Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ABNORMAL TIRE CONDITION WARNING SYSTEM__________________________
Document Type and Number:
WIPO Patent Application WO/1992/020539
Kind Code:
A1
Abstract:
A device is provided for sensing the condition of a pneumatic tire preferably of the type used on an automobile wherein the tire is mounted on a tire rim (22). The device comprises a housing (16), a band (24) for mounting the housing to the tire rim, a sensor (20) for monitoring the condition within the tire, circuitry (10) operatively connected to the sensor for generating radio signals indicative of the tire condition, a power supply (12) operatively connected to the circuitry, a centrifugal switch (30), and a receiver (13) for receiving the radio signals. The centrifugal switch may be bypassed with the condition sensor switch to generate the radio signals when the pneumatic tire is stationary.

Inventors:
NOWICKI DONALD V (US)
MUNROE CHRISTOPHER A (US)
Application Number:
PCT/US1992/003301
Publication Date:
November 26, 1992
Filing Date:
April 21, 1992
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EPIC TECHNOLOGIES INC (US)
International Classes:
A44B15/00; B60C23/04; G04B47/00; G07C1/30; G07C5/00; G08B21/24; (IPC1-7): B60C23/00
Foreign References:
US5061917A1991-10-29
US4311985A1982-01-19
US4695823A1987-09-22
Download PDF:
Claims:
What is claimed is:
1. A device for sensing a condition of a pneumatic comprising: a housing; means for mounting said housing within said tire; sensing means associated with said housing for monitoring a condition within the tire; circuit means associated with said housing including a microcontroller means and a radio transmitter circuit operatively connected to said sensing means for controlling and generating radio signals indicative of said tire condition; power supply means associated with said housing operatively connected to said circuit means to power the circuit means and to enable the generation of the radio signals, said power supply means including a battery adapted to be contained within said tire and a centrifugal switch means adapted with said battery to render the circuit means deenergized in a first stationary and low tire rotation mode and energized in a second high tire rotation mode; and, means for receiving said radio signals.
2. The device of claim 1 wherein said microcontroller means has a low power consumption mode in operation of said device.
3. The device of claim 2 wherein said microcontroller means comprises means for selectively operating in said low power consumption mode for nearly all the time it is energized in said second high tire rotation mode.
4. The device of claim 2 wherein said microcontroller comprises means for monitoring device parameters and means for periodically generating said radio signals in an absence of an abnormal tire condition, thereby providing for selfchecking of the device in operation.
5. A device for sensing a condition of a pneumatic tire of the type used on a motor vehicle wherein the tire is mounted on a tire rim comprising: a housing; a means for mounting said housing within said tire; sensing means associated with said housing for monitoring said condition within the tire; circuit means associated with said housing including a microcontroller and a radio transmitter circuit operatively connected to said sensing means for controlling and generating radio signals indicative of said tire condition; power supply means associated with said housing, operatively connected to said circuit means to power the circuit means and to enable the generation of the radio signals, said power supply means including a battery adapted to be contained within said tire and a centrifugal switch means adapted to render the circuit means deenergized in a first stationary and low tire rotation mode and energized in a second high tire rotation mode; switching circuit means operatively connected to said sensing means for bypassing the centrifugal switch means upon an indication of an abnormal tire condition; and, means for receiving said radio signals.
6. The device of claim 5 wherein said microcontroller has a low power consumption mode in operation of said device.
7. The device of claim 6 wherein said microcontroller comprises means for selectively operating in said low power consumption mode for nearly all the time it is energized in said second high tire rotation mode.
8. The device of claim 6 wherein said microcontroller comprises means for monitoring device parameters and means for periodically generating said radio signals in an absence of an abnormal tire condition, thereby providing for selfchecking of the device in operation.
9. The device of claim 5 further including a pressure transducer means associated with said housing operatively connected to said microcontroller for providing tire pressure measurement data to said microcontroller upon command from said microcontroller.
10. A device for sensing an abnormal condition of a pneumatic tire preferably of the type used on a motor vehicle wherein the tire is mounted on a tire rim comprising: a housing; a means for mounting said housing within said tire; sensing means associated with said housing for monitoring the abnormal condition within the tire; circuit means associated with said housing including a microcontroller and oscillator circuit and a radio transmitter circuit operatively connected to said sensing means for controlling and generating radio signals indicative of said abnormal tire condition, said microcontroller having a low power consumption mode; power supply means associated with said housing operatively connected to said circuit means to power the circuit means and enable the generation of the radio signals, said power supply means including a battery adapted to be contained within said tire and a centrifugal switch, the centrifugal switch adapted to render the circuit means deenergized in a first stationary and low tire rotation mode and energized in a second high tire rotation mode thereby with said microcontroller limiting power required from the battery; and, means for receiving said radio signals.
11. The device of claim 10 wherein said microcontroller comprises means for monitoring device parameters and means for periodically generating said radio signals in an absence of said abnormal tire condition, thereby providing for selfchecking of the device in operation.
12. A pneumatic tire condition monitoring apparatus for sensing pressure within a rotatable pneumatic tire and generating an alarm signal when the sensed pressure is within a first predetermined range, the apparatus comprising: power supply means for storing electrical energy; pressure sensing means for sensing said pressure within the tire, the sensing means assuming a first electrical state when the pressure is within the first range; alarm generating means for selectively generating a radio alarm signal; control circuit means, in electrical communication with the sensing means and the generating means, for controlling the generating means to generate an alarm signal when i) the sensing means is in the first electrical state, and ii) the stored electrical energy is released from the power supply means; and, switch means for selectively communicating the energy from the power supply means to the control circuit means when said tire rotates.
13. The monitoring apparatus of claim 12 wherein the switch means is a centrifugal switch.
14. The monitoring apparatus of claim 13 wherein said sensing means is a pneumatic pressure switch operable in the first and a second electrical state when said pressure is within the first and second range, respectively.
15. The monitoring apparatus of claim 14 further comprising: identification code generating means for selectively generating an identification code signal; and. means within the control circuit means for controlling the identification code generating means to generate the identification code signal when i) the sensing means is in the second electrical state, and ii) the stored electrical energy is communicated from the power supply means by said switch means.
16. The monitoring apparatus of claim 15 wherein said first range is less then 25 pounds per square inch and the second range is greater than the first.
17. The monitoring apparatus of claim 14 further comprising means for selectively communicating said electrical energy to the control circuit means when i) said pressure sensing means is in the first electrical state and ii) said tire rotates at a frequency of zero.
18. A method of monitoring a pneumatic tire condition for use with an apparatus having a transmitter device including a power supply, a centrifugal switch, a condition sensor, microcontroller, and a radio signal generating circuit, and a receiver device for receiving radio signals, the method comprising the steps of: disposing the transmitter device within the pneumatic tire; sensing a rotational frequency of the pneumatic tire with the centrifugal switch above a predetermined threshold rotational frequency; enabling the microcontroller by connection to the power supply through the centrifugal switch when the sensed rotational frequency exceeds the predetermined threshold frequency; sensing said pneumatic tire condition with the condition sensor; controlling the radio signal generating circuit with the enabled microcontroller to generate a radio signal representative of the sensed pneumatic tire condition; and, receiving the generated radio signal with the receiver device.
19. The method of monitoring a pneumatic tire condition according to claim 18, further comprising enabling the microcontroller by connection to the power supply using the condition sensor when the sensed pneumatic tire condition is within a predetermined range.
20. The method of monitoring a pneumatic tire condition according to claim 18, further comprising: sensing pressure within the pneumatic tire; encoding the generated radio signal with tire pressure information and transmitter device identification information; and, receiving the encoded radio signal and decoding the tire pressure information and the transmitter device identification information with the receiver device.
21. The method of monitoring a pneumatic tire condition according to claim 20, further comprising: controlling the radio signal generating circuit with the microcontroller to periodically generate the encoded radio signal at a first frequency; receiving the periodic encoded radio signal with the receiver device; and, generating an alarm with the receiver device when the first frequency is less than a predetermined frequency.
Description:
ABNORMAL TIRE CONDITION WARNING SYSTEM

Background of the Invention

This invention relates to the art of abnormal tire condition warning systems and particularly to battery powered systems. Both over and under inflated conditions in pneumatic tires are a cause for excessive tire wear resulting in premature tire failure. Moreover, such under and over inflated tire conditions can have an adverse affect on the efficiency of operations of the vehicle as to both performance or handling as well as vehicle fuel mileage. Since such conditions and results have been well known for quite some time, there have been many attempts to develop and provide means for automatically detecting and reporting them. Recently, development efforts for a practical and inexpensive device have become more concentrated due to the rise in fuel and tire costs as well as vehicle operation costs in general. Safety continues also to be an important consideration. While there have been quite a number of prior devices developed and utilized for detecting tire inflation conditions, these prior devices have had structural or operational shortcomings rendering them undesirable or impractical for widespread use. While the specific prior devices may have been many and varied, many have required special wiring and the like extending from the wheel assemblies to the vehicle chassis and then through the vehicle body to the instrument panel. Such wiring adds undesired cost to the system and moreover, is extremely difficult and time consuming to install. Such installation time is particularly important when considered on the basis of installing the devices during original vehicle assembly for making them a part of the original vehicle

equipment. Further, the necessary special wiring and associated equipment extending between the wheels and chassis are such that they are susceptible to damage or breakage from road materials, weathering, and the like encountered during normal vehicle use.

There have also been some prior art attempts at developing a detector apparatus self-contained in the wheel assembly to eliminate the necessity for wiring and the like such as the piezoelectric reed transducer power supply system as disclosed, for example, in U.S. Patent Numbers 4,384,482 and 4,510,484. These devices, associated with a radio transmitter in the wheel assembly and a radio receiver for supplying information to the driver have proven to be effective, but still exhibit characteristics inherent to the piezoelectric reed generators such as slow energy start-up activation, relatively large unit size requirements, expensive costs, and potential variations between individual units. Each of these characteristics can lead to certain operational problems and provide for added costs for the overall system.

Still other systems have attempted to use a battery mounted in-wheel for supplying power to the transmitter. These systems, however, have suffered problems including the size of the battery and the associated operational life of the battery. A battery that could supply the needed energy was impractical due to its size and weight, and a battery with practical physical specifications lacked the energy storage capacity required to provide an adequate continuous service duration and other features often demanded of such a system. With the system being mounted in-tire, frequent battery replacement is very expensive when

considering tire dismounting/mounting, wheel balancing, and the cost of the replacement batteries themselves.

Brief Summary of the Invention In accordance with the present invention, there is provided a self-contained device for sensing a condition of a pneumatic tire preferably of the type used on motor vehicles wherein the tires are mounted on tire rims. The device is provided with: a housing; a means for mounting the housing to a rim and within a tire; sensing means associated with the housing for monitoring a condition within the tire; circuit means associated with the housing including a microcontroller and a radio transmitter circuit operatively connected to the sensing means for generating radio signals indicative of a tire condition; power supply means associated with the housing, operatively connected to the circuit means, to power the circuit means, said power supply means including a battery and a centrifugal switch means adapted to energize the circuit means in a first tire rotation mode and de-energize the circuit means in a second tire rotation mode; and, means for receiving said radio signals.

In accordance with another aspect of the present invention, there is provided an in-tire self- contained device for sensing an abnormal condition of a pneumatic tire as set forth above wherein the microcontroller enters a "sleep" mode in which the microcontroller requires low battery power in operation. In accordance with yet another aspect of the present invention, there is provided an in-tire self- contained device for sensing an abnormal condition of a pneumatic tire as set forth above further including a switching circuit operatively connected to the sensing

means for bypassing the centrifugal switch means upon the indication of an abnormal tire condition.

In accordance with still another aspect of the present invention, there is provided an in-tire self- contained device for sensing an abnormal condition in a pneumatic tire as set forth above further including self-checking means to verify device operation.

One benefit obtained by an embodiment of the present invention is a self-contained abnormal tire condition sensing device located within the tire which is compact, reliable, and nearly maintenance-free.

Another benefit obtained by an embodiment of the present invention is an abnormal tire condition sensing device which has a self-checking feature to ensure the device is operational.

Still another benefit obtained by an embodiment of the present invention is an abnormal tire condition sensing device which provides immediate information on the condition of a tire upon ignition start-up and prior to the vehicle being put into motion.

Other benefits and advantages of the various embodiments of the present invention will become apparent to those skilled in the art upon reading and understanding of the specification below.

Brief Description of the Drawings The invention may take physical form in certain parts and arrangements of parts, the preferred embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which for a part hereof and wherein:

FIGURE 1 is a side elevational view in partial cross-section of a vehicle wheel assembly having the radio transmitter device of the present invention

installed thereon and operatively connected to a radio receiver;

FIGURE 2 is an enlarged cross-sectional view of the device shown in FIGURE 1; FIGURE 3 is an electronic schematic diagram of the device shown in FIGURE 1;

FIGURE 4 is an alternate electronic schematic diagram of the device shown in FIGURE 1; and,

FIGURE 5 is another alternate electronic schematic diagram of the device shown in FIGURE 1.

Detailed Description of the Invention

Referring now to the drawings which are for the purposes of illustrating the preferred embodiments of the invention only and not for the purpose of limiting the same, the FIGURES show a radio transmitter device A adapted for mounting on a pneumatic vehicle tire B. The device A includes a radio circuit 10, a control circuit means 11, and a battery power supply means 12 for providing electrical energy to the circuit.

More specifically and with reference to FIGURES 1 and 2, transmitter package A includes radio transmitter 10 for use in an abnormal condition tire warning system. A tire condition sensor 20 senses when the tire is in an abnormal condition and, in association with control means 11 and radio circuit 10 powered by battery means 12, initiates an identifying signal to an associated receiver 13 in the form of an identification code, as diagrammatically shown in FIGURE 1. The radio circuit 10, control means 11, sensor 20, and battery means 12 are contained in a housing 16 typically of plastic of the like, including a base wall 18 which is configured for close reception against the wheel rim 22 in the tire wheel cavity. Typically, the housing 16 is

attached by means of a band 24 and adjustable tightening means 26, as are known in the art.

With reference to FIGURE 3, power supply means 12 has a battery pair 28 with a centrifugal switch 30 and associated circuitry 31. Centrifugal switch 30 is series-connected with the batteries so that the current path is open between the battery pair 28 and the radio circuit 10 whenever the car is stationary or moving at a rate of speed below some predetermined level, such as five miles per hour. That is, the centrifugal switch is oriented such that its contacts remain open until the centrifugal force generated on housing 16 by a rotating wheel exceeds a predetermined threshold level, at which point the contacts close to complete the circuit allowing energizing of circuit 10 through control means 11. By using the centrifugal switch 30 in this manner, the load is electrically removed from across the batteries when the wheel is stationary or operated below a predetermined speed. The centrifugal switch arrangement also provides a means to automatically disable the control circuit and radio transmitter whenever the unit is not in its normal pressurized environment, such as in shipping or upon discarding, thus conserving battery energy and eliminating a potential source of radio interference. A battery that has proven useful in this application is a Lithium- Carbon Monofluoride battery - LIFEX FB FB2325 H2, made by Rayovac Corporation, which has a small size and exhibits a low self-discharge rate with an extended operational temperature from below minus forty degrees Celsius (- 40° C) to over eighty-five degrees Celsius (85° C) necessary for in-tire use.

Upon closure of the centrifugal switch, the batteries 28 power control means 11, including a

microcontroller 32 which controls the pulse duration of the radio signal, repetition rate, and code patterns, for encoding the tire pressure and sensor identification information. In accordance with this invention, the microcontroller is of the type that has a low power consuming "sleep mode" within which only an internal timer remains active. This mode requires very little battery power. Microcontroller 32 is operationally connected to sensor 20, which typically is a pneumatic pressure switch selected to close at pressures above 25 psi. The microcontroller 32 is also connected to a radio frequency circuit 10 with antenna 34.

In operation, when continuously energized, the microcontroller periodically "wakes up" and executes resident firmware to check the state of its inputs, such as tire pressure and sensor identification. The microcontroller 32 then in turn outputs coded information to a radio frequency circuit 10 for transmission to radio receiver 13. The microcontroller runs for a short duration (less than 150 milliseconds) then goes into a multiple-second sleep mode which uses little energy. Typically, the duration of the sleep mode is twelve seconds and the energy usage in the sleep mode is less than 0.2 milliwatts. This sleep mode feature also spaces the individual transmissions about twelve seconds apart, which meets requirements set by the Federal Communications Commissions, and also minimizes spurious transmissions caused by momentary centrifugal switch closures. A microcontroller that has proven useful in the present application is an EPROM- based 8-BIT CMOS unit - PIC ® 16C5X, made by Microchip Technologies Inc. This microcontroller includes the low current sleep mode feature.

In accordance with the present invention, a battery having a size for appropriate accommodation within a vehicle tire is provided with a centrifugal switch and microcontroller with low power sleep ode. By utilizing the low power consuming sleep mode of the microcontroller and the centrifugal switch shut-off function, sufficient battery energy capacity is available to allow the system to signal periodically regardless of pressure, thus providing a "self-checking" feature for the system. That is, the system not only discriminates tire pressure data when "awake", but also transmitter and sensor identification codes on a vehicle, thereby providing the self-checking feature which alerts a driver of general system problems such as a low battery, or transmitter/sensor malfunction. This is accomplished by providing the receiver 13 with a free-running "watchdog" counter wherein successive transmissions of sensor identification codes serve to reset the counter preventing an alarm condition. If at any time the "watchdog" counter reaches its limit without a resetting transmission of sensor identification codes originating from any of the multiple sensors on the vehicle, an alarm is generated by the receiver 13 identifying a fault condition and its source. In short, a reliable abnormal tire condition sensing system is provided with a continuous self- checking system. The system has a long maintenance-free life, typically in excess of eight years of normal vehicle operation. In one operating embodiment, the following exemplary components and circuit values were employed in the radio transmitter device of FIGURE 3. These components and values are in no way to be deemed as the overall inventive concepts involved.

Component Description

Rl, R2, 10OK OHM

R3 300K OHM

R4 IK OHM

Cl lμF

C2, C3 100 pF

C4 47 pF

C5 10 pF

Ql NPN RF Transistor

CR1 1 MHZ Resonator

BATT1 6 Volt Battery

FIGURE 4 shows an alternate embodiment of the radio transmitter device of the present invention which is similar in operation and design to the device of FIGURE 3, but includes additional instant abnormal tire indication. For ease of illustration, and discussion, like elements will be referred to by like characters with a primed (') suffix, and new elements will be referred to by new characters.

In this embodiment, the sensor pressure switch 20' is placed across batteries 28' to shunt the centrifugal switch 30• when pressure switch 20' indicates an abnormal tire condition. This provides for a signal even when the vehicle is not in motion. With this embodiment, the transmission of an abnormal tire condition such as pressure or temperature is provided to the driver instantly upon ignition start-up so long as the receiver module 13' (not shown) has power applied to it.

In this second operating embodiment of FIGURE 4, the following exemplary components and circuit values were employed in the radio transmitter device. These

components and values are in no way to be deemed the overall inventive concepts involved.

Component Description Rl « 10M OHM R2' 100K OHM R3 1 300K OHM R4 1 IK OHM

Cl 1 μF

C2' , C3' 100 pF

C4 1 47 pF

C5 « 10 pF

Dl diode

Ql' PNP Switching Transistor

Q2 NPN Switching Transistor

Q3 NPN RF Transistor

CR1 1 1MHZ Resonator

BATT1' 6 Volt Battery

FIGURE 5 shows yet another alternative embodiment of the present invention which is similar in operation and design to the device of FIGURE 4, but includes means for actual tire pressure measurement indication. Such means could also provide for temperature measurement indication. For ease of illustration and discussion, like elements (FIGURES 3 and 4) will be referred to by like characters with a double primed suffix (") , and new elements will be referred to by new characters.

In this embodiment, a pressure transducer/ conditioning circuit 21 as is known in the art is connected to the microcontroller 32" to provide for the ability to encode and deliver a direct pressure measurement to read out to the vehicle operator (i.e..

20 psi, 21 psi, etc.). The circuit 21 is connected to microcontroller 32" so that it is periodically energized upon command by the microcontroller when the microcontroller is activated by either one or both of the following conditions: (1) the tire rotation frequency exceeds a predetermined level closing the centrifugal switch 30", or (2) abnormal tire pressure, opening the contacts of sensor pressure switch 20". This embodiment provides for the transmission of actual tire pressure measurement data (or temperature data) even when the vehicle is not in motion where the tire is in an abnormal inflation condition. The tire pressure measurement data is provided to the vehicle operator instantly upon ignition start-up when an abnormal tire condition exists, so long as the receiver module is energized. A temperature transducer and necessary support circuit may be added along with the pressure transducer 21 to enable the microcontroller 32" to deliver both actual temperature and actual pressure information by multiplexing the two separate transducers.

This invention has been described with reference to certain preferred embodiments. Obviously modifications and alterations will occur to others upon reading and understanding of the specification. It is our intention to include all such modi ications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.




 
Previous Patent: ELASTOMERIC BARRIER FILMS FOR TIRES

Next Patent: TOWBAR