Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ADHESIVE COMPOUND AND METHOD FOR ENCAPSULATING AN ELECTRONIC ASSEMBLY
Document Type and Number:
WIPO Patent Application WO/2012/062587
Kind Code:
A1
Abstract:
The invention relates to the use of an adhesive compound for encapsulating an (opto-)electronic application, containing an organometallically modified polymer created by reacting an elastomer with an organometallic compound, wherein the central atom of the organometallic compound is a metal or metalloid of the 3rd and 4th main groups or 3rd and 4th subgroups.

Inventors:
STEEN ALEXANDER (DE)
KRAWINKEL THORSTEN (DE)
KEITE-TELGENBUESCHER KLAUS (DE)
GRUENAUER JUDITH (DE)
ELLINGER JAN (DE)
Application Number:
PCT/EP2011/068822
Publication Date:
May 18, 2012
Filing Date:
October 27, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TESA SE (DE)
STEEN ALEXANDER (DE)
KRAWINKEL THORSTEN (DE)
KEITE-TELGENBUESCHER KLAUS (DE)
GRUENAUER JUDITH (DE)
ELLINGER JAN (DE)
International Classes:
H01L23/29; C09J109/06; C09J153/00
Domestic Patent References:
WO2011018356A12011-02-17
WO2001046320A12001-06-28
WO1998021287A11998-05-22
WO2007087281A12007-08-02
WO2003065470A12003-08-07
Foreign References:
EP1921111A12008-05-14
EP1114845A12001-07-11
DE102008062130A12010-06-17
US4051195A1977-09-27
US4552604A1985-11-12
US20040225025A12004-11-11
US20060100299A12006-05-11
DE102008047964A12010-03-25
US6833668B12004-12-21
JP2000311782A2000-11-07
EP1037192A22000-09-20
JP2004296381A2004-10-21
US5591379A1997-01-07
US5304419A1994-04-19
EP0827994A21998-03-11
Other References:
A.G. ERLAT, 47TH ANNUAL TECHNICAL CONFERENCE PROCEEDINGS-SOCIETY OF VACUUM COATERS, 2004, pages 654 - 659
M. E. GROSS ET AL., 46TH ANNUAL TECHNICAL CONFERENCE PROCEEDINGS-SOCIETY OF VACUUM COATERS, 2003, pages 89 - 92
Download PDF:
Claims:
Ansprüche

1. Verwendung einer Klebmasse für die Kapselung einer (opto-)elektronischen Anwendung enthaltend ein metallorganisch modifiziertes Polymer entstanden durch Reaktion eines Elastomers mit einer metallorganischen Verbindung, wobei das Zentralatom der metallorganischen Verbindung ein Metall oder Halbmetall der 3. und 4. Hauptgruppe oder der 3. und 4. Nebengruppe ist.

2. Verwendung einer Klebemasse nach Anspruch 1 ,

dadurch gekennzeichnet, dass

es sich um eine Haftklebmasse handelt,

3. Verwendung einer Klebemasse nach Anspruch 1 ,

dadurch gekennzeichnet, dass

es sich um eine Schmelzklebmasse handelt,

4. Verwendung einer Klebemasse nach zumindest einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet, dass

es sich bei dem Zentralatom um Silizium, Zinn, Blei, Titan oder Zirkonium handelt

5. Verwendung einer Klebemasse nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass

das metallorganisch modifizierte Polymer aus einer Reaktion eines säureanhydrid- oder epoxidmodifizierten Polymers und einer metallorganischen Verbindung der folgenden Struktur gebildet wird: R1) m mit

M = Metall der 3. und 4. Hauptgruppe sowie der 3. und 4. Nebengruppe

R1 , R2 = unabhängig voneinander gewählt aus der Gruppe Methyl, Ethyl,

2-Methoxyethyl, i-Propyl, Butyl

m = 1 bis 3 n = 1 bis 12

p = 1 oder 2

und

für p = 1

Y = einer funktionellen Gruppe gewählt aus der Gruppe

Glycidyl, Glycidyloxy, Isocyanato, -NH-CH2-CH2-NR4R5, -NR4R5 (mit R4 und R5 unabhängig voneinander gewählt aus der Gruppe H, Alkyl, Phenyl, Benzyl, Cyclopentyl, Cyclohexyl), SH

oder

für p

Y = NH

Verwendung einer Klebemasse nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass

das metallorganisch modifizierte Polymer aus einer Reaktion eines Doppelbindungen enthaltenden Polymers und einer metallorganischen Verbindung der folgenden Struktur gebildet wird.

(OR1)m

CH2 = C - C— 0 ^— (CH2)n M (R2)3-m

R3 O mit

M = Metall der 3. und 4. Hauptgruppe sowie der 3. und 4. Nebengruppe

R1 , R2 = unabhängig voneinander gewählt aus der Gruppe Methyl, Ethyl,

2-Methoxyethyl, i-Propyl, Butyl

R3 = H oder CH3

m = 1 bis 3

n = 1 bis 12

x = 0 oder 1

7. Verwendung einer Klebemasse nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass

es sich bei dem Polymer um ein Vinylaromatenblockcopolymer handelt.

Verfahren zur Kapselung einer elektronischen Anordnung gegen Permeanten, bei dem eine Haftklebmasse nach zumindest einem der vorherigen Ansprüche bereitgestellt wird und bei dem die Haftklebemasse auf und/oder um die zu kapselnden Bereiche der elektronischen Anordnung appliziert wird.

Verfahren nach Anspruch 9,

dadurch gekennzeichnet, dass

die Haftklebemasse und/oder die zu kapselnden Bereiche der elektronischen Anordnung vor, während und/oder nach der Applikation der Haftklebemasse erwärmt werden.

Elektronische Anordnung mit einer elektronischen Struktur, insbesondere einer organischen elektronischen Struktur, und einer Haftklebmasse nach zumindest einem der vorherigen Ansprüche, wobei die elektronische Struktur zumindest teilweise durch die Haftklebmasse gekapselt ist.

Description:
tesa Societas Europaea

Hamburg

Beschreibung

Klebmasse und Verfahren zur Kapselung einer elektronischen Anordnung Die vorliegende Erfindung betrifft eine Klebmasse für die Kapselung einer elektronischen Anordnung und ein Verfahren für deren Anwendung.

(Opto-)elektronische Anordnungen werden immer häufiger in kommerziellen Produkten verwendet oder stehen kurz vor der Markteinführung. Derartige Anordnungen umfassen anorganische oder organische elektronische Strukturen, beispielsweise organische, metallorganische oder polymere Halbleiter oder auch Kombinationen dieser. Diese Anordnungen und Produkte sind je nach gewünschter Anwendung starr oder flexibel ausgebildet, wobei eine zunehmende Nachfrage nach flexiblen Anordnungen besteht. Die Herstellung derartiger Anordnungen erfolgt beispielsweise durch Druckverfahren wie Hochdruck, Tiefdruck, Siebdruck, Flachdruck oder wie auch so genanntes„non impact printing" wie etwa Thermotransferdruck Tintenstrahldruck oder Digitaldruck. Vielfach werden aber auch Vakuumverfahren wie zum Beispiel Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), plasmaunterstützte chemische oder physikalische Depositionsverfahren (PECVD), Sputtern, (Plasma-)Ätzen oder Bedampfung verwendet, wobei die Strukturierung in der Regel durch Masken erfolgt.

Als Beispiele für bereits kommerzielle oder in ihrem Marktpotential interessante (opto-)elektronische Anwendungen seien hier elektrophoretische oder elektrochrome Aufbauten oder Displays, organische oder polymere Leuchtdioden (OLEDs oder PLEDs) in Anzeige- und Display-Vorrichtungen oder als Beleuchtung genannt, Elektrolumineszenzlampen, lichtemittierende elektrochemische Zellen (LEECs), organische Solarzellen, bevorzugt Farbstoff- oder Polymersolarzellen, anorganische Solarzellen, bevorzugt Dünnschichtsolarzellen, insbesondere auf der Basis von Silizium, Germanium, Kupfer, Indium und Selen, organische Feldeffekt-Transistoren, organische Schaltelemente, organische optische Verstärker, organische Laserdioden, organische oder anorganische Sensoren oder auch organische- oder anorganischbasierte RFID- Transponder angeführt. Als technische Herausforderung für die Realisierung ausreichender Lebensdauer und Funktion von (opto-)elektronischen Anordnungen im Bereich der anorganischen und/oder organischen (Opto-) Elektronik, ganz besonders aber im Bereich der organischen (Opto-)Elektronik ist ein Schutz der darin enthaltenen Komponenten vor Permeanten zu sehen. Permeanten können eine Vielzahl von niedermolekularen organischen oder anorganischen Verbindungen sein, insbesondere Wasserdampf und Sauerstoff.

Eine Vielzahl von (opto-)elektronischen Anordnungen im Bereich der anorganischen und/oder organischen (Opto-) Elektronik, ganz besonders bei Verwendung von organischen Rohstoffen, ist sowohl gegen Wasserdampf als auch gegen Sauerstoff empfindlich, wobei für viele Anordnungen das Eindringen von Wasser oder Wasserdampf als größeres Problem eingestuft wird. Während der Lebensdauer der elektronischen Anordnung ist deshalb ein Schutz durch eine Verkapselung erforderlich, da andernfalls die Leistung über den Anwendungszeitraum nachlässt. So können sich beispielsweise durch eine Oxidation der Bestandteile etwa bei lichtemittierenden Anordnungen wie Elektrolumineszenz-Lampen (EL-Lampen) oder organischen Leuchtdioden (OLED) die Leuchtkraft, bei elektrophoretischen Displays (EP-Displays) der Kontrast oder bei Solarzellen die Effizienz innerhalb kürzester Zeit drastisch verringern.

Bei der anorganischen und/oder organischen (Opto-) Elektronik, insbesondere bei der organischen (Opto-)Elektronik, gibt es besonderen Bedarf für flexible Klebelösungen, die eine Permeationsbarriere für Permeanten wie Sauerstoff und/oder Wasserdampf darstellen. Daneben gibt es eine Vielzahl von weiteren Anforderungen für derartige (opto)-elektronische Anordnungen. Die flexiblen Klebelösungen sollen daher nicht nur eine gute Haftung zwischen zwei Substraten erzielen, sondern zusätzlich Eigenschaften wie hohe Scherfestigkeit und Schälfestigkeit, chemische Beständigkeit, Alterungsbeständigkeit, hohe Transparenz, einfache Prozessierbarkeit sowie hohe Flexibilität und Biegsamkeit erfüllen.

Ein nach dem Stand der Technik gängiger Ansatz ist deshalb, die elektronische Anordnung zwischen zwei für Wasserdampf und Sauerstoff undurchlässige Substrate zu legen. Anschließend erfolgt dann eine Versiegelung an den Rändern. Für unflexible Aufbauten werden Glas oder Metallsubstrate verwendet, die eine hohe Permeationsbarriere bieten, aber sehr anfällig für mechanische Belastungen sind. Ferner verursachen diese Substrate eine relativ große Dicke der gesamten Anordnung. Im Falle von Metallsubstraten besteht zudem keine Transparenz. Für flexible Anordnungen hingegen kommen Flächensubstrate wie transparente oder nicht transparente Folien zum Einsatz, die mehrlagig ausgeführt sein können. Hierbei können sowohl Kombinationen aus verschieden Polymeren, als auch anorganische oder organische Schichten verwendet werden. Der Einsatz solcher Flächensubstrate ermöglicht einen flexiblen, äußerst dünnen Aufbau. Dabei sind für die verschiedenen Anwendungen unterschiedlichste Substrate wie zum Beispiel Folien, Gewebe, Vliese und Papiere oder Kombinationen daraus möglich.

Um eine möglichst gute Versiegelung zu erzielen, werden spezielle Barriereklebemassen verwendet. Eine gute Klebemasse für die Versiegelung von (opto-)elektronischen Bauteilen weist eine geringe Permeabilität gegen Sauerstoff und insbesondere gegen Wasserdampf auf, hat eine ausreichende Haftung auf der Anordnung und kann gut auf diese auffließen. Eine geringe Haftung auf der Anordnung verringert die Barrierewirkung an der Grenzfläche, wodurch ein Eintritt von Sauerstoff und Wasserdampf unabhängig von den Eigenschaften der Klebmasse ermöglicht wird. Nur wenn der Kontakt zwischen Masse und Substrat durchgängig ist, sind die Masseeigenschaften der bestimmende Faktor für die Barrierewirkung der Klebemasse.

Zur Charakterisierung der Barrierewirkung werden üblicherweise die Sauerstofftransmissionsrate OTR (Oxygen Transmission Rate) sowie die Wasserdampftransmissionsrate WVTR (Water Vapor Transmission Rate) angegeben. Die jeweilige Rate gibt dabei den flächen- und zeitbezogenen Fluss von Sauerstoff beziehungsweise Wasserdampf durch einen Film unter spezifischen Bedingungen von Temperatur und Partialdruck sowie gegebenenfalls weiterer Messbedingungen wie relativer Luftfeuchtigkeit an. Je geringer diese Werte sind, desto besser ist das jeweilige Material zur Kapselung geeignet. Die Angabe der Permeation basiert dabei nicht allein auf den Werten für WVTR oder OTR sondern beinhaltet immer auch eine Angabe zur mittleren Weglänge der Permeation, wie zum Beispiel die Dicke des Materials, oder eine Normalisierung auf eine bestimmte Weglänge. Die Permeabilität P ist ein Maß für die Durchlässigkeit eines Körpers für Gase und/oder Flüssigkeiten. Ein niedriger P-Wert kennzeichnet eine gute Barrierewirkung. Die Permeabilität P ist ein spezifischer Wert für ein definiertes Material und einen definierten Permeanten unter stationären Bedingungen bei bestimmter Permeationsweglänge, Partialdruck und Temperatur. Die Permeabilität P ist das Produkt aus Diffusions-Term D und Löslichkeits-Term S:

P = D * S Der Löslichkeitsterm S beschreibt vorwiegend die Affinität der Barriereklebemasse zum Permeanten. Im Fall von Wasserdampf wird beispielsweise ein geringer Wert für S von hydrophoben Materialen erreicht. Der Diffusionsterm D ist ein Maß für die Beweglichkeit des Permeanten im Barrierematerial und ist direkt abhängig von Eigenschaften wie der Molekülbeweglichkeit oder dem freien Volumen. Oft werden bei stark vernetzten oder hochkristallinen Materialen für D relativ niedrige Werte erreicht. Hochkristalline Materialien sind jedoch in der Regel weniger transparent und eine stärkere Vernetzung führt zu einer geringeren Flexibilität. Die Permeabilität P steigt üblicherweise mit einer Erhöhung der molekularen Beweglichkeit an, etwa auch wenn die Temperatur erhöht oder der Glasübergangspunkt überschritten wird.

Ansätze, um die Barrierewirkung einer Klebemasse zu erhöhen, müssen die beiden Parameter D und S insbesondere berücksichtigen im Hinblick auf den Einfluss auf die Durchlässigkeit von Wasserdampf und Sauerstoff. Zusätzlich zu diesen chemischen Eigenschaften müssen auch Auswirkungen physikalischer Einflüsse auf die Permeabilität bedacht werden, insbesondere die mittlere Permeationsweglänge und Grenzflächeneigenschaften (Auffließverhalten der Klebemasse, Haftung). Die ideale Barriereklebemasse weist geringe D-Werte und S-Werte bei sehr guter Haftung auf dem Substrat auf. Ein geringer Löslichkeits-Term S allein ist meist unzureichend, um gute Barriereeigenschaften zu erreichen. Ein klassisches Beispiel dafür sind insbesondere Siloxan-Elastomere. Die Materialien sind äußerst hydrophob (kleiner Löslichkeits-Term), weisen aber durch ihre frei drehbare Si-0 Bindung (großer Diffusions-Term) eine vergleichsweise geringe Barrierewirkung gegen Wasserdampf und Sauerstoff auf. Für eine gute Barrierewirkung ist also eine gute Balance zwischen Löslichkeits-Term S und Diffusions-Term D notwendig.

Hierfür wurden bisher vor allem Flüssigklebstoffe und Adhäsive auf Basis von Epoxiden verwendet (WO 98/21287 A1 ; US 4,051 , 195 A; US 4,552,604 A). Diese haben durch eine starke Vernetzung einen geringen Diffusionsterm D. Ihr Haupteinsatzgebiet sind Randverklebungen starrer Anordnungen, aber auch mäßig flexible Anordnungen. Eine Aushärtung erfolgt thermisch oder mittels UV-Strahlung. Eine vollflächige Verklebung ist aufgrund des durch die Aushärtung auftretenden Schrumpfes kaum möglich, da es beim Aushärten zu Spannungen zwischen Kleber und Substrat kommt, die wiederum zur Delaminierung führen können.

Der Einsatz dieser flüssigen Klebstoffe birgt eine Reihe von Nachteilen. So können niedermolekulare Bestandteile (VOC - volatile organic Compound) die empfindlichen elektronischen Strukturen der Anordnung schädigen und den Umgang in der Produktion erschweren. Der Klebstoff muss aufwändig auf jeden einzelnen Bestandteil der Anordnung aufgebracht werden. Die Anschaffung von teuren Dispensern und Fixiereinrichtungen ist notwendig, um eine genaue Positionierung zu gewährleisten. Die Art der Auftragung verhindert zudem einen schnellen kontinuierlichen Prozess und auch durch den anschließend erforderlichen Laminationsschritt kann durch die geringe Viskosität das Erreichen einer definierten Schichtdicke und Verklebungsbreite in engen Grenzen erschwert sein.

Des Weiteren weisen solche hochvernetzten Klebstoffe nach dem Aushärten nur noch eine geringe Flexibilität auf. Der Einsatz von thermisch-vernetzenden Systemen wird im niedrigen Temperaturbereich oder bei 2-Komponenten-Systemen durch die Topfzeit begrenzt, also die Verarbeitungszeit bis eine Vergelung stattgefunden hat. Im hohen Temperaturbereich und insbesondere bei langen Reaktionszeiten begrenzen wiederum die empfindlichen (opto-)elektronischen Strukturen die Verwendbarkeit derartiger Systeme - die maximal anwendbaren Temperaturen bei (opto-)elektronischen Strukturen liegen manchmal nur bei 60 °C, da bereits ab dieser Temperatur eine Vorschädigung eintreten kann. Insbesondere flexible Anordnungen, die organische Elektronik enthalten und mit transparenten Polymerfolien oder Verbunden aus Polymerfolien und anorganischen Schichten gekapselt sind, setzen hier enge Grenzen. Dies gilt auch für Laminierschritte unter großem Druck. Um eine verbesserte Haltbarkeit zu erreichen, ist hier ein Verzicht auf einen temperaturbelastenden Schritt und eine Laminierung unter geringerem Druck von Vorteil.

Alternativ zu den thermisch härtbaren Flüssigklebstoffen werden mittlerweile vielfach auch strahlenhärtende Klebstoffe eingesetzt (US 2004/0225025 A1). Die Verwendung von strahlenhärtenden Klebstoffen vermeidet eine lange andauernde Wärmebelastung der elektronischen Anordnung. Jedoch kommt es durch die Bestrahlung zu einer kurzfristigen punktuellen Erhitzung der Anordnung, da neben einer UV-Strahlung in der Regel auch ein sehr hoher Anteil an IR-Strahlung emittiert wird. Weitere oben genannte Nachteile von Flüssigklebstoffen wie VOC, Schrumpf, Delamination und geringe Flexibilität bleiben ebenfalls erhalten. Probleme können durch zusätzliche flüchtige Bestandteile oder Spaltprodukte aus den Photoinitiatoren oder Sensitizern entstehen. Zudem muss die Anordnung durchlässig für UV-Licht sein. Da Bestandteile insbesondere organischer Elektronik und viele der eingesetzten Polymere häufig empfindlich gegen UV-Belastung sind, ist ein länger andauernder Außeneinsatz nicht ohne weitere zusätzliche Schutzmaßnahmen, etwa weitere Deckfolien möglich. Diese können bei UV-härtenden Klebesystemen erst nach der UV- Härtung aufgebracht werden, was die Komplexität der Fertigung und die Dicke der Anordnung zusätzlich erhöht.

Die US 2006/0100299 A1 offenbart ein UV-härtbares Haftklebeband zur Kapselung einer elektronischen Anordnung. Das Haftklebeband umfasst eine Klebemasse auf Basis einer Kombination eines Polymers mit einem Erweichungspunkt von größer 60 °C, eines polymerisierbaren Epoxidharzes mit einem Erweichungspunkt von unter 30 °C und eines Photoinitiator. Bei den Polymeren kann es sich um Polyurethan, Polyisobutylen, Polyacrylnitril, Polyvinylidenchlorid, Poly(meth)acrylat oder Polyester, insbesondere aber um ein Acrylat handeln. Des Weiteren sind Klebharze, Weichmacher oder Füllstoffe enthalten.

Acrylatmassen haben eine sehr gute Beständigkeit gegenüber UV-Strahlung und verschiedenen Chemikalien, besitzen aber sehr unterschiedliche Klebkräfte auf verschiedenen Untergründen. Während die Klebkraft auf polaren Untergründen wie Glas oder Metall sehr hoch ist, ist die Klebkraft auf unpolaren Untergründen wie beispielsweise Polyethylen oder Polypropylen eher gering. Hier besteht die Gefahr der Diffusion an der Grenzfläche in besonderem Maße. Zudem sind diese Massen sehr polar, was eine Diffusion insbesondere von Wasserdampf, trotz nachträglicher Vernetzung, begünstigt. Durch den Einsatz polymerisierbarer Epoxidharze wird diese Tendenz weiter verstärkt. Haftklebebänder benötigen in der Regel durch die relativ hochmolekularen Polymere im Gegensatz zu Flüssigklebstoffen für eine gute Benetzung und Haftung auf der Oberfläche eine gewisse Zeit, ausreichenden Druck und eine gute Balance zwischen viskosem Anteil und elastischen Anteil. Die WO 2007/087281 A1 offenbart ein transparentes flexibles Haftklebeband auf Basis von Polyisobutylen (PIB) für elektronische Anwendungen, insbesondere OLED. Dabei wird Polyisobutylen mit einem Molekulargewicht von mehr als 500.000 g/mol und ein hydriertes cyclisches Harz verwendet. Optional ist der Einsatz eines photopolymerisierbaren Harzes und eines Photoinitiators möglich.

Klebemassen auf der Basis von Polyisobutylen weisen aufgrund ihrer geringen Polarität eine gute Barriere gegen Wasserdampf auf, haben aber selbst bei hohen Molekulargewichten eine relativ geringe Kohäsivität, weshalb sie bei erhöhten Temperaturen häufig eine geringe Scherfestigkeit aufweisen. Der Anteil an niedermolekularen Bestandteilen kann nicht beliebig reduziert werden, da sonst die Haftung deutlich verringert wird und die Grenzflächenpermeation zunimmt. Bei Einsatz eines hohen Anteils an funktionellen Harzen, der aufgrund der sehr geringen Kohäsion der Masse notwendig ist, wird die Polarität der Masse wieder erhöht und damit der Löslichkeits-Term vergrößert.

Beschrieben sind weiterhin Barriereklebemassen auf der Basis von Styrolblockcopolymeren und möglichst hydrierten Harzen (siehe DE 10 2008 047 964 A1).

Durch die Bildung von zumindest zwei Domänen innerhalb des Blockcopolymers erhält man zusätzlich eine sehr gute Kohäsion bei Raumtemperatur und gleichzeitig verbesserte Barriereeigenschaften.

Eine Möglichkeit, die Barrierewirkung noch zu verbessern, ist der Einsatz von Stoffen, die mit Wasser oder Sauerstoff reagieren. In die (opto-)elektronische Anordnung eindringender Sauerstoff oder Wasserdampf wird dann an diese Stoffe chemisch oder physikalisch, bevorzugt chemisch gebunden. Diese Stoffe werden in der Literatur als „Getter", „scavenger", „desiccants" oder„absorber" bezeichnet. Im Folgenden wird nur der Ausdruck Getter verwendet. Beschrieben als solche Getter sind in Klebmassen hauptsächlich anorganische Füllstoffe wie beispielsweise Calciumchlorid oder verschiedene Oxide. Da diese in der Klebmasse nicht löslich sind, haben sie den Nachteil, dass die Klebmasse ihre Transparenz und bei entsprechenden Füllgraden an Haftung verliert. Daher sind organische Getter oder Hybride, die in der Klebmasse löslich sind, besser geeignet, sie dürfen allerdings nicht aus der Klebmasse herauswandern. Diese Zusatzstoffe ändern nicht die Diffusionswerte, sondern nur die Durchbruchszeit, sind die Stoffe mit Wasser beziehungsweise Sauerstoff gesättigt oder in einer chemischen Reaktion mit Wasser beziehungsweise Sauerstoff aufgebraucht, haben sie auch keine Wirkung mehr, die Diffusion ist dann nur die der Klebmasse ohne Getter. Trotzdem können diese Getter die Lebensdauer der (opto)-elektronischen Bauteile erhöhen.

Beispiele für die Verwendung von Gettern in Flüssigklebersystemen zur Verkapselung (opto-)elektronischer Aufbauten sind zum Beispiel in US 6,833,668 B1 , JP 2000 31 1 782 A und EP 1 037 192 A2 gegeben. Aus dem Stand der Technik ist zudem eine Haftklebemasse bekannt (WO 03/065470 A1), die in einem elektronischen Aufbau als Transferklebemasse verwendet wird. Die Klebemasse enthält einen anorganischen funktionellen Füllstoff, der mit Sauerstoff oder Wasserdampf innerhalb des Aufbaus reagiert. Damit ist eine einfache Applikation eines Getters innerhalb des Aufbaus möglich. Für die Versiegelung des Aufbaus nach außen wird ein weiteres Adhäsiv mit geringer Durchlässigkeit verwendet.

Eine ähnliche Haftklebemasse findet ihre Anwendung in JP 2004 296 381 A. Auch hier werden ausschließlich anorganische Getter verwendet. Weitere getterhaltige Haftklebemassen sind aus US 5,591 ,379 A und US 5,304,419 A bekannt, doch werden diese nicht zur Verkapselung eines elektronischen Aufbaus verwendet, sondern innerhalb des Aufbaus platziert. Aufgabe der vorliegenden Erfindung ist es, eine Klebmasse für die Kapselung einer elektronischen Anordnung gegen Permeanten, insbesondere Wasserdampf, vorzulegen, die transparent ist, die eine gute Barriere gegenüber Wasserdampf bietet, dessen Elastomer mit Wasser reagieren kann, wodurch die Durchbruchzeit insbesondere von Wasser erhöht wird, der die Durchbruchzeit insbesondere von Wasser erhöht, und mit der gleichzeitig eine gute Kapselung erzielt werden kann. Ferner soll die Lebensdauer von (opto-)elektronischen Anordnungen durch die Verwendung einer geeigneten, insbesondere flexiblen, Klebemasse erhöht werden. Gelöst wird diese Aufgabe durch Verwendung einer Klebemasse, wie sie im Hauptanspruch niedergelegt ist. Gegenstand der Unteransprüche sind dabei vorteilhafte Weiterbildungen der Klebmasse sowie eine mit der Klebemasse gekapselte elektronische Anordnung.

Demgemäß betrifft die Erfindung die Verwendung einer Klebmasse enthaltend ein metallorganisch modifiziertes Polymer entstanden durch Reaktion eines Elastomers mit einer metallorganischen Verbindung, wobei das Zentralatom der metallorganischen Verbindung ein Metall oder Halbmetall der 3. und 4. Hauptgruppe oder der 3. und 4. Nebengruppe ist. Das modifizierte Polymer ist in der Lage mit Feuchtigkeit zu reagieren.

Dabei kann die metallorganische Verbindung sowohl durch eine Reaktion über eine funktionelle Gruppe im Polymer eingeführt werden, als auch durch eine radikalische Reaktion mit einer in der Polymerkette vorhandenen Doppelbindung.

Eine reaktive Gruppe kann zum Beispiel eine Epoxy- oder Anhydridgruppe sein, aber auch eine Aminogruppe ist denkbar. Diese Gruppe kann dann mit einer entsprechenden Gruppe in der metallorganischen Verbindungen reagieren, so dass ein Polymer mit metallorganischer Modifizierung entsteht. Im Falle einer Epoxy- oder Anhydridgruppe kann diese zum Beispiel mit einer Aminogruppe in der metallorganischen Verbindung reagieren. Dazu können zum Beispiel metallorganische Verbindungen der allgemeinen Formel 1 ) m mit

M = Si, Sn, Pb, Ti, Zr

R 1 , R 2 unabhängig voneinander gewählt aus der Gruppe Methyl, Ethyl,

2-Methoxyethyl, i-Propyl, Butyl

m = 1 bis 3

n = 1 bis 12

P = 1 oder 2

und

für p = 1

Y = einer funktionellen Gruppe gewählt aus der Gruppe

Glycidyl, Glycidyloxy, Isocyanato, -NH-CH2-CH2-NR4R5, -NR 4 R 5 (mit R 4 und R 5 unabhängig voneinander gewählt aus der Gruppe H, Alkyl, Phenyl, Benzyl, Cyclopentyl, Cyclohexyl), SH

oder

für p = 2

Y = NH eingesetzt werden.

Besonders bevorzugt sind dabei Silane und Titanate mit einer Amino- oder Sulfidgruppe.

Die Reaktion mit den Polymeren kann dabei spontan in Lösung geschehen oder durch Erhitzen und Zugabe von Katalysatoren wie zum Beispiel Säuren beschleunigt werden. Idealerweise erfolgt die Reaktion spontan, so dass alle Komponenten der Klebmasse, neben den Polymeren und Organometallverbindungen auch die Klebrigmacher, Weichmacher und sonstigen Hilfsstoffe, gleichzeitig in Lösung gebracht werden können, und die Reaktion während des Lösens der einzelnen Komponenten stattfindet. Eine Anknüpfung einer metallorganischen Verbindung der vorliegenden Erfindung kann auch über Doppelbindungen im Polymer eingebracht werden, wenn die metallorganische Verbindung ebenfalls mindestens eine Doppelbindung enthält.

Diese Reaktion läuft meistens radikalisch ab, mit einem Radikalstarter unter erhöhten Temperaturen. Da die metallorganischen Verbindungen wasserempfindlich sind, sollte mit wasserfreien Lösungsmitteln gearbeitet werden. Dabei können metallorganische Verbindungen mit Vinyl, Acryl oder Methacrylgruppen eingesetzt werden.

Es können zum Beispiel metallorganischen Verbindungen der folgenden Form eingefügt werden:

(OR 1 ) m

CH 2 = C - C— 0 ^— (CH 2 ) n M (R 2 ) 3-m

R 3 O

mit

M = Si, Sn, Pb, Ti, Zr

R 1 , R 2 = unabhängig voneinander gewählt aus der Gruppe Methyl, Ethyl,

2-Methoxyethyl, i-Propyl, Butyl

R 3 = H oder CH 3

m = 1 bis 3

n = 1 bis 12

x = 0 oder 1

Polymere, bei denen eine Silangruppe über diesen Weg eingeführt wurde, sind seit längerem bekannt, zum Beispiel aus der EP 0 827 994 A1 , eine Anwendung als Barriereklebemassen ist allerdings nicht beschrieben. Enthalten die Polymere Doppelbindungen, an die die Organometallverbindungen über eine radikalische Reaktion geknüpft werden sollen, ist es vorteilhaft, wenn die Anzahl der Doppelbindungen nicht zu hoch ist, damit bei der radikalischen Reaktion keine Vernetzung der Polymere stattfindet. Es werden daher bevorzugt teilhydrierte Polymere eingesetzt. Gleiches gilt, wenn die Doppelbindungen der Polymere erst durch eine Reaktion mit zum Beispiel Persäuren in Epoxide umgewandelt werden.

Polymere mit Doppelbindungen zur Modifizierung können zum Beispiel Polymere mit Butadien- oder Isopren-Monomeren sein wie Polybutadien, Polyisopren, Styrolbutadien- Kautschuke, Blockcopolymere aus Vinylaromaten und Isopren oder Butadien, wie sie weiter unten näher beschrieben werden, Blockcopolymere aus Isopren und Butadien, Nitrilkautschuk, ABS oder ähnliche. Auch Polymere aus Ethylen-Propylen mit einem weiteren Monomer mit zwei Doppelbindungen, zum Beispiel EPDM, kann eingesetzt werden.

Polymere mit reaktiven Gruppen, an die metallorganische Verbindungen angeknüpft werden können, sind zum Beispiel Epoxid- oder Anhydridgruppen enthaltende Systeme. Als Polymere eingesetzt werden zum Beispiel folgende.

Epoxidgruppen enthaltende Polymere werden dabei bevorzugt durch Reaktion von Peroxiden oder Peroxycarbonsäuren mit noch in der Hauptkette des unmodifizierten Polymers vorhandenen Doppelbindungen hergestellt. Polymere mit endständigen Epoxidgruppen sind dabei nicht bevorzugt, da sie meistens niedermolekular sind und nur zwei Epoxidgruppen besitzen, es können daher nicht genügend Organometallgruppen angeknüpft werden.

Epoxidierbare Polymere mit Doppelbindung können die oben beschriebenen sein.

Als Säureanhydrid enthaltende Polymere im Sinne der Erfindung können sowohl solche eingesetzt werden, die durch Modifizierung fertiger Polymere mit zum Beispiel Maleinsäureanhydrid unter radikalischen Bedingungen hergestellt wurden, als auch solche, die anhydridhaltige Monomere in die Haupt- oder Seitenkette eingebaut haben. Im Falle der modifizierten Polymere können eine Reihe von Polyolefinen wie Polyethylen oder Polypropylen aber auch Poly-a-olefine, polymerisiert aus Ethylen und mindestens einem weiteren α-Olefin, Polybutene, sowie auch Blockcopolymere aus Ethylen und Propylen eingesetzt werden. Auch Blockcopolymere aus einem Vinylaromaten und einem Dien sind verwendbar, insbesondere wenn der Hauptteil der verbleibenden Doppelbindungen hydriert ist. Bei allen diesen Polymeren ist der Gehalt an Doppelbindungen bevorzugt sehr niedrig, da es bei der Reaktion von den Polymeren mit den Säureanhydriden sonst leicht zu unerwünschten Vernetzungsreaktionen kommen kann.

Bevorzugt werden hier Blockcopolymere enthaltend Polymerblöcke überwiegend gebildet von Vinylaromaten (A-Blöcke), bevorzugt Styrol, und solche überwiegend gebildet durch Polymerisation von 1 ,3-Dienen (B-Blöcke), bevorzugt Butadien, Isopren oder einer Mischung aus beiden Monomeren, eingesetzt. Diese B-Blöcke weisen üblicherweise eine geringe Polarität auf. Sowohl Homo- als auch Copolymerblöcke sind als B-Blöcke bevorzugt nutzbar. Auch Blockcopolymere mit Polyisobutylen in der Hauptkette sind verwendbar.

Die aus den A- und B-Blöcken resultierenden Blockcopolymere können gleiche oder unterschiedliche B-Blöcke enthalten, die teilweise, selektiv oder vorzugsweise vollständig hydriert sein können. Die Blockcopolymere können lineare A-B-A Strukturen aufweisen. Einsetzbar sind ebenfalls Blockcopolymere von radialer Gestalt sowie sternförmige und lineare Multiblockcopolymere. Als weitere Komponenten können A-B- Zweiblockcopolymere vorhanden sein. Sämtliche der vorgenannten Polymere können alleine oder im Gemisch miteinander genutzt werden. Verwendet werden können auch Blockcopolymere, die neben den oben beschriebenen Blöcken A und B zumindest einen weiteren Block enthalten, wie zum Beispiel A-B-C- Blockcopolymere.

Denkbar ist auch die Verwendung der oben genannten B-Blöcke mit A-Blöcken von anderer chemischer Natur, die eine Glasübergangstemperatur oberhalb der Raumtemperatur zeigen, wie zum Beispiel Polymethylmethacrylat.

In einer vorteilhaften Ausführungsform weisen die Blockcopolymere einen Polyvinylaromatenanteil von 10 Gew.-% bis 35 Gew.-% auf.

Für die Herstellung einer Haftklebemasse beträgt der Anteil der Vinylaromatenblockcopolymere in Summe bezogen auf die gesamte Haftklebmasse bevorzugt mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-%, weiter bevorzugt mindestens 45 Gew.-%. Ein zu geringer Anteil an Vinylaromatenblockcopolymeren hat zur Folge, dass die Kohäsion der Haftklebemasse relativ niedrig ist. Der maximale Anteil der Vinylaromatenblockcopolymere in Summe bezogen auf die gesamte Haftklebmasse beträgt maximal 80 Gew.-%, bevorzugt maximal 70 Gew.-%. Ein zu hoher Anteil an Vinylaromatenblockcopolymere hat wiederum zur Folge, dass die Haftklebemasse kaum noch haftklebrig ist.

Zumindest ist ein Teil der eingesetzten Blockcopolymere dabei säureanhydridmodifiziert, beziehungsweise epoxidiert oder besitzt noch Doppelbindungen.

Dabei erfolgt die Anhydridmodifizierung hauptsächlich durch radikalische Pfropfcopolymerisation von ungesättigten Säureanhydriden, wie zum Beispiel Maleinsäureanhydrid, Citraconsäureanhydrid, Dimethylmaleinsäureanhydrid, Ethyl- und Diethylmaleinsäureanhydrid, Chlor- und Dichlormaleinsäureanhydrid,

Phenylmaleinsäureanhydrid, Itaconsäureanhydrid, Methylitaconsäureanhydrid, Aconitsäureanhydrid, Nadicanhydrid, Methylnadicanhydrid,

Tetrahydrophthalsäureanhydrid oder Methyltetrahydrophthalsäureanhydrid, bevorzugt Maleinsäureanhydrid. Bevorzugt liegt der Anteil an Säure beziehungsweise Säureanhydrid zwischen 0,5 und 4 Gewichtsprozenten bezogen auf das gesamte Blockcopolymer.

Die Epoxidmodifizierung erfolgt durch Reaktion mit Persäuren von noch Doppelbindungen enthaltenden Blockcopolymeren.

Die am häufigsten verwendeten Epoxidierungsmittel sind dabei Wasserstoffperoxid mit unterschiedlichen Katalysatoren, tert.-Butylhydroperoxyd, meta-Chlorperbenzoesäure (MCPBA), oder Peroxyameisen- beziehungsweise Peroxyessigsäure, die in situ hergestellt werden.

Polymere, bei denen das Säureanhydrid direkt mit in die Polymerkette eingebaut sind, sind zum Beispiel Polymere aus Styrol und Maleinsäureanhydrid, meistens alternierend, wie zum Beispiel SMA-Polymere der Firma Sartomer, Polymere aus Ethylen und Maleinsäureanhydrid, wie zum Beispiel Gantrez-Polymere der Firma ISP oder Isobutylen und Maleinsäureanhydrid, wie zum Beispiel Isobam der Firma Kuraray, um nur einige wenige zu nennen Vorzugsweise ist die Klebmasse eine Haftklebmasse, also eine viskoelastische Masse, die bei Raumtemperatur in trockenem Zustand permanent klebrig und klebfähig bleibt. Die Klebung erfolgt durch leichten Anpressdruck sofort auf fast allen Substraten.

Bei der Klebemasse kann es sich auch um eine Schmelzklebemasse handeln, also ein bei Raumtemperatur fester, wasser- und lösemittelfreier Klebstoff, der auf die zu verklebenden Teile aus der Schmelze aufgetragen wird und nach dem Zusammenfügen beim Abkühlen unter Verfestigung physikalisch abbindet.

Um aus den erfindungsgemäßen organometallmodifizierten Polymeren Schmelz- oder Haftklebemassen zu erhalten, werden bevorzugt Klebrigmacher eingesetzt. Hierzu dienen Klebharze, die mit dem silanmodifizierten Polymer, bei den Vinylaromatenblockcopolymeren mit den Weichblöcken verträglich sind.

Geeignete Klebharze sind unter anderem vorzugsweise nicht hydrierte, partiell- oder vollständig hydrierte Harze auf Basis von Kolophonium und Kolophoniumderivaten, hydrierte Polymerisate des Dicyclopentadiens, nicht hydrierte, partiell, selektiv oder vollständig hydrierte Kohlenwasserstoffharze auf Basis von C 5 -, C 5 /C 9 - oder C 9 - Monomerströmen, Polyterpenharze auf Basis von α-Pinen und/oder ß-Pinen und/oder δ- Limonen, hydrierte Polymerisate von bevorzugt reinen C 8 - und C 9 -Aromaten. Vorgenannte Klebharze können sowohl allein als auch im Gemisch eingesetzt werden. Dabei können sowohl bei Raumtemperatur feste als auch flüssige Harze zum Einsatz kommen.

Um eine hohe Alterungs- und UV-Stabilität zu gewährleisten sind hydrierte Harze mit einem Hydrierungsgrad von mindestens 90 %, vorzugsweise von mindestens 95 %, bevorzugt.

Des Weiteren sind unpolare Harze mit einem DACP-Wert (diacetone alcohol cloud point) oberhalb von 30 °C und einem MMAP-Wert (mixed methylcylohexane aniline point) von größer 50 °C, insbesondere mit einem DACP-Wert oberhalb von 37 °C und einem MMAP-Wert größer 60 °C bevorzugt. Der DACP-Wert und der MMAP-Wert geben jeweils die Löslichkeit in einem bestimmten Lösemittel an. Durch die Auswahl dieser Bereiche wird eine besonders hohe Permeationsbarriere, insbesondere gegen Wasserdampf, erreicht.

Weiter bevorzugt sind Harze mit einer Erweichungstemperatur (Ring/Kugel, Bestimmung nach DIN EN ISO 4625) von mehr als 95 °C, insbesondere mehr als 100 °C. Durch diese Auswahl wird eine besonders hohe Permeationsbarriere, insbesondere gegen Sauerstoff, erreicht.

Unter dem Erweichungspunkt versteht man die Temperatur (beziehungsweise den Temperaturbereich), bei dem Gläser, amorphe oder teilkristalline Polymere vom glasigen, hartelastischen in einen weichen Zustand übergehen. Die Verminderung der Härte entsprechender Stoffe am Erweichungspunkt wird zum Beispiel dadurch deutlich, dass ein auf eine Stoffprobe unter Belastung aufgesetzter Körper bei Erreichen des Erweichungspunktes in diese eingedrückt wird. Der Erweichungspunkt liegt grundsätzlich oberhalb der Glasübergangstemperatur, bei den meisten Polymeren jedoch deutlich unterhalb der Temperatur, bei der diese vollständig in den flüssigen Zustand übergehen.

Wenn eine Erhöhung der Klebkraft erreicht werden soll, sind dagegen insbesondere Harze mit einer Erweichungstemperatur unterhalb von 95 °C, insbesondere unterhalb von 90 °C bevorzugt.

Gemäß einer bevorzugten Ausführungsform enthält die Klebemasse Klebrigmacher, vorzugsweise zu einem Anteil von bis 60 Gew.-% bezogen auf die Gesamtmenge. Im Falle einer Schmelzklebers kann der Anteil geringer sein, beispielsweise bis zu 30 Gew.-% bezogen auf die Gesamtmenge.

Als weitere Additive können typischerweise genutzt werden:

• Plastifizierungsmittel wie zum Beispiel Weichmacheröle oder niedermolekulare flüssige Polymere wie zum Beispiel niedermolekulare Polybutene

· primäre Antioxidantien wie zum Beispiel sterisch gehinderte Phenole

• sekundäre Antioxidantien wie zum Beispiel Phosphite oder Thioether

• Prozessstabilisatoren wie zum Beispiel C-Radikalfänger

• Lichtschutzmittel wie zum Beispiel UV-Absorber oder sterisch gehinderte Amine

• Verarbeitungshilfsmittel

· Endblockerstärkerharze sowie

• gegebenenfalls weitere Polymere von bevorzugt elastomerer Natur; entsprechend nutzbare Elastomere beinhalten unter anderem solche auf Basis reiner Kohlenwasserstoffe, zum Beispiel ungesättigte Polydiene wie natürliches oder synthetisch erzeugtes Polyisopren oder Polybutadien, chemisch im wesentlichen gesättigte Elastomere wie zum Beispiel gesättigte Ethylen-Propylen-Copolymere, a-Olefincopolymere, Polyisobutylen, Butylkautschuk, Ethylen-Propylenkautschuk, sowie chemisch funktionalisierte Kohlenwasserstoffe wie zum Beispiel halogenhaltige, acrylathaltige, allyl- oder vinyletherhaltige Polyolefine.

Es sei erwähnt, dass die erfindungsgemäße Klebemasse auch ohne die aufgeführten Harze und/oder Additive je nach Anwendungsfall geeignet ist, sei es dass die Harze und/oder Additive in ihrer Gesamtheit, in beliebiger Kombination oder jeweils einzeln weggelassen werden.

Insbesondere verzichtet die erfindungsgemäße Klebemasse auf anorganische Silikate und Alumosilikate.

Durch die direkte Anknüpfung einer metallorganischen Verbindung, die mit Wasser reagiert, an das Polymer ist es gelungen, einen Getter gleich mit in das Polymer zu integrieren.

Die vorliegende Erfindung beruht zunächst auf der Erkenntnis, dass es trotz der zuvor beschriebenen Nachteile dennoch möglich ist, eine Schmelz- oder Haftklebemasse zur Kapselung einer elektronischen Anordnung zu verwenden, bei der die zuvor bezüglich Haftklebemassen beschriebenen Nachteile nicht oder nur vermindert auftreten. Es hat sich nämlich gezeigt, dass Schmelz- oder Haftklebemassen, die einen kovalent an das Polymer gebundenen Getter enthalten, besonders gut für die Verkapselung elektronischer Bauelemente geeignet sind, da zum einen nicht die Gefahr besteht, dass ein organischer (fluider) Getter in die elektronisch aktiven Bauteile migriert und dort zu Schädigungen führt und zum anderen die bei der Verwendung partikulärer Getter auftretende Klebkraftreduktion und entstehende Trübung der Klebmasse vermieden wird.

Im Bereich der Klebstoffe zeichnen sich Haftklebemassen insbesondere durch ihre permanente Klebrigkeit und Flexibilität aus. Ein Material, das permanente Haftklebrigkeit aufweist, muss zu jedem Zeitpunkt eine geeignete Kombination aus adhäsiven und kohäsiven Eigenschaften aufweisen. Diese Charakteristik unterscheidet die Haftklebemassen beispielsweise von reaktiven Klebstoffen, die im nicht ausreagierten Zustand kaum Kohäsion bieten. Für gute Haftungseigenschaften gilt es, Haftklebemassen so einzustellen, dass eine optimale Balance aus adhäsiven und kohäsiven Eigenschaften besteht.

Als Kapselung wird vorliegend nicht nur ein vollumfänglicher Einschluss mit der genannten Haftklebemasse bezeichnet sondern auch bereits eine bereichsweise Applikation der Haftklebemasse auf den zu kapselnden Bereichen der (opto)- elektronischen Anordnung, beispielsweise eine einseitige Überdeckung oder eine Umrahmung einer elektronischen Struktur. Durch die Auswahl der Bestandteile der Haftklebemasse und die dadurch geringe Polarität und dem daraus resultierenden niedrigen Löslichkeits-Term (S) des Diffusionskoeffizienten wird ein niedriges Durchtrittsvermögen von Permeanten wie Wasserdampf und Sauerstoff erreicht, insbesondere aber von Wasserdampf. Das eingebundene Silan sorgt weiterhin für eine Erhöhung der Durchbruchszeit.

Vorteil der hier vorliegenden Erfindung ist also, im Vergleich zu anderen Haftklebemassen, die Kombination aus sehr guten Barriereeigenschaften gegenüber Sauerstoff und vor allem gegenüber Wasserdampf bei gleichzeitiger guter Grenzflächenhaftung auf unterschiedlichen Substraten, guten kohäsiven Eigenschaften, im Vergleich zu Flüssigklebstoffen, eine sehr hohe Flexibilität und eine einfache Applikation in der (opto-)elektronischen Anordnung und bei/in der Kapselung. Des Weiteren liegen in bestimmten Ausführungen auch transparente Klebemassen vor, die in besonderer Weise für den Einsatz in (opto-)elektronischen Anordnungen Anwendung finden können, da eine Verminderung von einfallendem oder austretendem Licht sehr gering gehalten wird.

Eine derartige Haftklebemasse kann auf einfache Weise in eine elektronische Anordnung integriert werden, insbesondere auch in solche Anordnung, die hohe Flexibilität erfordert. Weitere besonders vorteilhafte Eigenschaften der Haftklebemasse sind ähnlich gute Haftung auf unterschiedlichen Substraten, hohe Scherfestigkeit und hohe Flexibilität. Durch eine sehr gute Haftung am Substrat wird zudem auch eine geringe Grenzflächenpermeation erzielt. Durch die Verwendung der hier beschriebenen Formulierungen für die Verkapselung von (opto-)elektronischen Strukturen werden vorteilhafte Anordnungen gewonnen, die die oben genannten Vorteile vereinen, den Verkapselungsprozess dadurch beschleunigen und vereinfachen sowie die Produktqualität erhöhen.

Da in bestimmten Ausführungen der Haftklebemasse keine weiteren thermischen Prozessschritte oder Bestrahlung notwendig sind, kein Schrumpf durch eine nach der Applikation ausgeführte Vernetzungsreaktion beim Aufbau des (opto-)elektronischen Aufbaus auftritt und die Haftklebemasse als bahnförmiges Material oder in einer der elektronischen Anordnung entsprechend angepassten Form vorliegt, kann die Masse einfach und schnell unter geringem Druck in den Verkapselungsprozess des (opto)- elektronischen Aufbaus integriert werden. Die üblicherweise mit den vermiedenen Verarbeitungsschritten einhergehenden Nachteile wie thermische und mechanische Belastungen können so minimiert werden. Eine Verkapselung durch Lamination von zumindest Teilen der (opto-)elektronischen Aufbauten mit einem flächigen Barrierematerial (zum Beispiel Glas, insbesondere Dünnglas, metalloxidbeschichteten Folien, Metallfolien, Multilayer-Substratmaterialien) ist mit sehr guter Barrierewirkung in einem einfachen Rolle-zu-Rolle Prozess möglich. Die Flexibilität des gesamten Aufbaus hängt, neben der Flexibilität der Haftklebemasse, von weiteren Faktoren wie Geometrie und Dicke der (opto-)elektronischen Aufbauten beziehungsweise der flächigen Barrierematerialien ab. Die hohe Flexibilität der Haftklebemasse ermöglicht es aber, sehr dünne, biegsame und flexible (opto-)elektronische Aufbauten zu realisieren. Unter dem benutzten Begriff "biegsam" ist die Eigenschaft zu verstehen, dass der Krümmung eines gebogenen Gegenstands wie einer Trommel mit bestimmtem Radius, insbesondere mit einem Radius von 1 mm, ohne Beschädigung gefolgt wird. Von besonderem Vorteil für die Kapselung von (opto-)elektronischen Aufbauten ist es, wenn die erfindungsgemäße Haftklebemasse während oder nach der Applikation erwärmt wird. Dadurch kann die Haftklebemasse besser auffließen und somit die Permeation an der Grenzfläche zwischen der (opto-)elektronischen Anordnung und der Haftklebemasse vermindert werden. Die Temperatur sollte dabei bevorzugt mehr als 30 °C, weiter bevorzugt mehr als 50 °C betragen, um das Auffließen entsprechend zu fördern. Zu hoch sollte die Temperatur jedoch nicht gewählt werden, um die (opto-)elektronische Anordnung nicht zu beschädigen. Bei der Verwendung einer Schmelzklebmasse muss auf jeden Fall bei erhöhten Temperaturen laminiert werden, damit die Klebmasse tackig wird und auf das Substrat auffließen kann. In bevorzugter Ausgestaltung eines Verfahrens zur Kapselung einer (opto-)elektronischen Anordnung gegen Permeanten kann die Haftklebemasse in Form eines Klebebandes bereitgestellt werden. Diese Darreichungsart erlaubt eine besonders einfache und gleichmäßige Applikation der Haftklebemasse.

Der allgemeine Ausdruck „Klebeband" umfasst dabei in einer Ausführungsform ein Trägermaterial, welches ein- oder beidseitig mit einer Haftklebemasse versehen ist. Das Trägermaterial umfasst alle flächigen Gebilde, beispielsweise in zwei Dimensionen ausgedehnte Folien oder Folienabschnitte, Bänder mit ausgedehnter Länge und begrenzter Breite, Bandabschnitte, Stanzlinge, Mehrschichtanordnungen und dergleichen.

Das Klebeband kann in festen Längen wie zum Beispiel als Meterware oder aber als Endlosware auf Rollen (archimedische Spirale) zur Verfügung gestellt werden. Als Träger können alle bekannten Träger eingesetzt werden, zum Beispiel wie Gelege, Gewebe, Gewirke, Vliese, Folien, Papiere, Tissues, Schäume und geschäumte Folien. Es werden vorliegend bevorzugt Polymerfolien, Folienverbunde oder mit organischen und/oder anorganischen Schichten versehene Folien oder Folienverbunde eingesetzt. Derartige Folien/Folienverbunde können aus allen gängigen zur Folienherstellung verwendeten Kunststoffen bestehen, beispielhaft aber nicht einschränkend erwähnt seien:

Polyethylen, Polypropylen - insbesondere das durch mono-oder biaxiale Streckung erzeugte orientierte Polypropylen (OPP), Cyclische Olefin Copolymere (COC), Polyvinylchlorid (PVC), Polyester - insbesondere Polyethylenterephthalat (PET) und Poylethylennaphtalat (PEN), Ethylenvinylalkohol (EVOH), Polyvinylidenchlorid (PVDC), Polyvinylidenfluorid (PVDF), Polyacrylnitril (PAN), Polycarbonat (PC), Polyamid (PA), Polyethersulfon (PES) oder Polyimid (PI).

Insbesondere sind vernetzte Polyethylenschäume oder viskoelastische Träger geeignet. Letztere sind vorzugsweise aus Polyacrylat, besonders bevorzugt gefüllt mit hohlen Körpern aus Glas oder Polymeren. Die Träger können vor dem Zusammenbringen mit der Klebemasse durch Primerung oder physikalische Vorbehandlung wie Corona oder Ätzen vorbereitet werden.

Der Träger kann auch mehrlagig sein, beispielsweise durch das Zusammenlaminieren unterschiedlicher Schichten oder das Coextrudieren von Schichten. Der Träger kann zudem mit organischen oder anorganischen Beschichtungen oder Schichten kombiniert sein. Dies kann durch übliche Verfahren wie zum Beispiel Lackieren, Drucken, Bedampfen, Sputtern, Co-Extrusion oder Lamination geschehen. Beispielhaft, aber nicht einschränkend erwähnt, seien hier etwa Oxide oder Nitride des Siliciums und des Aluminiums, Indium-Zinn-Oxid (ITO) oder Sol-Gel-Beschichtungen.

Besonders bevorzugt sind diese Folien/Folienverbunde, insbesondere die Polymerfolien, mit einer Permeationsbarriere für Sauerstoff und Wasserdampf versehen, wobei die Permeationsbarriere die Anforderungen für den Verpackungsbereich übertrifft (WVTR < 10 "1 g/(m 2 d); OTR < 10 "1 cm 3 /(m 2 d bar)). Die Bestimmung der Permeabilität für Sauerstoff (OTR) und Wasserdampf (WVTR) erfolgt nach DIN 53380 Teil 3 beziehungsweise ASTM F-1249. Die Sauerstoffdurchlässigkeit wird bei 23 °C und einer relativen Feuchte von 50 % gemessen. Die Wasserdampfdurchlässigkeit wird bei 37,5 °C und einer relativen Feuchte von 90 % bestimmt. Die Ergebnisse werden auf eine Foliendicke von 50 μηι normiert.

Zudem können die Folien/Folienverbunde in bevorzugter Ausgestaltung transparent ausgebildet sein, damit auch der Gesamtaufbau eines derartigen Klebeartikels transparent ausgebildet ist.„Transparenz" bedeutet dabei eine mittlere Transmission im sichtbaren Bereich des Lichts von mindestens 75 %, bevorzugt höher als 90 %.

Des Weiteren umfasst der Ausdruck „Klebeband" auch so genannte „Transferklebebänder", das heißt ein Klebeband ohne Träger. Bei einem Transferklebeband ist die Klebemasse vielmehr vor der Applikation zwischen flexiblen Linern, die mit einer Trennschicht versehen sind und/oder anti-adhäsive Eigenschaften aufweisen, aufgebracht. Zur Applikation wird regelmäßig zunächst ein Liner entfernt, die Klebemasse appliziert und dann der zweite Liner entfernt. Die Haftklebemasse kann so direkt zur Verbindung zweier Oberflächen in (opto-)elektronischen Anordnungen verwendet werden.

Weiter bevorzugt kommt eine Haftklebemasse zum Einsatz, die in bestimmten Ausführungen im sichtbaren Licht des Spektrums (Wellenlängenbereich von etwa 400 nm bis 800 nm) transparent ist. Für bestimmte Anwendungen, etwa bei Solarzellen, kann dieser Bereich aber auch auf definierte UV oder IR-Regionen erweitert werden. Die gewünschte Transparenz im bevorzugten Bereich des sichtbaren Spektrums lässt sich insbesondere durch die Verwendung farbloser Klebharze erzielen. Eine derartige Haftklebemasse eignet sich somit auch für einen vollflächigen Einsatz über einer (opto-) elektronischen Struktur. Eine vollflächige Verklebung bietet, bei einer etwa mittigen Anordnung der elektronischen Struktur gegenüber einer Randversiegelung den Vorteil, dass der Permeant durch die gesamte Fläche diffundieren müsste, bevor er die Struktur erreicht. Der Permeationsweg ist somit deutlich erhöht. Die in dieser Ausführungsform verlängerten Permeationswege im Vergleich zur Randversiegelung, etwa durch Flüssigklebstoffe, wirken sich positiv auf die Gesamtbarriere aus, da der Permeationsweg umgekehrt proportional zur Durchlässigkeit ist.

„Transparenz" bedeutet dabei eine mittlere Transmission der Klebemasse im sichtbaren Bereich des Lichts von mindestens 75 %, bevorzugt höher als 90 %. Bei der Ausführung als Haftklebeband mit Träger hängt die die maximale Transmission des gesamten Aufbaus zudem von der Art des verwendeten Trägers und der Art des Aufbaus ab.

Die elektronischen Strukturen (opto-)elektronischer Anordnungen sind oftmals anfällig gegenüber UV-Strahlung. Als besonders vorteilhaft hat sich daher herausgestellt, wenn die Haftklebemasse zudem UV-blockend ausgebildet ist. Unter dem Begriff „UV- blockend" wird vorliegend ein mittlerer Transmissionsgrad von maximal 20 %, vorzugsweise von maximal 10 %, weiter bevorzugt von maximal 1 % im entsprechenden Wellenlängenbereich bezeichnet. In bevorzugter Ausgestaltung ist die Haftklebemasse im Wellenlängenbereich von 320 nm bis 400 nm (UVA-Strahlung) UV-blockend ausgebildet, vorzugsweise im Wellenlängenbereich von 280 nm bis 400 nm (UVA- und UVB-Strahlung), weiter vorzugsweise im Wellenlängenbereich von 190 nm bis 400 nm (UVA-, UVB- und UVC-Strahlung).

Die UV-blockende Wirkung der Haftklebemasse kann insbesondere durch eine Zugabe von UV-Blockern oder geeigneten Füllstoffen zur Haftklebemasse erzielt werden. Als UV- Blocker eignen sich beispielsweise HALS (Hindert Armine Light Stabilizer) wie Tinuvin der Firma BASF oder Benzimidazolderivate. Als Füllstoff ist besonders Titandioxid geeignet, ganz besonders nanoskaliges Titandioxid, da hierdurch eine Transparenz im sichtbaren Bereich beibehalten werden kann. In einer weiteren vorteilhaften Ausführung zeigt die Haftklebemasse eine sehr gute Beständigkeit gegen Witterungseinflüsse und UV-Licht. Diese Beständigkeit kann insbesondere durch Verwendung von hydrierten Elastomeren und/oder hydrierten Harzen erzielt werden.

Die Herstellung und Verarbeitung der Haftklebemasse kann aus Lösung, Dispersion sowie aus der Schmelze erfolgen. Bevorzugt erfolgt die Herstellung und Verarbeitung aus Lösung oder aus der Schmelze. Besonders bevorzugt ist die Fertigung der Klebmasse aus Lösung. Dabei werden die Bestandteile der Haftklebemasse in einem geeigneten Lösungsmittel, zum Beispiel Toluol oder Mischungen aus Benzin und Aceton, gelöst und mit allgemein bekannten Verfahren auf den Träger aufgebracht. Bei der Verarbeitung aus der Schmelze können dies Auftragsverfahren über eine Düse oder einen Kalander sein. Bei Verfahren aus der Lösung sind Beschichtungen mit Rakeln, Messern, Walzen oder Düsen bekannt, um nur einige zu nennen.

In einer bevorzugten Ausführung enthält die Haftklebemasse nicht mehr flüchtige organische Verbindungen (VOC) als 50 μg Kohlenstoff pro Gramm Masse, insbesondere nicht mehr als 10 μg C/g, gemessen nach VDA 277. Dies hat den Vorteil besserer Verträglichkeit mit den organischen Materialien des elektronischen Aufbaus sowie mit eventuell vorhandenen Funktionsschichten, wie zum Beispiel einer transparenten leitfähigen Metalloxidschicht wie zum Beispiel Indium-Zinn-Oxid oder einer solchen Schicht aus intrinsisch leitfähigem Polymer.

Die Haftklebemasse kann entweder zur vollflächigen Verklebung von (opto)- elektronischen Anordnungen verwendet werden oder nach entsprechender Konfektionierung können Stanzlinge, Rollen oder sonstige Formkörper aus der Haftklebemasse oder dem Haftklebeband hergestellt werden. Entsprechende Stanzlinge und Formkörper der Haftklebemasse/des Haftklebebandes werden dann vorzugsweise auf das zu verklebende Substrat aufgeklebt, etwa als Umrandungen oder Begrenzung einer (opto-)elektronischen Anordnung. Die Wahl der Form des Stanzlings oder des Formkörpers ist nicht eingeschränkt und wird abhängig von der Art der (opto-)elektronischen Anordnung gewählt. Die Möglichkeit der flächigen Laminierung ist im Vergleich zu Flüssigklebstoffen durch die Erhöhung der Permeationsweglänge durch seitliches Eindringen der Permeanten von Vorteil für die Barriereeigenschaften der Masse, da die Permeationsweglänge sich umgekehrt proportional auf die Permeation auswirkt. Sofern die Haftklebemasse in Form eines flächigen Gebildes mit einem Träger bereitgestellt wird, ist bevorzugt, dass die Dicke des Trägers im Bereich von etwa 1 μηι bis etwa 350 μηι liegt, weiter bevorzugt zwischen etwa 4 μηι und etwa 250 μηι und besonders bevorzugt zwischen etwa 12 μηι und etwa 150 μηι. Die optimale Dicke hängt von der (opto-)elektronischen Anordnung, der Endanwendung und der Art der Ausführung der Haftklebemasse ab. Sehr dünne Träger im Bereich von 1 bis 12 μηι werden eingesetzt bei (opto-)elektronische Aufbauten, die eine geringe Gesamtdicke erreichen sollen, es wird jedoch der Aufwand für die Integration in den Aufbau erhöht. Sehr dicke Träger zwischen 150 und 350 μηι werden eingesetzt wenn eine erhöhte Permeationsbarriere durch den Träger und die Steifigkeit des Aufbaus im Vordergrund stehen; die Schutzwirkung wird durch den Träger erhöht, während die Flexibilität des Aufbaus verringert wird. Der bevorzugte Bereich zwischen 12 und 150 μηι stellt für die meisten (opto-)elektronischen Aufbauten einen optimalen Kompromiss als Verkapselungslösung dar.

Weitere Einzelheiten, Ziele, Merkmale und Vorteile der vorliegenden Erfindung werden nachfolgend anhand bevorzugter Ausführungsbeispiele näher erläutert. Es zeigen

Fig. 1 eine erste (opto-)elektronische Anordnung in schematischer Darstellung,

Fig. 2 eine zweite (opto-)elektronische Anordnung in schematischer Darstellung,

Fig. 3 eine dritte (opto-)elektronische Anordnung in schematischer Darstellung.

Fig. 1 zeigt eine erste Ausgestaltung einer (opto-)elektronischen Anordnung 1. Diese Anordnung 1 weist ein Substrat 2 auf, auf dem eine elektronische Struktur 3 angeordnet ist. Das Substrat 2 selbst ist als Barriere für Permeanten ausgebildet und bildet damit einen Teil der Kapselung der elektronischen Struktur 3. Oberhalb der elektronischen Struktur 3, vorliegend auch räumlich von dieser beabstandet, ist eine weitere als Barriere ausgebildete Abdeckung 4 angeordnet. Um die elektronische Struktur 3 auch zur Seite hin zu kapseln und gleichzeitig die Abdeckung 4 mit der elektronischen Anordnung 1 im Übrigen zu verbinden, ist eine Haftklebemasse 5 umlaufend neben der elektronischen Struktur 3 auf dem Substrat 2 vorgesehen. Die Haftklebemasse 5 verbindet die Abdeckung 4 mit dem Substrat 2. Durch eine entsprechend dicke Ausgestaltung ermöglicht die Haftklebemasse 5 zudem die Beabstandung der Abdeckung 4 von der elektronischen Struktur 3.

Bei der Haftklebemasse 5 handelt es sich um eine solche auf Basis von metallorganischmodifizierten Polymeren, wie sie vorstehend in allgemeiner Form beschrieben wurde und nachfolgend in Ausführungsbeispielen näher dargelegt ist. Die Haftklebemasse 5 übernimmt vorliegend nicht nur die Funktion des Verbindens des Substrats 2 mit der Abdeckung 4, sondern bildet zudem auch eine Barriereschicht für Permeanten bereit, um so die elektronische Struktur 2 auch von der Seite gegen Permeanten wie Wasserdampf und Sauerstoff zu kapseln.

Die Haftklebemasse 5 wird vorliegend zudem in Form eines Stanzlings aus einem doppelseitigen Klebebandes bereitgestellt. Ein derartiger Stanzling ermöglicht eine besonders einfache Applikation. Fig. 2 zeigt eine alternative Ausgestaltung einer (opto-)elektronischen Anordnung 1. Gezeigt ist wiederum eine elektronische Struktur 3, die auf einem Substrat 2 angeordnet und durch das Substrat 2 von unten gekapselt ist. Oberhalb und seitlich von der elektronischen Struktur ist nun die Haftklebemasse 5 vollflächig angeordnet. Die elektronische Struktur 3 wird somit an diesen Stellen durch die Haftklebemasse 5 gekapselt. Auf die Haftklebemasse 5 ist sodann eine Abdeckung 4 aufgebracht. Diese Abdeckung 4 muss im Gegensatz zu der vorherigen Ausgestaltung nicht zwingend die hohen Barriereanforderungen erfüllen, da die Barriere bereits durch die Haftklebemasse bereitgestellt wird. Die Abdeckung 4 kann beispielsweise lediglich eine mechanische Schutzfunktion wahrnehmen, sie kann aber auch zusätzlich als Permeationsbarriere vorgesehen sein.

Fig. 3 zeigt eine weitere alternative Ausgestaltung einer (opto-)elektronischen Anordnung 1. Im Gegensatz zu den vorherigen Ausgestaltungen sind nun zwei Haftklebemassen 5a, b vorgesehen, die vorliegend identisch ausgebildet sind. Die erste Haftklebemasse 5a ist vollflächig auf dem Substrat 2 angeordnet. Auf der Haftklebemasse 5a ist dann die elektronische Struktur 3 vorgesehen, die durch die Haftklebemasse 5a fixiert wird. Der Verbund aus Haftklebemasse 5a und elektronischer Struktur 3 wird dann mit der weiteren Haftklebemasse 5b vollflächig überdeckt, so dass die elektronische Struktur 3 von allen Seiten durch die Haftklebemassen 5a, b gekapselt ist. Oberhalb der Haftklebemasse 5b ist dann wiederum die Abdeckung 4 vorgesehen.

In dieser Ausgestaltung müssen somit weder das Substrat 2 noch die Abdeckung 4 zwingend Barriereeigenschaften aufweisen. Sie können aber dennoch vorgesehen sein, um die Permeation von Permeanten zur elektronischen Struktur 3 weiter einzuschränken.

Insbesondere im Hinblick auf die Fig. 2,3 wird darauf hingewiesen, dass es sich vorliegend um schematische Darstellungen handelt. Aus den Darstellungen ist insbesondere nicht ersichtlich, dass die Haftklebemasse 5 hier und vorzugsweise jeweils mit einer homogenen Schichtdicke aufgetragen wird. Am Übergang zur elektronischen Struktur bildet sich daher keine scharfe Kante, wie es in der Darstellung scheint, sondern der Übergang ist fließend und es können vielmehr kleine un- oder gasgefüllte Bereiche verbleiben. Gegebenenfalls kann jedoch auch eine Anpassung an den Untergrund erfolgen, insbesondere dann, wenn die Applikation unter Vakuum durchgeführt wird. Zudem wird die Haftklebemasse lokal unterschiedlich stark komprimiert, so dass durch Fließprozesse ein gewisser Ausgleich der Höhendifferenz an den Kantenstrukturen erfolgen kann. Auch die gezeigten Dimensionen sind nicht maßstäblich, sondern dienen vielmehr nur einer besseren Darstellung. Insbesondere die elektronische Struktur selbst ist in der Regel relativ flach ausgebildet (oft weniger als 1 μηι dick). Die Applikation der Haftklebemasse 5 erfolgt in allen gezeigten Ausführungsbeispielen in Form eines Haftklebebandes. Dabei kann es sich grundsätzlich um ein doppelseitiges Haftklebeband mit einem Träger oder um ein Transferklebeband handeln. Vorliegend ist eine Ausgestaltung als Transferklebeband gewählt.

Beispiele

Alle Mengenangaben in den nachfolgenden Beispielen sind Gewichtsteile bezogen auf die Gesamtzusammensetzung. Prüfmethoden

Klebkraft

Die Bestimmung der Klebkraft wurde wie folgt durchgeführt:

Als definierter Haftgrund wurde eine Stahlfläche, eine Polyethylenterephthalat- (PET) und eine Polyethylen-Platte (PE) eingesetzt. Das zu untersuchende verklebbare Flächenelement wurde auf eine Breite von 20 mm und eine Länge von etwa 25 cm zugeschnitten, mit einem Handhabungsabschnitt versehen und unmittelbar danach fünfmal mit einer Stahlrolle von 4 kg bei einem Vorschub von 10 m/min auf den jeweils gewählten Haftgrund aufgedrückt. Unmittelbar im Anschluss daran wurde das zuvor verklebte Flächenelement in einem Winkel von 180° bei Raumtemperatur und mit 300 mm/min vom Haftgrund mit einem Zugprüfungsgerät (Firma Zwick) abgezogen und die hierfür benötigte Kraft gemessen. Der Messwert (in N/cm) ergab sich als Mittelwert aus drei Einzelmessungen.

Lebensdauertest

Als ein Maß für die Bestimmung der Lebensdauer eines (opto-)elektronischen Aufbaus wurde ein Caiciumtest herangezogen. Dazu wird unter Stickstoffatmosphäre eine 20 x 20 mm 2 große, dünne Calciumschicht auf eine Glasplatte abgeschieden. Die Dicke der Calciumschicht liegt bei etwa 100 nm. Für die Verkapselung der Calciumschicht wird ein Klebeband mit der zu testenden Klebemasse sowie einer Dünnglasscheibe (35 μηι, Firma Schott) als Trägermaterial verwendet Das Klebeband wird mit einem allseitigen Rand von 3 mm über dem Calciumspiegel appliziert, in dem es direkt auf der Glasplatte haftet. Aufgrund des undurchlässigen Glasträgers des Klebebands wird nur die Permeation durch den Haftkleber ermittelt.

Der Test basiert auf der Reaktion von Calcium mit Wasserdampf und Sauerstoff, wie sie beispielsweise von A.G. Erlat et. al. in„47th Annual Technical Conference Proceedings— Society of Vacuum Coaters", 2004, Seiten 654 bis 659, und von M. E. Gross et al. in „46th Annual Technical Conference Proceedings— Society of Vacuum Coaters", 2003, Seiten 89 bis 92, beschrieben sind. Dabei wird die Lichttransmission der Calciumschicht überwacht, welche durch die Umwandlung in Calciumhydroxid und Calciumoxid zunimmt. Diese erfolgt beim beschriebenen Prüfaufbau vom Rand her, so dass sich die sichtbare Fläche des Calciumspiegels verringert. Es wird die Zeit bis zur Halbierung der Fläche des Calciumspiegels als Lebensdauer bezeichnet. Als Messbedingungen werden 60 °C und 90 % relative Luftfeuchte gewählt. Die Muster wurden mit einer Schichtdicke der Haftklebemasse von 15 μιτι vollflächig und blasenfrei verklebt.

Herstellung der Muster

Die Haftklebemassen in Beispiel 1 bis 3 wurden aus Lösung hergestellt. Dazu wurden die einzelnen Bestandteile in Toluol gelöst (Feststoffanteil 40 %) und auf eine unbehandelte 23 μιτι PET-Folie beschichtet und bei 120 °C 15 Minuten lang getrocknet, so dass eine Klebmasseschicht mit einem Flächengewicht von 50 g/m 2 entstand. Für den Lebensdauertest wurden Muster in gleicher Weise erstellt, jedoch erfolgte die Beschichtung nicht auf eine PET-Folie sondern auf ein mit 1 ,5 g/m 2 silikonisiertes Trennpapier mit einer Klebmasseschichtdicke von 15 g/m 2 .

Herstellung Polymer 1 :

Tuftec P 1500: Teilhydriertes Styrol-Butadien-Styrol-Blockcopolymer mit hydrierten

Vinylgruppen in den Seitenketten mit 30 Gew.-%

Blockpolystyrolgehalt, 78 Gew.-% Zweiblock der Firma Asahi

100 Teile Tuftec P 1500 wurden in trockenem Toluol gelöst, so dass eine 20%ige Lösung entsteht. Anschließend werden 1 Teil Tnmethoxyvinylsilan und 0,2 Teile Benzoylperoxid zugegeben. Die Lösung wird für 2 h gekocht und anschließend das Polymer in trockenem Ethanol gefällt, mit trockenem Ethanol gewaschen und bei 60 °C getrocknet.

Beispiel 1

100 Teile Polymer 1

50 Teile Escorez 5690 Hydriertes Kohlenwasserstoffharz r mr it einem

Erweichungspunkt von 90 °C der Firma Exxon

50 Teile Escorez 5615 Hydriertes Kohlenwasserstoffharz mit einem

Erweichungspunkt von 115 °C der Firma Exxon

Beispiel 2

50 Teile Kraton FG 1924 Maleinsäureanhydridmodifiziertes SEBS mit 13 Gew.-% Blockpolystyrolgehalt, 36 Gew.-% Zweiblock und 1 Gew.-%

Maleinsäure der Firma Kraton

50 Teile Kraton FG 1901 Maleinsäureanhydridmodifiziertes SEBS mit 30 Gew.-%

Blockpolystyrolgehalt, ohne Zweiblock und mit 1 ,7 Gew.-%

Maleinsäure der Firma Kraton

2,5 Teile KR-TTS Isopropyl-triisostearoyltitanat der Firma Kenrich

70 Teile Escorez 5615 Hydriertes Kohlenwasserstoffharz mit einem

Erweichungspunkt von 115 °C der Firma Exxon

25 Teile Ondina 917 Weißöl aus paraffinischen und naphthenischen Anteilen der

Firma Shell

Beispiel 3 100 Teile Epofriend AT-501 , ein epoxidiertes SBS der Firma Daicel, und 4 Teile Dynasylan 1122 (Bis(3-triethoxysilyl-propyl)amin) werden in einem Schmelzkneter bei 160 °C vermischt. Nachdem das Elastomer homogen aufgeschmolzen ist, werden 80 Teile Pentalyn H (Kolophoniumester der Firma Eastman) und 20 Teile Wingtack 10 (flüssiges C5-Harz der Firma Cray Valley) zugegeben.

Die Klebmasse wird mit Hilfe eines Zwei-Walzenwerks auf einem silikonisierten Trennpapier beschichtet mit einem Auftragsgewicht von 50g/m 2 .

Beispiel 4

50 Teile Kraton FG 1924 Maleinsäureanhydridmodifiziertes SEBS mit 13 Gew.-%

Blockpolystyrolgehalt, 36 Gew.-% Zweiblock und 1 Gew.-%

Maleinsäure der Firma Kraton

50 Teile Kraton FG 1901 Maleinsäureanhydridmodifiziertes SEBS mit 30 Gew.-%

Blockpolystyrolgehalt, ohne Zweiblock und mit 1 ,7 Gew.-%

Maleinsäure der Firma Kraton

2,5 Teile Dynasilan AMEO Aminopropyltriethoxysilan

20 Teile Escorez 5615 Hydriertes KW-Harz mit einem Erweichungspunkt von 115 °C der Firma Exxon

1 ,5 Teile Aluminium- acetylacetonat

Dieses Beispiel ist kein Haftkleber sondern ein Schmelzkleber, der erst erwärmt werden muss, um zu kleben. Für die Messungen wurde er 5 s auf 80 °C erwärmt während des Verklebens.

Vergleichsbeispiel V5

100 Teile Tuftec P 1500 Teilhydriertes Styrol-Butadien-Styrol-Blockcopolymer mit hydrierten Vinylgruppen in den Seitenketten mit 30 Gew.-% Blockpolystyrolgehalt, 78 Gew.-% Zweiblock der Firma Asahi

50 Teile Escorez 5690 Hydriertes Kohlenwasserstoffharz mit einem

Erweichungspunkt von 90 °C der Firma Exxon

50 Teile Escorez 5615 Hydriertes Kohlenwasserstoffharz mit einem

Erweichungspunkt von 115 °C der Firma Exxon

Vergleichsbeispiel V6

100 Teile Kraton FG 1924 Maleinsäureanhydridmodifiziertes SEBS mit 13 Gew.-%

Blockpolystyrolgehalt, 36 Gew.-% Zweiblock und 1 Gew.-% Maleinsäure der Firma Kraton

50 Teile Escorez 5690 Hydriertes Kohlenwasserstoffharz mit einem

Erweichungspunkt von 90 °C der Firma Exxon

50 Teile Escorez 5615 Hydriertes Kohlenwasserstoffharz mit einem

Erweichungspunkt von 115 °C der Firma Exxon Ergebnisse:

Klebkraft [N/cm] Lebensdauer

Stahl / PET/ PE [h]

Beispiel 1 7,2/6,1 /3,6 550

Beispiel 2 4,7/4,3/2,9 430

Beispiel 3 7,6/6,3/4,0 490

Beispiel 4 8,6/6,7/3,4 560

V5 6,7/5,8/3,3 280

V6 4,8/3,9/2,2 260

Tabelle 1 Wie zu erkennen ist, konnten zwar in allen Beispielen ausreichend hohe Klebkräfte erzielt werden. Allerdings war der Lebensdauertest bei allen metallorganisch modifizierten Klebmassen deutlich besser.