 of the acid to the amine with a 2 to 3.5 ratio being preferred. These compositions are highly acidic with pHs on the order of about 2-3 and can attack

various metal surfaces, dissolve tile grout, react with chlorine- containing cleaners and irritate mucous membranes. While other

alkaline compositions have been suggested, they suffer from similar

disadvantages and are generally less effective.

In brief, there has been a continuing need for effective chemical compositions and processes for removal and prevention of

scale. There is a need for compositions that would minimize or

eliminate the disadvantages associated with known compositions.

SUMMARY OF THE INVENTION

This invention is directed to aqueous compositions having long term descaling activity. In accordance with this invention, a composition for the removal and prevention of scale in aqueous media comprises stoichiometric equivalents of an organic or mineral acid and an amine or ammonia base. These soap compositions of acids and

an amine base at a 1 : 1 stoichiometric ratio have effective and long term activity in removing scale and preventing scale precipitation.

These soap compositions minimize or eliminate the disadvantages mentioned in the background of this invention.

The 1 : 1 stoichiometric soap compositions include an organic acid such as hydroxyacetic (glycolic), citric, formic, propionic,

acetic, gluconic, salicylic, lactic, tartaric, benzoic, polyacrylic, succinic, sulfonic and others. Mineral acids include hydrochloric,

nitric, phosphoric, polyphosphoric, hydrofluoric, boric, sulfuric, and

sulfurous, and mixtures thereof. The amine base of the composition is selected from the group of ammonia and organic amine bases such as monoethanolamine, triethanolamine, isopropanolamine,

diethylamine, triisopropanolamine, tetraethanolethylenediamine, diethylamine, diethylamine, morpholine, imidazole, and 3-picoline and

others.

The 1 : 1 soap compositions are especially adapted for use

in aqueous systems to prevent or remove scale build-up. These compositions also have a long term descaling activity especially useful

in tub and tile cleaners (industrial and household), water and oil well reclamation, water distribution system reclamation, cooling towers

and heat exchangers, evaporative coolers, industrial cooling systems (such as chemical and plastic processing equipment, etc.), swimming

pools, fountains, hydraspas, automotive radiators, hot water heating systems, distillation and reverse osmosis water purification systems

and boilers. The environmental applications of this invention lead to the conservation of energy and water.

Compositions of this invention are organic in nature and generally are biodegradable, of low toxicity and noncorrosive. Other

advantages and benefits of this invention will be understood wjth reference to the following detailed description and examples. DETAILED DESCRIPTION

For example, the soap compositions of the present

invention have 1 : 1 stoichiometric equivalents of an organic carboxylic

acid and an amine base. The effectiveness of aqueous solutions of these neutral soaps is believed to be due to their ability to solubilize

magnesium and calcium carbonates which are predominant

constituents of scale. The intrinsic character of the compositions is believed to contribute to their long term effectiveness in removing

scale and preventing scale precipitation. The compositions of this invention are soaps of weak acids and weak bases and are

represented in aqueous equilibrium by the following Equation A:

RCOOH + R'R"R'"N: - [RCOO] " + [R'R"R'"N:H] +

If excess amine is used in a composition, the equilibrium

will be shifted to the right resulting in less "free" acid available in

solution and a slower reaction rate with metal carbonates as has been demonstrated by the examples hereinafter. Furthermore, as the acid is consumed when reacting with the metal carbonate, excess amine is formed as the equilibrium shifts to the left. With 1 : 1 stoichiometric

soap compositions, the equilibrium is far to the right but there will be small amounts of "free" acid present in solution to react with magnesium, calcium or other metal carbonates, oxides and hydroxides to form the respective metallic soaps as represented by the following

Equation B:

CaCO 3 + 2 RCOOH → Ca (OOCR) 2 + CO 2 + H 2 O

In view of the above reaction, the use level of a 1 : 1 soaps in a particular application of this invention may require

respective organic carboxylic acids that produce calcium, magnesium or other metal soap derivatives that are relatively water soluble.

Magnesium soaps are more soluble than calcium soaps of carboxylic

acids and the solubility of both increases substantially with an

increase in temperature. For instance, the magnesium salt of

hydroxyacetic acid increases in solubility from 7.9 to 29.8 gms per

100 gms water with an increase in temperature from 1 8 ° C to 100 ° C,

whereas the corresponding calcium salt only increases in solubility

from 1 .2 to 4.6 gms over that same temperature range.

The organic carboxylic acids (as represented by the R group of the above Equation A) suitable for use in compositions of this invention include aromatic, substituted aromatic, aliphatic, and

substituted aliphatic acids. More preferably the organic acids are

hydroxycarboxylic acids including hydroxyacetic, citric, gluconic and

tartaric acid. Other organic carboxylic acids include acetic, salicylic and benzoic acids. An amine base of the 1 : 1 stoichiometric soap

composition includes ammonia and organic amines (as represented by the R', R" and R'" group of the above Equation B), preferably

alkanolamines including monoethanolamine, triethanolamine, triisopropanolamine and isopropanoiamine. Other aliphatic amines

such as diethylamine may be employed. The organic carboxylic acids and amine components of the compositions of this invention are very

well known with reference to the above identified patents that are listed in the background to make acidic compositions as stated above

with respect to U.S. Pat. No. 4,797,220. Other alkaline compositions have been formulated containing these components. However, before

this invention, these carboxylic acids and amine bases were not used

as 1 : 1 stoichiometric soaps for descaling purposes as set forth herein.

The descriptions of these patents with respect to the component

organic carboxylic acids and amines that may be reacted to form the soaps are incorporated herein by reference.

Other acids and bases as exemplified hereinafter may

also be employed.

The following examples further illustrate the practice of

this invention and its present best modes.

EXAMPLE 1 - Reactivity of Soaps of Carboxylic Acids and Amine

Bases with Magnesium Carbonate

0.1 equivalent of carboxylic acid (R-COOH) was reacted in 100 ml of water with 0.1 equivalent of amine base (R'-, R"-, R'"- N:) in a 400 ml beaker with magnetic stirring to yield a clear solution

of the 1 : 1 soap. 1 .00 g of magnesium carbonate, n-hydrate (J. T. Baker) powder was added to the aqueous soap solution with magnetic stirring and the beaker covered with aluminum foil. The slurry was then stirred, sometimes heated as noted and observed.

The following results were obtained as report in Table I.

TABLE I

ACID AMINE OBSERVATIONS

A. Citric Triisopropanolamine 12 min. clear solution

B. Citric Triethanolamine 45 min. clear solution

C. Hydroxyacetic Triethanolamine 75 min. clear solution

D. Hydroxyacetic Triethanolamine 75 min. clear solution

E. Citric Ammonia 95 min. clear solution

F. Acetic Triethanolamine 1 20 min. light haze, clears overnight

G. Hydroxyacetic Ammonia 120 min. low haze, clears overnight

H. Gluconic Isopropanolamine 60 min. moderate haze, heat to reflux-light haze

I. Salicylic Triethanolamine 1 50 min. moderate haze, heat to reflux-low haze clears overnight

J. Tartaric Triethanolamine 330 min. clear solution

K. Benzoic Triethanolamine 330 min. clear solution

L. Hydroxyacetic Diethylamine 48 hours - low haze, heat to reflux-clears

M. Sulfuric Triethanolamine 90 min. clear

N. Hydrochloric Triethanolamine 225 min. clear

O. Nitric Acid Triethanolamine 355 min. clear

P. Hydrochloric Ammonia Heat to reflux - clear

Note: moderate haze = notable change in slurry observed low haze = stirrer can be seen through slurry

light haze = can see through slurry

As evidenced by Table I, magnesium carbonate reacts with the 1 :1 soaps of aliphatic or aromatic carboxylic acids and various amine bases or ammonia. As indicated, the rate of reaction of the 1 :1 soaps increases with temperature as expected. Table I demonstrates that 1 :1 soaps of this invention react with and dissolve one of the main components of scale very effectively.

EXAMPLE 2 - Reactivity of Soaps of Carboxylic Acids and

Amine Bases with Calcium Carbonate 0.1 equivalent of carboxylic acid (R-COOH) was reacted in 100 ml of water with 0.1 equivalent of amine base (R'-,R"-,R'"-N:) in a 400 ml beaker with magnetic stirring to yield a clear solution of the 1 :1 soap.

1.00 g of calcium carbonate (EM Science) powder was added to the aqueous soap solution with magnetic stirring and the beaker covered with aluminum foil. The slurry was then stirred, sometimes heated as noted and observed.

The following results were obtained as reported in Table

TABLE II

ACID AMINE OBSERVATIONS

A. Citric Triisopropanolamine 1 hr. clear solution

B. Citric Triethanolamine 2 hrs. clear solution

C. Hydroxyacetic Triethanolamine 48 hrs., light, wispy precipitate clears on warming

D. Hydroxyacetic Triethanolamine 4 hrs. heavy slurry, no apparent change. Heat to reflux - clears

E. Acetic Triethanolamine Heat to reflux. Clears in 30 min.

F. Acetic Triisopropanolamine Prolong heating to reflux periodically over 1 1 hr. period results in clear solution.

Table II demonstrates that calcium carbonate reacts slower than magnesium carbonate with the 1 : 1 soaps. If only a trace

of calcium carbonate powder is added to an ammonium hydroxyacetate soap solution, the stirred slurry persists after 6 hours

at room temperature but the mixture clears overnight indicating that the reaction is slow at room temperature. The citric

acid/triisopropanolamine soap somewhat surprisingly provides fairly

prompt reaction at room temperature by comparison. Furthermore, comparing Tables I and II, the citric acid/triisopropanolamine and the citric acid/triethanolamine soaps exhibit better response in comparison

to other soaps and, thus, would be preferred in certain applications.

For other applications where long term activity is desired, i.e., heat exchangers, the slower reacting soaps may be desired.

EXAMPLE 3 - Reactivity of Soaps of Carboxylic Acids and

Amine Bases with Excess Calcium Carbonate

0.1 equivalent of carboxylic acid (R-COOH) was reacted

in 100 ml of water with 0.1 equivalent of amine base (R'-,R"-,R'"-N:)

in a 400 ml beaker with magnetic stirring to yield a clear solution of

the 1 : 1 soap.

5.00 gms of calcium carbonate (EM Science) powder was added to the aqueous soap solution with magnetic stirring and the slurry transferred to a jar and sealed. The slurries were then

periodically shaken over a period of five days along with a control and maintained at room temperature. The slurries were then vacuum filtered and washed well with water. The filter cakes of unreacted calcium carbonate were air dried in an oven at 1 80 ° F to constant weight.

The following results were obtained (corrected for the control) as reported in Table III.

TABLE III

ACID AMINE GMS CALCIUM CARBONATE

A. none none 4.96 (99.2% recovered)

B. Hydroxyacetic Triethanolamine 4.46 (89.2% recovered)

C. Acetic Triethanolamine 4.71 (94.2% recovered)

D. Hydroxyacetic Ammonia 4.44 (88.8% recovered)

E. Salicylic Triethanolamine 4.50 (90.0% recovered)

Examples 1 , 2 and 3 demonstrate that 1 : 1 soaps react

with magnesium and calcium carbonate at room temperature and at

elevated temperatures. The rates of reaction appear to vary

depending upon the acid and/or the amine portion of the soap. Citric

acid and hydroxyacetic acid appear to be the preferred carboxylic acids out of the ones listed. Triethanolamine, triisopropanolamine and ammonia appear to be the preferred amines.

EXAMPLE - 4 Comparative Reactivity of Alkali Metal Soaps of Carboxylic Acids with Magnesium Carbonate

0.1 equivalent of hydroxyacetic acid was dissolved in 100 ml of water in a 400 ml beaker and reacted with 0.1 equivalent of 6 N sodium hydroxide solution with magnetic stirring.

1 .00 g of magnesium carbonate, n-hydrate (J.T. Baker)

powder was added to the aqueous 1 : 1 soap solution with magnetic stirring and the beaker covered with aluminum foil and the slurry stirred and observed.

After 48 hours there was no change in the heavy slurry

observed. The slurry was then heated to reflux and still no change in the heavy slurry could be observed. There was apparently no reaction

between the magnesium carbonate and the sodium hydroxyacetate soap solution. Soaps of alkali metal bases do not react with alkaline

earth carbonates. This is expected as alkali metal bases (hydroxides)

are strong bases and react completely with the carboxylic acids, such

as in Equation A above, and drive the reaction all the way to the right

(soap) leaving no "free" acid available in solution.

EXAMPLE - 5 Comparative Reactivity of Hydroxyacetic Acid

Soap of Triethanolamine with Magnesium Carbonate in the Presence of Excess Triethanolamine

0.1 equivalents of hydroxyacetic acid were reacted with

0.2 equivalents of triethanolamine in 100 ml of water in a 400 ml

beaker with magnetic stirring.

1 .00 gms of magnesium carbonate powder was added

with magnetic stirring and the slurry observed. After 1 20 min. the slurry was still of moderate haze. (The slurry in a 1 : 1 soap solution

clears in 75 min. See Example 1 -D).

The slurry was then heated to reflux with magnetic stirring and the slurry cleared slowly. The increased level of free triethanolamine in the triethanolamine/hydroxyacetic acid soap solution lowers the "free" hydroxyacetic acid concentration by shifting the equilibrium in the direction of the soap thus reducing the rate of

reaction with magnesium carbonate because of the lower concentration of the "free" carboxylic acid. EXAMPLE 6 - Inhibition of Water Scale Formation and

Precipitation During Concentration by the 1 : 1 Soap of Hydroxyacetic Acid and Triethanolamine

5.7 ml of an aqueous solution of the 1 : 1 soap of hydroxyacetic acid and triethanolamine containing 1 .0 gm of the soap was added to 500 ml of tap water and the water concentrated to 100 ml by distillation.

No solids were observed after concentration and the

solution was crystal clear. On cooling to room temperature, no

change was noted in the solution.

A control, without the 1 : 1 soap, resulted in substantial

deposits on the sides of the distillation vessel and the formation of an

insoluble precipitate. The 1 : 1 soap solution of hydroxyacetic acid and

triethanolamine is an effective agent to prevent water scale formation during concentration and would be beneficial in distillation, cooling towers, reverse osmosis water purification systems, and the like.

Neutral ionic and nonionic surfactants could assist in the removal of solids in water scale deposits in certain application which utilize the 1 : 1 soap to break-up deposits by reacting with carbonates,

oxides and hydroxides present. Furthermore, degreasing solvents, perfumes, odorants or masking agents might be advantageously

employed in certain product formulations for particular end uses such as tub and tile cleaners.

EXAMPLE 7 - 1 : 1 Soap Evaluation in a Consumer Tube and Tile

Product Formulation A tub and tile formulation was prepared using an aqueous

mixture of ammonia and triethanolamine in combination with hydroxyacetic acid in a 1 : 1 stoichiometric concentration along with

other ingredients, i.e., odorizer, degreasing solvent, etc.

The formulation was sprayed on one half of a water

spotted shower door and allowed to stand for one hour. The shower door was then rinsed with water and a comparison made between the

treated and untreated door areas. The treated area of the door was clean and bright. The untreated area of the door remained spotted as

at the beginning of the test. A tub and tile formulation utilizing the

1 : 1 soap of this invention was an effective agent for the removal of water scale deposits.

The foregoing description of the preferred embodiments

of the invention should be considered as illustrative, and not as

limiting. For example, although the 1 : 1 soaps are described as used with a cooling tower, the soaps also may be used for water purification systems (distillation), reverse osmosis, etc., closed heat

exchange systems (automotive radiators), swimming pools, water distribution systems, and industrial systems. Various other uses, changes and modification will occur to those skilled in the art, without departing from the true scope of the invention as defined in the appended claims.