Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
3-((HETERO-)ARYL)-ALKYL-8-AMINO-2-OXO-1,3-DIAZA-SPIRO-[4.5]-DECANE DERIVATIVES
Document Type and Number:
WIPO Patent Application WO/2017/121648
Kind Code:
A1
Abstract:
The invention relates to 3-((hetero-)aryl)-alkyl-8-amino-2-oxo-1,3-diaza-spiro-[4.5]-decane derivatives, their preparation and their use in medicine, particularly in the treatment of pain.

Inventors:
KÜHNERT SVEN (DE)
KOENIGS RENÉ MICHAEL (DE)
KLESS ACHIM (DE)
WEGERT ANITA (DE)
RATCLIFFE PAUL (DE)
JOSTOCK RUTH (DE)
KOCH THOMAS (DE)
LINZ KLAUS (DE)
SCHRÖDER WOLFGANG (DE)
SCHIENE KLAUS (DE)
KONETZKI INGO (DE)
Application Number:
PCT/EP2017/025006
Publication Date:
July 20, 2017
Filing Date:
January 13, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GRUENENTHAL GMBH (DE)
International Classes:
C07D235/02; A61K31/4166; A61P25/00
Domestic Patent References:
WO2009118168A12009-10-01
WO2004043967A12004-05-27
Other References:
BIGNAN G C ET AL: "Recent advances towards the discovery of ORL-1 receptor agonists and antagonists", EXPERT OPINION ON THERAPEUTIC PATENTS, INFORMA HEALTHCARE, GB, vol. 15, no. 4, 1 January 2005 (2005-01-01), pages 357 - 388, XP002393017, ISSN: 1354-3776, DOI: 10.1517/13543776.15.4.357
Download PDF:
Claims:
Patent claims:

1. A compound according to general formula (I)

wherein n means 1, 2 or 3;

R1 and R2 independently of one another mean

-H;

-Ci-C6-alkyl, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -OH, -OCH3, -CN and -C02CH3;

a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -OH, -OCH3, -CN and -CO2CH3; wherein said 3-12-membered cycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted; or a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -OH, -OCH3, -CN and -C02CH3; wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted;

or

R1 and R2 together with the nitrogen atom to which they are attached form a ring and mean -(CH2)3_,5-; - (CH2)2-0-(CH2)2-; or -(CH2)2-NRA-(CH2)2-, wherein RA means -H or -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br and -I;

R3 means

-Ci-C6-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered cycloalkyl moiety is optionally connected through -Q-Q-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted;

a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -C\-C - alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted;

a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; wherein said 6-14-membered aryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or

a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said 5-14- membered heteroaryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted;

R4 means

-H;

-Ci-C6-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said -Ci-C6-alkyl is optionally connected through -C(=0)-, -C(=0)0, or -S(=0)2-;

a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered cycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein said 3-12- membered cycloalkyl moiety is optionally connected through -C(=0)-, -C(=0)0, -C(=0)0-CH2-, or - S(=0)2-;

a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -Q-Q- alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -C(=0)-, - C(=0)0, -C(=0)0-CH2-, or -S(=0)2-;

a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; wherein said 6-14-membered aryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein said 6-14-membered aryl moiety is optionally connected through -C(=0)-, -C(=0)0, -C(=0)0-CH2-, or -S(=0)2-; or

a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said 5-14- membered heteroaryl moiety is optionally connected through -Q-Q-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein said 5-14-membered heteroaryl moiety is optionally connected through -C(=0)-, -C(=0)0, -C(=0)0-CH2-, or -S(=0)2-;

R5 means

a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; or a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted;

R7, R8, R11, R12, R13, R14, R15, R16, R17, R18, R19, and R20 independently of one another mean -H, -F, -CI, -Br, -I, -OH, or -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein R7 and R8 together with the carbon atom to which they are attached form a ring and mean - (CH2)2- or -(C¾)3-; wherein "mono- or polysubstituted" means that one or more hydrogen atoms are replaced by a substituent independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -R21, -C(=0)R21, -C(=0)OR21, -C(=0)NR21R22, -O-(CH2CH2-O)1.30-H, -0-(CH2CH2-O)1.3o-CH3, =0, -OR21, -OC(=0)R21, -OC(=0)OR21, -OC(=0)NR21R22, -N02, -NR21R22, -NR21-(CH2)1.6-C(=0)R22, -NR21-(CH2)1.6- C(=0)OR22, -NR23-(CH2)!.6-C(=0)NR21R22, -NR21C(=0)R22, -NR21C(=0)-OR22, -NR23C(=0)NR21R22, - NR21S(=0)2R22, -SR21, -S(=0)R21, -S(=0)2R21, -S(=0)2OR21, and -S(=0)2NR21R22;

wherein

R21, R22 and R23 independently of one another mean

-H;

-Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH2, and -0-C C6-alkyl;

a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted; wherein said 3-12- membered cycloalkyl moiety is optionally connected through -Q-Q-alkylene-, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH2, -Cr C6-alkyl and -0-C C6-alkyl;

a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted; wherein said 3-12- membered heterocycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH2, -Cr C6-alkyl and -O-Q-Q-alkyl;

a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; wherein said 6-14-membered aryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH2, -Ci-Ci-alkyl and -0-Ci-C6-alkyl; a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said 5-14- membered heteroaryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH2, -C C6-alkyl and -O-Q-Q-alkyl; or R21 and R22 within -C(=0)NR21R22, -OC(=0)NR21R22, -NR21R22, - R23-(CH2)!.6-C(=0)NR21R22, - NR23C(=0)NR21R22, or -S(=0)2NR21R22 together with the nitrogen atom to which they are attached form a ring and mean -(CH2)3_6-; -(CH2)2-0-(CH2)2-; or -(CH2)2-NRB-(CH2)2-, wherein RB means -H or -C C6- alkyl, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br and -I; or a physiologically acceptable salt thereof.

2. The compound according to claim 1, wherein R7, R8, R11, R12, R13, R14, R15, R16, R17, R18, R19, and R20 independently of one another mean -H, -F, -OH, or -Ci-Ci-alkyl; or R7 and R8 together with the carbon atom to which they are attached form a ring and mean -(CH2)2-.

3. The compound according to claim 1 or 2, wherein R means -H; and R2 means -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted.

4. The compound according to claim 1 or 2, wherein R means -CH3; and R2 means -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted.

5. The compound according to claim 1 or 2, wherein R1 means -H or -CH3; and wherein R2 means -CH2- cycloalkyl, -CH2-cyclobutyl, -CH2-cyclopentyl, -CH2-oxetanyl or -CH2-tetrahydrofuranyl.

6. The compound according to claim 1 or 2, wherein R1 and R2 together with the nitrogen atom to which they are attached form a ring and mean -(CH2)3.6-.

7. The compound according to any of the preceding claims, wherein R3 means -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted.

8. The compound according to any of claims 1 to 6, wherein R3 means a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted.

9. The compound according to any of claims 1 to 6, wherein R3 means a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted.

10. The compound according to any of the preceding claims, wherein R4 means -H.

11. The compound according to any of claims 1 to 9, wherein R4 means -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted.

12. The compound according to any of claims 1 to 9, wherein R4 means a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein the 3-12-membered cycloalkyl moiety is connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted.

13. The compound according to any of claims 1 to 9, wherein R4 means a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered heterocycloalkyl moiety is connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted.

14. The compound according to any of claims 1 to 9, wherein R4 means a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; wherein said 6-14-membered aryl moiety is connected through - Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted.

15. The compound according to any of claims 1 to 9, wherein R4 means a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said 5-14-membered heteroaryl moiety is connected through -Ci-C6-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted.

16. The compound according to any of the preceding claims, wherein n means 1 or 2.

17. The compound according to any of the preceding claims, wherein R5 means -phenyl, unsubstituted, mono- or polysubstituted.

18. The compound according to any of claims 1 to 16, wherein R5 means -pyrazinyl, -pyridazinyl, -pyridinyl, -pyrimidinyl, -thienyl, -imidazolyl, triazolyl, or -1,3-benzodioxolyl in each case unsubstituted, mono- or polysubstituted.

19. The compound according to any of the preceding claims, which has a structure according to any of general formulas II- A) to (VIII-C):

(II-A)

(V-B) (V-C)

(VIII-A) (VIII-B)

(VIII-C)

wherein in each case

R1, R2, R3, R4, and R5 are defined as in any of the preceding claims,

R means -H, -OH, -F, -CN or -C C4-alkyl; RD means -H or -F;

or a physiologically acceptable salt thereof.

The compound according to any of the preceding claims, wherein R is selected from the group consisting

21. The compound according to any of the preceding claims, wherein n means 1 or 2; R1 means -H or -CH3;

R2 means -H or -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted or monosubstituted with -OH, -OCH3, -C(=0)OCH3, or -CN;

R3 means

-Ci-C4-alkyl, optionally monosubstituted with -OCH3;

-phenyl, -thienyl or -pyridinyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -CN, -CH3, - CH2CH3, -CH2F, -CHF2, -CF3, -OCF3, -OH, -OCH3, -0-CH2-0-CH3, -C(=0)NH2, C(=0)NHCH3, - C(=0)N(CH3)2, -NH2, -NHCH3, -N(CH3)2, -NHC(=0)CH3, -CH2OH, SOCH3 and S02CH3; or

R4 means

-H;

-Ci-C6-alkyl, linear or branched, saturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, =0, -OH, -0-C C4-alkyl, -C02H, -C(=0)0-C C4-alkyl, -C(=0)NH2, -C(=0)NH-C C4-alkyl, -C(=0)N(C C4-alkyl)2, -C(=0)NH-C C4-alkyl-CN, -C(=0)NCH3-C C4-alkyl-CN, -C(=0)NH-cyclopropyl-CN, - C(=0)NCH3-cyclopropyl-CN, -C(=0)NH-C C4-alkyl-OH, -C(=0)NCH3-C C4-alkyl-OH, -C(=0)NH- C C4-alkyl-OCH3, -C(=0)NCH3-C C4-alkyl-OCH3, -C(=0)NRR' wherein R and R together with the nitrogen atom to which they are attached form a ring and mean -(CH2)2.4-;

3-6-membered cycloalkyl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, and -O-Cr C4-alkyl, wherein said 3-6-membered cycloalkyl is connected through -Ci-Ci-alkylene;

3-6-membered heterocycloalkyl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -C02H, - -OH, and -0-Ci-C4-alkyl, wherein said 3-6-membered heterocycloalkyl is connected through -Q-Q-alkylene;

6-14-membered aryl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -C02H, - OH, and -0-Ci-C4-alkyl; wherein said 6-14-membered aryl is connected through -Ci-Ci-alkylene- or -

S(=0)2-;

5-14-membered heteroaryl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -C02H, - C(=0)0-C1-C4-alkyl, -OH, and -0-C!-C4-alkyl; wherein said 5-14-membered heteroaryl is connected through -Q-Q-alkylene- or -S(=0)2-;

R5 means -phenyl, -pyrazinyl, -pyridazinyl, -pyridinyl, -pyrimidinyl, -thienyl, -imidazolyl, triazolyl, or - 1,3-benzodioxolyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F; -CI; -Br; -I; -CN; -OH; -C1-C4- alkyl; -CF3; -Ci-C4-alkyl-OH; -3-12-membered cycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; preferably -cyclopropyl, saturated, unsubstituted; - 3-12-membered heterocycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; -O-

CH2-0-; -0-C C4-alkyl; -O-(CH2CH2-O)1.30-H; -O-(CH2CH2-O)1.30-CH3; -C(=0)OH; -C(=0)OC C4- alkyl; -C(=0)NH2; -C(=0)NHC C4-alkyl; -C(=0)N(C C4-alkyl)2; -SC C4-alkyl; -S(=0)C C4-alkyl and -S(=0)2C C4-alkyl; and

R7, R8, R11, R12, R13, R14, R15, R16, R17, R18, R19, and R20 mean -H.

The compound according to any of the preceding claims, which has a structure according to general formula (Γ)

(Γ) wherein R1 to R5, R7, R8, R10 to R20 and n are defined as in any of the preceding claims,

or a physiologically acceptable salt thereof.

The compound according to any of the preceding claims, which has a structure according to general formula (IX)

wherein

Rc means -H or -OH;

R3 means -phenyl or -3 -fluorophenyl; and

R5 means

6-14-membered aryl, unsubstituted, mono- or polysubstituted; or

5-14-membered heteroaryl, unsubstituted, mono- or polysubstituted; or a physiologically acceptable salt thereof.

The compound according to claim 23, wherein R5 is selected from -phenyl, -pyridyl, pyrimidinyl, triazolyl, in each case unsubstituted, mono- or polysubstituted.

The compound according to any of the preceding claims, which is selected from the group consisting

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(4-methylsulfonyl-phenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS- 1 -(Cyclobutyl-methyl)-8-dimethylamino-3 -[(3 -methoxyphenyl) -methyl] -8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino- 1 -isopropyl-3-[(4-methoxyphenyl)-methyl]-8-phenyl- 1 ,3-diazaspiro[4.5]decan- one;

CI S - 1 - (Cyclopropyl-methyl) - 8 -dimethylamino-3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CI S - 1 - (Cy clobutyl-methyl) - 3 - [ (4 -methoxyphenyl) -methyl] - 8 - [methyl- (2 -me thyl-propyl)- amino] - 8 - phenyl- 1 ,3-diazaspiro[4.5]decan-2-one;

CIS-2-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl]- methyl] -benzamide;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-(pyrazin-2-yl-methyl)-l,3- diazaspiro[4.5]decan-2-one; CI S - 8 - ( Allyl-methyl- amino) - 1 - (cy clobutyl-methyl) - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-4-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl]- methyl] -benzamide;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-fluorophenyl)-3-[(4-methoxyphenyl)-methyl]-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(4-fluorophenyl)-3-[(4-methoxyphenyl)-methyl]-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-methoxyphenyl)-3-[(4-methoxyphenyl)-methyl]-l,3- diazaspiro[4.5]decan-2-one;

CI S - 1 - (Cyclobutyl-methyl) - 8 -dimethylamino- 8 - (4 -methoxyphenyl) -3 - [ (4 -methoxyphenyl) -methyl] -1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(2-methyl-propyl)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-Butyl-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-(4-fluorophenyl)-3-[(4-methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan-2- one;

CIS-8-Dimethylamino-8-(3-fluorophenyl)-3-[(4-methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan-2- one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-hydroxyphenyl)-3-[(4-methoxyphenyl)-methyl]-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-(pyridin-3-yl-methyl)-l,3-diazaspiro[4.5]decan- 2-one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[[3-[2-[2-[2-[2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy]- ethoxy] -ethoxy] -ethoxy] -phenyl] -methyl] - 8-phenyl- 1 ,3 -diazaspiro[4.5 ] decan-2-one ;

CIS- 1 -(Cyclobutyl-methyl)-8-dimethylamino-8-(4-hydroxyphenyl)-3-[(4-methoxyphenyl)-methyl]- 1 ,3- diazaspiro[4.5]decan-2-one hydrochloride;

CIS-8-Dimethylamino- 1 -[( 1 -hydroxy- cyclobutyl) -methyl] -3 -[(3 -methoxyphenyl)-methyl] -8-phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CI S - 1 - (Cy clopentyl-methyl) - 8 -dimethylamino- 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-(2-hydroxy-2-methyl-propyl)-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS - 8 -Dimethylamino- 1 - (2 -methoxy-2 -methyl-propyl) - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one; CIS- 1 -(Cyclobutyl-methyl)-3 -[(3 -methoxyphenyl) -methyl] -8-methylamino-8-phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-3-[[l-(Cyclobutyl-methyl)-8-(ethyl-me ^

methyl] -benzonitrile;

CI S - 1 - (Cyclobutyl-methyl) - 3 - [ (3 -methoxyphenyl) -methyl] - 8 - (methyl-propyl- amino) - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-l-(Cyclobutyl-methyl)-8-(ethyl-methyl-amino)-3-[(3-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- propionitrile;

CIS-l-(Cyclobutyl-methyl)-8-methylamino-8-phenyl-3-(pyridin-3-yl-methyl)-l,3-diazaspiro[4.5]decan-2- one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(oxetan-3-yl-methyl)-8-phenyl-l,3-diazaspiro- [4.5]decan-2-one;

CIS- 1 -(Cyclobutyl-methyl)-8-(ethyl-methyl-amino)-8-phenyl-3 -(pyridin-3 -yl-methyl)- 1 ,3 -diazaspiro- [4.5]decan-2-one;

CIS - 8 -Dimethylamino- 1 - (2 -hydroxy-ethyl) -3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-(2,2-dimethyl-propyl)-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(3-methyl-butyl)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l-[3-(trifluoromethyloxy)-propyl]-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-(2-Cyclobutyl-ethyl)-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-[(3,3-Difluoro-cyclobutyl)-methyl]-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-2-[[l-(Cyclobutyl-methyl)-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan- 8-yl] -methyl-amino] -acetonitrile;

CIS-l-(Cyclobutyl-methyl)-8-[(2-methoxy-ethyl)-methyl-amino]-3-[(4-methoxyphenyl)-methyl]-8- phenyl- 1 ,3-diazaspiro[4.5]decan-2-one;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- acetic acid tert-butyl ester; CI S -2 - [ 8 -Dimethylamino- 3 - [ (4 -mem^

acetic acid; 2,2,2-trifluoroacetic acid salt;

CI S - 1 - (Cyclobutyl-methyl) - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -methylamino- 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- acetic acid methyl ester;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- acetamide;

CIS-l-Benzyl-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- N-methyl-acetamide;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- N-propyl- acetamide ;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(3-methoxy-propyl)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS - 8 -Dimethylamino- 1 - [ ( 1 -hydroxy- cy clobutyl) -methyl] - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino- 1 -(2-methoxy-ethyl)-3 -[(4 -methoxyphenyl) -methyl] -8-phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- acetonitrile;

CIS-8-Dimethylamino-l-hexyl-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l-(tetrahydro-pyran-4-yl-methyl)-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-(Cyclohexyl-methyl)-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-N-(Cyano-methyl)-2-[8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3- diazaspiro[4.5]decan- 1 -yl] -acetamide;

CIS-8-Dimethylamino-3 -[(4-methoxyphenyl)-methyl] -8-phenyl- 1 -(pyridin-3 -yl-methyl)- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-(3-methoxy-propyl)-l,3-diazaspiro[4.5]decan-2- one;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- N- (2 -methoxy-ethyl) - acetamide ; CIS-8-Dimethylamino-3 -[(4-methoxyphenyl)-methyl] - 1 -(2-oxo-2-pyrrolidin- 1 -yl-ethyl)-8-phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]

N,N-dimethyl-acetamide;

CIS-N-(l-Cyano-cyclopropyl)-2-[8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3- diazaspiro[4.5]decan- 1 -yl]-acetamide;

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]

N-methyl-N-propyl-acetamide;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-^

diazaspiro[4.5]decan-2-one;

CIS - 8 -Dimethylamino- 1 - (3 -hydroxy -propyl) - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS - 8 -Dimethylamino- 1 - (4 -methoxy -butyl) - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-[(l-methyl-cyclobutyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-[(l-hydroxy-cyclohexyl)-methyl]-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-5-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- pentanenitrile;

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- propionamide;

CIS-l-(Cyclobutyl-methyl)-8-[(2-hydroxy-ethyl)-methyl-amino]-3-[(4-methoxyphenyl)-methyl]-8- phenyl- 1 ,3-diazaspiro[4.5]decan-2-one;

CIS- 1 -[[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl- 1 ,3-diazaspiro[4.5]decan- 1 - yl] -methyl] - cy clobutane - 1 - c arbonitrile ;

CIS - 8 -Dimethylamino- 1 - [ ( 1 -hydroxy- cy clopentyl) -methyl] - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-3-[(2-Bromophenyl)-methyl]-l-(cyclobutyl-methyl)-8-dimethylamino-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- N-methyl-propionamide ;

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- N-propyl-propionamide ; CIS-8-Dimethylamino- 1 -[( 1 -fluoro-c^

diazaspiro[4.5]decan-2-one;

CIS-l-(2-Cyclohexyl-ethyl)-8-dimethyk

diazaspiro[4.5]decan-2-one;

CIS-3-[[l-(Cyclobutyl-methyl)-8-dimem^

methyl] -benzonitrile;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-methyl-8-phenyl-l,3-diazaspiro[4.5]decan-2- one;

CIS-8-Dimethylamino-l-[2-[2-[2-[2-[2-[2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy]-ethoxy]-ethoxy]- ethoxy]-ethoxy]-ethyl]-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l-(2-tetrahydro-pyran-4-yl-ethyl)-l,3- diazaspiro[4.5]decan-2-one;

CIS-4-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl]- methyl] -benzonitrile;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-[[6-(trifluoromethyl)-pyridin-3-yl]-methyl]-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[[4-[2-[2-[2-[2-[2-[2-[2-(2-methoxy-ethoxy)-ethoxy]- ethoxy] -ethoxy] -ethoxy] -ethoxy] -ethoxy] -ethoxy] -phenyl] -methyl] -8-phenyl- 1 ,3 -diazaspiro[4.5]decan-2- one;

CIS-3-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl]- methyl] -benzamide;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(4-hydroxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-l-(Cyclobutyl-methyl)-8-(ethyl-methyl-amino)-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-[(l-methoxy-cyclobutyl)-methyl]-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-2-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl]- methyl] -benzonitrile;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(3-methylsulfonyl-phenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-ethyl-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one; CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l -propyl- l,3-diazaspiro[4.5]decan-2-one; CIS-3-Benzyl-l-(cyclobutyl-methyl)-8-dimethylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one; CI S - 8 -Dimethylamino-3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1 - (pyrimidin-4-yl-methyl)-l,3- diazaspiro[4.5]decan-2-one;

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- 2,2-dimethyl-propionitrile;

CIS-2-[[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l- yl] -methyl] -benzoic acid methyl ester;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-(pyridin-2-yl-methyl)-l,3-diazaspiro[4.5]decan- 2-one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-(pyridin-4-yl-methyl)-l,3-diazaspiro[4.5]decan- 2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l-(tetrahydro-furan-3-yl-methyl)-l,3- diazaspiro[4.5]decan-2-one;

CIS- 1 -(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-(pyrimidin-2-yl-methyl)- 1,3- diazaspiro[4.5]decan-2-one;

CIS-3-[[l-[(5-Cyano-2-methoxy-phenyl)-methyl]-8-dimethylamino-2-oxo-8-phenyl-l,3- diazaspiro[4.5]decan-3-yl]-methyl]-4-methoxy-benzonitrile;

CIS-8-Dimethylamino- 1 -(3 -hydroxy-3 -methyl-butyl)-3 -[(4-methoxyphenyl)-methyl] -8-phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-(3-methoxy-3-methyl-butyl)-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-2-[[8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan- 3 -yl] -methyl] -benzamide;

CIS-3-[[8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan- 3 -yl] -methyl] -benzamide;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(2-methylsulfonyl-ethyl)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-1-[(1 -Hydroxy- cy clobutyl) -methyl] - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -methylamino- 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l-(tetrahydro-furan-2-yl-methyl)-l,3- diazaspiro[4.5]decan-2-one;

CIS-3-Benzyl-8-dimethylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-3-Benzyl-8-dimethylamino-l-ethyl-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-[2-(methylsulfinyl)-ethyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one; CI S - 8 -Dimethylamino- 1 - [ (2R) -2 -hyd^^

diazaspiro[4.5]decan-2-one;

CIS - 8 -Dimethylamino- 1 - [ (2 S) -2 -hydroxy-propyl] - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l-(tetrahydro-furan-3-yl-methyl)-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-ethyl-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CI S - 8 - Amino- 1 - [ ( 1 -hydroxy-cy clobutyl) -methyl] - 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino- 1 -[( 1 -hydroxy-cy clobutyl)-methyl] -8-phenyl-3 -(2 -phenyl-ethyl)- 1 ,3 -diazaspiro- [4.5]decan-2-one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-[(4-methoxyphenyl)-methyl]-l,3-diazaspiro- [4.5]decan-2-one;

CIS-3-[[8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan- 3-yl]-methyl]-4-methoxy-benzonitrile;

CIS-8-Dimethylamino-l-ethyl-8-phenyl-3-(pyridin-3-yl-methyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-[2-(l-methoxy-cyclobutyl)-ethyl]-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-[3-(methoxymethyloxy)-phenyl]-3-[(4-methoxyphenyl)-methyl]-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-[4-(methoxymethyloxy)-phenyl]-3-[(4-methoxyphenyl)-methyl]-l,3-diaza- spiro[4.5]decan-2-one;

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- propionic acid;

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl]- propionic acid tert-butyl ester;

CIS-2-[[l-(Cyclobutyl-methyl)-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan- 8-yl]-methyl-amino]-acetic acid methyl ester;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(3-methyl-but-2-enyl)-8-phenyl-l,3-diaza- spiro[4.5]decan-2-one;

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(3-methylsulfanyl-phenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-3-[(3-Bromophenyl)-methyl]-l-(cyclobutyl-methyl)-8-dimethylamino-8-phenyl-l,3-diazaspiro[4.5]- decan-2-one; CIS-2-((8-(dimethylamino)- 1 -(( 1 -hydroxy cy clobutyl)methyl)-2-oxo-8-phenyl- 1 ,3-diazaspiro[4.5]decan- 3 -yl)methyl)benzonitrile;

CIS-8-Dimethylamino-8-(3-methoxyphenyl)-3-[(4-methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan^ one;

CIS-8-Dimethylamino-8-(4-methoxyphenyl)-3-[(4-methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan^ one;

CIS-3-((8-(dimethylamino)-l-((l-hydroxycyclobutyl)methyl)-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan- 3 -yl)methyl)benzonitrile;

CIS-3-((8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl)methyl)-4-methoxybenzo- nitrile;

CIS-8-Dimethylamino-8-phenyl-3-(lH-[l,2,3]triazol-4-yl-methyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[[l-(2-hydroxy-ethyl)-lH-[l,2,3]triazol-4-yl]-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-2-[4-[(8-Dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl)-methyl]-lH-[l,2,3]triazol-l- yl]-acetamide;

CIS-8-Methylamino-8-phenyl-3-(lH-[l,2,3]triazol-4-yl-methyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l-(p-tolylsulfonyl)-l,3- diazaspiro[4.5]decan-2-one;

CIS-2-[4-[(8-Methylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl)-methyl]-lH-[l,2,3]triazol-l- yl]-acetamide;

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decane-l- carboxylic acid benzyl ester;

CIS-3-[[l-(2-Hydroxy-ethyl)-lH-[l,2,3]triazol-4-yl]-methyl]-8-methylamino-8-phenyl-l,3- diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-2-yl-ethyl)-l,3-diazaspiro[4.5]decane-2,4-dione;

CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-2-yl-ethyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-3-[[l-(2-hydroxy-ethyl)-lH-[l,2,3]triazoi^ yl]-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[2-(lH-imidazol-l-yl)-ethyl]-8-phenyl-l,3-diazaspiro[4.5]decane-2,4-dione;

CIS-2-[4-[[8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-2-oxo-8-phenyl-l,3- diazaspiro[4.5]decan-3-yl]-methyl]-lH-[l,2,3]triazol-l-yl]-acetamide;

CIS-l-[(l-Hydroxy-cyclobutyl)-methyl]-3-[[l-(2-hydroxy-ethyl)-lH-[l,2,3]triazol-4-yl]-methyl]-8- methylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-3-yl-ethyl)-l,3-diazaspiro[4.5]decane-2,4-dione; CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-4-yl^^

CIS-2-[4-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl]- methyl] - 1 H-[ 1 ,2,3 ]triazol- 1 -yl] -acetamide;

CIS -(Cyclobutyl-methyl)-8-dimethyk

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one;

CIS-2-[4-[[l-[(l-Hydroxy-cyclobutyl)-methyl]-8-methylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]de 3-yl] -methyl] - 1 H-[ 1 ,2,3 Jtriazol- 1 -yl] -acetamide;

CIS- 1 -(Cyclobutyl-methyl)-3-[[ 1 -(2-hydroxy-ethyl)- 1Η-[ 1 ,2,3]triazol-4-yl]-methyl]-8-methylamino-8- phenyl- 1 ,3-diazaspiro[4.5]decan-2-one;

CIS-2-[4-[[l-(Cyclobutyl-methyl)-8-methylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl]- methyl] - 1 H-[ 1 ,2,3 Jtriazol- 1 -yl] -acetamide;

CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-3-yl-ethyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[2-(lH-imidazol-l-yl)-ethyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-4-yl-ethyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-phenyl-3-(2-pyrimidin-2-yl-ethyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-phenyl-3-(2-pyrimidin-5-yl-ethyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l-ethyl-3-[(4-methylsulfonyl-phenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan- 2-one;

CIS-8-Dimethylamino-3-(l -methyl- l-phenyl-ethyl)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-phenyl-3-(l-phenyl-cyclopropyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-l,3-bis[(2-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[(3-methylsulfonyl-phenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino- 1 -[( 1 -hydroxy- cyclobutyl) -methyl] -3 -( 1 -methyl- 1 -phenyl-ethyl)- 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one;

CIS-3-[(3-Cyclopropyl-phenyl)-methyl]-8-dimethylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-3-(l,3-Benzodioxol-4-yl-methyl)-8-dimethylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino- 1 -[( 1 -hydroxy- cyclobutyl) -methyl] -8-phenyl-3 -( 1 -phenyl-cyclopropyl)- 1,3- diazaspiro[4.5]decan-2-one;

CIS-4-[[8-Dimethylamino-3-[(2-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l- yl] -methyl] -benzonitrile;

CIS-8-Dimethylamino-3-[(2-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-phenyl-3-(pyridin-4-yl-methyl)-l,3-diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-8-phenyl-3-(pyridin-2-yl-methyl)-l,3-diazaspiro[4.5]decan-2-one; CIS-8-Dimethylamino-8-phenyl-3 -(pyridin-3 -yl-methyl)- 1 ,3 -diazaspiro[4.5]decan-2-one;

CIS-8-Dimethylamino-3-[[2-(4-methyl-piperazm^

diazaspiro[4.5]decan-2-one;

CI S - 8 -Dimethylamino- 8 -phenyl- 3 - [ (2 -piperidin- 1 -yl-pyridin-4 -yl) -methyl]- l,3-diazaspiro[4.5]decan-2 one;

CIS-8-Dimethylamino-3-[(2-mo holin-4-yl-pyridin-4-yl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan- one;

CIS-8-Dimethylamino-8-phenyl-3-[(2-piperazin-l-yl-pyridin-4-yl)-methyl]-l,3-diazaspiro[4.5]decan-2 one;

and the physiologically acceptable salts thereof.

The compound according to any of the preceding claims for use in the treatment of pain.

27. A medicament comprising a compound according to any of the preceding claims.

Description:
3-((Hetero-)Aryl)-Alkyl-8-Amino-2-Oxo-l,3-Diaza-Spiro-[4.5]- Decane Derivatives

[0001] The invention relates to 3-((hetero-)aryl)-alkyl-8-amino-2-oxo-l,3-diaza-spiro-[4.5]- decane derivatives, their preparation and use in medicine, particularly in various neurological disorders, including but not limited to pain, neurodegenerative disorders, neuroinflammatory disorders, neuropsychiatric disorders, substance abuse/dependence.

[0002] Opioid receptors are a group of Gi/o protein-coupled receptors which are widely distributed in the human body. The opioid receptors are currently subdivided into four major classes, i.e. the three classical opioid receptors mu-opioid (MOP) receptor, kappa-opioid (KOP) receptor, and delta-opioid (DOP) receptor as well as the opioid receptor-like (ORL-1) receptor, which was more recently discovered based on its high homology with said classical opioid receptors. After identification of the endogenous ligand of the ORL-1 receptor, known as nociceptin/o hanin FQ, a highly basic 17 amino acid peptide isolated from tissue extracts in 1995, the ORL-1 receptor was renamed "nociceptin opioid peptide receptor" and abbreviated as "NOP-receptor".

[0003] The classical opioid receptors (MOP, KOP and DOP) as well as the NOP receptor are widely distributed/expressed in the human body, including in the brain, the spinal cord, on peripheral sensory neurons and the intestinal tract, wherein the distribution pattern differs between the different receptor classes.

[0004] Nociceptin acts at the molecular and cellular level in very much the same way as opioids. However, its pharmacological effects sometimes differ from, and even oppose those of opioids. NOP-receptor activation translates into a complex pharmacology of pain modulation, which, depending on route of administration, pain model and species involved, leads to either pronociceptive or antinociceptive activity. Furthermore, the NOP receptor system is upregulated under conditions of chronic pain. Systemic administration of selective NOP receptor agonists was found to exert a potent and efficacious analgesia in non-human primate models of acute and inflammatory pain in the absence of side effects. The activation of NOP receptors has been demonstrated to be devoid of reinforcing effects but to inhibit opioid-mediated reward in rodents and non-human primates (Review: Schroeder et al, Br J Pharmacol 2014; 171 (16): 3777-3800, and references therein).

[0005] Besides the involvement of the NOP receptor in nociception, results from preclinical experiments suggest that NOP receptor agonists might be useful inter alia in the treatment of neuropsychiatric disorders (Witkin et al, Pharmacology & Therapeutics, 141 (2014) 283-299; Jenck et al., Proc. Natl. Acad. Sci. USA 94, 1997, 14854-14858). Remarkably, the DOP receptor is also implicated to modulate not only pain but also neuropsychiatric disorders (Mabrouk et al, 2014; Pradhan et al., 2011). [0006] Strong opioids acting at the MOP receptor site are widely used to treat moderate to severe acute and chronic pain. However, the therapeutic window of strong opioids is limited by severe side effects such as nausea and vomiting, constipation, dizziness, somnolence, respiratory depression, physical dependence and abuse. Furthermore, it is known that MOP receptor agonists show only reduced effectiveness under conditions of chronic and neuropathic pain.

[0007] It is known that some of the above mentioned side-effects of strong opioids are mediated by activation of classic opioid-receptors within the central nervous system. Furthermore, peripheral opioid receptors, when activated, can inhibit transmission of nociceptive signals shown in both, clinical and animal studies (Gupta et al., 2001; Kalso et al., 2002; Stein et al., 2003;Zollner et al., 2008).

[0008] Thus, to avoid CNS-mediated adverse effects after systemic administration, one approach has been to provide peripherally restricted opioid receptor ligands that do not easily cross the blood-brain barrier and therefore distribute poorly to the central nervous system (see for instance WO 2015/192039). Such peripherally acting compounds might combine effective analgesia with limited side-effects.

[0009] Another approach has been to provide compounds which interact with both the NOP receptor and the MOP receptor. Such compounds have for instance been described in WO 2004/043967, WO 2012/013343 and WO 2009/118168.

[0010] A further approach has been to provide multi-opioid receptor analgesics that modulate more than one of the opioid receptor subtypes to provide additive or synergistic analgesia and/or reduced side effects like abuse liability or tolerance.

[0011] On the one hand, it would be desirable to provide analgesics that selectively act on the NOP receptor system but less pronounced on the classic opioid receptor system, especially MOP receptor system, whereas it would be desirable to distinguish between central nervous activity and peripheral nervous activity. On the other hand, it would be desirable to provide analgesics that act on the NOP receptor system and also to a balanced degree on the MOP receptor system, whereas it would be desirable to distinguish between central nervous activity and peripheral nervous activity.

[0012] There is a need for medicaments which are effective in the treatment of pain and which have advantages compared to the compounds of the prior art. Where possible, such medicaments should contain such a small dose of active ingredient that satisfactory pain therapy can be ensured without the occurrence of intolerable treatment- emergent adverse events.

[0013] It is an object of the invention to provide pharmacologically active compounds, preferably analgesics that have advantages compared to the prior art.

[0014] This object has been achieved by the subject-matter of the patent claims. [0015] A first aspect of the invention relates to 3-((hetero-)aryl)-alkyl-8-amino-2-oxo-l,3-diaza-spiro-[4.5]- decane derivatives according to general formula (I)

wherein n means 1, 2 or 3;

R 1 and R 2 independently of one another mean

-H;

-Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -OH, - OCH 3 , -CN and -C0 2 CH 3 ;

a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -OH, - OCH 3 , -CN and -C0 2 CH 3 ; wherein said 3-12-membered cycloalkyl moiety is optionally connected through -Q- C 6 -alkylene-, linear or branched, saturated or unsaturated, unsubstituted; or

a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, - OH, -OCH 3 , -CN and -CO 2 CH 3 ; wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted;

or

R 1 and R 2 together with the nitrogen atom to which they are attached form a ring and mean -(CH 2 ) 3 . 6 -; -(CH 2 ) 2 - 0-(CH 2 ) 2 -; or -(CH 2 ) 2 -NR A -(CH 2 ) 2 -, wherein R A means -H or -Q-Q-alkyl, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br and -I;

preferably with the proviso that R 1 and R 2 do not simultaneously mean -H; R 3 means

-Ci-C 6 -alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered cycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted;

a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted;

a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; wherein said 6-14-membered aryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or

a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said 5-14-membered heteroaryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted;

R 4 means

-H;

-Ci-C 6 -alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said -Ci-C 6 -alkyl is optionally connected through -C(=0)-, -C(=0)0, or -S(=0) 2 -;

a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered cycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein said 3-12-membered cycloalkyl moiety is optionally connected through -C(=0)-, -C(=0)0, -C(=0)0-CH 2 -, or -S(=0) 2 -;

a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -C(=0)-, -C(=0)0, -C(=0)0-CH 2 -, or -S(=0) 2 -; a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; wherein said 6-14-membered aryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein said 6-14-membered aryl moiety is optionally connected through -C(=0)-, -C(=0)0, -C(=0)0-CH 2 -, or -S(=0) 2 -; or

a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said 5-14-membered heteroaryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein said 5-14-membered heteroaryl moiety is optionally connected through -C(=0)-, -C(=0)0, -C(=0)0-CH 2 -, or -S(=0) 2 -;

R 5 means

a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; or

a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; R 7 , R 8 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , and R 20 independently of one another mean -H, -F, -CI, -Br, -I, - OH, or -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted; or wherein R 7 and R 8 together with the carbon atom to which they are attached form a ring and mean -(CH 2 )2- or -(C¾) 3 -; wherein "mono- or polysubstituted" means that one or more hydrogen atoms are replaced by a substituent independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -R 21 , -C(=0)R 21 , - C(=0)OR 21 , -C(=0)NR 21 R 22 , -0-(CH 2 CH 2 -0) 1-3 o-H, -O-(CH 2 CH 2 -O) 1 . 30 -CH 3 , =0, -OR 21 , -OC(=0)R 21 , - OC(=0)OR 21 , -OC(=0)NR 21 R 22 , -N0 2 , -NR 21 R 22 , -NR 21 -(CH 2 ) 1 . 6 -C(=0)R 22 , -NR 21 -(CH 2 ) 1 . 6 -C(=0)OR 22 , -NR 23 - (CH 2 ) 1 . 6 -C(=0)NR 21 R 22 , -NR 21 C(=0)R 22 , -NR 21 C(=0)-OR 22 , -NR 23 C(=0)NR 21 R 22 , -NR 21 S(=0) 2 R 22 , -SR 21 , - S(=0)R 21 , -S(=0) 2 R 21 , -S(=0) 2 OR 21 , and -S(=0) 2 NR 21 R 22 ;

wherein

R 21 , R 22 and R 23 independently of one another mean

-H;

-Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, - NH 2 , and -0-C C 6 -alkyl;

a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted; wherein said 3-12-membered cycloalkyl moiety is optionally connected through -Q-Q-alkylene-, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH 2 , -Ci-C 6 -alkyl and -0-Ci-C 6 -alkyl;

a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted; wherein said 3-12-membered heterocycloalkyl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH 2 , -Ci-Ci-alkyl and -0-Ci-C 6 -alkyl;

a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted; wherein said 6-14-membered aryl moiety is optionally connected through -Q-Q-alkylene-, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH 2 , -Ci-C 6 -alkyl and -0-Ci-C 6 -alkyl;

a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said 5-14-membered heteroaryl moiety is optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -NH 2 , -Q-Q-alkyl and -O-Q-Q-alkyl; or R 21 and R 22 within -C(=0)NR 21 R 22 , -OC(=0)NR 21 R 22 , -NR 21 R 22 , -NR 23 -(CH 2 ) ! . 6 -C(=0)NR 21 R 22 , - NR 23 C(=0)NR 21 R 22 , or -S(=0) 2 NR 21 R 22 together with the nitrogen atom to which they are attached form a ring and mean -(CH 2 ) 3-6 -; -(CH 2 ) 2 -0-(CH 2 ) 2 -; or -(CH 2 ) 2 -NR B -(CH 2 ) 2 -, wherein R B means -H or -C C 6 -alkyl, linear or branched, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br and -I; or a physiologically acceptable salt thereof.

[0016] Preferably, aryl includes but is not limited to phenyl and naphthyl. Preferably, heteroaryl includes but is not limited to -1,2-benzodioxole, -pyrazinyl, -pyridazinyl, -pyridinyl, -pyrimidinyl, -thienyl, -imidazolyl, - benzimidazolyl, -thiazolyl, -1,3,4-thiadiazolyl, -benzothiazolyl, -oxazolyl, -benzoxazolyl, -pyrazolyl, -quinolinyl, -isoquinolinyl, -quinazolinyl, -indolyl, -indolinyl, -benzo[c][l,2,5]oxadiazolyl, -imidazo[l,2-a]pyrazinyl, or -1H- pyrrolo[2,3-b]pyridinyl. Preferably, cycloalkyl includes but is not limited to -cyclopropyl, -cyclobutyl, - cyclopentyl and -cyclohexyl. Preferably, heterocycloalkyl includes but is not limited to -aziridinyl, -azetidinyl, - pyrrolidinyl, -piperidinyl, -piperazinyl, -morpholinyl, -sulfamo holinyl, -oxiridinyl, -oxetanyl, tetrahydropyranyl, and -pyranyl.

[0017] When a moiety is connected through an asymmetric group such as -C(=0)0- or -C(=0)0-CH 2 -, said asymmetric group may be arranged in either direction. For example, when R 4 is connected to the core structure through -C(=0)0-, the arrangement may be either R 4 -C(=0)0-core or core-C(=0)0-R 4 .

[0018] In preferred embodiments of the compound according to the invention, R 7 , R 8 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , and R 20 independently of one another mean -H, -F, -OH, or -Q-Q-alkyl; preferably -H.

[0019] In preferred embodiments of the compound according to the invention, R 7 and R 8 together with the carbon atom to which they are attached form a ring and mean -(CH 2 ) 2 - (i.e. form a cyclopropyl ring) or -(CH 2 ) 3 - (i.e. form a cyclobutyl ring).

[0020] In a preferred embodiment of the compound according to the invention, R 1 means -H; and R 2 means - Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted. Preferably, R 1 means -H and R 2 means -CH 3 .

[0021] In another preferred embodiment of the compound according to the invention, R 1 means -CH 3 ; and R 2 means -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted. Preferably, R 1 means -CH 3 and R 2 means -CH 3 .

[0022] In still another preferred embodiment of the compound according to the invention, R 1 and R 2 together with the nitrogen atom to which they are attached form a ring and mean -(CH 2 ) 3 _ 6 -. Preferably, R 1 and R 2 together with the nitrogen atom to which they are attached form a ring and mean -(CH 2 ) 3 -.

[0023] In yet another preferred embodiment,

R 1 means -H or -CH 3 ; and R 2 means a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted; wherein said 3-12- membered cycloalkyl moiety is connected through -CH 2 -, unsubstituted; preferably -CH 2 -cycloalkyl, -CH 2 - cyclobutyl or -CH 2 -cyclopentyl; or R 2 means a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted; wherein said 3-12-membered heterocycloalkyl moiety is connected through -CH 2 - , unsubstituted; preferably -CH 2 -oxetanyl or -CH 2 -tetrahydrofuranyl.

[0024] In a preferred embodiment of the compound according to the invention, R 3 means -Q-Q-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted. Preferably, R 3 means -Ci-C 6 - alkyl, linear or branched, saturated or unsaturated, unsubstituted or monosubstituted with -OCH 3 .

[0025] In another preferred embodiment of the compound according to the invention, R 3 means a 6-14- membered aryl moiety, unsubstituted, mono- or polysubstituted, optionally connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted. In a preferred embodiment, R 3 means -phenyl unsubstituted, mono- or polysubstituted. More preferably, R 3 means -phenyl unsubstituted, mono- or disubstituted with -F, -CI, -CH 3 , -CF 3 , -OH, -OCH 3 , -OCF 3 or -OCH 2 OCH 3 , preferably -F. In another preferred embodiment, R 3 means -benzyl unsubstituted, mono- or polysubstituted. More preferably, R 3 means -benzyl unsubstituted, mono- or disubstituted with -F, -CI, -CH 3 , -CF 3 , -OH, -OCH 3 , -OCF 3 or -OCH 2 OCH 3 , preferably - F.

[0026] In still another preferred embodiment of the compound according to the invention, R 3 means a 5-14- membered heteroaryl moiety, unsubstituted, mono- or polysubstituted. Preferably, R 3 means -thienyl or - pyridinyl, in each case unsubstituted, mono- or polysubstituted. More preferably, R 3 means -thienyl, -pyridinyl, - imidazolyl or benzimidazolyl, in each case unsubstituted or monosubstituted with -F, -CI or -CH 3 .

[0027] In a preferred embodiment of the compound according to the invention, R 4 means -H.

[0028] In another preferred embodiment of the compound according to the invention, R 4 means -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted. Preferably, R 4 means -Q- C 6 -alkyl, linear or branched, saturated or unsaturated, unsubstituted or monosubstituted with a substituent selected from the group consisting of -F, -CI, -Br, -I, -CN, -CF 3 , -OH, -0-C C 4 -alkyl, -OCF 3 , -0-(CH 2 CH 2 -0; _ 30-H, -O-(CH 2 CH 2 -O) 1 . 30 -CH 3 , -OC(=0)C C 4 -alkyl, -C(=0)C C 4 -alkyl, -C(=0)OH, -C(=0)OC C 4 -alkyl, - C(=0)NH 2 , -C(=0)NHC C 4 -alkyl, -C(=0)NHC C 4 -alkylene-CN, -C(=0)NHCrC 4 -alkylene-0-CrC 4 -alkyl, - C(=0)N(C C 4 -alkyl) 2 ; -S(=0)C C 4 -alkyl, and -S(=0) 2 C C 4 -alkyl; or with -C(=0)NR 21 R 22 wherein R 21 and R 22 together with the nitrogen atom to which they are attached form a ring and mean -(CH 2 ) 3 . 6 -, -(CH 2 ) 2 -0-(CH 2 ) 2 -, or -(CH 2 ) 2 -NR B -(CH 2 ) 2 -, wherein R B means -H or -C C 6 -alkyl; or with -C(=0)NH-3-12-membered cycloalkyl, saturated or unsaturated, unsubstituted or monosubstituted with -F, -CI, -Br, -I, -CN, or -OH; or with -C(=0)NH- 3-12-membered heterocycloalkyl, saturated or unsaturated, unsubstituted or monosubstituted with -F, -CI, -Br, -I, -CN, or -OH. More preferably, R 4 means -Ci-C 6 -alkyl, linear or branched, saturated or unsaturated, unsubstituted or monosubstituted with -0-Ci-C 4 -alkyl or

[0029] In still another preferred embodiment of the compound according to the invention, R 4 means a 3-12- membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein the 3- 12-membered cycloalkyl moiety is connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted. Preferably, R 4 means a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered cycloalkyl moiety is connected through -CH 2 - or -CH 2 CH 2 -. More preferably, R 4 means a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -Ci-C 4 -alkyl, -O- Q-Q-alkyl, -C(=0)OH, -C(=0)OC C 4 -alkyl, -C(=0)NH 2 , -C(=0)NHC C 4 -alkyl, -C(=0)N(C 1 -C 4 -alkyl) 2 , - wherein said 3-12-membered cycloalkyl moiety is connected through -CH 2 - or -CH 2 CH 2 -.

[0030] In a preferred embodiment of the compound according to the invention, R 4 means a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12- membered heterocycloalkyl moiety is connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted. Preferably, R 4 means a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; wherein said 3-12-membered heterocycloalkyl moiety is connected through -CH 2 - or -CH 2 CH 2 -. More preferably, R 4 means -oxetanyl, - tetrahydrofuranyl or -tetrahydropyranyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, -C r C 4 -alkyl, -0-C C 4 -alkyl, -C(=0)OH, -C(=0)OC C 4 -alkyl, -C(=0)NH 2 , -C(=0)NHC C 4 -alkyl, -C(=0)N(C C 4 -alkyl) 2 , wherein said -oxetanyl, -tetrahydrofuranyl or - tetrahydropyranyl is connected through -CH 2 - or -CH 2 CH 2 -.

[0031] In yet another preferred embodiment of the compound according to the invention, R 4 means a 6-14- membered aryl moiety, unsubstituted, mono- or polysubstituted; wherein said 6-14-membered aryl moiety is connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted. Preferably, R 4 means -phenyl, unsubstituted, mono- or polysubstituted; wherein said -phenyl is connected through -CH 2 - or -CH 2 CH 2 -. More preferably, R 4 means -phenyl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, - Br, -I, -CN, -OH, -Q-Q-alkyl, -O-Q-Q-alkyl, -C(=0)OH, -C(=0)OC C 4 -alkyl, -C(=0)NH 2 , -C(=0)NHC C 4 - alkyl, wherein said -phenyl is connected through -CH 2 - or -CH 2 CH 2 -.

[0032] In a further preferred embodiment of the compound according to the invention, R 4 means a 5-14- membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said 5-14-membered heteroaryl moiety is connected through -Ci-Ci-alkylene-, linear or branched, saturated or unsaturated, unsubstituted, mono- or polysubstituted. Preferably, R 4 means a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted; wherein said -phenyl is connected through -CH 2 - or -CH 2 CH 2 -. More preferably, R 4 means - pyridinyl, -pyrimidinyl, -pyrazinyl, or -pyrazolinyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, - OH, -C C 4 -alkyl, -0-C C 4 -alkyl, -C(=0)OH, -C(=0)OC C 4 -alkyl, -C(=0)NH 2 , -C(=0)NHC C 4 -alkyl, - wherein said -pyridinyl, -pyrimidinyl, - pyrazinyl, or -pyrazolinyl is connected through -CH 2 - or -CH 2 CH 2 -.

[0033] In a preferred embodiment of the compound according to the invention, n means 1 or 2. Preferably, n means 1.

[0034] In a preferred embodiment of the compound according to the invention, R 5 means -phenyl, unsubstituted, mono- or polysubstituted. Preferably, R 5 means -phenyl unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F; -CI; -Br; -I; -CN; -OH; -Ci-C 4 -alkyl; -CF 3 ; -3-12-membered cycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; preferably -cyclopropyl, saturated, unsubstituted; -3-12-membered heterocycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; preferably -pyrrolidinyl, -piperidinyl, -morpholinyl, - piperazinyl, -thiomo holinyl, or -thiomorpholinyl dioxide, in each case saturated, unsubstituted or monosubstituted with -Ci-C 4 -alkyl; -0-CH 2 -0- (such that it is condensed with a dioxolanyl ring); -0-Q-C 4 - alkyl; -O-(CH 2 CH 2 -O) 1 . 30 -H; -O-(CH 2 CH 2 -O) 1 . 30 -CH 3 ; -C(=0)OH; -C(=0)OC C 4 -alkyl; -C(=0)NH 2 ; - C(=0)NHC C 4 -alkyl; -C(=0)N(C C 4 -alkyl) 2 ; -S(=0)C C 4 -alkyl and -S(=0) 2 C C 4 -alkyl.

[0035] In another preferred embodiment of the compound according to the invention, R 5 means -pyrazinyl, - pyridazinyl, -pyridinyl, -pyrimidinyl, -thienyl, -imidazolyl, triazolyl, or -1,3-benzodioxolyl, in each case unsubstituted, mono- or polysubstituted. Preferably, R 5 means -pyrazinyl, -pyridazinyl, -pyridinyl, -pyrimidinyl, -thienyl, -imidazolyl, triazolyl, or -1,3-benzodioxolyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F; -CI; -Br; -I; - CN; -OH; -C C 4 -alkyl; -CF 3 ; -C C 4 -alkyl-OH; -C C 4 -alkyl-C(=0)NH 2 ; -3-12-membered cycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; preferably -cyclopropyl, saturated, unsubstituted; -3-12- membered heterocycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; preferably - pyrrolidinyl, -piperidinyl, ^ηο ηοΐίηνΐ, -piperazinyl, -thiomo holinyl, or -thionK^holinyl dioxide, in each case saturated, unsubstituted or monosubstituted with -Ci-C 4 -alkyl; -0-CH 2 -0- (such that it is condensed with a dioxolanyl ring); -0-C C 4 -alkyl; -O-(CH 2 CH 2 -O) 1 . 30 -H; -O-(CH 2 CH 2 -O) 1 . 30 -CH 3 ; -C(=0)OH; -C(=0)OC C 4 - alkyl; -C(=0)NH 2 ; -C(=0)NHC 1 -C 4 -alkyl; -C(=0)N(C 1 -C 4 -alkyl) 2 ; -SC C 4 -alkyl; -S(=0)C C 4 -alkyl and - S(=0) 2 C 1 -C 4 -alkyl.

[0036] In preferred embodiments, the compound according to the invention has a structure according to any of general formulas II- A) to (VIII-C):

(II-A) (II-B)

(V-B) (V-C)

(VIII-C)

wherein in each case

R 1 , R 2 , R 3 , R 4 , and R 5 are defined as above,

R c means -H, -OH, -F, -CN or -C C 4 -alkyl; preferably -H or -OH; R D means -H or -F; or a physiologically acceptable salt thereof.

[0037] Preferably, in the compounds according to general formula (I) or any of the compounds according to general formulas (II- A) to (VIII-C), R 5 is selected from the group consisting of:

[0038] In a particularly preferred embodiment of the compound according to the invention, n means 1 or 2;

R 1 means -H or -CH 3 ;

R 2 means -H or -Ci-Ci-alkyl, linear or branched, saturated or unsaturated, unsubstituted or monosubstituted with -OH, -OCH 3 , -C(=0)OCH 3 , or -CN;

R 3 means

-Ci-C 4 -alkyl, optionally monosubstituted with -OCH 3 ;

-phenyl, -thienyl or -pyridinyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -CN, -CH 3 , -CH 2 CH 3 , -CH 2 F, -CHF 2 , -CF 3 , -OCF3, -OH, -OCH 3 , -0-CH 2 -0-CH 3 , -C(=0)NH 2 , C(=0)NHCH 3 , -C(=0)N(CH 3 ) 2 , -NH 2 , -NHCH 3 , - N(CH 3 ) 2 , -NHC(=0)CH 3 , -CH 2 OH, SOCH 3 and S0 2 CH 3 ; or

R 4 means

-H;

-Ci-Ci-alkyl, linear or branched, saturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, =0, -OH, -O-C1 -C4- alkyl, -C0 2 H, -C(=0)0-C C 4 -alkyl, -C(=0)NH 2 , -C(=0)NH-C C 4 -alkyl, -C(=0)N(C C 4 -alkyl) 2 , -C(=0)NH- C C 4 -alkyl-CN, -C(=0)NCH 3 -C C 4 -alkyl-CN, -C(=0)NH-cyclopropyl-CN, -C(=0)NCH 3 -cyclopropyl-CN, - C(=0)NH-C C 4 -alkyl-OH, -C(=0)NCH 3 -C C 4 -alkyl-OH, -C(=0)NH-C C 4 -alkyl-OCH 3 , -C(=0)NCH 3 -C C 4 - alkyl-OCH 3 , -C(=0)NRR' wherein R and R' together with the nitrogen atom to which they are attached form a ring and mean -(CH 2 ) 2 . 4 -;

3-6-membered cycloalkyl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, and -0-Ci-C 4 -alkyl, wherein said 3- 6-membered cycloalkyl is connected through -Ci-Ci-alkylene;

3-6-membered heterocycloalkyl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -C0 2 H, -C(=0)0-Cr C 4 -alkyl, -OH, and -0-Ci-C4-alkyl, wherein said 3-6-membered heterocycloalkyl is connected through -C \ -C - alkylene;

6-14-membered aryl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -C0 2 H, -OH, and -O- Ci-C 4 -alkyl; wherein said 6-14-membered aryl is connected through -Ci-Ci-alkylene- or -S(=0) 2 -;

5-14-membered heteroaryl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -C0 2 H, -OH, and -0-Ci-C 4 -alkyl; wherein said 5-14-membered heteroaryl is connected through -Ci-Ci-alkylene- or -S(=0) 2 -;

R 5 means -phenyl, -pyrazinyl, -pyridazinyl, -pyridinyl, -pyrimidinyl, -thienyl, -imidazolyl, triazolyl, or -1,3- benzodioxolyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F; -CI; -Br; -I; -CN; -OH; -Ci-C 4 -alkyl; -CF 3 ; -Ci-C 4 -alkyl- OH; -3-12-membered cycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; preferably -cyclopropyl, saturated, unsubstituted; -3-12-membered heterocycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; -0-CH 2 -0-; -0-Ci-C 4 -alkyl; -O-(CH 2 CH 2 -O)i_ 30 -H; -O- (CH 2 CH 2 -O) 1 _3o-CH 3 ; -C(=0)OH; -C(=0)OC C 4 -alkyl; -C(=0)NH 2 ; -C(=0)NHC C 4 -alkyl; -C(=0)N(C C 4 - alkyl) 2 ; -SC C 4 -alkyl; -S(=0)C C 4 -alkyl and -S(=0) 2 C C 4 -alkyl; and

R 7 , R 8 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , and R 20 mean -H.

[0039] In a particularly preferred embodiment of the compound according to the invention, n means 1 or 2; and/or

R 1 means -H or -CH 3 ; and/or

R 2 means -Ci-C 6 -alkyl, linear or branched, saturated, unsubstituted; preferably, R 2 means -CH 3 or -CH 2 CH 3 ; more preferably, R 1 and R 2 both mean -CH 3 ; and/or

R 3 means -phenyl, -thienyl or -pyridinyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -CN, -CH 3 , -CH 2 CH 3 , - CH 2 F, -CHF 2 , -CF 3 , -OCF3, -OH, -OCH 3 , -C(=0)NH 2 , C(=0)NHCH 3 , -C(=0)N(CH 3 ) 2 , -NH 2 , -NHCH 3 , - N(CH 3 ) 2 , -NHC(=0)CH 3 , -CH 2 OH, SOCH 3 and S0 2 CH 3 ; preferably R 3 means -phenyl, -thienyl or -pyridinyl, in each case unsubstituted or substituted with -F; more preferably, R 3 means phenyl, unsubstituted; and/or

R 4 means

-H;

-Ci-C 6 -alkyl, linear or branched, saturated, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, and -0-Ci-C 4 - alkyl; or 3-6-membered cycloalkyl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, and -0-Ci-C 4 -alkyl, wherein said 3- 6-membered cycloalkyl is connected through -Ci-Ci-alkylene; preferably R 4 means 3-6-membered cycloalkyl, unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F, -CI, -Br, -I, -CN, -OH, and -0-Ci-C 4 -alkyl, wherein said 3-6-membered cycloalkyl is connected through -CH 2 - or -CH 2 CH 2 -; more preferably, R 4 means -cyclobutyl, unsubstituted or monosubstituted with -OH, wherein said -cyclobutyl is connected through -CH 2 -; and/or

R 5 means -phenyl, -pyridazinyl, -pyridinyl, or -pyrimidinyl, in each case unsubstituted or substituted with one, two, three or four substituents independently of one another selected from the group consisting of -F; -CI; -Br; -I; -CN; -OH; -Ci-C 4 -alkyl; -CF 3 ; -3-12-membered cycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; preferably -cyclopropyl, saturated, unsubstituted; -3-12-membered heterocycloalkyl, saturated or unsaturated, unsubstituted, mono- or polysubstituted; preferably -pyrrolidinyl, -piperidinyl, -morpholinyl, - piperazinyl, -thiomo holinyl, or -thiomorpholinyl dioxide, in each case saturated, unsubstituted or monosubstituted with -Ci-C 4 -alkyl; -0-CH 2 -0- (such that it is condensed with a dioxolanyl ring); -O-C 1 -C4- alkyl; -O-(CH 2 CH 2 -O) 1 . 30 -H; -O-(CH 2 CH 2 -O) 1 . 30 -CH 3 ; -C(=0)OH; -C(=0)OC C 4 -alkyl; -C(=0)NH 2 ; - C(=0)NHC C 4 -alkyl; -C(=0)N(C C 4 -alkyl) 2 ; -S(=0)C C 4 -alkyl and -S(=0) 2 C C 4 -alkyl; and/or

R 7 , R 8 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , and R 20 mean -H.

[0040] In preferred embodiments, the compound according to the invention is selected from the group consisting of

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(4-methylsulfon yl-phenyl)-methyl]-8-phenyl- sc_ 2001

l,3-diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(3-methoxypheny l)-methyl]-8-phenyl-l,3- sc_ 2002

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-isopropyl-3-[(4-methoxyphenyl)-methyl] -8-phenyl-l,3- sc_ 2003

diazaspiro[4.5]decan-2-one

CIS-l-(Cyclopropyl-methyl)-8-dimethylamino-3-[(4-methoxyphen yl)-methyl]-8-phenyl-l,3- sc_ 2004

diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-3-[(4-methoxyphenyl)-methyl]-8-[me thyl-(2-methyl-propyl)-amino]- sc_ 2005

8-phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-2-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl -l,3-diazaspiro[4.5]decan-3-yl]- sc_ 2006

methyl] -benzamide

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-(pyrazi n-2-yl-methyl)-l,3- sc_ 2007

diazaspiro[4.5]decan-2-one

CIS-8-(Allyl-methyl-amino)-l-(cyclobutyl-methyl)-3-[(4-metho xyphenyl)-methyl]-8-phenyl-l,3- sc_ 2008

diazaspiro[4.5]decan-2-one

CIS-4-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl -l,3-diazaspiro[4.5]decan-3-yl]- sc_ 2009

methyl] -benzamide

sc_ 2010 CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-fluorophenyl) -3-[(4-methoxyphenyl)-methyl]- l,3-diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(4-fluorophenyl) -3-[(4-methoxyphenyl)-m

SC_2011

l,3-diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-methoxyphenyl )-3-[(4-methoxyphenyl)-

SC_2012

methyl]-l,3-diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(4-methoxyphenyl )-3-[(4-methoxyphenyl)-

SC_2013

methyl]-l,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(2-methyl -propyl)-8-phenyl-l,3-

SC_2014

diazaspiro[4.5]decan-2-one

CIS- 1 -Butyl-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl - 1,3-

SC_2015

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-8-(4-fluorophenyl)-3-[(4-metlioxyplienyl )-metliyl]-l,3-

SC_2016

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-8-(3-fluorophenyl)-3-[(4-metlioxyplienyl )-metliyl]-l,3-

SC_2017

diazaspiro[4.5]decan-2-one

CI S - 1 -(Cy clobutyl-methyl) - 8 -dimethylamino- 8 - (3 -hydroxyphenyl) - 3 - [ (4 -methoxyphenyl) -

SC_2018

methyl]- l,3-diazaspiro[4.5]decan-2-one

CIS- 1 -(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3 -(pyridin-3 -yl-methyl)- 1,3-

SC_2019

diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[[3-[2-[2-[2-[2- [2-(2-methoxy-ethoxy)-ethoxy]-

SC_2020

ethoxy] -ethoxy] -ethoxy] -ethoxy] -phenyl] -methyl] - 8-phenyl- 1 , 3 -diazaspiro[4.5 ] decan-2-one

CI S - 1 -(Cy clobutyl-methyl) - 8 -dimethylamino- 8 - (4 -hydroxyphenyl) - 3 - [ (4 -methoxyphenyl) -

SC_2021

methyl]- l,3-diazaspiro[4.5]decan-2-one hydrochloride

CIS-8-Dimethylamino- 1 -[( 1 -hydroxy-cyclobutyl)-methyl] -3 -[(3 -methoxyphenyl) -methyl] -8-

SC_2022

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-l-(Cyclopentyl-methyl)-8-dimethylamino-3-[(4-methoxyphen yl)-methyl]-8-phenyl-l,3-

SC_2023

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-(2-hydroxy-2-methyl-propyl)-3-[(4-meth oxyphenyl)-methyl]-8-phenyl-

SC_2024

l,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-(2-methoxy-2-methyl-propyl)-3-[(4-meth oxyphenyl)-methyl]-8-phenyl-

SC_2025

l,3-diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-3-[(3-methoxyphenyl)-methyl]-8-met hylamino-8-phenyl-l,3-

SC_2026

diazaspiro[4.5]decan-2-one

CIS-3-[[l-(Cyclobutyl-methyl)-8-(ethyl-methyl-amino)-2-oxo-8 -phenyl-l,3-

SC_2027

diazaspiro [4.5 ] dec an- 3 -yl] -methyl] -benzonitrile

CIS-l-(Cyclobutyl-methyl)-3-[(3-methoxyphenyl)-methyl]-8-(me thyl-propyl-amino)-8-phenyl-

SC_2028

l,3-diazaspiro[4.5]decan-2-one

CI S - 1 - (Cy clobutyl-methyl) - 8 - (ethyl-methyl- amino) - 3 - [ (3 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3-

SC_2029

diazaspiro[4.5]decan-2-one

SC_2030 CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3- diazaspiro [4.5 ] dec an- 1 -yl] -propionitrile

CIS- 1 -(Cyclobutyl-methyl)-8-methylamino-8-phenyl-3 -(pyridin-3 -yl-methyl)- 1,3-

SC_2031

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3 -[(4-methoxyphenyl)-methyl] - 1 -(oxetan-3 -yl-methyl)-8-phenyl- 1,3-

SC_2032

diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-8-(ethyl-methyl-amino)-8-phenyl-3- (pyridin-3-yl-methyl)-l,3-

SC_2033

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-(2-hydroxy-ethyl)-3-[(4-methoxyphenyl) -methyl]-8-phenyl-l,3-

SC_2034

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-(2,2-dimethyl-propyl)-3-[(4-methoxyphe nyl)-methyl]-8-phenyl-l,3-

SC_2035

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(3-methyl -butyl)-8-phenyl-l,3-

SC_2036

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l- [3-(trifluoromethyloxy)

SC_2037

propyl]- l,3-diazaspiro[4.5]decan-2-one

CIS-l-(2-Cyclobutyl-ethyl)-8-dimethylamino-3-[(4-methoxyphen yl)-methyl]-8-phenyl^

SC_2038

diazaspiro[4.5]decan-2-one

CIS-l-[(3,3-Difluoro-cyclobutyl)-methyl]-8-dm

SC_2039

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-2-[[l-(Cyclobutyl-methyl)-3-[(4-methoxyplienyl)-metliyl] -2-oxo-8-plienyl-l,3-

SC_2040

diazaspiro[4.5]decan-8-yl]-methyl-amino]-acetonitrile

CIS-l-(Cyclobutyl-methyl)-8-[(2-methoxy-ethyl)-methyl-amino] -3-[(4-methoxyplienyl)-metliyl]-

SC_2041

8-phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-2-[8-Dimethylamino-3-[(4-methoxyplienyl)-metliyl]-2-oxo- 8-plienyl-l,3-

SC_2042

diazaspiro[4.5]decan-l-yl]-acetic acid tert-butyl ester

CIS-2-[8-Dimethylamino-3-[(4-methoxyplienyl)-metliyl]-2-oxo- 8-plienyl-l,3-

SC_2043

diazaspiro[4.5]decan-l-yl]-acetic acid; 2,2,2-trilluoro-acetic acid salt

CIS- 1 -(Cyclobutyl-methyl)-3 -[(4-methoxyphenyl)-metliyl] -8-methylamino-8-phenyl- 1,3-

SC_2044

diazaspiro[4.5]decan-2-one

CIS-2-[8-Dimethylamino-3-[(4-methoxyplienyl)-metliyl]-2-oxo- 8-plienyl-l,3-

SC_2045

diazaspiro[4.5]decan-l-yl]-acetic acid methyl ester

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2046

diazaspiro[4.5]decan- 1 -yl]-acetamide

CIS-l-Benzyl-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-8- phenyl-l,3-

SC_2047

diazaspiro[4.5]decan-2-one

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2048

diazaspiro[4.5]decan-l-yl]-N-methyl-acetamide

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2049

diazaspiro[4.5]decan-l-yl]-N-propyl-acetamide

SC_2050 CIS-8-Dimethylamino-3 -[(4-methoxyphenyl)-methyl] - 1 -(3 -methoxy-propyl)-8-phenyl- 1,3- diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-3-[(4- methoxyphenyl)-methy

SC_2051

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-(2-methoxy-ethyl)-3-[(4-methoxyphenyl) -methyl]-8-phenyl-l,3-

SC_2052

diazaspiro[4.5]decan-2-one

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2053

diazaspiro[4.5]decan- 1 -yl]-acetonitrile

CIS-8-Dimethylamino-l-hexyl-3-[(4-methoxyphenyl)-methyl]-8-p henyl-l,3-

SC_2054

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l- (tetrahydro-pyran-4-yl-

SC_2055

methyl)- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-l-(Cyclohexyl-methyl)-8-dimethylamino-3-[(4-methoxypheny l)-methyl]-8-phenyl-l,3

SC_2056

diazaspiro[4.5]decan-2-one

CIS-N-(Cyano-methyl)-2-[8-dimethylamino-3-[(4-methoxyphenyl) -methyl]-2-oxo-8-phenyl-

SC_2057

diazaspiro[4.5]decan- 1 -yl]-acetamide

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l- (pyridin-3-yl-meth^

SC_2058

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-(3-methox y-propyl)-l,3-

SC_2059

diazaspiro[4.5]decan-2-one

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2060

diazaspiro [4.5 ] dec an- 1 -yl] -N- (2 -methoxy-ethyl) - acetamide

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]- 1 -(2-oxo-2-pyrrolidin- 1 -yl-ethyl)-8-

SC_2062

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2063

diazaspiro[4.5]decan-l-yl]-N,N-dimethyl-acetamide

CIS-N-(l-Cyano-cyclopropyl)-2-[8-dimethylamino-3-[(4-methoxy phenyl)-methyl]-2-oxo-8-

SC_2064

phenyl- l,3-diazaspiro[4.5]decan-l-yl]-acetamide

CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2065

diazaspiro[4.5]decan-l-yl]-N-methyl-N-propyl-acetamide

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(4-methoxypheny l)-methyl]-8-(3-methoxy-

SC_2066

propyl)- l,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino- 1 -(3 -hydroxy-propyl) -3 -[(4-methoxyphenyl)-methyl] -8-phenyl- 1,3-

SC_2067

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-(4-methoxy-butyl)-3-[(4-methoxyphenyl) -methyl]-8-phenyl-l,3-

SC_2068

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-[(l-methy l-cyclobutyl)-methyl]-8-

SC_2069

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-[(l-hydroxy-cyclohexyl)-methyl]-3-[(4- methoxyphenyl)-methyl]-8-

SC_2070

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

SC_2071 CIS-5-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3- diazaspiro[4.5] decan- 1 -yl] -pentanenitrile

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2072

diazaspiro[4.5]decan- 1 -yl]-propionamide

CIS-l-(Cyclobutyl-methyl)-8-[(2-hydroxy-ethyl)-methyl-amino] -3-[(4-methoxyphenyl)-methyl]-

SC_2073

8-phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-l-[[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8 -phenyl-l,3-

SC_2074

diazaspiro[4.5]decan-l-yl]-methyl]-cyclobutane-l-carbonitril e

CIS-8-Dimethylamino-l-[(l-hydroxy-cyclopentyl)-methyl]-3-[(4 -methoxyphenyl)-methyl]-8-

SC_2075

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-3 -[(2-Bromophenyl)-methyl] - 1 -(cyclobutyl-methyl)-8-dimethylamino-8-phenyl- 1,3-

SC_2076

diazaspiro[4.5]decan-2-one

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2077

diazaspiro[4.5]decan-l-yl]-N-methyl-propionamide

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2078

diazaspiro[4.5]decan-l-yl]-N-propyl-propionamide

CIS-8-Dimethylamino-l-[(l-fluoro-cyclobutyl)-methyl]-3-[(4-m ethoxyphenyl)-methyl]-8-

SC_2079

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-l-(2-Cyclohexyl-ethyl)-8-dimethylamino-3-[(4-methoxyphen yl)-methyl]-8-phenyl-l,3-

SC_2080

diazaspiro[4.5]decan-2-one

CIS-3-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl -l,3-diazaspiro[4.5]decan-3-yl]-

SC_2081

methyl] -benzonitrile

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-methyl-8- phenyl-l,3-

SC_2082

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-[2-[2-[2-[2-[2-[2-[2-(2-methoxy-ethoxy )-ethoxy]-ethoxy]-ethoxy]-

SC_2083 ethoxy]-ethoxy]-ethoxy] -ethyl] -3 -[(4-methoxyphenyl)-methyl] -8-phenyl- 1,3- diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-metliyl]-8-plienyl- l-(2-tetraliydro-pyran-4-yl-

SC_2084

ethyl)- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-4-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl -l,3-diazaspiro[4.5]decan-3-yl]-

SC_2085

methyl] -benzonitrile

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-[[6-(tr iiluoromethyl)-pyridin-3-yl]-

SC_2086

methyl]- l,3-diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[[4-[2-[2-[2-[2- [2-[2-[2-(2-methoxy-ethoxy)-

SC_2087 ethoxy] -ethoxy] -ethoxy] -ethoxy] -ethoxy] -ethoxy] -ethoxy] -phenyl] -methyl] - 8-phenyl- 1,3- diazaspiro[4.5]decan-2-one

CIS-3-[[l-(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl -l,3-diazaspiro[4.5]decan-3-yl]-

SC_2088

methyl] -benzamide

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(4-hydroxypheny l)-methyl]-8-phenyl-l,3-

SC_2089

diazaspiro[4.5]decan-2-one

SC_2090 CIS-l-(Cyclobutyl-methyl)-8-(ethyl-methyl-amino)-3-[(4-metho xyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one

CIS-l-[(l-Hydroxy-cyclobutyl)-methyl]-3-[(4-methoxyphenyl)-m ethyl]-8-methylam

SC_2112

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l- (tetrahydro-firran-2-yl-

SC_2113

methyl)- 1 ,3-diazaspiro[4.5]decan-2-one

SC_2114 CIS-3-Benzyl-8-dimethylamino-8-phenyl-l,3-diazaspiro[4.5]dec an-2-one

SC_2115 CIS-3-Benzyl-8-dimethylamino- 1 -ethyl-8-phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-meth^

SC_2117

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-[(2R)-2-hydroxy-propyl]-3-[(4-methoxyp henyl)-methyl]-8-phenyl-l,3-

SC_2118

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-[(2S)-2-hydroxy-propyl]-3-[(4-methoxyp henyl)-methyl]-8-phenyl-l,3-

SC_2119

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l- (tetrahydro-firran-3-yl-

SC_2120

methyl)- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-ethyl-3-[(4-methoxyphenyl)-methyl]-8-p henyl-l,3-

SC_2122

diazaspiro[4.5]decan-2-one

CIS-8-Amino-l-[(l-hydroxy-cyclobutyl)-methyl]-3-[(4-methoxyp henyl)-methyl]-8-phenyl-l,3-

SC_2123

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-8-phen yl-3-(2-phenyl-ethyl)-l,3-

SC_2124

diazaspiro[4.5]decan-2-one

CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-[(4-met hoxyphenyl)-methyl]-l,3-

SC_2125

diazaspiro[4.5]decan-2-one

CIS-3-[[8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-2- oxo-8-phenyl-l,3-

SC_2126

diazaspiro[4.5]decan-3-yl]-methyl]-4-methoxy-benzonitrile

SC_2127 CIS-8-Dimethylamino-l-ethyl-8-phenyl-3-(^

CIS-8-Dimethylamino-l-[2-(l-methoxy-cyclobutyl)-ethyl]-3-[(4 -methoxyphenyl)-methyl]-8-

SC_2129

phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-8-[3-(methoxymethyloxy)-phenyl]-3-[(4-me thoxyphenyl)-methyl]-l,3-

SC_2130

diazaspiro[4.5]decan-2-one

CIS - 8 -Dimethyl amino- 8 - [4 - (methoxymethyloxy) -phenyl] - 3 - [ (4 -methoxyphenyl) -methyl] -1,3-

SC_2131

diazaspiro[4.5]decan-2-one

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2132

diazaspiro[4.5]decan- 1 -yl] -propionic acid

CIS-3-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-

SC_2133

diazaspiro[4.5]decan-l-yl]-propionic acid tert-butyl ester

CIS-2-[[l-(Cyclobutyl-methyl)-3-[(4-methoxyphenyl)-methyl]-2 -oxo-8-phenyl-l,3-

SC_2134

diazaspiro[4.5]decan-8-yl]-methyl-amino]-acetic acid methyl ester

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(3-methyl -but-2-enyl)-8-phenyl-l,3-

SC_2135

diazaspiro[4.5]decan-2-one CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(3-methylsulfan yl-phenyl)-methyl]-8-

SC_2136

l,3-diazaspiro[4.5]decan-2-one

CIS-3 -[(3 -Bromophenyl)-methyl] - 1 -(cyclobutyl-methyl)-8-dimethylamino-8-phenyl- 1,3-

SC_2137

diazaspiro[4.5]decan-2-one

CIS-2-((8-(dimethylamino)- 1 -((1 -hydroxycyclobutyl)methyl)-2-oxo-8-phenyl- 1,3-

SC_2138

diazaspiro [4.5 ] dec an- 3 -yl)methyl)benzonitrile

CIS - 8 -Dimethyl amino- 8 - (3 -methoxyphenyl) - 3 - [ (4 -methoxyphenyl) -methyl] -1,3-

SC_2139 diazaspiro[4.5]decan-2-one

CIS - 8 -Dimethyl amino- 8 - (4 -methoxyphenyl) - 3 - [ (4 -methoxyphenyl) -methyl] -1,3-

SC_2140 diazaspiro[4.5]decan-2-one

CIS-3 -((8-(dimethylamino)- 1 -((1 -hydroxycyclobutyl)methyl)-2-oxo-8-phenyl- 1,3-

SC_2141

diazaspiro [4.5 ] dec an- 3 -yl)methyl)benzonitrile

CIS-3-((8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4.5] decan-3-yl)methyl)-4-

SC_2142

methoxybenzonitrile

CIS-8-Dimethylamino-8-phenyl-3-(lH-[l,2,3]triazol-4-yl-methy l)-l,3-diazaspiro[4.5]decan-2-one

SC_2143

CIS-8-Dimethylamino-3-[[l-(2-hydroxy-ethyl)-lH-[l,2,3]triazo l-4-yl]-methyl]-8-phenyl-l,3-

SC_2144

diazaspiro[4.5]decan-2-one

CIS-2-[4-[(8-Dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5 ]decan-3-yl)-methyl]-lH-

SC_2145

[ 1 ,2,3 ]triazol- 1 -yl] -acetamide

CIS-8-Methylamino-8-phenyl-3-(lH-[l,2,3]triazol-4-yl-methyl) -l,3-diazaspiro[4.5]decan-2-one

SC_2146

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l- (p-tolylsulfonyl)-l,3-

SC_2147

diazaspiro[4.5]decan-2-one

CIS-2-[4-[(8-Methylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]d ecan-3-yl)-methyl]-lH-

SC_2148

[ 1 ,2,3 ]triazol- 1 -yl] -acetamide

CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8-phe nyl-l,3-diazaspiro[4.5]decane-

SC_2149

1-carboxylic acid benzyl ester

CIS-3 -[[ 1 -(2-Hydroxy-ethyl)- 1 H-[ 1 ,2,3 ]triazol-4-yl] -methyl] -8-methylamino-8-phenyl- 1,3-

SC_2150

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-2-yl-ethyl)-l,3-di azaspiro[4.5]decan-2-one

SC_2152

CIS-8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-3-[[l- (2-hydroxy-ethyl)-lH-

SC_2153

[l,2,3]triazol-4-yl]-methyl]-8-phenyl-l,3-diazaspiro[4.5]dec an-2-one

CIS-2-[4-[[8-Dimethylamino- 1 -[(1 -hydroxy-cyclobutyl)-methyl]-2-oxo-8-phenyl- 1,3-

SC_2155

diazaspiro[4.5]decan-3-yl]-methyl]-lH-[l,2,3]triazol-l-yl]-a cetamide

CIS-l-[(l-Hydroxy-cyclobutyl)-methyl]-3-[[l-(2-hydroxy-ethyl )-lH-[l,2,3]triazol-4-yl]-methyl]-

SC_2156

8-methylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one CIS-2-[4-[[ 1 -(Cyclobutyl-methyl)-8-dimethylamino-2-oxo-8-phenyl- 1 ,3-diazaspiro[4.5]decan-3-

SC_2159

yl] -methyl] - 1 H-[ 1 ,2,3 Jtriazol- 1 -yl] -acetamide

CIS- 1 -(Cyclobutyl-methyl)-8-dimethylamino-3 -[[ 1 -(2-hydroxy-ethyl)- 1 H-[ 1 ,2,3 ]triazol-4-yl] -

SC_2160

methyl] - 8-phenyl- 1 , 3 -diazaspiro[4.5 ]decan-2-one

CIS-2-[4-[[ 1 -[(1 -Hydroxy-cyclobutyl)-methyl]-8-methylamino-2-oxo-8-phenyl- 1,3-

SC_2161

diazaspiro[4.5]decan-3-yl]-methyl]-lH-[l,2,3]triazol-l-yl]-a cetamide

CIS-1 -(Cyclobutyl-methyl)-3-[[ 1 -(2-hydroxy-ethyl)- 1Η-[ 1 ,2,3]triazol-4-yl]-methyl]-8-

SC_2162

methylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

CIS-2-[4-[[l-(Cyclobutyl-methyl)-8-methylamino-2-oxo-8-pheny l-l,3-diazaspiro[4.5]decan-3-yl]-

SC_2163

methyl] - 1 H-[ 1 ,2,3 ]triazol- 1 -yl] -acetamide

CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-3-yl-ethyl)-l,3-di azaspiro[4.5]decan-2-one

SC_2164

CIS-8-Dimethylamino-3-[2-(lH-imidazol-l-yl)-ethyl]-8-phenyl- l,3-diazaspiro[4.5]decan-2-one

SC_2165

CIS-8-Dimethylamino-8-phenyl-3-(2-pyridin-4-yl-ethyl)-l,3-di azaspiro[4.5]decan-2-one

SC_2166

CIS-8-Dimethylamino-8-phenyl-3-(2-pyrimidin-2-yl-ethyl)-l,3- diazaspiro[4.5]decan-2-one

SC_2167

CIS-8-Dimethylamino-8-phenyl-3-(2-pyrimidin-5-yl-ethyl)-l,3- diazaspiro[4.5]decan-2-one

SC_2168

CIS-8-Dimethylamino-l-ethyl-3-[(4-methylsulfonyl-phenyl)-met hyl]-8-phenyl-l,3-

SC_2169

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-(l -methyl- 1 -phenyl-ethyl)-8-phenyl- 1 ,3-diazaspiro[4.5]decan-2-one

SC_2170

CIS-8-Dimethylamino-8-phenyl-3-(l -phenyl-cyclopropyl)- l,3-diazaspiro[4.5]decan-2-one

SC_2171

CIS-8-Dimethylamino-l,3-bis[(2-methoxyphenyl)-methyl]-8-phen yl-l,3-diazaspiro[4.5]decan-2-

SC_2172

one

CIS-8-Dimethylamino-3-[(3-methylsulfonyl-phenyl)-methyl]-8-p henyl-l,3-diazaspiro[4.5]decan-

SC_2173

2 -one

CIS-8-Dimethylamino- 1 -[(1 -hydroxy-cyclobutyl)-methyl]-3-(l -methyl- 1 -phenyl-ethyl)-8-phenyl-

SC_2174

l,3-diazaspiro[4.5]decan-2-one

CIS-3-[(3-Cyclopropyl-phenyl)-methyl]-8-dimethylamino-8-phen yl-l,3-diazaspiro[4.5]decan-2-

SC_2175

one

CIS-3-(l,3-Benzodioxol-4-yl-methyl)-8-dimethylamino-8-phenyl -l,3-diazaspiro[4.5]decan-2-one

SC_2176

CIS-8-Dimethylamino- 1 -[( 1 -hydroxy- cyclobutyl) -methyl] -8-phenyl-3 -( 1 -phenyl-cyclopropyl)- 1,3-

SC_2177

diazaspiro[4.5]decan-2-one

CIS-4-[[8-Dimethylamino-3-[(2-methoxyphenyl)-methyl]-2-oxo-8 -phenyl-l,3-

SC_2178

diazaspiro[4.5]decan- 1 -yl] -methyl] -benzonitrile CIS-8-Dimethylamino-3-[(2-methoxyphenyl)-methyl]-8-phenyl-l, 3-diazasp

SC_2179

CIS-8-Dimethylamino-8-phenyl-3-(pyridin-4-yl-methyl)-l,3-dia zaspiro[4.5]decan

SC_2180

CIS-8-Dimethylamino-8-phenyl-3-(pyridin-2-yl-methyl)-l,3-dia zaspiro[4.5]decan

SC_2181

CI S - 8 - Dimethy lamino - 8 -pheny 1 - 3 - (py

SC_2182

CI S - 8 -Dimethylamino- 3 - [ [2 - (4 -met^

SC_2183

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-8-phenyl-3-[(2-piperidin-l-yl-pyridin-4- yl)-methyl]-l,3^

SC_2184

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-3-[(2-mo holin-4-yl-py^

SC_2185

diazaspiro[4.5]decan-2-one

CIS-8-Dimethylamino-8-phenyl-3-[(2-piperazin- 1 -yl-pyridin-4-yl)-methyl]- 1 ,3-

SC_2186

diazaspiro[4.5]decan-2-one and the physiologically acceptable salts thereof.

[0041] According to the invention, unless expressly stated otherwise, "-Ci-C 4 -alkyl", "-Ci-Ci-alkyl" and any other alkyl residues can be linear or branched, saturated or unsaturated. Linear saturated alkyl includes methyl, ethyl, n-propyl, n-butyl, n-pentyl and n-hexyl. Examples of branched saturated alkyl include but are not limited to iso-propyl, sec-butyl, and tert-butyl. Examples of linear unsaturated alkyl include but are not limited to vinyl, propenyl, allyl, and propargyl.

[0042] According to the invention, unless expressly stated otherwise, "-Ci-C 4 -alkyl", "-Ci-C 6 -alkyl" and any other alkyl residues can be unsubstituted, mono- or polysubstituted. Examples of substituted alkyl include but are not limited to -CH 2 CH 2 OH, -CH 2 CH 2 OCH 3 , -CH 2 CH 2 CH 2 OCH 3 , -CH 2 CH 2 S(=0) 2 CH 3 , -CH 2 C(=0)NH 2 , - C(CH 3 ) 2 C(=0)NH 2 , -CH 2 C(CH 3 ) 2 C(=0)NH 2 , and -CH 2 CH 2 C(=0)N(CH 3 ) 2 .

[0043] According to the invention, unless expressly stated otherwise, "-Ci-Ci-alkylene-", "-Ci-C 4 -alkylene" and any other alkylene residue can be unsubstituted, mono- or polysubstituted. Examples of saturated alkylene include but are not limited to -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CH 2 CH 2 -, -CH(CH 3 )CH 2 -, -CH 2 CH(CH 3 )-, - CH(CH 3 )-CH(CH 3 )-, -C(CH 3 ) 2 CH 2 -, -CH 2 C(CH 3 ) 2 -, -CH(CH 3 )C(CH 3 ) 2 -, -C(CH 3 ) 2 CH(CH 3 )-, C(CH 3 ) 2 C(CH 3 ) 2 -, -CH 2 CH 2 CH 2 -, and -C(CH 3 ) 2 CH 2 CH 2 -. Examples of unsaturated alkylene include but are not limited to - CH=CH-, -C≡C-, -C(CH 3 )=CH-, -CH=C(CH 3 )-, -C(CH 3 )=C(CH 3 )-, - CH 2 CH=CH-, -CH=CHCH 2 -, -CH=CH- CH=CH-, and -CH=CH-C≡C-.

[0044] According to the invention, unless expressly stated otherwise, "-Ci-Ci-alkylene-", "-Ci-C 4 -alkylene" and any other alkylene residue can be unsubstituted, mono- or polysubstituted. Examples of substituted -Q-Q- alkylene- include but are not limited to -CHF-, -CF 2 -, -CHOH- and -C(=0)-. [0045] According to the invention, moieties may be connected through -Ci-Ci-alkylene-, i.e. the moieties may not be directly bound to the core structure of compound according to general formula (I), but may be connected to the core structure of compound according to general formula (I) or its periphery through a -Ci-Ci-alkylene- linker.

[0046] According to the invention, "3-12-membered cycloalkyl moiety" means a non-aromatic, monocyclic, bicyclic or tricyclic moiety comprising 3 to 12 ring carbon atoms but no heteroatoms in the ring. Examples of preferred saturated 3-12-membered cycloalkyl moieties according to the invention include but are not limited to cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, hydrindane, and decaline. Examples of preferred unsaturated 3-12-membered cycloalkyl moiety moieties according to the invention include but are not limited to cyclopropene, cyclobutene, cyclopentene, cyclopentadiene, cyclohexene, 1,3- cyclohexadiene, and 1,4-cyclohexadiene. The 3-12-membered cycloalkyl moiety, which is bonded to the compound according to the invention, in its periphery may optionally be condensed with a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; and/or with a 6-14- membered aryl moiety, unsubstituted, mono- or polysubstituted; and/or with a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted. Under these circumstances, the ring atoms of the condensed moieties are not included in the 3 to 12 ring atoms of the 3-12-membered cycloalkyl moiety. Examples of 3-12- membered cycloalkyl moieties condensed with 3-12-membered heterocycloalkyl moieties include but are not limited to octahydro-li/-indol, decahydroquinoline, decahydroisoquinoline, octahydro-2H-benzo[b][l,4]oxazin, and decahydroquinoxalin, which in each case are connected through the 3-12-membered cycloalkyl moiety. Examples of 3-12-membered cycloalkyl moieties condensed with 6-14-membered aryl moieties include but are not limited to 2,3-dihydro-li/-indene and tetraline, which in each case are connected through the 3-12- membered cycloalkyl moiety. Examples of 3-12-membered cycloalkyl moieties condensed with 5-14-membered heteroaryl moieties include but are not limited to 5,6,7,8-tetrahydroquinoline and 5,6,7,8-tetrahydroquinazoline, which in each case are connected through the 3-12-membered cycloalkyl moiety.

[0047] According to the invention, the 3-12-membered cycloalkyl moiety may optionally be connected through -Q-Q-alkylene-, i.e. the 3-12-membered cycloalkyl moiety may not be directly bound to the compound according to general formula (I) but may be connected thereto through a -Q-Q-alkylene- linker. Examples include but are not limited to -CH 2 -cyclopropyl, -CH 2 -cyclobutyl, -CH 2 -cyclopentyl, -CH 2 -cyclohexyl, - CH 2 CH 2 -cyclopropyl, -CH 2 CH 2 -cyclobutyl, -CH 2 CH 2 -cyclopentyl, and -CH 2 CH 2 -cyclohexyl.

[0048] According to the invention, unless expressly stated otherwise, the 3-12-membered cycloalkyl moiety can be unsubstituted, mono- or polysubstituted. Examples of substituted 3-12-membered cycloalkyl moieties include but are not limited to -CH 2 -l-hydroxy-cyclobutyl.

[0049] According to the invention, "3-12-membered heterocycloalkyl moiety" means a non-aromatic, monocyclic, bicyclic or tricyclic moiety comprising 3 to 12 ring atoms, wherein each cycle comprises independently of one another 1, 2, 3, 4 or more heteroatoms independently of one another selected from the group consisting of nitrogen, oxygen and sulfur, whereas sulfur may be oxidized (S(=0) or (S(=0) 2 ), whereas the remaining ring atoms are carbon atoms, and whereas bicyclic or tricyclic systems may share common heteroatom(s). Examples of preferred saturated 3-12-membered heterocycloalkyl moieties according to the invention include but are not limited to aziridin, azetidine, pyrrolidine, imidazolidine, pyrazolidine, piperidine, piperazine, triazolidine, tetrazolidine, oxiran, oxetane, tetrahydrofurane, tetrahydropyrane, thiirane, thietane, tetrahydrothiophene, diazepane, oxazolidine, isoxazolidine, thiazolidine, isothiazolidine, thiadiazolidine, mo holine, thiomo holine. Examples of preferred unsaturated 3-12-membered heterocycloalkyl moiety moieties according to the invention include but are not limited to oxazoline, pyrazoline, imidazoline, isoxazoline, thiazoline, isothiazoline, and dihydropyran. The 3-12-membered heterocycloalkyl moiety, which is bonded to the compound according to the invention, in its periphery may optionally be condensed with a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; and/or with a 6-14- membered aryl moiety, unsubstituted, mono- or polysubstituted; and/or with a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted. Under these circumstances, the ring atoms of the condensed moieties are not included in the 3 to 12 ring atoms of the 3-12-membered heterocycloalkyl moieties. Examples of 3-12-membered heterocycloalkyl moieties condensed with 3-12-membered cycloalkyl moieties include but are not limited to octahydro-li/-indol, decahydroquinoline, decahydroisoquinoline, octahydro-2H-benzo[b][l,4]- oxazin, and decahydroquinoxalin, which in each case are connected through the 3-12-membered heterocycloalkyl moiety. An examples of a 3-12-membered heterocycloalkyl moiety condensed with a 6-14- membered aryl moiety includes but is not limited to 1,2,3,4-tetrahydroquinoline, which is connected through the 3-12-membered heterocycloalkyl moiety. An example of a 3-12-membered heterocycloalkyl moiety condensed with a 5-14-membered heteroaryl moieties includes but is not limited to 5,6,7,8-tetrahydro-[l,2,4]triazolo[l,5- a]pyrazine, which is connected through the 3-12-membered heterocycloalkyl moiety.

[0050] According to the invention, the 3-12-membered heterocycloalkyl moiety may optionally be connected through -Ci-Ci-alkylene-, i.e. the 3-12-membered heterocycloalkyl moiety may not be directly bound to the compound according to general formula (I) but may be connected thereto through a -Ci-Ci-alkylene- linker. Said linker may be connected to a carbon ring atom or to a hetero ring atom of the 3-12-membered heterocycloalkyl moiety. Examples include but are not limited to -CH 2 -oxetane, -CH 2 -pyrrolidine, -CH 2 -piperidine, -CH 2 - morpholine, -CH 2 CH 2 -oxetane, -CH 2 CH 2 -pyrrolidine, -CH 2 CH 2 -piperidine, and -CH 2 CH 2 -nK^holine.

[0051] According to the invention, unless expressly stated otherwise, the 3-12-membered heterocycloalkyl moiety can be unsubstituted, mono- or polysubstituted. Examples of substituted 3-12-membered heterocycloalkyl moieties include but are not limited to 2-carboxamido-N-pyrrolidinyl-, 3,4-dihydroxy-N- pyrrolidinyl, 3 -hydroxy -N-pyrimidinyl, 3,4-dihydroxy-N-pyrimidinyl, 3-oxo-N-piperazinyl, -tetrahydro-2H- thiopyranyl dioxide and thiomo holinyl dioxide.

[0052] According to the invention, "6-14-membered aryl moiety" means an aromatic, monocyclic, bicyclic or tricyclic moiety comprising 6 to 14 ring carbon atoms but no heteroatoms in the ring. Examples of preferred 6- 14-membered aryl moieties according to the invention include but are not limited to benzene, naphthalene, anthracen, and phenanthren. The 6-14-membered aryl moiety, which is bonded to the compound according to the invention, in its periphery may optionally be condensed with a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; and/or with a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; and/or with a 5-14-membered heteroaryl moiety, unsubstituted, mono- or polysubstituted. Under these circumstances, the ring atoms of the condensed moieties are not included in the 6 to 14 ring carbon atoms of the 6-14-membered heterocycloalkyl moieties. Examples of 6-14-membered aryl moieties condensed with 3-12-membered cycloalkyl moieties include but are not limited to 2,3-dihydro-li/-indene and tetraline, which in each case are connected through the 6-14- membered aryl moiety. An example of a 6-14-membered aryl moiety condensed with a 3-12-membered heterocycloalkyl moiety includes but is not limited to 1,2,3,4-tetrahydroquinoline, which is connected through the 6-14-membered aryl moiety. Examples of 6-14-membered aryl moieties condensed with 5-14-membered heteroaryl moieties include but are not limited to quinoline, isoquinoline, phenazine and phenoxacine, which in each case are connected through the 6-14-membered aryl moiety.

[0053] According to the invention, the 6-14-membered aryl moiety may optionally be connected through -Cr Ci-alkylene-, i.e. the 6-14-membered aryl moiety may not be directly bound to the compound according to general formula (I) but may be connected thereto through a -Q-Q-alkylene- linker. Said linker may be connected to a carbon ring atom or to a hetero ring atom of the 6-14-membered aryl moiety. Examples include but are not limited to -CH 2 -C 6 H 5 , -CH 2 CH 2 -C 6 H 5 and -CH=CH-C 6 H 5 .

[0054] According to the invention, unless expressly stated otherwise, the 6-14-membered aryl moiety can be unsubstituted, mono- or polysubstituted. Examples of substituted 6-14-membered aryl moieties include but are not limited to 2-fluorophenyl, 3 -fluorophenyl, 2-methoxyphenyl and 3-methoxyphenyl.

[0055] According to the invention, "5-14-membered heteroaryl moiety" means an aromatic, monocyclic, bicyclic or tricyclic moiety comprising 6 to 14 ring atoms, wherein each cycle comprises independently of one another 1, 2, 3, 4 or more heteroatoms independently of one another selected from the group consisting of nitrogen, oxygen and sulfur, whereas the remaining ring atoms are carbon atoms, and whereas bicyclic or tricyclic systems may share common heteroatom(s). Examples of preferred 5-14-membered heteroaryl moieties according to the invention include but are not limited to pyrrole, pyrazole, imidazole, triazole, tetrazole, furane, thiophene, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyridazine, pyrimidine, pyrazine, indolicine, 9H- chinolicine, 1,8-naphthyridine, purine, imidazo[l,2-a]pyrazine, and pteridine. The 5-14-membered heteroaryl moiety, which is bonded to the compound according to the invention, in its periphery may optionally be condensed with a 3-12-membered cycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; and/or with a 3-12-membered heterocycloalkyl moiety, saturated or unsaturated, unsubstituted, mono- or polysubstituted; and/or with a 6-14-membered aryl moiety, unsubstituted, mono- or polysubstituted. Under these circumstances, the ring atoms of the condensed moieties are not included in the 6 to 14 ring carbon atoms of the 6-14-membered heterocycloalkyl moieties. Examples of 5-14-membered heteroaryl moieties condensed with 3-12-membered cycloalkyl moieties include but are not limited to 5,6,7,8-tetrahydroquinoline and 5,6,7,8-tetrahydroquinazoline, which in each case are connected through the 5-14-membered heteroaryl moiety. An examples of a 5-14-membered heteroaryl moiety condensed with a 3-12-membered heterocycloalkyl moiety includes but is not limited to 5,6,7,8-tetrahydro-[l,2,4]triazolo[l,5-a]pyrazine, which is connected through the 5-14-membered heteroaryl moiety. Examples of 5-14-membered heteroaryl moieties condensed with 6-14-membered aryl moieties include but are not limited to quinoline, isoquinoline, phenazine and phenoxacine, which in each case are connected through the 5-14-membered heteroaryl moiety.

[0056] According to the invention, the 5-14-membered heteroaryl moiety may optionally be connected through -Ci-Ci-alkylene-, i.e. the 5-14-membered heteroaryl moiety may not be directly bound to the compound according to general formula (I) but may be connected thereto through a -Q-Q-alkylene- linker. Said linker may be connected to a carbon ring atom or to a hetero ring atom of the 5-14-membered heteroaryl moiety. Examples include but are not limited to -CH 2 -oxazole, -CH 2 -isoxazole, -CH 2 -imidazole, -CH 2 -pyridine, -CH 2 -pyrimidine, - CH 2 -pyridazine, -CH 2 CH 2 -oxazole, -CH 2 CH 2 -isoxazole, -CH 2 CH 2 -imidazole, -CH 2 CH 2 -pyridine, -CH 2 CH 2 - pyrimidine, and -CH 2 CH 2 -pyridazine.

[0057] According to the invention, unless expressly stated otherwise, the 5-14-membered heteroaryl moiety can be unsubstituted, mono- or polysubstituted. Examples of 5-14-membered heteroaryl moieties include but are not limited to 2-methoxy-4-pyridinyl, 2-methoxy-5-pyridinyl, 3-methoxy-4-pyridinyl, 3-methoxy-6-pyridinyl, 4- methoxy-2-pyridinyl, 2-methylsulfonyl-5-pyridinyl, 3-methylsulfonyl-6-pyridinyl, 3-methoxy-6-pyridazinyl, 2- nitrilo-5-pyrimidinyl, 4-hydroxy-2-pyrimidinyl, 4-methoxy-pyrimidinyl, and 2-methoxy-6-pyrazinyl.

[0058] Preferably, the compounds according to the invention have a structure according to general formula (Γ)

(Γ) wherein R 1 to R 5 , R 7 , R 8 , R 10 to R 20 and n are defined as above, or a physiologically acceptable salt thereof.

[0059] In one preferred embodiment, the excess of the cis-isomer so designated is at least 50% de, more preferably at least 75% de, yet more preferably at least 90% de, most preferably at least 95% de and in particular at least 99% de.

[0060] In a preferred embodiment, the compound according to the invention has a structure according to general formula (IX)

wherein

R c means -H or -OH;

R 3 means -phenyl or -3 -fluorophenyl; and

R 5 means

6-14-membered aryl, unsubstituted, mono- or polysubstituted; or

5-14-membered heteroaryl, unsubstituted, mono- or polysubstituted; or a physiologically acceptable salt thereof.

[0061] Preferably, R 5 is selected from -phenyl, -pyridyl, pyrimidinyl, or -triazolyl, in each case unsubstituted, mono- or polysubstituted.

[0062] In a preferred embodiment, the compounds according to the invention are in the form of the free bases.

[0063] In another preferred embodiment, the compounds according to the invention are in the form of the physiologically acceptable salts.

[0064] For the purposes of the description, a "salt" is to be understood as being any form of the compound in which it assumes an ionic form or is charged and is coupled with a counter-ion (a cation or anion) or is in solution. The term is also to be understood as meaning complexes of the compound with other molecules and ions, in particular complexes which are associated via ionic interactions. Preferred salts are physiologically acceptable, in particular physiologically acceptable salts with anions or acids or also a salt formed with a physiologically acceptable acid.

[0065] Physiologically acceptable salts with anions or acids are salts of the particular compound in question with inorganic or organic acids which are physiologically acceptable, in particular when used in humans and/or mammals. Examples of physiologically acceptable salts of particular acids include but are not limited to salts of hydrochloric acid, sulfuric acid, and acetic acid. [0066] The invention also includes isotopic isomers of a compound according to the invention, wherein at least one atom of the compound is replaced by an isotope of the respective atom which is different from the naturally predominantly occurring isotope, as well as any mixtures of isotopic isomers of such a compound. Preferred isotopes are 2 H (deuterium), 3 H (tritium), 13 C and 14 C.

[0067] Certain compounds according to the invention are useful for modulating a pharmacodynamic response from one or more opioid receptors (mu, delta, kappa, NOP/ORL-1) either centrally or peripherally, or both. The pharmacodynamic response may be attributed to the compound either stimulating (agonizing) or inhibiting (antagonizing) the one or more receptors. Certain compounds according to the invention may antagonize one opioid receptor, while also agonizing one or more other receptors. Compounds according to the invention having agonist activity may be either full agonists or partial agonists.

[0068] As used herein, compounds that bind to receptors and mimic the regulatory effects of endogenous ligands are defined as "agonists". Compounds that bind to a receptor but produce no regulatory effect, but rather block the binding of ligands to the receptor, are defined as "antagonists".

[0069] In certain embodiments, the compounds according to the invention are agonists at the mu opioid (MOP) and/or kappa opioid (KOP) and/or delta opioid (DOP) and/or nociceptin opioid (NOP/ORL-1) receptors.

[0070] The compounds according to the invention potently bind to the MOP and/or KOP and/or DOP and/or NOP receptors.

[0071] The compounds according to the invention can be modulators at the MOP and/or KOP and/or DOP and/or NOP receptors, and therefore the compounds according to the invention can be used/administered to treat, ameliorate, or prevent pain.

[0072] In some embodiments, the compounds according to the invention are agonists of one or more opioid receptors. In some embodiments, the compounds according to the invention are agonists of the MOP and/or KOP and/or DOP and/or NOP receptors.

[0073] In some embodiments, the compounds according to the invention are antagonists of one or more opioid receptors. In some embodiments, the compounds according to the invention are antagonists of the MOP and/or KOP and/or DOP and/or NOP receptors.

[0074] In some embodiments, the compounds according to the invention have both, (i) agonist activity at the NOP receptor; and (ii) agonist activity at one or more of the MOP, KOP, and DOP receptors.

[0075] In some embodiments, the compounds according to the invention have both, (i) agonist activity at the NOP receptor; and (ii) antagonist activity at one or more of the MOP, KOP, and DOP receptors. [0076] In some embodiments, the compounds according to the invention have both, (i) antagonist activity at the NOP receptor; and (ii) agonist activity at one or more of the MOP, KOP, and DOP receptors.

[0077] In some embodiments, the compounds according to the invention have both, (i) antagonist activity at the NOP receptor; and (ii) antagonist activity at one or more of the MOP, KOP, and DOP receptors.

[0078] In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention have selective agonist activity at the NOP receptor. In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention

- have agonist activity at the NOP receptor, but no significant activity at the MOP receptor;

have agonist activity at the NOP receptor, but no significant activity at the KOP receptor;

have agonist activity at the NOP receptor, but no significant activity at the DOP receptor;

- have agonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the KOP receptor;

- have agonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the DOP receptor; or

- have agonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the KOP receptor as well as no significant activity at the DOP receptor.

[0079] In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention have balanced agonist activity at the NOP receptor as well as at the MOP receptor. In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention

- have agonist activity at the NOP receptor as well as agonist activity at the MOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the MOP receptor as well as agonist activity at the KOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the MOP receptor as well as agonist activity at the DOP receptor;

can be regarded as opioid pan agonists, i.e. have agonist activity at the NOP receptor as well as agonist activity at the MOP receptor as well as agonist activity at the KOP receptor as well as agonist activity at the DOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the MOP receptor, but no significant activity at the KOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the MOP receptor, but no significant activity at the DOP receptor; or - have agonist activity at the NOP receptor as well as agonist activity at the MOP receptor, but no significant activity at the KOP receptor as well as no significant activity at the DOP receptor.

[0080] In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention have balanced agonist activity at the NOP receptor as well as at the KOP receptor. In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention

- have agonist activity at the NOP receptor as well as agonist activity at the KOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the KOP receptor as well as agonist activity at the MOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the KOP receptor as well as agonist activity at the DOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the KOP receptor, but no significant activity at the MOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the KOP receptor, but no significant activity at the DOP receptor; or

have agonist activity at the NOP receptor as well as agonist activity at the KOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the DOP receptor.

[0081] In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention have balanced agonist activity at the NOP receptor as well as at the DOP receptor. In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention

- have agonist activity at the NOP receptor as well as agonist activity at the DOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the DOP receptor, but no significant activity at the MOP receptor;

have agonist activity at the NOP receptor as well as agonist activity at the DOP receptor, but no significant activity at the KOP receptor; or

have agonist activity at the NOP receptor as well as agonist activity at the DOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the KOP receptor.

[0082] In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention have selective agonist activity at the KOP receptor. In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention

- have agonist activity at the KOP receptor, but no significant activity at the MOP receptor;

have agonist activity at the KOP receptor, but no significant activity at the NOP receptor; have agonist activity at the KOP receptor, but no significant activity at the DOP receptor;

- have agonist activity at the KOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the NOP receptor;

- have agonist activity at the KOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the DOP receptor; or

- have agonist activity at the KOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the NOP receptor as well as no significant activity at the DOP receptor.

[0083] In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention have agonist activity at the MOP receptor, agonist activity at the KOP receptor, and antagonist activity at the DOP receptor. In some embodiments, preferably with respect to receptors of the peripheral nervous system, the compounds according to the invention

have agonist activity at the MOP receptor as well as agonist activity at the KOP receptor as well as antagonist activity at the DOP receptor;

have agonist activity at the MOP receptor as well as agonist activity at the KOP receptor as well as antagonist activity at the DOP receptor as well as agonist activity at the NOP receptor;

have agonist activity at the MOP receptor as well as agonist activity at the KOP receptor as well as antagonist activity at the DOP receptor as well as antagonist activity at the NOP receptor; or

have agonist activity at the MOP receptor as well as agonist activity at the KOP receptor as well as antagonist activity at the DOP receptor, no significant activity at the NOP receptor.

[0084] In some embodiments, preferably with respect to receptors of the central nervous system, the compounds according to the invention have selective agonist activity at the NOP receptor. In some embodiments, preferably with respect to receptors of the central nervous system, the compounds according to the invention

- have agonist activity at the NOP receptor, but no significant activity at the MOP receptor;

have agonist activity at the NOP receptor, but no significant activity at the KOP receptor;

have agonist activity at the NOP receptor, but no significant activity at the DOP receptor;

- have agonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the KOP receptor;

- have agonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the DOP receptor; or

- have agonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the KOP receptor as well as no significant activity at the DOP receptor.

[0085] In some embodiments, preferably with respect to receptors of the central nervous system, the compounds according to the invention have selective antagonist activity at the NOP receptor. In some embodiments, preferably with respect to receptors of the central nervous system, the compounds according to the invention

- have antagonist activity at the NOP receptor, but no significant activity at the MOP receptor;

- have antagonist activity at the NOP receptor, but no significant activity at the KOP receptor;

- have antagonist activity at the NOP receptor, but no significant activity at the DOP receptor;

- have antagonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the KOP receptor;

- have antagonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the DOP receptor; or

- have antagonist activity at the NOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the KOP receptor as well as no significant activity at the DOP receptor.

[0086] In some embodiments, preferably with respect to receptors of the central nervous system, the compounds according to the invention have antagonist activity at the NOP receptor as well as agonist activity at the DOP receptor. In some embodiments, preferably with respect to receptors of the central nervous system, the compounds according to the invention

- have antagonist activity at the NOP receptor as well as agonist activity at the DOP receptor;

have antagonist activity at the NOP receptor as well as agonist activity at the DOP receptor, but no significant activity at the MOP receptor;

have antagonist activity at the NOP receptor as well as agonist activity at the DOP receptor, but no significant activity at the KOP receptor; or

have antagonist activity at the NOP receptor as well as agonist activity at the DOP receptor, but no significant activity at the MOP receptor as well as no significant activity at the KOP receptor.

[0087] For the purpose of the specification, "no significant activity" means that the activity (agonist/antagonist) of the given compound at this receptor is lower by a factor of 1000 or more compared to its activity (agonist/antagonist) at one or more of the other opioid receptors.

[0088] A further aspect of the invention relates to the compounds according to the invention as medicaments.

[0089] A further aspect of the invention relates to the compounds according to the invention for use in the treatment of pain. A further aspect of the invention relates to a method of treating pain comprising the administration of a pain alleviating amount of a compound according to the invention to a subject in need thereof, preferably to a human. The pain is preferably acute or chronic. The pain is preferably nociceptive or neuropathic.

[0090] A further aspect of the invention relates to the compounds according to the invention for use in the treatment of neurodegenerative disorders, neuroinflammatory disorders, neuropsychiatric disorders, and substance abuse/dependence. A further aspect of the invention relates to a method of treating any one of the aforementioned disorders, diseases or conditions comprising the administration of a therapeutically effective amount of a compound according to the invention to a subject in need thereof, preferably to a human.

[0091] Another aspect of the invention relates to a pharmaceutical composition which contains a physiologically acceptable carrier and at least one compound according to the invention.

[0092] Preferably, the composition according to the invention is solid, liquid or pasty; and/or contains the compound according to the invention in an amount of from 0.001 to 99 wt. %, preferably from 1.0 to 70 wt. %, based on the total weight of the composition.

[0093] The pharmaceutical composition according to the invention can optionally contain suitable additives and/or auxiliary substances and/or optionally further active ingredients.

[0094] Examples of suitable physiologically acceptable carriers, additives and/or auxiliary substances are fillers, solvents, diluents, colorings and/or binders. These substances are known to the person skilled in the art (see H. P. Fiedler, Lexikon der Hilfsstoffe fur Pharmazie, Kosmetik and angrenzende Gebiete, Editio Cantor Aulendoff).

[0095] The pharmaceutical composition according to the invention contains the compound according to the invention in an amount of preferably from 0.001 to 99 wt. %, more preferably from 0.1 to 90 wt. %, yet more preferably from 0.5 to 80 wt. %, most preferably from 1.0 to 70 wt. % and in particular from 2.5 to 60 wt. %, based on the total weight of the pharmaceutical composition.

[0096] The pharmaceutical composition according to the invention is preferably for systemic, topical or local administration, preferably for oral administration.

[0097] Another aspect of the invention relates to a pharmaceutical dosage form which contains the pharmaceutical composition according to the invention.

[0098] In one preferred embodiment, the pharmaceutical dosage form according to the invention is produced for administration twice daily, for administration once daily or for administration less frequently than once daily. Administration is preferably systemic, in particular oral.

[0099] The pharmaceutical dosage form according to the invention can be administered, for example, as a liquid dosage form in the form of injection solutions, drops or juices, or as a semi-solid dosage form in the form of granules, tablets, pellets, patches, capsules, plasters/spray-on plasters or aerosols. The choice of auxiliary substances etc. and the amounts thereof to be used depend on whether the form of administration is to be administered orally, perorally, parenterally, intravenously, intraperitoneally, intradermally, intramuscularly, intranasally, buccally, rectally or locally, for example to the skin, the mucosa or into the eyes. [0100] Pharmaceutical dosage forms in the form of tablets, dragees, capsules, granules, drops, juices and syrups are suitable for oral administration, and solutions, suspensions, readily reconstitutable dry preparations and also sprays are suitable for parenteral, topical and inhalatory administration. Compounds according to the invention in a depot, in dissolved form or in a plaster, optionally with the addition of agents promoting penetration through the skin, are suitable percutaneous administration preparations.

[0101] The amount of the compounds according to the invention to be administered to the patient varies in dependence on the weight of the patient, on the type of administration, on the indication and on the severity of the disease. Usually, from 0.00005 mg/kg to 50 mg/kg, preferably from 0.001 mg/kg to 10 mg/kg, of at least one compound according to the invention is administered.

[0102] Another aspect of the invention relates to a process for the preparation of the compounds according to the invention. Suitable processes for the synthesis of the compounds according to the invention are known in principle to the person skilled in the art.

[0103] Preferred synthesis routes are described below:

[0104] The compounds according to the invention can be obtained via different synthesis routes. Depending on the synthesis route, different intermediates are prepared and subsequently further reacted.

[0105] In a preferred embodiment, the synthesis of the compounds according to the invention proceeds via a synthesis route which comprises the preparation of an intermediate according to general formula (Ilia):

(Ilia)

wherein R 1 , R 2 and R 3 are defined as above.

[0106] In another preferred embodiment, the synthesis of the compounds according to the invention proceeds via a synthesis route which comprises the preparation of an intermediate according to general formula (Illb):

(Illb) wherein R 1 , R 2 and R 3 are defined as above and PG is a protecting group.

[0107] Preferably the protecting group is -p-methoxybenzyl. Therefore, in another preferred embodiment, the synthesis of the compounds according to the invention proceeds via a synthesis route which comprises the preparation of an intermediate according to general formula (IIIc):

(IIIc)

wherein R 1 , R 2 and R 3 are defined as above.

[0108] As already indicated, in general formula (IIIc), the -p-methoxybenzyl moiety represents a protecting group which can be cleaved in the course of the synthesis route.

[0109] In yet another preferred embodiment, the synthesis of the compounds according to the invention proceeds via a synthesis route which comprises the preparation of

an intermediate according to general formula (Ilia) and according to general formula (Illb); or

an intermediate according to general formula (Ilia) and according to general formula (IIIc); or

an intermediate according to general formula (Illb) and according to general formula (IIIc); or

an intermediate according to general formula (Ilia), according to general formula (Illb) and according to general formula (IIIc).

[0110] The following examples further illustrate the invention but are not to be construed as limiting its scope. [0111] Examples

[0112] „RT" means room temperature (23 + 7 °C),„M" are indications of concentration in mol/1,„aq." means aqueous,„sat." means saturated,„sol." means solution, "cone." means concentrated.

[0113] Further abbreviations:

brine saturated aqueous sodium chloride solution

CC column chromatography

cHex cyclohexane

DCM dichloromethane

DIPEA N,N-diisopropylethylamine

DMF N,N-dimethylformamide

Et Ethyl ether diethyl ether

EE ethyl acetate

EtOAc ethyl acetate

EtOH ethanol

h hour(s)

H 2 0 water

HATU 0-(7-aza-benzotriazol- 1 -yl)-N,N,N',N'-tetramethyluroniumhexafluorophosphate

LDA Lithium-di-isoproyl-amid

Me Methyl

m/z mass-to-charge ratio

MeOH methanol

MeCN acetonitrile

min minutes

MS mass spectrometry

NBS N-bromo-succinimide

NEt 3 triethylamine

PE Petrol Ether (60-80°C)

RM reaction mixture

RT room temperature

T3P 2,4,6-Tripropyl-l,3,5,2,4,6-trioxatriphosphorinane-2,4,6-tri oxide

tBME tert- .butyl methyl ether

THF tetrahydrofuran

v/v volume to volume

w/w weight to weight

[0114] The yields of the compounds prepared were not optimised. All temperatures are uncorrected.

[0115] All starting materials, which are not explicitly described, were either commercially available (the details of suppliers such as for example Acros, Aldrich, Bachem, Butt park, Enamine, Fluka, Lancaster, Maybridge, Merck, Sigma, TCI, Oakwood, etc. can be found in the Symyx® Available Chemicals Database of MDL, San Ramon, US or the SciFinder® Database of the ACS, Washington DC, US, respectively, for example) or the synthesis thereof has already been described precisely in the specialist literature (experimental guidelines can be found in the Reaxys® Database of Elsevier, Amsterdam, NL or the SciFinder® Database of the ACS, Washington DC, US, repspectively, for example) or can be prepared using the conventional methods known to the person skilled in the art.

[0116] The mixing ratios of solvents or eluents for chromatography are specified in v/v.

[0117] All the intermediate products and exemplary compounds were analytically characterised by mass spectrometry (MS, m/z for [M+H] + ). In addition 'H-NMR and 13 C spectroscopy was carried out for all the exemplary compounds and selected intermediate products. [0118] Remark regarding stereochemistry

[0119] CIS refers to the relative configuration of compounds described herein, in which both nitrogen atoms are drawn on the same face of the cyclohexane ring as described in the following exemplary structure. Two depictions are possible:

CIS configuration

[0120] TRANS refers to compounds, in which both nitrogen atoms are on opposite faces of the cyclohexane ring as described in the following exemplary structure. Two depictions are possible:

TRANS configuration

[0121] Synthesis of Intermediates

[0122] Synthesis of INT-795: CIS-8-Dimethylamino-8-phenyl-3-(2-phenyl-ethyl)-l,3- diazaspiro[4.5]decan-2-one

INT-795 [0123] Step 1: CIS-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4,5]decane-2,4 -dione

[0124] A diastereomeric mixture of 8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]decane-2,4-dio ne (20 g) (INT-976 step 1) was suspended in methanol (200 mL) and was heated to 80°C for 1 h. The resulting suspension was filtered hot and the precipitate was washed with methanol (100 mL). Solid obtained was dried under reduced pressure to afford major isomer CIS-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4,5]decane-2,4 -dione (15g) as an off-white solid. Chiral HPLC purity 98.93%, HPLC purity 98.61%.

[0125] Step 2: CIS-8-Dimethylamino-8-phenyl-3-(2-phenyl-ethyl)-l,3-diazaspi ro[4.5]decane-2,4-dione

[0126] Cs 2 C0 3 (3.9 g, 10.98 mmol) was added to the solution of CIS-8-(dimethylamino)-8-phenyl-l,3- diazaspiro[4,5]decane-2,4-dione (1.5 g, 5.49 mmol) in MeCN (20 mL) under argon atmosphere and the reaction mixture was stirred for 30min. (2-Bromoethyl)benzene (1.5 g, 8.24 mmol) was added and the reaction mixture was stirred under reflux for 16 h. The reaction completion was monitored by TLC. The reaction mixture was quenched with water (25 mL) and the organic product was extracted with DCM (2x150 mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (230-400 mesh) (5-10% methanol in DCM) further by washing with pentane yielded 1.6g (78%) of CIS-8-dimethylamino-8-phenyl-3-(2-phenyl-ethyl)-l,3-diazaspi ro[4.5]decane- 2,4-dione as white solid. (TLC system: 10% MeOH in DCM; Rf: 0.4).

[0127] Step 3: CIS-8-Dimethylamino-8-phenyl-3-(2-phenyl-ethyl)-l,3-diazaspi ro[4.5]decan-2-one

[0128] Anhydrous A1C1 3 (1.27 g, 9.59 mmol) was added to the solution of LiAlH 4 (1M in THF) (7.6 mL, 7.67 mmol) in THF at 0°C under argon atmosphere. The reaction was stirred at RT for 1 h. CIS-8-(Dimethylamino)-3- phenethyl-8-phenyl-l,3-diazaspiro[4.5]decane-2,4-dione (1.5 g, 4.60 mmol) was added to the reaction mixture at 0°C and stirred at RT for 16 h. The reaction completion was monitored by TLC. The mixture was cooled to 0°C; quenched with sat. aq. Na 2 S0 4 (lOmL) and filtered through celite. The filtrate was dried over anhydrous Na 2 S0 4 and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (230-400 mesh) (5-10% methanol in DCM) and further by washing with pentane yielded lg (69%) of CIS-8- dimethylamino-8-phenyl-3-(2-phenyl-ethyl)-l,3-diazaspiro[4.5 ]decan-2-one (INT-795) as a white solid. (TLC system: 10% MeOH in DCM; Rf: 0.3). [M+H] + 378.

[0129] Synthesis of INT-799: CIS-8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-8-phen yl-l,3- diazaspiro[4.5]decan-2-one

[0130] Step 1: CIS-l-((l-(benzyloxy)cyclobutyl)methyl)-3-(3,4-dimethoxybenz yl)-8-(dimethylamino)-8- phenyl-l,3-diazaspiro [4.5] decan-2-one

[0131] NaOH (1.42 g, 35.5 mmol) was added to a solution of CIS-3-(3,4-dimethoxybenzyl)-8- (dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (INT-794) (3 g, 7.09 mmol) in DMSO (90 mL) under argon atmosphere and the reaction mixture was stirred at 80°C for 30 min. ((1- (Bromomethyl)cyclobutoxy)methyl)benzene (5.4 g, 21.3 mmol) was added and stirring was continued for 2 days at 80°C. The reaction completion was monitored by TLC. The reaction mixture was diluted with water (500 mL) and extracted with diethyl ether (4x300 mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by column chromatography (230-400mesh silica gel; 65-70% EtOAc in petroleum ether as eluent) to afford 2.5g (59%) of CIS-1-((1- (benzyloxy)cyclobutyl)methyl)-3-(3,4-dimethoxybenzyl)-8-(dim ethylamino)-8-phenyl-l,3-diazaspiro[4.5]decan- 2-one (TLC system: 10% MeOH in DCM; Rf: 0.8).

[0132] Step 2: CIS-8-Dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-8-phen yl-l,3- diazaspiro[4.5]decan-2-one

[0133] TFA (12mL) was added to CIS-l-((l-(benzyloxy)cyclobutyl)methyl)-3-(3,4-dimethoxybenz yl)-8- (dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (2.5 g, 4.18 mmol) at 0°C and the resulting mixture was stirred at 70°C for 6 h. The reaction completion was monitored by LCMS. The reaction mixture was concentrated under reduced pressure. To the residue sat. aq. NaHC0 3 was added (until pH 10) and the organic product was extracted with DCM (3xl50mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by column chromatography (230-400mesh silica gel; 5% MeOH in DCM as eluent) to afford 500mg (33%) of CIS-8-dimethylamino-l-[(l-hydroxy- cyclobutyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (INT-799) (TLC system: 10% MeOH in DCM; Rf: 0.5). [M+H] + 358.2

[0134] Synthesis of INT-951: CIS-l-[(8-Dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]de can-l-yl)- methyl]-cyclobutane-l-carbonitrile

INT-951

[0135] Step 1 : l-((CIS-8-(dimethylamino)-3-(4-methoxybenzyl)-2-oxo-8-phenyl -l,3-diazaspiro [4.5] decan- l-yl)methyl)cyclobutanecarbonitrile

[0136] NaH (50% in mineral oil) (2.44 g, 50.89 mmol) was added to a solution of CIS-8-dimethylamino-3-[(4- methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro [4.5]decan-2-one (INT-975) (5 g, 12.72 mmol) in DMF (100 mL) at 0°C portionwise over 10 min. l-(Bromomethyl)cyclobutanecarbonitrile (4.4 g, 25.44 mmol) was added dropwise over 10 minutes at 0°C. The reaction mixture was allowed to stir at RT for 3 h, then quenched with water and the organic product was extracted with ethyl acetate (3x200mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure to afford 5g (crude) of l-((CIS-8- (dimethylamino)-3-(4-methoxybenzyl)-2-oxo-8-phenyl-l,3-diaza spiro[4.5]decan-l-yl)methyl)cyclobutane- carbonitrile as gummy brown liquid. The material was used for the next step without further purification.

[0137] Step 2: l-((CIS-8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4.5] decan-l-yl)methyl) cyclobutanecarboxamide

[0138] TFA (lOOmL) was added to l-((CIS-8-(dimethylamino)-3-(4-methoxybenzyl)-2-oxo-8-phenyl -l,3- diazaspiro[4.5]decan-l-yl)methyl)cyclobutanecarbonitrile (5 g, 10.28 mmol) at 0°C and the reaction mixture at mixture was stirred at RT for 2 days. The reaction mixture was concentrated in vacuo. To the residue sat. aq. NaHCC>3 was added (until pH 10) and the organic product was extracted with dichloromethane (3xl50mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure to afford 3.5g (crude) of l-((CIS-8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4.5] decan-l-yl)methyl) cyclobutanecarboxamide. The material was used for the next step without further purification.

[0139] Step 3: l-((cis-8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4.5] decan-l- yl)methyl)cyclobutane carbonitrile

[0140] Thionyl chloride (35 mL) was added to l-((cis-8-(dimethylamino)-2-oxo-8-phenyl-l,3- diazaspiro[4.5]decan-l-yl)methyl)cyclobutanecarboxamide (3.5 g, 9.11 mmol) at RT and the resulting mixture was stirred at reflux for 2h. The reaction mixture was concentrated in vacuo. To the residue sat. aq. NaHC0 3 was added (until pH 10) and the organic product was extracted with dichloromethane (3xl50mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated in vacuo. The residue was purified by column chromatography to afford 1.3 g (34% after three steps) of CIS-l-[(8-dimethylamino-2-oxo-8-phenyl-l,3- diazaspiro[4.5]decan-l-yl)-methyl]-cyclobutane-l-carbonitril e (INT-951). [M+H] + 367.2.

[0141] Synthesis of INT-953: CIS-l-(Cyclobutyl-methyl)-8-(methyl-(2-methyl-propyl)-amino) -8-phenyl- l,3-diazaspiro[4.5]decan-2-one

INT-953

[0142] Step 1: l-Cyclobutylmethyl-3-(4-methoxy-benzyl)-9,12-dioxa-l,3-diaza -dispiro[4.2.4.2]tetradecan- 2-one

[0143] To a stirred solution of 3-(4-methoxy-benzyl)-9,12-dioxa-l,3-diaza-dispiro[4.2.4.2]te tradecan-2-one (4 g, 12.04 mmol) in anhydrous DMF (60 ml) was added NaH (1.38 g, 60% dispersion in oil, 36.14 mmol) at RT. The reaction mixture was stirred for 10 min, bromomethylcyclobutane (3 ml, 26.5 mmol) was added dropwise and stirring was continued for 50 h. TLC analysis showed complete consumption of the starting material. The reaction mixture was quenched with sat. aq. NH 4 C1 (50 ml) and extracted with EtOAc (3x200ml). The combined organic phase was dried over Na 2 S0 4 and concentrated under reduced pressure. The resulting residue was purified column chromatography (neutral aluminum oxide, EtOAc - petroleum ether (2:8)) to give 1- cyclobutylmethyl-3-(4-methoxy-benzyl)-9,12-dioxa-l,3-diaza-d ispiro[4.2.4.2]tetradecan-2-one (2.4 g, 50%, white solid). TLC system: EtOAc - pet ether (6:4); R/= 0.48.

[0144] Step 2: l-Cyclobutylmethyl-3-(4-methoxy-benzyl)-l,3-diaza-spiro[4.5] decane-2,8-dione

[0145] To a stirred solution of l-cyclobutylmethyl-3-(4-methoxy-benzyl)-9, 12-dioxa-l,3-diaza- dispiro[4.2.4.2]tetradecan-2-one (1 g, 2.5 mmol) in MeOH (7 ml) was added 10% aq. HC1 (8 ml) at 0°C. The reaction mixture was warmed up to RT and stirred for 16 h. TLC analysis showed complete consumption of the starting material. The reaction mixture was quenched with sat. aq. NaHC0 3 (30 ml) and extracted with EtOAc (3x50ml). The combined organic phase was dried over Na 2 S0 4 and concentrated under reduced pressure. The resulting residue was purified by column chromatography (silica gel, 230-400 mesh, EtOAc - pet ether (1 :3)→(3:7)) to give l-cyclobutylmethyl-3-(4-methoxy-benzyl)-l,3-diaza-spiro[4.5] decane-2,8-dione (650 mg, 73%, colorless viscous oil). TLC system: EtOAc - pet ether (6:4); R/= 0.40.

[0146] Step 3: l-(cyclobutylmethyl)-8-(isobutyl(methyl)amino)-3-(4-methoxyb enzyl)-2-oxo-l,3- diazaspiro[4.5]decane-8-carbonitrile

[0147] To a stirred solution of N-isobutyl-N-methylamine (1.34 ml, 11.23 mmol) and MeOH/H 2 0 (8 ml, 1 : 1, v/v) was added 4N aq. HC1 (1.5 ml) and the reaction mixture was stirred for 10 min at 0°C (ice bath). A solution of l-cyclobutylmethyl-3-(4-methoxy-benzyl)-l,3-diaza-spiro[4.5] decane-2,8-dione (1 g, 2.80 mmol) in MeOH (7 ml) and KCN (548 mg, 8.42 mmol) were added and the reaction mixture was stirred at 45°C for 20 h. TLC analysis showed complete consumption of the starting material. The reaction mixture was diluted with water (30 ml), extracted with EtOAc (3x30ml), the combined organic phase was dried over Na 2 S0 4 and concentrated under reduced pressure to give l-(cyclobutylmethyl)-8-(isobutyl(methyl)amino)-3-(4-methoxyb enzyl)-2-oxo-l,3- diazaspiro[4.5]decane-8-carbonitrile (1.3 g, viscous yellow oil). TLC system: EtOAc - pet ether (1 : 1); R/ = 0.45. The product was used for the next step without additional purification.

[0148] Step 4: CIS-l-(cyclobutylmethyl)-8-(isobutyl(methyl)amino)-3-(4-meth oxybenzyl)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one

[0149] A round bottom flask containing l-(cyclobutylmethyl)-8-(isobutyl(methyl)amino)-3-(4- methoxybenzyl)-2-oxo-l,3-diazaspiro[4.5]decane-8-carbonitril e (1.3 g, 2.81 mmol) was cooled in an ice bath (~0°C) and a solution of phenylmagnesium bromide (26 ml, ~2M in THF) was added slowly at 0°C-5°C. The ice bath was removed and the reaction mixture was stirred for 30 min, then diluted with sat. aq. NH 4 C1 (25 ml) and extracted with EtOAc (4x30 ml). The combined organic phase was dried over Na 2 S0 4 and concentrated under reduced pressure to give pale yellow viscous oil. This residue was purified by column chromatography (silica gel, 230-400 mesh, eluent: EtOAc - pet ether (15:85)→ (2:4)) to give CIS-l-(cyclobutylmethyl)-8- (isobutyl(methyl)amino)-3-(4-methoxybenzyl)-8-phenyl-l,3-dia zaspiro[4.5]decan-2-one (135 mg, 10%, white solid). TLC system: EtOAc - pet ether (1 : 1); R f = 0.6

[0150] Step 5: CIS-l-(cyclobutyl-methyl)-8-(methyl-(2-methyl-propyl)-amino) -8-phenyl-l,3- diazaspiro[4.5]decan-2-one

[0151] A round bottom flask containing CIS-l-(cyclobutylmethyl)-8-(isobutyl(methyl)amino)-3-(4- methoxybenzyl)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (130 mg, 0.25 mmol) was cooled in an ice bath and a mixture of TFA/CH 2 CI 2 (2.6 ml, 1 : 1, v/v) was added slowly at 0°C-5°C. The reaction mixture was warmed to RT and stirred for 20 h, then quenched with methanolic NH 3 (10ml, -10% in MeOH) and concentrated under reduced pressure to give pale yellow viscous oil. This residue was purified twice by column chromatography (silica gel, 230-400 mesh, eluent: MeOH - CHC1 3 (1 :99) → (2:98)) to give CIS-l-(cyclobutyl-methyl)-8- (methyl-(2-methyl-propyl)-amino)-8-phenyl-l,3-diazaspiro[4.5 ]decan-2-one (INT-953) (65 mg, 66%, white solid). TLC system: MeOH - CHC1 3 (5:95); R f = 0.25; [M+H] + 384.3 [0152] Synthesis of INT-958: 4-oxo-l-pyridin-2-yl-cyclohexane-l-carbonitrile

INT-958

[0153] Step 1: Ethyl 5-cyano-2-oxo-5-(pyridin-2-yl)cyclohexanecarboxylate

[0154] KOtBu (57.0 g, 508.4 mmol) was added to the solution of 2-(pyridin-2-yl)acetonitrile (50.0 g, 423.7 mmol) and ethyl acrylate (89.0 g, 889.8 mmol) in THF (500 mL) at 0°C and stirred for 16 h at RT. The reaction mixture was quenched with sat. aq. NH 4 C1 and extracted with EtOAc (2x500 mL). The combined organic layer was washed with brine, dried over Na 2 S0 4 and concentrated under reduced pressure to afford 68.0 g (60%; crude) of ethyl 5-cyano-2-oxo-5-(pyridin-2-yl)cyclohexanecarboxylate as a brown liquid (TLC system: 50% ethyl acetate in petroleum ether ; Rf: 0.65).

[0155] Step 2: 4-Oxo-l-pyridin-2-yl-cyclohexane-l-carbonitrile

[0156] A solution of ethyl 5-cyano-2-oxo-5-(pyridin-2-yl)cyclohexanecarboxylate (68.0 g, 250.0 mmol) was added to a mixture of cone. aq. HCl and glacial acetic acid (170mL/510mL) at 0°C. The reaction mixture was heated to 100°C for 16 h. All volatiles were evaporated under reduced pressure. The residue was diluted with sat. aq. NaHC0 3 and extracted with ethyl acetate (3x300 mL). The combined organic layer was washed with brine, dried over Na 2 S0 4 and concentrated under reduced pressure to afford 44. Og (88%) of 4-oxo-l-pyridin-2-yl- cyclohexane-l-carbonitrile INT-958 as a brown solid (TLC system: 50% ethyl acetate in pet ether; Rf: 0.45). [M+H] + 201.1

[0157] Synthesis of INT-961: 4-Dimethylaniino-4-pyridin-2-yl-cyclohexan-l-one

INT-958 step 3

INT-961 [0158] Step 1: 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decane-8-carbonitrile

[0159] A solution of 4-oxo-l-pyridin-2-yl-cyclohexane-l-carbonitrile (INT-958) (44.0 g, 220.0 mmol), ethylene glycol (27.0 g, 440.0 mmol) and PTSA (4.2 g, 22.0 mmol) in toluene (450 mL) was heated to 120°C for 16 h using Dean Stark apparatus. All volatiles were evaporated under reduced pressure. The residue was diluted with sat. aq. NaHC0 3 and extracted with ethyl acetate (3x300 mL). The combined organic layer was washed with brine, dried over Na 2 S0 4 and concentrated under reduced pressure to afford 45.0 g (85%) of 8-(pyridin-2- yl)-l,4-dioxaspiro[4.5]decane-8-carbonitrile as a light brown solid (TLC system: 50% ethyl acetate in petroleum ether; Rf: 0.55).

[0160] Step 2: 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decane-8-carboxamide

[0161] Potassium carbonate (50.0 g, 368.84 mmol) and 30% aq. H 2 0 2 (210.0 mL, 1844.2 mmol) were added to the solution of 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decane-8-carbonitrile (45.0 g, 184.42 mmol) in DMSO (450 mL) at 0°C and the resulting mixture was stirred at RT for 14 h. The reaction mixture was diluted with water (1.5 L) and stirred for 1 h. The precipitated solid was separated by filtration, washed with water, petroleum ether and dried under reduced pressure to get 32.0 g (66%) of 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decane-8- carboxamide as a white solid. (TLC system: 10% MeOH in DCM R f : 0.35).

[0162] Step 3: methyl 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decan-8-ylcarbamate

[0163] A mixture of 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decane-8-carboxamide (25.0 g, 95.41 mmol), sodium hypochlorite (5wt% aq. solution, 700 mL, 477.09 mmol) and KF-AI 2 O 3 (125.0 g) in methanol (500 mL) was heated to 80°C for 16 h. The reaction mixture was filtered through celite and the solid residue was washed with methanol. The combined filtrate was concentrated under reduced pressure. The residue was diluted with water and extracted with ethyl acetate (3x500mL). The combined organic layer was washed with brine, dried over Na 2 S0 4 and concentrated under reduced pressure to afford 18. Og (66%) of methyl 8-(pyridin-2-yl)-l,4- dioxaspiro[4.5]decan-8-ylcarbamate as a light brown solid. (TLC system: 5% MeOH in DCM R f : 0.52.)

[0164] Step 4: 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decan-8-amine

[0165] A suspension of methyl 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decan-8-ylcarbamate (18.0 g, 61.64 mmol) in 10wt% aq. NaOH (200 mL) was heated to 100°C for 24 h. The reaction mixture was filtered through celite pad, the solid residue was washed with water and the combined filtrate was extracted with EtOAc (4x200 mL). The combined organic layer washed with brine, dried over Na 2 S0 4 and concentrated under reduced pressure to afford 12.5g (88%) of 8-(pyridin-2-yl)-l,4-dioxaspiro[4.5]decan-8-amine as a light brown semi-solid. (TLC system: 5% MeOH in DCM R f : 0.22.).

[0166] Step 5: 4-Dimethylamino-4-pyridin-2-yl-cyclohexan-l-one Sodium cyanoborohydride (13.7 g, 0.213 mol) was added portionwise to a solution of 8-(pyridin-2-yl)-l,4- dioxaspiro[4.5]decan-8-amine (12.5 g, 53.418 mmol) and 35wt%aq. formaldehyde (45 mL, 0.534 mol) in acetonitrile (130 mL) at 0 °C. The reaction mixture was warmed up to room temperature and stirred for 16 h. The reaction mixture was quenched with sat. aq. NH 4 C1 and concentrated under reduced pressure. The residue was dissolved in water and extracted with EtOAc (3x200 mL). The combined organic layer was washed with brine, dried over Na 2 S0 4 and concentrated under reduced pressure to afford 10.5 g (72%) of 4-dimethylamino- 4-pyridin-2-yl-cyclohexan-l-one (INT-961) as a light brown solid. (TLC system: 5% MeOH in DCM R f : 0.32.). [M+H] + 219.1

[0167] Synthesis of INT-965: 4-Dimethylamino-4-phenyl-cyclohexan-l-one

INT-965

[0168] Step 1: 8-(Dimethylamino)-l,4-dioxaspiro 4.5] decane-8-carbonitrile

[0169] Dimethylamine hydrochloride (52 g, 0.645 mol) was added to the solution of l,4-dioxaspiro-[4.5]- decan-8-one (35g, 0.224 mmol) in MeOH (35 mL) at RT under argon atmosphere. The solution was stirred for 10 min and 40wt% aq. dimethylamine (280 mL, 2.5 mol) and KCN (32 g, 0.492 mol) were sequentially added. The reaction mixture was stirred for 48 h at RT, then diluted with water (lOOmL) and extracted with EtOAc (2x200 mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure to afford 44 g of 8-(dimethylamino)-l,4-dioxaspiro-[4.5]-decane-8-carbonitrile (93%) as a white solid.

[0170] Step 2: N,N-dimethyl-8-phenyl-l,4-dioxaspiro [4.5] decan-8-amine

[0171] 8-(Dimethylamino)-l,4-dioxaspiro[4.5]decane-8-carbonitrile (35 g, 0.167 mol) in THF (350 mL) was added to the solution of 3M phenylmagnesium bromide in diethyl ether (556 mL, 1.67 mol) dropwise at -10°C under argon atmosphere. The reaction mixture was stirred for 4 h at -10°C to 0°C and then at RT for 18 h. The reaction completion was monitored by TLC. The reaction mixture was cooled to 0°C, diluted with sat. aq. NH 4 C1 (1 L) and extracted with EtOAc (2x600 mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure to afford 60 g of, N N-dimethyl-8-phenyl-l, 4-dioxaspiro-[4.5]-decan-8- amine as a liquid.

[0172] Step 3: 4-(dimethylamino)-4-phenylcyclohexanone

[0173] A solution of N,N-dimethyl-8-phenyl-l,4-dioxaspiro[4.5]decan-8-amine (32 g, 0.123 mol) in 6N aq. HC1 (320 mL) was stirred at 0°C for 2 h and then at RT for 18 h. The reaction completion was monitored by TLC. The reaction mixture was extracted with DCM (2x150 mL). The aqueous layer was basified to pH 10 with solid NaOH and extracted with ethyl acetate (2x200mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The solid residue was washed with hexane and dried in vacuo to afford 7g of 4-dimethylamino-4-phenyl-cyclohexan-l-one (INT-965) (25% over 2 steps) as a brown solid. [M+H] + 218.1

[0174] Synthesis of INT-966: 3-[(4-Methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decane-2,8-d ione

step 3

INT-966

[0175] Step 1: 9,12-Dioxa-2,4-diazadispiro[4.2.4 A {8}.2 A {5}]tetradecane-l,3-dione

[0176] KCN (93.8 g, 1441.6 mmol) and (NH 4 ) 2 C0 3 (271.8 g, 1729.9 mmol) were added to the solution of 1,4- dioxaspiro[4.5]decan-8-one (150 g, 961 mmol) in MeOH:H 2 0 (1 : 1 v/v) (1.92 L) at RT under argon atmosphere. The reaction mixture was stirred at 60°C for 16 h. The reaction completion was monitored by TLC. The reaction mixture was cooled to 0°C, the precipitated solid was filtered off and dried in vacuo to afford 120 g (55%) of 9, 12-dioxa-2,4-diazadispiro[4.2.4 A {8} .2 A {5}]tetradecane-l,3-dione. The filtrate was extracted with DCM (2x1.5 L). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure to afford additional 30 g (14%) of 9, 12-dioxa-2,4-diazadispiro[4.2.4 A {8} .2 A {5}]tetradecane-l,3-dione (TLC system: 10% Methanol in DCM; Rf: 0.4).

[0177] Step 2: 2-[(4-Methoxyphenyl)-methyl]-9,12-dioxa-2,4-diazadispiro[4.2 .4 A {8}.2 A {5}] tetradecane- 1,3-dione

[0178] Cs 2 C0 3 (258.7 g, 796.1 mmol) was added to the solution of 73a (150 g, 663.4 mmol) in MeCN (1.5 L) under argon atmosphere and the reaction mixture was stirred for 30 min. A solution of p-methoxybenzyl bromide (96 mL, 663.4 mmol) was added. The reaction mixture was stirred at RT for 48 h. The reaction completion was monitored by TLC. The reaction mixture was quenched with sat. aq. NH 4 C1 (l .OL) and the organic product was extracted with EtOAc (2x1.5L). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The residue was washed with diethyl ether and pentane and dried under reduced pressure to afford 151 g (65%) of 2-[(4-Methoxyphenyl)-methyl]-9,12-dioxa-2,4- diazadispiro[4.2.4 A {8} .2 A {5}]tetradecane-l,3-dione as an off white solid (TLC system: 10% MeOH in DCM; Rf: 0.6). [0179] Step 3: 2-[(4-Methoxyphenyl)-methyl]-9,12-dioxa-2,4-diazadispiro[4.2 .4 A {8}.2 A {5}] tetradecan-3- one

[0180] A1C1 3 (144.3 g, 1082.6 mmol) was added to a solution of L1AIH 4 (2M in THF) (433 mL, 866.10 mmol) in THF (4.5 L) at 0°C under argon atmosphere and the resulting mixture was stirred at RT for 1 h. 2-[(4- Methoxyphenyl)-methyl]-9, 12-dioxa-2,4-diazadispiro[4.2.4 A {8} .2 A {5}]tetradecane-l,3-dione (150g, 433.05mmol) was added at 0°C. The reaction mixture was stirred at RT for 16 h. The reaction completion was monitored by TLC. The reaction mixture was cooled to 0°C, quenched with sat. aq. NaHCOs (500 mL) and filtered through celite pad. The filtrate was extracted with EtOAc (2x2.0 L). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated in vacuo to afford 120g (84%) of 2-[(4-methoxyphenyl)-methyl]- 9, 12-dioxa-2,4-diazadispiro[4.2.4 A {8} .2 A {5}]tetradecan-3-one as an off-white solid. (TLC system: 10% MeOH in DCM, Rf: 0.5).

[0181] Step 4: 3-[(4-Methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decane-2,8-d ione

[0182] A solution of 2-[(4-methoxyphenyl)-methyl]-9, 12-dioxa-2,4-diazadispiro[4.2.4 A {8} .2 A {5}] tetradecan- 3-one (120 g, 361.03 mmol) in 6N aq. HC1 (2.4 L) was stirred at 0°C for 2 h and then at RT for 18 h. The reaction completion was monitored by TLC. The reaction mixture was extracted with DCM (2x2.0L). The aqueous layer was basified to pH 10 with 50% aq. NaOH and then extracted with DCM (2 x 2.0L). Combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The solid residue was washed with hexane and dried in vacuo to afford 90 g of 3-[(4-Methoxyphenyl)-methyl]-l,3- diazaspiro[4.5]decane-2,8-dione (INT-966) as an off-white solid (TLC system: 10% MeOH in DCM; Rf: 0.4) [M+H] + 289.11.

[0183] Synthesis of INT-975: CIS-8-Dimethylaniino-3-[(4-niethoxyphenyl)-niethyl]-8-phenyl -l,3- diazaspiro[4.5]decan-2-one

INT-976 INT-975

[0184] KOtBu (1M in THF) (29.30mL, 29.30mmol) was added to the solution of CIS-8-Dimethylamino-8- phenyl-l,3-diazaspiro[4.5]decan-2-one INT-976 (8.0 g, 29.30 mmol) in THF (160 mL) under argon atmosphere and the reaction mixture was stirred for 30 min. 4-Methoxybenzyl bromide (4.23 mL, 29.30 mmol) was added and stirring was continued at RT for 4 h. The reaction completion was monitored by TLC. The reaction mixture was diluted with sat. aq. NH 4 C1 (150mL) and the organic product was extracted with EtOAc (2xl50mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated in vacuo. The reaction was carried out in 2 batches (8 g x 2) and the batches were combined for purification. Purification of the crude product by flash column chromatography on silica gel (0-10% methanol in DCM) and subsequently by washing with pentane yielded 11 g (47%) of CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l, 3- diazaspiro[4.5]decan-2-one (INT-975) as a white solid. [M+H] + 394.2

[0185] Synthesis of INT-976: CIS-8-Dimethylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

INT-976

[0186] Step 1: 8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4,5]decane-2,4-dio ne

[0187] In a sealed tube 4-dimethylamino-4-phenyl-cyclohexan-l-one (INT-965) (2 g, 9.22 mmol) was suspended in 40mL EtOH/H 2 0 (1 : 1 v/v) at RT under argon atmosphere. (NH 4 ) 2 C0 3 (3.62 g, 23.04 mmol) and KCN (0.6 g, 9.22 mmol) were added. The reaction mixture was stirred at 60°C for 18h. The reaction mixture was cooled to 0°C and diluted with ice-water and filtered through a glass filter. The solid residue was dried under reduced pressure to afford 8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4,5]decane-2,4-dio ne (1.8 g, 86%) as an off white crystalline solid (TLC: 80% EtOAc in hexane; Rf : 0.25).

[0188] Step 2: 8-(dimethylamino)-8-phenyl-l, 3-diazaspiro [4, 5] decan-2-one

[0189] LiAlH 4 (2M in THF) (70 mL, 139.4 mmol) was added to the solution of 8-(dimethylamino)-8-phenyl- l,3-diazaspiro[4,5]decane-2,4-dione (10 g, 34.8 mmol) in THF/Et 2 0 (2: 1 v/v) (400 mL) at 0°C under argon atmosphere. The reaction mixture was stirred for 4 h at 60°C. The reaction completion was monitored by TLC. The reaction mixture was cooled to 0°C, quenched with saturated Na 2 S0 4 solution (lOOmL) and filtered through Celite pad. The filtrate was dried over anhydrous Na 2 S0 4 and concentrated in vacuo to afford 5.7g (59%) of 8- (dimethylamino)-8-phenyl-l, 3-diazaspiro [4, 5] decan-2-one as an off white solid. (TLC system: 10% MeOH in DCM, Rf: 0.3).

[0190] Step 3: CIS-8-Dimethylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

[0191] A mixture of CIS- and TRANS-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4,5]decan-2- one (8g, 29.30mmol) was purified by preparative chiral SFC (column: Chiralcel AS-H, 60% C0 2 , 40% (0,5% DEA in MeOH)) to get 5g of CIS-8-dimethylamino-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (INT-976) as a white solid. [M+H] + 274.2.

[0192] Synthesis of INT-977: CIS-2-(8-Dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]dec an-l-yl)- acetic acid; 2,2,2-trifluoro-acetic acid salt

[0193] Step 1: CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3- diazaspiro[4.5] decan-l-yl]-acetic acid tert-butyl ester

[0194] A solution of CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l, 3-diazaspiro [4.5]decan-2-one (INT-975) (5.0 g, 12.7 mmol) in THF (18 mL) was cooled to 0°C and treated with LDA solution (2M in THF/heptane/ether, 25.4 mL, 50.8 mmol). The resulting mixture was was allowed to warm up to RT over 30 min. The solution was then cooled to 0°C again and tert-butyl-bromoacetate (5.63 mL, 38.1 mmol) was added. The reaction mixture was stirred at RT for 16 h, quenched with water and extracted with DCM (3x). The combinded organic layers were dried over Na 2 S0 4 , filtered and concentrated inder reduced pressure. Purification of the residue by column chromatography on silica gel provided CIS-2-[8-dimethylamino-3-[(4- methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5] decan-l-yl] -acetic acid tert-butyl ester (4.4 g).

[0195] Step 2: cis- 2-(8-Dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l -yl)-acetic acid trifluoroacetic acid salt

[0196] CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-diazaspiro[4.5] decan-1- yl]-acetic acid tert-butyl ester (200 mg, 0.4 mmol) was dissolved in TFA (5 mL) and heated to reflux overnight. After cooling to RT all volatiles are removed in vacuo. The residue was taken up in THF (lmL) and added dropwise to diethyl ether (20 mL). The resulting precipitate was filtered off and dried under reduced pressure to give CIS-2-(8-dimethylamino-2-oxo-8-phenyl- 1 ,3-diazaspiro[4.5]decan- 1 -yl)-acetic acid; 2,2,2-trifluoro-acetic acid salt (INT-977) (119 mg) as a white solid. [M+H] + 332.2

[0197] Synthesis of INT-978: CIS-2-(8-Dimethylaniino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]de can-l-yl)- N,N-dimethyl-acetaniide

[0198] CIS-2-(8-Dimethylamino-2-oxo-8-phenyl- 1 ,3-diazaspiro[4.5]decan- 1 -yl)-acetic acid (INT-977) trifluoroacetic acid salt (119 mg, 0.35 mmol) was dissolved in DCM (5 niL). Triethylamine (0.21 niL, 1.6 mmol), dimethylamine (0.54 niL, 1.1 mmol) and T3P (0.63 mL, 1.1 mmol) were sequentially added. The reaction mixture was stirred at RT overnight, then diluted with 1 M aq. Na 2 C0 3 (5 mL). The aqueous layer was extracted with DCM (3x5mL), the combined organic layers were dried over Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to yield CIS-2-(8- dimethylamino-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan-l-yl)- N,N-dimethyl-acetamide (INT-978) (39 mg) as a white solid. [M+H] + 359.2

[0199] Synthesis of INT-982: CIS-8-Dimethylamino-l-[(l-methyl-cyclobutyl)-methyl]-8-pheny l-l,3- diazaspiro[4.5]decan-2-one

[0200] Step 1 : CIS-8-(dimethylamino)-3-(4-methoxybenzyl)-l-((l-methylcyclob utyl)methyl)-8-phenyl- l,3-diazaspiro[4.5]decan-2-one

[0201] A solution of NaOH (2.85 g, 71.2 mmol) in DMSO (25 mL) was stirred at RT for 10 min. CIS-8- Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diaz aspiro[4.5] decan-2-one (INT-975) (7.00 g, 17.8 mmol) was added and stirring was continued for 15 min. l-(Bromo-methyl)-l-methyl-cyclobutane (8.7 g, 53.4 mmol) was added at 0°C. The reaction mixture was heated to 60°C for 16 h. After cooling down to RT, water (100 mL) was added and the mixture was extracted with DCM (3x150 mL). The combined organic layers were washed with water (70 mL), brine (100 mL), dried over Na 2 S0 4 and concentrated under reduced pressure. Purification of the residueby column chromatography on silica gel provided CIS-8-(dimethylamino)-3-(4- methoxybenzyl)-l-((l-methylcyclobutyl)methyl)-8-phenyl-l,3-d iazaspiro[4.5]decan-2-one (6.5g) as a light yellow solid.

[0202] Step 2: CIS-8-Dimethylamino-l-[(l-methyl-cyclobutyl)-methyl]-8-pheny l-l,3- diazaspiro[4.5]decan-2-one [0203] To the solution of CIS-8-Dimethylamino-l-[(l-methyl-cyclobutyl)-methyl]-8-pheny l-l,3-diazaspiro [4.5]decan-2-one (6.66 g, 14.0 mmol) in DCM (65 niL) was added TFA (65 niL) and the resulting mixture was stirred at RT for 16 h. The reaction mixture was concentrated under reduced pressure. The residue was taken up in DCM (100 mL) and water (60 mL) and basified with 2M aq. NaOH to pH 10. The organic layer was separated and washed with brine (40 mL), dried over MgS0 4 , filtered and concentrated under reduced pressure. Crystallization of the residue from EtOAc provided CIS-8-Dimethylamino-l-[(l-methyl-cyclobutyl)-methyl]-8- phenyl-l,3-diazaspiro[4.5] decan-2-one (INT-982) (3.41 g) as an off-white solid. [M+H] + 356.3

[0204] Synthesis of INT-984: CIS-l-(Cyclobutyl-methyl)-8-(ethyl-methyl-amino)-8-phenyl-l, 3- diazaspiro[4.5]decan-2-one

[0205] Step 1: CIS-8-(dimethylamino)-l-isobutyl-3-(4-methoxybenzyl)-8-pheny l-l,3- diazaspiro[4.5]decan-2-one

[0206] In analogy to the method described for INT-951 step 1 CIS-8-Dimethylamino-3-[(4-methoxyphenyl)- methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (INT-975) was converted into CIS-8-(dimethylamino)-l- isobutyl-3-(4-methoxybenzyl)-8-phenyl-l,3-diazaspiro [4.5]decan-2-one.

[0207] Step2: CIS-l-(Cyclobutyl-methyl)-8-(ethyl-niethyl-aniino)-8-phenyl- l,3-diazaspiro[4.5]decan-2- one

[0208] In analogy to the method described for INT-982 step 2 CIS-8-(dimethylamino)-l-isobutyl-3-(4- methoxybenzyl)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one was converted into CIS-l-(Cyclobutyl-methyl)-8- (ethyl-methyl-amino)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (INT-984).

[0209] Synthesis of INT-986: CIS-l-(Cyclobutyl-methyl)-8-(ethyl-niethyl-aniino)-8-phenyl- l,3- diazaspiro[4.5]decan-2-one

INT-986

[0210] Step 1 : CIS-3-benzyl-l-(cyclobutylmethyl)-8-(methylamino)-8-phenyl-l ,3-diazaspiro[4.5] decan-2- one

[0211] N-Iodosuccinimide (3.1 lg, 13.92mmol) was added to the solution of CIS-l-(Cyclobutyl-methyl)-8- dimethylamino-8-phenyl-3-[phenyl-methyl]-l,3-diazaspiro[4.5] decan-2-one (INT-950) (4 g, 9.28 mmol) in a mixture of acetonitrile and THF (1 : 1 v/v, 80 mL) and the resulting mixture was stirred at RT for 16 h. The reaction mixture was basified with 2N aq. NaOH to pH~10 and the organic product was extracted with DCM (3x10 mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated in vacuo. The residue was stirred vigorously with a mixture of 10wt% aq. citric acid (5 mL) and DCM (10 mL) at RT for 10 min. The reaction mixture was basified with 5N aq. NaOH to pH~10 and extracted with DCM (3x10 mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated in vacuo to give 3.5g (crude) of CIS- 3-benzyl-l-(cyclobutylmethyl)-8-(methylamino)-8-phenyl-l,3-d iazaspiro[4.5]decan-2-one as semi solid (TLC system: 10% MeOH in DCM; R f : 0.60.).

[0212] Step 2: CIS-3-benzyl-l-(cyclobutylmethyl)-8-(ethyl(methyl)amino)-8-p henyl-l,3-diazaspiro

[4.5]decan-2-one

[0213] Sodium cyanoborohydride (1.56 g, 25.17 mmol, 3 equiv.) was added to the solution of CIS-3 -benzyl- 1- (cyclobutylmethyl)-8-(methylamino)-8-phenyl-l,3-diazaspiro[4 .5]decan-2-one (3.5 g, 8.39 mmol), acetaldehyde (738 mg, 16.78 mmol, 2 equiv.) and acetic acid (0.5 mL) in methanol (20 mL). The reaction mixture was stirred at RT for 3 h, then quenched with sat. aq. NaHC0 3 and the organic product was extracted with DCM (3x50 mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (230-400 mesh) (20-25% ethyl acetate in petroleum ether) yielded 2.3g (62%) of CIS-3-benzyl-l-(cyclobutylmethyl)-8-(ethyl(methyl)amino)-8-p henyl-l,3-diazaspiro [4.5]decan-2-one as a solid. (TLC system: 50% EtOAc in Pet. Ether; R f : 0.65).

[0214] Step 3: CIS-l-(Cyclobutyl-methyl)-8-(ethyl-methyl-amino)-8-phenyl-l, 3-diazaspiro [4.5] decani- one (INT-986) [0215] Sodium metal (1.18 g, 51.68 mmol, 10 equiv.) was added to liquid ammonia (~25 mL) at -78°C. The resulting mixture was stirred for lOmin at -78°C. A solution of CIS-3-benzyl-l-(cyclobutylmethyl)-8- (ethyl(methyl)amino)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (2.3 g, 5.16 mmol) in THF (25 mL) was added at -78 °C. The reaction mixture was stirred for 15min, then quenched with sat. aq. NH 4 C1, warmed to RT and stirred for lh. The organic product was extracted with DCM (3x50 mL). The combined organic layer was washed with water, brine and concentrated under reduced pressure to afford 1.30 g (72%) of CIS-1- (cyclobutylmethyl)-8-(ethyl(methyl)amino)-8-phenyl-l,3-diaza spiro[4.5]decan-2-one (INT-986) as an off-white solid. (TLC system: 10% MeOH in DCM R f : 0.15.). [M+H] + 356.3

[0216] Synthesis of INT-987: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-l,3- diazaspiro[4.5]decan-2-one

INT-952 INT-987

[0217] In analogy to the method as described for INT-982 step 2 CIS-l-(Cyclobutyl-methyl)-8- dimethylamino-8-phenyl-3-[(4-methoxyphenyl)-methyl]-l,3-diaz aspiro[4.5]decan-2-one (INT-952) was converted into CIS- 1 -(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl- 1 ,3-diazaspiro[4.5]decan-2-one (INT- 987).

[0218] Synthesis of INT-988: CIS-8-(dimethylaniino)-l-(2-(l-niethoxycyclobutyl)ethyl)-8-p henyl-l,3- diazaspiro[4.5]decan-2-one

INT-988

[0219] Step 1: CIS-8-(dimethylaniino)-l-[2-(l-niethoxycyclobutyl)ethyl]-3-[ (4-niethoxyphenyl)niethyl]-8- phenyl-l,3-diazaspiro [4.5] decan-2-one

[0220] Sodium hydroxide (78.06 mg, 4.0 equiv.) was suspended in DMSO (3.5 mL), stirred for 10 minutes, 8- (dimethylamino)-3-[(4-methoxyphenyl)methyl]-8-phenyl-l,3-dia zaspiro[4.5]decan-2-one (INT-975) (192.0 mg, 1.0 equiv.) was added, the reaction mixture was stirred for 5 min followed by addition of 2-(l- methoxycyclobutyl)ethyl 4-methylbenzenesulfonate (416.2 mg, 3.0 equiv.) in DMSO (1.5 mL). The resulting mixture was stirred overnight at 50°C. The reaction mixture was quenched with water and extracted with DCM (3x20 mL). The combined organic phases were washed with brine, dried over Na 2 S0 4 and concentrated under reduced pressure. The residue (283 mg yellow oil) was purified by column chromatography on silica gel (eluent DCM/EtOH 98/2 to 96/4) to give 8-(dimethylamino)-l-[2-(l-methoxycyclobutyl)ethyl]-3-[(4- methoxyphenyl)methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-on e 163 mg (66%).

[0221 ] Step 2: CIS-8-(dimethylamino)-l-(2-(l-methoxycyclobutyl)ethyl)-8-phe nyl-l,3-diazaspiro [4.5] decan-2-one (INT-988)

[0222] In analogy to the method described for INT-982 step 2 CIS-8-(dimethylamino)-l-[2-(l- methoxycyclobutyl)ethyl]-3-[(4-methoxyphenyl)methyl]-8-pheny l-l,3-diazaspiro[4.5]decan-2-one was converted into CIS-8-(dimethylamino)-l-(2-(l-methoxycyclobutyl)ethyl)-8-phe nyl-l,3-diazaspiro[4.5] decan-2- one (INT-988). Mass: m/z 386.3 (M+H) + .

[0224] Step 1 and step 2: ethyl-(8-phenyl-l,4-dioxa-spiro[4.5]dec-8-yl)-amine hydrochloride (INT-1004)

A mixture of l,4-dioxa-spiro[4.5]decan-8-one (25.0 g, 160.25 mmol, 1.0 eq.) and 2M solution of EtNH 2 in THF (200 ml, 2.5 eq. 400.64 mmol) in EtOH (30 ml) was stirred at RT for 48h. The reaction mixture was concentrated under argon atmosphere and the residue was diluted with ether (60 ml), and a freshly prepared PhLi solution was added [prepared by addition of 2.5M n-BuLi in THF (70.5 ml, 1.1 eq. 176.27 mmol) to a solution of bromobenzene (27.675g, 1.1 eq. 176.275 mmol) in ether (100 ml) at -30 °C and stirred at RT for lh). The reaction mixture was stirred at RT for 1.5h, quenched with saturated NH 4 C1 solution (100 ml) at 0°C and extracted with ethyl acetate (2 x 750 ml). The combined organic layer was washed with water (3 x 350 ml), brine (300 ml), dried over Na 2 S0 4 and concentrated under reduced pressure. The resulting residue was dissolved in ethyl methyl ketone (100 ml) and trimethylsilyl chloride (37.5 ml) was added at 0°C. The resulting mixture was stirred at RT for 16h. The precipitated solid was filtered off and washed with acetone followed by THF to get ethyl-(8-phenyl-l,4-dioxa-spiro[4.5]dec-8-yl)-amine hydrochloride as an off white solid. This reaction was done in 2 batches of 25 g scale and the yield is given for 2 combined batches. Yield: 18 % (17.1 g, 57.575 mmol). LCMS: m/z 262.2 (M+H) + .

[0225] Step 3: 4-ethylamino-4-phenyl-cyclohexanone (INT-1005)

[0226] To a solution of ethyl-(8-phenyl-l,4-dioxa-spiro[4.5]dec-8-yl)-amine hydrochloride (10.1 g, 34.0 mmol, 1 eq.) in water (37.5 ml) was added cone. aq. HC1 (62.5 ml) at 0°C and the resulting mixture was stirred at RT for 16 h. The reaction mixture was basified with aq. NaOH (pH ~14) at 0°C and extracted with DCM (2x750 ml). Organic layer was washed with water (400 ml), brine (400 ml), dried over Na 2 S0 4 and concentrated under reduced pressure to yield 4-ethylamino-4-phenyl-cyclohexanone which was used in the next step without further purification. This reaction was carried out in another batch of 15.1 g scale and the yield is given for 2 combined batches. Yield: 92 % (17.0 g, 78.34 mmol).

[0227] Step 4: cis and trans mixture of 8-ethylamino-8-phenyl-l,3-diaza-spiro[4.5]decane-2,4-dione (INT- 1006 and INT-1007)

[0228] To a solution of 4-ethylamino-4-phenyl-cyclohexanone (17 g, 78.341 mmol, 1.0 eq.) in EtOH (250 ml) and water (200 ml) was added (NH 4 ) 2 C0 3 (18.8 g, 195.85 mmol, 2.5 eq.) and the reaction mixture was stirred at RT for 15 min. KCN (5.09 g, 78.341 mmol, 1.0 eq.) was added and stirring was continued at 60 °C for 18 h. The reaction mixture was cooled down to RT. The precipitated solid was filtered off, washed with water (250 ml), EtOH (300 ml), hexane (200 ml) and dried under reduced pressure to yield CM and trans mixture of 8- ethylamino-8-phenyl-l,3-diaza-spiro[4.5]decane-2,4-dione (13.0 g, 45.29 mmol, 58%) as a white solid. Yield: 58 % (13 g, 45.296 mmol). LC-MS: m/z [M+l] + = 288.2.

[0229] Step 5: CIS-8-ethylamino-8-phenyl-l,3-diaza-spiro[4.5]decane-2,4-dio ne (INT-1006)

[0230] To a solution of cis and trans mixture of 8-ethylamino-8-phenyl-l,3-diaza-spiro[4.5]decane-2,4-dione (12g) in MeOH-DCM (1 : 1, 960 ml) was added a solution of L-tartaric acid in MeOH (25 ml) and the resulting mixture stirred at RT for 2 h and then kept in refrigerator for 16 h. The precipitated solid was filtered off and washed with MeOH-DCM (1 :5, 50 ml) to get tartrate salt of 8-ethylamino-8-phenyl-l,3-diaza-spiro[4.5]decane- 2,4-dione (7.5 g) as a white solid. To this solid sat. aq. NaHC0 3 was added (pH~8) and the resulting mixture was extracted with 25% MeOH-DCM (2 x 800 ml). Combined organic layer was washed with water (300 ml), brine (300 ml), dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The residue was triturated with 20 % DCM-hexane and the resulting solid was dried under reduced pressure to afford CIS-8- ethylamino-8-phenyl-l,3-diaza-spiro[4.5]decane-2,4-dione as white solid. This step was done in 2 batches (12 g & 2.4 g) and the yield is given for 2 combined batches. Yield: 31.2 % (5.0 g, 17.421 mmol). LC-MS: m/z [M+l] + = 288.0.

[0231] Step 6: CIS-8-ethylamino-8-phenyl-l,3-diaza-spiro[4.5]decan-2-one (INT-1008)

[0232] To a slurry of LiAlH 4 (793 mg, 20.91 mmol, 3.0 eq.) in THF (15 ml) was added a suspension of CIS-8- ethylamino-8-phenyl-l,3-diaza-spiro[4.5]decane-2,4-dione (2.0 g, 6.97 mmol, 1.0 eq.) in THF (60 ml) at 0°C and the reaction mixture was heated to 65°C for 16 h. The reaction mixture was cooled to 0°C, quenched with sat. aq. Na 2 S0 4 (20 ml), stirred at RT for lh and filtered through celite pad. The residue was washed with 15% MeOH-DCM (500 ml). The combined filtrate was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure to give crude product which was triturated with 15% DCM-Hexane to afford CIS-8-ethylamino-8- phenyl-l,3-diaza-spiro[4.5]decan-2-one (INT-1008) (1.6 g, 5.86 mmol, 84%) as a white solid. Yield: 84 % (1.6 g, 5.86 mmol). LC-MS: m/z [M+l] + = 274.2.

[0233] Synthesis of INT-1010: CIS-8-(dimethylamino)-8-phenyl-3-(prop-2-yn-l-yl)-l,3- diazaspiro[4.5]decan-2-one

INT-976 INT-1010

[0234] To a solution of CIS-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]decan-2-on e (INT-976) (5.0 g, 18.31 mmol, 1.0 eq.) in dry THF (500 ml) was added t-BuOK (3.07 g, 27.46 mmol, 1.5 eq.) and the reaction mixture was stirred at RT for 15 min. 3-Bromo-propyne (3.24 g, 13.18 mmol, 1.2 eq., 80% in toluene) was added and stirring was continued at RT for 18 h. The reaction mixture was poured into ice-water and extracted with DCM (800 ml). The organic layer was dried over Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by column chromatography (neutral alumina; 1% MeOH/Hexane) to yield CIS-8-(dimethylamino)- 8-phenyl-3-(prop-2-yn-l-yl)-l,3-diazaspiro[4.5]decan-2-one (INT-1010) (3.0 g, 9.64 mmol, 52%) as an off white solid. Yield: 52 % (3.0 g, 9.64 mmol). Mass: m/z 312.3 (M+H) + .

[0235] Synthesis of INT-1011: ethyl CIS-2-(4-((8-(dimethylamino)-2-oxo-8-phenyl-l,3- diazaspiro[4.5]decan-3-yl)methyl)-lH-l,2,3-triazol-l-yl)acet ate

INT-1011

INT-1010 [0236] To a suspension of CIS-8-dimethylamino-8-phenyl-3-prop-2-ynyl-l,3-diaza-spiro[4 .5]decan-2-one (INT-1010) (1.0 g, 3.21 mmol, 1.0 eq.) and azidoacetic acid ethyl ester (0.37 ml, 3.21 mmol, 1.0 eq.) in t- BuOH:H 2 0 (1 : 1, 18 ml) and 1M aq. CuS0 4 (0.19 ml) was added sodium ascorbate (191 mg, 0.963 mmol, 0.3 eq.). The reaction mixturewas stirred at RT for 18 h, then quenched with water and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel neutralized with TEA; 10% MeOH/DCM) to yield ethyl CIS-2-(4-((8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4 .5]decan-3- yl)methyl)-lH-l,2,3-triazol-l-yl)acetate (INT-1011) (1.0 g, 2.27 mmol, 70%) as an off white solid. Yield: 70 % (1.0 g, 2.27 mmol). Mass: m/z 441.4 (M+H) + .

[0237] Synthesis of INT-1012: methyl CIS-2-(4-((8-(dimethylamino)-l-((l-hydroxycyclobutyl)methyl) -2- oxo-8-phenyl-l,3-diazaspiro[4.5]decan-3-yl)methyl)-lH-l,2,3- triazol-l-yl)acetate

INT-1012

[0238] To a solution of CIS-2-(4-((8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4 .5]decan-3-yl)methyl)- lH-l,2,3-triazol-l-yl)acetate (INT-1011) (2.0 g, 4.54 mmol, 1.0 eq.) in DMSO (30 ml) was added NaOH (727 mg, 18.18 mmol, 4.0 eq.) at RT and the reaction mixture was heated to 70 °C for 30 min. The resulting mixture was cooled down to RT and a solution of l-oxa-spiro[2.3]hexane (953 mg, 11.35 mmol, 2.5 eq.) in DMSO (5 ml) was added. The reaction mixture was stirred at 50 °C for 16h, then cooled down to RT and diluted with MeOH (40 ml). Thionyl chloride (1.32 ml, 18.18 mmol, 4.0 eq.) was added at 0°C and stirring was continued at RT for 16 h. The reaction mixture was concentrated under reduced pressure, then diluted with DCM (300 ml), sat. NaHC0 3 solution (200 ml) was added slowly at 0°C and the resulting mixture was stirred at RT for 1 h. The organic layer was separated, dried over Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel; 4% MeOH/DCM) to yield methyl CIS-2-(4-((8- (dimethylamino)-l-((l-hydroxycyclobutyl)methyl)-2-oxo-8-phen yl-l,3-diazaspiro[4.5]decan-3-yl)methyl)-lH- l,2,3-triazol-l-yl)acetate (INT-1012) (950 mg, 1.86 mmol, 41%) as brown sticky solid. After purification, isolated compound was -60% pure and was used in the next steps without further purification. Yield: 41% (950 mg, 1.86 mmol). Mass: m/z 509.4 (M+H) + .

[0239] Synthesis of INT-1021: CIS-l-(2-methoxybenzyl)-8-(methylamino)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one

INT-1021

[0240] Step 1: CIS-3-benzyl-8-(dimethylamino)-l-(2-methoxybenzyl)-8-phenyl- l,3-diazaspiro[4.5]decan- 2-one.

[0241] NaH (0.15 g, 3.30 mmol) was added to a solution of CIS-3-benzyl-8-(dimethylamino)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one (INT-963) (0.4 g, 1.10 mmol) in DMF (8 mL) at 0°C over 15min. The reaction mixture was stirred for 5 min, l-(bromomethyl)-2-methoxybenzene (0.33 g, 1.65 mmol) was added portionwise, ice bath was removed and stirring was continued at RT for 3 h. The resulting mixture was quenched with cold water (precipitation observed), the precipitate was filtered off and dried under reduced pressure to give 450mg (84%) of CIS-3-benzyl-8-(dimethylamino)-l-(2-methoxybenzyl)-8-phenyl- l,3-diazaspiro[4.5]decan-2-one. The crude material was used in the next step without further purification. (TLC system : 10% MeOH in DCM; Rf: 0.7).

[0242] Step 2: CIS-8-(dimethylamino)-l-(2-methoxybenzyl)-8-phenyl-l,3-diaza spiro [4.5] decan-2-one (INT-1021).

[0243] CIS-3-benzyl-8-(dimethylamino)-l-(2-methoxybenzyl)-8-phenyl- l,3-diazaspiro[4.5]decan-2-one (0.45 g, 0.93 mmol) in THF (lOmL) was added to sodium metal (0.21g, 9.316 mmol) in liquid ammonia (10 mL) at - 78 °C . The reaction mixture was stirred at -78 °C for 15min, quenched with sat. aq. NH 4 C1 and the organic product was extracted with EtOAc (2x20mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated in vacuo. Purification of the residue by preparative TLC using 2% methanol in DCM as eluent gave 170 mg of solid material, which was washed with pentane to give 150 mg (40%) of CIS-8- (dimethylamino)-l-(2-methoxybenzyl)-8-phenyl-l,3-diazaspiro[ 4.5]decan-2-one (INT-1021) as an off white solid. (TLC system: 10% MeOH in DCM; Rf: 0.3). ¾ NMR (DMSO-d6): δ 7.34-7.18 (m, 7H), 6.96(d, 1H), 6.90 (t, 1H), 6.33 (s, 1H), 4.19 (s, 2H), 3.83 (s, 3H), 3.20 (s, 2H), 2.59-2.55 (m, 2H), 1.98-1.90 (m, 8H), 1.37- 1.30 (m, 4H). Mass: m/z 394.3 [M+H] +

[0244] Synthesis of INT-1022: CIS-8-(dimethylamino)-l-(2-methoxybenzyl)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one.

INT-1021 INT-1022

[0245] In analogy to the method described for INT-986 (step 1) CIS-8-(dimethylamino)-l-(2-methoxybenzyl)- 8-phenyl-l,3-diazaspiro[4.5]decan-2-one was reacted with N-iodosuccinimide to be converted into CIS-l-(2- methoxybenzyl)-8-(methylamino)-8-phenyl-l,3-diazaspiro[4.5]d ecan-2-one (INT-1022). ¾ NMR (DMSO-d6): δ 7.39 (d, 2H), 7.29 (t, 2H), 7.23-7.15 (m, 3H), 6.96 (d, IH), 6.89 (t, IH), 6.36 (s, IH), 4.21 (s, 2H), 3.84 (s, 3H), 3.25 (s, 2H), 2.13 (m, IH), 2.03-1.98 (m, 2H), 1.82-1.80 (m, 5H), 1.64-1.58 (m, 2H), 1.34-1.31 (m, 2H). Mass: m/z 380.2 [M+H] +

[0246] Synthesis of INT_1023: CIS-8-(dimethylamino)-3-(4-methoxybenzyl)-8-phenyl-l-tosyl-l ,3- diazaspiro[4.5]decan-2-one

INT-795 (step 1) INT-1023

[0247] Step 1: synthesis of CIS-l-amino-4-(diniethylaniino)-4-phenylcyclohexanecarboxyli c acid

[0248] Ba(OH) 2 x8H 2 0 (36.87 g, 117.07 mmol) was added to the solution of CIS-8-(dimethylamino)-8-phenyl- l,3-diazaspiro[4.5]decane-2,4-dione (12 g, 41.81 mmol) in water (450 mL) at RT. The reaction mixture was stirred at 150°C for 8 h. The resulting mixture was cooled down to RT and (NH 4 ) 2 C0 3 (22.97 g, 146.34 mmol) was added. The reaction mixture was stirred at 65°C for 8 h, then filtered through celite and the precipitate was washed with water. The combined filtrate was concentrated in vacuo to afford 6.5g of crude CIS-l-amino-4- (dimethylamino)-4-phenylcyclohexanecarboxylic acid. The product was used in the next step without further purification. (TLC system: 10% MeOH in DCM; Rf: 0.1).

[0249] Step 2: synthesis of CIS-l-(tert-butoxycarbonylamino)-4-(diniethylaniino)-4- phenylcyclohexanecarboxylic acid (INT-1023)

[0250] K 2 C0 3 (4.74 g, 34.34 mmol) was added to a solution of CIS-l-amino-4-(dimethylamino)-4- phenylcyclohexanecarboxylic acid (3.0 g, 11.4 mmol) in water-THF (40 mL, 1 : 1 v/v) at RT. After 15min, B0C 2 O (3.24 g, 14.85 mmol) was added and the reaction mixture was stirred at RT for 16 h. The resulting mixture was diluted with water, acidified with glacial acetic acid (pH ~4) and extracted with 10% MeOH in DCM (2xl50mL). The organic layer was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by flash column chromatography (neutral alumina, 10% methanol in DCM as eluent) and further purified by washing with pentane to give l .Og (24%) of CIS-l-(tert-butoxycarbonylamino)-4- (dimethylamino)-4-phenylcyclohexanecarboxylic acid (INT-1023) as a white solid. (TLC system: 10% MeOH in DCM; Rf: 0.10). Mass: m/z 361.2 (M-H)\

[0251] Synthesis of INT-1028: CIS-8-(dimethylamino)-8-phenyl-l-tosyl-l,3-diazaspiro[4.5]de can-2-one.

SC 2147 INT-1028

[0252] In analogy to the method described for INT-982 step 2 CIS-8-(dimethylamino)-3-(4-methoxybenzyl)-8- phenyl-l-tosyl-l,3-diazaspiro[4.5]decan-2-one (SC-2147) was treated with TFA to be converted into CIS-8- (dimethylamino)- 8 -phenyl- 1 -tosyl- 1 ,3-diazaspiro[4.5]decan-2-one (INT-1028).

[0253] Synthesis of INT-1026: CIS-8-(methyl((tetrahydrofuran-3-yl)niethyl)aniino)-8-phenyl -l,3- diazaspiro[4.5]decan-2-one

INT-1026

[0254] Step 1: 2-methyl-N-(l,4-dioxaspiro[4.5]decan-8-ylidene)propane-2-sul finaniide

[0255] Titanium ethoxide (58.45 g, 256.4mmol) was added to a solution of l,4-dioxaspiro[4.5]decan-8-one (20 g, 128.20 mmol) and 2-methylpropane-2-sulfinamide (15.5 lg, 128.20 mmol) in THF (200 mL) at RT and the reaction mixture was stirred at RT for 18h. The reaction mixture was cooled to 0°C and quenched by dropwise addition of sat. aq. NaHC0 3 (500 mL) over a period of 30 min. The organic product was extracted with EtOAc (3x100 mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated in vacuo to afford 10 g (crude) of 2-methyl-N-(l,4-dioxaspiro[4.5]decan-8-ylidene)propane-2-sul finamide as a white solid (TLC system: 30% Ethyl acetate in hexane; Rf: 0.30).

[0256] Step 2: 2-methyl-N-(8-phenyl-l,4-dioxaspiro[4.5]decan-8-yl)propane-2 -sulfinamide

[0257] Phenylmagnesium bromide (1M in THF, 116 mL, 116 mmol) was added dropwise to a solution of 2- methyl-N-(l,4-dioxaspiro[4.5]decan-8-ylidene)propane-2-sulfi namide (10 g, 38.61 mmol) in THF (500 mL) at - 10°C under argon atmosphere. The reaction mixture was stirred for 2h at -10°C to 0°C. The reaction completion was monitored by TLC. The reaction mixture was quenched with sat. aq. NH 4 C1 (50mL) at 0°C and the organic product was extracted with EtOAc (3x100 mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated in vacuo. The residue was purified by column chromatography (silica gel 230-400 mesh; 40-60% ethyl acetate in hexane) to yield 6.0 g (46%) of 2-methyl-N-(8-phenyl-l,4-dioxaspiro[4.5]decan- 8-yl)propane-2-sulfinamide as a liquid (TLC system: 70% Ethyl acetate in hexane; Rf: 0.30).

[0258] Step 3: 8-phenyl-l,4-dioxaspiro[4.5]decan-8-amine hydrochloride

[0259] 2N solution of HC1 in diethyl ether (17.80 mL, 35.60 mmol) was added to a solution of 2-methyl-N-(8- phenyl-l,4-dioxaspiro[4.5]decan-8-yl)propane-2-sulfinamide (6.0g, 17.80 mmol) in DCM (60 mL) at 0°C. The reaction mixture was stirred at RT for 2 h. The reaction mixture was concentrated in vacuo. The residue was washed with diethyl ether to yield 3g (crude) of 8-phenyl-l,4-dioxaspiro[4.5]decan-8-amine hydrochloride as a brown solid (TLC system: 5% MeOH in DCM; Rf: 0.10).

[0260] Step 4: 8-phenyl-N-((tetrahydrofuran-3-yl)methyl)-l,4-dioxaspiro[4.5 ]decan-8-amine

[0261] Sodium cyanoborohydride (2.17 g, 33.45 mmol) was added to a solution of 8-phenyl-l,4- dioxaspiro[4.5]decan-8-amine hydrochloride (3.0 g, 11.15 mmol) and tetrahydrofuran-3-carbaldehyde (4.46 mL, 22.30 mmol) and acetic acid (0.05 mL) in methanol (30 mL) at 0°C. The reaction mixture was stirred at RT for 16h. The reaction mixture was concentrated in vacuo at 30°C and to the residue sat. aq. NaHC0 3 was added. The organic product was extracted with DCM (3x30 mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and solvent was concentrated under reduced pressure to get 3g (crude) of 8-phenyl-N-((tetrahydrofuran- 3-yl)methyl)-l,4-dioxaspiro[4.5]decan-8-amine as a semi-solid (TLC system: 10% MeOH in DCM; Rf: 0.22).

[0262] Step 5: N-methyl-8-phenyl-N-((tetrahydrofuran-3-yl)methyl)-l,4-dioxa spiro[4.5]decan-8-amine)

[0263] Sodium cyanoborohydride (1.76 g, 28.39 mmol) was added to a solution of 8-phenyl-N- ((tetrahydrofuran-3-yl)methyl)-l,4-dioxaspiro[4.5]decan-8-am ine (3.0 g, 9.46 mmol), 37% formaldehyde in water (7.70 mL, 94.60 mmol) and acetic acid (0.05 mL) in methanol (30 mL) at 0°C. The reaction mixture was stirred at RT for 16 h. The reaction mixture was concentrated in vacuo and to the residue sat. aq. NaHC0 3 was added. The organic product was extracted with DCM (3x30 mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and solvent was concentrated under reduced pressure. The resulting residue was purified by column chromatography (silica gel 230-400 mesh; 5-6% MeOH in DCM) to yield 2.50 g (83%) of N-methyl-8- phenyl-N-((tetrahydrofuran-3-yl)methyl)-l,4-dioxaspiro[4.5]d ecan-8-amine as a semi solid (TLC system: 10% MeOH in DCM; Rf: 0.25).

[0264] Step 6: 4-(methyl((tetrahydrofuran-3-yl)methyl)amino)-4-phenylcycloh exanone

[0265] 5% sulfuric acid in water (25 mL) was added to N-methyl-8-phenyl-N-((tetrahydrofuran-3-yl)methyl)- l,4-dioxaspiro[4.5]decan-8-amine (2.50 g, 7.55 mmol) at 0°C and the resulting mixture was stirred at RT for 24 h. The reaction mixture was quenched with sat. aq. NaHC0 3 and the organic product was extracted with DCM (2x50 mL). The combined organic layers were dried over anhydrous Na 2 S0 4 and concentrated in vacuo to afford 2.0g (crude) of 4-(methyl((tetrahydrofuran-3-yl)methyl)amino)-4-phenylcycloh exanone as a thick liquid (TLC system: 10% MeOH in DCM, Rf: 0.20).

[0266] Step 7: 8-(methyl((tetrahydrofuran-3-yl)methyl)amino)-8-phenyl-l,3-d iazaspiro[4.5]decane-2,4- dione

[0267] 4-(methyl((tetrahydrofuran-3-yl)methyl)amino)-4-phenylcycloh exanone (1.50 g, 5.22 mmol) was suspended in 30 mL of EtOH:H 2 0 (1 : 1 v/v) at RT under argon atmosphere. (NH 4 ) 2 C0 3 (1.9 g, 13.05 mmol) and KCN (0.34 g, 5.22 mmol) were added. The reaction mixture was heated to 70°C for 16 h. The reaction mixture was diluted with ice -water and the organic product was extracted with DCM (2x50 mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated in vacuo to give 1.0 g (crude) of 8- (methyl((tetrahydrofuran-3-yl)methyl)amino)-8-phenyl-l,3-dia zaspiro[4.5]decane-2,4-dione as a solid (TLC system: 70% Ethyl acetate in hexane; Rf: 0.18).

[0268] Step 8: CIS-8-(methyl((tetrahydrofuran-3-yl)methyl)amino)-8-phenyl-l ,3-diazaspiro[4.5]decane- 2,4-dione

[0269] Diastereomeric mixture of 8-(methyl((tetrahydrofuran-3-yl)methyl)amino)-8-phenyl-l,3- diazaspiro[4.5]decane-2,4-dione (1.0 g) was separated by reverse phase preparative HPLC to afford 400 mg of isomer 1 (CIS-8-(methyl((tetrahydrofuran-3-yl)methyl)amino)-8-phenyl- l,3-diazaspiro[4.5]decane-2,4-dione) and 60 mg of isomer 2 (TRANS-8-(methyl((tetrahydrofuran-3-yl)methyl)amino)-8-pheny l-l,3- diazaspiro[4.5]decane-2,4-dione) and 300 mg of mixture of both isomers. Reverse phase preparative HPLC conditions: mobile phase: lOmM ammonium bicarbonate in H 2 0/acetonitrile, column: X-BRJDGE-C18 (150*30), 5μηι, gradient (T/B%): 0/35, 8/55, 8.1/98, 10/98, 10.1/35, 13/35, flow rate: 25 ml/min, diluent: mobile phase+ THF.

[0270] Step 9: CIS-8-(methyl((tetrahydrofuran-3-yl)methyl)amino)-8-phenyl-l ,3-diazaspiro[4.5]decan-2- one (INT-1026)

[0271] LiAlH 4 (1M in THF) (4.48 mL, 4.48 mmol) was added to a solution of CIS-8-(methyl((tetrahydrofuran- 3-yl)methyl)amino)-8-phenyl-l,3-diazaspiro[4.5]decane-2,4-di one (isomer-1) (0.4 g, 1.12 mmol) in THF:Et 2 0 (2: 1 v/v, 15 mL) at 0°C under argon atmosphere .The reaction mixture was stirred at 65°C for 16 h. The mixture was cooled to 0°C, quenched with sat. aq. Na 2 S0 4 (1000 niL) and filtered through celite pad. The filtrate was dried over anhydrous Na 2 S0 4 and concentrated in vacuo. The residue was purified by column chromatography (silica gel 230-400 mesh; 5-6% MeOH in DCM) to yield 0.3g (78%) of CIS-8-(methyl((tetrahydrofuran-3- yl)methyl)amino)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (INT-1026) as an off white solid. (TLC system: 10% MeOH in DCM, Rf: 0.2). LC-MS: m/z [M+l] + = 344.2.

[0272] Synthesis of INT-1031: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-fluorophenyl) -l,3- diazaspiro[4.5]decan-2-one

INT-974 INT-1031

[0273 ] Step 1 : CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-fluorophenyl) -3-[(4-methoxyphenyl)- methyl]-l,3-diazaspiro[4.5]decan-2-one

[0274] In analogy to the method described for INT-952 CIS-8-dimethylamino-8-(3-fluorophenyl)-3-[(4- methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan-2-one (INT-974) was converted into CIS-l-(cyclobutyl- methyl)-8-dimethylamino-8-(3-fluorophenyl)-3-[(4-methoxyphen yl)-methyl]-l,3-diazaspiro[4.5]decan-2-one.

[0275] Step 2: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-fluorophenyl) -l,3-diazaspiro[4.5]decan- 2-one

[0276] In analogy to the method described for INT-982 step 2 l-(cyclobutyl-methyl)-8-dimethylamino-8-(3- fluorophenyl)-3-[(4-methoxyphenyl)-methyl]-l,3-diazaspiro[4. 5]decan-2-one was converted into l-(cyclobutyl- methyl)-8-dimethylamino-8-(3-fluorophenyl)-l,3-diazaspiro[4. 5]decan-2-one (INT-1031).

[0277]

[0278] Synthesis of INT-1037: 8-(dimethylaniino)-2-oxo-l,3-diazaspiro[4.5]decane-8-carboni trile

INT-1037

[0279] Step 1: 9,12-dioxa-2,4-diazadispiro[4.2.4 A {8}.2 A {5}]tetradecan-3-one

[0280] Lithiumaluminiumhydride (2.2 equiv., 292 mmol) was suspended in THF (400 mL) and the suspension was cooled to 0°C. 8-(Dimethylamino)-8-(m-tolyl)-l,3-diazaspiro[4.5]decan-2-one (B, 75 mg, 0,261 mmol) (step 1 of INT-965) was added portionwise at 0°C. The reaction mixture was stirred 1.5 h at 0°C, then overnight at RT and then 2 h at 40°C. The reaction mixture was cooled down to 0°C, quenched carefully with sat. aq. Na 2 S0 4 , EtOAc (400 mL) was added and the resulting mixture was stirred for 2 h and then left without stirring for 2h at RT. The precipitate was filtered off and washed with EtOAc and MeOH. The resulting solid residue was suspended in methanol and stirred at RT overnight. The precipitate was filtered off and disposed. The filtrate was concentrated under reduced pressure, the residue was suspended thoroughly in water (50 mL) at 40 °C, the precipitate was filtered off and dried under reduced pressure to yield 9,12-dioxa-2,4- diazadispiro[4.2.4 A {8} .2 A {5}]tetradecan-3-one (11.4 g, 41%). Mass: m/z 213.2 (M+H) + .

[0281] Step 2: l,3-diazaspiro[4.5]decane-2,8-dione

[0282] In analogy to the method described for INT-1003 step 3 9, 12-dioxa-2,4- diazadispiro[4.2.4 A {8} .2 A {5}]tetradecan-3-one was treated with cone. aq. HC1 to be converted into 1,3- diazaspiro[4.5]decane-2,8-dione. Mass: m/z 169.1 (M+H) + .

[0283] Step 3: 8-(dimethylamino)-2-oxo-l,3-diazaspiro[4.5]decane-8-carbonit rile (INT-1037)

[0284] In analogy to the method described for INT-965 step 1 l,3-diazaspiro[4.5]decane-2,8-dione was treated with dimethyl amine and potassium cyanide to be converted into 8-(dimethylamino)-2-oxo-l,3- diazaspiro[4.5]decane-8-carbonitrile (INT-1037). Mass: m/z 223.2 (M+H) + .

[0285] Synthesis of INT-1038: CIS-8-(dimethylamino)-8-(m-tolyl)-l,3-diazaspiro[4.5]decan-2 -one

INT-1038

[0286] To the suspension of 8-(dimethylamino)-2-oxo-l,3-diazaspiro[4.5]decane-8-carbonit rile (200 mg, 0.90 mmol) in THF (4 mL) at RT was added dropwise 1M bromo(m-tolyl)magnesium in THF (4 equiv., 3.6 mmol, 3.6 mL) and the reaction mixture was stirred for 1 h at RT. Additional portion of 1M bromo(m-tolyl)magnesium in THF (1 equiv., 0.8 mL) was added. The reaction mixture was stirred at RT overnight, then quenched with methanol/water. Solid NH 4 C1 and DCM were added to the resulting mixture and the precipitate was filtered off. The organic phase of the filtrate was separated and the aqueous phase was extracted with DCM (3x). The combined organic phases were dried over anhydr. Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (DCM/MeOH, 100/0 to 65/35) to yield CIS-8- (dimethylamino)-8-(m-tolyl)-l,3-diazaspiro[4.5]decan-2-one (INT-1038) (81 mg, 31%). Mass: m/z 288.2 (M+H) + .

[0287] Synthesis of INT-1064: CIS-l-acetyl-8-(dimethylaniino)-8-phenyl-l,3-diazaspiro[4.5] decan-2-one

[0288] Step 1: CIS-l-acetyl-8-(dimethylamino)-3-(4-methoxybenzyl)-8-phenyl- l,3-diazaspiro[4.5]decan- 2-one.

[0289] To a solution of CIS-8-dimethylamino-3-(4-methoxy-benzyl)-8-plienyl-l,3-diaza -spiro[4.5]decan-2-one (INT-975) (19.5 g, 49.6 mmol, 1.0 eq.) in THF (180 ml) was added 2.5M solution of n-BuLi in hexane (39.7 ml, 99.23 mmol, 2.0 eq.) at 0 °C and the resulting mixture was stirred for lh. A solution of acetyl chloride (7.7 g, 99.23 mmol, 2.0 eq.) in THF (20 ml) was added dropwise at 0 °C. The cooling bath was removed, the reaction mixture was stirred at RT for 16h, then cooled down to 0°C again, quenched with water and extracted with ethyl acetate (2x200 ml). The combined organic extracts were washed with brine (250 ml), dried over Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel; 30% EtOAc/Hexane) to yield CIS-l-acetyl-8-dimethylamino-3-(4-methoxy-benzyl)-8-phenyl-l ,3-diaza- spiro[4.5]decan-2-one (6.1g, 14.02 mmol, 28%) as a light yellow sticky solid. Mass: m/z 436.3 [M+H] +

[0290] Step 2: CIS-l-acetyl-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]d ecan-2-one (INT-1064).

[0291] To a solution of CIS-l-acetyl-8-dimethylamino-3-(4-methoxy-benzyl)-8-phenyl-l ,3-diaza- spiro[4.5]decan-2-one (5.0 g, 11.5 mmol, 1.0 eq.) in acetonitrile (60 ml) was added a solution cerium(IV) ammonium nitrate (18.98 g, 34.5 mmol, 3.0 eq.) in water (60 ml) at 0 °C and the reaction mixture was stirred at RT for 2 h. The reaction mixture was quenched with aq. NaHC(¾ solution (50 ml) and extracted with ethyl acetate (2x100 ml). The combined organic layer was washed with brine (2 x 100 ml), dried over Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel neutralized with TEA; 2/3 v/v EtOAc/Hexane) to yield CIS-l-acetyl-8-dimethylamino-8-phenyl-l,3-diaza-spiro[4.5]de can- 2-one (INT-1064) as an off white solid. Yield: 61 % (4.9 g, 15.55 mmol). : HNMR (DMSO-d6, 400 MHz), δ (ppm) = 7.57 (s, 1H), 7.33-7.23 (m, 5H), 3.21 (s, 2H), 3.03 (t, 2H, J = 12.78 Hz), 2.60 (d, 2H, J = 13.32 Hz), 2.32 (s, 3H), 1.89 (s, 6H), 1.37-1.32 (m, 4H). Mass: m/z 316.2 [M+H] +

[0292] Synthesis of INT-1059: TRANS-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]decan-2- one

INT-1059

[0293] Step 1: TRANS-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]decane-2 ,4-dione [0294] To a stirred solution of 4-dimethylamino-4-phenyl-cyclohexanone (250.0 g, 1.15 mol, 1.0 eq.) in EtOH (2.5 L) and water (2.1 L) was added (NH 4 ) 2 C0 3 (276.2 g, 2.87 mol, 2.5 eq.) and the reaction mixture was stirred at RT for 15 min. KCN (74.92 g, 1.15 mol, 1.0 eq.) was added. The reaction mixture was stirred at 60°C for 18h and then filtered in hot condition to get white solid which was washed with water (2.5 L), ethanol (1 L) and hexane (2.5 L). The resulting solid was dried under reduced pressure to get CIS-8-dimethylamino-8-phenyl-l,3- diaza-spiro[4.5]decane-2,4-dione (223 g, 0.776 mol, 65%) as a white solid. The filtrate was collected from multiple batches (-450 g) which contained a mixture of cis and trans isomers. The filtrate was concentrated under reduced pressure and solid obtained was filtered and washed with water (1 L) and hexane (1 L). Solid material was dried under reduced pressure to get -100 g of a mixture of cis and trans (major) isomers. Crude material was partially dissolved in hot MeOH (600 mL) and cooled to RT, filtered through sintered funnel, washed with MeOH (200 mL) followed by ether (150 mL) and dried to get TRANS-8-dimethylamino-8-phenyl- l,3-diaza-spiro[4.5]decane-2,4-dione (50 g, 0.174 mmol,—9-10%).

[0295] Step 2: TRANS-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]decan-2- one (INT-1059)

[0296] In analogy to the method described for INT-976 step 2 TRANS-8-dimethylamino-8-phenyl-l,3-diaza- spiro[4.5]decane-2,4-dione was treated with LiAlH 4 to be converted into TRANS-8-(dimethylamino)-8-phenyl- l,3-diazaspiro[4.5]decan-2-one (INT-1059). Mass: m/z 274.2 (M+H) + .

[0297]

[0298] Synthesis of INT-1065: CIS-3-((2-chloropyridin-4-yl)methyl)-8-(dimethylamino)-8-phe nyl-l,3- diazaspiro[4.5]decan-2-one

INT-1064

[0299] Step 1: CIS-l-acetyl-3-((2-chloropyridin-4-yl)methyl)-8-(dimethylami no)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one

[0300] To a solution of CIS-l-acetyl-8-(dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]d ecan-2-one (INT-1064) (1 g, 3.17 mmol) in DMF (37 mL) was added sodium hydride (60wt% in mineral oil, 1.25 equiv., 3.96 mmol, 159 mg) portionwise at 0°C. The reaction mixture was stirred for 15 min at 0°C and 2-chloro-4- (chloromethyl)pyridine (1.25 equiv., 3.96 mmol, 0.485 mL) was added. The reaction mixture was stirred at RT for 2 h, then cooled down to 0°C, quenched with sat. aq. NaHC(¾ (10 mL), water (10 mL) and extracted with EtOAc (2x50 mL). Combined organic phase was washed with brine, dried over anhydr. Na 2 S0 4 and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (eluent MeCN/DCM 98/2) to yield 1215 mg (87%) of CIS-l-acetyl-3-((2-chloropyridin-4-yl)methyl)-8- (dimethylamino)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one. Mass: m/z 441.2 (M+H) + .

[0301] Step 2: CIS-3-((2-chloropyridin-4-yl)methyl)-8-(dimethylamino)-8-phe nyl-l,3- diazaspiro [4.5] decan-2-one (INT-1065)

[0302] To a solution of CIS-l-acetyl-3-((2-chloropyridin-4-yl)methyl)-8-(dimethylami no)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one (1140 mg, 2.59 mmol) in THF/MeOH (2: 1 v/v, 15 mL) was added 3M aq. NaOH (26 mL). The reaction mixture was stirred for 1.5 h at RT and then extracted with EtOAc (2x50 mL). The combined organic phase was dried over anhydr. Na 2 S0 4 and concentrated under reduced pressure to yield 932 mg (90%) of CIS-3-((2-chloropyridin-4-yl)methyl)-8-(dimethylamino)-8-phe nyl-l,3-diazaspiro[4.5]decan-2-one (INT-1065) which was used in the next steps without additional purification. Mass: m/z 399.2 (M+H) + .

[0303] Synthesis of INT-1068 and INT-1069: CIS- and TRANS-8-(dimethylamino)-8-phenyl-l-(2,2,2- trifluoroethyl)-l,3-diazaspiro [4.5] decan-2-one

step 3

INT-1068 INT-1069 [0304] Step 1: l-amino-4-dimethylamino-4-phenyl-cyclohexanecarbonitrile

[0305] To a stirred solution of 4-dimethylamino-4-phenyl-cyclohexanone (50 g, 230.096 mmol) in MeOH (400 mL) was added NH 4 C1 (24.6 g, 460.8 mmol) followed by NH 4 OH (400 mL) at RT and the reaction mixture was stirred for 15 min. NaCN (22.5 g, 460.83 mmol) was added and the resulting mixture was stirred for 16 h at RT. The reaction mixture was extracted with DCM (3x750 mL). Combined organic layer was washed with water (750 mL), brine (750 mL), dried over Na 2 S0 4 and concentrated under reduced pressure. The residue was triturated with DCM/hexane to get crude l-amino-4-dimethylamino-4-phenyl-cyclohexanecarbonitrile (50 g, 90%) as an off white solid which was used in next step without further purification. LC-MS: m/z [M+H] + = 244.2 (MW calc. 244.09).

[0306] Step 2: N-(l-cyano-4-dimethylamino-4-phenyl-cyclohexyl)-2,2,2-triflu oroacetamide

[0307] To a solution of l-amino-4-dimethylamino-4-phenyl-cyclohexanecarbonitrile (5.0 g, 20.57 mmol, 1.0 eq.) in THF (100 ml) were added DIPEA (10.72 ml, 61.71 mmol, 3.0 eq), trifluoroacetic acid (1.89 ml, 24.69 mmol, 1.2 eq) and T3P (18.2 ml, 30.85 mmol, 1.5 eq) at 0°C. The reaction mixture was stirred at RT for 16h, then diluted with water (100 ml) and extracted with 10 % MeOH in DCM (2x250 mL). Combined organic layer was washed with brine (100 mL), dried over Na 2 S0 4 and concentrated under reduced pressure to get crude N-(l- cyano-4-dimethylamino-4-phenyl-cyclohexyl)-2,2,2-trifluoroac etamide as a light yellow sticky material which was used in the next step without further purification. LC-MS: m/z [M+l] + = 339.9 (MW calc. 339.36).

[0308] Step 3: l-aminomethyl-N',N'-dimethyl-4-phenyl-N-(2,2,2-trifluoroethy l)cyclohexane-l,4-diamine

[0309] To suspension of LiAlH 4 (4.03 g, 106.19 mmol, 6.0 eq.) in dry THF (40 mL) was added N-(l-cyano-4- dimethylamino-4-phenyl-cyclohexyl)-2,2,2-trifluoro-acetamide (6.0 g, 17.69 mmol, 1.0 eq.) in dry THF (100 mL) dropwise at 0°C. The reaction mixture was stirred at RT for 16 h, then quenched with sat. aq. Na 2 S0 4 at 0°C, excess THF was added and the resulting mixture was stirred at RT for 2 h. The resulting suspension was filtered through celite and the filter cake was washed with 10% MeOH in DCM (150 mL). Combined filtrate was concentrated under reduced pressure to yield crude l-aminomethyl-N',N'-dimethyl-4-phenyl-N-(2,2,2-trifluoro- ethyl)-cyclohexane-l,4-diamine (4.2 g, crude) as a light yellow sticky material which was directly used in the next step without further purification. LC-MS: m/z [M+l] + = 330.0 (MW calc. 329.40).

[0310] Step 4: CIS- and TRANS-8-dimethylamino-8-phenyl-l-(2,2,2-trifluoro-ethyl)-l,3 -diaza- spiro[4.5]decan-2-one (INT-1068 and INT-1069)

[0311] To a solution of l-aminomethyl-N',N'-dimethyl-4-phenyl-N-(2,2,2-trifluoro-eth yl)-cyclohexane-l,4- diamine (4.2 g, 12.76 mmol, 1.0 eq.) in toluene (60 ml) was added KOH (4.29 g, 76.56 mmol, 6.0 eq.) in water (120 ml) at 0°C followed by addition of COCl 2 (15.6 ml, 44.66 mmol, 3.5 eq., 20% in toluene) at 0°C and stirred at RT for 16 h. Reaction mixture was basified with sat NaHCOs solution and extracted with DCM (2 χ 200 ml). Combined organic layer was dried over Na 2 S0 4 and concentrated under reduced pressure to get crude product which was purified by prep HPLC to get CIS-8-dimethylamino-8-phenyl-l-(2,2,2-trifluoro-ethyl)-l,3-d iaza- spiro[4.5]decan-2-one (INT-1068) (1.5g) (major isomer, polar spot on TLC) and TRANS-8-dimethylamino-8- phenyl-l-(2,2,2-trifluoro-ethyl)-l,3-diaza-spiro[4.5]decan-2 -one (INT-1069) as minor isomer (non-polar spot on TLC) (120 mg, 92.93% by HPLC) as off-white solids. CIS-isomer: LC-MS: m/z [M+l] + =356.2 (MW calc.= 355.40). HPLC: 98.53%, Column: Xbridge C-18 (100 x4.6), 5μ, Diluent: MeOH, Mobile phase: A) 0.05% TFA in water; B) ACN flow rate: lml/min, R t = 5.17 min. 1 HNMR (DMSO-d 6 , 400 MHz), δ (ppm) = 7.43-7.27 (m, 5H), 6.84 (s, 1H), 3.30-3.25 (m, 4H), 2.66-2.63 (d, 2H, J = 12.72 Hz), 1.89 (s, 6H), 1.58-1.51 (m, 2H), 1.46-1.43 (m, 2H), 1.33-1.23 (m, 2H).

[0312] For further intermediates the synthesis in analogy to previously described methods is given in the following table. The syntheses of the building blocks and intermediates have either been described previously within this application or can be performed in analogy to the herein described methods or by methods known to the person, skilled in the art. Such a person will also know which building blocks and intermediates need to be chosen for synthesis of each exemplary compound.

[0313] Synthesis of exemplary compounds

[0314] Synthesis of SC_2002: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(3-methoxypheny l)- methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

INT-987 SC 2002

[0315] NaH (60% in mineral oil) (70 mg, 2.93 mmol) and 1 - (bromomethyl)- 3 -me thoxy -benzene (58mg, 0.29mmol) were sequentially added to a suspension of CIS-l-(cyclobutyl-methyl)-8-dimethylamino-8-plienyl- l,3-diazaspiro[4.5]decan-2-one INT-987 (100 mg, 0.29 mmol) in DMF (3 mL) at 0°C and the reaction mixture was stirred at RT for 30 min. The reaction completion was monitored by TLC. The reaction mixture was quenched with sat. aq. NH 4 C1 solution and the organic product was extracted with EtOAc (2xl2mL). The combined organic layer was dried over anhydrous MgS0 4 and concentrated in vacuo. Purification of the residue by flash column chromatography over silica gel (230-400 mesh) using 30-35% ethyl acetate in petroleum ether as eluent yielded 42mg of CIS-l-(cyclobutyl-methyl)-8-dimethylamino-3-[(3-methoxypheny l)-methyl]-8- phenyl-l,3-diazaspiro[4.5]decan-2-one SC_2002 as solid. [M+H] + 462.3

[0316] Synthesis of SC_2008: CIS-8-(AUyl-methyl-amino)-l-(cyclobutyl-methyl)-3-[(4-methox yphenyl)- methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

SC 2044 SC 2008

[0317] To the solution of CIS-l-(cyclobutyl-methyl)-3-[(4-methoxyphenyl)-methyl]-8-met hylamino-8-phenyl- l,3-diazaspiro[4.5]decan-2-one SC_2044 (70 mg, 0.16 mmol) in MeCN (1 mL) was added potassium carbonate (216 mg, 1.56 mmol). The reaction mixture was stirred for 15 min, 3-bromo-prop-l-ene (41 L, 0.47 mmol) was added and stirring was continued at RT for 3 days. The mixture was then diluted with DCM, filter through celite and the filtrate was concentrated in vacuo. Purification of the residue by flash column chromatography provided 44 mg of CIS-8-(allyl-methyl-amino)-l-(cyclobutyl-methyl)-3-[(4-metho xyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one SC_2008 as a solid. [M+H] + 488.3.

[0318] Synthesis of SC_2010: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-fluorophenyl) -3-[(4- methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan-2-one

SC 2017 SC 2010

[0319] CIS-8-Dimethylamino-8-(3-fluorop decan-2- one (SC_2017) (0.2 g, 0.48 mmol) was added to the solution of NaH (60% in mineral oil) (0.08 g, 1.94 mmol) in DMF (5 mL) and the reaction mixture was stirred at RT for 1 h. The reaction mixture was cooled to 0°C, (bromomethyl)cyclobutane (0.21mL, 1.94mmol) was added dropwise and stirring was continued for 30min at 0°C and then for 2 days at RT. The reaction completion was monitored by TLC. The reaction mixture was quenched with sat. aq. NH 4 C1 and the organic product was extracted with EtOAc (2 x lOmL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. Purification of the residue by column chromatography on silica gel (100-200 mesh) using 0-50% EtOAc in petroleum ether as eluent gave O.lg of product which was further purified by preparative TLC using 30% EtOAc in petroleum ether as mobile phase to give 65mg (28%) of CIS-l-(cyclobutyl-methyl)-8-dimethylamino-8-(3-fluorophenyl) -3-[(4- methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan-2-one (SC_2010) as an off white solid. (TLC system: 30% EtOAc in petroleum ether; R f : 0.6). [M+H] + 480.3

[0320] Synthesis of SC_2014: CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(2-methyl -propyl)-8- phenyl-l,3-diazaspiro[4.5]decan-2-one

SC 2097 SC 2014

[0321] A solution of NaOH (81 mg, 2.0 mmol) in DMSO (1 mL) was stirred at RT for 10 min. CIS-8- Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diaz aspiro[4.5] decan-2-one (SC_2097) (200 mg, 1.52 mmmol) was added and stirring was continued for 15 min. Isobutyl-bromide (20 mg, 1.52 mmol) was added and the reaction mixture was heated to 60°C for 16 h. After cooling to RT, water (100 mL) was added and the resulting mixture was extracted with DCM (3x150 mL). The combined organic layers were washed with water (70 mL) and brine (100 mL), dried over Na 2 S0 4 , filtered and concentrated in vacuo. Purification of the residue by column chromatography provided CIS-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-l-(2-methyl -propyl)- 8-phenyl-l,3-diazaspiro[4.5]decan-2-one SC_2014 (72 mg) as a solid. [M+H] + 450.3

[0322] Synthesis of SC_2017: CIS-8-Dimethylaniino-8-(3-fluorophenyl)-3-[(4-niethoxyphenyl )-niethyl]- l,3-diazaspiro[4.5]decan-2-one

[0323] Step 1: 8-(dimethylamino)-3-(4-methoxybenzyl)-2-oxo-l,3-diazaspiro[4 .5]decane-8-carbonitrile

[0324] Dimethylamine hydrochloride (76.36 g, 936.39 mmol) was added to a solution of 3-[(4- methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decane-2,8-dione INT-966 (90 g, 312.13 mmol) in MeOH (180 mL) at RT under argon atmosphere. The solution was stirred for 15 min and 40% aq. dimethylamine (780 mL) and KCN (48.76 g, 749.11 mmol) were sequentially added. The reaction mixture was stirred for 48 h while being monitored by NMR. The reaction mixture was diluted with water (1.0 L) and the organic product was extracted with EtOAc (2x2.0 L). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure to afford 90 g (85%) of 8-(dimethylamino)-3-(4-methoxybenzyl)-2-oxo-l,3- diazaspiro[4.5]decane-8-carbonitrile as an off white solid (TLC system: TLC system: 10% MeOH in DCM; Rf: 0.35, 0.30).

[0325] Step 2: CIS-8-Dimethylamino-8-(3-fluorophenyl)-3-[(4-methoxyphenyl)- methyl]-l,3- diazaspiro[4.5]decan-2-one

[0326] 3-Fluorophenylmagnesium bromide (1M in THF) (220 mL, 219.17 mmol) was added dropwise to a solution of 8-(dimethylamino)-3-(4-methoxybenzyl)-2-oxo-l,3-diazaspiro[4 .5]decane-8-carbonitrile (15 g, 43.83 mmol) in THF (300 mL) at 0°C under argon atmosphere. The reaction mixture was stirred for 16 h at RT. The reaction completion was monitored by TLC. The reaction mixture was cooled to 0°C, quenched with sat. aq. NH 4 C1 (200mL) and the organic product was extracted with EtOAc (2x200 mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The reaction was carried out in 4 batches (15 g x 2 and 5 g x 2) and the batches were purified together. Purification of the residue by flash column chromatography over silica gel (230-400 mesh) (2 times) by using 0-20% methanol in DCM as eluent and further purified by washing with pentane yielded 5.6 g (11%) of CIS-8-Dimethylamino-8-(3-fluorophenyl)-3- [(4-methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan-2-one SC_2017 as off-white solid. (TLC system: 5% MeOH in DCM in presence of ammonia; Rf: 0.1). [M+H] + 412.2

[0327] Synthesis of SC_2018: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-hydroxyphenyl )-3-[(4- methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan-2-one

SC 2018

[0328] Step 1: CIS-8-(dimethylamino)-l-isobutyl-3-(4-methoxybenzyl)-8-pheny l-l,3- diazaspiro[4.5]decan-2-one

[0329] In analogy to the method described for INT-951 step 1 CIS-8-dimethylamino-8-[3- (methoxymethyloxy)-phenyl]-3-[(4-methoxyphenyl)-methyl]-l,3- diazaspiro[4.5]decan-2-one (INT-968) was converted into CIS-l-(cyclobutylmethyl)-8-(dimethylamino)-3-(4-methoxybenzy l)-8-(3-

(methoxymethoxy)phenyl)-l,3-diazaspiro[4.5]decan-2-one.

[0330] Step 2: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-(3-hydroxyphenyl )-3-[(4-methoxyphenyl)- methyl]-l,3-diazaspiro[4.5]decan-2-one

[0331] TFA (0.2 mL) was added to a solution of CIS-l-(cyclobutylmethyl)-8-(dimethylamino)-3-(4- methoxybenzyl)-8-(3-methoxyphenyl)-l,3-diazaspiro[4.5]decan- 2-one (300 mg, 0.57 mmol) in DCM (1.5 mL) at 0°C. The reaction mixture was stirred at 0°C for 3 h. The reaction completion was monitored by TLC. The reaction mixture was quenched with sat. aq. NaHC0 3 and the organic product was extracted with DCM (3xl0mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. Purification of the residue by preparative TLC using 3% MeOH in DCM as a mobile phase yielded 50mg (18%) of CIS-l-(cyclobutyl-methyl)-8-dimethylamino-8-(3-hydroxyphenyl )-3-[(4-methoxyphenyl)- methyl]-l,3-diazaspiro[4.5]decan-2-one (SC_2018) as an off white solid. (TLC system: 10% MeOH in DCM; Rf: 0.20) [M+H] + 478.3

[0332] Synthesis of SC_2019: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-(pyridi n-3-yl- methyl)-l,3-diazaspiro [4.5] decan-2-one

[0333] KOtBu (411 mg, 3.66 mmol) was added to a solution of CIS-l-(Cyclobutyl-methyl)-8-dimethylamino- 8-phenyl-l,3-diazaspiro[4.5]decan-2-one (INT-987) (250 mg, 0.73 mmol) in THF (6 mL) under nitrogen atmosphere and the reaction mixture was stirred at RT for 30 min. After cooling to 0 °C 3- (chloromethyl)pyridine hydrochloride (180 mg, 1.10 mmol) was added and the reaction mixture was stirred at 0°C for 30 min and then at RT for 3 days. The resulting mixture was diluted with water, extracted with DCM (3x), the combined organic layers were dried over MgS0 4 , filtered and concentrated in vacuo. Purification of the residue by flash column chromatography provided 208 mg of CIS-l-(cyclobutyl-methyl)-8-dimethylamino-8- phenyl-3-(pyridin-3-yl-methyl)-l,3-di-azaspiro[4.5]decan-2-o ne (SC_2019). [M+H] + 433.3

[0334] Synthesis of SC_2025: CIS-8-Dimethylamino-l-(2-methoxy-2-methyl-propyl)-3-[(4- methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-o ne

[0335] CIS-8-Dimethylamino-l-(2-hydroxy-2-methyl-propyl)-3-[(4-meth oxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one SC_2024 (0.2 g, 0.42 mmol) was added to a solution of NaH (60% in mineral oil) (0.01 g, 0.42 mmol) in DMF (5 mL) at RT. The reaction mixture was stirred at RT for 30 min, then cooled to 0°C and methyl iodide (0.08g, 1.28mmol) was added dropwise. the resulting mixture was stirred for 30min at 0°C and then for 16 h at RT. The reaction completion was monitored by TLC. The reaction mixture was quenched with sat. aq. NH 4 C1 and the organic product was extracted with EtOAc (2xl0mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by preparative TLC using 30% EtOAc in petroleum ether as a mobile phase to give 40 mg (20%) of CIS-8-dimethylamino-l-(2-methoxy-2-methyl-propyl)-3-[(4-meth oxyphenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one (SC_2025) as an off white solid. (TLC system: 30% EtOAc in Pet. Ether; R f -: 0.6). [M+H] + 480.3.

[0336] Synthesis of SC_2026: CIS-l-(Cyclobutyl-methyl)-3-[(3-niethoxyphenyl)-niethyl]-8-n iethylaniino- 8-phenyl-l,3-diazaspiro[4.5]decan-2-one

SC 2002 SC 2026

[0337] N-Iodosuccinimide (437 mg, 1.95 mmol) was added to a suspension of CIS-l-(cyclobutyl-methyl)-8- dimethylamino-3-[(3-methoxyplienyl)-metliyl]-8-plienyl-l,3-d iazaspiro[4.5]decan-2-one (SC_2002) (600 mg, 1.30 mmol) in a mixture of acetonitrile and THF (1 : 1 v/v, 20 mL) at RT and the resulting mixture was stirred at RT for 16 h. The reaction mixture was basified with 2N aq. NaOH to pH~10 and the organic product was extracted with DCM (3x10 mL). The combined organic extracts were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was stirred vigorously with a mixture of 10% aqueous citric acid solution (5 mL) and DCM (10 mL) at RT for 10 min. The resulting mixture was basified with 5N aq. NaOH to pH~10 and extracted with DCM (3x10 mL). The combined organic layer was dried over anhydrous sodium sulfate and was concentrated in vacuo. The residue was purified by preparative reverse phase HPLC [Column: KINETEX C-18(150*21.2)5 μ and mobile phase: lOmM ammonium bicarbonate-acetonitrile] to give 120 mg (20%) of CIS-l-(Cyclobutyl-methyl)-3-[(3-methoxyphenyl)-methyl]-8-met hylamino-8-phenyl-l,3- diazaspiro[4.5]decan-2-one (SC_2026) as semi solid (TLC system: 10% MeOH in DCM; R f : 0.20.). [M+H] + 448.3

[0338] Synthesis of SC_2028: CIS-l-(Cyclobutyl-methyl)-3-[(3-methoxyphenyl)-methyl]-8-(me thyl- propyl-amino)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

SC 2026 SC 2028

[0339] Sodium cyanoborohydride (20 mg, 0.33 mmol) was added to a solution of CIS-l-(cyclobutyl-methyl)-3- [(3-methoxyphenyl)-methyl]-8-methylamino-8-phenyl-l,3-diazas piro[4.5]decan-2-one (SC_2026) (60 mg, 0.13 mmol), propionaldehyde (19 mg, 0.33 mmol) and acetic acid (0.05mL) in methanol (5mL) at RT. The reaction mixture was stirred at RT for 3 h. The reaction mixture was quenched with sat. aq. NaHC0 3 and the organic product was extracted with DCM (10 mL3). The combined organic extracts were dried over anhydr. Na 2 S0 4 and concentrated under reduced pressure. A second batch of this reaction was carried out starting from 100 mg of CIS-l-(Cyclobutyl-methyl)-3-[(3-methoxyphenyl)-methyl]-8-met hylamino-8-phenyl-l,3-diazaspiro[4.5]decan- 2-one SC_2026 in a similar manner. Both batches were combined and purified by preparative TLC to give 45 mg (25%) of CIS-l-(cyclobutyl-methyl)-3-[(3-methoxyphenyl)-methyl]-8-(me thyl-propyl-amino)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one (SC_2028) as semi solid (TLC system: 10% MeOH in DCM; R f : 0.25). [M+H] + 490.3 [0340] Synthesis of SC_2034: CIS-8-Dimethylamino-l-(2-hydroxy-ethyl)-3-[(4-methoxyphenyl) -methyl]- 8-phenyl-l,3-diazaspiro[4.5]decan-2-one

[0341] NaH (55% in mineral oil) (0.26 g, 6.10 mmol) was added to a solution of CIS-8-dimethylamino-3-[(4- methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-o ne (SC_2097) (0.4 g, 1.02 mmol) in DMF (10 mL) at 0°C. The reaction mixture was stirred at 0°C for 15 min. To the reaction mixture (2-bromoethoxy)(tert- butyl)dimethylsilane (1.45g, 6.10 mmol) was added dropwise over 5 min at 0°C. The reaction mixture was allowed to stir at RT for 16 h and then diluted with water (15mL). The organic product was extracted with ethyl acetate (3x25mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. The residue was dissolved in THF (8 mL) and cooled to 0°C. Then a 1M TBAF solution in THF (1.8 mL, 1.81 mmol) was added at 0°C. The reaction mixture was allowed to stir at RT for 2h. The reaction mixture was diluted with water (10 mL), the organic product was extracted with DCM (3x25mL). The combined organic extracts were washed with sat. aq. NaHC0 3 , water and brine, dried over anhydrous Na 2 S0 4 and concentrated under reduced pressure. Purification by prep HPLC using lOMm ammonium bicarbonate - acetonitrile as mobile phase yielded 93mg of compound which was further washed with n-pentane (5mL) to give 85mg (19% after two steps) of CIS-8-dimethyl-amino-l-(2-hydroxy-ethyl)-3-[(4-methoxyphenyl )-methyl]-8- phenyl-l,3-diazaspiro [4.5]decan-2-one (SC_2034) as off white solid. (TLC system: 5% MeOH in DCM R f : 0.30). [M+H] + 438.3

[0342] Synthesis of SC_2040: CIS-2-[[l-(Cyclobutyl-methyl)-3-[(4-niethoxyphenyl)-niethyl] -2-oxo-8- phenyl-l,3-diazaspiro[4.5]decan-8-yl]-methyl-aniino]-acetoni trile

SC 2040 SC 2044

[0343] NaH (50% in mineral oil) (24mg, 0.6mmol) was added to a stirred solution of CIS-l-(cyclobutyl- methyl)-3-[(4-methoxyphenyl)-methyl]-8-methylamino-8-phenyl- l,3-diazaspiro [4.5]decan-2-one (SC_2044) (134 mg, 0.3 mmol) in DMF (1 mL) at 0°C. Then iodoacetonitrile (0.11 mL, 1.5 mmol) was added dropwise at 0°C over a period of 10 min. The reaction mixture was allowed to stir at RT for 16 h. The reaction mixture was quenched with water and the organic product was extracted with EtOAc (3x). The combined organic extracts were washed with brine, dried over anhydrous MgS0 4 , filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography provided 13 mg of CIS-2-[[l-(cyclobutyl-methyl)-3- [(4-methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5 ]decan-8-yl]-methyl-amino]-acetonitrile

(SC_2040). [M+H] + 487.3

[0344] Synthesis of SC_2042: CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl- l,3-diazaspiro[4.5]decan-l-yl]-acetic acid tert-butyl ester

[0345] CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l, 3-diazaspiro[4.5]decan-2-one

SC_2097 (500 mg, 1.3 mmol) was dissolved in 1.7 mL THF and LDA (2M solution in THF, 2.5 mL) was added at 0°C. The reaction mixture was stirred at RT for 30 min, then cooled to 0°C and tert-butylbromoacetate (0.5 mL, 3.8 mmol) was added. The reaction was stirred for 18 h, then diluted with water and extracted with DCM (3x10 ml). The combined organic layers were dried over Na 2 S0 4 , concentrated in vacuo and the residue was purified by flash chromatography to yield CIS-2-[8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-diazaspiro[4.5]decan-l-yl]-acetic acid tert-butyl ester (SC_2042) (470 mg) as a white solid. [M+H] + 508.3

[0346] Synthesis of SC_2043: CIS-2-[8-Dimethylaniino-3-[(4-niethoxyphenyl)-niethyl]-2-oxo -8-phenyl- l,3-diazaspiro[4.5]decan-l-yl]-acetic acid 2,2,2-trifluoroacetic acid salt

SC 2042 SC 2043

[0347] CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-diazaspiro[4.5] decan-1- yl]-acetic acid tert-butyl ester SC_2042 (200 mg, 0.4 mmol) was dissolved in trifluoroacetic acid (5 mL) and stirred at RT for 30 min. All volatiles are removed in vacuo to yield CIS-2-[8-dimethylamino-3-[(4- methoxyphenyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro [4.5]decan-l-yl]-acetic acid 2,2,2-trifluoro-acetic acid salt SC_2043 (190 mg) as a solid. [M+H] + 452.3

[0348] Synthesis of SC_2049: CIS-2-[8-Dimethylaniino-3-[(4-niethoxyphenyl)-niethyl]-2-oxo -8-phenyl- l,3-diazaspiro[4.5]decan-l-yl]-N-propyl-acetamide

SC 2043 SC 2049

[0349] To a mixture of CIS-2-[8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-diazaspiro [4.5]decan-l-yl]-acetic acid 2,2,2-trifluoro-acetic acid salt (SC_2043) (60 mg, 0.11 mmol), n-propylamine (35xL, 0.43 mmol) and DIPEA (109 xL, 0.64 mmol) in DMF (1 ml) was added HATU (60 mg, 0.16 mmol) and the reaction mixture was stirred at RT for 16 h. The reaction mixture was quenched with a 1M aq. NaHC(¾, diluted with water and extracted with DCM (3x). The combined organic layers were washed with water (3 mL), brine (3 ml), dried over Na 2 S0 4 , filtered and concentrated in vacuo. Flash column chromatography of the residue provided CIS-2-[8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-diazaspiro[4.5]decan-l- yl]-N-propyl-acetamide (SC_2049) (20 mg). [M+H] + 493.3

[0350] Synthesis of SC_2053: CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl- l,3-diazaspiro[4.5]decan-l-yl]-acetonitrile

SC 2046 SC 2053

[0351] CIS-2-[8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3-diazaspiro[4.5] decan-1- yl]-acetamide (SC_2046) (37 mg, 0.083 mmol) was dissolved in EtOAc (1 mL) and triethylamine (23 L, 0.166 mmol) and T3P (59 L, 0.099 mmol) were sequentially added. The reaction mixture was stirred at RT for 16h and then heated at reflux for another 3h. After cooling to RT the reaction mixture was partitioned between water and DCM. The organic layer was separated and the aqueous layers was extracted twice with DCM. The combined organic layers were dried over MgS0 4 , concentrated in vacuo and the residue was purified by flash chromatography to yield CIS-2-[8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-2-oxo-8- phenyl-l,3- diazaspiro[4.5]decan-l-yl]-acetonitrile (SC_2053) (31 mg) as a solid. [M+H] + 433.3

[0352] Synthesis of SC_2073: CIS-l-(Cyclobutyl-methyl)-8-[(2-hydroxy-ethyl)-niethyl-aniin o]-3-[(4- methoxyphenyl)-niethyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2- one

[0353] To a solution of CIS-2-[[l-(cyclobutyl-methyl)-3-[(4-metlioxyplienyl)-metliyl ]-2-oxo-8-plienyl-l,3- diazaspiro[4.5]decan-8-yl]-methyl-amino]-acetic acid methyl ester (SC_2134) (125 mg, 0.24 mmol) in THF (1 mL) was added lithium borohydride (2M in THF, 0.36 mL, 0.72 mmol) at RT. The reaction mixture was stirred at RT for 16h followed by addition of another portion of lithium borohydride (2M in THF, 0.36 mL, 0.72 mmol). After stirring at RT for 16h, the reaction mixture was quenched with water. The organic layer was separated, washed with a 1M aq. NaOH and water, dried over MgSC>4, filtered and concentrated in vacuo. Purification of the residue by flash chromatography provided 37 mg of CIS-l-(cyclobutyl-methyl)-8-[(2-hydroxy-ethyl)-methyl- amino]-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[ 4.5]decan-2-one (SC_2073). [M+H] + 492.3

[0354] Synthesis of SC_2087: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[[4-[2-[2-[2-[2- [2-[2-[2-(2- methoxy-ethoxy)-ethoxy] -ethoxy] -ethoxy] -ethoxy] -ethoxy] -ethoxy] -ethoxy] -phenyl] -methyl] -8-phenyl-l,3- diazaspiro[4.5]decan-2-one

SC 2089 SC 2087

[0355] Powdered sodium hydroxide (21mg, 0.5mmol) was dissolved in 0.2 mL of dry DMSO. After stirring at RT for 30 min CIS-l-(cyclobutyl-methyl)-8-dimethylamino-3-[(4-hydroxypheny l)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one (SC_2089) (60mg, 0.13mmol) was added and the resulting mixture was stirred for another 30 min. Then 2,5,8,11, 14, 17,20, 23-octaoxapentacosan-25-yl 4-methylbenzenesulfonate (prepared via tosylation of 2,5,8, l l, 14, 17,20,23-octaoxapentacosan-25-ol following standard procedures) (216mg, 0.4mmol) was added. The reaction mixture was stirred at at 60°C for 16h. The reaction mixture was quenched with water and the organic product was extracted with DCM (2x20mL). The combined organic extracts were dried over anhydrous Na 2 S0 4 , concentrated in vacuo and the residue was purified by flash chromatography to yield CIS-1- (cyclobutyl-methyl)-8-dimethylamino-3-[[4-[2-[2-[2-[2-[2-[2- [2-(2-methoxy-ethoxy)-ethoxy]-ethoxy]-ethoxy]- ethoxy]-ethoxy]-ethoxy]-ethoxy]-phenyl]-methyl]-8-phenyl-l,3 -diazaspiro[4.5]decan-2-one (SC_2087) (25mg) as a white solid. [M+H] + 814.5 [0356] Synthesis of SC_2089: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(4-hydroxypheny l)- methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

SC 2125 SC 2089

[0357] CIS-1- (Cy clobutyl-methyl) - 8-dimethylamino- 3 - [ (4 -methoxyphenyl) -methyl] - 8 -phenyl- 1,3- diazaspiro[4.5]decan-2-one (SC_2125) (153 mg, 0.33 mmol) was dissolved in DCM (7 mL) and boron tribromide (1M solution in DCM, 1.3 mL) was added at 0°C. The reaction was stirred for 18 h, then water and methanol (1 : 1 mixture, 6 mL) was added. The reaction mixture was extracted with DCM (3x10 ml). The combined organic layers were dried over Na 2 S0 4 , concentrated in vacuo and the residue was purified by flash chromatography to yield CIS-l-(cyclobutyl-methyl)-8-dimethylamino-3-[(4-hydroxypheny l)-methyl]-8-phenyl- l,3-diazaspiro[4.5]decan-2-one (SC_2089) (21 mg) as a white solid. [M+H] + 448.3

[0358] Synthesis of SC_2093: CIS-l-(Cyclobutyl-methyl)-8-diniethylaniino-3-[(3-niethylsul fonyl-phenyl)- methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

SC 2136 SC 2093

[0359] CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(3-methylsulfan yl-phenyl)-methyl]-8-phenyl-l,3- diazaspiro[4.5]decan-2-one (SC_2136) (109 mg) was dissolved in methanol (3 mL) and water (2 mL) and oxone (105 mg) was added at RT. The reaction mixture was stirred for 24 h, another portion of oxone (105 mg) was added, the reaction mixture was stirred for 12 h at RT, then diluted with water and extracted with DCM (3x 10 mL). The combined organic layers were dried over Na 2 S0 4 and concentrated in vacuo. The residue was purified by flash chromatography to yield CIS-l-(cyclobutyl-methyl)-8-dimethylamino-3-[(3-methylsulfon yl-phenyl)- methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (SC_2093) as a white solid. [M+H] + 510.3

[0360] Synthesis of SC_2097: CIS-8-Dimethylaniino-3-[(4-niethoxyphenyl)-niethyl]-8-phenyl -l,3- diazaspiro[4.5]decan-2-one

INT-976 SC 2097

[0361] KOtBu (1M in THF) (29.30mL, 29.30mmol) was added to the solution of CIS-8-Dimethylamino-8- phenyl-l,3-diazaspiro[4.5]decan-2-one INT-976 (8.0 g, 29.30 mmol) in THF (160 mL) under argon atmosphere and the reaction mixture was stirred for 30 min. 4-Methoxybenzyl bromide (4.23 mL, 29.30 mmol) was added and stirring was continued at RT for 4 h. The reaction completion was monitored by TLC. The reaction mixture was diluted with sat. aq. NH 4 C1 (150mL) and the organic product was extracted with EtOAc (2xl50mL). The combined organic layer was dried over anhydrous Na 2 S0 4 and concentrated in vacuo. The reaction was carried out in 2 batches (8 g x 2) and the batches were combined for purification. Purification of the crude product by flash column chromatography on silica gel (0-10% methanol in DCM) and subsequently by washing with pentane yielded 11 g (47%) of CIS-8-Dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l, 3- diazaspiro[4.5]decan-2-one (SC_2097) as a white solid. [M+H] + 394.2

[0362] Synthesis of SC_2107: CIS-8-Dimethylamino-l-(3-hydroxy-3-methyl-butyl)-3-[(4- methoxyphenyl)-methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-o ne

SC 2135 SC 2107

[0363] 50wt% aq. sulphuric acid (0.57 mL) was added to the solution of CIS-8-dimethylamino-3-[(4- methoxyphenyl)-methyl]-l-(3-methyl-but-2-enyl)-8-phenyl-l,3- diazaspiro[4.5]decan-2-one (SC_2135) (0.25 g, 0.54 mmol) in 1,4-dioxane (5.75 mL) at RT and the reaction mixture was stirred for 3h at RT. The reaction mixture was quenched with sat. aq. NaHCC>3 and the organic product was extracted with ethyl acetate (2xl0mL). The combined organic extracts were dried over anhydr. Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by reverse phase preparative HPLC to give 0.04 g (15%) of CIS-8-dimethylamino-l-(3- hydroxy-3-methyl-butyl)-3-[(4-methoxyphenyl)-methyl]-8-pheny l-l,3-diazaspiro[4.5]decan-2-on (SC_2107) as an off white solid. (TLC system: 10% MeOH in DCM; Rf: 0.4). [M+H] + 480.3

[0364] Synthesis of SC_2109: CIS-2-[[8-dimethylaniino-l-[(l-hydroxy-cyclobutyl)-niethyl]- 2-oxo-8- phenyl-l,3-diazaspiro[4.5]decan-3-yl]-methyl]-benzaniide

[0365] 30% aq. H 2 0 2 (0.3 mL, 2.54 mmol) was added to a solution of CIS-2-((8-(dimethylamino)-l-((l- hydroxycyclobutyl)methyl)-2-oxo-8-phenyl-l,3-diazaspiro[4.5] decan-3-yl)methyl)benzonitrile (SC_2138) (0.4 g, 0.85 mmol) in DMSO (8 mL) at 0°C. A solution of potassium hydroxide (0.23 g, 4.23 mmol) in water (0.5 mL) was added dropwise. The reaction mixture was allowed to warm up to RT and stirred for 30min and then quenched with cold water (20 mL). The precipitated product was filtered off and washed with water. Purification by preparative TLC using 5% methanol in DCM as mobile phase yielded 78mg of target compound which was further washed with n-pentane (5 mL) to give 70 mg (17%) of CIS-2-[[8-dimethylamino-l-[(l-hydroxy- cyclobutyl)-methyl]-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan- 3-yl]-methyl]-benzamide (SC_2109) as an off- white solid. (TLC system: 10% MeOH in DCM R f : 0.4). [M+H] + 491.3

[0366] Synthesis of SC_2123: CIS-8-amino-l-[(l-hydroxy-cyclobutyl)-methyl]-3-[(4-methoxyp henyl)- methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

SC 2026 SC 2123

[0367] N-Iodosuccinimide (233 mg, 1.035 mmol) was added to a solution of CIS-l-[(l-hydroxy-cyclobutyl)- methyl]-3-[(4-methoxyphenyl)-methyl]-8-methylamino-8-phenyl- l,3-diazaspiro [4.5]decan-2-one (SC_2026) (320 mg, 0.690 mmol) in a mixture of acetonitrile and THF (1 : 1 v/v, 30 mL) at 0°C and the resulting mixture was stirred for 5 h at RT. The reaction mixture was cooled to 0°C and another portion of N-Iodosuccinimide (233 mg, 1.035 mmol) was added. The reaction mixture was allowed to warm up to RT and was stirred for further 11 h. The reaction mixture was basified with 2N aq. NaOH to pH~10 and the organic product was extracted with ethyl acetate (3x30mL). The combined organic extracts were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by preparative TLC by using 3% methanol in DCM as a mobile phase to give 100 mg of target compound which was further purified by preparative reverse phase HPLC to give 65mg (21%) of CIS-8-amino-l-((l-hydroxycyclobutyl)methyl)-3-(4-methoxybenz yl)-8- phenyl-l,3-diaza-spiro[4.5]decan-2-one (SC_2123) as an off-white solid (TLC system: 5% MeOH in DCM; R f : 0.40.). [M+H] + 450.3 [0368] Synthesis of SC_2124: CIS-8-dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-8-phen yl-3-(2- phenyl-ethyl)-l,3-diazaspiro [4.5] decan-2-one

[0369] NaOH (0.53 g, 13.26 mmol) was added to a solution of CIS-8-dimethylamino-8-phenyl-3-(2-phenyl- ethyl)-l,3-diazaspiro[4.5]decan-2-one INT-795 (1 g, 2.65 mmol) in DMSO (50 mL) under argon atmosphere at RT and the reaction mixture was stirred at 70°C for 30 min. (l-(Tert-butyldimethylsilyloxy)cyclobutyl)methyl-4- methylbenzene sulfonate (2.94 g, 7.95 mmol) was added and stirring was continued for 2 days at 70°C. The reaction completion was monitored by TLC. The reaction mixture was diluted with sat. aq. NaHC0 3 (20mL) and the organic product was extracted with EtOAc (4x5 OmL). The combined organic layer was dried over anhydr. Na 2 S0 4 and concentrated in vacuo. The crude product was purified by column chromatography (using 230- 400mesh silica gel and 2-5% MeOH in DCM as eluent) to afford 250mg of product which was further purified by prep. TLC (4% MeOH: DCM as an eluent) followed by washing with pentane to yield 133mg (11%) of CIS- 8-dimethylamino-l-[(l-hydroxy-cyclobutyl)-methyl]-8-phenyl-3 -(2-phenyl-ethyl)-l,3-diazaspiro[4.5]decan-2- one (SC_2124) as an off-white solid. (TLC system: 10% MeOH in DCM; Rf: 0.8). [M+H] + 462.3

[0370] Synthesis of SC_2125: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-[(4- methoxyphenyl)-niethyl]-l,3-diazaspiro[4.5]decan-2-one

[0371] To a solution of CIS-8-dimethylamino-3-[(4-methoxyphenyl)-methyl]-8-phenyl-l, 3-diazaspiro [4.5]decan-2-one (SC_2097) (10 g, 25 mmol) in 500 mL THF was added KOtBu (7.1 g, 63 mmol) at 50 °C. The reaction mixture was heated up to reflux and cyclobutylmethylbromide (11.3 g, 76 mmol) was added quickly in one portion. After 12 h new portions of KOtBu (7.1 g) and cyclobutylmethylbromide (11.3 g) were added and the reaction mixture was allowed to stir for 2 h at reflux and was then cooled to RT. Water (150 mL) was added and the organic layer separated. The aqueous layer was extracted with ethyl acetate (3x300 mL). The combined organic layers were dried over Na 2 S0 4 and then concentrated in vacuo. The residue was filtered through a pad of silica gel using DCM/MeOH (19/1 v/v). The filtrate was concentrated in vacuo and the resulting solid was re crystallized from hot ethanol to yield 7.8 g of CIS-l-(cyclobutyl-methyl)-8-dimethylamino-8-phenyl-3-[(4- methoxyphenyl)-methyl]-l,3-diazaspiro[4.5]decan-2-one (SC_2125). [M+H] + 461.3 [0372] Synthesis of SC_2136: CIS-l-(Cyclobutyl-methyl)-8-dimethylamino-3-[(3-methylsulfan yl-phenyl)- methyl]-8-phenyl-l,3-diazaspiro[4.5]decan-2-one

SC 2137 SC 2136

[0373] CIS-3-[(3 -Bromophenyl)-methyl] - 1 -(cyclobutyl-methyl)-8-dimethylamino-8-phenyl- 1 ,3-diaza- spiro[4.5]decan-2-one (SC_2137) (100 mg, 0.2 mmol), sodium thiomethoxide (20 mg, 0.3 mmol), Pd 2 (dba) 3 (8 mg, 0.02 mmol) and 9,9-dimethyl-4,5-bis(diphenyl-pliospliino)xantliene (10 mg, 0.02 mmol) were placed in an oven dried flask. After three vacuum/nitrogen purge cycles, toluene (2 mL) and DIPEA (66 0.4 mmol) were added and the resulting suspension was heated to 100 °C for 24h. The reaction mixture was cooled to RT, water was added and the mixture was extracted with DCM (3x5mL). The combined organic layers were dried over Na 2 S0 4 , concentrated in vacuo and the residue was purified by flash chromatography to yield CIS-l-(cyclobutyl- methyl)-8-dimethylamino-3-[(3-methylsulfanyl-phenyl)-methyl] -8-phenyl-l,3-diazaspiro[4.5]decan-2-one

(SC_2136) as a white solid. [M+H] + 478.3

Starting from here ill the exemplified procedures were aided

[0374] Synthesis of SC_2143: CIS-3-((lH-l,2,3-triazol-4-yl)methyl)-8-(diniethylaniino)-8- phenyl-l,3- diazaspiro[4.5]decan-2-one

INT-1010 SC 2143

[0375] To a solution of CIS-8-dimethylamino-8-phenyl-3-prop-2-ynyl-l,3-diaza-spiro[4 .5]decan-2-one (INT- 1010) (1.0 g, 3.21 mmol, 1.0 eq.) in dioxane/MeOH (50 ml, 9: 1) were added sodium azide (418 mg, 6.42 mmol, 2.0 eq.) and cuprous chloride (32 mg, 0.32 mmol, 0.1 eq.) at RT. The reaction mixture was stirred at 80 °C for 18h, then quenched with water and concentrated under reduced pressure. The resulting residue was purified by column chromatography (silica gel neutralized with aq. NH 3 ; 0.5% aq NH 3 in 10% MeOH/DCM) to yield CIS- 3-((lH-l,2,3-triazol-4-yl)methyl)-8-(dimethylamino)-8-phenyl -l,3-diazaspiro[4.5]decan-2-one (SC_2143) (600 mg, 1.69 mmol, 52%) as an off white solid. Yield: 52 % (600 mg, 1.69 mmol). 1 HNMR (DMSO-d 6 , 400 MHz), δ (ppm) = 14.84 (bs, 1H), 7.65 (s, 1H), 7.32-7.24 (m, 5H), 6.93 (bs, 1H), 4.27 (s, 2H), 2.98 (s, 2H), 2.28 (bs, 2H), 1.92 (s, 6H), 1.76 (bs, 4H), 1.31 (bs, 2H). Mass: m/z 355.0 (M+H) + .

[0376] Synthesis of SC_2144: CIS-8-(dimethylamino)-3-((l-(2-hydroxyethyl)-lH-l,2,3-triazo l-4- yl)methyl)-8-phenyl-l,3-diazaspiro [4.5] decan-2-one

INT-1011 SC 2144

[0377] To a suspension of LiAlH 4 (207 mg, 5.45 mmol, 3.0 eq.) in dry THF (20 ml) was added ethyl CIS-2-(4- ((8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4.5]decan- 3-yl)methyl)-lH-l,2,3-triazol-l-yl)acetate (INT- 1011) (800 mg, 1.82 mmol, 1.0 eq.) in dry THF (20 ml) dropwise at 0 °C and the resulting mixture was stirred at RT for 1 h. The reaction mixture was quenched with sat. aq. Na 2 S0 4 , excess THF was added and the resulting mixture was stirred at RT for 1 h. The reaction mixture was filtered through celite and washed with THF. The filtrate was concentrated under reduced pressure to get crude product which was purified by column chromatography (silica gel, neutralized with aq. NH 3 ; 1% aq NH 3 in 20% MeOH/DCM) to yield CIS-8- (dimethylamino)-3-((l-(2-hydroxyethyl)-lH-l,2,3-triazol-4-yl )methyl)-8-phenyl-l,3-diazaspiro[4.5]decan-2-one (SC_2144) (450 mg, 1.13 mmol, 62%) as a white solid. Yield: 62 % (450 mg, 1.13 mmol). : HNMR (DMSO-d 6 , 400 MHz), δ (ppm) = 7.86 (s, 1H), 7.36-7.22 (m, 5H), 6.89 (bs, 1H), 4.97 (t, 1H, J = 5.3 Hz), 4.34 (t, 2H, J = 5.42 Hz), 4.24 (s, 2H), 3.72 (q, 2H, J = 5.32 Hz), 3.01 (s, 2H), 2.30 (bs, 2H), 1.91 (s, 6H), 1.77-1.75 (m, 4H), 1.33-1.31 (m, 2H). Mass: m/z 399.1 (M+H) + .

[0378] Synthesis of SC_2145: CIS-2-(4-((8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4 .5]decan-3- yl)methyl)-lH-l,2,3-triazol-l-yl)acetamide

INT-1011 SC 2145

[0379] To a solution of CIS-2-(4-((8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4 .5]decan-3-yl)methyl)- lH-l,2,3-triazol-l-yl)acetate (INT-1011) (300 mg, 0.68 mmol, 1.0 eq.) in MeOH (6 ml) was added 7 M NH 3 solution in MeOH (2 ml) at RT and the reaction mixture was stirred at 80 °C in a sealed tube for 18h. The reaction mixture was cooled down to RT and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, neutralized with TEA; 2% aq. NH 3 in 20% MeOH/DCM) to yield CIS-2-(4-((8-(dimethylamino)-2-oxo-8-phenyl-l,3-diazaspiro[4 .5]decan-3-yl)methyl)-lH-l,2,3-triazol-l- yl)acetamide (SC_2145) (220 mg, 0.54 mmol, 78%) as an off white solid. Yield: 78 % (220 mg, 0.54 mmol). : HNMR (DMSO-d 6 , 400 MHz), δ (ppm) = 7.85 (s, 1H), 7.67 (s, 1H), 7.34-7.22 (m, 6H), 6.93 (bs, 1H), 5.00 (s, 2H), 4.25 (s, 2H), 3.01(s, 2H), 2.30 (bs, 2H), 1.92 (s, 6H), 1.76 (bs, 4H), 1.31 (bs, 2H). Mass: m/z 412.3 (M+H) + .

[0380] Synthesis of SC_2147: CIS-8-(dimethylamino)-3-(4-methoxybenzyl)-8-phenyl-l-tosyl-l ,3- diazaspiro[4.5]decan-2-one

[0381] CIS-8-(dimethylamino)-3-[(4-methoxyphenyl)methyl]-8-phenyl-l ,3-di

(SC_2097) (500 mg, 1.271 mmol) was dissolved in THF (8 mL) under nitrogen atmosphere and the solution was cooled down to -78 °C. [Bis(trimethylsilyl)amino]lithium (1M in THF, 1.5 equiv., 1.906 mmol, 1.9 mL) was added dropwise and the reaction mixture was stirred at -78 °C for 30 min, then at 0 °C for 30 min. The reaction mixture was cooled down to -78 °C again and the solution of p-toluenesulfonyl chloride (1.5 equiv., 1.906 mmol) in THF (5 mL) was added. The reaction mixture was stirred further 2.5 h at -78 °C and then the temperature was allowed to increase to RT overnight. The reaction mixture was quenched by the addition of sat. aq. NaHC(¾ (20 mL). The aqueous phase was extracted with EtOAc (3x40 mL). The combined organic extracts were washed with brine (30 mL), dried over MgS0 4 and concentrated under reduced pressure. Purification by flash chromatography on silica gel (elution with gradient DCM/EtOH 100/0 to 97/3) yielded 281 mg (40%) of CIS-8- (dimethylamino)-3-(4-methoxybenzyl)-8-phenyl-l-tosyl-l,3-dia zaspiro[4.5]decan-2-one (SC_2147). ¾ NMR (600 MHz, DMSO) δ 7.90 - 7.84 (m, 2H), 7.47 - 7.40 (m, 2H), 7.42 - 7.27 (m, 4H), 7.27 - 7.22 (m, 1H), 7.15 - 7.06 (m, 2H), 6.92 - 6.83 (m, 2H), 4.16 (s, 2H), 3.72 (s, 3H), 3.24 (s, 2H), 2.99 (ddd, 2H), 2.70 - 2.62 (m, 2H), 2.42 (s, 3H), 2.01 (s, 6H), 1.56 - 1.49 (m, 2H), 1.31 (td, 2H). Mass: m/z 548.3 (M+H) + .

[0382] Synthesis of SC_2170: CIS-8-(dimethylamino)-8-phenyl-3-(2-phenylpropan-2-yl)-l,3- diazaspiro[4.5]decan-2-one

INT-1023

step 3

SC 2170

[0383] Step 1: synthesis of tert-butyl CIS-4-(dimethylaniino)-4-phenyl-l-(2-phenylpropan-2- ylcarbamoyl)cyclohexylcarbaniate

[0384] To a stirred solution of CIS-l-(tert-butoxycarbonylamino)-4-(dimethylamino)-4- phenylcyclohexanecarboxylic acid (INT-1023) (lg, 2.76mmol) in DMF (15mL) were added diisopropylethyl amine (1.78 g, 13.81 mmol) and HATU (2.09 g, 5.52 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 45 min and then 2-phenylpropan-2-amine (0.74 g, 5.52 mmol) was added. The reaction mixture was warmed to RT and stirred for 16h. The reaction mixture was quenched with sat. aq. NaHC(¾ and the organic product was extracted with EtOAc (3x25mL). The combined organic extracts were dried over anhydr. Na 2 S0 4 and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel 230- 400 mesh) using 5-8% methanol in DCM as eluent gave 0.7g (52%) of tert-butyl CIS-4-(dimethylamino)-4- phenyl-l-(2-phenylpropan-2-ylcarbamoyl)cyclohexylcarbamate as a liquid. (TLC system: 10% MeOH in DCM a Rf: 0.30).

[0385] Step 2: synthesis of CIS-l-amino-4-(dimethylamino)-4-phenyl-N-(2-phenylpropan-2- yl)cyclohexanecarboxamide hydrochloride

[0386] 4N HCl in dioxane (15 mL) was added to a stirred solution of tert-butyl CIS-4-(dimethylamino)-4- phenyl-l-(2-phenylpropan-2-ylcarbamoyl)cyclohexylcarbamate (0.7 g, 1.46 mmol) in DCM (15 mL) at 0°C. The reaction mixture was stirred at RT for 2 h and then concentrated under reduced pressure to afford 0.7 g of CIS- 1- amino-4-(dimethylamino)-4-phenyl-N-(2-phenylpropan-2-yl)cycl ohexanecarboxamide hydrochloride as an off- white solid. The product was used in the next step without additional purification. (TLC system: 10% MeOH in DCM a Rf: 0.20).

[0387] Step 3: synthesis of CIS-N,N-dimethyl-l-phenyl-4-((2-phenylpropan-2- ylamino)niethyl)cyclohexane-l,4-dianiine

[0388] A solution of CIS-l-amino-4-(dimethylamino)-4-phenyl-N-(2-phenylpropan-2- yl)cyclohexanecarboxamide (0.7 g, 1.84 mmol) in THF (10 mL) was added to BH 3 xTHF solution (1M in THF, 18 mL, 18.46 mmol) at RT. The resulting mixture was refluxed for 2h. The reaction mixture was cooled to 0°C and slowly quenched with 6N HCl (20mL). The aqueous layer was extracted with EtOAc and then basified (pH~10) with 20% aq. NaOH. The organic product was extracted with 10% MeOH/DCM (20mLx4). The combined organic layer was washed with brine, dried over anhydr. Na 2 S0 4 and concentrated in vacuo to give 0.3g of CIS-N,N-dimethyl-l-phenyl-4-((2-phenylpropan-2-ylamino)methy l)cyclohexane-l,4-diamine as a liquid. The product was used in the next step without additional purification. (TLC system: 10vol% methanol in DCM, Rf: 0.10).

[0389] Step 3: synthesis of CIS-8-(dimethylaniino)-8-phenyl-3-(2-phenylpropan-2-yl)-l,3- diazaspiro[4.5]decan-2-one SC 2170

[0390] l,l'-Carbonyldiimidazole (0.90 g, 5.58 mmol) was added to a solution of CIS-N,N-dimethyl-l-phenyl- 4-((2-phenylpropan-2-ylamino)methyl)cyclohexane-l,4-diamine (1.7 g, 4.65 mmol) in DMF (20 mL) at RT. The reaction mixture was stirred at RT for 16h. The reaction mixture was quenched with cold water, the precipitated solid was filtered off and dried under reduced pressure to give the product which was further purified by preparative HPLC (column: Column: Kinetex-C18 (150*21.2mm) 5 μηι, mobile phase: 0.1% formic acid in water (A): Acetonitrile(B), gradient: T/%B: 0/20, 7/50, 7.1/98, 9/98, 9.1/20, 12/20, flow rate: 18 ml/min, diluent: mobile phase+THF) to yield 0.83g (55%) of CIS-8-(dimethylamino)-8-phenyl-3-(2-phenylpropan-2-yl)- l,3-diazaspiro[4.5]decan-2-one (SC_2170) as a white solid. (TLC system: 10% MeOH in DCM Rf: 0.30). 1H NMR (DMSO-d6): δ 7.36-7.22 (m, 9H), 7.16-7.13 (m, 1H), 6.64 (s, 1H), 3.10 (s, 2H), 2.28 (m, 2H), 1.93-1.79 (m, 10H), 1.52 (s, 6H), 1.37 (m, 2H). Mass: m/z 392.2 [M+H] + .

[0391] Synthesis of SC_2180: CIS-8-(dimethylamino)-8-phenyl-3-(pyridin-4-ylmethyl)-l,3- diazaspiro[4.5]decan-2-one

INT-1028

[0392] Step 1: synthesis of CIS-8-(dimethylaniino)-3-(4-niethoxybenzyl)-8-phenyl-l-tosyl -l,3- diazaspiro[4.5]decan-2-one

[0393] CIS-8-(dimethylamino)-8-phenyl-l-(p-tolylsulfonyl)-l,3-diaza spiro[4.5]decan-2-on^ (INT-1028) (200 mg, 0.47 mmol, 1 equiv.) was dissolved in DMF (3.6 mL) under argon atmosphere and the solution was cooled down to 0°C. Sodium hydride (60wt% in mineral oil, 2.1 equiv., 0.98 mmol, 39 mg) was added and the reaction mixture was stirred at RT for 15 min. 4-(Bromomethyl)pyridine hydrobromide (1.05 equiv., 0.49 mmol, 124 mg) was added at 0°C. The reaction mixture was stirred overnight at RT, then quenched with sat. aq. NaHC0 3 (2 mL) and water (2 mL) and extracted with EtOAc (2x15 mL). The combined organic extract was washed with brine, dried over Na 2 S0 4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (100% acetonitrile) to yield CIS-8-(dimethylamino)-3-(4-methoxybenzyl)-8-phenyl-l-tosyl-l ,3- diazaspiro[4.5]decan-2-one (112 mg, 46%). Mass: m/z 519.2 [M+H] + .

[0394] Step 2: synthesis of CIS-8-(dimethylamino)-8-phenyl-3-(pyridin-4-ylmethyl)-l,3- diazaspiro[4.5]decan-2-one (SC_2180)

[0395] CIS-8-(dimethylamino)-3-(4-methoxybenzyl)-8-phenyl-l-tosyl-l ,3-diazaspiro[4.5]decan-2-one (110 mg, 0.212 mmol, 1 equiv.) was dissolved in THF (2 mL) and MeOH (4.4 mL) under argon atmosphere. Magnesium turnings (103 mg, 4.24 mmol, 20 equiv.) were added and the resulting mixture was stirred at RT for 18 h. The reaction mixture was diluted with DCM (30 mL) and water (10 mL), stirred at RT for 1.5 h, filtered through celite and the solid residue was washed with DCM (3x). The organic phase of the filtrate was separated and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOH 100% to EtOH/MeOH 70/30) to yield 33 mg (43%) of CIS-8-(dimethylamino)-8-phenyl-3-(pyridin-4-ylmethyl)- l,3-diazaspiro[4.5]decan-2-one (SC_2180). ¾ NMR (600 MHz, DMSO-d6) δ 8.52 - 8.47 (m, 2H), 7.36 - 7.28

(m, 4H), 7.25 - 7.21 (m, 1H), 7.21 - 7.17 (m, 2H), 7.01 (s, 1H), 4.23 (s, 2H), 2.98 (s, 2H), 2.37 - 2.22 (m, 2H), 1.93 (s, 6H), 1.87 - 1.61 (m, 4H), 1.42 - 1.29 (m, 2H). Mass: m/z 365.2 [M+H] + . [0396] Synthesis of SC_2183: CIS-8-(dimethylamino)-3-((2-(4-methylpiperazin-l-yl)pyridin- 4-yl)methyl)- 8-phenyl-l,3-diazaspiro[4.5]decan-2-one

[0397] A mixture of 3-[(2-chloro-4^yridyl)methyl]-8-(dimethylamino)-8-phenyl-l,3 -diazaspiro[4.5]decan-2- one (INT-1065) (100 mg, 0.251 mmol), 1 -methylpiperazine (50 equiv., 12.54 mmol, 1.39 mL) and DIPEA (5 equiv., 1.25 mmol, 0.22 mL) was stirred at 140°C under microwave irradiation until complete conversion of INT-1065 (LCMS control). The reaction mixture was diluted with 2 N aq. NaOH and EtOAc, the organic phase was separated, washed with brine, dried over anhydr. Na 2 S0 4 and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (eluent gradient 0.2 N NH 3 in MeOH/EtOH/DCM 10/40/50 to 25/25/50 v/v/v) to yield CIS-8-(dimethylamino)-3-((2-(4-methylpiperazin-l- yl)pyridin-4-yl)methyl)-8-phenyl-l,3-diazaspiro[4.5]decan-2- one (SC_2183) (87 mg, 75%). 'H NMR (600 MHz, DMSO) δ 8.02 (d, 1H), 7.36 - 7.30 (m, 2H), 7.31 - 7.26 (m, 2H), 7.23 (td, 1H), 6.94 (s, 1H), 6.58 (s, 1H), 6.45 (dd, 1H), 4.12 (s, 2H), 3.45 - 3.39 (m, 4H), 2.94 (s, 2H), 2.36 (t, 4H), 2.33 - 2.22 (m, 2H), 2.19 (s, 3H), 1.92 (s, 6H), 1.86 - 1.62 (m, 4H), 1.34 (t, 2H). Mass: m/z 463.3 (M+H) + .

[0398] Synthesis of SC_2186: CIS-8-(dimethylaniino)-8-phenyl-3-((2-(piperazin-l-yl)pyridi n-4- yl)methyl)-l,3-diazaspiro [4.5] decan-2-one

[0399] A mixture of 3-[(2-chloro-4-pyridyl)methyl]-8-(dimethylamino)-8-phenyl-l, 3-diazaspiro[4.5]decan-2- one (INT-1065) (100 mg, 0.251 mmol), piperazine (1.5 equiv., 0.38 mmol, 32 mg), DIPEA (5 equiv., 1.25 mmol, 0.22 mL) and n-butanol (1 mL) was stirred 4 h at 140°C under microwave irradiation. A new portion of piperazine (4.5 equiv, 1.13 mmol, 97 mg) was added and the reaction mixture was stirred further 16 h at 140°C under microwave irradiation. The resulting mixture was concentrated under reduced pressure, taken in water/EtOAc, organic phase separated, aqueous phase extracted with EtOAc. The combined organic phase was washed with brine, dried over anhydr. Na 2 S0 4 and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (eluent gradient 0.2 N NH 3 in MeOH/EtOH/DCM 0/20/80 to 30/0/70 v/v/v) to yield CIS-8-(dimethylamino)-8-phenyl-3-((2-(piperazin-l-yl)pyridin -4-yl)methyl)- l,3-diazaspiro[4.5]decan-2-one (SC_2186) (48 mg, 43%). : H NMR (600 MHz, CDC13) δ 8.13 - 8.09 (m, 1H), 7.37 (t, 2H), 7.31 - 7.24 (m, 3H), 6.49 (d, 2H), 5.20 - 5.16 (m, 1H), 4.25 (s, 2H), 3.51 - 3.46 (m, 4H), 3.01 - 2.95 (m, 6H), 2.18 - 2.09 (m, 2H), 2.05 (s, 6H), 2.03 - 1.92 (m, 2H), 1.92 - 1.84 (m, 2H), 1.50 - 1.42 (m, 2H). Mass: m/z 449.3 (M+H) + .

[0400] For further exemplary compounds the last synthesis step in analogy to previously described methods is given in the following table. The syntheses of the building blocks and intermediates have either been described previously within this application or can be performed in analogy to the herein described methods or by methods known to the person, skilled in the art. Such a person will also know which building blocks and intermediates need to be chosen for synthesis of each exemplary compound.

(* Comparative Example)

[0401 ] Chemical Structure of all examples



[0402] Pharmacological investigations

[0403] Functional investigation on the human mu-opioid receptor (hMOP), human kappa-opioid receptor (hKOP), human delta-opioid receptor (hDOP), and human nociceptin/o hanin FQ peptide receptor (hNOP)

[0404] Human mu-opioid peptide (hMOP) receptor binding assay

[0405] The hMOP receptor binding assay was performed as homogeneous SPA-assay (scintillation proximity assay) using the assay buffer 50 mM TRIS-HCl (pH 7.4) supplemented with 0.052 mg/ml bovine serum albumin ( Sigma- Aldrich Co.. St. Louis. MO). The final assay volume (250 μΐ/well) included 1 nM of [N-allyl-2.3- 3H]naloxone as ligand (PerkinElmer Life Sciences. Inc. Boston. MA. USA), and either test compound in dilution series or 25 μΜ unlabelled naloxone for determination of unspecific binding. The test compound was diluted with 25 % DMSO in H 2 0 to yield a final 0.5 % DMSO concentration, which also served as a respective vehicle control. The assay was started by adding wheat germ agglutinin coated SPA beads (GE Healthcare UK Ltd.. Buckinghamshire. UK) which had been preloaded with hMOP receptor membranes (PerkinElmer Life Sciences. Inc. Boston. MA. USA). After incubation for 90 minutes at RT and centrifugation for 20 minutes at 500 rpm the signal rate was measured by means of a 1450 Microbeta Trilux β-counter (PerkinElmer Life Sciences/Wallac. Turku. Finland). Half-maximal inhibitory concentration (IC50) values reflecting 50% displacement of [ 3 H]naloxone-specific receptor binding were calculated by nonlinear regression analysis and Ki values were calculated by using the Cheng-Prusoff equation. (Cheng and Prusoff. 1973). [0406] Human kappa-opioid peptide (hKOP) receptor binding assay

[0407] The hKOP receptor binding assay is run as homogeneous SPA-assay (scintillation proximity assay) using the assay buffer 50 mM TRIS-HCl (pH 7.4) supplemented with 0.076 mg BSA/ml. The final assay volume of 250 μΐ per well includes 2 nM of [ 3 H]U69,593 as ligand, and either test compound in dilution series or 100 μΜ unlabelled naloxone for determination of unspecific binding. The test compound is diluted with 25% DMSO in H 2 0 to yield a final 0.5% DMSO concentration which serves as respective vehicle control, as well. The assays are started by the addition of wheat germ agglutinin coated SPA beads (1 mg SPA beads/250 μΐ final assay volume per well) which has been preloaded for 15 minutes at room temperature with hKOP receptor membranes (14.8 μg/250 μΐ final assay volume per well). After short mixing on a mini-shaker, the microtiter plates are covered with a lid and the assay plates are incubated for 90 minutes at room temperature. After this incubation, the microtiter plates are sealed with a topseal and centrifuged for 20 minutes at 500 rpm. The signal rate is measured after a short delay of 5 minutes by means of a 1450 Microbeta Trilux β-counter (PerkinElmer Life Sciences/Wallac, Turku, Finland). Half-maximal inhibitory concentration (IC50) values reflecting 50% displacement of [ 3 H]U69.593-specific receptor binding are calculated by nonlinear regression analysis and K; values are calculated by using the Cheng-Prusoff equation, (Cheng and Prusoff, 1973).

[0408] Human delta-opioid peptide (hDOP) receptor binding assay

[0409] The hDOP receptor binding assay is performed as homogeneous SPA-assay using the assay buffer 50 mM TRIS-HCl, 5 mM MgCl 2 (pH 7.4). The final assay volume (250 μΐ/well) includes 1 nM of [Tyrosyl-3,5- II as ligand, and either test compound in dilution series or 10 μΜ unlabelled naloxone for determination of unspecific binding. The test compound is diluted with 25% DMSO in H 2 0 to yield a final 0.5% DMSO concentration which serves as respective vehicle control, as well. The assays are started by the addition of wheat germ agglutinin coated SPA beads (1 mg SPA beads/250 μΐ final assay volume per well) which has been preloaded for 15 minutes at room temperature with hDOP receptor membranes (15.2 μg/250 μΐ final assay volume per well). After short mixing on a mini-shaker, the microtiter plates are covered with a lid and the assay plates are incubated for 120 minutes at room temperature and centrifuged for 20 minutes at 500 rpm. The signal rate is measured by means of a 1450 Microbeta Trilux β-counter (PerkinElmer Life Sciences/Wallac, Turku, Finland). Half-maximal inhibitory concentration (IC50) values reflecting 50% displacement of [Tyrosyl-3,5- Π-specific receptor binding are calculated by nonlinear regression analysis and K; values are calculated by using the Cheng-Prusoff equation, (Cheng and Prusoff, 1973).

[0410] Human nociceptin/orphanin FQ peptide (hNOP) receptor binding assay

[0411] The hNOP receptor binding assay was performed as homogeneous SPA-assay (scintillation proximity assay) using the assay buffer 50 mM TRIS-HCl. lOmM MgCl 2 . 1 mM EDTA (pH 7.4). The final assay volume (250 μΐ/well) included 0.5 nM of [leucyl- 3 H]nociceptin as ligand (PerkinElmer Life Sciences. Inc. Boston. MA. USA), and either test compound in dilution series or 1 μΜ unlabelled nociceptin for determination of unspecific binding. The test compound was diluted with 25 % DMSO in H 2 0 to yield a final 0.5 % DMSO concentration. which also served as a respective vehicle control. The assay was started by adding wheat germ agglutinin coated SPA beads (GE Healthcare UK Ltd.. Buckinghamshire. UK) which had been preloaded with hMOP receptor membranes (PerkinElmer Life Sciences. Inc. Boston. MA. USA). After incubation for 60 minutes at RT and centrifugation for 20 minutes at 500 rpm the signal rate was measured by means of a 1450 Microbeta Trilux B- counter (PerkinElmer Life Sciences/Wallac. Turku. Finland). Half-maximal inhibitory concentration (IC50) values reflecting 50% displacement of [ 3 H]nociceptin-specific receptor binding were calculated by nonlinear regression analysis and Ki values were calculated by using the Cheng-Prusoff equation. (Cheng and Prusoff. 1973). hNOP Ki [nM] hMOP Ki [nM] hNOP Ki [nM] hMOP Ki [nM]

Example or % inhibition or % inhibition Example or % inhibition or % inhibition

@ ΙμΜ @ 1μΜ @ 1μΜ @ 1μΜ

SC_2001 2.7 245 SC_2029 50 2150

SC_2002 4.3 965 SC_2030 96.5 1260

SC_2003 585 5875 SC_2031 4.6 139.5

SC_2004 21.5 1310 SC_2032 36 1035

SC_2005 12% @ Ι μΜ - SC_2033 27 855

SC_2006 0.8 43 SC_2034 490 4025

SC_2007 1.1 43.5 SC_2035 39 1240

SC_2008 690 not determined SC_2036 3.1 215

SC_2009 17.6 385 SC_2037 19.5 160

SC_2010 88.5 not determined SC_2038 13.5 380

SC_2011 50.5 880 SC_2039 2.8 54.5

SC_2012 50 1350 SC_2040 34 705

SC_2013 125 18.4 SC_2041 195 1925

SC_2014 23.5 470 SC_2042 16.5 1275

SC_2015 6.4 162.5 SC_2043 530 20% @ Ι μΜ

SC_2017 80 5460 SC_2044 10.8 275

SC_2018 70.8 66.8 SC_2045 21 1035

SC_2019 0.8 50.8 SC_2046 38% @ Ι μΜ 23% @ Ι μΜ

SC_2020 15.5 305 SC_2047 85.5 600

SC_2021 1200 4615 SC_2048 390 3430

SC_2022 5.4 420 SC_2049 24 1570

SC_2023 3.8 180 SC_2050 11.5 310

SC_2024 48 1450 SC_2051 9 515

SC_2025 49.5 920 SC_2052 26.2 996.7

SC_2026 11 255 SC_2053 220 1385

SC_2027 12 1415 SC_2054 43.5 340

SC_2028 135 3260 SC_2055 96.5 2780 hNOP Ki [nM] hMOP Ki [nM] hNOP Ki [nM] hMOP Ki [nM]

Example or % inhibition or % inhibition Example or % inhibition or % inhibition

@ ΙμΜ @ 1μΜ @ 1μΜ @ 1μΜ

SC_2056 31 545 SC_2092 5.6 380

SC_2057 330 5475 SC_2093 0.8 53.7

SC_2058 49.5 195 SC_2094 19 50.5

SC_2059 4% @ Ι μΜ 26% @ Ι μΜ SC_2095 11.2 575

SC_2060 45 1035 SC_2096 1.3 81

SC_2061 0.5 86.5 SC_2097 91 2645

SC_2062 20.5 1750 SC_2099 215 5135

SC_2063 18 3430 SC_2100 11.8 1320

SC_2064 41 2000 SC_2101 135 1170

SC_2065 27 650 SC_2102 3.3 84.5

SC_2066 455 90 SC_2103 1.5 54

SC_2067 217.5 4700 SC_2104 22.5 1000

SC_2068 34.5 230 SC_2105 2.4 45

SC_2069 14 675 SC_2106 16.5 1540

SC_2070 18.5 5875 SC_2107 57 1700

SC_2071 40 860 SC_2108 10.1 195

SC_2072 620 19% @ Ι μΜ SC_2109 17 260

SC_2073 200 3440 SC_2110 16.5 134

SC_2074 3.4 310 SC_2111 159 1675

SC_2075 9.1 480 SC_2112 135 925

SC_2076 51.5 925 SC_2113 4 310

SC_2077 325 3460 SC_2114 300 3045

SC_2078 170 563.3 SC_2115 720 2480

SC_2079 19.3 710 SC_2117 630 not determined

SC_2080 87.5 625 SC_2118 195 995

SC_2081 1.2 147 SC_2119 85 90

SC_2082 180 2390 SC_2120 19 1000

SC_2083 405 5250 SC_2122 310 830

SC_2084 34 880 SC_2123 not determined 3840

SC_2085 3.8 230 SC_2124 4 43

SC_2086 3.5 150 SC_2125 3.4 120

SC_2087 47 1365 SC_2143 405 5290

SC_2088 1.9 110 SC_2144 715 5180

SC_2089 1.8 73 SC_2145 340 4940

SC_2090 106 3185 SC_2146 2% 9%

SC_2091 26 1620 SC_2147 14% 10% hNOP Ki [nM] hMOP Ki [nM]

Example or % inhibition or % inhibition

@ ΙμΜ @ 1μΜ

SC_2148 8% 0%

SC_2149 160 250

SC_2150 6% 4%

SC_2152 175 2475

SC_2153 22 130

SC_2155 12.5 98

SC_2156 130 330

SC_2159 2.35 40.5

SC_2160 4 39

SC_2161 100.5 295

SC_2162 31 82.5

SC_2163 13 93.5

SC_2164 130 2765

SC_2165 255 2000

SC_2166 106.5 3690

SC_2168 240 13%

SC_2169 785 790

SC_2170 325 not determined

SC_2171 49.25 362.5

SC_2172 50 630

SC_2173 145 5245

SC_2174 8.15 235

SC_2175 90.5 1830

SC_2176 110 3090

SC_2177 18 99.5

SC_2178 390 1050

SC_2179 108.5 2660

SC_2180 240 4085

SC_2181 190 19%

SC_2182 250 13%

SC_2183 63 3580

SC_2184 25 845

SC_2185 115 6980

SC_2186 40 2775 [0412] Protocol for rSJGTPyS functional NOP/MOP/KOP/DOP assays

[0413] Cell membrane preparations of CHO- Kl cells transfected with the human MOP receptor (Art.-No. RBHOMM) or the human DOP receptor (Art.-No.RBHODM), and HEK293 cells transfected with the human NOP receptor (Art.-No.RBHORLM) or the human KOP receptor (Art.-No. 6110558) are available from PerkinElmer (Waltham, MA). Membranes from CHO-Kl cells transfected with the human nociceptin/o hanin FQ peptide (hNOP) receptor (Art.-No. 93-0264C2, DiscoveRx Corporation, Freemont, CA) are also used.

[ 35 S]GTPyS (Art.-No. NEG030H; Lot-No. #0112, #0913, #1113 calibrated to 46.25 TBq/mmol) is available from PerkinElmer (Waltham, MA).

[0414] The [ 35 S]GTPyS assays are carried out essentially as described by Gillen et al (2000). They are run as homogeneous scintillation proximity (SPA) assays in microtiter luminescence plates, where each well contains 1.5 mg of WGA-coated SPA-beads. To test the agonistic activity of test compounds on recombinant hNOP, hMOP, hDOP, and hKOP receptor expressing cell membranes from CHO-Kl or HEK293 cells, 10 or 5 μg membrane protein per assay are incubated with 0.4 nM [ 35 S]GTPyS and serial concentrations of receptor-specific agonists in buffer containing 20 mM HEPES pH 7.4, 100 mM NaCl, 10 mM MgC12, 1 mM EDTA, 1 mM dithiothreitol, 1.28 mM NaN 3 , and 10 μΜ GDP for 45 min at room temperature. The microtiter plates are then centrifuged for 10 min at 830 to sediment the SPA beads. The microtiter plates are sealed and the bound radioactivity [cpm] is determined after a delay of 15 min by means of a 1450 Microbeta Trilux (PerkinElmer, Waltham, MA).

[0415] The unstimulated basal binding activity (UBS 0bs [cpm]) is determined from 12 unstimulated incubates and is set as 100% basal binding. For determination of the potency and the efficacy, the arithmetic mean of the observed total [ 35 S]GTPyS binding (TB obs [cpm]) of all incubates (duplicates) stimulated by the receptor-specific agonists (i.e. N/OFQ, SNC80, DAMGO, or U69,593) are transformed in percent total binding (TB obs [%]) relative to the basal binding activity (i.e. 100% binding). The potency (EC 50 ) of the respective agonist and its maximal achievable total [ 35 S]GTPyS binding (TB cafc [%]) above its calculated basal binding (UBS ca i c [%]) are determined from its transformed data (TB 0bs [%]) by means of nonlinear regression analysis with XLfit for each individual concentration series. Then the difference between the calculated unstimulated [ 35 S]GTPyS binding (UBS ca i c [%]) and the maximal achievable total [ 35 S]GTPyS binding (TB ca i c [%]) by each tested agonist is determined (i.e. Bl ca i c [%])· This difference (Bl ca i c [%]) as a measure of the maximal achievable enhancement of [ 35 S]GTPyS binding by a given agonist is used to calculate the relative efficacy of test compounds versus the maximal achievable enhancement by a receptor-specific full agonist, e.g. N/OFQ (B1 C£1 I C - N/O F Q [%]) which is set as 100%o relative efficacy for the hNOP receptor. Likewise, the percentage efficacies of test compounds at the hDOP, hMOP, or hKOP receptor are determined versus the calculated maximal enhancement of [ 35 S]GTPyS binding by the full agonists SNC80 (B SNCSO [%]), DAMGO (B C-D A MGO [%]) and U69,593 (Bl ca ic-u69,593 [%]) which are set as 100% relative efficacy at each receptor, respectively.

[0416] The foregoing description and examples have been set forth merely to illustrate the invention and are not intended to be limiting. Since modifications of the described embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed broadly to include all variations within the scope of the appended claims and equivalents thereof.