Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AN ACETYLENIC CARBON ALLOTROPE
Document Type and Number:
WIPO Patent Application WO/1996/022314
Kind Code:
A1
Abstract:
A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Inventors:
LAGOW RICHARD J (US)
Application Number:
PCT/US1996/000405
Publication Date:
July 25, 1996
Filing Date:
January 17, 1996
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LAGOW RICHARD J (US)
International Classes:
B32B9/00; C01B31/02; C07C11/22; C07C15/48; C07C15/50; C07C21/22; C07C255/09; C08F4/50; C09D11/02; C10L5/00; C10M125/02; C10M127/02; D01F9/12; D01F9/127; H01B1/04; H01L39/12; (IPC1-7): C08F38/02; C08F138/02; C08F281/00; D01F9/12; C01B31/00; C01B31/02; H01B1/00; H01L39/00; C09D11/00; B32B9/00; B32B27/14
Other References:
J. AM. CHEM. SOC., Vol. 109, No. 2, issued 1987, HEATH et al., "The Formation of Long Chain Molecules During Laser Vaporization of Graphite", pages 359-363.
J. AM. CHEM. SOC., Vol. 113, No. 18, issued 1991, RUBIN et al., "Solution-Spray Flash Vacuum Pyrolysis: A New Method for the Synthesis of Linear Poliynes With Odd Numbers of C-C Bonds from Substituted 3,4- Dialkynyl-3-cyclobutene-1,2-diones", pages 6943-6949.
SCIENCE, Vol. 245, issued 08 September 1989, DIERDERICH et al., "All- Carbon Molecules: Evidence for the Generation of Cyclo(18)carbon from a Stable Organic Precursor", pages 1088-1090.
J. CHEM. PHYS., Vol. 81, No. 7, issued 01 October 1984, ROHLFING et al., "Production and Characterization of Supersonic Carbon Cluster Beams", pages 3322-3330.
See also references of EP 0821702A4
Download PDF:
Claims:
CLAIMS
1. A carbon compound, comprising: substantially CsC repeat units in a carbon chain which is endcapped and having a total number of carbon atoms which is greater than twelve not including the end capping groups .
2. The carbon compound of claim 1 which has a formula as follows: X ^QnX2 wherein Xi and X2 are each independently capping end groups; and n is an integer greater than 16.
3. The carbon compound of claim 2 wherein n is an integer from 25 to 50.
4. The carbon compound of claim 5 wherein n is an integer from 201 to 400.
5. The carbon compound of claim 6 wherein n is an integer from 401 to 1000.
6. The carbon compound of claim 7 wherein n is an integer from 1001 to 5000.
7. The carbon compound of claim 8 wherein n is an integer between 5001 and 10000.
8. The carbon compound of claim 2 wherein the capping end groups are nonreactive.
9. The carbon compound of claim 2 wherein the capping end groups block interchain hydrogen transfer.
10. The carbon compound of claim 8 wherein n is an integer between 10,001 to 100,000.
11. The carbon compound of claim 2 wherein the capping end groups are each independently selected from the group consisting of tertbutyl, methyl, trifluoromethyl, nitrile, phenyl and triethylsilyl.
12. An enriched composition, comprising : an acetylenic carbon allotrope having greater than twelve carbon atoms bound to each other via alternating single and triple bonds in an enriched form.
13. The enriched composition of claim 14 wherein the carbon atoms in the allotrope are linearly arranged.
14. The enriched composition of claim 14 wherein the carbon atoms in the allotrope form a ring.
15. An endcapped acetylenic carbon allotrope, comprising: greater than thirty two carbon atoms arranged between two capping end groups forming an endcapped acetylenic carbon allotrope.
16. An endcapped acetylenic carbon allotrope of claim 17 wherein the carbon atoms are linearly arranged.
17. An essentially fullerenefree acetylenic carbon allotrope, comprising: greater than twelve carbon atoms bound to each via alternating single and triple bonds forming an acetylenic carbon allotrope, said allotrope being essentially free of fullerene.
18. A soluble carbon allotrope, comprising: greater than twelve carbon atoms forming a soluble carbon allotrope which is soluble in solvents which differ from toluene and molten metals.
19. An acetylenic carbon allotrope, comprising: greater than twelve linearly arranged carbon atoms having a thermal stability such that the allotrope does not crosslink at temperatures below 130 °C.
20. A purified acetylenic carbon allotrope, comprising: greater than twelve linearly arranged carbon atoms forming a pure acetylenic carbon allotrope.
21. An endcapped acetylenic carbon allotrope, comprising: greater than twelve carbon atoms linearly arranged between two end groups forming an endcapped acetylenic carbon allotrope, provided that at least one of the end groups is not a triethyl silyl protecting group.
22. A composition of an acetylenic carbon allotrope, comprising: an acetylenic carbon allotrope in an amount of at least 0.5 grams.
23. The composition of claim 24 wherein the amount is at least 1.0 grams.
24. The composition of claim 25 wherein the amount is at least 2.0 grams.
25. A solution of an carbon allotrope, comprising: a carbon allotrope dissolved in a solvent, provided that the solvent is not toluene or a molten metal.
26. A solution of an carbon allotrope, comprising: a carbon allotrope dissolved in a solvent, wherein the solvent is selected from the group consisting of tetrahydrofuran, chloroform, deuterochloroform, acetonitrile, acetone, and deuteroacetone.
27. An acetylenic carbon fiber, comprising: chains of linearly arranged carbon atoms forming an acetylenic carbon fiber.
28. The acetylenic carbon fiber of claim 29 having a tensile strength which is at least two times that of a comparable graphite fiber.
29. The acetylenic carbon fiber of claim 29 having a tensile strength which is at least five times that of a comparable graphite fiber.
30. A method for preparing an endcapped acetylenic carbon allotrope, comprising: providing a carbon source and source of end groups; and vaporizing the carbon source in the presence of the source of end groups such that an endcapped acetylenic carbon allotrope is formed.
31. The method of claim 32 wherein the vaporization of the carbon source is conducted using a laser.
32. The method of claim 33 wherein the vaporization occurs in the presence of a gas.
33. The method of claim 34 wherein the gas is selected from the group consisting of helium, argon and xenon.
34. A method for preparing an endcapped acetylenic carbon allotrope, comprising: selecting an end group for its ability to block hydrogen transfer interchain within a carbon chain; and vaporizing a carbon source in the presence of the selected end group such that an endcapped acetylenic carbon allotrope is formed.
35. In a conductive material, the improvement comprising, the inclusion of an acetylenic carbon allotrope.
36. In a carbon coating, the improvement comprises, the inclusion of an acetylenic carbon allotrope.
37. In a diamond synthesis process, the improvement comprises, the inclusion of an acetylenic carbon allotrope as a precursor.
38. In a graphite synthesis process, the improvement comprises, the inclusion of an acetylenic carbon allotrope as a precursor.
39. In a zero hydrogen fuel, the improvement comprises, the inclusion of an acetylenic carbon allotrope.
40. In a printing ink, the improvement comprises, the inclusion of an acetylenic carbon allotrope.
41. In a lubricant, the improvement comprises, the inclusion of an acetylenic carbon allotrope.
42. In a superconductor, the improvement comprises, the inclusion of a doped acetylenic carbon allotrope.
43. A system comprising: a first acetylenic carbon allotrope containing material in contact with a second element.
44. The system of claim 45 wherein the element comprises a substrate.
45. The system of claim 46 where the material is deposited on the substrate in a selected pattern.
46. The system of claim 46 wherein the substrate is a silica based substrate.
47. The system of claim 48 wherein the material is a conductive layer deposited on the substrate in a selected pattern.
Description:
ANACETYLENICCARBONALLOTROPE

Related Application

This application is a continuation-in-part application of U.S. Serial No. 08/375,115 , filed January 19, 1995, now pending, which is a continuation-in-part application of U.S. Serial No. 08/374,476 entitled LINEAR ACETYLENIC CARBON by Richard J. Lagow, filed on January 17, 1995, now abandoned. The contents of the aforementioned parent application are expressly incorporated by reference.

Government Support

Work described herein has been supported by a grant from the Department of Energy (Grant DE-FG05-91ER12119). The U.S. Government may therefore have certain rights in the invention.

Background of the Invention

Carbon is found in nature in several allotropic forms. Two well known allotropes of carbon are diamond and graphite. Diamond has a cubic structure formed by a tetrahedral lattice of sp3-bonded carbon atoms. This structure has great strength and makes diamond a hard material. Graphite is composed of sp2-hybridized carbon atoms bonded together in layers. Individual layers are stacked to form bulk graphite, which is quite soft; the layers are not strongly associated and so are able to slip relative to one another. This slipping of layers is generally believed to be the source of the lubricating qualities of graphite.

Other well-known forms of carbon include soot, charcoal, and other amorphous materials, which are all composed of finely divided graphite. Graphite is also known to exist as whiskers or fibers which have high tensile strength.

More recently, a third allotrope of carbon, the fullerenes, has been discovered and extensively studied (see e.g., "fullerenes" Scient. Am., October 1991, pp. 54-63). The fullerenes consist of sp2-hybridized carbons bonded into a closed shell. The simplest and most studied fullerene has 60 carbon atoms arranged in the form of a truncated icosahedron; the shape of this molecule resembles a soccer ball, and it has both 5- and 6-membered rings in its structure. Other fullerenes having 70, 84, and higher numbers of carbon atoms have also been characterized. A related structure is the carbon nanotube, which consists of carbon atoms arranged so as to form a cylinder. The known allotropes of carbon are based either on sp3 (diamond) or sp2 (graphite, fullerenes, nanotubes) hybridization of carbon. The existence of other allotropes have been mentioned previously, however, the acetylenic carbon allotrope was generally held to be unstable. Although there were papers from the former Soviet Union in the 1950s and 1960s claiming that a new form of carbon called "carbyne" had been prepared (Mernichenko, V.M.

et al., Carbon 21, 131 (1983), and references contained therein.), other workers have extensively studied their evidence and this contention is generally held to be incorrect (see e.g. P.P.K. Smith and P. R. Buseck, Science 216, 984 (1982); J. Jansta, F.P. Dousek, V. Patazelova, Carbon 13, 377 (1975); W.A. Little, Phys. Rev. 134, 1416 (1964); M. F. Hawthorne, Preliminary Reports, Memoranda and Technical Notes of the Materials Researc Council Summer Conference, La Jolla, California, July 1973 (NTIS)).

The synthesis of long-chain acetylenic carbon species [(α-ω-bis(triethylsilyl)polyyne up to 32 carbon atoms] with alternating single and triple bonds was reported by David Walton and co-workers in 1972 (R. Eastmond, T. R. Johnston, D.R.M. Walton, Tetrahedron 28, 4601 (1972).). They prepared, using copper chloride (Hay coupling), mixtures of acetylenic carbon compounds that contained 2-16 acetylene units. Walton reported that beyond eight carbon atoms the chains became increasingly unstable with increasing length, and only the lowest members of the series were isolable.

Diederich and co-workers (F. Diederich et al, Science 245, 1088 (1989)) have reported the synthesis of mass spectrometric quantities of a C I8 alkyne-containing carbon rin by flash heating [18]annulene precursors. Diederich has also reported the synthesis of acetylenic carbon species containing up to 6 acetylene units (F. Diederich et al, J. Am. Chem Soc. 113, 6943 (1991)).

Summary of the Invention

The present invention is based, at least in part, on the discovery of a fourth allotrope of carbon being an acetylenic carbon allotrope. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possess other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described below.

The present invention pertains to a carbon compound. The carbon compound being substantially -C≡C- repeat units in a carbon chain which is endcapped and having a total number of carbon atoms which is greater than twelve not including the end capping groups. The carbon compound can have a formula as follows:

wherein X \ and X2 are each independently capping end groups; and n is an integer greater than 16. The preferred acetylenic carbon allotropes of the present invention are long chained linear acetylenic carbon compounds.

Brief Description of the Drawings

Figure 1 depicts the scheme used for the synthesis of (CH 3 )3C-C-sC-C≡C-CsC-CsC-C(CH 3 )3.

Figure 2 is a table showing the bond distances and bond angles of

(CH 3 )3C-CsC-C-≡C-CsC-C-sC-C(CH 3 )3 as determined by X-ray crystallography.

Figure 3 depicts the unit cell packing of (CH 3 ) 3 C-CsC-CsC-CsC-C-sC-C(CH 3 ) 3 as determined by X-ray crystallography.

Figure 4 shows the 13 C NMR spectrum of (CH 3 ) 3 C-C≡C-C≡C-C≡C-C-≡C-C(CH 3 ) 3 .

Figure 5 shows the 13 C NMR spectrum of products of the condensation of Li-C≡C-Br.

Figure 6 A shows the low molecular weight region of the mass spectrum of carbon cluster beams by Kaldor and coworkers (from E. A. Rohlfing, D. M. Cox, A. Kaldor, J. Chem. Phys. 81, 3322 (1984)).

Figure 6B shows the high molecular weight region of the mass spectrum of carbon cluster beams by Kaldor and coworkers as in Figure 6A.

Figure 7 shows the apparatus used to produce acetylenic carbon chains by vaporization of graphite.

Figure 8 is a 13 C NMR spectrum of -CN end capped acetylenic carbon chains in deuteroacetone.

Figure 9A is the Fourier Transform high resolution mass spectrum (FTHRMS) of -CN endcapped acetylenic carbon chains.

Figure 9B is a detail, from 960 to 1100 mass units, of the spectrum shown in Figure 9 A.

Figure 10 is the FTHRMS of CF 3 end capped acetylenic carbon chains produced with helium as a third body gas.

Figure 11 is the mass spectrum of carbon clusters produced by Kaldor and coworkers using argon as the third body gas (from A. Kaldor, D. M. Cox, K. C. Reichmann, J. Chem. Phys. 88, 1588 (1988)).

Figure 12 is a 13 C NMR spectrum in deuteroacetone of CF 3 end capped acetylenic carbon chains produced with argon as a third body gas.

Figure 13 is a Fourier transform mass spectrum of CF 3 end capped acetylenic carbon chains produced with argon as a third body gas.

Detailed Description

Forms and Properties of the Acetylenic Carbon Allotropes

The present invention pertains to a carbon compound which is a fourth allotrope of carbon. The carbon compound being substantially -C≡C- repeat units in a carbon chain which is endcapped and having a total number of carbon atoms which is greater than twelve not including the endcapping groups. The carbon compound can have a formula as follows:

Xi and X2 are each independently capping end groups and n is an integer greater than 16. The acetylenic carbon allotrope contain acetylenic groups -(C≡C)- and further can be linear, branched or cyclic, i.e., the carbon chain can cyclize forming a ring. The language linear is intended to include slight curves such as that depicted in Figures 2 and 3. The preferred form of the carbon allotrope of the present invention is a linear acetylenic carbon allotrope. Figures 2 and 3 show the unit cell packing and bond angles and bond distances of a capped acetylenic compound. These Figures confirm that the carbon chains of the present allotropes have alternating single and triple bonds between the carbons and a slight curve.

The capping end groups are groups which are capable of attaching to the ends of the acetylenic carbon chains allowing for the formation of stable acetylenic carbon allotropes. The end groups typically are non-reactive, and block hydrogen transfer interchain (within the carbon chain). The end groups also typically are bulkier than hydrogen. The end groups can be organic or inorganic groups. Examples of end groups which can be used within the present invention include, but are not limited to, substituted and unsubstituted alkyl groups (e.g., tert-butyl, ethyl, propyl, methyl, and trifluoromethyl), nitrile, substituted and unsubstituted phenyl and triethylsilyl groups. The substituents on the end groups can be substituents which do not interfere with the end group's ability to perform its intended function, e.g, allowing for the formation of an acetylenic carbon allotrope.

The lengths of the carbon chain in the acetylenic carbon allotrope can vary depending on such factors as the desired end use of the allotrope and/or the desired total percent by weight of carbon in the allotrope, e.g. at least 97 percent carbon by weight. The length of the carbon chain between the two capping end groups can be greater than 32 carbon atoms. The

length of the carbon chain also can be up to one million carbon atoms (synthesis can be conducted using organometallic polymerization techniques described below). Examples of "n" values that can be used in the above formula include: at least 25, at least 50, at least 100, at least 150, at least 200, or at least 250, at least 1000, 3000, 5000, 10000, 20000, 50000, etc. The "n" value can be any even integer between 1 and 500000 and the range can be any range contained within this range. Furthermore, chains of selected or uniform lengths can be obtained by either a selective synthesis, i.e., synthesis of chains having a desired length or range of lengths, or by separation of a desired chain length from a mixture, e.g., by chromatographic or (for chains including a charged group) electrophoretic techniques. Chains of uniform length are believed to have advantages in certain applications, such as synthesis of superconducting materials, over mixtures of chains of differing lengths. Also, chains of uniform length are more likely to form single crystals from which a crystal structure could be obtained, leading to new insights.

The present invention also pertains to a composition enriched in an acetylenic carbon allotrope. The acetylenic carbon allotrope contains greater than 12 carbon atoms bound to each other via alternating single and triple bonds in an isolated form. The term "enriched" is intended to include compositions wherein the acetylenic allotrope is the predominant component with or without significant amounts of other components. Other components or ingredients can be present with the carbon acetylenic allotrope, e.g. other carbon allotropes such as fullerene or traces of graphite. The acetylenic carbon allotropes in the enriched compositions can contain carbon atoms which are linearly arranged or which form a ring. The preferred acetylenic carbon allotropes are those long-chain linear allotropes described in detail above.

The present invention also pertains to endcapped acetylenic carbon allotropes. The endcapped acetylenic carbon allotropes contain greater than 32 carbon atoms arranged between two capping end groups forming the endcapped allotrope. The endcapped allotropes also can contain carbon atoms which are linearly arranged or which form a ring. The capping end groups are as described above.

The present invention even further pertains to an essentially fullerene-free acetylenic carbon allotrope. The language "essentially fullerene-free" is intended to include no detectable amounts of fullerene present in the acetylenic carbon allotrope. Detectable is intended to mean not detectable using a ^C NMR procedure. In the procedure the fullerene content in the sample of the allotrope is compared to a known sample containing fullerene.

The present invention even further pertains to a soluble carbon allotrope. The soluble carbon allotrope of the present invention is soluble in solvents which differ from toluene and molten metals but also toluene and molten metals. It is presently known that fullerene is sparingly soluble in toluene and diamond and graphite are soluble in molten metals, e.g., molten iron and molten nickel. The acetylenic carbon allotropes of the present invention are the most soluble of the known carbon allotropes in common organic solvents.

The present invention even further pertains to a purified acetylenic carbon allotrope. The purified acetylenic carbon allotrope has greater than twelve carbon atoms. The languag "purified acetylenic carbon allotrope" is intended to include allotropes which are free from any other material at least in amounts which are detectable. The term detectable is as define above and it is intended to include detectable using a ' 3 C NMR procedure.

The present invention even further pertains to a composition containing what would be considered significant amounts by weight of an acetylenic carbon allotrope. The compositions contain at least about 0.5 grams, at least about 1.0 grams, or at least about 2.0 grams. The synthesis methods described in here allow large scale production of the acetylenic carbon allotropes of the present invention.

The present invention further even further pertains to solutions of a carbon allotrope. The carbon allotrope is dissolved in the solution (no significant amount of undissolved carbon allotrope is detectable by the naked eye). The solvent can be selected from the group consisting of tetrahydrofuran, chloroform, deuterochloroform, acetonitrile, acetone, and deuteroacetone.

Another aspect of the invention pertains to carbon fibers made from the acetylenic carbon allotropes. Chains of the linearly arranged carbon atoms are combined or grow together to form an acetylenic carbon fiber. The chains can be intertwined with each other. The carbon fibers of the present invention have a tensile strength which is greater than that o a comparable graphite fiber, preferably at least two time greater than that of a comparable graphite fiber, and more preferably five times greater than that of a comparable graphite fibe The fibers of the present invention are 100 times as strong as comparable nylon fibers. The tensile strength is measured using conventional techniques and the comparison between the two fibers is a side-by-side comparison. The fibers compared have to be comparable in that the fibers have to be the same size, e.g., the diameters being the same.

The acetylenic carbon allotropes of the present invention also can be altered or complexed. For example, the allotropes can be derivatized or coordination complexes can b formed using metals which coordinate with acetylenic groups. The acetylenic carbon allotrope of the invention can serve as an electron donor for complexation to metals, especially transition metals. Such complexation can occur at a single site or multiple sites per carbon chain. For example, reaction of an acetylenic carbon allotrope of the inevntion with a compound such as Cθ2(CO)g will lead to organometallic complexes with new properties. Such a complex is believed to be easier to visualize, e.g., by electron microscopy Furthermore, complexation with coordinatively unsaturated transition metal complexes can lead to carbometallic complexes including closed spheres, and other closed shapes.

Alternatively, the acetylenic chains of the invention can be cross-linked, e.g., by treament with transition metals or electromagnetic radiation, to form "nets" of carbon. Such carbon "nets" can be used to encapsulate materials such as single atoms or small molecules,

including drugs; the encapsulated materials can also be chosen to provide properties such as conductivity or high tensile strength.

Synthetic Methods for Producing the Carbon Allotropes of the Present Invention The acetylenic carbon allotropes of the present invention can be prepared using several different synthetic methods. A synthetic method capable of preparing long-chain acetylenic carbon allotropes is similar to that previously used to prepare fullerenes. One of the synthetic methods of the present invention differs from a previously known synthetic method for fullerene by introducing end groups into the system which allows for the formation of the long-chain linear acetylenic carbon allotropes of the present invention, e.g., by suppressing fullerene production.

The present invention pertains to a method for preparing the endcapped acetylenic carbon allotropes. The method includes providing a carbon source and a source of end groups and polymerizing the carbon source in the presence of the source of end groups such that endcapped acetylenic carbon allotropes are formed. The carbon sources or targets and end group sources are described in detail below.

Many methods are known for the synthesis of simple alkynes. Illustrative but non- limiting examples include dehydrohalogenation of dihalides or vinyl halides, cleavage of allylic selenoxides or vinyl sulfides, elimination of vicinal quaternary ammonium hydroxides, and cleavage of enol phosphorinates.

Terminal alkynes can be coupled by a variety of techniques, including reaction with stoichiometric amounts of cupric salts in the presence of a base (the Eglinton reaction), use of catalytic cuprous salts in the presence of ammonia or ammonium chloride (the Glaser reaction) or TMEDA (the Hay coupling), or by the Cadiot-Chodkiewicz coupling of terminal alkynes with 1-bromoalkynes. Another methods of forming polyalkynes is reaction of lithium dialkyldialkynylborates with iodine to yield a symmetrical diyne (see, e.g., Sinclair and Brown, J. Org. Chem. 41, 1078 (1976)). Diederich et al. (Science, 245 1088 (1989) and references therein) utilized a retro-Diels-Alder reaction to construct a strained polyacetylene structure, and have also reported production of polyynes by the thermolysis of alkynylcyclobutene-l,2-diones (J. Am. Chem. Soc. 113, 6943 (1991)).

The formation of long acetylenic carbon compounds by repeated coupling of lithiobromoacetylene is detailed in Example 2, infra. This reaction is one example of a more general class of oligomerizations or polymerizations which are useful for synthesizing the acetylenic carbon compounds of the present invention. In general, the starting materials are of the form

X r CsC-X 2

where X j and X 2 are groups which may be eliminated according to the reaction

X r C≡C-X 2 + X,-C≡C-X2 → X r (C≡C)2-X2

It is clear that the elimination process may occur repeatedly with extension of the acetylenic carbon chain. As shown in Example 2, suitable choices for Xi and X are Li and Br, which eliminate to form LiBr. Other suitable choices for Xj and X pairs are Si and F, Si and Cl, and OCH3, and the like. The choice of Xi and X 2 , and conditions suitable for the elimination, are well within the ability of one of skill in the art.

The formation of carbon clusters by vaporization of carbon targets has recently been reported (W. Kratschemer et al., Nature 347, 354 (1990) and references cited therein). The existence of a new allotrope of carbon known as buckminsterfullerene was first discovered with this technique. The formation of smaller clusters of carbon in the form of carbon chain was reported soon after the initial discovery of the fullerenes (Heath, J.R. et al., J. Am. Chem Soc. 109, 359 (1987)). In that report, the carbon chains were not isolated, but were characterized solely on the basis of their mass spectrometric properties, so their structures ar not well known. Carbon targets suitable for use in the present invention include allotropes such as graphite, diamond, fullerenes and nanotubes, as well as amorphous forms such as soot, carbon black, activated carbon, charcoal, lampblack and the like. The carbon target ma be in the form of rods, sheets, fibers, whiskers, foams, powders, granules, pellets, flakes, foils, and the like. The carbon source may be vaporized by a variety of techniques including the use of lasers, plasma arcs, resistive or inductive heating, ion beams, electron beams, and the like. Third body gases useful in the present invention include any gas which does not react with the carbon species under the conditions of the experiment. Examples of suitable gases are helium, argon, krypton, xenon and other inert or noble gases. Use of heavier gases increases the chain length of the acetylenic carbon compounds formed as seen in Examples 4 and 5, infra. Therefore, use of xenon or other heavier noble gases will result in acetylenic chain lengths greater than 500 carbons. It has also been found that use of high pressures of third body gases such as helium and argon results in acetylenic carbon chains exceeding 1,000 carbon atoms in length. Thus, high pressures of heavier third body gases can result in still longer acetylenic carbon chains. Furthermore, the use of larger reactors results in longer acetylenic carbon chains. However, if shorter acetylenic chains are desired, a lower pressure of third body gas, or a reactor with a smaller diameter, can be employed.

It is well known that certain transition metals can form π-complexes with acetylene o acetylenic compounds. Examples of such metals are Nb, Mo, W, Fe, Ru, Co, Rh, Ir, Ni. Pd, Pt, and Cu. The π-complexes of acetylene with metals have been found to involve triple bond-to-metal interactions of one-to-one, two-to-one, one-to-two, two-to-two, and three-to- one (Patai, S. The Chemistry of the Carbon-Carbon Triple Bond, Parts 1 and 2, Ch. 1 and Ch. 4). Metathesis of alkynes has been studied extensively by Schrock (see e.g. McCullough et al. J. Am. Chem. Soc. 105, 6729 (1983) and references cited therein); it is possible to

synthesize long-chain acetylenic carbon compounds with catalysts such as the Schrock catalyst or ADMET catalyst (Wagner, K.B. Macromolecules 25, 2049 (1992) and references cited therein) by using acetylenic starting materials and an olefinic capping group.

Uses for the Carbon Allotrope of the Present Invention

The acetylenic carbon compounds or allotropes of the present invention have many uses, some of which will be described below. The acetylenic allotropes will share many of the same uses as the extensively studied and used fullerene carbon allotrope. The acetylenic carbon allotropes can be used in conductive material and possess conductive properties in view of their electron density.

The acetylenic carbon allotropes also can be used for or in carbon coatings, e.g. graphite coatings. The carbon coatings can be used for many purposes, e.g., conductive or protective. The acetylenic carbon allotropes also can be used as precursors in both diamond (bulk and film) and graphite synthesis. The acetylenic allotrope of the invention is also useful as a precursor material for the synthesis of carbon nanotubes. In particular, the use of acetylenic carbon chains as precursors of carbon nanotubes can lead to improved nanotubes (e.g., nanotubes having fewer defects) than can be obtained by previously known techniques. The allotropes can be used as a fuel, e.g., a zero hydrogen fuel or a component of another type of fuel. The acetylenic carbon allotropes of the present invention also can be used as a component or ingredient in many compositions, e.g., printing ink, lubricants (solid or liquid), toners, and films (thin films and high electron density). Another use for the allotropes of this invention in doped form, e.g. doped with an alkali metal or halogen, is in a superconductor or semiconductor material, or as a linear dopant for semiconductor materials. The allotropes of the invention can also be derivatized with charged species, e.g., by chain termination with a charged moiety, and the charged chain used as a nonlinear optic material. The ordinarily skilled artisan would be able to envision many other uses for the allotropes or compounds of this invention based upon such factors as the known uses for the other known carbon allotropes and the properties possessed by the allotropes of this invention, e.g., solubility, thermal stability, and strength. There are many issued patents containing information pertinent to the above-described uses, at least some of which are as follows: U.S. Patent Nos. 5,380,595 issued January 10, 1995; 5,374,463 issued December 20, 1994; 5,370,855 issued December 6, 1994; 5, 358, 659 issued October 25, 1994; 5,356,872 issued October 18, 1994; 5,351,151 issued September 27, 1994; 5,348,936 issued September 20, 1994; 5,341,639 issued August 30, 1994; 5,310,669 issued May 10, 1994; 5,302,474 issued April 12, 1994; 5,296,536 issued March 22, 1994; 5,292,444 issued March 8, 1994; and 5,232,810 issued August 3, 1993. The ordinarily skilled artisan would know how to substitute or add the allotrope of the present invention for or to that described in the aforementioned issued patents.

The following invention is further illustrated by the following examples, which should not be construed as further limiting. The contents of all references, pending patent applications and published patents, cited throughout this application are hereby expressly incorporated by reference.

Example 1 - Synthesis of a t-butyl Capped Acetylenic Model Compound

An eight-carbon acetylenic chain endcapped with t-butyl groups was synthesized by the following procedure, summarized in Figure 1 : Methyl t-butyl ketone was condensed with ethyl acetate in the presence of sodamide to yield 5,5-dimethyl-2,4-hexanedione. This material was reacted with phosphorus pentachloride to yield the divinyl chloride, which was in turn dehydrohalogenated with sodamide to give 5,5-dimethyl-l,3-hexadiyne. This alkyne was then dimerized using the procedure of Hay (see e.g. Hay, A.S., J. Org. Chem. 27, 3320 (1962)), using copper(I) chloride-tetramethylethylenediamine (TMEDA) complex as the catalyst, to yield the desired t-butyl endcapped tetrayne. The tetrayne melted at 99 °C and decomposed between 130 °C and 140 °C. It is also stable to moderate pressures; exposure to 40 kbar pressure for one hour caused no changes in the IR spectrum, and at 60 kbar only about 2% graphitization was seen. The crystal structure of this compound is shown in Figures 2 and 3. It is interesting that the acetylenic bond angles are not exactly 180° (Figures 2 and 3). The ,3 C NMR spectrum of this material is shown in Figure 4; all the resonances are identified except the solvent peak at around 54 ppm.

Example 2 - Synthesis of Phenyl Capped Acetylenic Carbon Products Phenyl endcapped acetylenic chains were made by a modification of the conditions of

Viehe (H. G. Viehe, Chem. Ber. 92, 1270 (1959)). The original reference describes the reaction of lithiobromoacetylene in liquid ammonia. The improved procedure given below was found to give better results.

A 500 ml, 3-neck round-bottom flask was chargedwith 130 ml dry acetonitrile and cooled to -400C with an acetonitrile/ liquid nitrogen slush. 10.8 ml of 1.8M phenyllithium in hexanes was added under an inert atmosphere; then 0.538 ml (65 mmol) of 1,2- dibromoethylene was added to the yellow solution. After three hours the solution color had changed from yellow to burnt orange. The solution was allowed to stir overnight. Phenyl bromide (0.35 ml) was then added and allowed to stir overnight. The reaction mixture was filtered and the solvent and volatile components removed under reduced pressure. The resulting reddish oil was then analyzed. The mixture of products could not be separated on conventional alumina columns due to the reactivity of the products toward alumina. The reaction mixture was analyzed by mass spectrometry, and the results were consistent with the formation of acetylenic chains having 16, 24, and 28 carbon atoms, the chains being capped

at both ends by phenyl groups. The , 3 C NMR of the product mixture is shown in Figure 5. Mass spectrometry indicated that a 24-carbon cyclic acetylenic compound was also present.

Example 3 - Synthesis of a Long Chain Nitrile Capped Acetylenic Carbon Allotrope The apparatus shown in Figure 7 was used for the gas-phase synthesis of the acetylenic carbon allotrope with nitrile endcaps as described below. In this example, the electrodes 11 and radio-frequency generator 12 were not used. This apparatus was designed to have dimensions, mean free paths, and partial gas pressures similar to those obtained with the apparatus of Kratschmer and Huffman (W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 347, 354 (1990)).

Graphite was vaporized using a Spectra-Physics 820 1.5 kilowatt, C. W., CO 2 laser into the apparatus shown in Figure 7 with a 90% helium/ 10% cyanogen mixture at .2 atm of pressure. Multigram quantities of graphite could be vaporized for more than one hour. The reaction apparatus was at room temperature. The walls of the reactor were washed down with toluene after the run was finished; typically 0.5 to 1 gram quantities of products were obtained in a one hour run. The toluene extract was then analyzed for fullerenes and other species by 13 C NMR. Fullerenes were not normally present, although occasionally a very minor amount of Cgo and C 7Q was observed. A sample of the toluene extract was evaporated to dryness and then redissolved in tetrahydrofuran (THF) to concentrate the acetylenic compounds and remove any fullerenes formed. The THF was then removed under vacuum and the extracted linear carbon capped species were dissolved in CDCI3 for 13 C NMR analysis. A typical 13 C NMR spectrum is shown in Figure 8. The spectrum clearly shows acetylenic carbon compounds with peaks at 54.265, 54.554, 54.812 and 69.113 ppm. A mass spectral analysis of the length of the acetylenic chains produced in the experiment was performed with a stainless steel probe coated with a solid residue of the THF extract. Mass spectra were taken with a Nd:YAG laser desorption using a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer with a dual cell ion trapping assembly controlled by a Nicolet 1280 Data Station including a 3.0-T superconducting magnet. A typical spectrum observed around mass number 1200 (100 carbon atoms) shown in Figures 7 A and 7B exhibits a repetitive carbon (24 mass unit) pattern. It is difficult to distinguish the nitrile capping groups on the end of a long chain from a chain of identical length containing all carbon atoms.

Example 4 - Synthesis of a Long Chain Trifluoromethyl Capped Acetylenic Carbon Allotrope

Trifluoromethyl-capped acetylenic carbon chains were obtained by a modification of the above procedure. In this example, the tubing indicated in phantom in Figure 7 is not used. Trifluoromethyl radicals were produced by the action a radiofrequency discharge on hexafluoroethane, and the trifluoromethyl radicals were cooled and "sandwiched," as

described in Example 5, infra. The third body gas was helium. The mass spectrum of trifluoromethyl-capped acetylenic chains is shown in Figure 10. The carbon clusters can be distinctly seen. The materials prepared and extracted in the CF3 capping experiments, like the compounds prepared in the nitrile capping experiments of Example 3, were amber to dark brown in color both in solution and in the solid (powdered) state.

Example 5 - Synthesis of a Long Chain Trifluoromethyl Capped Acetylenic Carbon Allotrope Using Argon as the Third Body Gas

Long trifluoromethyl-capped acetylenic chains were made by the following procedure:

The apparatus shown in Figure 7 was used as described in previous examples. The third body gas was argon at a pressure of about 0.2 arm. The trifluoromethyl radicals were generated by passing hexafluoroethane through a 10 Mhz radiofrequency discharge, as previously described (J. A. Morrison and R. J. Lagow, Advances in Inorganic and Radiochemistry 23, 177 (1979); T. R. Bierschenk et al., J. Am. Chem. Soc. 109, 4855 (1987)) with about 20 watts of power applied. To obtain the benefit of both gas phase and surface end capping reactions, the walls of the glass reactor were cooled to -196°C, and trifluoromethyl radicals were condensed on the walls. The carbon was then vaporized as before, but the laser was periodically turned off and more trifluoromethyl radicals allowed to condense on the wall. This procedure resulted in "sandwiching" of the trifluoromethyl radicals between layers of cryogenically cooled carbon. This low-temperature approach may have the effect of stabilizing carbon chains terminated with delocalized electron end caps. Reaction between trifluoromethyl radicals and carbon chains may occur as the mixture is warmed, in addition to capping reactions which occur in the gas phase. As described in Example 3, supra, the acetylenic carbon products were purified by dissolving in toluene followed by evaporation of the solvent and redissolving in THF. The products obtained are amber to dark-brown in color. On many runs there was no detectable fullerene production, while on other runs small amount of fullerene were seen in the toluene fraction. The THF extracted sample was then dissolved in deuteroacetone and the 13 C NMR was obtained, as shown in Figure 12. The largest peak is centered at 71.0282 ppm. No other carbon-containing species were observed from 10 to 200 ppm in the 13 C NMR spectrum.

A Fourier-transform infrared (IR) spectrum was run on the sample in deuteroacetone, and the solvent spectrum was then subtracted. A very strong band at 1200 cm" 1 , obscuring some of the C≡C bending modes of the linear carbon chain, provided definitive evidence of trifluoromethyl substitution. A 19 F NMR spectrum in CDCI3 showed a strong sharp signal for trifluoromethyl groups at -54.7 ppm from CFCI 3 . The mass spectrum was obtained as described in Example 3. A large envelope with an average molecular weight of 3600 (300 carbon atom chain) was observed (shown in Figure 13), with peaks 24 mass numbers apart.

EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.