Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ADVANCED AIRBORNE FIRE FIGHTING SYSTEM
Document Type and Number:
WIPO Patent Application WO/2010/080957
Kind Code:
A1
Abstract:
A system for dispersing liquid over a desired location, the system comprising a pressurized tank having a main body, an inlet in fluid communication with the main body for introducing liquid to the main body, an outlet in fluid communication with the main body for dispersing the liquid, and an air inlet for charging air under pressure into the main body, where the improvement comprises providing a diffuser for slowing down pressurized air entering the main body from the inlet.

Inventors:
NELSON DONALD M (US)
Application Number:
PCT/US2010/020439
Publication Date:
July 15, 2010
Filing Date:
January 08, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NELSON DONALD M (US)
International Classes:
A62C3/08
Foreign References:
US20060260826A12006-11-23
US4282172A1981-08-04
US5385208A1995-01-31
US4474350A1984-10-02
US3442334A1969-05-06
Attorney, Agent or Firm:
SCHWEDLER, Carl, J. (1415 L Street Suite 100, Sacramento CA, US)
Download PDF:
Claims:
CLAIMS

What is claimed is 1 In a system for dispersing liquid ovei a desired location, said system comprising a pressurized tank having a main body, an mlet in fluid communication with said main body for introducing liquid to said main body, an outlet in fluid communication with said mam body for dispersing said liquid, and an air mlet for chaigmg an under pressuie into said main body, the improvement compπsing pioviding a diffusei foi slowing down piet>suπzed an enteiing said main body horn said inlet 2 The system of Claim 1 , wherein said diffusei directs said pressurized an across the upper region of said main body 3 The system of Claim 1 , wherein said diffuser expands and slows down said pressurized air 4 The system of Claim 1 , wherein said diffuser converts dynamic air piessuie into static air pressure 5 The system of Claim 1 , wheiein said diffuser comprises a base, geneially cylindrical side walls and an opening opposite said base 6 The system of Claim 5, wherein said side walls expand circumferentially fiom said base to said opening 7 The system of Claim 1 , wherein said storage tank is housed within the fuselage of said host airciaft 8 The system of Claim 1 , wherein said stoiage tank is pioduced of coπosion resistant material 9 The system of Claim 1 , wherein said corrosion-resistant material is stainless steel 10 The system of Claim 1 , wherein said steel is 2205 stainless steel 1 1 The system of Claim 1 , further compπsing a dischaige pipe in fluid communication with said outlet 12 The system of Claim 1 1 , wherein said discharge pipe comprises a pintle nozzle, said pintle nozzle being capable of controlling the flow rate of discharge 13 The system of Claim 11, wherein said discharge pipe comprises an elbow foi redirecting the subsequent portion of said pipe generally horizontal to said mam body 14 The system of Claim 13, wherein said elbow is formed at an angle allowing positioning of said pintle horizontal to said main body

15. The system of Claim 1 1 , wherein said discharge pipe is constructed of welded components 16 The system of Claim 15, wherein said dischaige pipe is suppoited on said storage tank by struts. 17 The system of Claim 1 further comprising a second outlet from said main storage tank 18 The system of Claim 17, wherein said first and second outlets from said main storage tank are in fluid communication with said dischaige pipe 19 The system of Claim 1 , wheiein said pressuπzed tank is mounted on a pallet 20 The system of Claim 19, wheiein said pallet is adapted to leversibly ioll-on and roll-off of said host aircraft. 21 The system of Claim 1 further comprising a control interface assembly affixed to an operatoi chair mounted to said pallet 22 The system of Claim 1 further comprising a compressor in pneumatic communication with said air inlet 23 The system of Claim 22 further comprising a compressed an storage reseivon between said compressor and said storage tank 24 The system of Claim 1 further comprising an additive tank foi input of additives to said pintle discharge. 25 A method of dispersing fluid over a site of interest, said method comprising discharging fluid over said site of interest from a system comprising a pressurized tank having a main body, an inlet m fluid communication with said main body for introducing liquid to said mam body, an outlet in fluid communication with said main body for dispeising said liquid, an air inlet for charging air under pressure into said main body, and a diffuser foi slowing down pressurized air entering said main body from said inlet. 26. The method of Claim 25, wherein said dispeisal is from a host anciaft 27 The method of Claim 26, wheiein said host aiicraft is a helicoptei 28 The method of Claim 26, wherein said host aircraft is a fixed wing aiicraft 29 The method of Claim 28, wherein said fixed wing airciaft compiises a wide- body aircraft. 30. The method of Claim 28, wherein said fixed wing aircraft has a gross carrying capacity of greater than or equal to about 100,000 pounds 31 The method of Claim 25 further comprising aerially dispersing said liquid to suppress a fire 32 The method of Claim 25 further comprising aerially dispersing said liquid at a rate of greater than about 200 gallons per second 33 The method of Claim 32, wherein said iate is greater than about 400 gallons per second 34 The method of Claim 33, wherein said rate is greater than about 600 gallons per second 35 The method of Claim 34, wherein said rate is greatei than about 700 gallons per second 36 The method of Claim 25, wherein said diffuser directs said pressuπzed air across the upper region of said main body 37 The method of Claim 25, wherein said diffuser expands and slows down said pressurized air 38 The method of Claim 25, wherein said diffuser coverts dynamic an pressure into static air pressure 39 The method of Claim 25, wherein said diffuser comprises a base, generally cylindrical side walls and an opening opposite said base 40 The system of Claim 39 wherein said side walls expand circuinferentially from said base to said opening 41 The method of Claim 25, wherein said system further compiises a dischaige pipe in fluid communication with said outlet 42 The method of Claim 38, wherein said discharge pipe compiises a pintle nozzle, said pintle nozzle being capable of controlling the flow rate of discharge

Description:
ADVANCED AIRBORNE FIRE FIGHTING SYSTEM

Reference to Related Application

[0001] This application claims the benefit of United States Provisional Patent Application No. 61/143,364, filed January 8, 2009, the complete disclosure of which is incorporated herein, in the entirety.

Copyright Notice

[0002] A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files and records, but otherwise reserves all other copyright rights.

BACKGROUND OF THE INVENTION Field of the Invention

[0003] This invention relates to airborne fire fighting suppression systems. In particular, the invention relates to an improved system for dispersing pressurized fire- extinguishing materials from an airborne fire fighting platform.

Description of Related Art

[0004J Aircraft are commonly employed for the aerial dispersion of liquid and/or solid materials such as fire retardant or fire extinguishing materials, oil dispersant materials, bio-remediation materials, fertilizer materials, herbicide materials, defoliant materials, pesticide materials, etc., over a target. Many vintage aircraft are converted for aerial dispersion of materials by the permanent installation of material dispersion equipment.

[0005] Modular aerial spraying systems have also been developed for use in conversion of cargo aircraft for aerial spraying purposes. Known as Modular Airborne Fire Fighting Systems ("MAFFS") or advanced modular airborne fire fighting system, these systems employ portable pressurized tanks, which are loaded onto cargo aircraft, for instance C-130 aircraft, through the lowered rear cargo ramp of the aircraft.

[0006] Various fixed and rotary wing aircraft such as the Douglas DC-6 and DC-4, Lockheed Martin P-2 Neptune and P-3 Orion, and the Sikorsky UH-60L/S-70A Black Hawk helicopter and other types of fixed and rotary wing aircraft, have in the past been extensively modified to undertake airborne fπe fighting opeiations Typically, modifications to the airframe are made to accommodate the weight of, and loads resulting from the dispersal of high volume water and foam retardant fluid These aircraft are referred to as air tankeis Their combined water and retardant delivery capacity, as well as the delivery dispersal pattern of the water on the ground, determine if the aircraft qualifies for one of several air tanker ratings, which arc certified by the Interagency Air Tanker Board (IAB)

(0007] Among the many methodologies developed over years of aenal wildland fire fighting, is the constant flow retardant delivery tank system, which uses a pair of doors that open gradually to permit progressive release of the retardant mixture fiom within an an tanker's fluid reservoir This constant flow water bombing methodology can counteiact the forward motion of the aircraft at various speeds while maintaining an even, well grouped, user programmable, retardant dispersal pattern on the ground

[0008] One vanant of such a system was disclosed by MacDonald and Neuwπlh, in U S Patent No 4,936,389, which issued on June 26, 1990, entitled "Fluid Dispensei foi an Aircraft" MacDonald discloses a system wherein a head sensor determines the level of retardant in the aircraft retardant tank and dynamically controls the aperture of the drop doors to counter aircraft forward velocity to achieve a consistent dispersal pattern A similar constant flow system, which calculates the remaining amount of fluid within a tank relative to aircraft ground speed to achieve controlled retaidant discharge is disclosed by Foy and Uglum in U S Patent No 5,320,185, which issued on June 15, 1994, entitled "Ancraft Fluid Diop System" and also Foy and Uglum in U S Patent No 5,451 ,016, which issued on September 19, 1995, which was also entitled "Aircraft Fluid Drop System"

[0009] Another methodology used to achieve constant flow rates is disclosed by Trotter and Woods in U S Patent No 5,279,481 , which issued on January 18, 1994, entitled "Airborne Liquid Spreading System" In the disclosed system, the differential pressure across the drop doors between internal tank pressuie and external ambient pressure is determined by a sensor which then ielays signals to a controller that vanes the aperture of the doors to maintain a constant flow rate during the drop sequence

[0010] United States Patent No 7,165,627, entitled "Portable Airborne Firefϊghting and Sensing System", discloses a fire fighting apparatus adapted for use m a host aircraft comprising a fuselage The fire fighting apparatus includes a pressunzeable retardant tank disposed in the interior of the host aircraft, the retardant tank being capable of roll-on and roll-off installation, and utilizes an ejection tube m fluid communication with the retardant tank Various sensors are disclosed to effect user-discernable data for directing retardant delivery.

[0011] A typical mobile air dispersal system consists of a series of pressurized fire retardant tanks, with a total capacity of 2,700 gallons and associated equipment, which is palletized and carried in the aircraft's cargo bay. In addition to the retardant tanks, each module contains a pressure tank where compressed air is stored at 1 ,200 psi. The control module includes the master control panel, the loadmaster's seat, and discharge valves. An air compressor module provides air pressure for charging the system; it stays at the air tanker base during air operations and is used to recharge the system between runs. Each unit weighs about 1 1,000 pounds, with a load capacity of 2,700 gallons. They can be installed in any C- 130 equipped with the USAF 463L cargo-handling system.

[0012] All the aforementioned constant flow methodologies have certain limitations and deficiencies, most notably, the inability to precisely control the rate of the dispersal of the liquid load.

[0013] Accordingly, there is a continuing, unaddressed need for an improved firefighting apparatus capable of controlled and precise delivery of pressurized retardant.

SUMMARY OF THE INVENTION

[0014] Disclosed are methods and systems for dispersing liquid over a desired location. The system generally comprises a pressurized tank having a main body, an inlet in fluid communication with the main body for introducing liquid to the main body, an outlet in fluid communication with the main body for dispersing the liquid, and an air inlet for charging air under pressure into the main body. A diffuser is provided for slowing down pressurized air entering the main body from the inlet.

[0015] In one embodiment, the diffuser directs the pressurized air across the upper region of the main body. In this way, the diffuser expands and slows down the pressurized air, effectively converting dynamic air pressure into static air pressure.

[0016] In a further embodiment, the diffuser comprises a base, generally cylindrical side walls and an opening opposite the base. In a preferred such aspect, the side walls expand circumferentially from the base to the opening.

[0017] In a preferred embodiment, the storage tank is housed within a host aircraft. The storage tank is preferably produced of stainless steel, more preferably a highly corrosive resistant stainless such as 2205 stainless steel.

[0018] The storage tank is preferably housed within the fuselage of a host aircraft. [0019] The system will typically have a discharge pipe m fluid communication with the outlet The discharge pipe preferably comprises a pintle nozzle, the pintle nozzle being capable of controlling the flow rate of discharge from the system

[0020] In a still further preferred embodiment of the invention, the discharge pipe comprises an elbow for redirecting the subsequent portion of the pipe generally horizontal to the main body An "S-duct" is preferably employed, having an elbow formed at an angle of about 45 degrees In a preferred aspect, the discharge pipe is mounted to the storage tank by struts

[0021] In a different embodiment, the system compiises a second outlet, and preferably the first and second outlets are in fluid communication with a single discharge pipe

[0022] The system is preferably mounted on a pallet, which is preferably of the type adapted to reversibly roll-on / roll-off of the host ait craft

[0023] The system may include a control interface assembly affixed to an operatoi chair mounted to the pallet

[0024] In a further preferred embodiment, the system has a compressor in pneumatic communication with the air inlet, including a compressed air storage reservoir between the compressor and the storage tank In a still further embodiment of the system, there is an additive tank for input of additives to the storage tank

[0025] The invention also provides a method of dispersing fluid over a site of interest, the method comprising discharging fluid over the site of interest fiom a system comprising a pressurized tank having a main body, an inlet in fluid communication with the main body for introducing liquid to the mam body, an outlet m fluid communication with the main body for dispersing the liquid, an air inlet for charging air under pressure into the mam body, and a diffuser for slowing down pressurized air entering the main body from the inlet

[0026] The system and method can be adapted for dispeisal from various host aircraft, including helicopters and fixed wing aircraft The fixed wing aircraft prefeiably comprises a wide-body aircraft, still more preferably an aircraft having a gross carrying capacity of greater than or equal to about 100,000 pounds

[0027] Using the system and method of the invention, fire fighting liquids can be dispensed at a rate of greater than about 200 gallons per second In a furthei preferred embodiment, the rate is greater than about 400 gallons per second, in a still further prefeiτed embodiment, at a rate greater than about 600 gallons pei second, and m a still furthei improved embodiment, the rate is greater than about 700 gallons per second |0028] 1 hese and other features and advantages of this invention aie described in, or are apparent from, the following detailed description of vaπous exemplary embodiments of the apparatus and methods according to this invention

BRIEF DESCRIPTION OF THE DRAWINGS [0029] FIG 1 is a partially cut away left side view of a dispersal system of the present invention shown mounted on a Lockheed Martin C-130 an craft

[0030J FIG 2 is a simplified top view of the dispersal system accoiding to FIG 1 [0031 J FIG 3 is a back end view of the dispeisal system showing the dooi of the aircraft and placement of the discharge pipe

[0032] FIG 4 is a simplified perspective view of the front end of the dispeisal system showing the control components mounted to the system

[0033] FIG 5 is a side view of the tank component of the dispeisal system

[0034] FIG 6 is a top view of the tank component shown in FIG 5

[0035] FIG 7 is a perspective view showing the assembly the tank body

[0036] FIG 8 is a perspective view of diffuser components

[0037] FIG 9 is a side view of an assembled diffusei component

[0038] FIG 10 is a partial cut away view of FIG 9

[0039] FIG 11 is a perspective view showing mounting of the diffuser mounted in the dispersal tank

[0040] FIG 12 is a partially cut away view showing the position of the diffusei within the tank

[0041] FIG 13 is a perspective view showing the components of the discharge pipe

DETAILED DESCRIPTION OF THE INVENTION

[0042] The invention is now described in terms of the FIGURES to more fully delineate in more detail the scope, materials, conditions, and methods of the piesent invention Many of the parts and components of the present invention are hereinafter described as being "assemblies" As used herein, the word "system" or "systems", or "apparatus" oi "apparatuses" refers to the totality of related parts and materials related to a given component and its operabihty, and are not to be considered as limiting to a particulai pait, piece, oi operation Such portable, roll-on, roll-off aircraft installation are known as mobile, oi advanced, integrated airborne fire fighting system [0043] In general, the invention compiises an improvement to fne fighting systems and apparatuses adapted for airborne fire fighting Specifically, the systems and appaiatus of the present invention can provide for an improved version of the mobile-type airborne dispersal systems that can also be used for oil dispersant materials, bio-remediation materials, fertilizer materials, herbicide materials, defoliant materials, pesticide materials, etc

[0044] Also disclosed is a method of dispersing fluid over a site of interest, the method comprising discharging fluid over the site of interest from a system comprising a piessuπzed tank having a main body, an inlet in fluid communication with the mam body foi introducing liquid to the main body, an outlet in fluid communication with the main body foi dispersing the liquid, an air inlet for charging air under pressure into the mam body, and a diffuser for slowing down pressurized air entering the main body from the inlet

[0045] The dispersal system provides an advanced version of a self-contained unit for aerial fire fighting that can be loaded onto a military cargo transport, typically a C- 130 Heicules, which then allows the aircraft to be used as an air tankei against wildfires

[0046] Looking now to Figure 1 , the system and method aie adapted for dispersal from various host aircraft, including helicopters and fixed wing aircraft 1 The fixed wing an craft 1 preferably comprises a wide-body aircraft, still more preferably an aircraft having a gross carrying capacity of greater than or equal to about 100,000 pounds

[0047] More particularly, and m reference to Figures 2 through 7, a storage tank 10 is housed within the fuselage of the host aiicraft 1 The storage tank 10 is piefeiably produced of stainless steel, more preferably a highly coπosive-resistant stainless such as 2205 stainless steel Prior art designs using carbon fiber proved to be too unreliable, and frequently produced seepage problems 2205 is not common, but non-corrosive and very stable and reliable

[0048] The tank 10 is part of a dispersal system that includes a discharge pipe 12 in fluid communication with the outlet 14 In a still further preferred embodiment of the invention, the discharge pipe comprises an elbow 16 for redirecting the subsequent portion of the pipe generally horizontal to the main body Λn S-duct is preferably employed, having an elbow formed at an angle of about 45 degrees to the tank In a preferred aspect, the dischaige pipe 12 is mounted to the storage tank by struts

[0049] The system may comprise a second outlet 18, and the first 14 and second 18 outlets may be in fluid communication with a single discharge pipe 12

[0050] The discharge pipe 12 ends in a pintle nozzle 20, the pintle nozzle 20 being capable of controlling the flow rate of discharge from the system A second elbow 22 in the dischaige pipe 12 directs the pmtle 20 back from the end of the plane

[0051] The system may be mounted on a pallet 30, preferably of the type adapted to reversibly roll-on / roll-off of the host aircraft

[0052] In reference to Figures 5 and 6, the pressurized tank 10 includes a mam body 40 and an inlet 42 for introducing liquid to the main body of the tank, and an air inlet 44 for charging air under pressure mto the mam body 40

[0053] A compressor 47 is m pneumatic communication with the an inlet 44 including a compressed air storage leservon 48 between the compiessor and the main body In a still further embodiment of the system 4, theie is an additive tank 52 foi input of additives to the discharge pipe (Figure 2)

[0054] As best seen m reference to Figures 8 through 12, at each mlet 44 there is disposed a diffuser 100, which has a mam body 102 having a base 104, generally cylindrical side walls 106 and an opening opposite the base 108 The side walls 104 expand circumteientially from the base to the opening

[0055] In operation of the system 4, retardant exits through the outlets 14 and 18 to the conduit 12 which extends out the plane's troop door The system can disperse all 3,000 gallons in as little as 4 or 5 seconds over a fire, producing a fire line that is 60 feet wide and a quarter mile long It can then be reloaded in as few as eight minutes

[0056] The aerial dispersion equipment of the disclosed systems and methods may be implemented using modulai components that may be configured foi compatibility with conventional cargo loading and unloading systems of modern aπciaft, including side-loadmg cargo systems of wide-body passenger and caigo aircraft having high lift capacities

[0057] Wide-body commercial aircraft may be quickly and tempoiaπly modified for aerial dispersion purposes, allowing a large fleet of high capacity aerial dispersion aiiciaft to be quickly assembled, for example, in response to a wildfire or othei rapidly-developing emergency such as an oil spill, chemical or biological contamination incident, building oi iefinery fne, etc After use, the aircraft may be rapidly de-modified and ieturned to oiiginal condition, e g , as commercial passengei or cargo plane, or as military transport oi bomber

[0058] Modular and connectable units in the shape of conventional caigo pods may be rapidly loaded and unloaded through side cargo doors into the cargo hold of high lift capacity wide-body commercial aircraft (e g , such as 747, 767, 777 or MD-11 auciaft) or high lift capacity wide-body military/caigo aircraft (e g , such as C-5, C-141 , etc ) m a manner consistent with normal cargo loading operations to provide a removable and ie- useable aerial dispersion system having a capacity much larger than the capacity of existing aerial dispersion systems In those embodiments where the modular units are configured in the shape of conventional cargo pods, they may be employed with a wide variety of aπciaft types that employ the same type of cargo pods regardless of the capacity of a given an craft

[0059] Furthermore, the modular nature of the cargo pods allows a given airciaft to be provided with an aerial dispersion system of desired or customized capacity and/oi capability to fit a given application, i e , by loading a desired number and type of modulai units required to provide the desired capacity and capabilities of the system

[0060] The high capacity aerial dispeision systems that may be piovided using the disclosed systems and methods make possible aerial dispersion techniques that do not lequne low altitude or high angle dives or climbs to apply aerial dispersants to targets, such as fiie hot spots In this regard, high lift capacity wide-body aircraft may be provided with aenal dispersion systems having a capacity of aerial dispersant material that is many times the capacity of existing aerial dispersion systems Using these high capacity aenal dispeision systems allows high volumes of aerial dispersant to be effectively applied to a taiget diop point location from a higher altitude without requiring steep diving or climbing maneuvers that may result in unacceptable g-force stresses

[0061] Furthermore, since the disclosed aerial dispersion systems may be rapidly installed on conventional commercial and/oi military aircraft, it is possible to piovide a laige numbei of high capacity aerial dispersion airciaft that may be deployed togethei to piovide a very large volume of aenal dispersant simultaneously and/or sequentially onto a given taiget or taigets, e g , to rapidly and effectively suppiess a wildfire Following the aerial dispeision mission, the disclosed aerial dispersion systems may be rapidly de-installed or removed fiom the aircraft so that the commercial or military aircraft may be quickly returned to normal configuration for resumption of conventional flight operations

[0062] In reference to Figure 13, a conventional door plug 120 is provided foi the side of the aircraft 1 , rather than requiring the cargo iamp door to be opened, this allows the ancraft to remain pressurized during the drop sequence

[0063] The dispersal system is a fully self-contained system that employs an on board compressor system replacing the ground support equipment requirements of the original modular airborne fire fighting system A self-contained compressor saves valuable time and money by eliminating the necessity of ground support compressois

[0064] Unlike the older system it replaces, the dispeisal system requnes no ground support compiessois for recharge but instead employs a self-contained compiessoi system that is integral to the design This system permits in-flight iecharging to and fiom a diop [0065] A significant problem with previous airborne fire fighting systems is that they often "painted" the external tail sections of the aircraft in which they were installed with fire fighting fluid This fluid can be somewhat corrosive to aircraft metal Operators of such systems would incur the considerable expense of cleaning this fluid off of their air tankers

[0066] To avoid this problem and to save operators the associated cost of having to clean retardant off its C-130s, the systems dispel the fire fighting fluid out the C 130s sealed paratroop door on the left side of the aircraft This design ensures that no contamination of the aircraft's surfaces occurs during a drop

[0067] An added advantage of this design is that the equipped auciaft can fly fully pressurized to and from the fire site and remain pressurized during the actual diop Doing so affords the system operator major advantages over older systems m both crew safety and aircraft operating efficiency

[0068] The system and apparatus of the present invention is scalable and can be used on any suitable aircraft adaptable for airborne fire fighting with the appaiatus of the invention, including, for example, a Boeing C-17, a Boeing CH-47 helicopter, a Boeing V-22 Tilt-rotor, an EADS/CASA C-235/295 aircraft, an Alema C-27, the Cl 30 an craft as shown in the Figures, or other rear loading aircraft having sufficient interior space to accommodate smaller or larger versions of the firefightmg apparatus 4 of the present invention Othei caigo handling systems can be employed as mounted on various aiicraft floors In general, aircraft of the type described herein have a fuselage defining an intenoi and an extenoi of the aiiciatt

[0069] In the practice of the disclosed systems and methods, one oi more aerial dispersion systems may be employed on one or more host aiicraft for aerial dispeisement of any material that is suitable for aerial dispersement, including any of the aerial dispeisement materials and in any of the aerial dispersement tasks described elsewhere herein In this regard, it is possible that only a single host aircraft may be modified with the disclosed aerial dispersion system and employed for aerial dispersion of materials

[0070] Although any type of aiicraft having a baggage or cargo hold suitable foi use with components of the disclosed systems may be employed, particular advantage may be realized by using high-lift capacity aircraft (e g , aircraft having a gross carrying capacity of greater than or equal to about 100,000 pounds) For example, a typical 747 commercial aircraft has a gross carrying weight of about 140,000 pounds and is capable of carrying about 13,000 gallons of liquid dispersant material such as water This is over four times the 3,000 gallon carrying capacity of a typical aerial dispersant system aircraft now employed toi purposes such as aerial firefightmg Thus, using the disclosed systems and methods to convert even a single high lift capacity aircraft for aerial dispersion tasks achieves a significant increase in mateπal dispersant volume capacity

[0071] While this invention has been desciibed m conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled m the art Accordingly, the preferred embodiments of the invention, as set forth above, are intended to be illustrative, not limiting Various changes may be made without departing from the spirit and scope of this invention

[0072] Numerous references made throughout this specification to technologies and patents are intended to add to the disclosuie herein, and the entiie disclosuie of each is expressly incorporated by reference to this document