Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ACTIVE RFID TAG AND PRODUCT SURVEILLANCE METHOD
Document Type and Number:
WIPO Patent Application WO/2020/007446
Kind Code:
A1
Abstract:
Active radio-frequency identification, RFID, tag, and a product surveillance method using active RFID tags. The method includes: transmitting (202), by an active RFID tag, continuously a signal comprising an own identifier according to a predetermined schedule; receiving (204), by the active RFID tag, continuously a plurality of signals comprising a plurality of foreign identifiers transmitted by a plurality of other active RFID tags according to the predetermined schedule; measuring (206), by the active RFID tag, a received signal strength indication, RSSI, of each received signal; storing (208), by the active RFID tag, each foreign identifier of a signal whose RSSI exceeds a predetermined strength threshold; detecting (210), by the active RFID tag, that a signal with a stored foreign identifier is no more received according to the predetermined schedule and marking (212), by the active RFID tag, said stored foreign identifier.

Inventors:
VAATTOVAARA TEEMU (FI)
YLLÄSJÄRVI VILLE (FI)
PARTTIMAA MARKO (FI)
KIVILINNA JUSSI (FI)
PEKKI ALEKSANDRE (FI)
PIKKARAINEN JUHA (FI)
KUJALA PERTTI (FI)
OKKONEN JYRKI (FI)
Application Number:
PCT/EP2018/067879
Publication Date:
January 09, 2020
Filing Date:
July 03, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HALTIAN OY (FI)
International Classes:
G08B13/24; G06Q10/08
Foreign References:
US20120154147A12012-06-21
US20070268138A12007-11-22
US20090124304A12009-05-14
US20160232484A12016-08-11
Other References:
None
Attorney, Agent or Firm:
KOLSTER OY AB (FI)
Download PDF:
Claims:
CLA1MS

1. An active radio-frequency identification, RF1D, tag (100A), comprising:

a power source (102);

a radio transceiver (104); and

a processing unit (106), coupled with the power source (102) and the radio transceiver (104), and configured to cause the following:

transmitting (202) continuously a signal (140A) comprising an own identifier (122A) according to a predetermined schedule (126);

receiving (204) continuously a plurality of signals (140B, 140C, 140D) comprising a plurality of foreign identifiers (122B, 122C, 122D) transmitted by a plurality of other active RF1D tags (100B, 100C, 100D) according to the predetermined schedule (126);

measuring (206) a received signal strength indication, RSS1 (110), of each received signal (140B, 140C, 140D);

storing (208) each foreign identifier (122B, 122C) of a signal (140B, 140C) whose RSS1 (110) exceeds a predetermined strength threshold (128);

detecting (210) that a signal (140C) with a stored foreign identifier (122C) is no more received according to the predetermined schedule (126) and marking (212) said stored foreign identifier (122C).

2. The active RF1D tag of claim 1, wherein the processing unit (106) is configured to cause the following:

storing (208) at most a predetermined number of foreign identifiers (122B, 122C) whose RSSls (110) have the greatest values.

3. The active RF1D tag of any preceding claim, wherein the processing unit (106) is configured to cause the following:

detecting (210) that the signal (140C) with the stored foreign identifier (122C) is no more received according to the predetermined schedule (126) also if the RSS1 of the signal (140C) is below the predetermined strength threshold (128).

4. The active RF1D tag of any preceding claim, wherein the processing unit (106) is configured to cause the following:

transmitting (222), with a higher transmission power than the signal (140A) comprising the own identifier (122A), an alarm signal (150C) after said stored foreign identifier (140C) has been marked.

5. The active RF1D tag of any preceding claim, wherein the processing unit (106) is configured to cause the following:

receiving (220) a polling signal (150B) from an RF1D reader (130); and in response to the polling signal (150B), transmitting (222) an alarm signal (150C) indicating that said stored foreign identifier (122C) has been marked.

6. The active RF1D tag of any preceding claim, wherein the processing unit (106) is configured to cause the following:

if only one stored foreign identifier is marked (122D), transmitting (222) an alarm signal (150C) indicating that the other active RF1D tag (100C) having said stored foreign identifier (122C) has been moved.

7. The active RF1D tag of any preceding claim, wherein the processing unit (106) is configured to cause the following:

if two or more stored foreign identifiers (122C, 122D) are marked, transmitting (222) an alarm signal (150D) indicating that the active RF1D tag (100A) having the own identifier (122A) has been moved.

8. The active RF1D tag of any preceding claim, wherein the processing unit (106) is configured to cause the following:

after the storing (208) and before the detecting (210) and marking (212), receiving (218) a control signal from an RF reader (130) indicating that the plurality of the other active RF1D tags (100B, 100C) are in place.

9. The active RF1D tag of any preceding claim, further comprising a fixing (108) attachable to a product (160) or a package of the product (160).

10. The active RF1D tag of claim 9, wherein the processing unit (106) is configured to cause the following:

performing the operations (202, 204, 206, 208, 210, 212) during loading and transportation of the plurality of the products (160).

11. The active RF1D tag claim 9 or 10, wherein the processing unit (106) is configured to cause the following:

performing the operations (202, 204, 206, 208, 210, 212) during reception and storage of the plurality of the products (160).

12. A product surveillance method using active radio-frequency identification, RF1D, tags, comprising:

transmitting (202), by an active RF1D tag, continuously a signal comprising an own identifier according to a predetermined schedule;

receiving (204), by the active RF1D tag, continuously a plurality of signals comprising a plurality of foreign identifiers transmitted by a plurality of other active RF1D tags according to the predetermined schedule;

measuring (206), by the active RF1D tag, a received signal strength indication, RSS1, of each received signal;

storing (208), by the active RF1D tag, each foreign identifier of a signal whose RSS1 exceeds a predetermined strength threshold;

detecting (210), by the active RF1D tag, that a signal with a stored foreign identifier is no more received according to the predetermined schedule and marking (212), by the active RF1D tag, said stored foreign identifier.

Description:
ACTIVE RFID TAG AND PRODUCT SURVEILLANCE METHOD F1ELD

The invention relates to an active radio-frequency identification, RF1D, tag, and to a product surveillance method using active RF1D tags.

BACKGROUND

Active RF1D tags operate with a limited power supply, which causes that the radio transceiver of the active RF1D tag operates with a short communication range, utilizing the Bluetooth low energy technology, for example lf a large number of active RF1D tags are located in a small area, in a container or in a warehouse, for example, the communication between an RF1D reader and all the active RF1D tags becomes very time and resource consuming or even impossible due to radio frequency congestion.

BRIEF DESCRIPTION

The present invention seeks to provide an improved active RF1D tag, and an improved product surveillance method using active RF1D tags.

According to an aspect of the present invention, there is provided an active RF1D tag as specified in claim 1.

According to another aspect of the present invention, there is provided a product surveillance method using active RF1D tags as specified in claim 12.

The invention may provide one or more of the following advantages: as transmission power is normally kept low, collisions are avoided, both features saving power, as simple active RF1D tags with cheap radio transceivers but no other sensors (such as acceleration or location sensors) are used, the solution is both simple and cheap, and the exclusion of the other sensors also saves power.

L1ST OF DRAW1NGS

Example embodiments of the present invention are described below, by way of example only, with reference to the accompanying drawings, in which

Figure 1A, IB and 1C illustrate example embodiments of active RF1D tags and an RF1D reader; and

Figure 2 illustrates example embodiments of a product surveillance method using the active RF1D tags.

DESCRIPTION OF EMBOD1MENTS The following embodiments are only examples. Although the specification may refer to "an" embodiment in several locations, this does not necessarily mean that each such reference is to the same embodiment(s), or that the feature only applies to a single embodiment. Single features of different embodiments may also be combined to provide other embodiments. Furthermore, words "comprising" and "including" should be understood as not limiting the described embodiments to consist of only those features that have been mentioned and such embodiments may contain also features/structures that have not been specifically mentioned.

Let us study simultaneously both Figures 1A, IB and 1C, which illustrate example embodiments of active RF1D tags 100A, 100B, 100C, 100D and an RF1D reader 130, and Figure 2, which illustrates example embodiments of a product surveillance method using the active RF1D tags 100A, 100B, 100C, 100D. Each product 160 may comprise an active RF1D tag 100A, 100B, 100C, 100D.

Note that in Figure 1A four active RF1D tags are illustrated: the operations are explained from the point of view of the active RF1D tag 100A, whereas three other active RF1D tags 100B, 100C, 100D are called 'other' active RF1D tags as they interoperate with the tag 100A. Note also that there is a plurality of other RF1D tags 100B, 100C, 100D, meaning that their number may be very high, hundreds or thousands, or even more. Each active RF1D tag 100A has an identifier:

- the active RF1D tag 100A has an own identifier 122A; and

- the other active RF1D tags 100B, 100C, 100D each have an own identifier 122B, 122C, 122D (also called 'foreign' identifiers from the point of view of the active RF1D tag 100A).

The identifiers 122A, 122B, 122C, 122B may be globally unique, or unique within a specified application domain.

The active RF1D 100A may be encapsulated in a protective (dustproof and/or waterproof) casing. Alternatively, the active RF1D tag 100A may be manufactured with printed electronics on a flexible foil or paper. Other suitable manufacturing methods may also be applied.

The active RF1D tag 100A comprises a power source 102, a radio transceiver 104, and a processing unit 106, which is coupled with the power source 102 and the radio transceiver 104. The other active RF1D tags 100B, 100C, 100D have a similar construction.

The power source 102 may be a battery (disposable or rechargeable) or another type of a portable energy storage.

The radio transceiver 104 may operate according to any of the various standard/proprietary technologies utilizing various frequency bands and communication protocols. Standards include but are not limited to: 802.11 WLAN and various Bluetooth standards including Bluetooth low energy, BLE.

The processing unit 106 may be implemented with a processor (such as a microprocessor or a microcontroller) and software, as an integrated circuit, as an application-specific integrated circuit (AS1C), or as any other way of implementing a device that is capable of storing and processing data of the active RF1D tag 100A.

The active RF1D tag 100A, 100B, 100C, 100D may comprise a fixing 108 attachable to the product 160 or a package of the product 160.

The processing unit 106 is configured to cause the execution of the method of Figure 2.

The method of Figure 2 starts in 200.

ln 202, a signal 140A comprising the own identifier 122A is transmitted continuously according to a predetermined schedule 126 by the active RF1D tag 100 A.

ln 204, a plurality of signals 140B, 140C, 140D comprising the plurality of foreign identifiers 122B, 122C, 122D transmitted by the plurality of the other active RF1D tags 100B, 100C, 100D are received continuously according to the predetermined schedule 126 by the active RF1D tag 100A.

ln 206, a received signal strength indication, RSS1 110, of each received signal 140B, 140C, 140D is measured by the active RF1D tag 100A. RSS1 110 defines a measurement of the power present in the received radio signal 140B, 140C, 140D.

ln 208, each foreign identifier 122B, 122C of a signal 140B, 140C whose RSS1 110 exceeds a predetermined strength threshold 128 is stored by the active RF1D tag 100A. ln our example embodiment of Figure 1A, we assume that the other active RF1D tag 100D is so far away from the active RF1D tag 100A that its signal 140D does not exceed the predetermined strength threshold 128.

ln an example embodiment, the processing unit 106 is configured to cause the following: storing 208 at most a predetermined number of foreign identifiers 122B, 122C whose RSSls 110 have the greatest values. This means that the identifiers of those signals that are received best are stored. The predetermined number may be eight, for example, but depending on the use case also other integer numbers greater than one are applicable.

ln 210, it is detected that a signal 140C with a stored foreign identifier 122C is no more received according to the predetermined schedule 126 by the active RF1D tag 100A, and in 212, said stored foreign identifier 122C is marked by the active RF1D tag 100A. ln our example embodiment of Figure IB, we assume that the other active RF1D tag 100C has moved so far away from the active RF1D tag 100A that its signal 140C is no more received.

ln an example embodiment, the processing unit 106 is configured to cause the following: detecting 210 that the signal 140C with the stored foreign identifier 122C is no more received according to the predetermined schedule 126 also if the RSS1 of the signal 140C is below the predetermined strength threshold 128.

Note that in Figure IB, the signal 140B is still received and exceeds the predetermined strength threshold 128, whereas the signal 140D is also still received but does not exceed the predetermined strength threshold 128.

The method ends in 216 after the processing is finished, or the operation loops back from the operation 212 (or 222) to 202 in order to continue the processing as long as required or as long as the power source 102 permits.

ln essence, the described operation sequence 202-204-206-208-210- 212 enables detection that one or more signals are no more received, meaning that products to which the active RF1D tags are attached have moved, i.e., the products have moved ln product surveillance, it is essential to detect movement of the products. The RF1D reader 130 performs the surveillance by exchanging control information with the active RF1D tag 100A. Note that the example embodiments are described from the point of view of the active RF1D tag 100A, but also the other active RF1D tags 100B, 100C, 100D perform the same internal operations ln this way, the active RF1D tags 100A, 100B, 100C, 100D are bonded (or "glued" or linked) to each other in such a way that each active RF1D tag knows the existence of the nearest active RF1D tags, and also detects if some active RF1D tag has moved (due to the product being stolen, for example) .

ln an example embodiment, the processing unit 106 is configured to cause the following: transmitting 222, with a higher transmission power than the signal 140A comprising the own identifier 122A, an alarm signal 150C after said stored foreign identifier 140C has been marked ln our example embodiment of Figures 1A and IB, the active RF1D tag 100A transmits the alarm signal 150C to the RF1D reader 130. ln an example embodiment, the processing unit 106 is configured to cause the following: receiving 220 a polling signal 150B from the RF1D reader 130; and in response to the polling signal 150B, transmitting 222 the alarm signal 150C indicating that said stored foreign identifier 122C has been marked.

So, there are at least two ways for the RF1D reader 130 to detect the alarm signal 150C: the alarm signal 150C is transmitted with the higher transmission power than the signal 140A (meaning that the alarm signal 150C is easier to detect and it also has a longer range), or the alarm signal 150C is polled.

For product surveillance purposes, Figures IB and 1C, when compared to the initial situation of Figure 1A, describe two different scenarios:

- in Figure IB, the active RF1D tag 100A has remained stationary, whereas the other active RF1D tag 100C has moved;

in Figure 1C, the active RF1D tag 100A has moved, whereas the other active RF1D tags 100B and 100C have remained stationary.

For the first scenario of Figure IB, the processing unit 106 is configured to cause the following: if only one stored foreign identifier is marked 122D, transmitting 222 an alarm signal 150C indicating that the other active RF1D tag 100C having said stored foreign identifier 122C has been moved.

For the second scenario of Figure 1C, the processing unit 106 is configured to cause the following: if two or more stored foreign identifiers 122C, 122D are marked, transmitting 222 an alarm signal 150D indicating that the active RF1D tag 100A having the own identifier 122A has been moved.

Note that if the RF1D reader 130 is out of range of the alarm signal 150C, there may be repeater functionality: each active RF1D tag may repeat the received alarm signal 150C, which finally arrives to the range of the RF1D reader 130. For this purpose, the active RF1D tags 100A, 100B, 100C, 100D may form a mesh network.

ln an example embodiment, the processing unit 106 is configured to cause the following: after the storing 208 and before the detecting 210 and marking 212, receiving 218 a control signal from the RF reader 130 indicating that the plurality of the other active RF1D tags 100B, 100C are in place. With this feature, the status of the products 160 is frozen to a static state: all products 160 are in place, and if some product is (lawlessly) removed, it will be detected, as its signal is no more received by the active RF1D tags of other products.

ln an example embodiment, the processing unit 106 is configured to cause the following: performing the operations 202, 204, 206, 208, 210, 212 during loading and transportation of the plurality of the products 160. With this example embodiment, the products 160 may be loaded into a container (or into a cargo space of a van, truck, ship or airplane, for example) and transported, and if any product is removed, the RF1D reader(s) 130 placed in the container will detect this.

ln an example embodiment, the processing unit 106 is configured to cause the following: performing the operations 202, 204, 206, 208, 210, 212 during reception and storage of the plurality of the products 160. With this example embodiment, the products 160 may be placed under surveillance in a storehouse or shop, for example lf any product is moved, the RF1D reader 130, or a plurality of RF1D readers, placed in the storehouse or shop, will detect this.

lt will be obvious to a person skilled in the art that, as technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the example embodiments described above but may vary within the scope of the claims.