Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
4-AMINO-5-OXO-8-PHENYL-5H-PYRIDO-[2,3-D]-PYRIMIDINE DERIVATIVES AS TYROSINE KINASE AND RAF KINASE INHIBITORS FOR THE TREATMENT OF TUMOURS
Document Type and Number:
WIPO Patent Application WO/2006/050800
Kind Code:
A1
Abstract:
Compounds of formula (I), where R6, R7, R8, R9, Het1, X and X' have the meanings given in claim 1 are tyrosine kinase inhibitors, in particular, of TIE-2, and Raf kinases and can be used, amongst other things, for the treatment of tumours.

Inventors:
HOELZEMANN GUENTER (DE)
ACKERMANN KARL-AUGUST (DE)
CRASSIER HELENE (DE)
JONCZYK ALFRED (DE)
RAUTENBERG WILFRIED (DE)
TARRASON GEMA (ES)
ROSELL-VIVES ELISABET (ES)
ADAN JAUME (ES)
CASES CLAUDIA (ES)
Application Number:
PCT/EP2005/011304
Publication Date:
May 18, 2006
Filing Date:
October 20, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MERCK PATENT GMBH (DE)
HOELZEMANN GUENTER (DE)
ACKERMANN KARL-AUGUST (DE)
CRASSIER HELENE (DE)
JONCZYK ALFRED (DE)
RAUTENBERG WILFRIED (DE)
TARRASON GEMA (ES)
ROSELL-VIVES ELISABET (ES)
ADAN JAUME (ES)
CASES CLAUDIA (ES)
International Classes:
C07D471/04; A61K31/519; A61P35/00; A61P35/02; C07C275/28
Domestic Patent References:
WO2004085436A22004-10-07
WO2004039774A22004-05-13
WO2003027110A22003-04-03
WO2005047283A12005-05-26
Attorney, Agent or Firm:
MERCK PATENT GMBH (Darmstadt, DE)
Download PDF:
Claims:
Patentansprüche
1. Verbindungen der Formel I worin R6, R7 jeweils unabhängig voneinander H, A, HaI, OH, OA oder CN, R8, R9 jeweils unabhängig voneinander H oder A, Het1 einen ein oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N, O und/oder SAtomen, der unsubstituiert oder ein, zwei oder dreifach durch HaI, A, OA, OH, Alkenyl mit 2 bis 6 CAtomen, Alkinyl mit.
2. bis 6 CAtomen, NO2, NH2, NHA, NA2, COOH, COOA, CN, OHet, OAlkylenHet, OAlkylenNR8R9, NR8AlkylenNR8R9, CONR8R9, OAlkylenNR8AlkylenOR8 und/oder Carbonyl sauerstoff (=0) substituiert sein kann, Het einen ein oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N, O und/oder SAtomen, der unsubstituiert oder ein, zwei oder dreifach durch HaI1 A1 OA1 COOA1 CN und/oder Carbonylsauerstoff (=0) substituiert sein kann, A Alkyl mit 1 bis 10 CAtomen, wobei auch 17 HAtome durch F und/oder Chlor ersetzt sein können, X1 X1 jeweils unabhängig voneinander NH oder fehlt, HaI F, Cl, Br oder I, bedeuten, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
3. 2 Verbindungen nach Anspruch 1 , worin X NH, X' NH bedeuten, 0 sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
4. 5.
5. Verbindungen nach Anspruch 1 oder 2, worin Het1 einen ein oder zweikernigen ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N, O und/oder SAtomen, der unsubstituiert oder ein, zwei oder dreifach durch HaI, A, OA, OH, OHet, OAlkylenHet, 0 OO AAllkkyylleenn NNRR88RR99 u unndd/, oder OAlkylenNR8AlkylenOR8 substituiert sein kann, bedeutet, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, 5 Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
6. Verbindungen nach einem oder mehreren der Ansprüche 13, worin Q Het1 unsubstituiertes oder ein, zwei oder dreifach durch HaI, A, OA, OH, OHet, OAlkylenHet, OAlkylenNR8R9 und/oder OAlkylenNR8AlkylenOR8 substituiertes Pyridyl, Isoxazolyl, Chinolyl, Isochinolyl, Thiazolyl, [1 ,3,4]Thiadiazolyl, [1 ,2,4]Thiadiazolyl, Furyl, 5 Thienyl, Pyrrolyl, Pyrimidinyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isothiazolyl, Benzo[1 ,3]dioxolyl oder Pyrazinyl, bedeutet, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen. 5 .
7. Verbindungen nach einem oder mehreren der Ansprüche 14, worin Het einen einkernigen gesättigten Heterocyclus mit 1 bis 3 N, O und/oder SAtomen, der unsubstituiert ist oder 10 einfach durch A substituiert sein kann, bedeutet, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in A 1 allen Verhältnissen.
8. Verbindungen nach einem oder mehreren der Ansprüche 15, worin Het unsubstituiertes oder einfach durch A substituiertes Piperidinyl, Pyrrolidinyl, Morpholinyl oder Piperazinyl, bedeutet, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen. 25 .
9. Verbindungen nach einem oder mehreren der Ansprüche 16, worin R6, R7 H bedeuten, 30 sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
10. Verbindungen nach einem oder mehreren der Ansprüche 17, worin 35 worin X NH, X1 NH, R6, R7 H1 R8, R9 jeweils unabhängig voneinander H oder A, Het1 einen ein oder zweikemigen ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N, O und/oder SAtomen, der unsubstituiert oder ein, zwei oder dreifach durch HaI, A, OA, OH, OHet, OAlkylenHet, OAlkylenNR8R9 und/oder OAlkylenNR8AlkylenOR8 substituiert sein kann, Het einen einkernigen gesättigten Heterocyclus mit 1 bis 3 N, O und/oder SAtomen, der unsubstituiert ist oder einfach durch A substituiert sein kann, A Alkyl mit 1 bis 10 CAtomen, wobei auch 17 HAtome durch F und/oder Chlor ersetzt sein können, HaI F, Cl, Br oder I, bedeuten, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
11. Verbindungen nach einem oder mehreren der Ansprüche 18, worin worin X NH, XI NH, R6, R7 H, R8, R9 jeweils unabhängig voneinander H oder A, Het1 unsubstituiertes oder ein, zwei oder dreifach durch HaI, A, OA, OH, OHet, OAlkylenHet, OAlkylenNR8R9 und/oder OAlkylenNR8AlkylenOR8 substituiertes Pyridyl, Isoxazolyl, Chinolyl, Isochinolyl, Thiazolyl, [1 ,3,4]Thiadiazolyl, [1 ,2,4]Thiadiazolyl, Furyl, Thienyl, Pyrrolyl, Pyrimidinyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isothiazolyl, Benzo[1 ,3]dioxolyl oder Pyrazinyl, Het unsubstituiertes oder einfach durch A substituiertes Piperidinyl, Pyrrolidinyl, Morpholinyl oder Piperazinyl, A Alkyl mit 1 bis 10 CAtomen, wobei auch 17 HAtome durch F und/oder Chlor ersetzt sein können, HaI F, Cl, Br oder I, bedeuten, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
12. Verbindungen nach Anspruch 1 , ausgewählt aus der Gruppe 1[4(4Amino5oxo5//pyrido[2,3d]pyrimidin8yl)phenyl]3 (5tertbutylisoxazol3yl)hamstoff, 1[4(4Amino5oxo5Hpyrido[2,3d]pyrimidin8yl)phenyl]3 (2,6dichlorpyridin4yl)hamstoff, 1[4(4Amino5oxo5Hpyrido[2,3d]pyrimidin8yl)phenyl]3 isochinolin3ylharnstoff, 1[4(4Amino5oxo5Hpyrido[2,3c/]pyrimidin8yl)phenyl]3 chinolin3ylharnstoff, 1[4(4Amino5oxo5Hpyrido[2,3cdpyrimidin8yl)phenyl]3 (4trifluormethylpyridin2yl)harnstoff, 1[4(4Amino5oxo5Hpyrido[2,3cdpyrimidin8yl)phenyl]3 (4tert.butylthiazol2yl)harnstoff, 1[4(4Amino5oxo5Hpyrido[2,3d]pyrimidin8yl)phenyl]3 (5trifluormethyl[1 ,3,4]thiadiazol2yl)hamstoff, 1[4(4Amino5oxo5Hpyrido[2,3d]pyrimidin8yl)phenyl]3 (6trifluormethylpyridin3yl)harnstoff, 1[4(4Amino5oxo5//pyrido[2,3d]pyrimidin8yl)phenyl]3 (2chlor6trifluormethylpyridin3yl)harnstoff, 1[4(4Amino5oxo5//pyrido[2>3cf]pyrimidin8yl)phenyl]3 (6hydroxy5trifluormethylpyridin3yl)harnstoff, 1[4(4Amino5oxo5//pyrido[2,3c/]pyrimidin8yl)phenyl]3 [6(3morpholin4ylpropoxy)5trifluormethylpyridin3yl)hamstoff, 1[4(4Amino5oxo5Hpyrido[2,3d]pyrimidin8yl)phenyl]3 [6(1methylpiperidin4ylmethoxy)5trifluormethylpyridin3yl) hamstoff, 1[4(4Amino5oxo5//pyrido[2,3c/]pyπmidin8yl)phenyl]3 (2hydroxy5trifluormethylpyridin3yl)harnstoff, 1[4(4Amino5oxo5//pyrido[2,3cf]pyrimidin8yl)phenyl]3 [2(3morpholin4ylpropoxy)5trifluormethylpyridin3yl)harnstoff, 1[4(4Amino5oxo5//pyrido[2,3c/]pyrimidin8yl)phenyl]3 [2(1methylpiperidin4ylmethoxy)5trifluormethylpyridin3yl) harnstoff, 1[4(4Amino5oxo5//pyrido[2,3c/]pyrinnidin8yl)phenyl]3 (2{2[(2methoxyethyl)methylamino]ethoxy}5trifluormethyl pyridin3yl)harnstoff, 1[4(4Amino5oxo5Hpyrido[2,3d]pyrimidin8yl)phenyl]3 (6{2[(2methoxyethyl)methylamino]ethoxy}5trifluormethyl pyridin3yl)harnstoff, 1[4(4Amino5oxo5//pyrido[2,3d]pyrimidin8yl)phenyl]3 benzo[1 ,3]dioxol5ylharnstoff, 1[4(4Amino5oxo5//pyrido[2,3d]pyrimidin8yl)phenyl]3 (2,2dimethylbenzo[1 ,3]dioxol5yl)harnstoff, 1[4(4Amino5oxo5f/pyrido[2,3d]pyrimidin8yl)phenyl]3 (2,2difluorbenzo[1 ,3]dioxol5yl)harnstoff, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
13. Verfahren zur Herstellung von Verbindungen der Formel I nach den Ansprüchen 110 sowie ihrer pharmazeutisch verwendbaren Derivate, Salze, Solvate, Tautomeren und Stereoisomeren, dadurch gekennzeichnet, daß man a) zur Herstellung von Verbindungen der Formel I, worin X, X1 NH bedeuten, eine Verbindung der Formel Il worin R6, R7, R8 und R9 die in Anspruch 1 angegebenen Bedeutungen haben, mit einer Verbindung der Formel III Het1N=C=O IM , worin Het1 die in Anspruch 1 angegebene Bedeutung hat, umsetzt, oder b) zur Herstellung von Verbindungen der Formel I, worin X, X1 NH bedeuten, eine Verbindung der Formel Il mit einer Verbindung der Formel IV Het1NH2 IV , worin Het1 die in Anspruch 1 angegebene Bedeutung hat, und einem Chlorkohlensäureester umsetzt, und/oder eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
14. Arzneimittel, enthaltend mindestens eine Verbindung der Formel I nach Anspruch 1 und/oder ihre pharmazeutisch verwendbaren Derivate, Salze, Solvate, Tautomeren und Stereoisomeren, einschließlich deren Mischungen in allen Verhältnissen, sowie gegebenenfalls Träger und/oder Hilfsstoffe.
15. Verwendung von Verbindungen nach Anspruch 1 sowie ihrer pharmazeutisch verwendbaren Derivate, Salze, Solvate, Tautomeren und Stereoisomeren, einschließlich deren Mischungen in allen Verhältnissen, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, bei denen die Hemmung, Regulierung und/oder Modulation der Signaltransduktion von Kinasen eine Rolle spielt.
16. Verwendung nach Anspruch 13, wobei die Kinasen ausgewählt sind aus der Gruppe der Tyrosinkinasen und RafKinasen.
17. Verwendung nach Anspruch 14, wobei es sich bei den Tyrosinkinasen um TIE2, VEGFR, PDGFR, FGFR und/oder FLT/KDR handelt.
18. Verwendung nach Anspruch 14 von Verbindungen gemäß Anspruch 10 1 , sowie ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, A c die durch Inhibierung der Tyrosinkinasen durch die Verbindungen nach Anspruch 1 beeinflußt werden.
19. Verwendung nach Anspruch 16, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung von TIE2,*& 20.
20. VEGFR, PDGFR, FGFR und/oder FLT/KDR durch die Verbindungen nach Anspruch 1 beeinflußt werden.
21. 18 Verwendung nach Anspruch 16 oder 17, wobei die zu behandelnde 25 Krankheit ein fester Tumor ist.
22. Verwendung nach Anspruch 18, wobei der feste Tumor aus der Gruppe der Tumoren des Plattenepithel, der Blasen, des Magens, O0 der Nieren, von Kopf und Hals, des Ösophagus, des Gebärmutterhals, der Schilddrüse, des Darm, der Leber, des Gehirns, der Prostata, des Urogenitaltrakts, des lymphatischen Systems, des Magens, des Kehlkopft und/oder der Lunge stammt. *& 35.
23. Verwendung nach Anspruch 18, wobei der feste Tumor aus der Gruppe Monozytenleukämie, Lungenadenokarzinom, kleinzellige Lungenkarzinome, Bauchspeicheldrüsenkrebs, Glioblastome und Brustkarzinom stammt.
24. Verwendung nach Anspruch 18, wobei der feste Tumor aus der Gruppe der Lungenadenokarzinom, kleinzellige Lungenkarzinome, Bauchspeicheldrüsenkrebs, Glioblastome, Kolonkarzinom und Brustkarzinom stammt.
25. Verwendung nach Anspruch 16 oder 17, wobei die zu behandelnde Krankheit ein Tumor des Blut und Immunsystems ist.
26. Verwendung nach Anspruch 22, wobei der Tumor aus der Gruppe der akuten myelotischen Leukämie, der chronischen myelotischen Leukämie, akuten lymphatischen Leukämie und/oder chronischen lymphatischen Leukämie stammt.
27. Verwendung nach Anspruch 16 oder 17 zur Behandlung einer Krankheit, an der Angiogenese beteiligt ist.
28. Verwendung nach Anspruch 24, wobei es sich bei der Krankheit um eine Augenkrankheit handelt.
29. Verwendung nach Anspruch 16 oder 17 zur Behandlung von Retina Vaskularisierung, diabetischer Retinopathie, altersbedingter Makula Degeneration und/oder Entzündungskrankheiten.
30. Verwendung nach Anspruch 26, wobei die Entzündungskrankheit aus der Gruppe rheumatoide Arthritis, Schuppenflechte, Kontakt dermatitis und SpätTyp der Überempfindlichkeitsreaktion stammt.
31. Verwendung nach Anspruch 16 oder 17 zur Behandlung von KnochenPathologien, wobei die Knochenpathologie aus der Gruppe Osteosarkom, Osteoarthritis und Rachitis stammt.
32. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 und/oder ihrer physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung von festen Tumoren, wobei eine therapeutisch wirksame Menge einer Verbindung der 10 Formel I in Kombination mit einer Verbindung aus der Gruppe 1) Östrogenrezeptormodulator, 2) Androgenrezeptormodulator, 3) Retinoidrezeptormodulator, 4) Zytotoxikum, 5) antiproliferatives Mittel, 6) PrenylProteintransferasehemmer, 7) HMGCoAReduktase M c Hemmer, 8) HIVProteaseHemmer, 9) ReverseTranskriptase Hemmer sowie 10) weiterer AngiogeneseHemmer verabreicht wird.
33. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 und/oder ihrer physiologisch unbedenklichen Salze und Solvate zur 0 Herstellung eines Arzneimittels zur Behandlung von festen Tumoren wobei eine therapeutisch wirksame Menge einer Verbindung der Formel I in Kombination mit Radiotherapie und einer Verbindung aus der Gruppe 1 ) Östrogenrezeptormodulator, 2) Androgenrezeptor 5 modulator, 3) Retinoidrezeptormodulator, 4) Zytotoxikum, 5) antiproliferatives Mittel, 6) PrenylProteintransferasehemmer, 7) HMGCoAReduktaseHemmer, 8) HIVProteaseHemmer, 9) ReverseTranskriptaseHemmer sowie 10) weiterer Angiogenese 0 Hemmer verabreicht wird.
34. Verwendung nach Anspruch 16 oder 17, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die auf einer gestörten TIE2Aktivität beruhen, 5 wobei eine therapeutisch wirksame Menge einer Verbindung nach Anspruch 1 in Kombination mit einem Wachstumsfaktorrezeptor Hemmer verabreicht wird.
35. Verwendung nach Anspruch 13 oder 14, von Verbindungen der Formel I zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch RafKinasen verursacht, vermittelt und/oder propagiert werden.
36. Verwendung nach Anspruch 32, wobei die RafKinase aus der Gruppe bestehend aus ARaf, BRaf und RaM ausgewählt wird.
37. Verwendung nach Anspruch 32, wobei die Erkrankungen ausgewählt sind aus der Gruppe der hyperproliferativen und nicht hyperproliferativen Erkrankungen.
38. Verwendung nach Anspruch 32 oder 34, wobei die Erkrankung Krebs ist.
39. Verwendung nach Anspruch 32 oder 34, wobei die Erkrankung nicht krebsartig ist.
40. Verwendung nach Anspruch 32, 34 oder 36, wobei die nicht krebsartigen Erkrankungen ausgewählt sind aus der Gruppe bestehend aus Psoriasis, Arthritis, Entzündungen, Endometriose, Vernarbung, gutartiger Prostatahyperplasie, immunologischer Krankheiten, Autoimmunkrankheiten und Immunschwäche¬ krankheiten.
41. Verwendung nach einem der Ansprüche 32, 34 oder 35 wobei die Erkrankungen ausgewählt sind aus der Gruppe bestehend aus Hirnkrebs, Lungenkrebs, Plattenepithelkrebs, Blasenkrebs, Magenkrebs, Pankreaskrebs, Leberkrebs, Nierenkrebs, KoIo rektalkrebs, Brustkrebs, Kopfkrebs, Halskrebs, Ösophaguskrebs, gynäkologischem Krebs, Schilddrüsenkrebs, Lymphom, chronischer Leukämie und akuter Leukämie.
Description:
4-AMINO-5-OXO-8-PHENYL-5H- PYRIDO 1 2 , 3-D ! -PYRIMIDIN-DERIVATE ALS INHIBITOREN DER TYROSINKINASEN UND DER RAF-KINASEN ZUR BEHANDLUNG VON TUMOREN

HINTERGRUND DERERFINDUNG

Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvol¬ len Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können. 0

Die vorliegende Erfindung betrifft Verbindungen und die Verwendung von

Verbindungen, bei denen die Hemmung, Regulierung und/oder Modulation der Signaltransduktion von Kinasen, insbesondere der Tyrosinkinasen und/oder Serin/Threonin-Kinasen eine Rolle spielt, ferner pharmazeutische Zusammensetzungen, die diese Verbindungen enthalten, sowie die Verwendung der Verbindungen zur Behandlung kinasebedingter Krankheiten.

0 Im einzelnen betrifft die vorliegende Erfindung Verbindungen der Formel I, die die Signaltransduktion der Tyrosinkinasen hemmen, regulieren und/oder modulieren, Zusammensetzungen, die diese Verbindungen enthalten, sowie Verfahren zu ihrer Verwendung zur Behandlung von 5 tyrosinkinasebedingten Krankheiten und Leiden wie Angiogenese, Krebs, Tumorentstehung, -Wachstum und -Verbreitung, Arteriosklerose, Augen¬ erkrankungen, wie altersbedingte Makula-Degeneration, choroidale Neovaskularisierung und diabetische Retinopathie, Entzündungs¬ erkrankungen, Arthritis, Thrombose, Fibrose, Glomerulonephritis, Neuro- 0 degeneration, Psoriasis, Restenose, Wundheilung, Transplantat- abstossung, metabolische und Erkrankungen des Immunsystems, auch Autoimmunerkrankungen, Zirrhose, Diabetes und Erkrankungen der Blutgefässe, dabei auch Instabilität und Durchlässigkeit (Permeabilität) 5 und dergleichen bei Säugetieren.

Bei den Tyrosinkinasen handelt es sich um eine Klasse von Enyzmen mit mindestens 400 Mitgliedern, die die Übertragung des endständigen Phosphats des Adenosintriphosphats (gamma-Phosphat) auf Tyrosinreste bei Proteinsubstraten katalysieren. Man nimmt an, dass den Tyrosin- kinasen bei verschiedenen Zellfunktionen über die Substratphos- phorylierung eine wesentliche Rolle bei der Signaltransduktion zukommt. Obwohl die genauen Mechanismen der Signaltransduktion noch unklar sind, wurde gezeigt, dass die Tyrosinkinasen wichtige Faktoren bei der Zeilproliferation, der Karzinogenese und der Zelldifferenzierung darstellen. Die Tyrosinkinasen lassen sich in Rezeptor-Tyrosinkinasen und zyto- solische Tyrosinkinasen einteilen. Die Rezeptor-Tyrosinkinasen weisen einen extrazellulären Teil, einen Transmembranteil und einen intra- zellulären Teil auf, während die zytosolischen Tyrosinkinasen ausschließlich intrazellulär vorliegen, (siehe Reviews von Schlessinger und Ullrich, Neuron 9, 383-391 (1992) und 1-20 (1992)). Die Rezeptor-Tyrosinkinasen bestehen aus einer Vielzahl von Trans¬ membranrezeptoren mit unterschiedlicher biologischer Wirksamkeit. So wurden ungefähr 20 verschiedene Unterfamilien von Rezeptor-Tyrosin¬ kinasen identifiziert. Eine Tyrosinkinase-Unterfamilie, die die Bezeichnung HER-Unterfamilie trägt, besteht aus EGFR, HER2, HER3 und HER4. Zu den Liganden dieser Rezeptor-Unterfamilie zählen der Epithel-Wachs- tumsfaktor, TGF-α, Amphiregulin, HB-EGF, Betacellulin und Heregulin. Die Insulin-Unterfamilie, zu der INS-R, IGF-IR und IR-R zählen, stellt eine weitere Unterfamilie dieser Rezeptor-Tyrosinkinasen dar. Die PDGF- Unterfamilie beinhaltet den PDGF-α- and -ß-Rezeptor, CSFIR, c-kit und FLK-II. Außerdem gibt es die FLK-Familie, die aus dem Kinaseinsert- domänenrezeptor (KDR), der fötalen Leberkinase-1 (FLK-1), der fötalen Leberkinase-4 (FLK-4) und der fms-Tyrosinkinase-1 (flt-1) besteht. Die PDGF- und FLK-Familie werden üblicherweise aufgrund der zwischen den beiden Gruppen bestehenden Ähnlichkeiten gemeinsam diskutiert. Für eine genaue Diskussion der Rezeptor-Tyrosinkinasen siehe die Arbeit von

Plowman et al., DN & P 7(6):334-339, 1994, die hiermit durch Bezug¬ nahme aufgenommen wird.

Zu den RTKs (Rezeptor-Tyrosin-Kinasen) gehören auch TIE2 und seine Liganden Angiopoietin 1 und 2. Es werden mittlerweile immer mehr Homologe dieser Liganden gefunden, deren Wirkung im Einzelnen noch nicht klar nachgewiesen wurde. Als Homologes von TIE2 ist TIE1 bekannt. Die TIE RTKs werden selektiv auf Endothelzellen exprimiert und finden ihre Aufgabe bei Prozessen der Angiogenese und Maturierung der Blutgefäße. Dadurch können sie insbesondere bei Erkrankungen des Gefäßsystems und bei Pathologien, in denen Gefäße genutzt oder gar umgebildet werden, ein wertvolles Ziel sein. Ausser der Verhinderung der Gefäßneubildung und Maturierung kann auch die Stimulation von Gefäßneubildung ein wertvolles Ziel für Wirkstoffe sein. Bezug genommen wird auf Übersichtsarbeiten zur Angiogenese, Tumorentwicklung und Kinase Signalgebung von G. Breier Placenta (2000) 21 , Suppl A, Trophoblasr Res 14, S11-S15

F. Bussolino et al. TIBS 22, 251 -256 (1997)

G. Bergers & L.E. Benjamin Nature Rev Cancer 3, 401-410 (2003)

P. Blume-Jensen & . Hunter Nature 411 , 355-365 (2001)

M. Ramsauer & P. D ' Amore J. Clin. INvest. 110, 1615-1617 (2002)

S. Tsigkos et al. Expert Opin. Investig. Drugs 12, 933-941 (2003)

Beispiele für Kinase-Inhibitoren, die bereits in der Krebstherapie getestet werden, können L.K. Shawyer et al. Cancer Cell 1 , 117-123(2002) und D. Fabbro & C. Garcia-Echeverria Current Opin. Drug Discovery & Development 5, 701-712 (2002) entnommen werden.

Die zytosolischen Tyrosinkinasen bestehen ebenfalls aus einer Vielzahl von Unterfamilien, darunter Src, Frk, Btk, Csk, AbI, Zap70, Fes/Fps, Fak,

Jak, Ack, and LIMK. Jede dieser Unterfamilien ist weiter in verschiedene

Rezeptoren unterteilt. So stellt zum Beispiel die Src-Unterfamilie eine der größten Unterfamilien dar. Sie beinhaltet Src, Yes, Fyn, Lyn, Lck, BIk, Hck,

Fgr und Yrk. Die Src-Enzymunterfamilie wurde mit der Onkogenese in Verbindung gebracht. Für eine genauere Diskussion der zytosolischen Tyrosinkinasen, siehe die Arbeit von Bolen Oncogene, 8:2025-2031 (1993), die hiermit durch Bezugnahme aufgenommen wird. Sowohl die Rezeptor-Tyrosinkinasen als auch die zytosolischen Tyrosin¬ kinasen sind an Signalübertragungswegen der Zelle, die zu verschiedenen Leidenszuständen führen, darunter Krebs, Schuppenflechte und Hyper- immunreaktionen, beteiligt.

10 Es wurde vorgeschlagen, dass verschiedene Rezeptor-Tyrosinkinasen sowie die an sie bindenden Wachstumsfaktoren eine Rolle bei den Angiogenese spielen, obwohl einige die Angiogenese indirekt fördern könnten (Mustonen und Alitalo, J. Cell Biol. 129:895-898, 1995). Eine

^ c dieser Rezeptor-Tyrosinkinasen ist die fötale Leberkinase 1 , auch FLK-1 genannt. Das menschliche Analog der FLK-1 ist der kinase-insert- domänenhaltige Rezeptor KDR, der auch unter der Bezeichnung Gefäß- endothelzellenwachstumsfaktorrezeptor 2 bzw. VEGFR-2 bekannt ist, da er VEGF hochaffin bindet. Schließlich wurde die Maus-Version dieses

20

Rezeptors auch ebenfalls NYK genannt (Oelrichs et al., Oncogene 8(1):11-

15, 1993). VEGF und KDR stellen ein Ligand-Rezeptor-Paar dar, das eine wesentliche Rolle bei der Proliferation der Gefäßendothelzellen und der Bildung und Sprossung der Blutgefäße, die als Vaskulogenese bzw.

25 Angiogenese bezeichnet werden, spielt.

Die Angiogenese ist durch eine übermäßig starke Aktivität des Gefäß- endothelwachstumsfaktors (VEGF) gekennzeichnet. Der VEGF besteht eigentlich aus einer Familie von Liganden (Klagsburn und D'Amore,

30 Cytokine & Growth Factor Reviews 7:259-270, 1996). Der VEGF bindet den hochaffinen transmembranösen Tyrosinkinaserezepzor KDR und die verwandte fms-Tyrosinkinase-1 , auch unter der Bezeichnung Flt-1 oder Gefäßendothelzellenwachstumsfaktorrezeptor 1 (VEGFR-1) bekannt. Aus

Zellkultur- und Gen- Knockout-Versuchen geht hervor, dass jeder

35

Rezeptor zu unterschiedlichen Aspekten der Angiogenese beiträgt. Der

KDR führt die mitogene Funktion des VEGF herbei, während Flt-1 nichtmitogene Funktionen, wie diejenigen, die mit der Zelladhäsion in Zusammenhang stehen, zu modulieren scheint. Eine Hemmung des KDR moduliert daher das Niveau der mitogenen VEGF-Aktivität. Tatsächlich wurde gezeigt, dass das Tumorwachstum von der antiangiogenen Wirkung der VEGF-Rezeptor-Antagonisten beeinflusst wird (Kim et al., Nature 362, S. 841- 844, 1993).

Drei PTK (Protein-Tyrosinkinase)-Rezeptoren für VEGFR sind identifiziert 10 worden : VEGFR-1 (Flt-1); VEGRF-2 (Flk-1 oder KDR) und VEGFR-3 (FIt- 4). Von besonderem Interesse ist VEGFR-2.

Feste Tumore können daher mit Tyrosinkinasehemmem behandelt A c werden, da diese Tumore für die Bildung der zur Unterstützung ihres

Wachstums erforderlichen Blutgefäße auf Angiogenese angewiesen sind. Zu diesen festen Tumoren zählen die Monozytenleukämie, Hirn-, Urogenital-, Lymphsystem-, Magen-, Kehlkopf- und Lungenkarzinom, darunter Lungenadenokarzinom und kleinzelliges Lungenkarzinom. Zu

20 weiteren Beispielen zählen Karzinome, bei denen eine Überexpression oder Aktivierung von Raf-aktivierenden Onkogenen (z.B. K-ras, erb-B) beobachtet wird. Zu diesen Karzinomen zählen Bauchspeicheldrüsen- und Brustkarzinom. Hemmstoffe dieser Tyrosinkinasen eignen sich daher zur

25 Vorbeugung und Behandlung von proliferativen Krankheiten, die durch diese Enzyme bedingt sind.

Die angiogene Aktivität des VEGF ist nicht auf Tumore beschränkt. Der VEGF ist für die bei diabetischer Retinopathie in bzw. in der Nähe der

30 Retina produzierte angiogene Aktivität verantwortlich. Dieses Gefäßwachs¬ tum in der Retina führt zu geschwächter Sehkraft und schließlich Erblindung. Die VEGF-mRNA- und -protein-Spiegel im Auge werden durch Leiden wie Netzhautvenenokklusion beim Primaten sowie verringertem pO 2 -Spiegel bei der Maus, die zu Gefäßneubildung führen, erhöht.

35

Intraokular injizierte monoklonale Anti-VEGF-Antikörper, oder VEGF-

Rezeptor-Immunkonjugate, hemmen sowohl im Primaten- als auch im

Nagetiermodell die Gefäßneubildung im Auge. Unabhängig vom Grund der Induktion des VEGF bei der diabetischen Retinopathie des Menschen, eignet sich die Hemmung des Augen-VEGF zur Behandlung dieser Krankheit.

Die VEGF-Expression ist auch in hypoxischen Regionen von tierischen und menschlichen Tumoren neben Nekrosezonen stark erhöht. Der VEGF wird außerdem durch die Expression der Onkogene ras, raf, src und p53- Mutante (die alle bei der Bekämpfung von Krebs von Bedeutung sind)

10 hinaufreguliert. Monoklonale Anti-VEGF-Antikörper hemmen bei der

Nacktmaus das Wachstum menschlicher Tumore. Obwohl die gleichen Tumorzellen in Kultur weiterhin VEGF exprimieren, verringern die Anti¬ körper ihre Zellteilungsrate nicht. So wirkt der aus Tumoren stammende

, c VEGF nicht als autokriner mitogener Faktor. Der VEGF trägt daher in vivo dadurch zum Tumorwachstum bei, dass er durch seine parakrine Gefäß- endothelzellen-Chemotaxis- und -Mitogeneseaktivität die Angiogenese fördert. Diese monoklonalen Antikörper hemmen auch das Wachstum von typischerweise weniger stark vaskularisierten Human-Kolonkarzinomen bei

20 thymuslosen Mäusen und verringern die Anzahl der aus inokulierten Zellen entstehenden Tumore.

Die Expression eines VEGF-bindenden Konstrukts von Flk-1 , Flt-1 , dem zur Entfernung der zytoplasmatischen Tyrosinkinasedomänen, jedoch

25 unter Beibehaltung eines Membranankers, verkürzten Maus-KDR- Rezeptorhomologs, in Viren stoppt praktisch das Wachstum eines transplantierbaren Glioblastoms bei der Maus, vermutlich aufgrund des dominant-negativen Mechanismus der Heterodimerbildung mit trans-

30 membranösen Endothelzellen-VEGF-Rezeptoren. Embryostammzellen, die in der Nacktmaus üblicherweise in Form von festen Tumoren wachsen, bilden bei Knock-out aller beider VEGF-AIIeIe keine nachweisbaren Tumore. Aus diesen Daten gemeinsam geht die Rolle des VEGF beim

Wachstum fester Tumore hervor. Die Hemmung von KDR bzw. Flt-1 ist an

35 der pathologischen Angiogenese beteiligt, und diese Rezeptoren eignen sich zur Behandlung von Krankheiten, bei denen Angiogenese einen Teil

der Gesamtpathologie, z.B. Entzündung, diabetische Retina-Vaskulari- sierung sowie verschiedene Formen von Krebs, darstellt, da bekannt ist, dass das Tumorwachstum angiogeneseabhängig ist (Weidner et al., N.

Engl. J. Med., 324, S. 1-8, 1991). 5

Bei Angiopoietin 1 (Ang1), einem Liganden für die endothelspezifische Rezeptor-Tyrosinkinase TIE-2, handelt es sich um einen neuen angio- genen Faktor (Davis et al, Cell, 1996, 87:1161-1169; Partanen et al, Mol.

10 Cell Biol., 12:1698-1707 (1992); US-Patent Nr. 5,521 ,073; 5,879,672;

5,877,020; und 6,030,831). Das Akronym TIE steht für „Tyrosinkinase mit Ig- und EGF-Homologiedomänen". TIE wird zur Identifizierung einer Klasse von Rezeptor-Tyrosinkinasen verwendet, die ausschließlich in

, | c Gefäßendothelzellen und frühen hämopoietischen Zellen exprimiert werden. TIE-Rezeptorkinasen sind typischerweise durch das Vorhanden¬ sein einer EGF-ähnlichen Domäne und einer Immunglobulin (IG)- ähnlichen Domäne charakterisiert, die aus extrazellulären Faltungs¬ einheiten, die durch Disulfidbrückenbindungen zwischen den Ketten

20 stabilisiert sind, besteht (Partanen et al Curr. Topics Microbiol. Immunol.,

1999, 237:159-172). Im Gegensatz zu VEGF, der seine Funktion während der frühen Stadien in der Gefäßentwicklung ausübt, wirken Ang1 und sein Rezeptor TIE-2 während der späteren Stadien in der Gefäßentwicklung, 25 d.h. während der Gefäßumbildung (Umbildung bezieht sich auf die Bildung eines Gefäßlumens) und Reifung (Yancopoulos et al, Cell, 1998, 93:661- 664; Peters, K.G., Circ. Res., 1998, 83(3):342-3; Suri et al, Cell 87, 1171- 1180 (1996)).

30

Demzufolge würde man erwarten, daß eine Hemmung von TIE-2 die

Umbildung und Reifung eines durch Angiogenese initiierten neuen Gefäßsystems und dadurch den Angiogeneseprozeß unterbrechen sollte.

Weiterhin würde eine Hemmung an der Kinasedomäne-Bindungsstelle von

35

VEGFR-2 die Phosphorylierung von Tyrosinresten blockieren und dazu

dienen, die Initiation der Angiogenese zu unterbrechen. Daher darf man annehmen, daß die Hemmung von TIE-2 und/oder VEGFR-2 die Tumor- angiogenese verhindern und dazu dienen sollte, das Tumorwachstum zu verlangsamen oder vollständig zu beseitigen. Dementsprechend könnte man eine Behandlung von Krebs und anderen mit unangemessener Angiogenese einhergehenden Erkrankungen bereitstellen.

Die vorliegende Erfindung richtet sich auf Verfahren zur Regulation, 10 Modulation oder Hemmung der TIE-2 zur Vorbeugung und/oder Behand¬ lung von Erkrankungen im Zusammenhang mit unregulierter oder gestörter Tl E-2 -Aktivität. Insbesondere lassen sich die Verbindungen der Formel I auch bei der Behandlung gewisser Krebsformen einsetzen. Weiterhin <. c können die Verbindungen der Formel I verwendet werden, um bei gewissen existierenden Krebschemotherapien additive oder synergistische Effekte bereitzustellen, und/oder können dazu verwendet werden, um die Wirksamkeit gewisser existierender Krebschemotherapien und -bestrahl- ungen wiederherzustellen. 0

Weiterhin können die Verbindungen der Formel I zur Isolierung und zur Untersuchung der Aktivität oder Expression von TIE-2 verwendet werden. Außerdem eigenen sie sich insbesondere zur Verwendung in 5 diagnostischen Verfahren zu Erkrankungen im Zusammenhang mit unregulierter oder gestörter TIE-2-Aktivität.

Die vorliegende Erfindung richtet sich weiterhin auf Verfahren zur 30 Regulation, Modulation oder Hemmung des VEGFR-2 zur Vorbeugung und/oder Behandlung von Erkrankungen im Zusammenhang mit unregulierter oder gestörter VEGFR-2-Aktivität.

Die vorliegende Erfindung betrifft weiterhin die Verbindungen der Formel I 5 als Inhibitoren von Raf-Kinasen.

Protein-Phosphorylierung ist ein fundamentaler Prozess für die Regulation von Zellfunktionen. Die koordinierte Wirkung von sowohl Proteinkinasen als auch Phosphatasen kontrolliert die Phosphorylierungsgrade und folglich die Aktivität spezifischer Zielproteine. Eine der vorherrschenden

Rollen der Protein-Phosphorylierung ist bei der Signaltransduktion, wenn extrazelluläre Signale amplifiziert und durch eine Kaskade von Protein- Phosphorylierungs- und Dephosphorylierungsereignissen, z. B. im p21 ras /raf-Weg propagiert werden.

Das p21 ras -Gen wurde als ein Onkogen der Harvey- und Kirsten-Ratten- Sarkom-Viren (H-Ras bzw. K-Ras) entdeckt. Beim Menschen wurden charakteristische Mutationen im zellulären Ras-Gen (c-Ras) mit vielen verschiedenen Krebstypen in Verbindung gebracht. Von diesen mutanten Allelen, die Ras konstitutiv aktiv machen, wurde gezeigt, dass sie Zellen, wie zum Beispiel die murine Zelllinie NIH 3T3, in Kultur transformieren.

Das p21 ras -Onkogen ist ein wichtiger beitragender Faktor bei der Entwick- lung und Progression humaner solider Karzinome und ist bei 30 % aller humaner Karzinome mutiert (Bolton et al. (1994) Ann. Rep. Med. Chem., 29, 165-74; Bos. (1989) Cancer Res., 49, 4682-9). In seiner normalen, nicht mutierten Form ist das Ras-Protein ein Schlüsselelement der Signal- transduktionskaskade, die durch Wachstumsfaktor-Rezeptoren in fast allen Geweben gesteuert wird (Avruch et al. (1994) Trends Biochem. Sei., 19, 279-83).

Biochemisch ist Ras ein Guanin-Nukleotid-bindendes Protein, und das Zyklieren zwischen einer GTP-gebundenen aktivierten und einer GDP- gebundenen ruhenden Form wird von Ras-endogener GTPase-Aktivität und anderen Regulatorproteinen strikt kontrolliert. Das Ras-Genprodukt bindet an Guanintriphosphat (GTP) und Guanindiphosphat (GDP) und hydrolysiert GTP zu GDP. Ras ist im GTP-gebundenen Zustand aktiv. In den Ras-Mutanten in Krebszellen ist die endogene GTPase-Aktivität abge-

schwächt, und folglich gibt das Protein konstitutive Wachstumssignale an „Downstream"-Effektoren, wie zum Beispiel an das Enzym Raf-Kinase ab. Dies führt zum krebsartigen Wachstum der Zellen, die diese Mutanten tragen (Magnuson et al. (1994) Semin. Cancer Biol., 5, 247-53). Das

5

Ras-Proto-Onkogen benötigt ein funktionell intaktes C-Raf-1 -Proto¬ onkogen, um in höheren Eukaryoten durch Rezeptor- und Nicht- Rezeptor-Tyrosin-Kinasen initiierte Wachstums- und Differenzierungs¬ signale zu transduzieren.

10

Aktiviertes Ras ist für die Aktivierung des C-Raf-1 -Proto-Onkogens not¬ wendig, die biochemischen Schritte, durch die Ras die Raf-1-Protein- (Ser/Thr)-Kinase aktiviert, sind jedoch inzwischen gut charakterisiert. Es

^ c wurde gezeigt, dass das Inhibieren des Effekts von aktivem Ras durch

Inhibition des Raf-Kinase-Signalwegs mittels Verabreichung von deaktivie¬ renden Antikörpern gegen Raf-Kinase oder mittels Koexpression domi¬ nanter negativer Raf-Kinase oder dominanter negativer MEK (MAPKK), dem Substrat der Raf-Kinase, zur Reversion transformierter Zellen zum

20 normalen Wachstumsphänotyp führt, siehe: Daum et al. (1994) Trends

Biochem. Sei., 19, 474-80; Fridman et al. (1994) J Biol. Chem., 269, 30105-8. Kolch et al. (1991) Nature, 349, 426-28) und zur Besprechung Weinstein-Oppenheimer et al. Pharm. & Therap. (2000), 88, 229-279.

25

Auf ähnliche Weise wurde die Inhibition von Raf-Kinase (durch Antisense- Oligodesoxynukleotide) in vitro und in vivo mit der Inhibition des Wachs¬ tums einer Reihe verschiedener humaner Tumortypen in Beziehung

30 gebracht (Monia et al., Nat. Med. 1996, 2, 668-75).

Raf-Serin- und Threonin-spezifische Protein-Kinasen sind cytosolische Enzyme, die das Zellwachstum in einer Reihe verschiedener Zellsysteme stimulieren (Rapp, U.R., et al. (1988) in The Oncogene Handbook; T.

35

Curran, E. P. Reddy und A. Skalka (Hrsg.) Elsevier Science Publishers;

Niederlande, S. 213-253; Rapp, U.R., et al. (1988) CoId Spring Harbor

Sym. Quant. Biol. 53:173-184; Rapp, U.R., et al. (1990) Inv Curr. Top. Microbiol. Immunol. Potter und Melchers (Hrsg.), Berlin, Springer-Verlag 166:129-139).

Drei Isozyme wurden charakterisiert:

C-Raf (Raf-1) (Bonner, Tl 1 et al. (1986) Nucleic Acids Res. 14:1009- 1015). A-Raf (Beck, T.W., et al. (1987) Nucleic Acids Res. 15:595-609), und B-Raf (Qkawa, S., et al. (1998) Mol. Cell. Biol. 8:2651-2654;

Sithanandam, G. et al. (1990) Oncogene:1775). Diese Enzyme unter¬ scheiden sich durch ihre Expression in verschiedenen Geweben. Raf-1 wird in allen Organen und in allen Zelllinien, die untersucht wurden, exprimiert, und A- und B-Raf werden in Urogenital- bzw. Hirngeweben exprimiert (Storm, S. M. (1990) Oncogene 5:345-351).

Raf-Gene sind Proto-Onkogene: Sie können die maligne Transformation von Zellen initiieren, wenn sie in spezifisch veränderten Formen exprimiert werden. Genetische Veränderungen, die zu onkogener Aktivierung führen, erzeugen eine konstitutiv aktive Proteinkinase durch Entfernung oder Inter¬ ferenz mit einer N-terminalen negativen Regulatordomäne des Proteins (Heidecker, G., et al. (1990) Mol. Cell. Biol. 10:2503-2512; Rapp, U.R., et al. (1987) in Oncogenes and Cancer; S. A. Aaronson, J. Bishop, T. Sugimura, M. Terada, K. Toyoshima und P. K. Vogt (Hrsg.) Japan Scientific Press, Tokyo). Mikroinjektion in NIH 3T3-Zellen von onkogen aktivierten, aber nicht Wildtyp-Versionen des mit Expressionsvektoren von Escherichia coli präparierten Raf-Proteins führt zu morphologischer Trans¬ formation und stimuliert die DNA-Synthese (Rapp, U.R., et al. (1987) in Oncogenes and Cancer; S. A. Aaronson, J. Bishop, T. Sugimura, M. Terada, K. Toyoshima, und P. K. Vogt (Hrsg.) Japan Scientific Press,

Tokyo; Smith, M. R., et al. (1990) Mol. Cell. Biol. 10:3828-3833).

Folglich ist aktiviertes RaM ein intrazellulärer Aktivator des Zellwachs¬ tums. Raf-1-Protein-Serin-Kinase ist ein Kandidat für den „Downstream"- Effektor der Mitogen-Signaltransduktion, da Raf-Onkogene dem Wachs¬ tumsarrest begegnen, der aus einer Blockade zellulärer Ras-Aktivität aufgrund einer zellulären Mutation (Ras-revertante Zellen) oder Mikro- injektion von Anti-Ras-Antikörpem resultiert (Rapp, U.R., et al. (1988) in The Oncogene Handbook, T. Curran, E. P. Reddy und A. Skalka (Hrsg.), Elsevier Science Publishers; Niederlande, S. 213-253; Smith, M. R., et al. (1986) Nature (London) 320:540-543).

Die C-Raf-Funktion ist für die Transformation durch eine Reihe verschie¬ dener Membran-gebundener Onkogene und für die Wachstumsstimulation durch in Sera enthaltene Mitogene erforderlich (Smith, M. R., et al. (1986) Nature (London) 320:540-543). RaM -Protein-Serin-Kinase-Aktivität wird durch Mitogene über die Phosphorylierung reguliert (Morrison, D. K., et al. (1989) Cell 58:648-657), welche auch die subzelluläre Verteilung bewirkt

(Olah, Z., et al. (1991) Exp. Brain Res. 84:403; Rapp, U.R., et al. (1988)

CoId Spring Harbor Sym. Quant. Biol. 53:173-184. Zu RaM -aktivierenden

Wachstumsfaktoren zählen der aus Thrombozyten stammende Wachs¬ tumsfaktor (PDGF) (Morrison, D. K., et al. (1988) Proc. Natl. Acad. Sei. USA 85:8855-8859), der Kolonien-stimulierende Faktor (Baccarini, M., et al. (1990) EMBO J. 9:3649-3657), Insulin (Blackshear, PJ. , et al. (1990) J. Biol. Chem. 265:12115-12118), der epidermale Wachstumsfaktor (EGF) (Morrison, R. K., et al. (1988) Proc. Natl. Acad. Sei. USA 85:8855-8859), lnterleukin-2 (Turner, B.C., et al. (1991) Proc. Natl. Acad. Sei. USA 88:1227) und lnterleukin-3 und der Granulozyten-Makrophagen-Kolonien- stimulierende Faktor (Carroll, M. P., et al. (1990) J. Biol. Chem. 265:19812- 19817).

Nach der Mitogen-Behandlung von Zellen transloziert die transient aktivierte Raf-1-Protein-Serin-Kinase in den perinukleären Bereich und den

Nukleus (Olah, Z., et al. (1991) Exp. Brain Res. 84:403; Rapp, U.R., et al.

(1988) CoId Spring Habor Sym. Quant. Biol. 53:173-184). Zellen, die aktiviertes Raf enthalten, sind in ihrem Genexpressionsmuster verändert (Heidecker, G., et al. (1989) in Genes and signal transduction in multistage carcinogenesis, N. Colburn (Hrsg.), Marcel Dekker, Inc., New York, S. 339- 374) und Raf-oncogenes activate transcription from Ap-l/PEA3-dependent promotors in transient transfection assays (Jamal, S., et al. (1990) Science 344:463-466; Kaibuchi, K., et al. (1989) J. Biol. Chem. 264:20855-20858; Wasylyk, C, et al. (1989) Mol. Cell. Biol. 9:2247-2250).

Es gibt mindestens zwei unabhängige Wege für die Raf-1 -Aktivierung durch extrazelluläre Mitogene: Einen, der Proteinkinase C (KC) beinhaltet, und einen zweiten, der durch Protein-Tyrosin-Kinasen initiiert wird (Black- shear, PJ. , et al. (1990) J. Biol. Chem. 265:12131-12134; Kovacina, K.S., et al. (1990) J. Biol. Chem. 265:12115-12118; Morrison, D.K., et al. (1988) Proc. Natl. Acad. Sei. USA 85:8855-8859; Siegel, J. N., et al. (1990) J. Biol. Chem. 265:18472-18480; Turner, B.C., et al. (1991) Proc. Natl. Acad. Sei.

USA 88:1227). In jedem Fall beinhaltet die Aktivierung Raf-1 -Protein-

Phosphorylierung. Raf-1 -Phosphorylierung kann eine Folge einer Kinase-

Kaskade sein, die durch Autophosphorylierung amplifiziert wird, oder kann vollkommen durch Autophosphorylierung hervorgerufen werden, die durch Bindung eines vermutlichen Aktivierungsliganden an die Raf-1-Regulator- domäne, analog zur PKC-Aktivierung durch Diacylglycerol initiiert wird (Nishizuka, Y. (1986) Science 233:305-312).

Einer der Hauptmechanismen, durch den die Zellregulation bewirkt wird, ist durch die Transduktion der extrazellulären Signale über die Membran, die wiederum biochemische Wege in der Zelle modulieren. Protein- Phosphorylierung stellt einen Ablauf dar, über den intrazelluläre Signale von Molekül zu Molekül propagiert werden, was schließlich in einer Zellantwort resultiert. Diese Signaltransduktionskaskaden sind hoch reguliert und überlappen häufig, wie aus dem Vorliegen vieler Protein-

kinasen wie auch Phosphatasen hervorgeht. Phosphorylierung von Proteinen tritt vorwiegend bei Serin-, Threonin- oder Tyrosinresten auf, und Proteinkinasen wurden deshalb nach ihrer Spezifität des Phosporylie- rungsortes, d. h. der Serin-/ Threonin-Kinasen und Tyrosin-Kinasen klassifiziert. Da Phosphorylierung ein derartig weit verbreiteter Prozess in

Zellen ist und da Zellphänotypen größtenteils von der Aktivität dieser Wege beeinflusst werden, wird zur Zeit angenommen, dass eine Anzahl von Krankheitszuständen und/oder Erkrankungen auf entweder abweichende Aktivierung oder funktionelle Mutationen in den molekularen Komponenten von Kinasekaskaden zurückzuführen sind. Folglich wurde der Charakterisierung dieser Proteine und Verbindungen, die zur Modulation ihrer Aktivität fähig sind, erhebliche Aufmerksamkeit geschenkt (Übersichtsartikel siehe: Weinstein-Oppenheimer et al. Pharma. &. Therap., 2000, 88, 229-279).

Die Synthese von kleinen Verbindungen, die die Signaltransduktion der Tyrosinkinasen und/oder Raf-Kinasen spezifisch hemmen, regulieren und/oder modulieren, ist daher wünschenswert und ein Ziel der vorliegenden Erfindung.

Es wurde gefunden, daß die erfindungsgemäßen Verbindungen und ihre S Saallzzee b beeii g guutteerr V Veerrttrrääggllkichkeit sehr wertvolle pharmakologische Eigenschaften besitzen.

Insbesondere zeigen sie inhibierende Eigenschaften der Tyrosinkinase. Es wurde weiterhin gefunden, daß die erfindungsgemäßen Verbindungen Inhibitoren des Enzyms Raf-Kinase sind. Da das Enzym ein „Downstream"- Effektor von p21 ras ist, erweisen sich die Inhibitoren in pharmazeutischen Zusammensetzungen für die human- oder veterinärmedizinische Anwendung als nützlich, wenn Inhibition des Raf-Kinase-Weges, z. B. bei der Behandlung von Tumoren und/oder durch

Raf-Kinase vermitteltem krebsartigen Zellwachstum, angezeigt ist. Die Verbindungen sind insbesondere nützlich bei der Behandlung solider Karzinome bei Mensch und Tier, z. B. von murinem Krebs, da die Progression dieser Krebse abhängig ist von der Ras-Protein-Signal- transduktionskaskade und deshalb auf die Behandlung durch Unter¬ brechung der Kaskade, d. h. durch Inhibition der Raf-Kinase, anspricht. Dementsprechend wird die erfindungsgemäßen Verbindung oder ein pharmazeutisch unbedenkliches Salz davon für die Behandlung von Krankheiten verabreicht, die durch den Raf-Kinase-Weg vermittelt werden, besonders Krebs, einschließlich solider Karzinome, wie zum Beispiel Karzinome (z. B. der Lungen, des Pankreas, der Schilddrüse, der Harn¬ blase oder des Kolons), myeloische Erkrankungen (z. B. myeloische Leukämie) oder Adenome (z. B. villöses Kolonadenom), pathologische Angiogenese und metastatische Zellmigration. Die Verbindungen sind ferner nützlich bei der Behandlung der Komplementaktivierungs- abhängigen chronischen Entzündung (Niculescu et al. (2002) Immunol.

Res., 24:191-199) und durch HIV-1 (Human Immunodeficiency Virus

Typ 1) induzierte Immunschwäche (Popik et al. (1998) J Virol, 72: 6406-

6413).

Es wurde überraschend gefunden, daßs die erfindungsgemäßen Verbindungen mit Signalwegen, besonders mit den hierin beschriebenen Signalwegen und bevorzugt dem Raf-Kinase-Signalweg interagieren können. Die erfindungsgemäßen Verbindungen zeigen bevorzugt eine vorteilhafte biologische Aktivität, die in auf Enzymen basierenden Assays, zum Beispiel Assays wie hierin beschrieben, leicht nachweisbar ist. In derartigen auf Enzymen basierenden Assays zeigen und bewirken die erfindungsgemäßen Verbindungen bevorzugt einen inhibierenden Effekt, der gewöhnlich durch IC 50 -Werte in einem geeigneten Bereich, bevorzugt im mikromolaren Bereich und bevorzugter im nanomolaren Bereich dokumentiert wird.

Wie hierin besprochen, sind diese Signalwege für verschiedene Erkrankungen relevant. Dementsprechend sind die erfindungsgemäßen Verbindungen nützlich bei der Prophylaxe und/oder Behandlung von

Erkrankungen, die von den genannten Signalwegen durch Interaktion mit 5 einem oder mehreren der genannten Signalwege abhängig sind.

Gegenstand der vorliegenden Erfindung sind deshalb erfindungsgemäße Verbindungen als Promotoren oder Inhibitoren, bevorzugt als Inhibitoren der hierin beschriebenen Signalwege. Bevorzugter Gegenstand der

10 Erfindung sind deshalb erfindungsgemäße Verbindungen als Promotoren oder Inhibitoren, bevorzugt als Inhibitoren des Raf-Kinase-Weges. Ein bevorzugter Gegenstand der Erfindung sind deshalb erfindungsgemäße Verbindungen als Promotoren oder Inhibitoren, bevorzugt als Inhibitoren

^ c der Raf-Kinase. Ein noch bevorzugterer Gegenstand der Erfindung sind erfindungsgemäße Verbindungen als Promotoren oder Inhibitoren, bevorzugt als Inhibitoren einer oder mehrerer Raf-Kinasen, ausgewählt aus der Gruppe bestehend aus A-Raf, B-Raf und C-Raf-1. Ein besonders bevorzugter Gegenstand der Erfindung sind erfindungsgemäße

20

Verbindungen als Promotoren oder Inhibitoren, bevorzugt als Inhibitoren von C-Raf-1.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung 25 einer oder mehrerer erfindungsgemäßer Verbindungen bei der Behand¬ lung und/oder Prophylaxe von Erkrankungen, bevorzugt den hier beschrie¬ benen Erkrankungen, die durch Raf-Kinasen veruracht, vermittelt und/oder propagiert werden und insbesondere Erkrankungen, die durch Raf- O0 Kinasen ausgewählt aus der Gruppe, bestehend aus A-Raf, B-Raf and C- RaM verursacht, vermittelt und/oder propagiert werden. Gewöhnlich werden die hier besprochenen Erkrankungen in zwei Gruppen eingeteilt, in hyperproliferative und nicht hyperproliferative Erkrankungen. In diesem

Zusammenhang werden Psoriasis, Arthritis, Entzündungen, Endometriose,

35

Vernarbung, gutartige Prostatahyperplasie, immunologische Krankheiten,

Autoimmunkrankheiten und Immunschwächekrankheiten als nicht

krebsartige Krankheiten angesehen, von denen Arthritis, Entzündung, immunologische Krankheiten, Autoimmunkrankheiten und Immun¬ schwächekrankheiten gewöhnlich als nicht hyperproliferative Erkrankungen angesehen werden. In diesem Zusammenhang sind Hirn- krebs, Lungenkrebs, Plattenepithelkrebs, Blasenkrebs, Magenkrebs, Pankreaskrebs, Leberkrebs, Nierenkrebs, Kolorektalkrebs, Brustkrebs, Kopfkrebs, Halskrebs, Ösophaguskrebs, gynäkologischer Krebs, Schild¬ drüsenkrebs, Lymphome, chronische Leukämie und akute Leukämie als krebsartige Erkrankungen anzusehen, die alle gewöhnlich als hyper¬ proliferative Erkrankungen angesehen werden. Insbesondere krebsartiges Zellwachstum und insbesondere durch Raf-Kinase vermitteltes krebs¬ artiges Zellwachstum ist eine Erkrankung, die ein Ziel der vorliegenden Erfindung darstellt. Gegenstand der vorliegenden Erfindung sind deshalb erfindungsgemäße Verbindungen als Arzneimittel und/oder Arzneimittel¬ wirkstoffe bei der Behandlung und/oder Prophylaxe der genannten Erkrankungen und die Verwendung von erfindungsgemäßen

Verbindungen zur Herstellung eines Pharmazeutikums für die Behandlung und/oder Prophylaxe der genannten Erkrankungen wie auch ein Verfahren zur Behandlung der genannten Erkrankungen umfassend die Verabrei¬ chung eines oder mehrerer erfindungsgemäßer Verbindungen an einen Patienten mit Bedarf an einer derartigen Verabreichung.

Es kann gezeigt werden, dass die erfindungsgemäßen Verbindungen in einem Xenotransplantat-Tumor-Modell eine in vivo antiproliferative Wirkung aufweisen. Die erfindungsgemäßen Verbindungen werden an einen Patienten mit einer hyperproliferativen Erkrankung verabreicht, z. B. zur Inhibition des Tumorwachstums, zur Verminderung der mit einer lymphoproliferativen Erkrankung einhergehenden Entzündung, zur Inhibition der Transplantatabstoßung oder neurologischer Schädigung aufgrund von Gewebereparatur usw. Die vorliegenden Verbindungen sind nützlich für prophylaktische oder therapeutische Zwecke. Wie hierin verwendet, wird der Begriff „Behandeln" als Bezugnahme sowohl auf die

Verhinderung von Krankheiten als auch die Behandlung vorbestehender Leiden verwendet. Die Verhinderung von Proliferation wird durch Verabreichung der erfindungsgemäßen Verbindungen vor Entwicklung der evidenten Krankheit, z. B. zur Verhinderung des Tumorwachstums, 5

Verhinderung metastatischen Wachstums, der Herabsetzung von mit kardiovaskulärer Chirurgie einhergehenden Restenosen usw. erreicht. Als Alternative werden die Verbindungen zur Behandlung andauernder Krankheiten durch Stabilisation oder Verbesserung der klinischen 10 Symptome des Patienten verwendet.

Der Wirt oder Patient kann jeglicher Säugerspezies angehören, z. B. einer Primatenspezies, besonders Menschen; Nagetieren, einschließlich , c Mäusen, Ratten und Hamstern; Kaninchen; Pferden, Rindern, Hunden, Katzen usw. Tiermodelle sind für experimentelle Untersuchungen von Interesse, wobei sie ein Modell zur Behandlung einer Krankheit des Menschen zur Verfügung stellen.

20

Die Suszeptibilität einer bestimmten Zelle gegenüber der Behandlung mit den erfindungsgemäßen Verbindungen kann durch Testen in vitro bestimmt werden. Typischerweise wird eine Kultur der Zelle mit einer erfindungsgemäßen Verbindung bei verschiedenen Konzentrationen für

25 eine Zeitdauer kombiniert, die ausreicht, um den aktiven Mitteln zu ermöglichen, Zelltod zu induzieren oder Migration zu inhibieren, gewöhn¬ lich zwischen ungefähr einer Stunde und einer Woche. Zum Testen in vitro können kultivierte Zellen aus einer Biopsieprobe verwendet werden. Die

30 nach der Behandlung zurückbleibenden lebensfähigen Zellen werden dann gezählt.

Die Dosis variiert abhängig von der verwendeten spezifischen Verbindung, der spezifischen Erkrankung, dem Patientenstatus usw.. Typischerweise ist eine therapeutische Dosis ausreichend, um die unerwünschte

35

Zellpopulation im Zielgewebe erheblich zu vermindern, während die

Lebensfähigkeit des Patienten aufrechterhalten wird. Die Behandlung wird

im Allgemeinen fortgesetzt, bis eine erhebliche Reduktion vorliegt, z. B. mindestens ca. 50 % Verminderung der Zelllast und kann fortgesetzt werden, bis im Wesentlichen keine unerwünschten Zellen mehr im Körper nachgewiesen werden.

Zur Identifizierung eines Signalübertragungswegs und zum Nachweis von Wechselwirkungen zwischen verschiedenen Signalübertragungswegen wurden von verschiedenen Wissenschaftlern geeignete Modelle oder Modellsysteme entwickelt, z.B. Zellkulturmodelle (z.B. Khwaja et al.,

EMBO, 1997, 16, 2783-93) und Modelle transgener Tiere (z.B. White et al., Oncogene, 2001 , 20, 7064-7072). Zur Bestimmung bestimmter Stufen in der Signalübertragungskaskade können wechselwirkende Verbindungen genutzt werden, um das Signal zu modulieren (z.B. Stephens et al., Biochemical J., 2000, 351 , 95-105). Die erfindungsgemäßen Verbindungen können auch als Reagenzien zur Testung kinaseabhängiger Signalübertragungswege in Tieren und/oder Zellkulturmodellen oder in den in dieser Anmeldung genannten klinischen Erkrankungen verwendet werden.

Die Messung der Kinaseaktivität ist eine dem Fachmann wohlbekannte Technik. Generische Testsysteme zur Bestimmung der Kinaseaktivität mit Substraten, z.B. Histon (z.B. Alessi et al., FEBS Lett. 1996, 399, 3, Seiten 333-338) oder dem basischen Myelinprotein sind in der Literatur beschrieben (z.B. Campos-Gonzalez, R. und Glenney, Jr., J. R. 1992, J. Biol. Chem. 267, Seite 14535).

Zur Identifikation von Kinase-Inhibitoren stehen verschiedene Assay- Systeme zur Verfügung. Beim Scintillation-Proximity-Assay (Sorg et al., J. of. Biomolecular Screening, 2002, 7, 11-19) und dem FlashPlate-Assay wird die radioaktive Phosphorylierung eines Proteins oder Peptids als

Substrat mit γATP gemessen. Bei Vorliegen einer inhibitorischen Verbin-

dung ist kein oder ein vermindertes radioaktives Signal nachweisbar. Ferner sind die Homogeneous Time-resolved Fluorescence Resonance Energy Transfer- (HTR-FRET-) und Fluoreszenzpolarisations- (FP-) Technologien als Assay-Verfahren nützlich (SiIIs et al., J. of Biomolecular Screening, 2002, 191-214).

Andere nicht radioaktive ELISA-Assay-Verfahren verwenden spezifische Phospho-Antikörper (Phospho-AK). Der Phospho-AK bindet nur das phosphorylierte Substrat. Diese Bindung ist mit einem zweiten Peroxidase- konjugierten Anti-Schaf-Antikörper durch Chemilumineszenz nachweisbar

(Ross et al., 2002, Biochem. J., unmittelbar vor der Veröffentlichung, Manuskript BJ20020786).

Es gibt viele mit einer Deregulation der Zellproliferation und des Zelltods (Apoptose) einhergehende Erkrankungen. Die Leiden von Interesse schließen die folgenden Leiden ein, sind aber nicht darauf beschränkt. Die erfindungsgemäßen Verbindungen sind nützlich bei der Behandlung einer Reihe verschiedener Leiden, bei denen Proliferation und/oder Migration glatter Muskelzellen und/oder Entzündungszellen in die Intimaschicht eines Gefäßes vorliegt, resultierend in eingeschränkter Durchblutung dieses Gefäßes, z. B. bei neointimalen okklusiven Läsionen. Zu okklusiven

Transplantat-Gefäßerkrankungen von Interesse zählen Atherosklerose, koronare Gefäßerkrankung nach Transplantation, Venentransplantat- stenose, peri-anastomotische Prothesenrestenose, Restenose nach Angioplastie oder Stent-Platzierung und dergleichen.

Die erfindungsgemäßen Verbindungen eignen sich auch als p38 Kinase- Inhibitoren.

Heteroarylharnstoffe, die p38 Kinase inhibieren sind in der WO 02/85859, WO 02/85857 WO99/32111 beschrieben.

STAND DER TECHNIK

Pyridopyrimidine sind in WO 98/08846 beschrieben.

ZUSAMMENFASSUNG DER ERFINDUNG

Die Erfindung betrifft Verbindungen der Formel I

worin R 6 , R 7 jeweils unabhängig voneinander H, A, HaI, OH, OA oder CN, R 8 , R 9 jeweils unabhängig voneinander H oder A, Het 1 einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S- Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch HaI, A, OA, OH, Alkenyl mit 2 bis 6 C-Atomen, Alkinyl mit 2 bis 6 C-Atomen, NO 2 , NH 2 , NHA, NA 2 , COOH, COOA, CN, -O-Het, -O-Alkylen-Het, -O-Alkylen-NR 8 R 9 , -NR 8 -Alkylen-NR 8 R 9 , CONR 8 R 9 , -O-Alkylen-NR 8 -Alkylen-OR 8 und/oder Carbonylsauerstoff (=O) substituiert sein kann,

Het einen ein- oder zweikemigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S- Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch HaI, A, OA, COOA, CN und/oder Carbonylsauerstoff (=0) substituiert sein kann,

A Alkyl mit 1 bis 10 C-Atomen, wobei auch 1-7 H-Atome durch

F und/oder Chlor ersetzt sein können, X, X 1 jeweils unabhängig voneinander NH oder fehlt,

HaI F, Cl, Br oder I, bedeuten, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

Gegenstand der Erfindung sind auch die optisch aktiven Formen (Stereoisomeren), die Enantiomeren, die Racemate, die Diastereomeren sowie die Hydrate und Solvate dieser Verbindungen. Unter Solvate der Verbindungen werden Anlagerungen von inerten Lösungsmittelmolekülen an die Verbindungen verstanden, die sich aufgrund ihrer gegenseitigen Anziehungskraft ausbilden. Solvate sind z.B. Mono- oder Dihydrate oder Alkoholate.

Die Formel I umfasst auch die tautomeren Verbindungen der Formeln Ia und Ib

Unter pharmazeutisch verwendbaren Derivaten versteht man z.B. die Salze der erfindungsgemäßen Verbindungen als auch sogenannte Prodrug-Verbindungen.

Unter Prodrug-Derivaten versteht man mit z. B. Alkyl- oder Acylgruppen, Zuckern oder Oligopeptiden abgewandelte Verbindungen der Formel I, die im Organismus rasch zu den wirksamen erfindungsgemäßen Verbindungen gespalten werden.

Hierzu gehören auch bioabbaubare Polymerderivate der erfindungs- 10 gemäßen Verbindungen, wie dies z. B. in Int. J. Pharm. Ü5, 61-67 (1995) beschrieben ist.

Der Ausdruck "wirksame Menge" bedeutet die Menge eines Arzneimittels ^ c oder eines pharmazeutischen Wirkstoffes, die eine biologische oder medizinische Antwort in einem Gewebe, System, Tier oder Menschen hervorruft, die z.B. von einem Forscher oder Mediziner gesucht oder erstrebt wird.

Darüberhinaus bedeutet der Ausdruck "therapeutisch wirksame Menge"

20 eine Menge, die, verglichen zu einem entsprechenden Subjekt, das diese

Menge nicht erhalten hat, folgendes zur Folge hat: verbesserte Heilbehandlung, Heilung, Prävention oder Beseitigung einer

Krankheit, eines Krankheitsbildes, eines Krankheitszustandes, eines 25 Leidens, einer Störung oder von Nebenwirkungen oder auch die

Verminderung des Fortschreitens einer Krankheit, eines Leidens oder einer Störung.

Die Bezeichnung "therapeutisch wirksame Menge" umfaßt auch die O0 Mengen, die wirkungsvoll sind, die normale physiologische Funktion zu erhöhen.

Gegenstand der Erfindung ist auch die Verwendung von Mischungen der Verbindungen der Formel I 1 z.B. Gemische zweier Diastereomerer z.B. im Verhältnis 1 :1 , 1 :2, 1 :3, 1 :4, 1 :5, 1 :10, 1 :100 oder 1 :1000.

Besonders bevorzugt handelt es sich dabei um Mischungen stereo¬ isomerer Verbindungen.

Gegenstand der Erfindung sind die Verbindungen der Formel I und ihre

Salze sowie ein Verfahren zur Herstellung von Verbindungen der Formel I nach den Ansprüchen 1-10 sowie ihrer pharmazeutisch verwendbaren Derivate, Salze, Solvate, Tautomeren und Stereoisomeren, dadurch gekennzeichnet, daß man a) zur Herstellung von Verbindungen der Formel I, worin X, X 1 NH bedeuten, eine Verbindung der Formel Il

worin R 6 , R 7 , R 8 und R 9 die in Anspruch 1 angegebenen Bedeutungen haben,

mit einer Verbindung der Formel III

Het 1 -N=C=O III ,

worin Het 1 die in Anspruch 1 angegebene Bedeutung hat,

umsetzt,

oder

b) zur Herstellung von Verbindungen der Formel I 1 worin X, X 1 NH bedeuten, eine Verbindung der Formel Il mit einer Verbindung der Formel IV

Het 1 -NH 2 IV ,

worin Het 1 die in Anspruch 1 angegebene Bedeutung hat,

und einem Chlorkohlensäureester

umsetzt,

und/oder eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.

Vor- und nachstehend haben die Reste R 6 , R 7 , R 8 , R 9 , X und X 1 die bei der Formel I angegebenen Bedeutungen, sofern nicht ausdrücklich etwas anderes angegeben ist.

A bedeutet Alkyl, ist unverzweigt (linear) oder verzweigt, und hat 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atome. A bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1 ,1- , 1 ,2- oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1- , 2- , 3- oder 4-Methylpentyl, 1 ,1- , 1 ,2- , 1 ,3- , 2,2- , 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethylbutyl, 1-Ethyl-1-methyl- propyl, 1-Ethyl-2-methylpropyl, 1 ,1 ,2- oder 1 ,2,2-Trimethylpropyl, weiter bevorzugt z.B. Trifluormethyl.

A bedeutet ganz besonders bevorzugt Alkyl mit 1 , 2, 3, 4, 5 oder 6 C- Atomen, vorzugsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl, tert.-Butyl, Pentyl, Hexyl, Trifluormethyl, Pentafluorethyl oder

1 ,1 ,1-Trifluorethyl. A bedeutet auch Cycloalkyl.

Cycloalkyl bedeutet vorzugsweise Cyclopropyl, Cyclobutyl, Cylopentyl, Cyclohexyl oder Cycloheptyl.

Alkylen ist vorzugsweise unverzweigt und bedeutet bevorzugt Methylen, 5

Ethylen, Propylen, Butylen oder Pentylen.

R 6 und R 7 bedeuten vorzugsweise H.

10 X und X' bedeuten vorzugsweise NH.

Ungeachtet weiterer Substitutionen, bedeutet Het 1 z.B. 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrolyl, 1-, 2, A- oder 5-lmidazolyl, 1-, 3-, A- - c oder 5-Pyrazolyl, 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-lsoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-lsothiazolyl, 2-, 3- oder 4-Pyridyl, 2-, 4-, 5- oder 6- Pyrimidinyl, weiterhin bevorzugt 1 ,2,3-Triazol-1-, -4- oder -5-yl, 1 ,2,4- Triazol-1-, -3- oder 5-yl, 1- oder 5-Tetrazolyl, 1 ,2,3-Oxadiazol-4- oder -5-yl,

1 ,2,4-Oxadiazol-3- oder -5-yl, 1 ,3,4-Thiadiazol-2- oder -5-yl, 1 ,2,4-Thia-

20 diazol-3- oder -5-yl, 1 ,2,3-Thiadiazol-4- oder -5-yl, 3- oder 4-Pyridazinyl,

Pyrazinyl, 1-, 2-, 3-, 4-, 5-, 6- oder 7-lndolyl, 4- oder 5-lsoindolyl, 1-, 2-, A- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7- Benzisoxazolyl, 2-, 4-, 5-, 6- oder

25 7-Benzothiazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, A-, 5-, 6- oder 7-

Benz-2,1 ,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, A-, 5-, 6- , 7- oder 8-lsochinolyl, 3-, A-, 5-, 6-, 7- oder 8-Cinnolinyl, 2-, A-, 5-, 6-, 7- oder 8-Chinazolinyl, 5- oder 6-Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H-

2Q Benzo[1 ,4]oxazinyl, weiter bevorzugt 1 ,3-Benzodioxol-5-yl, 1 ,4-

Benzodioxan-6-yl, 2,1 ,3-Benzothiadiazol-4- oder -5-yl oder 2,1 ,3-Benz- oxadiazol-5-yl.

Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein.

O C

Het 1 kann also z. B. auch bedeuten 2,3-Dihydro-2-, -3-, -A- oder -5-furyl, 2,5-Dihydro-2-, -3-, -A- oder 5-furyl, Tetrahydro-2- oder -3-furyl, 1 ,3-Dioxo-

lan-4-yl, Tetrahydro-2- oder -3-thienyl, 2,3-Dihydro-1-, -2-, -3-, -A- oder -5- pyrrolyl, 2,5-Dihydro-1-, -2-, -3-, -A- oder -5-pyrrolyl, 1-, 2- oder 3-Pyrroli- dinyl, Tetrahydro-1-, -2- oder -4-imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1 ,4-Dihydro-1-, -2-, -3- oder -4-pyridyl, 1 ,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5- oder -6-pyridyl, 1-, 2-, 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl, Tetrahydro-2-, -3- oder - 4-pyranyl, 1 ,4-Dioxanyl, 1 ,3-Dioxan-2-, -4- oder -5-yl, Hexahydro-1-, -3- oder -4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3- Piperazinyl, 1 ,2,3,4-Tetrahydro-i-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1 ,2,3,4-Tetrahydro-1-,-2-,-3-, -4-, -5-, -6-, -7- oder -8-isochinolyl, 2-, 3-, 5-, 6-, 7- oder 8- 3,4-Dihydro-2H-benzo[1 ,4]oxazinyl, weiter bevorzugt 2,3- Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)phenyl, 2,3-Dihydro- benzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4- Dihydro-2H-1 ,5-benzodioxepin-6- oder -7-yl, ferner bevorzugt 2,3-Dihydro- benzofuranyl oder 2,3-Dihydro-2-oxo-furanyl.

Unsubstituiertes Het 1 bedeutet besonders bevorzugt Pyridyl, Isoxazolyl, Chinolyl, Isochinolyl, Thiazolyl, [1 ,3,4]Thiadiazolyl, [1 ,2,4]Thiadiazolyl, Furyl, Thienyl, Pyrrolyl, Pyrimidinyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isothiazolyl, Benzo[1 ,3]dioxolyl oder Pyrazinyl; ganz besonders bevorzugt Pyridyl, Isoxazolyl, Chinolyl, Isochinolyl, Thiazolyl, [1 ,3,4]Thiadiazolyl oder [1 ,2,4]Thiadiazolyl.

Ungeachtet weiterer Substitutionen, bedeutet Het z.B. 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrolyl, 1-, 2, 4- oder 5-lmidazolyl, 1-, 3-, 4- oder 5-Pyrazolyl, 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-lsoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-lsothiazolyl, 2-, 3- oder 4-Pyridyl, 2-, 4-, 5- oder 6- Pyrimidinyl, weiterhin bevorzugt 1 ,2,3-Triazol-1-, -4- oder -5-yl, 1 ,2,4-

Triazol-1-, -3- oder 5-yl, 1- oder 5-Tetrazolyl, 1 ,2,3-Oxadiazol-4- oder -5-yl,

1 ,2,4-Oxadiazol-3- oder -5-yl, 1 ,3,4-Thiadiazol-2- oder -5-yl, 1 ,2,4-Thia- diazol-3- oder -5-yl, 1 ,2,3-Thiadiazol-4- oder -5-yl, 3- oder 4-Pyridazinyl,

Pyrazinyl, 1-, 2-, 3-, 4-, 5-, 6- oder 7-lndolyl, 4- oder 5-lsoindolyl, 1-, 2-, 4- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7- Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzothiazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, 4-, 5-, 6- oder 7- Benz-2,1 ,3-oxadiazolyl, 2-, 3-, A-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, 4-, 5-, 6- , 7- oder 8-lsochinolyl, 3-, 4-, 5-, 6-, 7- oder 8-Cinnolinyl, 2-, 4-, 5-, 6-, 7- oder 8-Chinazolinyl, 5- oder 6-Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H- Benzo[1 ,4]oxazinyl, weiter bevorzugt 1 ,3-Benzodioxol-5-yl, 1 ,4- Benzodioxan-6-yl, 2,1 ,3-Benzothiadiazol-4- oder -5-yl oder 2,1 , 3-Benz- oxadiazol-5-yl.

Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein. Het kann also z. B. auch bedeuten 2,3-Dihydro-2-, -3-, -4- oder -5-furyl,

2,5-Dihydro-2-, -3-, -4- oder 5-furyl, Tetrahydro-2- oder -3-furyl, 1 ,3-Dioxo- lan-4-yl, Tetrahydro-2- oder -3-thienyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5- pyrrolyl, 2,5-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 1-, 2- oder 3-Pyrroli- dinyl, Tetrahydro-1-, -2- oder -4-imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder

-5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1 ,4-Dihydro-1-, -2-, -3- oder -4-pyridyl, 1 ,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5- oder -6-pyridyl, 1-, 2-, 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl, Tetra hydro-2-, -3- oder - 4-pyranyl, 1 ,4-Dioxanyl, 1 ,3-Dioxan-2-, -4- oder -5-yl, Hexahydro-1-, -3- oder -4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3- Piperazinyl, 1 ,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1 ,2,3,4-Tetrahydro-1-,-2-,-3-, -4-, -5-, -6-, -7- oder -8-isochinolyl, 2-, 3-, 5-, 6-, 7- oder 8- 3,4-Dihydro-2H-benzo[1 ,4]oxazinyl, weiter bevorzugt 2,3- Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)phenyl, 2,3-Dihydro- benzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4- Dihydro-2H-1 ,5-benzodioxepin-6- oder -7-yl, ferner bevorzugt 2,3-Dihydro- benzofuranyl oder 2,3-Dihydro-2-oxo-furanyl.

In einer weiteren bevorzugten Ausführungsform bedeutet Het einen einkernigen gesättigten Heterocyclus mit 1 bis 3 N-, O- und/oder S- Atomen, der unsubstituiert ist oder einfach durch A substituiert sein kann. Der einkernige gesättigte Heterocyclus bedeutet hierin besonders bevorzugt Piperidinyl, Pyrrolidinyl, Morpholinyl oder Piperazinyl.

HaI bedeutet vorzugsweise F, Cl oder Br 1 aber auch I 1 besonders bevorzugt F oder Cl.

Alkenyl hat 2, 3, 4, 5 oder 6 C-Atome und steht vorzugsweise für Vinyl, 1- oder 2-Propenyl, 1-Butenyl, Isobutenyl, sek.-Butenyl, ferner bevorzugt ist 1-Pentenyl, iso-Pentenyl oder 1-Hexenyl.

Alkinyl hat 2, 3, 4, 5 oder 6 C-Atome und steht vorzugsweise für Ethinyl,

Propin-1-yl, ferner für Butin-1-, Butin-2-yl, Pentin-1-, Pentin-2- oder Pentin- 3-yl.

-O-Het bedeutet vorzugsweise z.B. Piperidin-4-yloxy.

-O-Alkylen-Het bedeutet vorzugsweise z.B. Morpholin-4-yl-ethoxy, Morpholin-4-yl-propoxy, 1 -Methyl-piperidin-4-yl-methoxy, Piperazin-4-yl- ethoxy, Pyrrolidin-2-ylmethoxy oder Pyrrolidin-1-ylethoxy. -O-Alkylen-NR 8 R 9 bedeutet vorzugsweise z.B. CH 3 -NH-CH 2 CH 2 -O-, NH 2 -CH 2 CH 2 -O- oder (C 2 Hs) 2 N-CH 2 CH 2 -O-. -O-Alkylen-NR 8 -Alkylen-OR 8 bedeutet vorzugsweise z.B. -O-CH 2 CH2-N(CH 3 )-CH 2 CH2-OCH3.

Für die gesamte Erfindung gilt, daß sämtliche Reste, die mehrfach auf¬ treten, gleich oder verschieden sein können, d.h. unabhängig voneinander sind.

Die Verbindungen der Formel I können ein oder mehrere chirale Zentren besitzen und daher in verschiedenen stereoisomeren Formen vorkommen. Die Formel I umschließt alle diese Formen.

Dementsprechend sind Gegenstand der Erfindung insbesondere diejeni¬ gen Verbindungen der Formel I 1 in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln Ia bis Ih ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

in Ia X NH,

X 1 NH bedeuten;

in Ib Het 1 einen ein- oder zweikernigen ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder

S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch HaI, A, OA, OH, -O-Het, -O-Alkylen-Het, -O-Alkylen-NR 8 R 9 und/oder -O-Alkylen-NR 8 -Alkylen-OR 8 substituiert sein kann, bedeutet;

in Ic Het 1 unsubstituiertes oder ein-, zwei- oder dreifach durch HaI, A, OA, OH, -O-Het, -O-Alkylen-Het,

-O-Alkylen-NR 8 R 9 und/oder -O-Alkylen-NR 8 -Alkylen- OR 8 substituiertes Pyridyl, Isoxazolyl, Chinolyl, Isochinolyl, Thiazolyl, [1 ,3,4]Thiadiazolyl,

[1 ,2,4]Thiadiazolyl, Furyl, Thienyl, Pyrrolyl,

Pyrimidinyl, Imidazolyl, Pyrazolyl, Oxazolyl,

Isothiazolyl, Benzo[1 ,3]dioxolyl oder Pyrazinyl,

bedeutet;

in Id Het einen einkernigen gesättigten Heterocyclus mit 1 bis 3 N-, O- und/oder S-Atomen, der unsubstituiert ist oder einfach durch A substituiert sein kann bedeutet;

in Ie Het unsubstituiertes oder einfach durch A substituiertes Piperidinyl, Pyrrolidinyl, Morpholinyl oder Piperazinyl bedeutet;

in If R 6 , R 7 H bedeuten;

in ig X NH,

X 1 NH,

R 6 , R 7 H,

R 8 , R 9 j jeeww(eils unabhängig voneinander H oder A,

Het 1 einen ein- oder zweikernigen ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch HaI, A, OA, OH, -O-Het, - O-Alkylen-Het,

-O-Alkylen-NR 8 R 9 und/oder -O-Alkylen-NR 8 -Alkylen- OR 8 substituiert sein kann,

Het einen einkernigen gesättigten Heterocyclus mit 1 bis 3 N-, O- und/oder S-Atomen, der unsubstituiert ist oder einfach durch A substituiert sein kann,

A Alkyl mit 1 bis 10 C-Atomen, wobei auch 1-7 H- Atome durch F und/oder Chlor ersetzt sein können,

HaI F, Cl, Br oder I, bedeuten;

in lh X NH,

X 1 NH,

R 6 , R 7 H,

R 8 , R 9 jeweils unabhängig voneinander H oder A 1

1

Het unsubstituiertes oder ein-, zwei- oder dreifach durch

HaI, A, OA, OH, -O-Het, -O-Alkylen-Het,

-O-Alkylen-NR 8 R 9 und/oder -O-Alkylen-NR 8 -Alkylen- OR 8 substituiertes Pyridyl, Isoxazolyl, Chinolyl,

Isochinolyl, Thiazolyl, [1 ,3,4]Thiadiazolyl, [1 ,2,4]Thiadiazolyl, Furyl, Thienyl, Pyrrolyl, Pyrimidinyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isothiazolyl, Benzo[1 ,3]dioxolyl oder Pyrazinyl,

Het unsubstituiertes oder einfach durch A substituiertes

Piperidinyl, Pyrrolidinyl, Morpholinyl oder Piperazinyl, A Alkyl mit 1 bis 10 C-Atomen, wobei auch 1-7 H-

Atome durch F und/oder Chlor ersetzt sein können, HaI F, Cl, Br oder I bedeuten;

sowie ihre pharmazeutisch verwendbaren Derivate, Salze, Solvate, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Her- Stellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die ge¬ nannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch

von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.

Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel Il mit Verbindungen der Formel III umsetzt.

Die Verbindungen der Formel Il sind neu, die der Formel III sind in der Regel bekannt.

Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel, in

Gegenwart einer organischen Base wie Triethylamin, Dimethylanilin, Pyridin oder Chinolin. Die Reaktionszeit liegt je nach den angewendeten

Bedingungen zwischen einigen Minuten und 14 Tagen, die Reaktions- temperatur zwischen etwa 0° und 150°, normalerweise zwischen 15° und

90°, besonders bevorzugt zwischen 15 und 30 0 C.

Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder XyIoI; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1 ,2-Dichlorethan .Tetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykol- monomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid oder Dimethylformamid (DMF);

Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Schwefel- kohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitrover-

bindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

Verbindungen der Formel I können weiter vorzugsweise erhalten werden, 5 indem man Verbindungen der Formel Il mit Verbindungen der Formel IV und einem Chlorkohlensäureester, wie z.B. dem 4-Nitrophenylester, umsetzt. Die Verbindungen der Formel IV sind in der Regel bekannt.

10 Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel, in

Gegenwart eines säurebindenden Mittels vorzugsweise einer organischen Base wie DIPEA, Triethylamin, Dimethylanilin, Pyridin oder Chinolin oder eines Überschusses der Carboxykomponente der Formel V.

^ c Auch der Zusatz eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums, Calciums oder Cäsiums kann günstig sein.

Die Reaktionszeit liegt je nach den angewendeten Bedingungen zwischen

20 einigen Minuten und 14 Tagen, die Reaktionstemperatur zwischen etwa

-30° und 140°, normalerweise zwischen -10° und 90°, insbesondere zwischen etwa 0° und etwa 70°.

Als inerte Lösungsmittel eignen sich die oben genannten. 25

Pharmazeutische Salze und andere Formen

Die genannten erfindungsgemäßen Verbindungen lassen sich in ihrer O0 endgültigen Nichtsalzform verwenden. Andererseits umfaßt die vorliegende Erfindung auch die Verwendung dieser Verbindungen in Form ihrer pharmazeutisch unbedenklichen Salze, die von verschiedenen organischen und anorganischen Säuren und Basen nach fachbekannten

Vorgehensweisen abgeleitet werden können. Pharmazeutisch unbedenk-

35 liehe Salzformen der Verbindungen der Formel I werden größtenteils konventionell hergestellt. Sofern die Verbindung der Formel I eine Carbon-

säuregruppe enthält, läßt sich eines ihrer geeigneten Salze dadurch bilden, daß man die Verbindung mit einer geeigneten Base zum ent¬ sprechenden Basenadditionssalz umsetzt. Solche Basen sind zum Beispiel Alkalimetallhydroxide, darunter Kaliumhydroxid, Natriumhydroxid und Lithiumhydroxid; Erdalkalimetallhydroxide wie Bariumhydroxid und Calciumhydroxid; Alkalimetallalkoholate, z.B. Kaliumethanolat und Natriumpropanolat; sowie verschiedene organische Basen wie Piperidin, Diethanolamin und N-Methylglutamin. Die Aluminiumsalze der Verbindun- gen der Formel I zählen ebenfalls dazu. Bei bestimmten Verbindungen der Formel I lassen sich Säureadditionssalze dadurch bilden, daß man diese Verbindungen mit pharmazeutisch unbedenklichen organischen und anorganischen Säuren, z.B. Halogenwasserstoffen wie Chlorwasserstoff, Bromwasserstoff oder Jodwasserstoff, anderen Mineralsäuren und ihren entsprechenden Salzen wie Sulfat, Nitrat oder Phosphat und dergleichen sowie Alkyl- und Monoarylsulfonaten wie Ethansulfonat, Toluolsulfonat und Benzolsulfonat, sowie anderen organischen Säuren und ihren ent¬ sprechenden Salzen wie Acetat, Trifluoracetat, Tartrat, Maleat, Succinat,

Citrat, Benzoat, Salicylat, Ascorbat und dergleichen behandelt. Dement¬ sprechend zählen zu pharmazeutisch unbedenklichen Säureadditions¬ salzen der Verbindungen der Formel I die folgenden: Acetat, Adipat, Alginat, Arginat, Aspartat, Benzoat, Benzolsulfonat (Besylat), Bisulfat, Bisulfit, Bromid, Butyrat, Kampferat, Kampfersulfonat, Caprylat, Chlorid, Chlorbenzoat, Citrat, Cyclopentanpropionat, Digluconat, Dihydrogen- phosphat, Dinitrobenzoat, Dodecylsulfat, Ethansulfonat, Fumarat, Galacterat (aus Schleimsäure), Galacturonat, Glucoheptanoat, Gluconat, Glutamat, Glycerophosphat, Hemisuccinat, Hemisulfat, Heptanoat,

Hexanoat, Hippurat, Hydrochlorid, Hydrobromid, Hydroiodid, 2-Hydroxy- ethansulfonat, lodid, Isethionat, Isobutyrat, Lactat, Lactobionat, Malat, Maleat, Malonat, Mandelat, Metaphosphat, Methansulfonat,

Methylbenzoat, Monohydrogenphosphat, 2-Naphthalinsulfonat, Nicotinat,

Nitrat, Oxalat, Oleat, Pamoat, Pectinat, Persulfat, Phenylacetat, 3-

Phenylpropionat, Phosphat, Phosphonat, Phthalat, was jedoch keine Einschränkung darstellt.

Weiterhin zählen zu den Basensalzen der erfindungsgemäßen Verbindungen Aluminium-, Ammonium-, Calcium-, Kupfer-, Eisen(lll)-, Eisen(ll)-, Lithium-, Magnesium-, Mangan(lll)-, Mangan(ll), Kalium-, Natrium- und Zinksalze, was jedoch keine Einschränkung darstellen soll. Bevorzugt unter den oben genannten Salzen sind Ammonium; die Alkalimetallsalze Natrium und Kalium, sowie die Erdalkalimetalsalze

Calcium und Magnesium. Zu Salzen der Verbindungen der Formel I, die sich von pharmazeutisch unbedenklichen organischen nicht-toxischen Basen ableiten, zählen Salze primärer, sekundärer und tertiärer Amine, substituierter Amine, darunter auch natürlich vorkommender substituierter Amine, cyclischer Amine sowie basischer lonenaustauscherharze, z.B. Arginin, Betain, Koffein, Chlorprocain, Cholin, N.N'-Dibenzylethylendiamin (Benzathin), Dicyclohexylamin, Diethanolamin, Diethylamin, 2-Diethyl- aminoethanol, 2-Dimethylaminoethanol, Ethanolamin, Ethylendiamin, N-

Ethylmorpholin, N-Ethylpiperidin, Glucamin, Glucosamin, Histidin,

Hydrabamin, Iso-propylamin, Lidocain, Lysin, Meglumin, N-Methyl-D- glucamin, Morpholin, Piperazin, Piperidin, Polyaminharze, Procain, Purine, Theobromin, Triethanolamin, Triethylamin, Trimethylamin, Tripropylamin sowie Tris-(hydroxymethyl)-methylamin (Tromethamin), was jedoch keine Einschränkung darstellen soll.

Verbindungen der vorliegenden Erfindung, die basische stickstoffhaltige Gruppen enthalten, lassen sich mit Mitteln wie (CrC 4 ) Alkylhalogeniden, z.B. Methyl-, Ethyl-, Isopropyl- und tert.-Butylchlorid, -bromid und -iodid; DKC^^Alkylsulfaten, z.B. Dimethyl-, Diethyl- und Diamylsulfat; (Ci 0 - Cie)Alkylhalogeniden, z.B. Decyl-, Dodecyl-, Lauryl-, Myristyl- und

Stearylchlorid, -bromid und -iodid; sowie Aryl-(CrC 4 )Alkylhalogeniden, z.B.

Benzylchlorid und Phenethylbromid, quartemisieren. Mit solchen Salzen

können sowohl wasser- als auch öllösliche erfindungsgemäße Verbindungen hergestellt werden.

Zu den oben genannten pharmazeutischen Salzen, die bevorzugt sind, zählen Acetat, Trifluoracetat, Besylat, Citrat, Fumarat, Gluconat, Hemisuccinat, Hippurat, Hydrochlorid, Hydrobromid, Isethionat, Mandelat, Meglumin, Nitrat, Oleat, Phosphonat, Pivalat, Natriumphosphat, Stearat, Sulfat, Sulfosalicylat, Tartrat, Thiomalat, Tosylat und Tromethamin, was jedoch keine Einschränkung darstellen soll.

Die Säureadditionssalze basischer Verbindungen der Formel I werden dadurch hergestellt, daß man die freie Basenform mit einer ausreichenden Menge der gewünschten Säure in Kontakt bringt, wodurch man auf übliche Weise das Salz darstellt. Die freie Base läßt sich durch In-Kontakt-Bringen der Salzform mit einer Base und Isolieren der freien Base auf übliche Weise regenerieren. Die freien Basenformen unterscheiden sich in gewis¬ sem Sinn von ihren entsprechenden Salzformen in bezug auf bestimmte physikalische Eigenschaften wie Löslichkeit in polaren Lösungsmitteln; im

Rahmen der Erfindung entsprechen die Salze jedoch sonst ihren jeweiligen freien Basenformen.

Wie erwähnt werden die pharmazeutisch unbedenklichen Basenadditions¬ salze der Verbindungen der Formel I mit Metallen oder Aminen wie Alkali¬ metallen und Erdalkalimetallen oder organischen Aminen gebildet. Bevorzugte Metalle sind Natrium, Kalium, Magnesium und Calcium. Bevor- zugte organische Amine sind N.N'-Dibenzylethylendiamin, Chlorprocain, Cholin, Diethanolamin, Ethylendiamin, N-Methyl-D-glucamin und Procain.

Die Basenadditionssalze von erfindungsgemäßen sauren Verbindungen werden dadurch hergestellt, daß man die freie Säureform mit einer ausreichenden Menge der gewünschten Base in Kontakt bringt, wodurch man das Salz auf übliche Weise darstellt. Die freie Säure läßt sich durch

In-Kontakt-Bringen der Salzform mit einer Säure und Isolieren der freien Säure auf übliche Weise regenerieren. Die freien Säureformen unter¬ scheiden sich in gewissem Sinn von ihren entsprechenden Salzformen in bezug auf bestimmte physikalische Eigenschaften wie Löslichkeit in polaren Lösungsmitteln; im Rahmen der Erfindung entsprechen die Salze jedoch sonst ihren jeweiligen freien Säureformen.

Enthält eine erfindungsgemäße Verbindung mehr als eine Gruppe, die solche pharmazeutisch unbedenklichen Salze bilden kann, so umfaßt die Erfindung auch mehrfache Salze. Zu typischen mehrfachen Salzformen zählen zum Beispiel Bitartrat, Diacetat, Difumarat, Dimeglumin, Diphosphat, Dinatrium und Trihydrochlorid, was jedoch keine Ein- schränkung darstellen soll.

Im Hinblick auf das oben Gesagte sieht man, daß unter dem Ausdruck "pharmazeutisch unbedenkliches Salz" im vorliegenden Zusammenhang ein Wirkstoff zu verstehen ist, der eine Verbindung der Formel I in der

Form eines ihrer Salze enthält, insbesondere dann, wenn diese Salzform dem Wirkstoff im Vergleich zu der freien Form des Wirkstoffs oder irgendeiner anderen Salzform des Wirkstoffs, die früher verwendet wurde, verbesserte pharmakokinetische Eigenschaften verleiht. Die pharma- zeutisch unbedenkliche Salzform des Wirkstoffs kann auch diesem

Wirkstoff erst eine gewünschte pharmakokinetische Eigenschaft verleihen, über die er früher nicht verfügt hat, und kann sogar die Pharmakodynamik dieses Wirkstoffs in bezug auf seine therapeutische Wirksamkeit im Körper positiv beeinflussen.

Gegenstand der Erfindung sind ferner Arzneimittel, enthaltend mindestens eine Verbindung der Formel I und/oder ihre pharmazeutisch verwendbaren

Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, sowie gegebenenfalls Träger- und/oder Hilfsstoffe.

Pharmazeutische Formulierungen können in Form von Dosiseinheiten, die eine vorbestimmte Menge an Wirkstoff pro Dosiseinheit enthalten, dargereicht werden. Eine solche Einheit kann beispielsweise 0,5 mg bis

1 g, vorzugsweise 1 mg bis 700 mg, besonders bevorzugt 5 mg bis 100 mg 5 einer erfindungsgemäßen Verbindung enthalten, je nach dem behandelten

Krankheitszustand, dem Verabreichungsweg und dem Alter, Gewicht und Zustand des Patienten, oder pharmazeutische Formulierungen können in Form von Dosiseinheiten, die eine vorbestimmte Menge an Wirkstoff pro

10 Dosiseinheit enthalten, dargereicht werden. Bevorzugte Dosierungs- einheitsformulierungen sind solche, die eine Tagesdosis oder Teildosis, wie oben angegeben, oder einen entsprechenden Bruchteil davon eines Wirkstoffs enthalten. Weiterhin lassen sich solche pharmazeutischen

, | c Formulierungen mit einem der im pharmazeutischen Fachgebiet allgemein bekannten Verfahren herstellen.

Pharmazeutische Formulierungen lassen sich zur Verabreichung über einen beliebigen geeigneten Weg, beispielsweise auf oralem

20

(einschließlich buccalem bzw. sublingualem), rektalem, nasalem, topischem (einschließlich buccalem, sublingualem oder transdermalem), vaginalem oder parenteralem (einschließlich subkutanem, intramuskulärem, intravenösem oder intradermalem) Wege, anpassen. 25 Solche Formulierungen können mit allen im pharmazeutischen Fachgebiet bekannten Verfahren hergestellt werden, indem beispielsweise der Wirkstoff mit dem bzw. den Trägerstoff(en) oder Hilfsstoff(en) zusammengebracht wird.

30

An die orale Verabreichung angepaßte pharmazeutische Formulierungen können als separate Einheiten, wie z.B. Kapseln oder Tabletten; Pulver oder Granulate; Lösungen oder Suspensionen in wäßrigen oder nichtwäßrigen Flüssigkeiten; eßbare Schäume oder Schaumspeisen; oder

35

ÖI-in-Wasser-Flüssigemulsionen oder Wasser-in-ÖI-Flüssigemulsionen dargereicht werden.

So läßt sich beispielsweise bei der oralen Verabreichung in Form einer Tablette oder Kapsel die Wirkstoffkomponente mit einem oralen, nicht¬ toxischen und pharmazeutisch unbedenklichen inerten Trägerstoff, wie z.B. Ethanol, Glyzerin, Wasser u.a. kombinieren. Pulver werden herge¬ stellt, indem die Verbindung auf eine geeignete feine Größe zerkleinert und mit einem in ähnlicher Weise zerkleinerten pharmazeutischen Trägerstoff, wie z.B. einem eßbaren Kohlenhydrat wie beispielsweise 0 Stärke oder Mannit vermischt wird. Ein Geschmacksstoff, Konservierungs¬ mittel, Dispersionsmittel und Farbstoff können ebenfalls vorhanden sein.

Kapseln werden hergestellt, indem ein Pulvergemisch wie oben e beschrieben hergestellt und geformte Gelatinehüllen damit gefüllt werden. Gleit- und Schmiermittel wie z.B. hochdisperse Kieselsäure, Talkum, Magnesiumstearat, Kalziumstearat oder Polyethylenglykol in Festform können dem Pulvergemisch vor dem Füllvorgang zugesetzt werden. Ein

Sprengmittel oder Lösungsvermittler, wie z.B. Agar-Agar, Kalziumcarbonat 0 oder Natriumcarbonat, kann ebenfalls zugesetzt werden, um die Verfüg¬ barkeit des Medikaments nach Einnahme der Kapsel zu verbessern.

Außerdem können, falls gewünscht oder notwendig, geeignete Bindungs-, 5 Schmier- und Sprengmittei sowie Farbstoffe ebenfalls in das Gemisch eingearbeitet werden. Zu den geeigneten Bindemitteln gehören Stärke, Gelatine, natürliche Zucker, wie z.B. Glukose oder Beta-Lactose, Sü߬ stoffe aus Mais, natürliche und synthetische Gummi, wie z.B. Akazia, Q Traganth oder Natriumalginat, Carboxymethylzellulose, Polyethylenglykol, Wachse, u.a. Zu den in diesen Dosierungsformen verwendeten Schmier¬ mitteln gehören Natriumoleat, Natriumstearat, Magnesiumstearat, Natrium- benzoat, Natriumacetat, Natriumchlorid u.a. Zu den Sprengmitteln gehören, ohne darauf beschränkt zu sein, Stärke, Methylzellulose, Agar, 5

Bentonit, Xanthangummi u.a. Die Tabletten werden formuliert, indem beispielsweise ein Pulvergemisch hergestellt, granuliert oder trocken-

verpreßt wird, ein Schmiermittel und ein Sprengmittel zugegeben werden und das Ganze zu Tabletten verpreßt wird. Ein Pulvergemisch wird hergestellt, indem die in geeigneter Weise zerkleinerte Verbindung mit einem Verdünnungsmittel oder einer Base, wie oben beschrieben, und gegebenenfalls mit einem Bindemittel, wie z.B. Carboxymethylzellulose, einem Alginat, Gelatine oder Polyvinylpyrrolidon, einem Lösungsverlang- samer, wie z.B. Paraffin, einem Resorptionsbeschleuniger, wie z.B. einem quaternären Salz und/oder einem Absorptionsmittel, wie z.B. Bentonit, Kaolin oder Dikalziumphosphat, vermischt wird. Das Pulvergemisch läßt sich granulieren, indem es mit einem Bindemittel, wie z.B. Sirup, Stärke¬ paste, Acadia-Schleim oder Lösungen aus Zellulose- oder Polymer- materialen benetzt und durch ein Sieb gepreßt wird. Als Alternative zur Granulierung kann man das Pulvergemisch durch eine Tablettiermaschine laufen lassen, wobei ungleichmäßig geformte Klumpen entstehen, die in Granulate aufgebrochen werden. Die Granulate können mittels Zugabe von Stearinsäure, einem Stearatsalz, Talkum oder Mineralöl gefettet werden, um ein Kleben an den Tablettengußformen zu verhindern. Das gefettete Gemisch wird dann zu Tabletten verpreßt. Die erfindungs¬ gemäßen Verbindungen können auch mit einem freifließenden inerten Trägerstoff kombiniert und dann ohne Durchführung der Granulierungs- oder Trockenverpressungsschritte direkt zu Tabletten verpreßt werden. Eine durchsichtige oder undurchsichtige Schutzschicht, bestehend aus einer Versiegelung aus Schellack, einer Schicht aus Zucker oder Polymer¬ material und einer Glanzschicht aus Wachs, kann vorhanden sein. Diesen Beschichtungen können Farbstoffe zugesetzt werden, um zwischen unter- schiedlichen Dosierungseinheiten unterscheiden zu können.

Orale Flüssigkeiten, wie z.B. Lösung, Sirupe und Elixiere, können in Form von Dosierungseinheiten hergestellt werden, so daß eine gegebene

Quantität eine vorgegebene Menge der Verbindung enthält. Sirupe lassen sich herstellen, indem die Verbindung in einer wäßrigen Lösung mit geeignetem Geschmack gelöst wird, während Elixiere unter Verwendung

eines nichttoxischen alkoholischen Vehikels hergestellt werden. Suspensionen können durch Dispersion der Verbindung in einem nicht¬ toxischen Vehikel formuliert werden. Lösungsvermittler und Emulgiermittel, wie z.B. ethoxylierte Isostearylalkohole und Polyoxyethylensorbitolether, Konservierungsmittel, Geschmackszusätze, wie z.B. Pfefferminzöl oder natürliche Süßstoffe oder Saccharin oder andere künstliche Süßstoffe, u.a. können ebenfalls zugegeben werden.

10 Die Dosierungseinheitsformulierungen für die orale Verabreichung können gegebenenfalls in Mikrokapseln eingeschlossen werden. Die Formulierung läßt sich auch so herstellen, daß die Freisetzung verlängert oder retardiert wird, wie beispielsweise durch Beschichtung oder Einbettung von

^ c partikulärem Material in Polymere, Wachs u.a.

Die Verbindungen der Formel I sowie Salze, Solvate und physiologisch funktionelle Derivate davon lassen sich auch in Form von Liposomen- zuführsystemen, wie z.B. kleinen unilamellaren Vesikeln, großen

20 unilamellaren Vesikeln und multilamellaren Vesikeln, verabreichen.

Liposomen können aus verschiedenen Phospholipiden, wie z.B. Cholesterin, Stearylamin oder Phosphatidylcholinen, gebildet werden.

25 Die Verbindungen der Formel I sowie die Salze, Solvate und physiologisch funktionellen Derivate davon können auch unter Verwendung mono¬ klonaler Antikörper als individuelle Träger, an die die Verbindungsmoleküle gekoppelt werden, zugeführt werden. Die Verbindungen können auch mit

2 Q löslichen Polymeren als zielgerichtete Arzneistoffträger gekoppelt werden. Solche Polymere können Polyvinylpyrrolidon, Pyran-Copolymer, PoIy- hydroxypropylmethacrylamidphenol, Polyhydroxyethylaspartamidphenol oder Polyethylenoxidpolylysin, substituiert mit Palmitoylresten, umfassen.

Weiterhin können die Verbindungen an eine Klasse von biologisch abbau-

35 baren Polymeren, die zur Erzielung einer kontrollierten Freisetzung eines

Arzneistoffs geeignet sind, z.B. Polymilchsäure, Polyepsilon-Caprolacton,

Polyhydroxybuttersäure, Polyorthoester, Polyacetale, Polydihydroxy- pyrane, Polycyanoacrylate und quervernetzte oder amphipatische Block- copolymere von Hydrogelen, gekoppelt sein.

An die transdermale Verabreichung angepaßte pharmazeutische Formulierungen können als eigenständige Pflaster für längeren, engen Kontakt mit der Epidermis des Empfängers dargereicht werden. So kann beispielsweise der Wirkstoff aus dem Pflaster mittels lontophorese zugeführt werden, wie in Pharmaceutical Research, 3(6), 318 (1986) allgemein beschrieben.

An die topische Verabreichung angepaßte pharmazeutische Verbindungen können als Salben, Cremes, Suspensionen, Lotionen, Pulver, Lösungen, Pasten, Gele, Sprays, Aerosole oder Öle formuliert sein.

Für Behandlungen des Auges oder anderer äußerer Gewebe, z.B. Mund und Haut, werden die Formulierungen vorzugsweise als topische Salbe oder Creme appliziert. Bei Formulierung zu einer Salbe kann der Wirkstoff entweder mit einer paraffinischen oder einer mit Wasser mischbaren Cremebasis eingesetzt werden. Alternativ kann der Wirkstoff zu einer Creme mit einer öl-in-Wasser-Cremebasis oder einer Wasser-in-ÖI-Basis formuliert werden.

Zu den an die topische Applikation am Auge angepaßten pharma¬ zeutischen Formulierungen gehören Augentropfen, wobei der Wirkstoff in einem geeigneten Träger, insbesondere einem wäßrigen Lösungsmittel, gelöst oder suspendiert ist.

An die topische Applikation im Mund angepaßte pharmazeutische Formulierungen umfassen Lutschtabletten, Pastillen und Mundspülmittel.

An die rektale Verabreichung angepaßte pharmazeutische Formulierungen können in Form von Zäpfchen oder Einlaufen dargereicht werden.

An die nasale Verabreichung angepaßte pharmazeutische Formulier¬ ungen, in denen die Trägersubstanz ein Feststoff ist, enthalten ein grobes Pulver mit einer Teilchengröße beispielsweise im Bereich von 20-500 Mikrometern, das in der Art und Weise, wie Schnupftabak aufgenommen wird, verabreicht wird, d.h. durch Schnellinhalation über die Nasenwege aus einem dicht an die Nase gehaltenen Behälter mit dem Pulver. Geeignete Formulierungen zur Verabreichung als Nasenspray oder Nasentropfen mit einer Flüssigkeit als Trägersubstanz umfassen Wirkstofflösungen in Wasser oder Öl.

An die Verabreichung durch Inhalation angepaßte pharmazeutische

Formulierungen umfassen feinpartikuläre Stäube oder Nebel, die mittels verschiedener Arten von unter Druck stehenden Dosierspendern mit

Aerosolen, Verneblern oder Insufflatoren erzeugt werden können.

An die vaginale Verabreichung angepaßte pharmazeutische Formulierungen können als Pessare, Tampons, Cremes, Gele, Pasten, Schäume oder Sprayformulierungen dargereicht werden.

Zu den an die parenterale Verabreichung angepaßten pharmazeutischen Formulierungen gehören wäßrige und nichtwäßrige sterile Injektions¬ lösungen, die Antioxidantien, Puffer, Bakteriostatika und Solute, durch die die Formulierung isotonisch mit dem Blut des zu behandelnden

Empfängers gemacht wird, enthalten; sowie wäßrige und nichtwäßrige sterile Suspensionen, die Suspensionsmittel und Verdicker enthalten können. Die Formulierungen können in Einzeldosis- oder Mehrfach¬ dosisbehältern, z.B. versiegelten Ampullen und Fläschchen, dargereicht und in gefriergetrocknetem (lyophilisiertem) Zustand gelagert werden, so

daß nur die Zugabe der sterilen Trägerflüssigkeit, z.B. Wasser für Injektionszwecke, unmittelbar vor Gebrauch erforderlich ist. Rezepturmäßig hergestellte Injektionslösungen und Suspensionen können aus sterilen Pulvern, Granulaten und Tabletten hergestellt werden. 5

Es versteht sich, daß die Formulierungen neben den obigen besonders erwähnten Bestandteilen andere im Fachgebiet übliche Mittel mit Bezug auf die jeweilige Art der Formulierung enthalten können; so können 10 beispielsweise für die orale Verabreichung geeignete Formulierungen Geschmacksstoffe enthalten.

Eine therapeutisch wirksame Menge einer Verbindung der Formel I hängt ^ c von einer Reihe von Faktoren ab, einschließlich z.B. dem Alter und

Gewicht des Tiers, dem exakten Krankheitszustand, der der Behandlung bedarf, sowie seines Schweregrads, der Beschaffenheit der Formulierung sowie dem Verabreichungsweg, und wird letztendlich von dem behandeln¬ den Arzt bzw. Tierarzt festgelegt. Jedoch liegt eine wirksame Menge einer 0 erfindungsgemäßen Verbindung für die Behandlung von neoplastischem

Wachstum, z.B. Dickdarm- oder Brustkarzinom, im allgemeinen im Bereich von 0,1 bis 100 mg/kg Körpergewicht des Empfängers (Säugers) pro Tag und besonders typisch im Bereich von 1 bis 10 mg/kg Körpergewicht pro 5 Tag. Somit läge für einen 70 kg schweren erwachsenen Säuger die tatsächliche Menge pro Tag für gewöhnlich zwischen 70 und 700 mg, wobei diese Menge als Einzeldosis pro Tag oder üblicher in einer Reihe von Teildosen (wie z.B. zwei, drei, vier, fünf oder sechs) pro Tag gegeben Q werden kann, so daß die Gesamttagesdosis die gleiche ist. Eine wirksame Menge eines Salzes oder Solvats oder eines physiologisch funktionellen Derivats davon kann als Anteil der wirksamen Menge der erfindungs¬ gemäßen Verbindung per se bestimmt werden. Es läßt sich annehmen, daß ähnliche Dosierungen für die Behandlung der anderen, obener- 5 wähnten Krankheitszustände geeignet sind.

Gegenstand der Erfindung sind ferner Arzneimittel enthaltend mindestens eine Verbindung der Formel I und/oder ihre pharmazeutisch verwendbaren

Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, und mindestens einen weiteren Arzneimittelwirkstoff.

Gegenstand der Erfindung ist auch ein Set (Kit), bestehend aus getrennten Packungen von (a) einer wirksamen Menge an einer Verbindung der Formel I und/oder ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereo¬ isomere, einschließlich deren Mischungen in allen Verhältnissen, und (b) einer wirksamen Menge eines weiteren Arzneimittelwirkstoffs.

Das Set enthält geeignete Behälter, wie Schachteln oder Kartons, individuelle Flaschen, Beutel oder Ampullen. Das Set kann z.B. separate

Ampullen enthalten, in denen jeweils eine wirksame Menge an einer

Verbindung der Formel I und/oder ihrer pharmazeutisch verwendbaren

Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, und einer wirksamen Menge eines weiteren Arzneimittelwirkstoffs gelöst oder in lyophilisierter Form vorliegt.

VERWENDUNG

Die vorliegenden Verbindungen eignen sich als pharmazeutische Wirk-

Stoffe für Säugetiere, insbesondere für den Menschen, bei der Behandlung von tyrosinkinasebedingten Krankheiten. Zu diesen Krankheiten zählen die Proliferation von Tumorzellen, die pathologische Gefäßneubildung (oder Angiogenese), die das Wachstum fester Tumoren fördert, die Gefäßneu- bildung im Auge (diabetische Retinopathie, altersbedingte Makula-

Degeneration und dergleichen) sowie Entzündung (Schuppenflechte, rheumatoide Arthritis und dergleichen).

Die vorliegende Erfindung umfasst die Verwendung der Verbindungen der Formel I und/oder ihre physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung von Krebs. Bevorzugte Karzinome für die Behandlung stammen aus der Gruppe Hirnkarzinom, Urogenitaltraktkarzinom, Karzinom des lympha-

10 tischen Systems, Magenkarzinom, Kehlkopfkarzinom und Lungen¬ karzinom. Eine weitere Gruppe bevorzugter Krebsformen sind Mono¬ zytenleukämie, Lungenadenokarzinom, kleinzellige Lungenkarzinome, Bauchspeicheldrüsenkrebs, Glioblastome und Brustkarzinom.

Λ c Ebensfalls umfasst ist die Verwendung der erfindungsgemäßen

Verbindungen nach Anspruch 1 und/oder ihre physiologisch unbedenk¬ lichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung einer Krankheit, an der Angiogenese beteiligt ist.

20

Eine derartige Krankheit, an der Angiogenese beteiligt ist, ist eine

Augenkrankheit, wie Retina-Vaskularisierung, diabetische Retinopathie, altersbedingte Makula-Degeneration und dergleichen.

Die Verwendung von Verbindungen der Formel I und/oder ihre

25 physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung von Entzündungskrank¬ heiten, fällt ebenfalls unter den Umfang der vorliegenden Erfindung. Zu solchen Entzündungskrankheiten zählen zum Beispiel rheumatoide

2 Q Arthritis, Schuppenflechte, Kontaktdermatitis, Spät-Typ der Überempfind¬ lichkeitsreaktion und dergleichen.

Ebenfalls umfasst ist die Verwendung der Verbindungen der Formel I und/oder ihre physiologisch unbedenklichen Salze und Solvate zur

Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung einer

35 tyrosinkinasebedingten Krankheit bzw. eines tyrosinkinasebedingten

Leidens bei einem Säugetier, wobei man diesem Verfahren einem kranken

Säugetier, das einer derartigen Behandlung bedarf, eine therapeutisch wirksame Menge einer erfindungsgemäßen Verbindung verabreicht. Die therapeutische Menge hängt von der jeweiligen Krankheit ab und kann vom Fachmann ohne allen großen Aufwand bestimmt werden. 5

Die vorliegende Erfindung umfasst auch die Verwendung Verbindungen der Formel I und/oder ihre physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung von Retina-Vaskularisierung.

10 Verfahren zur Behandlung oder Vorbeugung von Augenkrankheiten wie diabetischer Retinopathie und altersbedingter Makula-Degeneration sind ebenfalls ein Bestandteil der Erfindung. Die Verwendung zur Behandlung oder Vorbeugung von Entzündungskrankheiten wie rheumatoider Arthritis,

^ c Schuppenflechte, Kontaktdermatitis und Spät-Typen der Überempfindlich¬ keitsreaktion, sowie die Behandlung oder Vorbeugung von Knochen- Pathologien aus der Gruppe Osteosarkom, Osteoarthritis und Rachitis, fällt ebenfalls unter den Umfang der vorliegenden Erfindung.

Der Ausdruck „tyrosinkinasebedingte Krankheiten oder Leiden" bezieht 0 sich auf pathologische Zustände, die von der Aktivität einer oder mehrerer

Tyrosinkinasen abhängig sind. Die Tyrosinkinasen sind entweder direkt oder indirekt an den Signaltransduktionswegen verschiedener Zellaktivi¬ täten, darunter Proliferation, Adhäsion und Migration sowie Differenzierung 5 beteiligt. Zu den Krankheiten, die mit Tyrosinkinaseaktivität assoziiert sind, zählen die Proliferation von Tumorzellen, die pathologische Gefäßneu¬ bildung, die das Wachstum fester Tumore fördert, Gefäßneubildung im Auge (diabetische Retinopathie, altersbedingte Makula-Degeneration und 0 dergleichen) sowie Entzündung (Schuppenflechte, rheumatoide Arthritis und dergleichen).

Die Verbindungen der Formel I können an Patienten zur Behandlung von

Krebs verabreicht werden. Die vorliegenden Verbindungen hemmen die 5

Tumorangiogenese und beeinflussen so das Wachstum von Tumoren (J.

Rak et al. Cancer Research, 55:4575-4580, 1995). Die angiogenese-

hemmenden Eigenschaften der vorliegenden Verbindungen der Formel I eignen sich auch zur Behandlung bestimmter Formen von Blindheit, die mit Retina-Gefäßneubildung in Zusammenhang stehen.

Die Verbindungen der Formel I eignen sich auch zur Behandlung bestimmter Knochen-Pathologien wie Osteosarkom, Osteoarthritis und

Rachitis, die auch unter der Bezeichnung onkogene Osteomalazie bekannt ist (Hasegawa et al., Skeletal Radiol. 28, S.41-45, 1999; Gerber et al., Nature Medicine, Bd. 5, Nr. 6, S.623-628, Juni 1999). Da der VEGF durch den in reifen Osteoklasten exprimierten KDR/Flk-1 direkt die osteoklastische Knochenresorption fördert (FEBS Let. 473:161-164 (2000); Endocrinology, 141 :1667 (2000)), eignen sich die vorliegenden Verbindungen auch zur Behandlung und Vorbeugung von Leiden, die mit Knochenresorption in Zusammenhang stehen, wie Osteoporose und Morbus Paget.

Die Verbindungen können dadurch, dass sie zerebrale Ödeme, Gewebeschädigung und ischämiebedingte Reperfusionsverletzungen reduzieren, auch zur Verringerung oder Vorbeugung von Gewebeschäden, die nach zerebralen ischämischen Ereignissen wie Gehirnschlag auftreten, verwendet werden {Drug News Perspect 11 :265-270 (1998); J. Clin. Invest. 104:1613-1620 (1999)).

Gegenstand der Erfindung ist somit die Verwendung von Verbindungen der Formel I 1 sowie ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, bei denen die Hemmung, Regulierung und/oder Modulation der Signaltransduktion von Kinasen eine Rolle spielt.

Bevorzugt sind hierbei Kinasen ausgewählt aus der Gruppe der Tyrosinkinasen und Raf-Kinasen.

Vorzugsweise handelt es sich bei den Tyrosinkinasen um TIE-2, VEGFR 1 PDGFR, FGFR und/oder FLT/KDR.

Bevorzugt ist die Verwendung von Verbindungen der Formel I, sowie ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung der Tyrosinkinasen durch die Verbindungen nach Anspruch 1 beeinflußt werden.

Besonders bevorzugt ist die Verwendung zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung von TIE-2, VEGFR, PDGFR, FGFR und/oder FLT/KDR durch die Verbindungen nach Anspruch 1 beeinflußt werden. Insbesondere bevorzugt ist die Verwendung zur Behandlung einer Krankheit, wobei die Krankheit ein fester Tumor ist.

Der feste Tumor ist vorzugsweise ausgewählt aus der Gruppe der

Tumoren des Plattenepithel, der Blasen, des Magens, der Nieren, von Kopf und Hals, des Ösophagus, des Gebärmutterhals, der Schilddrüse, des Darm, der Leber, des Gehirns, der Prostata, des Urogenitaltrakts, des lymphatischen Systems, des Magens, des Kehlkopft und/oder der Lunge.

Der feste Tumor ist weiterhin vorzugsweise ausgewählt aus der Gruppe Lungenadenokarzinom, kleinzellige Lungenkarzinome, Bauchspeichel- drüsenkrebs, Glioblastome, Kolonkarzinom und Brustkarzinom.

Weiterhin bevorzugt ist die Verwendung zur Behandlung eines Tumors des Blut- und Immunsystems, vorzugsweise zur Behandlung eines Tumors ausgewählt aus der Gruppe der akuten myelotischen Leukämie, der chronischen myelotischen Leukämie, akuten lymphatischen Leukämie und/oder chronischen lymphatischen Leukämie.

Gegenstand der Erfindung ist weiterhin die Verwendung der Verbindungen der Formel I zur Behandlung einer Krankheit, an der

Angiogenese beteiligt ist.

Vorzugsweise handelt es sich bei der Krankheit um eine Augenkrankheit.

Gegenstand der Erfindung ist weiterhin die Verwendung zur Behandlung von Retina-Vaskularisierung, diabetischer Retinopathie, altersbedingter Makula-Degeneration und/oder Entzündungskrankheiten.

Die Entzündungskrankheit ist vorzugsweise ausgewählt aus der Gruppe rheumatoide Arthritis, Schuppenflechte, Kontaktdermatitis und Spät-Typ der Überempfindlichkeitsreaktion stammt.

Gegenstand der Erfindung ist weiterhin die Verwendung der erfindungs¬ gemäßen Verbindungen zur Behandlung von Knochen-Pathologien, wobei die Knochenpathologie aus der Gruppe Osteosarkom, Osteoarthritis und

Rachitis stammt.

Die Verbindungen der Formel I eignen sich zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Raf-Kinasen verursacht, vermittelt und/oder propagiert werden, wobei die Raf-Kinase aus der Gruppe bestehend aus A-Raf, B-Raf und RaM ausgewählt wird.

Bevorzugt ist die Verwendung zur Behandlung von Erkrankungen, vorzugsweise aus der Gruppe der hyperproliferativen und nicht hyperproliferativen Erkrankungen.

Hierbei handelt es sich um Krebserkrankungen oder nicht krebsartige

Erkrankungen.

Die nicht krebsartigen Erkrankungen sind ausgewählt aus der Gruppe bestehend aus Psoriasis, Arthritis, Entzündungen, Endometriose,

Vernarbung, gutartiger Prostatahyperplasie, immunologischer Krankheiten, Autoimmunkrankheiten und Immunschwächekrankheiten.

Die krebsartigen Erkrankungen sind ausgewählt aus der Gruppe bestehend aus Hirnkrebs, Lungenkrebs, Plattenepithelkrebs, Blasenkrebs,

Magenkrebs, Pankreaskrebs, Leberkrebs, Nierenkrebs, Kolorektalkrebs, Brustkrebs, Kopfkrebs, Halskrebs, Ösophaguskrebs, gynäkologischem Krebs, Schilddrüsenkrebs, Lymphom, chronischer Leukämie und akuter Leukämie.

Die Verbindungen der Formel I können auch gemeinsam mit anderen gut bekannten Therapeutika, die aufgrund ihrer jeweiligen Eignung für das behandelte Leiden ausgewählt werden, verabreicht werden. So wären zum Beispiel bei Knochenleiden Kombinationen günstig, die antiresorptiv wirkende Bisphosphonate, wie Alendronat und Risedronat, Integrinblocker (wie sie weiter unten definiert werden), wie αvß3-Antagonisten, bei der

Hormontherapie verwendetete konjugierte Östrogene wie Prempro®,

Premarin® und Endometrion®; selektive Östrogenrezeptormodulatoren

(SERMs) wie Raloxifen, Droloxifen, CP-336,156 (Pfizer) und Lasofoxifen, Kathepsin-K-Hemmer und ATP-Protonenpumpenhemmer enthalten. Die vorliegenden Verbindungen eignen sich auch zur Kombination mit bekannten Antikrebsmitteln. Zu diesen bekannten Antikrebsmitteln zählen die folgenden: östrogenrezeptormodulatoren, Androgenrezeptor- modulatoren, Retinoidrezeptormodulatoren, Zytotoxika, antiproliferative Mittel, Prenyl-Proteintransferasehemmer, HMG-CoA-Reduktase-Hemmer, HIV-Protease-Hemmer, Reverse-Transkriptase-Hemmer sowie weitere Angiogenesehemmer. Die vorliegenden Verbindungen eignen sich insbesondere zur gemeinsamen Anwendung mit Radiotherapie. Die synergistischen Wirkungen der Hemmung des VEGF in Kombination mit Radiotherapie sind in der Fachwelt beschrieben worden (siehe WO 00/61186).

„östrogenrezeptormodulatoren" bezieht sich auf Verbindungen, die die Bindung von Östrogen an den Rezeptor stören oder diese hemmen, und zwar unabhängig davon, wie dies geschieht. Zu den Östrogenrezeptor- modulatoren zählen zum Beispiel Tamoxifen, Raloxifen, Idoxifen,

5 LY353381 , LY 117081 , Toremifen, Fulvestrant, 4-[7-(2,2-Dimethyl-1- oxopropoxy-4-methyl-2-[4-[2-(1 - piperidinyl)ethoxy]phenyl]-2H-1 - benzopyran-3-yl]phenyl-2,2-dimethylpropanoat, 4,4'-Dihydroxybenzo- phenon-2,4-dinitrophenylhydrazon und SH646, was jedoch keine

10 Einschränkung darstellen soll.

„Androgenrezeptormodulatoren" bezieht sich auf Verbindungen, die die Bindung von Androgenen an den Rezeptor stören oder diese hemmen, und zwar unabhängig davon, wie dies geschieht. Zu den

^ c Androgenrezeptormodulatoren zählen zum Beispiel Finasterid und andere 5α-Reduktase-Hemmer, Nilutamid, Flutamid, Bicalutamid, Liarozol und Abirateron-acetat.

„Retinoidrezeptormodulatoren" bezieht sich auf Verbindungen, die die Bin¬ dung von Retinoiden an den Rezeptor stören oder diese hemmen, und

20 zwar unabhängig davon, wie dies geschieht. Zu solchen Retinoidrezeptor¬ modulatoren zählen zum Beispiel Bexaroten, Tretinoin, 13-cis-Retinsäure, 9-cis-Retinsäure, α-Difluormethylomithin, ILX23-7553, trans-N-(4'-Hydroxy- phenyl)retinamid und N-4-Carboxyphenylretinamid.

25 „Zytotoxika" bezieht sich auf Verbindungen, die in erster Linie durch direkte Einwirkung auf die Zellfunktion zum Zelltod führen oder die die Zellmyose hemmen oder diese stören, darunter Alkylierungsmittel, Tumornekrose¬ faktoren, interkaliernde Mittel, Mikrotubulin-Hemmer und Topoisomerase-

OQ Hemmer.

Zu den Zytotoxika zählen zum Beispiel Tirapazimin, Sertenef, Cachectin, Ifosfamid, Tasonermin, Lonidamin, Carboplatin, Altretamin, Prednimustin, Dibromdulcit, Ranimustin, Fotemustin, Nedaplatin, Oxaliplatin,

Temozolomid, Heptaplatin, Estramustin, Improsulfan-tosylat, Trofosfamid,

35

Nimustin, Dibrospidium-chlorid, Pumitepa, Lobaplatin, Satraplatin,

Profiromycin, Cisplatin, Irofulven, Dexifosfamid, cis-Amindichlor(2-

methylpyridin)platin, Benzylguanin, Glufosfamid, GPX100, (trans.trans.transJ-bis-mu^hexan-i .θ-diaminJ-mu-Idiamin-platinCIOlbis- [diamin(chlor)platin(ll)]-tetrachlorid, Diarizidinylspermin, Arsentrioxid, 1-(11-

Dodecylamino-10-hydroxyundecyl)-3,7-dimethylxanthin, Zorubicin, 5

Idarubicin, Daunorubicin, Bisantren, Mitoxantron, Pirarubicin, Pinafid,

Valrubicin, Amrubicin, Antineoplaston, 3'-Desamino-3'-morpholino-13- desoxo-10-hydroxycarminomycin, Annamycin, Galarubicin, Elinafid, MEN10755 und 4-Desmethoxy-3-desamino-3-aziridinyl-4-methylsulfonyl-

10 daunorubicin (siehe WO 00/50032), was jedoch keine Einschränkung darstellen soll.

Zu den Mikrotubulin-Hemmern zählen zum Beispiel Paclitaxel, Vindesin- sulfat, S'^'-Dideshydro^'-desoxy-δ'-norvincaleukoblastin, Docetaxol,

I J- Rhizoxin, Dolastatin, Mivobulin-isethionat, Auristatin, Cemadotin,

RPR109881 , BMS184476, Vinflunin, Cryptophycin, 2,3,4,5,6-pentafluor-N- (3-fluor-4-methoxyphenyl)benzolsulfonamid, Anhydrovinblastin, N 1 N- dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-prolyl-L-prolin- t-butylamid,

TDX258 und BMS188797.

20

Topoisomerase-Hemmer sind zum Beispiel Topotecan, Hycaptamin,

Irinotecan, Rubitecan, 6-Ethoxypropionyl-3',4'-O-exo-benzyliden- chartreusin, 9-Methoxy-N,N-dimethyl-5-nitropyrazolo[3,4,5-kl]acridin-2- (6H)propanamin, 1-Amino-9-ethyl-5-fluor-2,3-dihydro-9-hydroxy-4-methyl- 5 I H.^H-benzotdelpyranofS'^'ibJJindolizinoIl ^blchinolin-IO.ISCΘH.I δH)- dion, Lurtotecan, 7-[2-(N-lsopropylamino)ethyl]-(20S)camptothecin, BNP1350, BNPH 100, BN80915, BN80942, Etoposid-phosphat, Teniposid, Sobuzoxan, 2'-Dimethylamino-2'-desoxy-etoposid, GL331 , N-[2-

3 Q (Dimethylamino)ethyl]-9-hydroxy-5,6-dimethyl-6H-pyrido[4,3-b ]carbazol-1- carboxamid, Asulacrin, (5a,5aB,8aa,9b)-9-[2-[N-[2-(Dimethylamino)ethyl]- N-methylamino]ethyl]-5-[4-hydroxy-3,5-dimethoxyphenyl]-5,5a, 6,8,8a,9- hexohydrofuro(3',4':6,7)naphtho(2,3-d)-1 ,3-dioxol-6-on, 2,3-(Methylen- dioxy)-5-methyl-7-hydroxy-8-methoxybenzo[c]phenanthridinium, 6,9-Bis[(2-

35 aminoethyl)amino]benzo[g]isochinolin-5,10-dion, 5-(3-Aminopropylamino)-

7,10-dihydroxy-2-(2-hydroxyethylaminomethyl)-6H-pyrazolo[ 4,5,1-de]-

acridin-6-on, N-[1-[2(Diethylamino)ethylamino]-7-methoxy-9-oxo-9H-thio- xanthen-4-ylmethyl]formamid, N-(2-(Dimethyl-amino)-ethyl)acridin-4- carboxamid, 6-[[2-(Dimethylamino)-ethyl]amino]-3-hydroxy-7H-indeno[2,1- c]chinolin-7-on und Dimesna.

Zu den „antiproliferativen Mitteln" zählen Antisense-RNA- und -DNA- Oligonucleotide wie G3139, ODN698, RVASKRAS, GEM231 und INX3001 , sowie Antimetaboliten wie Enocitabin, Carmofur, Tegafur, Pentostatin, Doxifluridin, Trimetrexat, Fludarabin, Capecitabin, Galocitabin, Cytarabin-ocfosfat, Fosteabin-Natriumhydrat, Raltitrexed, Paltitrexid,

Emitefur, Tiazofurin, Decitabin, Nolatrexed, Pemetrexed, Nelzarabin, 2'- Desoxy-2'-methylidencytidin, 2 l -Fluormethylen-2'-desoxycytidin, N-[5-(2,3- Dihydrobenzofuryl)sulfonyl]-N'-(3,4-dichlorphenyl)hamstoff, N6-[4-Desoxy- 4-[N2-[2(E),4(E)-tetradecadienoyl]glycylamino]-L-glycero-B-L -manno- heptopyranosyl]adenin, Aplidin, Ecteinascidin, Troxacitabine, 4-[2-Amino- 4-0X0-4,6, 7, 8-tetrahydro-3H-pyrimidino[5,4-b][1 ,4]thiazin-6-yl-(S)-ethyl]- 2,5-thienoyl-L-glutaminsäure, Aminopterin, 5-Flurouracil, Alanosin, 11-

Acetyl-δ-CcarbamoyloxymethyO^-formyl-θ-methoxy-i 4-oxa-1 , 11 -diaza- tetracyclo(7.4.1.0.0)-tetradeca-2,4,6-trien-9-ylessigsäuree ster, Swainsonin,

Lometrexol, Dexrazoxan, Methioninase, 2'-cyan-2'-desoxy-N4-palmitoyl-1- B-D-Arabinofuranosylcytosin und 3-Aminopyridin-2-carboxaldehyd- thiosemicarbazon. Die „antiproliferativen Mittel" beinhalten auch andere monoklonale Antikörper gegen Wachstumsfaktoren als bereits unter den „Angiogenese-Hemmem" angeführt wurden, wie Trastuzumab, sowie Tumorsuppressorgene, wie p53, die über rekombinanten virusvermittelten Gentransfer abgegeben werden können (siehe z.B. US-Patent Nr. 6,069,134).

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I zur Herstellung eines Arzneimittels zur Behandlung von

Krankheiten, wobei die Krankheit durch gestörte Angiogenese gekennzeichnet ist. Bei der Krankheit handelt es sich vorzugsweise um

Krebserkrankungen.

Die gestörte Angiogenese resultiert vorzugsweise aus einer gestörten VEGFR-1- , VEGFR-2- und/oder VEGFR-3-Aktivität. Besonders bevorzugt ist daher auch die Verwendung der erfindungs¬ gemäßen Verbindungen zur Herstellung eines Arzneimittels zur Inhibierung der VEGFR-2-Aktivität.

ASSAYS

Die in den Beispielen beschriebenen Verbindungen der Formel I wurden in den unten beschriebenen Assays geprüft, und es wurde gefunden, dass sie eine kinasehemmende Wirkung aufweisen. Weitere Assays sind aus der Literatur bekannt und könnten vom Fachmann leicht durchgeführt werden (siehe z.B. Dhanabal et al., Cancer Res. 59:189-197; Xin et al., J. Biol. Chem. 274:9116-9121 ; Sheu et al., Anticancer Res. 18:4435-4441 ; Ausprunk et al., Dev. Biol. 38:237-248; Gimbrone et al., J. Natl. Cancer Inst. 52:413-427; Nicosia et al., In Vitro 18:538- 549). VEGF-Rezeptorkinase-Assay Die VEGF-Rezeptorkinaseaktivität wird durch Einbau von radioaktiv mar¬ kiertem Phosphat in 4:1 Polyglutaminsäure/Tyrosin-Substrat (pEY) be¬ stimmt. Das phosphorylierte pEY-Produkt wird auf einer Filtermembran festgehalten, und der Einbau des radioaktiv markierten Phosphats wird durch Szintillationszählung quantitativ bestimmt.

MATERIALIEN

VEGF-Rezeptorkinase

Die intrazelluläre-Tyrosinkinase-Domänen des menschlichen KDR

(Terman, B. I. et al. Oncogene (1991) Bd. 6, S. 1677-1683.) und Flt-1 (Shibuya, M. et al. Oncogene (1990) Bd. 5, S. 519-524) wurden als Glutathion-S-transferase (GST)-Genfusionsproteine Moniert. Dies geschah durch Klonieren der Zytoplasma-Domäne der KDR-Kinase als leserastergerechte Fusion am Carboxy-Terminus des GST-Gens. Die

löslichen rekombinanten GST-Kinasedomäne-Fusionsproteine wurden in Spodoptera frugiperda (Sf21) Insektenzellen (Invitrogen) unter Verwendung eines Baculovirus-Expressionsvektors (pAcG2T, Pharmingen) exprimiert. Lysepuffer

50 mM Tris pH 7,4, 0,5 M NaCI, 5 mM DTT, 1 mM EDTA, 0,5% Triton X- 100, 10% Glycerin, je 10 mg/ml Leupeptin, Pepstatin und Aprotinin sowie 1 mM Phenylmethylsulfonylfluorid (alle von Sigma).

10 Waschpuffer

50 mM Tris pH 7,4, 0,5 M NaCI 1 5 mM DTT, 1 mM EDTA, 0.05% Triton X- 100, 10% Glycerin, je 10 mg/ml Leupeptin, Pepstatin und Aprotinin sowie 1 mM Phenylmethylsulfonylfluorid.

^ c Dialysepuffer

50 mM Tris pH 7,4, 0,5 M NaCI, 5 mM DTT, 1 mM EDTA, 0.05% Triton X- 100, 50% Glycerin, je 10 mg/ml Leupeptin, Pepstatin und Aprotinin sowie 1 mM Phenylmethylsulfonylfluorid.

10 χ Reaktionspuffer

20

200 mM Tris, pH 7,4, 1 ,0 M NaCI, 50 mM MnCI 2 , 10 mM DTT und 5 mg/ml

Rinderserumalbumin [bovine serum albumin = BSA] (Sigma).

Enzymverdünnungspuffer

50 mM Tris, pH 7,4, 0,1 M NaCI, 1 mM DTT, 10% Glycerin, 100 mg/ml 25 BSA.

10 χ Substrat

750 μg/ml Poly(glutaminsäure/Tyrosin; 4:1) (Sigma).

Stopp-Lösung O0 30% Trichloressigsäure, 0,2 M Natriumpyrophosphat (beide von Fisher).

Waschlösung

15% Trichloressigsäure, 0,2 M Natriumpyrophosphat.

Filterplatten

Millipore #MAFC NOB, GF/C 96-Well-Glasfaserplatte.

35

Verfahren A - Proteinaufreinigung

1. Die Sf21 -Zellen wurden mit dem rekombinanten Virus bei einer m.o.i. (Multiplizität der Infektion) von 5 Viruspartikeln/Zelle infiziert und 48 Stunden lang bei 27°C gezüchtet.

2. Alle Schritte wurden bei 4°C durchgeführt. Die infizierten Zellen wurden durch Zentrifugieren bei 1000*g geerntet und 30 Minuten bei 4 0 C mit 1/10 Volumen Lysepuffer lysiert und anschließend 1 Stunde lang bei 100.000*g zentrifugiert. Der Überstand wurde dann über eine mit Lysepuffer äquilibrierte Glutathion-Sepharose-Säure (Pharmacia) gegeben und mit 5

10 Volumina des gleichen Puffers und anschließend 5 Volumina Waschpuffer gewaschen. Das rekombinante GST-KDR-Protein wurde mit Waschpuffer/10 mM reduziertem Glutathion (Sigma) eluiert und gegen Dialysepuffer dialysiert.

, 5 Verfahren B - VEGF-Rezeptorkinase-Assay

1. Assay mit 5 μl Hemmstoff oder Kontrolle in 50% DMSO versetzen.

2. Mit 35 μl Reaktionsmischung, die 5 μl 10 χ Reaktionspuffer, 5 μl 25 mM ATP/10 μCi[ 33 P]ATP (Amersham) und 5 μl 10* Substrat enthält, versetzen.

20

3. Reaktion durch Zugabe von 10 μl KDR (25 nM) in Enzymver¬ dünnungspuffer starten.

4. Mischen und 15 Minuten lang bei Raumtemperatur inkubieren.

5. Reaktion durch Zugabe von 50 μl Stopp-Lösung stoppen. 25 6. 15 Minuten lang bei 4°C inkubieren.

7. 90-μl-Aliquot auf Filterplatte überführen.

8. Absaugen und 3 Mal mit Waschlösung waschen.

9. 30 μl Szintillations-Cocktail zugeben, Platte verschließen und in einem 3 Q Szintillations-Zähler Typ Wallac Microbeta zählen.

Mitogenese-Assay an menschlichen Nabelschnurvenenendothelzellen Die Expression von VEGF-Rezeptoren, die mitogene Reaktionen auf den Wachstumsfaktor vermitteln, ist größtenteils auf Gefäßendothelzellen be¬ schränkt. Kultivierte menschliche Nabelschnurvenenendothelzellen 5

(HUVECs) proliferieren als Reaktion auf Behandlung mit VEGF und können als Assaysystem zur quantitativen Bestimmung der Auswirkungen

von KDR-Kinasehemmem auf die Stimulation des VEGF verwendet werden. In dem beschriebenen Assay werden Einzelzellschichten von HUVECs im Ruhezustand 2 Stunden vor der Zugabe von VEGF oder „basic fibroblast growth factor" (bFGF) mit dem Konstituens oder der Testverbindung behandelt. Die mitogene Reaktion auf VEGF oder bFGF wird durch Messung des Einbaus von [ 3 H]Thymidin in die Zeil-DNA bestimmt. Materialien

HUVECs

Als Primärkulturisolate tiefgefrorene HUVECs werden von Clonetics Corp bezogen. Die Zellen werden im Endothel-Wachstumsmedium (Endothelial

Growth Medium = EGM; Clonetics) erhalten und in der 3. - 7. Passage für die Mitogenitätsassays verwendet.

Kulturplatten

NUNCLON 96-Well-Polystyrol-Gewebekulturplattten (NUNC #167008). Assay-Medium Nach Dulbecco modifiziertes Eagle-Medium mit 1 g/ml Glucose (DMEM mit niedrigem Glucosegehalt; Mediatech) plus 10% (v/v) fötales Rinderserum (Clonetics). Testverbindungen

Mit den Arbeitsstammlösungen der Testverbindungen wird mit 100% Dimethylsulfoxid (DMSO) solange eine Reihenverdünnung durchgeführt, bis ihre Konzentrationen um das 400-fache höher als die gewünschte End¬ konzentration sind. Die letzten Verdünnungen (Konzentration 1 *) werden unmittelbar vor Zugabe zu den Zellen mit Assay-Medium hergestellt.

10 χ Wachstumsfaktoren

Lösungen des menschlichen VEGF 165 (500 ng/ml; R&D Systems) und bFGF (10 ng/ml; R&D Systems) werden mit Assay-Medium hergestellt. 10 χ [ 3 H]-Thymidin [Methyl- 3 H]-Thymidin (20 Ci/mmol; Dupont-NEN) wird mit DMEM-Medium mit niedrigem Glucosegehalt auf 80 μCi/ml verdünnt.

Zellwaschmedium

Hank's balanced salt Solution (Mediatech) mit 1 mg/ml

Rinderserumalbumin (Boehringer-Mannheim).

Zell-Lyse-Lösung 1 N NaOH, 2% (w/v) Na 2 CO 3 .

Verfahren 1

In EGM gehaltene HUVEC-Einzelzellschichten werden durch Trypsinbe- handlung geerntet und in einer Dichte von 4000 Zellen pro 100 μl Assay- Medium pro Näpfchen in 96-Well-Platten überimpft. Das Wachstum der

Zellen wird 24 Stunden bei 37 0 C in einer 5% CO 2 enthaltenden feuchten

Atmosphäre gestoppt.

Verfahren 2 Das Wachstumsstoppmedium wird durch 100 μl Assay-Medium ersetzt, das entweder das Konstituens (0,25% [v/v] DMSO) oder die erwünschte

Endkonzentration der Testverbindung enthält. Alle Bestimmungen werden in dreifacher Wiederholung durchgeführt. Die Zellen werden dann 2

Stunden bei 37°C/5% CO 2 inkubiert, so dass die Testverbindungen in die

Zellen eindringen können.

Verfahren 3

Nach 2-stündiger Vorbehandlung werden die Zellen durch Zugabe von

10 μl Assay-Medium, 10 χ VEGF-Lösung oder 10* bFGF-Lösung pro Näpfchen stimuliert. Die Zellen werden dann bei 37°C/5% CO 2 inkubiert.

Verfahren 4

Nach 24 Stunden in Anwesenheit der Wachstumsfaktoren wird mit 10*

[ 3 H]-Thymidin (10 μl/well) versetzt. Verfahren 5

Drei Tage nach dem Versetzen mit [ 3 H]-Thymidin wird das Medium abgesaugt und die Zellen werden zweimal mit Zellwaschmedium gewaschen (400 μl/well, anschließend 200 μl/well). Die gewaschenen, adhärenten Zellen werden dann durch Zugabe von Zell-Lyse-Lösung (100 μl/well) und 30-minutiges Erwärmen auf 37 0 C solubilisiert. Die Zell-Lysate werden in 7-ml-Szintillationsrährchen aus Glas, die 150 μl Wasser

enthalten, überführt. Man versetzt mit dem Szintillations-Cocktail (5 ml/Röhrchen), und die mit den Zellen assoziierte Radioaktivität wird flüssigkeitsszintillationsspektroskopisch bestimmt.

Gemäß diesen Assays stellen die Verbindungen der Formel I VEGF- Hemmer dar und eignen sich daher zur Hemmung der Angiogenese, wie bei der Behandlung von Augenkrankheiten, z.B. diabetischer Retinopathie, und zur Behandlung von Karzinomen, z.B. festen Tumoren. Die vorliegenden Verbindungen hemmen die VEGF-stimulierte Mitogenese von kultivierten menschlichen Gefäßendothelzellen mit HK50-Werten von 0,01-5,0 μM. Diese Verbindungen sind im Vergleich zu verwandten Tyrosinkinasen (z.B. FGFR1 sowie Src-Familie; zur Beziehung zwischen Src-Kinasen und VEGFR-Kinasen siehe Eliceiri et al., Molecular Cell, Bd. 4, S.915-924, Dezember 1999) auch selektiv.

Die T/E-2-Tests können z.B. analog der in WO 02/44156 angegebenen Methoden durchgeführt werden.

Der Assay bestimmt die inhibierende Aktivität der zu testenden

Substanzen bei der Phosphorylierung des Substrats PoIy(GIu, Tyr) durch

Tie-2-Kinase in Gegenwart von radioaktivem 33 P-ATP. Das phosphorylierte Substrat bindet während der Inkubationszeit an die Oberfläche einer "flashplate"-Mikrotiterplatte. Nach Entfernen der Reaktionsmischung wird mehrmals gewaschen und anschließend die Radioaktivität an der

Oberfläche der Mikrotiterplatte gemessen. Ein inhibierender Effekt der zu messenden Substanzen hat eine geringere Radioaktivität, verglichen mit einer ungestörten enzymatischen Reaktion, zur Folge.

Vor- und nachstehend sind alle Temperaturen in 0 C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des

Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit

Ethylacetat oder Dichlormethan, trennt ab, trocknet die organische Phase

über Natriumsulfat, dampft ein und reinigt durch Chromatographie an

Kieselgel und /oder durch Kristallisation. Rf-Werte an Kieselgel; Laufmittel:

Ethylacetat/Methanol 9:1.

Massenspektrometrie (MS): El (Elektronenstoß-Ionisation) M +

FAB (Fast Atom Bombardment) (M+H) + ESI (Electrospray lonization) (M+H) +

APCI-MS (atmospheric pressure chemical ionization - mass spectrometry)

(M+H) + .

10

Beispiel 1

Die Herstellung von 1-[4-(4-Amino-5-oxo-5H-pyrido[2,3-cf]pyrimidin-8-yl)- Λ c phenyl]-3-(5-tert-butyl-isoxazol-3-yl)-harnstoff ("1 ") erfolgt analog nachstehendem Schema

1.1 Die Herstellung von 4-Amino-8/-/-pyrido[2,3-c(]pyrimidin-5-on erfolgt nach Literaturvorschrift: Jean-Luc Girardet et al. J. Med. Chem. 2000, 43, 5 3704-3713.

1.2 Herstellung von 4-Amino-8-(4-nitro-phenyl)-8H-pyrido[2,3-c/]- pyrimidin-5-on ("A2"):

5.96 g 4-Amino-8/-/-pyrido[2,3-d]pyrimidin-5-on werden in 120 ml DMF c gelöst und nacheinander 4ml Fluor-4-nitrobenzol und 12 g

Cäsiumcarbonat zugegeben. Die Mischung wird über Nacht bei 85 C gerührt. Nach der Umsetzung wird das Lösungsmittel einrotiert und der Rückstand mit Wasser versetzt. Das unlösliche Produkt wird abgesaugt und gut mit Wasser gewaschen. Man erhält 9.5 g einer ockerfarbenen Festsubstanz.

Rf (Dichlormethan/Methanol 9:1) 0.4 EI-MS (M+H) + 284.

1.3 Herstellung von 4-Amino-8-(4-amino-phenyl)-8/-/-pyrido[2,3-d]- pyrimidin-5-on ("A3"):

7 g "A2" werden mit Raney-Nickel in DMF reduziert. Man erhält 5.4 g des gewünschten Produktes als braune Festsubstanz. 20

Rf (Dichlormethan/Methanol 9:1) 0.3 EI-MS (M+H) + 253.

__ 1.4 40 mg 3-Amino-5-tert.-butyl-isoxazol und 63 mg 4-Nitrophenyl- 25 chlorformiat werden in 5 ml Dichlormethan gelöst. Es wird 0.03 ml Pyridin zugegeben und das Gemisch zwei Stunden bei Raumtemperatur gerührt. Danach werden 100 mg 4-Amino-8-(4-amino-phenyl)-8/-/-pyrido[2,3- d]pyrimidin-5-on als Suspension in 5 ml Dichlormethan zugegeben. Am

30

Ende gibt man 0.1 ml N-Ethyldiisopropylamin hinzu.

Das Ganze rührt 16 Stunden bei Raumtemperatur. Man arbeitet wie üblich auf und erhält 100 mg gelbes Rohprodukt. Die Aufreinigung erfolgt mit präparativer HPLC und man erhält "1", 35 APCI-MS 420.

Die Bedingungen für die präparative HPLC sind: Säule: RP 18 (7 μm) Lichrosorb 250x25

Fließmittel: A: 98H2O, 2CH3CN, 0,1%TFA

B: 10H2O, 90CH3CN, 0,1 %TFA UV: 225NM

Fluß: 10ml/min

Beispiel 2

Analog Beispiel 1 erhält man die nachstehenden Verbindungen

Die nachfolgenden Beispiele betreffen Arzneimittel:

Beispiel A: Injektionsgläser

Eine Lösung von 100 g eines Wirkstoffes der Formel I und 5 g Dinatrium- hydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit 2 N SaIz- säure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes In¬ jektionsglas enthält 5 mg Wirkstoff.

Beispiel B: Suppositorien

Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.

Beispiel C: Lösung

Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I 1 9,38 g NaH 2 PO 4 • 2 H 2 O, 28,48 g Na 2 HPO 4 • 12 H 2 O und 0,1 g Benzalkonium- chlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 I auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D: Salbe

Man mischt 500 mg eines Wirkstoffes der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.

Beispiel E: Tabletten

Ein Gemisch von 1 kg Wirkstoff der Formel I 1 4 kg Lactose, 1 ,2 kg Kar¬ toffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher

Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff enthält.

Beispiel F: Dragees

Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

Beispiel G: Kapseln

2 kg Wirkstoff der Formel I werden in üblicher Weise in Hartgelatine¬ kapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.

Beispiel H: Ampullen

Eine Lösung von 1 kg Wirkstoff der Formel I in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingun¬ gen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg Wirkstoff.