Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ADJUSTABLE VASCULAR GRAFT FOR CUSTOM INNER DIAMETER REDUCTION AND RELATED METHODS
Document Type and Number:
WIPO Patent Application WO/2019/108217
Kind Code:
A1
Abstract:
An adjustable vascular graft with a user-customizable reduced inner diameter is provided. The graft includes a flexible tubular body having open ends and a plurality of receivers in a sidewall thereof, which may be arranged in two circumferentially spaced rows of receivers. The receivers may take the form of ringlets, eyelets, loops, or holes, which may be provided in a reinforced region of the graft sidewall, and which may be radiopaque. A suture passes through the plurality of receivers, the suture having first and second free ends capable of being pulled, and which suture may also be radiopaque. Tensioning or tightening the first and second ends of the suture reduces an inner diameter of the corresponding portion of the tubular body of the graft, thereby allowing for the custom reduced inner diameter and a resulting flow restriction to be provided. Related methods are also disclosed.

Inventors:
HARRIS KEITH (US)
BOYLE KEVIN (US)
Application Number:
PCT/US2017/064137
Publication Date:
June 06, 2019
Filing Date:
December 01, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BARD INC C R (US)
International Classes:
A61F2/07
Foreign References:
US20070043425A12007-02-22
US20140188210A12014-07-03
US20130289713A12013-10-31
US20040116996A12004-06-17
US20090149939A12009-06-11
US20100280598A12010-11-04
US5641443A1997-06-24
US5827327A1998-10-27
US5861026A1999-01-19
US6203735B12001-03-20
US6221101B12001-04-24
US6436135B12002-08-20
US6589278B12003-07-08
US20150327861A12015-11-19
Attorney, Agent or Firm:
DORISIO, Andrew, D. (US)
Download PDF:
Claims:
CLAIMS

1. A prosthetic medical device, comprising:

a tubular graft having open ends and at least two rows of receiv ers, the at least two rows of receivers being spaced apart in a circumfer ential direction along a substantially continuous portion of the sidewall; and

a suture passing through the receivers;

whereby tightening the suture reduces an inner diameter of the tubular graft.

2. The prosthetic medical device of claim 1, wherein the at least two rows of receivers comprise a plurality of pairs of receivers, each pair of spaced in an axial direction.

3. The prosthetic medical device of claim 2, wherein the receivers of each pair are aligned in the circumferential direction.

4. The prosthetic medical device of claim 2, wherein receivers in each pair are staggered in the axial direction.

5. The prosthetic medical device of claim 1, wherein first and sec ond ends of the suture extend from one receiver in each row of receivers.

6. The prosthetic medical device of claim 1, wherein a first end of the suture extends from an outermost receiver at a first end portion of the tubular graft and a second end of the suture extends from an outermost receiver at a second end portion of the tubular graft.

7. The prosthetic medical device of claim 1, wherein first and sec ond ends of the suture extends from outermost receivers at the same ends of the at least two rows.

8. The prosthetic medical device of claim 1, wherein the suture passes through the receivers to form a crossing pattern.

9. The prosthetic medical device of claim 1, wherein the suture passes through the receivers to form a zig-zag pattern.

10. The prosthetic medical device of claim 1, wherein the at least two rows of receivers include a first row of receivers and a second row of re ceivers, the first row of receivers spaced farther from the second row of receivers in a loosened condition of the suture and the first row is spaced closer to the second row of receivers in a tightened condition of the su ture.

11. The prosthetic medical device of any of claims 1-10, wherein the entire sidewall is substantially continuous.

12. The prosthetic medical device of any of claims 1-10, wherein the rows of receivers are provided on an intermediate portion of the tubular graft to create an hourglass shape when the suture is tightened.

13. The prosthetic medical device of any of claims 1-10, wherein each receiver comprises an eyelet.

14. The prosthetic medical device of any of claims 1-10, wherein each receiver is provided by a projection from the sidewall.

15. The prosthetic medical device of claim 14, wherein the projection is created by a ringlet connected to the sidewall.

16. The prosthetic medical device of claim 14, wherein the projection comprises a loop formed by another suture anchored to the sidewall of the tubular graft.

17. The prosthetic medical device of any of claims 1-10, wherein the receivers are provided by a beading attached to the sidewall of the tubu lar graft.

18. The prosthetic medical device of any of claims 1-10, wherein the receivers comprise holes formed in a reinforced region of the tubular graft.

19. The prosthetic medical device of claim 18, wherein the reinforced region is a thicker region of the sidewall of the tubular graft.

20. The prosthetic medical device of claim 18, wherein the reinforced region is a sintered region of the sidewall of the tubular graft.

21. The prosthetic medical device of any of claims 1-10, wherein the suture comprises a radiopaque material.

22. The prosthetic medical device of any of claims 1-10, wherein the receivers comprise a radiopaque material.

23. The prosthetic medical device of any of claims 1-10, further in cluding a mandrel including a reduced diameter portion corresponding to a custom reduced inner diameter of the tubular graft.

24. The prosthetic medical device of claim 23, wherein the mandrel has an hourglass shape.

25. The prosthetic medical device of any of claims 1-10, wherein the tubular graft comprises expanded polytetrafluoroethylene.

26. A prosthetic medical device, comprising:

a tubular graft having open ends and an adjustable portion inter mediate the open ends adapted for being reduced from a larger inner di ameter to a smaller inner diameter for restricting flow through the tubu lar graft.

27. The prosthetic medical device of claim 26, wherein the adjustable portion includes a plurality of receivers on either side of a continuous sidewall of the adjustable portion and connected by a suture, whereby tightening of the suture causes the adjustable portion to assume the smaller diameter.

28. The prosthetic medical device of claim 26, wherein the suture comprises a radiopaque material.

29. The prosthetic medical device of claim 26, wherein each of the plurality of receivers comprises an eyelet having an axis substantially perpendicular to an axial direction.

30. The prosthetic medical device of claim 26, wherein each of the plurality of receivers comprises a ringlet having an axis substantially parallel to an axial direction.

31. The prosthetic medical device of claim 26, wherein each of the receivers comprises a loop formed by another suture anchored to a side- wall of the tubular graft.

32. The prosthetic medical device of claim 26, wherein the receivers are provided by a beading attached to the sidewall of the tubular graft.

33. The prosthetic medical device of claim 26, wherein the receivers comprise holes formed in a reinforced region of the tubular graft.

34. The prosthetic medical device of claim 33, wherein the reinforced region is a thicker region of the sidewall of the graft.

35. The prosthetic medical device of claim 33, wherein the reinforced region is a sintered region of the sidewall of the graft.

36. The prosthetic medical device of claim 26, further including a mandrel including a reduced diameter portion corresponding in size to a custom inner diameter of the tubular graft.

37. A tubular graft comprising open ends and a substantially contin uous sidewall including a plurality of receivers.

38. The tubular graft of claim 37, further including a suture passing through the plurality of receivers.

39. The tubular graft of claim 37, wherein the receivers comprise eyelets retained by the sidewall of the graft and having an axis generally transverse to an axis of the tubular graft.

40. The tubular graft of claim 37, wherein the receivers comprises ringlets at least partially embedded in the sidewall of the tubular graft and having an axis generally aligned with an axis of the tubular graft.

41. The tubular graft of claim 37, wherein the receivers comprise a loop formed by another suture extending through the sidewall of the tub ular graft.

42. The tubular graft of claim 37, wherein the receivers are provided by a beading attached to the sidewall of the tubular graft.

43. The tubular graft of claims 37, wherein the receivers comprise holes formed in a reinforced region of the tubular graft.

44. The tubular graft of claim 43, wherein the reinforced region is a thicker region of the sidewall of the tubular graft.

45. The tubular graft of claim 43, wherein the reinforced region is a sintered region of the sidewall of the tubular graft.

46. A method of forming a tubular graft, comprising:

extending a suture through at least two circumferentially spaced rows of receivers provided on either side of a continuous portion of the tubular graft,

whereby tightening the suture at least partially reduces an inner diameter of at least a portion of the tubular graft.

47. The method of claim 46, further including the step of inserting a mandrel having an outer diameter corresponding to the reduced inner di ameter of the intermediate portion into the tubular graft prior to the tight ening step.

48. The method of claim 46, further including the step of forming the rows of receivers in the tubular graft by forming holes in a reinforced re gion of the tubular graft.

49. The method of claim 46, further including the step of forming the rows of receivers in the tubular graft by creating projections from a sidewall of the tubular graft.

50. The method of claim 46, further including the step of forming the rows of receivers comprises connecting eyelets, ringlets, or beading to a sidewall of the tubular graft.

Description:
ADJUSTABLE VASCULAR GRALT

LOR CUSTOM INNER DIAMETER REDUCTION AND RELATED METHODS

TECHNICAL FIELD

[001] This disclosure pertains to prosthetic medical devices and, in particular, to an adjustable vascular graft that allows for a custom re duced inner diameter to be achieved by the end user and related methods.

BACKGROUND

[002] Vascular grafts are prosthetic medical devices used in a variety of medical procedures, including for forming an anastomosis in the course of repairing or replacing diseased vessels, or for purposes of hemodialysis (which may involve forming an arteriovenous fistula, in which a vascular surgeon joins an artery and a vein together using such a graft). A typical graft is a flexible, elongated, tubular structure made of a biocompatible material, and thus designed to mimic the vessel(s) being repaired or connected. An example of a typical graft G is illustrated in Figure 1, which is quite simply an elongated tubular or pipe-like struc ture that may have a variety of diameters and lengths depending on the intended use.

[003] In the course of forming the anastomosis, it is sometimes desirable to create a reduced diameter section for regulating fluid flow through the graft, which may avoid creating circulatory problems in oth er parts of the vasculature. One past manner of achieving this reduction is for the vascular surgeon to cut the graft longitudinally along an inter mediate portion, overlap the portions created by the cut, and stitch them back together to provide the entire graft with a desired reduction in di ameter. Obviously, this is a laborious and time-consuming step in an otherwise medically complex procedure, potentially taking hours to complete, and is highly dependent on the skill of the vascular surgeon. Moreover, the resulting graft may produce sub-optimal results if the stitching becomes undone over time, or perhaps even if a tear results as a result of the weakening of the graft material resulting from the cutting required.

[004] To avoid these limitations, a past proposal has been made for a so-called“flow restriction graft” F, an example of which is shown in Figure 2. This graft is of the same tubular, flexible structure as illus trated in Figure 1, but includes a necked portion N that provides the de sired decrease in inner diameter (e.g., from 7 millimeters to 3 or 4 milli meters). While this device solves the above problems with manual re ductions achieved by cutting the graft, it does not account for the possi bility that a variety of reductions in diameter may be required, depending on the needs of a particular patient or use to which the graft is put. Ob viously, if a different reduced diameter is desired than would be provided by a flow restriction graft on hand, then the manual reconstruction may be necessitated, which potentially leads to the aforementioned problems.

[005] Accordingly, it would be desirable to provide an adjusta ble vascular graft that allows for a custom inner diameter reduction to be achieved by the end user in an easy and highly repeatable manner. The graft would thus be useful in a variety of applications, and avoid the past need for having different graft sizes on hand. It would also allow for the reduction in diameter to be achieved quickly, without the need for exten sive reconstruction of the graft and the concomitant issues that may re sult.

SUMMARY

[006] An object of the invention is to provide an adjustable vas cular graft that allows for a custom inner diameter reduction to be select ed by a clinician.

[007] With that objective in mind, and according to a first as pect of the disclosure, a prosthetic medical device comprises a tubular graft having open ends and at least two rows of receivers formed in a substantially continuous sidewall thereof (which may be interrupted only by the receivers). The at least two rows of receivers are spaced apart in a circumferential direction about a continuous portion of the sidewall. A suture passes through the receivers, the suture having first and second ends. Tightening the suture, such as by pulling the first and second ends, cinches the graft, such that an inner diameter of the tubular graft is re duced. This provides the graft with a reduced flow portion, which may be selectively adjusted without the need for cutting the graft longitudi nally to achieve a desired reduction in diameter.

[008] In one embodiment, the at least two rows of receivers comprise a plurality of pairs of receivers, each pair of receivers spaced in an axial direction. The receivers in each pair may be aligned in the cir cumferential direction, and the receivers in each pair may be staggered in the axial direction.

[009] The first and second ends of the suture extend from one receiver in each row. In one embodiment, the first end of the suture ex tends from an outermost receiver at a first end portion of the tubular graft and the second end of the suture extends from an outermost receiver at a second end portion of the tubular graft. In another embodiment, the first end of the suture extends from outermost receivers at the same ends of the at least two rows. The receivers may be provided along only an in termediate portion of the graft, such that an hourglass shape results from the cinching process.

[0010] The suture may pass through the receivers to form a crossing pattern. Alternatively, the suture may pass through the receivers to form a zig-zag pattern. In any case, the least two rows of receivers may include a first row of receivers and a second row of receivers, the first row of receivers spaced farther from a second row of receivers in a loosened condition of the suture and the first row is spaced closer to the second row of receivers in a tightened condition of the suture. [0011] In any of the embodiments, each receiver may comprise an eyelet or a ringlet for receiving the suture. The eyelet may be orient ed such that its axis is substantially perpendicular to an axial direction of the graft, and the ringlet oriented such that its axis is substantially paral lel to the axial direction of the graft. The receiver may comprise a pro jection from a sidewall of the graft, such as a loop formed by another su ture extending through the sidewall of the graft and anchored in place. The receivers may also be formed by a beading attached to the sidewall of the graft. The receivers may comprise holes formed in a reinforced region of the graft, which may be a thicker region or a sintered region of the sidewall of the graft.

[0012] In any of the foregoing embodiments, the suture may comprise a radiopaque material. The receivers may also comprise a ra diopaque material. A mandrel may also be provided, the mandrel includ ing a reduced diameter portion corresponding to a custom reduced diam eter of the tubular graft, and may thus have an hourglass shape.

[0013] In any of the foregoing embodiments, the tubular graft may comprise expanded polytetrafluoroethylene (“ePTFE”), but other materials may also be used (e.g., an extracellular matrix, or“ECM”) [0014] According to a second aspect of the disclosure, a prosthet ic medical device is provided. The device includes a tubular graft having open ends and an adjustable portion intermediate the open ends adapted for being reduced from a larger inner diameter to a smaller inner diame ter for restricting flow through the tubular graft. In one embodiment, the adjustable portion includes a plurality of receivers (which may include eyelets) passing through a sidewall of the adjustable portion and con nected by a suture (which may optionally comprise a radiopaque materi al), whereby tightening of the suture causes the adjustable portion to as sume the smaller diameter. A mandrel may also be provided with a re duced diameter portion corresponding in size to a custom inner diameter of the tubular graft. [0015] Still a further aspect of the disclosure pertains to a tubular graft comprising open ends and a sidewall including a plurality of re ceivers, which may comprise eyelets or ringlets. A suture may also pass through the plurality of receivers.

[0016] Yet another aspect of the disclosure pertains to a method of forming a tubular graft. The method comprises extending a suture through a plurality of receivers on the intermediate portion of the tubular graft, which when tightened reduces in inner diameter along at least a portion of the graft. The method may further include the step of insert ing a mandrel having an outer diameter corresponding to a custom inner diameter of the intermediate portion into the tubular graft prior to the re ducing step.

[0017] The method may further include the step of forming the rows of receivers in the graft by forming holes in a reinforced region of the graft. The method may also include forming the rows of receivers in the graft by creating projections from a sidewall of the graft. Still fur ther, the method may include forming the rows of receivers by connect ing eyelets, ringlets, or beading to a sidewall of the tubular graft.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

[0018] The above and further advantages according to the inven tions disclosed herein may be better understood by referring to the fol lowing description in conjunction with the accompanying drawings in which:

[0019] Figure 1 is a perspective view of a prior art graft;

[0020] Figure 2 is a perspective view of a prior art flow re striction graft having a reduced portion with a fixed diameter;

[0021] Figure 3 is a top perspective view of an adjustable graft according to one aspect of the disclosure;

[0022] Figure 4 is an enlarged top view of the graft of Figure 1 ; [0023] Figure 5, 5A, and 5B are top, side, and cross-sectional views of an eyelet for optional use in connection with the adjustable graft;

[0024] Figure 6 is a partially cutaway, partially cross-section view of an eyelet in the mounted condition;

[0025] Figure 7 is a top view of an alternate embodiment of the adjustable graft according to the disclosure;

[0026] Figure 8 is a perspective view of a mandrel according to another aspect of the disclosure;

[0027] Figure 9 is an illustration of an adjustable graft with the mandrel therein and an associate suture in a tightened condition;

[0028] Figures 10 and 10A illustrate an alternate embodiment;

[0029] Figure 11 is a partially cross-sectional view of a sidewall of the graft including holes formed in a reinforced region thereof;

[0030] Figures 12 is a schematic view of a prior art die and man drel arrangement for forming a tube having a continuous wall thickness;

[0031] Figures 13, and 14 are schematic views illustrating dies and mandrels for use in extruding a tube having a reinforced region;

[0032] Figure 15 is a partly cutaway, partially cross-sectional view illustrating a beading attached to a sidewall of the graft to form re ceivers for receiving a suture; and

[0033] Figure 16 is a partly cutaway, partially cross-sectional view illustrating the use of a suture for forming the receivers.

[0034] The drawings are not necessarily drawn proportionally or to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity or several physical components may be included in one functional block or element. Further, sometimes reference numerals may be repeated among the drawings to indicate corresponding or analogous elements. DETAILED DESCRIPTION

[0035] In the following detailed description, numerous specific details are set forth to provide a thorough understanding of the disclosed concepts. Those of ordinary skill in the art will know that the disclosed inventions may be practiced without these specific details. In other in stances, well-known methods, procedures, components, or structures may not have been described in detail so as not to obscure the disclosed inventions.

[0036] The description provided below and in regard to the fig ures applies to all embodiments unless noted otherwise, and features common to each embodiment are similarly shown and numbered.

[0037] Referring first to Figures 3 and 4, one embodiment of an adjustable endovascular graft 10 is illustrated. The graft 10 includes a flexible, elongated tubular body having open ends or end portions 12, 14 and a sidewall 16. The open ends 12, 14 may be sized and shaped for connecting with other vessels, such as arteries, veins, other grafts, or any combination thereof (and which may be sutured in place to form a con nection with the graft 10). The open ends 12, 14 may also be“cuffed,” examples of which are the Distaflo® and Dynaflo® cuffed grafts distrib uted by Bard Peripheral Vascular, Inc. of Tempe, Arizona, and as de scribed in US20100280598A1, the disclosure of which is incorporated herein by reference. The graft 10 may have any desired length or diame ter and, as discussed in more detail below, may be fabricated from any of a variety of biocompatible materials to allow for endovascular use.

[0038] Between the open ends 12, 14 and spaced inwardly from them is an intermediate portion 18 of the graft 10, which is adapted to al low for adjustments to be made to the inner diameter along that portion of the graft to create a flow restricted passage. In one embodiment, the sidewall 16 along this intermediate portion 18 includes a plurality of re ceivers 20, which form openings through which a suture 22 may be laced. For example, as shown in Figure 4, the receivers 20 may com prise pairs of receivers, which may be spaced apart in both the circum ferential direction C and the axial or longitudinal direction L. In the il lustrated embodiment, the receivers 20 are arranged in two generally parallel rows of receivers Ri, R 2 , with the individual receivers staggered or offset in the circumferential direction, such that they do not align. As can be appreciated, the receivers 20 may be very small in size, and need only be sufficiently large to allow for the suture 22 to pass.

[0039] The suture 22 may be laced through the receivers 20 such that a first free end 22a extends from an outermost receiver 20a in one direction, and a second free end 22b extends from an outermost receiver 20b in the other (opposite) direction. Between the receivers 20a, 20b, a threaded portion of the suture 22 is arranged to form a“zig-zag” pattern, with alternating passes extending along the interior or exterior of the sidewall 16, respectively (that is, along the inner surface or the outer sur face of the intermediate portion 18 of the graft 10 in alternating passes). As can be appreciated, the threading need not be through all receivers 20 provided, and the clinician may select the number of receivers to be used based on the desired length of the reduced diameter portion to be provid ed.

[0040] Thus, when the free ends 22a, 22b of the suture 22 ex tending from the outermost receivers 20a, 20b are pulled in opposite di rections (as indicated by action arrows A and B). Consequently, the rows Ri, R 2 of receivers 20 are caused to move toward each other and become closer as a result of the shortening of the threaded portion of su ture 22 in the tensioned condition (as compared to the suture in the loos ened condition; compare Figures 3 (loosened) and 9 (tightened to pro vide graft 10 with“hourglass” shape). This tensioning results in a por tion of the sidewall 16 bowing inwardly between the rows of receivers 20, which has the effect of reducing the inner diameter of at least the in termediate portion 18 of the graft 10 to create the desired flow restricted (intermediate) portion, and without altering the diameter of the end por tions 12, 14. As can be appreciated, the sidewall 16 remains“substan tially continuous” as a result (save for the small openings created by the receivers 20), with a strip P of uninterrupted material provided between the openings formed by the receivers 20.

[0041] As can be appreciated, the amount of reduction in diame ter may be controlled by adjusting the amount to which the free ends 22a, 22b of the suture 22 are pulled in the respective directions. If the decrease is determined to be too great, as a result of a visual inspection, then tension on the free ends 22a, 22b may be released. Once the desired reduction is achieved, the position of the suture 22 may be fixed, such as by knotting, and the desired flow reduction achieved using the graft 10 with the reduced diameter intermediate portion 18. Of course, later ad justments can also be made by simply re-tensioning the suture according ly·

[0042] To ensure the receivers 20 are sufficiently robust to han dle the movement of the suture 22, they may optionally be provided with reinforcements, which in one form may comprise eyelets 24. As shown in Figures 5, 5A, and 5B, each eyelet 24 may comprise a generally circu lar structure formed of a rigid material (polymers or plastic, metal, suture material, or the like). The eyelet 24 has a hollow interior 26 for allowing the suture to pass freely, and an outer groove or channel 28, which may be adapted for receiving the material forming the sidewall 16, and thus securely retaining the eyelet in position. The eyelets 24 may thus be in the nature of grommets, and be retained purely by mechanical engage ment with the surrounding sidewall 16, but security may be enhanced by the use of adhesives, welding (ultrasonic or heat) or other known alterna tives for fastening two structures in a secure, biocompatible manner.

[0043] Alternative ways of forming the intermediate portion 18 with the adjustable inner diameter may be provided. For example, as shown in Figure 7, pairs of receivers 20 in the sidewall 16 along the in- termediate portion 18 may be generally aligned in the circumferential di rection C and spaced in the axial direction L. The suture 22 may be laced through the receivers 20 in an intersecting or crossing manner, which each successive pass being interior to or outside of the sidewall 16. When the free ends 22a, 22b of the suture 22 are thus pulled in the same direction D, the rows of receivers 20 are drawn together, and the material of the graft 10 cinched along the intermediate portion 18 to the desired reduction in diameter.

[0044] While the reduction may be achieved in vivo , another pos sibility is to prepare the reduced diameter graft 10 prior to use. To facili tate this, a mandrel 30 may be provided, which includes a reduced diam eter portion 30a that approximates the desired custom reduction in diam eter to be achieved. In the illustrated embodiment, the reduced diameter portion 30a is bounded by larger diameter portions 30b, which still have an outer diameter that is at least slightly less than the inner diameter of the graft 10 (and which outer diameters may be the same or different for each portion 30b, depending on the application).

[0045] Thus, as indicated in Figure 9, the mandrel 30 may be in serted into the graft 10 such that the reduced diameter portion 30a aligns with the intermediate portion 18 of the graft 10 in a“non-cinched” con dition. The suture 22 may then be tensioned to reduce the inner diameter of the graft 10, but the amount of reduction will thus be limited by the outer diameter of the mandrel 30. The suture 22 may then be fixed, such as by tying, and the mandrel removed (such as by being dissolved or melted).

[0046] As an alternative, the mandrel 30 may be made in a modular fashion, which allows for the size of the reduced diameter por tion 30a to be selected for a particular graft 10 or custom reduced inner diameter desired. The larger diameter portions 30b may be removably attached to the reduced diameter portion 30a, such as by using pins, to allow for easy assembly and disassembly (including for removing the mandrel 30 from the graft 10 once the custom inner diameter is realized). In perhaps the simplest form, the mandrel 30 may also comprise a cylin drical tube or rod having as its outer diameter the custom reduced inner diameter desired, about which the intermediate portion 18 would con form when cinched using the suture 22.

[0047] Reference is also made to Figures 10 and 10A, which il lustrate an alternate embodiment in which the receivers 20 in the side- wall 16 are formed by projections therefrom. In the illustrated embodi ment, the receivers 20 are provided by ringlets 34 at least partially em bedded in the sidewall 16 and arranged in spaced rows. Similar to eye lets 24, the ringlets 34 may comprise rigid (metal) rings inserted through the sidewall 16, and could be co-molded with it, or the projections form ing the receivers may be integrally formed in the sidewall (such as by molding). As shown in Figure 10A, the ringlets 34 have a radial direc tion R that is aligned or substantially parallel to the radius of the graft 10, and a suture 22 thus passes through each ringlet along an axis thereof in a direction generally aligned with the axial direction L.

[0048] The ringlets 34 may receive the suture 22 in the manner shown, which is basically the intersecting configuration previously de scribed. When the free ends 22a, 22b are pulled, the rows of ringlets 34 are moved closer together. Consequently, the desired cinching effect and the reduction in diameter of the intermediate portion 18 is achieved (note collapsed portion of sidewall 16’ indicated in phantom lines, which would be similar to that achieved in connection with the embodiments using eyelets 24). As can be appreciated, the ringlets 34 could be ar ranged differently to still achieve a cinching effect, such as the above- described“zig-zag” pattern by staggering the ringlets in the axial direc tion as well as the circumferential direction.

[0049] Other manners of forming the receivers 20 are also pro posed. With reference to Figure 11, holes 35 may be formed in the sidewall 16 of the graft 10, such as by using a hole punch or drill. The area immediately surrounding the holes 35 may then be reinforced. This reinforcement may be achieved by“hard sintering, or by applying pres sure to the graft material surrounding the holes 35 during the sintering (heating without melting) process. The resulting material is denser, and thus stronger/stiffer. Consequently, the suture retention strength is in creased along the intermediate portion 18 including the receivers 20, yet the rest of the graft 10 remains flexible and porous.

[0050] With reference to Figures 12, 13, and 14, the wall thick ness in certain areas of the graft 10 may also be increased during the forming process by altering the shape of the die E and mandrel M. For a normal graft, as shown in Figure 12, the die E inner diameter and the mandrel M outer diameter are both circular. The cross section of the re sulting graft is the open space in between the two. Altering the shape of one of the mandrel M and or the die E, as shown in Figures 13 and 14, changes the thickness of the graft 10 in that region (but the same result could also be achieved by offsetting the mandrel M within the die E). Holes (not shown) may then be formed in the resulting tubular structure (such as by punching or drilling) to create the receivers. If desired, the sintering process may also be used in connection with this embodiment [0051] Still a further possibility is to use an external beading 36 on the graft 10 to form the receivers 20, as shown in Figure 15. This beading 36 may be arranged along the graft 10 (such as in a spiral con figuration) such that sections 36a of the beading 36 are raised above the material of the sidewall 16 to form the receivers 20 for the suture (not shown). The beading 36 may be attached in localized regions using the manufacturing process such that it is immovably attached (e.g. by weld ing or other bonding), and thus provides the desired points of retention for the suture. Two spaced rows of this beading 36 can be applied to achieve the desired rows of receivers 20. The beading 36 may also com prise a radiopaque material (e.g., metal or doped polymer) to allow for ready visualization under fluoroscopy. [0052] Still another option is to form the receivers 20 of flexible material, such as a suture or suture-like material, as shown in Figure 16. Specifically, a suture 38 can be sewn or laced through the material of the sidewall 16 to form the receivers 20. The ends of the suture 38 within the graft 10 may be mechanically anchored by anchors 40, such as knots or fasteners. Again, two circumferentially spaced rows of receivers 20 formed of suture 38 may be provided to allow for the cinching of the graft 10 and thus the desired at least partial reduction in inner diameter.

[0053] As can be appreciated, the maximum degree of cinching achieved may be controlled based on the spacing of the rows of receivers 20, with increased spacing achieving a greater reduction in diameter. For a typical case where the nominal inner diameter of the graft 10 is ap proximately 7 millimeters, and the desired reduction is to about 3-4 mil limeters, the receivers could be spaced approximately 10-12 millimeters apart in the circumferential direction. Of course, a larger or smaller spacing could be used depending on the desired degree of reduction. Likewise, the length of the intermediate portion 18 including the receiv ers 20 may vary from what is shown in the drawings. An arrangement could be used in which not all receivers along the intermediate portion 18 receive the suture 22 (which means that, upon cinching, only part of the intermediate portion 18 would have the reduced diameter).

[0054] The vascular graft 10 according to the disclosure may be made of a variety of materials. Polytetrafluoroethylene (PTFE) has proven unusually advantageous as a material from which to fabricate blood vessel grafts or prostheses, because PTFE is extremely biocompat ible, causing little or no immunogenic reaction when placed within the human body. In its preferred form of expanded PTFE (ePTFE), the ma terial is light, porous and readily colonized by living cells so that it be comes a permanent part of the body. The process of making ePTFE of vascular graft grade is well known to one of ordinary skill in the art. The expansion of PTFE into ePTFE involves a controlled longitudinal stretching in which the PTFE is stretched to several hundred percent of its original length. Examples of ePTFE grafts are shown and described in U.S. Pat. Nos. 5,641,443; 5,827,327; 5,861,026; 5,641,443; 5,827,327; 6,203,735; 6,221,101; 6,436,135; and 6,589,278, each of which is incor porated in its entirety by reference. Grafts made from materials other than ePTFE that have been utilized include, for example, Dacron mesh reinforced umbilical tissues, bovine collagen, polyester knitted collagen, tricot knitted polyester collagen impregnated, and polyurethane (availa ble under the trademark Vectra®). The graft 10 may also comprise an “extracellular matrix” or ECM, which may comprise the combination of one or more of collagen, proteins, proteoglycans, glycosaminoglycans, and other biological materials produced by cells that form the structural and functional components of all soft tissues and organs in the body.

[0055] The suture 22 may be fabricated of any known biocom patible suture material, such as polypropylene, Nylon (polyamide), poly ester, PVDF, silk or metal (e.g., stainless steel). In one particular em bodiment, the suture 22 may comprise a material that is radiopaque, which thus allows for the viewing of the suture under fluoroscopy. This may allow for a clinician to observe the condition of the suture 22 along the reduced diameter intermediate portion 18 of the graft 10 in vivo. The radiopaque material may be any of a variety of known radiopaque metals (e.g., platinum, stainless steel, gold, and tantalum, as examples), but may also comprise a polymer fiber having a radiopaque agent therein (e.g., Dyneema Purity® radiopaque fiber). A particular example of a radio paque suture is also described in U.S. Patent Application Publication No. 2015/0327861, the disclosure of which is incorporated herein by refer ence.

[0056] The receivers 20 may also be made partially or fully radi opaque. In the case of the eyelet 24 or ringlet 34, this may be achieved by fabricating each from a radiopaque material, such as the above- referenced materials. Alternatively, radiopaque material may be embed- ded in a polymer material when forming the receiver 20 using any of the above-mentioned techniques. Making the suture 38 of the Figure 16 em bodiment radiopaque is also possible.

[0057] In summary, an adjustable vascular graft 10 is provided to create a custom reduction in flow along a portion of the graft. Specifi cally, the intermediate portion 18 of the graft 10 may achieve a reduction in inner diameter by tensioning a suture 22 passed through small receiv ers 20 in a sidewall 16, which may include reinforcements, such as eye lets 24, ringlets 34, holes 35, beading 36, or loops formed by a suture 38. A mandrel 30 may also be provide to help the vascular surgeon achieve a custom reduced inner diameter in a highly repeatable manner, and with out the past need for cutting and repairing the graft 10 to achieve a re duction in diameter, which may save a great deal of time. The receivers 20 may be sufficiently small so as to avoid meaningfully compromising the strength or resilience of the graft 10. The need for stocking different sizes of grafts 10 is also eliminated, since a range of custom sizes may be created for a variety of applications. This improves the flexibility of use, and further reduces costs.

[0058] Each of the following terms written in singular grammati cal form:“a”,“an”, and the”, as used herein, means“at least one”, or “one or more”. Use of the phrase One or more” herein does not alter this intended meaning of “a”,“an”, or“the”. Accordingly, the terms“a”, “an”, and“the”, as used herein, may also refer to, and encompass, a plu rality of the stated entity or object, unless otherwise specifically defined or stated herein, or, unless the context clearly dictates otherwise. For ex ample, the phrases:“a unit”,“a device”,“an assembly”,“a mechanism”, “a component,“an element”, and“a step or procedure”, as used herein, may also refer to, and encompass, a plurality of units, a plurality of de vices, a plurality of assemblies, a plurality of mechanisms, a plurality of components, a plurality of elements, and, a plurality of steps or proce dures, respectively. [0059] Each of the following terms: “includes”, “including”,

“has”,“having”,“comprises”, and“comprising”, and, their linguistic / grammatical variants, derivatives, or/and conjugates, as used herein, means“including, but not limited to”, and is to be taken as specifying the stated component(s), feature(s), characteristic(s), parameter(s), inte gers), or step(s), and does not preclude addition of one or more addi tional component(s), feature(s), characteristic(s), parameter(s), integer(s), step(s), or groups thereof. Each of these terms is considered equivalent in meaning to the phrase“consisting essentially of.” Each of the phrases “consisting of and“consists of, as used herein, means“including and limited to”. The phrase“consisting essentially of’ means that the stated entity or item (system, system unit, system sub-unit device, assembly, sub-assembly, mechanism, structure, component element or, peripheral equipment utility, accessory, or material, method or process, step or pro cedure, sub-step or sub-procedure), which is an entirety or part of an ex emplary embodiment of the disclosed invention, or/and which is used for implementing an exemplary embodiment of the disclosed invention, may include at least one additional feature or characteristic” being a system unit system sub-unit device, assembly, sub-assembly, mechanism, struc ture, component or element or, peripheral equipment utility, accessory, or material, step or procedure, sub-step or sub-procedure), but only if each such additional feature or characteristic” does not materially alter the basic novel and inventive characteristics or special technical features, of the claimed item.

[0060] The term“method”, as used herein, refers to steps, proce dures, manners, means, or/and techniques, for accomplishing a given task including, but not limited to, those steps, procedures, manners, means, or/and techniques, either known to, or readily developed from known steps, procedures, manners, means, or/and techniques, by practi tioners in the relevant field(s) of the disclosed invention. [0061] Terms of approximation, such as the terms about, substan tially, approximately, etc., as used herein, refers to ± 10 % of the stated numerical value. Use of the terms parallel or perpendicular are meant to mean approximately meeting this condition, unless otherwise specified.

[0062] It is to be fully understood that certain aspects, character istics, and features, of the invention, which are, for clarity, illustratively described and presented in the context or format of a plurality of separate embodiments, may also be illustratively described and presented in any suitable combination or sub-combination in the context or format of a single embodiment. Conversely, various aspects, characteristics, and fea tures, of the invention which are illustratively described and presented in combination or sub-combination in the context or format of a single em bodiment may also be illustratively described and presented in the con text or format of a plurality of separate embodiments.

[0063] Although the inventions of this disclosure have been illus tratively described and presented by way of specific exemplary embodi ments, and examples thereof, it is evident that many alternatives, modifi cations, or/and variations, thereof, will be apparent to those skilled in the art Accordingly, it is intended that all such alternatives, modifications, or/and variations, fall within the spirit of, and are encompassed by, the broad scope of the appended claims.

[0064] The following items also relates to the invention:

1. A prosthetic medical device, comprising:

a tubular graft having open ends and at least two rows of receiv ers, the at least two rows of receivers being spaced apart in a circumfer ential direction along a substantially continuous portion, which is prefer ably continuous except for the receivers, of the sidewall; and

a suture passing through the receivers; wherein the prosthetic medical device is configured such that tightening the suture reduces an inner diameter of the tubular graft.

2. The prosthetic medical device of item 1, wherein the at least two rows of receivers comprise a plurality of pairs of receivers, each pair of spaced in an axial direction.

3. The prosthetic medical device of item 1 or 2, wherein the receiv ers of each pair are aligned in the circumferential direction.

4. The prosthetic medical device of item 2 or 3, wherein receivers in each pair are staggered in the axial direction.

5. The prosthetic medical device of any of the preceding items, wherein first and second ends of the suture extend from one receiver in each row of receivers.

6. The prosthetic medical device of any of the preceding items, wherein a first end of the suture extends from an outermost receiver at a first end portion of the tubular graft and a second end of the suture ex tends from an outermost receiver at a second end portion of the tubular graft.

7. The prosthetic medical device of any of the preceding items, wherein first and second ends of the suture extends from outermost re ceivers at the same ends of the at least two rows.

8. The prosthetic medical device of any of the preceding items, wherein the suture passes through the receivers to form a crossing pat tern. 9. The prosthetic medical device of any of the preceding items, wherein the suture passes through the receivers to form a zig-zag pattern.

10. The prosthetic medical device of any of the preceding items, wherein the at least two rows of receivers include a first row of receivers and a second row of receivers, the first row of receivers spaced farther from the second row of receivers in a loosened condition of the suture and the first row is spaced closer to the second row of receivers in a tightened condition of the suture.

11. The prosthetic medical device of any of items 1-10, wherein the entire sidewall is substantially continuous.

12. The prosthetic medical device of any of items 1-11, wherein the rows of receivers are provided on an intermediate portion of the tubular graft, optionally to create an hourglass shape when the suture is tight ened.

13. The prosthetic medical device of any of items 1-12, wherein each receiver comprises an eyelet.

14. The prosthetic medical device of any of items 1-13, wherein each receiver is provided by a projection from the sidewall.

15. The prosthetic medical device of iteml5, wherein the projection is created by a ringlet connected to the sidewall.

16. The prosthetic medical device of item 14 or 15, wherein the pro jection comprises a loop formed by another suture anchored to the side- wall of the tubular graft. 17. The prosthetic medical device of any of items 1-16, wherein the receivers are provided by a beading attached to the sidewall of the tubu lar graft.

18. The prosthetic medical device of any of items 1-17, wherein the receivers comprise holes formed in a reinforced region of the tubular graft.

19. The prosthetic medical device of item 18, wherein the reinforced region is a thicker region of the sidewall of the tubular graft.

20. The prosthetic medical device of item 18, wherein the reinforced region is a sintered region of the sidewall of the tubular graft.

21. The prosthetic medical device of any of items 1-20, wherein the suture comprises a radiopaque material.

22. The prosthetic medical device of any of items 1-21, wherein the receivers comprise a radiopaque material.

23. The prosthetic medical device of any of items 1-22, further in cluding a mandrel including a reduced diameter portion corresponding to a custom reduced inner diameter of the tubular graft.

24. The prosthetic medical device of item 23, wherein the mandrel has an hourglass shape.

25. The prosthetic medical device of any of the preceding items, wherein the tubular graft comprises expanded polytetrafluoroethylene. The prosthetic medical device of items 1 to 25 may also have the fea tures of items 26 to 36.

26. A prosthetic medical device, comprising:

a tubular graft having open ends and an adjustable portion inter mediate the open ends configured for being reduced from a larger inner diameter to a smaller inner diameter for restricting flow through the tub ular graft.

27. The prosthetic medical device of item 26, wherein the adjustable portion includes a plurality of receivers on either side of a continuous sidewall of the adjustable portion and connected by a suture, whereby tightening of the suture causes the adjustable portion to assume the smaller diameter.

28. The prosthetic medical device of item 26 or 27, wherein the su ture comprises a radiopaque material.

29. The prosthetic medical device of any of items 26 to 28, wherein each of the plurality of receivers comprises an eyelet having an axis sub stantially perpendicular to an axial direction.

30. The prosthetic medical device of any of items 26 to 28, wherein each of the plurality of receivers comprises a ringlet having an axis sub stantially parallel to an axial direction.

31. The prosthetic medical device of any of items 26 to 30, wherein each of the receivers comprises a loop formed by another suture an chored to a sidewall of the tubular graft. 32. The prosthetic medical device of any of items 26 to 31, wherein the receivers are provided by a beading attached to the sidewall of the tubular graft.

33. The prosthetic medical device of any of items 26 to 32, wherein the receivers comprise holes formed in a reinforced region of the tubular graft.

34. The prosthetic medical device of item 33, wherein the reinforced region is a thicker region of the sidewall of the graft.

35. The prosthetic medical device of item 33 or 34, wherein the rein forced region is a sintered region of the sidewall of the graft.

36. The prosthetic medical device of any of items 26 to 35, further including a mandrel including a reduced diameter portion corresponding in size to a custom inner diameter of the tubular graft.

The prosthetic medical device of items 26 to 36 may also have the fea tures of items 1 to 25.

37. A tubular graft comprising open ends and a substantially contin uous sidewall including a plurality of receivers.

38. The tubular graft of item 37, further including a suture passing through the plurality of receivers.

39. The tubular graft of item 37 or 38, wherein the receivers com prise eyelets retained by the sidewall of the graft and having an axis gen erally transverse to an axis of the tubular graft. 40. The tubular graft of item 37 or 38, wherein the receivers com prises ringlets at least partially embedded in the sidewall of the tubular graft and having an axis generally aligned with an axis of the tubular graft.

41. The tubular graft of item 37 or 38, wherein the receivers com prise a loop formed by another suture extending through the sidewall of the tubular graft.

42. The tubular graft of any of items 37 to 41, wherein the receivers are provided by a beading attached to the sidewall of the tubular graft.

43. The tubular graft of any of items 37 to 42, wherein the receivers comprise holes formed in a reinforced region of the tubular graft.

44. The tubular graft of item 43, wherein the reinforced region is a thicker region of the sidewall of the tubular graft.

45. The tubular graft of item 43, wherein the reinforced region is a sintered region of the sidewall of the tubular graft.

46. A method of forming a tubular graft, comprising:

extending a suture through at least two circumferentially spaced rows of receivers provided on either side of a continuous portion of the tubular graft,

whereby tightening the suture at least partially reduces an inner diameter of at least a portion of the tubular graft.

47. The method of item 46, further including the step of inserting a mandrel having an outer diameter corresponding to the reduced inner di- ameter of the intermediate portion into the tubular graft prior to the tight ening step.

48. The method of item 46 or 47, further including the step of form ing the rows of receivers in the tubular graft by forming holes in a rein forced region of the tubular graft.

49. The method of item 46, 47 or 48, further including the step of forming the rows of receivers in the tubular graft by creating projections from a sidewall of the tubular graft.

50. The method of any of items 46 to 49, further including the step of forming the rows of receivers comprises connecting eyelets, ring lets, or beading to a sidewall of the tubular graft.

The method of items 46 to 50 can be used for forming the tubular graft or prosthetic medical device of any of the preceding items.