Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AIR TREATMENT UNIT
Document Type and Number:
WIPO Patent Application WO/1999/032845
Kind Code:
A1
Abstract:
An air treatment unit for treatment of an air stream, comprising a pad (10, 20) having a multitude of narrow air-flow channels, the walls of which are formed by corrugated sheets (12, 13) of a stiff material, said sheets being positioned and fixed generally in parallel planes next to each other in such a way that, as seen from an inlet side of the pad to an outlet side thereof, the channels formed by the corrugations of any two sheets located next to each other extend in two different directions in the vertical plane of the respective sheet. At least in a central region of the pad, all sheets (12, 13) are positioned obliquely sideways, whereby all channels extend obliquely sideways relative to inlet and outlet surfaces (101, 102, 201, 202) of the pad.

Inventors:
LUNDIN BERTIL (SE)
BOWERS GEOFFREY (AU)
TYSON THOMAS PATRICIA (US)
Application Number:
PCT/SE1998/002411
Publication Date:
July 01, 1999
Filing Date:
December 21, 1998
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MUNTERS AB (SE)
LUNDIN BERTIL (SE)
BOWERS GEOFFREY (AU)
TYSON THOMAS PATRICIA (US)
International Classes:
F24F3/14; F24F6/04; F28F25/08; (IPC1-7): F28F25/08; F24F3/14; F24F6/04
Foreign References:
US3983190A1976-09-28
US5055239A1991-10-08
US3795091A1974-03-05
US3500615A1970-03-17
EP0531795A11993-03-17
US3513907A1970-05-26
GB2092288A1982-08-11
SE432059B1984-03-19
US5653115A1997-08-05
EP0401682A11990-12-12
Attorney, Agent or Firm:
EHRNER & DELMAR PATENTBYRÅ AB (P.O. Box 10316 S- Stockholm, SE)
Download PDF:
Claims:
CLAIMS
1. An air treatment unit for treatment of an air stream flowing in a substantially horisontal direction and being blown through the unit from an inlet side to an outlet side, comprising at least one pad (10,20) having an inlet surface (101,201), an outlet surface (102,202) and a multitude of narrow airflow channels (14,15) extending from said inlet surface to said outlet surface, the walls of said channels being formed by corrugated sheets (12,13) of a stiff material, said sheets being positioned and fixed generally in mutually parallel, substantially vertical planes next to each other in such a way that the channels formed by the corrugations of any two adjacent sheets extend in two different directions from said inlet surface to said outlet surface, c h a r a c t e r i z e d i n that, at least in a central, major region of the pad, said mutually parallel planes of said corrugated sheets are oriente obliquely relative to a substantially horisontal direction (N) being normal to said inlet surface (101,201), whereby said airflow channels extend obliquely not only in said two directions in said mutually parallel planes, but also obliquely sideways in a third direction, as seen in said substantially horisontal, normal direction (N), as a consequence of said oblique orientation of said mutually parallel planes.
2. An air treatment unit as defined in claim 1, wherein said mutually parallel planes are oriente obliquely sideways at a fixed angle (a) of 5°60° relative to said normal direction (N).
3. An air treatment unit as defined in claim 2, said pad (10) serving to humidify and cool the air being blown therethrough, wherein said fixed angle (a) is 30°60°, preferably 40°50°.
4. An air treatment unit as defined in claim 2, said pad (20) serving to separate water drops from said air stream, wherein said fixed angle (a) is 5°30°.
5. An air treatment unit as defined in claim 4, wherein said fixed angle (a) is 10°20°.
6. An air treatment unit as defined in any one of claims 15, said pad including at least two sections (10a, 10b) lo cated one after the other in said air stream, wherein said mutually parallel planes are oriente obliquely sideways at different angles in said at least two sections.
7. An air treatment unit as defined in claim 6, wherein said different angles are opposite to each other so that the channels in neighbouring sections (10a, 10b) are oriente sideways in opposite directions.
8. An air treatment unit as defined in any one of the preceding claims, wherein said pad has side edge portions (16, 17) with channels, which extend in planes aligned with said normal direction (N) and which communicate with associated obliquely sideways oriente channels (12,13) dispose in a central region of said pad located between said side edge por tions.
9. An air treatment unit as defined in claim 8, wherein the total pad, including said side edge portions (16,17), is configure as a parallelepipedic block.
10. An air treatment unit as defined in claim 9, wherein said side edge portions (16,17) are wedgelike.
11. An air treatment unit as defined in any one of claims 110, wherein said air stream is blown along an axial main direction (P) of the unit substantially in parallel to said normal direction (N).
12. An air treatment unit as defined in any one of claims 110, wherein an air stream is blown along an axial main direc tion (P) of the unit substantially at an oblique angle (ß) to said direction (N) being normal to the inlet surface of said at least one pad.
13. An air treatment unit as defined in claim 12, wherein said at least one pad is mounted between opposite walls in an air duct with said normal direction standing at an oblique angle (ß) of 20°60° to said main direction (P).
14. An air treatment unit as defined in claim 13, wherein said oblique angle (ß) is 30°60°.
15. An air treatment unit as defined in claim 14, wherein said oblique angle (ß) is 40°50°.
16. An air treatment unit as defined in any one of claims 1315, wherein said oblique angle (ß) is substantially the same as the angle (a) between said mutually parallel planes of said corrugated sheets and said direction (N) being normal to said inlet surface, so that said mutually parallel planes, in which the airflow channels of said at least one pad are located, are substantially parallel to the axial main direction (P) of said air stream.
17. An air treatment unit as defined in any one of claims 1316, wherein one pad is obliquely mounted between said oppo site walls.
18. An air treatment unit as defined in any one of claims 1316, wherein two pads are mounted next to each other in a V like configuration between said opposite walls.
19. An air treatment unit as defined in any one of claims 1316, wherein a series of pads are mounted next to each other in a zigzag configuration between said opposite walls.
20. An air treatment unit as defined in any one of claims 110, wherein said air stream, on said inlet side of the unit, is divided into at least two air inlet regions each having a specific inlet flow direction.
21. An air treatment unit as defined in claim 20, wherein at least one pad is dispose in each inlet region, and wherein said direction (N) being normal to the inlet surface of said pad is oriente obliquely in relation to the associated inlet flow direction.
22. An air treatment unit as defined in claim 21, wherein at least two pads are mounted next to each other in a zigzag configuration in each inlet region.
23. An air treatment unit as defined in any one of claims 2022, wherein at least four pads are mounted so as to form a boxlike unit, said at least four pads forming side walls of said boxlike unit and serving as inlet regions for said air stream, the latter being exhausted by means of a fan dispose at an end wall of said boxlike unit.
Description:
AIR TREATMENT UNIT The present invention relates to an air treatment unit for treatment of an air stream flowing in a substantially horisontal direction and being blown through the unit from an inlet side to an outlet side, comprising at least one pad having an inlet surface, an outlet surface and a multitude of narrow air-flow channels extending from said inlet surface to said outlet surface, the walls of said channels being formed by corrugated sheets of a stiff material, said sheets being posi- tioned and fixed generally in mutually parallel, substantially vertical planes next to each other in such a way that the channels formed by the corrugations of any two adjacent sheets extend in two different directions from said inlet surface to said outlet surface.

Such air treatment units are being frequently used today, in particular in order to humidify and cool the air stream while the pad is being drained with water. See, e. g., the instruction manual"CELdek/GLASdek Contact material for evaporative cooling/humidification"issued by Munters Component AB 1993.

Then, the water is evaporated and the air will thereby exchange sensible heat for latent heat. Preferably, the corrugated sheets forming the pad are impregnated with a wetting agent, so that the total surface area of the channel walls are constantly wet so as to secure an effective evaporation. The stiff mate- rial of the corrugated sheets may be a cellulose material, a glass fibre material, a synthetic fibre material or a plastic material or even an aluminium alloy provided with a hygroscopic surface layer. The corrugated sheets are positioned with the corrugations oriente in alternate directions, preferably being repeated for every second sheet, so that the channels formed by the corrugations are directe in different directions in adja- cent or neighbouring sheets. At the time of manufacture, the sheets are glued together at the points where the corrugations

cross each other, so as to form a rigid and stable unit. Nor- mally, at the edge portions, the pad formed by the corrugated sheets can be firmly held in a frame, e. g. of stainless steel, aluminium or some other rigid, incombustible and non-corrosive material.

The pad can also be used as a droplet separator to be placed downstream a cooling pad or somewhere else in an air treatment unit or system where the air stream has a high velocity and contains water droplets. Since the channels in the pad stand at an angle in relation to the inlet flow direction of the air- stream, the water droplets will hit the walls of the channels and be absorbe by the wet walls thereof.

The cooling or separator pads described aboie, in particular those manufactured and marketed by Munters, under the registe- red trademarks CELdek and GLASdek, have proven to operate efficiently and reliably with long life in cooling and ventila- tion systems in buildings for public use, offices, industry, agriculture and livestock buildings. The last-mentioned appli- cation has become very important, in particular for raising animals and birds, especially chicken in large numbers. The pads are also being used in gas turbine inlets.

Thus, this kind of air treatment units with pads of corrugated sheets have become commercially very important, and there is a constant demand for further improvement. Accordingly, the main object of the present invention is to provide an air treatment unit with higher efficiency, increased strength and generally improved performance. A further, specific object is to provide an improved pad which enables a higher air stream velocity and a higher cooling and humidification efficiency.

These objects are achieved for an air treatment unit wherein, at least in a central, major region of the pad, said mutually

parallel planes of said corrugated sheets are oriente obliquely relative to a substantially horisontal direction being normal to said inlet surface, whereby said air-flow channels extend obliquely not only in said two directions in said mutually parallel planes, but also obliquely sideways in a third direction as seen in said substantially horisontal, normal direction, as a consequence of said oblique orientation of said mutually parallel planes. In this way, for a given thickness of a pad, the air stream will be forced to travel a longer distance in the channel from the inlet surface to the outlet surface of the pad, whereby the evaporative process will be enhanced. Of course, there will also be an increased pressure drop caused by the extra deflection of the airstream.

However, it has turned out that the net effect is a significant improvement of the cooling and humidifying capacity of the pad (for a given volume or thickness) and a greatly improved capacity of droplet separation, respectively. Thus, it is possible to maintain the total mass or volume flow of the air stream while significantly increasing the cooling and humidifying efficiency. The increased efficiency is specially pronounced for relatively thin pads and relatively high air velocities. Alternatively, it is possible to use a thinner pad to achieve the same cooling and humidifying effect.

Also, the new pad will have an increased strength, in particu- lar bending resistance, which is important when handling the pad during manufacture and transport. The increased strength is primarily a consequence of the fact that there will be more points of glue contact between the corrugations of the sheets in a given volume.

Another avantage with the new structure of the air treatment pad is its light blocking capacity. Because of the oblique positioning of the air-flow channels, any light impinging onto one side of the pad will not pass through to the other side,

unless the light rays are reflected at the channel walls. By proper treatment of these walls, the light reflection can be practically eliminated. So, there will be hardly any light pas- sing through the pad. In some applications, such as in chicken farms, this feature may be very important, especially when using artificial light which is not synchronous with the day- light. In such installations, the cooling and humidifying pads are normally mounted as wall elements in the building (fans being mounted in an opposite wall).

It is also possible to use the new pad as a filter for small particles or liquid drops following the air stream, e. g. in connection with ventilation of spray booths or the like.

The light or particle blocking capacity can be significantly increased by including at least two sections of the pad located one after the other in the air stream, the channels in neighbouring sections extending sideways in opposite direc- tions.

In order to secure a good operation also at the side edge por- tions of the pad, the latter may be provided with channels ex- tending in planes aligned with said normal direction and communicating with associated obliquely sideways oriente channels dispose in a region located between these edge portions. Such edge portions are preferably wedge-like.

The pad or pads may be arrange in various ways in relation to the air stream, either with the normal direction being substantially aligned with an axial main direction of the air treatment unit or with the normal direction standing at an oblique angle to such an axial main direction. Alternatively, the air treatment unit may be provided with two or more air inlet regions each having a specific inlet flow direction. In the latter case, it is advantageous to arrange two or more pads

next to each other in a zig-zag configuration in each inlet region.

The invention will be explained further below with reference to the appende drawings illustrating some preferred embodiments of an air treatment unit according to the invention.

Fig. 1 shows in a sectional view a first embodiment of an air treatment unit according to the invention, including an air duct provided with a cooling pad and a droplet separator; Fig. 2 shows, in a perspective view, the cooling pad included in the air treatment unit of fig. 1; Fig. 3 shows schematically a cross section of the pad shown in fig. 2 (the section being taken in parallel to the corrugated sheets of the pad); Fig. 4 shows, likewise schematically, a top view of the pad provided with wedge-like side edge portions.

Fig. 5 shows, likewise schematically, a top view of a pad with two sections having channels extending obliquely sideways in opposite directions; Fig. 6 shows schematically a top view of a second embodiment of an air treatment unit according to the invention; Figs. 7 and 8 show modifie versions of the second embodiment of fig. 6; Fig. 9 shows, in a schematical, perspective view, a third embodiment of an air treatment unit according to the invention; and

Fig. 10 shows a cross-section of the unit of fig. 9.

The air treatment unit shown in fig. 1 inclues a longitu- dinally extending air duct 1 in which there is mounted an air treatment unit including a cooling and humidifying pad 10 and a droplet separator 20, the latter being located downstream the cooling and humidifying pad 10, as seen in an axial, substantially horisontal, main direction indicated by the arrows P in fig. 1. A fan, not shown, is mounted so as to maintain a steady air stream flowing through the air treatment unit.

As is known per se, the cooling and humidifying pad 10 is held by a metal frame 11, e. g. of stainless steel or aluminium. In a similar manner, the droplet separator pad 20 is held by a frame 21. Although not shown in fig. 1, there is a water supply sys- tem with nozzles for pouring water onto the top surface of the cooling and humidifying pad 10. Thus, as is known per se, see e. g. the Swedish patent application No. 9700968-2, the pad 10 is continuously or at least frequently, drained with water so as to keep the same constantly wet at all portions thereof. The water supplie to the top surface of the pad will pour down through the channels all the way to the bottom so as to keep the channel walls wet at all times. Some excess water will be collecte in a drain vessel 30 arrange below the pads 10 and 20. The drain vessel 30 will collect water also from the droplet separator 20. The latter has no supply of water at the top but will only collect water drops contained in the air- stream flowing out from the pad 10 at relatively high velocity.

In the air treatment unit shown in fig. 1, the air stream flowing into the unit in the direction of the arrows P will pass through the cooling and humidifying pad 10, where the air is cooled and humidifie by evaporation of water in the air- flow channels. Upon flowing out from the pad 10, the air will

contain some water drops which, however, are absorbe in the droplet separator 20.

The basic structure of the pads 10 and 20 is illustrated in figs. 2,3 and 4.

The pad 10 is made of alternately positioned corrugated sheets of cellulose material being chemically impregnated with special compound to prevent rot and to make the material stiff and non-combustible. The corrugations are oriente in such a way that the channels formed thereby are oriente in different directions in any two adjacent or neighbouring sheets, such as the sheets 12 and 13 in fig. 2. In particular, compare fig. 3, the channels of every second sheet may be incline upwards at a steep angle e. g. 60°, whereas the channels of the sheets located therebetween are incline downwards at an angle of about 30°, as seen in vertical planes being parallel to the respective sheet 12,13. At the points, where the corrugations cross each other, the neighbouring sheets 12,13 are securely held together by glue applied when manufacturing the pad.

According to the present invention, all the sheets of the pads 10 and 20, at least in the central portion thereof as illustra- ted in fig. 4, are oriente obliquely sideways, as seen in a substantially horisontal direction N being normal to the inlet and outlet surfaces 101,201 and 102,202, respectively, of the pads 10,20. In this embodiment, the channels 14 and 15 also extend obliquely sideways relative to the axial main direction P.

Such a structure of the pad brings about several advantages, as discussed in general terms above.

For a cooling and humidifying pad, such as the pad 10 (see fig.

4), the fixed angle a of sideways obliqueness is preferably 30°

-60°, typically 40°-50°, relative to the direction N being normal to the inlet and outlet surfaces 101,102.

For a droplet separator, such as the separator pad 20, on the other hand, the corresponding angle a should be smaller, in particular 5°-30°, most preferably 10°-20°.

As will be apparent to those skilled in the art, the particular angle should be chosen in view of the particular dimensions of the pad. A typical cooling and humidification pad can have a length of 50-200 cm, a width of 60 cm and a thickness of 2,5-30 cm. Correspondingly, a typical droplet separator pad can have a length of 50-200 cm, a width of 60 cm and a thickness of 2,5-30 cm.

In order to ensure that the whole pad is operationally effec- tive, it is advantageous to arrange wedge-like side edge por- tions having channels extending perpendicularly to the inlet and outlet surfaces 101,102, as illustrated in fig. 4. In this way, the air flowing sideways towards the side edge of the pad, to the right in fig. 4, will be deflected in the straight chan- nels of the side edge portion 16. Correspondingly, to the left in fig. 4, the channels of the opposite side edge portion 17 will communicate with the channels 14,15 of the central por- tion of the pad. In this way, the whole pad can have the shape of a parallelepipedic block fitting easily into a rectangular frame, such as the frames 11,21 indicated in fig. 1.

Another possible modification is to arrange two or more pad sections one after the other in the axial main direction, as illustrated schematically in fig. 5, where the channels of the first section 10a are positioned obliquely sideways in a first direction, whereas the channels of the other section lOb are positioned obliquely sideways in the opposite direction.

A second embodiment of the invention, as illustrated in figs.

6-8, provides for an oblique orientation of each pad in an air duct where an air stream is flowing in a main direction P. In fig. 6, there is a single pad 10 which is dispose obliquely, so that the air stream P impinges at an angle ß relative to the direction N being normal to the inlet surface 101 of the pad.

Preferably, although not necessarily, the angle ß is substantially the same as the angle a between the sheets 12, 13 constituting the pad 10 and said normal direction N. In this way, the channels in the pad 10 will be substantially aligned to the axial main direction P of the air stream in the air duct. Such an arrangement has proven to be especially efficient and to enable very high air velocities, such as up to about 4 m/s or even more. With such air velocities, the efficiency and capacity of the unit will be further enhanced. This can be explained by the fact that, although the pressure drop will increase somewhat because of the longer path for the air flowing through each obliquely oriente channe, the increased effective surface area in the air flow channels in a given volume of the pad and the increased air velocity will give an overall improvement.

Te angle ß between the main direction P of the air stream in the air duct and the direction N being normal to the inlet surface 101 of the pad 10 should be 20° to 60°, preferably 30° to 60° and most preferably 40° to 50°, in particular about 45°.

As mentioned aboie, the angle ß does not necessarily have to coincide with the angle a.

The thickness of the pad is normally in the range 2,5-30 cm.

It is often advantageous, especially in case the air duct is relatively wide, to dispose two or more pads 10 next to each other so as to form a V-like configuration, as shown in fig. 7, or a zig-zag configuration, as shown in fig. 8.

According to a third embodiment of the invention, as illustra- ted in figs. 9 and 10, the inlet area of the air treatment unit may be divided into two or more inlet regions each having a specific inlet direction. The illustrated embodiment comprises a box-like unit having four side walls each being constituted by a pad 10. At one end wall 40 of the unit, the upper one in fig. 9, there is an exhaust fan 50 which draws air into the unit through the side wall pads 10 into the interior of the unit and out through the upper end wall. The lower end wall, which is not shown in the drawing, may be formed by a pad or a closed wall.

As shown in fig. 10 the air will flow into the unit in diffe- rent inlet flow directions P1, P2, P3 and P4, each being perpendicular to the respective side wall pad 10, at the diffe- rent inlet regions (adjacent to the four sides of the box-like unit).

In general, according to the third embodiment or the invention, it is of course possible to arrange, in each inlet region having a substantially horisontal main inlet flow direction, two or more pads next to each other in a V-like or zig-zag configuration, i. e. similar to the configurations shown in figs. 6-8.

Moreover, the structure of the pad in the air treatment unit of the invention may be modifie in various ways within the scope of the appende claims. For instance, the angle indicated in fig. 3, i. e. the angle of inclination in the vertical planes of the corrugated sheets, may be varied at will as long as the corrugations cross each other so as to form a stable and rigid structure. Also, the stiff material constituting the pad can be modifie in many ways, e. g. as indicated above.

A further possible modification is to use the pad merely as a filter for catching solid particles or liquid drops contained in an air stream. Instead of draining the pad with water, it is conceivable to apply an adhesive layer onto each corrugated sheet. Then, the particles or drops will be caught permanently in the pad structure serving as a replaceable filter.