Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AIRFLOW CONTROL VALVE
Document Type and Number:
WIPO Patent Application WO/2013/127627
Kind Code:
A1
Abstract:
An airflow control valve (20) for use in a breathmg apparatus (10) to control a flow of air fiom a pressurised air supply to a respirator. The valve comprises an inlet port (31) for connection to a pressurised air supply, and first (32) and second (33) outlets. The valve is configurable between a first position in which the inlet port is in iestricted fluid communication with the first outlet to allow a restricted flow of air from the inlet port to the first outlet and in which the second outlet is sealed from the inlet port and, a second position in which the inlet port is in substantially unrestricted fluid communication with the second outlet to allow an unrestricted flow of air from the inlet port to the second outlet.

Inventors:
DUNN PHILIP (GB)
PALINKAS TAMAS (GB)
Application Number:
PCT/EP2013/052823
Publication Date:
September 06, 2013
Filing Date:
February 13, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GRIFFITHS JOSEPH ANTHONY (GB)
International Classes:
A62B9/02; A62B18/10; A61M39/22; A62B18/08; F16K11/07
Foreign References:
GB2430159A2007-03-21
US5375625A1994-12-27
US5944054A1999-08-31
GB611646A1948-11-02
Attorney, Agent or Firm:
BROWN, Alexander et al. (200 AldersgateLondon, EC1A 4HD, GB)
Download PDF:
Claims:
Claims

1. An airflow control valve for use in a breathing apparatus to control a flow of air from a pressurised air supply to a respirator, wherein the valve comprises an inlet poit for connection to a pressurised air supply, and fust and second outlets, the valve being configurable between a first position in which the inlet port is in restricted fluid communication with the first outlet to allow a restricted flow of air from the inlet port to the first outlet and in which the second outlet is sealed from the inlet port and, a second position in which the inlet poit is in substantially unrestricted fluid communication with the second outlet to allow an unrestricted flow of air from the inlet port to the second outlet.

2. An airflow control valve according to claim 1, wherein the first outlet is sealed from the inlet port when the valve is configured in the second position. 3. An airflow control valve according to claim 1 or claim 2, wherein the valve includes a third outlet and wherein the valve is configured such that, in the first position, the inlet port is in fluid communication with the third outlet.

4. An airflow control valve according to claim 3, wherein the valve is configuied such that, in the second position, the inlet poit is sealed from the third oudet.

5. An airflow control valve according to any of claims 1—4, wherein the valve is configurable to a third position in which the inlet port is in restricted fluid communication with the first outlet and the inlet port is sealed from the second outiet and/ or third outlet.

6. An airflow control valve according to claim 5, wherein the third valve position is intermediate the first and second valve positions.

7. An airflow control valve according to claim 5 or claim 6 when dependent on claim 3 or claim 4, furthei comprising a fourth outlet, wherein the fourth outlet is in fluid communication with the third outlet when the valve is configured in the second position, and the fourth outlet is sealed from the third outlet when the valve is configured in the first and third positions.

8. An airflow control valve according to any preceding claim configured such that the valve is movable between the first, second and/ or third positions in dependence of the air pressure within the valve.

9. An airflow control valve according to any preceding claim, wherein the valve comprises a valve housing defining a piston chamber and, a piston received widun the piston chamber, wherein the piston is slidable within the piston chamber between the respective valve positions.

10. An airflow control valve according to claim 9 wherein the inlet port and respective outiets are formed in the valve housing in fluid communication with the piston chamber.

11. An airflow control valve according to claim 10 wherein die piston includes a hollow bore in fluid communication with the inlet port.

12. An airflow control valve according to claim 11, wherein the piston comprises a piston shaft and a piston head, wherein the hollow bore extends along the longitudinal axis of the piston shaft and a portion of die piston head.

13. An airflow control valve according to claim 11 or claim 12 wherein the piston includes a plurality of channels formed therein in fluid communication with the hollow bore and extending to an outer surface of the piston, and which are configured to selectively fluidly communicate the inlet port and the hollow bore with the outlets in the valve housing.

14. An airflow control valve according to claim 13, wherein the piston comprises a first channel configured to fluidly communicate the inlet port with the third outiet via the hollow bore when the piston is in the first position.

15. An airflow valve according to claim 14 wherein the piston comprises a second channel configured to fluidly communicate the inlet port with the first outlet via the hollow bore when tlie valve is in the first position, and to fluidly communicate the inlet port with the second oudet via the hollow bore when the piston is in tlie second position.

16. An airflow control valve according to claim 15, wherein tlie second channel is in restricted fluid communication witii the first outlet via the hollow bore when the piston is in the intermediate position.

17. An airflow control valve according to any of claims 9— 17 when dependent on claim 7, wherein die piston comprises a plug member configured to block the fourth oudet when the piston is in the first and thud positions and to open the fourdi oudet to allow flow of air therethrough when the piston is in the second position.

18. An airflow valve according to any of claims 9— 17 wherein die valve housing comprises a passage of restiicted cross-sectional area which is in fluid commumcation with the first oudet and the piston chamber, and which is configured to allow a restricted flow of compressed air from the inlet port to the first oudet when the valve is in the first position.

19. An airflow valve according to claim 18 wherein said passage is a second passage and die valve housing further compiises first and third passages configured to fluidly communicate the inlet port with the third and second oudets respectively when d e piston is in d e first and second positions respectively.

20. An airflow control valve according to any of claims 9 - 19, further comprising a biasing means configured to bias die piston towards the first position.

21. An airflow control valve according to claim 20, wherein the piston comprises a plurality of piston surfaces configured such that pressurised air supplied to the inlet port can act upon one or more of die piston surfaces to exert a force against the force of the biasing means.

22. An airflow control valve according to claim 21 when dependent on claim 5, wherein the valve is configured so that the piston slides from d e first position to die third position when the ait pressure acting on a first piston surface reaches a first pre-determined value.

23. An airflow control valve according to claim 22, wherein the valve is configured so that the piston slides, from the third position, into the second position when the air pressure acting on the second piston surface reaches a second pre-determined value.

24. An airflow control valve according to any preceding claim, fuither comprising a sensing valve fluidly connected to the first outlet and configured to close when an ail pressure at the first outlet reaches a pre-determined threshold pressure.

25. A breathing apparatus comprising a respirator and an airflow control valve to control the flow of air from a supply to the respirator, wherein the control valve comprises an inlet port for connection to a pressurised air supply, and first and second outlets connected to the respirator, the valve being configurable between a first position in which the inlet port is in restricted fluid communication with the first outlet to allow a restricted flow of air from the inlet port to the respirator via the first outlet and in which the second outlet is sealed from the inlet port and, a second position in which the inlet port is in substantially unrestricted fluid communication with the second outlet to allow an unrestricted flow of air from the inlet port to the respirator via the second outlet.

26. A breathing apparatus according to claim 25 wherein the control valve is configured such that when in the second position, the first outlet is sealed from the inlet port.

27. A breathing apparatus according to claim 25 or claim 26 further comprising an inflatable harness for securing the respirator to a wearer's head, the control valve further being configured to control the flow of air from a supply to the inflatable harness. 28. A breathing apparatus according to claim 27 wherein the airflow control valve further comprises a third outlet connected to the inflatable harness, wherein the inlet port is in fluid communication with the harness when the control valve is in the first position and wheiein die inlet port is sealed from the inflatable harness when the control valve is in the second position.

29. A breathing apparatus according to any of claims 25— 28 wherein the valve is configurable to a third position in which die inlet port is in restricted fluid communication with the respirator via die first oudet and die inlet port is sealed from the second oudet and/ or third oudet.

30. A breathing apparatus according to any of claims 25— 29 wherein the airflow control valve comprises any of the features defined in claims 1— 24.

31. A breathing apparatus according to claim 30 when dependent on claim 7, wherein the fourth oudet is open to the atmosphere. 32. A bieathing apparatus according to claim 30 or claim 31 when dependent on claim 22, wherein the first pre-determined pressure is reached when the inflatable harness is fully inflated.

33. An airflow control valve substantially as hereinbefore described with reference to the accompanying drawings.

34. A bieathing apparatus substantially as hereinbefore described with reference to the accompanying drawings.

Description:
Airflow Control Valve

Description The present invention relates to a control valve for use with a breathing apparatus.

Various types of breathing apparatuses are known in the art, mcluding those for use in situations where there has been a sudden hazardous leak of gas or toxic airborne particles that would injure a person if inhaled. Such breathing apparatuses are known as 'escape sets', and generally comprise a bag or odier container containing a mask and/ or hood

(generally called a 'respirator' hereafter) connected via a hose and a valve means to a source of bieathable air in a high-pressure compiessed air cylinder. In an emergency situation, a user dons the respirator, which, in the case of a mask, makes a seal with his face or, in the case of a hood, seals around his neck enclosing his head, and allows him to breathe from the air supply, isolated from the harmful atmosphere. The valve means is provided between die cylinder and the respirator to reduce tlie high pressure from the cylinder to a pressure suitable for the wearer to breathe. These escape sets are provided in environments where there is a possibility of such a hazardous leak occurring, such as chemical plants or oil platforms, in convenient locations so that if a hazardous leak occurs, the people in the vicinity of the leak can quickly get to an escape set and don the respirator to allow them to leave the hazardous area and get to safety. Other types of known breathing apparatuses include those known as 'working sets' and 'self contained breathing apparatuses', which include respirator and compressed air supply generally as described above, which a user can don to enable him to safely breathe clean uncontaminated air from the compressed air supply in environments in which die ambient atmosphere is unsafe to breathe.

The valve means provided in such breathing apparatuses generally comprises a 'reducer' which reduces the pressure in the hose from the high pressure in the cylinder (typically around 200 - 300 bar) to a much lower pressure, (around 8 bar), and a 'demand valve' which supplies air from the reducer and the hose, to the respirator at a pressure suitable to breathe. When the breathing apparatuses are not in use, they may be stored in a container in a state of readiness. In the case of escape sets, the situations in which they are required are often ones of extreme danger and the time it takes a user to don the respirator and activate the air-flow is critical. It is therefore impeiative that the escape set is designed so that the respnator can be donned as quickly as possible. To help initiate the air supply quickly, some escape sets have an automatic activation system in which, prior to use, the reducer is closed and seals the compressed air supply from die respirator, but when the respirator is lemoved from the container the reducer is opened and the supply of air to the respirator is activated. This can be effected by, for example, a cord secuied at one end to the container and at the other end to an activation switch on d e respirator. In die case of other types of breathing apparatuses, it is also generally desirable that the respirator can be donned and the air supply activated as quickly as possible for convenient and efficient use.

When a wearer first dons a respirator in a toxic atmosphere, some of the toxic atmosphere will be trapped inside the respirator cavity, meaning that his first breath will involve inhaling some of the toxic gas. It is therefore desirable to have a constant but steady and controlled flushing flow of air out of the respiratoi prior to a user taking his first breath therefrom, so when the respirator is first donned, the flushing flow purges the respirator cavity of any toxic atmosphere that may have been Happed therein but does not waste the supply of air.

Conventional breathing apparatuses, such as those described above, comprise an arrangement of harness straps and buckles which need to be loosened to allow the wearer to fit the respirator over his head, and then once in place, tightened to secure the respirator in place tight enough against the face, in the case of a respirator mask, and/ or around the neck in the case of a respirator hood, to maintain a seal therewith. As mentioned above, in the case of escape sets, these are intended for use in emergency situations which are hazardous and stressful. It is therefore important tiiat the respirator is able to be donned and secured in place as quickly and easily as possible, and that the attachment arrangement is as simple as possible to operate in order to prevent panicked fumbling in trying to don die respirator. Conventional strap and buclde harnesses are problematic in that their fitment is relatively slow and complicated, and so increases the time duiing which the wearer is at risk from the harmful atmosphere. In die case of all such breathing apparatuses, it may be difficult to tell whether the respirator has been correctly fitted, and so it may leak and waste valuable air from the cylinder, reducing the available breathing time fiom a given compressed air suppl y volume, which in the case of use in emergency or hazardous environments, limits the escape time or the time the wearer can remain in that environment before having to get to safety.

In an attempt to solve the problems mentioned above, breathing apparatuses have been proposed that comprise a respirator, an inflatable harness for securing the respirator to a wearer's head and a method of controlling the flow of air from a supply to the respirator and to the inflatable harness, wherein the breathing apparatus is configured so that the head harness automatically inflates and expands prior to the respirator being secured to the wearer's head, and automatically deflates and contiacts once the respirator is sealed on the weaier's head. Such a breathing apparatus is disclosed in UK patent application No.

0611646.1 which includes a control valve to control the flow of air from a supply to the respiratoi and to the inflatable harness

The present invention seeks to provide an alternative and/ or improved control valve for use in an emergency breathing apparatus and a breathing apparatus including such a control valve.

According to the invention, there is provided an airflow control valve for use in a breathing apparatus to control a flow of air from a pressurised air supply to a lespirator, wherein the valve comprises an inlet port for connection to a pressurised air supply, and first and second outlets, the valve being configurable between a first position in the inlet port is in restricted fluid communication with the first outlet to allow a restricted flow of air from the inlet port to the first outlet and in which the second outlet is sealed from the inlet port and, a second position in which the inlet port is in substantially unrestricted fluid communication with the second outlet to allow an unrestricted flow of air from the inlet port to the second outlet. That is, the airflow control valve is configured to aEow a flow of air from the inlet port to the first outlet at a first, reduced, flow rate, when the valve is in the first position, and aEow a flow of ait from the inlet port to the second outlet at a second flow rate greater than the first flow rate, when the valve is in the second position. The airflow control valve may be configuied such at tlie first outlet is sealed from the inlet port when the valve is configured in the second position. The airflow control valve may also include a third outlet and be configured such that, in the first position, die inlet port is in fluid communication with the third oudet.

The airflow control valve may be configured such diat, in the second position, the inlet port is sealed from the third oudet.

The airflow control valve may be configurable to a third position in which the inlet poit is in restricted fluid communication widi the first oudet and tire inlet port is sealed from the second oudet and/ or tiiird oudet, and the third valve position may be intermediate die first and second valve positions.

The airflow control valve may further comprise a fourth oudet which may be in fluid communication widi the third oudet when the valve is configured in the second position, and is sealed from die third oudet when the valve is configured in die first and dnrd positions.

The airflow control valve may be movable between the first, second and/ or third positions in dependence of the air pressure within the valve.

The airflow control valve may comprise a valve housing defining a piston chamber and, a piston received within the piston chamber, wherein the piston is slidable within the piston chambei between die respective valve positions.

The inlet port and respective oudets may be formed in the valve housing in fluid communication with the piston chamber. The piston may include a hollow bore in fluid communication with the inlet port. The piston may comprise a piston shaft and a piston head, wherein the hollow bore extends along the longitudinal axis of the piston shaft and a portion of the piston head The piston may include a plurality of channels formed therein in fluid communication with the hollow bore and extending to an outer surface of the piston, and which are configured to selectively fluidly communicate the inlet port and the hollow bore with the outlets in the valve housing.

The piston may comprise a first channel configured to fluidly communicate the inlet port with the third outlet via the hollow bore when the piston is in the first position. The piston may also comprise a second channel configured to fluidly communicate the inlet port with the first outlet via the hollow bore when the valve is in the first position, and to fluidly communicate the inlet port with the second outlet via the hollow bore when the piston is in the second position.

The second channel may be in restricted fluid communication with the first outlet via the hollow bore when the piston is in the intermediate position.

The piston may comprise a plug member configured to block the fourtii outlet when the piston is in the first and third positions and to open the fourth outlet to allow flow of air therethrough when the piston is in the second position. The valve housing may comprise a passage of restricted cross-sectional area which is in fluid communication with the fiist outlet and the piston chamber, and which is configured to allow a restricted flow of compressed air from the inlet port to the first outlet when the valve is in the first position. Said passage may comprise a second passage and the valve housing may further comprise first and third passages configured to fluidly communicate the inlet port with the third and second outlets respectively when the piston is in the first and second positions respectively.

The airflow control valve may further comprise a biasing means configured to bias the piston towards the first position.

The piston may comprise a plurality of piston surfaces configured such that pressurised air supplied to the inlet port can act upon one or more of the piston surfaces to exert a force against the force of the biasing means. The valve may be configured so that the piston slides from the first position to the third position when the an pressure acting on a first piston surface reaches a first pre-determined value. The airflow control valve may be configured so that the piston slides, from the third position, into the second position when the air piessure acting on the second piston surface reaches a second pre-determined value.

The airflow control valve may further comprise a sensing valve fluidly connected to the first outlet and configured to close when an air pressure at the first outlet reaches a predetermined threshold pressure.

The present invention also provides a breathing apparatus comprising a respirator and a control valve to control the flow of air from a supply to the respirator, wherein the control valve comprises an inlet port for connection to a pressurised air supply, and first and second outlets connected to the respirator, the valve being configurable between a first position in which the inlet port is in restricted fluid communication with the first outlet to allow a restricted flow of air from the inlet port to the respirator via the first outlet and in which the second outlet is sealed from the inlet port and, a second position in which the inlet port is in substantially unrestricted fluid communication the second outlet to allow an unrestricted flow of air from the inlet port to the respirator via the second oudet.

The control valve may be configured such that when in the second position, the first outlet is sealed from the inlet port.

The breathing apparatus may further comprise an inflatable harness for securing the respirator to a wearer's head, the control valve further being configured to control die flow of air from a supply to the inflatable harness. The airflow control valve may further comprise a third oudet connected to the inflatable harness, wherein the inlet port is in fluid communication with the harness when the control valve is in the first position and wherein the inlet port is sealed from the inflatable harness when the control valve is in the second position. The airflow control valve may be configurable to a third position in which the inlet port is in restricted fluid communication with the respirator via the first outlet and the inlet port is sealed from the second oudet and/or third outlet.

The airflow control valve may comprise any of the features described above. The fourdi oudet may be open to die atmosphere.

The first pre-determined pressure may be reached when the inflatable harness is fully inflated.

The piston head may comprise a first, second and third portions integrally foimed and sequentially ladially enlarged around die axis of the piston head, and the piston shaft extends from the third portion.

The first, second and third portions may comprise first, second, and third surfaces disposed perpendicular to the longitudinal axis of die hollow bore, wherein the volumes of space enclosed between the valve housing and the first, second and third surfaces comprise first, second and third chambeis respectively.

Preferred embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

Figure 1 is a perspective view of a breathing apparatus of relevant to the present invention; Figure 2 is a schematic cross-sectional view of a control valve of the present invention of the breathing apparatus of Figure 1, in a first position;

Figure 3 is a view of the control valve of Figure 2, in a diird or intermediate position; Figure 4 is a view of the control valve of Figure 2, in a second position;

Referring now to Figure 1, an emergency breathing apparatus 10 including an air control valve 20 of the present invention is shown. The breathing apparatus 10 comprises a respirator mask 12 and an inflatable harness 14 to secure d e respirator 12 to a wearer's head. The respirator 12 has a seal 13 around its peripheral edge that, in use, makes a substantially air-tight seal around the wearer's face. The respirator 12 and harness 1 are fluidly connected to a source of compressed air (not shown) by a supply hose 19 via the contiol valve 20 on the front of the respirator 12. The respirator 12 also includes a positive pressure exhalation valve (not shown) to allow ail exhaled by a wearer to be expelled from the respirator 12, a sensing valve 80 to detect when the respirator is substantially sealed to the wearer's face and a demand valve 50 to allow air into the respirator 12. The whole breathing apparatus 10, including the compressed air supply, is contained within a bag 17 made of suitably tough material, such as PVC coated weatherproof material, or possibly an anti-static material if the appaiatus is to be used in potentially explosive environments.

The control valve 20 is shown in detail in Figures 2— 4, and comprises a piston 22, located inside a valve housing 21 which is contained within a valve outer casing 30. The control valve 20 has an inlet port 31 that is fluidly coupled to compressed air supply (not shown). The control valve has a first outlet 32 fluidly coupled to the respirator 12 via a sensing valve 80 for the supply of compressed air via the sensing valve 80 to the inside of the respirator 12. The control valve 20 also has a second outlet 33 fluidly coupled to the demand valve 50 of the lespirator. The control valve 20 fuither comprises a third outlet 34 fluidly coupled to the inflatable harness 14, and a fourth outlet 35, that is open to atmosphere.

The piston comprises a cylindrical piston head 24, comprising a first, second and third piston sections 25, 26, 27, of sequentially increasing diameter, and a piston shaft 23 that is integrally formed with the piston head 24 and extends axially from the third piston section 27 into a correspondingly shaped recess 78 formed in the inlet port 31. The piston also includes a plug shaft 75 which extends axially from the first piston section 25 and which is received in the fourth outlet 35. The valve housing 21 encloses a central piston chamber 28, wherein the portion of the piston chambei 28 distal to the inlet port 31 is the same shape as the piston head 24, but with slightly larger dimensions so that the piston head 24 fits snugly into the piston chamber 28 and is encompassed by the valve housing 21.

The end surfaces of the first, second and third piston sections 25, 26, 27, that are each distal to the piston shaft 23, comprise a first, second and third piston surfaces 43, 44, 45 respectively. The volumes of space encompassed by the valve housing 21 and the first, second and tinrd piston surfaces 43, 44, 45 comprise first, second and third chambers 46, 47, 48 respectively. The piston 22 is slidable widnn die valve housing 21 between a first and a second position (shown in Figures 2 and 4 respectively), and a third position intermediate the first and second positions (shown in Figure 3 and hereinafter leferred to as the 'intermediate position'), to selectively allow compressed air to flow from the inlet port 31 to the fiist, second and tinrd chambers 46, 47, 48, and thereby to the third, first and second oudet ports 34, 32, 33, respectively.

The piston 22 includes a hollow bote 37 that runs through the centre of the piston 22. A first channel 38 extends radially from the hollow bore 37 through the piston head 24. The valve housing 21 includes a first passage 40 extending circumferentially aiound the inside wall of the valve housing 21. The piston 22, valve housing 21 and first passage 40 are configured such that when the piston 22 is in the first position (see Figure 2), the inlet port 31 is fiuidly communicated, via the hollow bore 37, the first channel 38 and the first passage 40, with the first chamber 46 and thereby the third outlet 34. The piston 22, valve housing 21 and first passage 40 are also configured such that when the piston 22 is in the second or intermediate positions (see Figures 4 and 3), the inlet port 31, hollow bore 37, and the first channel 38 are blocked from the first passage 40 and thereby from die first chamber 46 and the third outiet 34.

A second channel 39 extends radially from the hollow bore 37 through the piston head 24. The valve housing 21 includes a second passage 41 which extends between the valve chamber 28 and die first oudet 32 and second chamber 47. The piston 22, valve housing 21 and second passage 41 aie configured such that when the piston 22 is in the first or intermediate positions (see Figures 2 and 3 respectively), the inlet port 31 is fiuidly communicated, via the hollow bote 37, the second channel 39 and the second passage 41, with the second chamber 47 and thereby the first oudet 32. The second passage 41 is of a sufficientiy small cross-sectional area that it only allows a restricted flow of air therethrough when a supply of pressurised air is connected to the inlet port 31 and the valve 20 is in the fiist or intermediate positions. The piston 22, valve housing 21 and second passage 41 are also configured such that when the piston 22 is in the second position (see Figure 4), the inlet port 31, hollow bore 37, and the second channel 39 are blocked from the second passage 41 and thereby fiom the second chamber 47 and the first outlet 32. The valve housing includes a third passage 42 which extends between the valve chamber 28 and the second outlet 33 and third chamber 48. The piston 22, die valve housing 21 and the third passage 42 are configured such that when the piston 22 is in the second position (see Figure 4), the inlet poit 31 is fluidly communicated, via the hollow bore 37, the second channel 39 and the third passage 42, widi the thiid chamber 48 and tiiereby the second oudet 33. The thiid passage 41 is sufficiendy dimensioned tiiat it allows a substantially unrestricted flow of air therethrough when a supply of pressurised air is connected to d e inlet port 31 and die valve 20 is in the second position, or at least, a gieater flow rate of air therediiough relative to the flow rate of air allowed through the second passage 41. The piston 22, valve housing 21 and third passage 42 are also configured such that when die piston 22 is in the fiist or intermediate positions (see Figures 2 and 3), the inlet port 31, hollow bore 37, and the second channel 39 are blocked from the third passage 42 and thereby from the third chamber 48 and the second oudet 33.

Although the valve housing 21 and piston 22 are manufactured so that they fit very closely together, there may still be small gaps between the piston 22 and valve housing 21, and between die valve housing 21 and the valve outer casing 30, through which air may leak. To prevent this leakage, rubber seals 60— 70 are provided.

A first seal 60 is positioned, at the interface between the fourth oudet 35 and the first chamber 46, around die circumference of the fourth outlet 35 and in contact with the plug shaft 75 to prevent the unwanted escape of air fiom the first chamber 46 to atmosphere. Second and third seals 61, 62 are positioned around the outer perimeter of the valve housing 21 in contact with the valve outer casing 30, to prevent the flow of air between the atmosphere and the first and third chambers 46, 48 respectively. A fourdi seal 63, positioned around the outer circumfeience of the first piston section 25, seals against the inside wall of the piston chamber 28 to prevent air from lealiing between the first channel 38 and the second chambers 47. A fifth seal 64 is positioned around die outer perimeter of the valve housing 21 in contact with the valve outer casing 30 and between the first and second chambeis 46, 47, to prevent the flow of air therebetween. A sixth seal 65 is positioned, around the outer perimeter of the valve housing 21 in contact with the inner surface of the valve outer casing 30 and between the second and third chambers 47, 48, to prevent the flow of air therebetween. A seventh seal 66 is positioned on the inside of the valve housing 21 around the inner perimeter of the recess 78 of the inlet port 31 and in contact with the piston shaft 23, to prevent the flow of air between the inlet port 31 and the section of the piston chamber 28 that surrounds the piston shaft 23. An eightli seal 67, positioned around the outer circumference of the third piston section 27 in contact with the inner wall of the valve housing 21, prevents the flow of air between the second outlet 33 and the section of the piston chamber 28 that surrounds the piston shaft 23.

The air control valve 20 includes a biasing means 76 comprising a coil spring positioned aiound the piston shaft 23 and which is configured to bias the piston 23 towards the first position.

The air control valve 20 includes a ninth seal 68 positioned around the outer circumference of the second piston section 26 and to the side of the second channel 39 closest to the inlet poit 31. When the piston 22 is in the first and intermediate positions, the ninth seal 68 is in contact with the inner wall of the valve housing 21 and seals the third passage 42 and the third chamber 48, and hence the second outlet 33, from the second channel 39. When the piston 22 is in the second position, the ninth seal 68 is disposed beyond the third passage 42 from the second channel 39 and so air can flow from the inlet port, via the hollow bore 37 and the second channel 39, through the thiid passage 42 to the third chamber 48 and hence to the second outlet 33.

The air control valve 20 includes a tenth seal 69 positioned around the outer circumference of the first piston section 25 to the side of the first channel 38 that is distal to the inlet port 31. In the intermediate and second positions of the piston 22, the tenth seal is in contact with the inner wall of the valve chamber 28 and blocks the first channel 38 from the first passage 40 and hence prevents the flow of compressed air from the inlet port 31 to the first chamber 46. However, when the piston 22 is in the first position, the tenth seal is aligned within the first passage 40 and so air can bypass the tenth seal, to allow the flow of air from the inlet port 31 to the first chamber 46. The air control valve 20 includes an eleventh seal 70 disposed around die outer- circumference of die second piston section 26 and to the side of the second channel 39 distal to the inlet port 31. Whilst the piston 22 is in the second position, the eleventh seal is in contact with the inner wall of the valve chambei 28 and blocks die second channel 39 from the second passage 41 and hence prevents die flow of air from the inlet port 31 to die second chamber 47 and to d e first oudet 32. In the first and intermediate positions, the elevendi seal 70 is disposed beyond the second passage 41 from die second channel 39 and so air can flow from the inlet port 31, via the hollow bore 37 and second channel 39, to the second passage 41, to the second chamber 47 and hence to the first oudet 33.

The operation of the control valve 20 will now be described in use with an emergency breadnng apparatus 10 as described previously. When a user wishes to use the breathing apparatus 10 of the invention, he opens the bag 17 and pulls out the respirator 12 and compressed air supply (not shown), and die automatic activation system opens the reducer valve (not shown) to allow compressed air to flow into the contiol valve 20. At this time, the piston 22 of the control valve 20 is held in the first position under die biasing force of the coil spring 76. The air enters the inlet port 31 via the supply hose 19 and flows through the hollow bore 37 of the piston 22 and into the first chamber 46, via die first channel 38 and die first passage 40. The compiessed air in the first chamber 46 flows through the diird oudet 34 and inflates the inflatable harness 14. The plug 75 blocks the fourth oudet 35, preventing compiessed air in die inflatable harness 14 from escaping to atmosphere.

Whilst d e piston 22 is in the first position, air also flows from the inlet port 31 into the second chamber 47 via the hollow bore 37, the second channel 39 and the second passage 41 of reduced diameter. The compressed air is supplied to the second chamber 47 at a restricted fiowrate, due to die restrictive dimensions of the second passage 41. From the second chamber 47, the restricted flow of air flows out of the first oudet 32, through the sensing valve 80 and on to the interior of the respirator 12. This provides a continuous flushing flow of ail to prevent toxic atmospheric gases from building up within the respirator mask 12 before it is donned by the wearer. The sensing valve 80 is configured to lemain open until subjected to a predetermined threshold pressure, at which point it automatically closes. The sensing valve 80 is open upon initial activation of the breathing apparatus 10.

The compressed air in the first and second chambers 46, 47 acts on the first and second surfaces 43, 44 respectively, exerting a force on the piston 22 that opposes the force exerted by biasing means 76. Whilst the inflatable harness 14 is in the process of inflating, the force exerted on the piston 22 by the compressed air is weaker than the force exerted by the biasing means 76 on the piston head 24, and hence the piston 22 remains in the first position.

When the inflatable harness 14 becomes fully inflated the pressuie in the first chamber 46 increases, as no further air can flow out of the third outlet 34, causing the force exerted on the first surface 43 to increase. The incieased force exerted on the first surface 43 is sufficient to overcome the force of the biasing means 76, causing the piston 22 to shift towards the inlet port 31 (to the right hand side in Figures 2— 4) and into the intermediate position wherein the flow of air to the head harness 14 is prevented, whilst a restricted flushing flow of compressed air continues to be supplied to the respirator mask 12 via the first outlet 32. Meanwhile, the head harness 14 is sealed from the inlet port 31 and remains in a fully inflated state as the plug 75 remains sealing the fourth outlet 35.

When the wearer dons the respirator mask 12, the seal 13 forms an airtight seal around the wearer's face and the flow of compressed air into the, now closed, volume of the respirator mask 12 causes the pressure within the respirator mask 12 to inciease above atmospheric. The sensing valve 80 detects when the subsequent increased pressure within the mask 12 reaches the predetermined threshold pressure and then automatically closes, causing the pressure in the second chamber 47 to increase as the compressed air can no longer flow out of the first outlet 32. This causes the force exerted on the second surface 44 to increase. The increased force exerted on the second surface 44 causes the piston 22 to shift further towards the inlet port (to the right hand side in Figures 2 - 4) until it is in the second position.

Whilst the piston 22 is in the second position compressed air is supplied from the inlet port 31 to the third chamber 48, which is in fluid communication with the demand valve 50. The demand valve 50 supplies an to the respirator mask 12 whenever the user takes a breath. In the second position the flow of air from the inlet port 31 to the first and third outlets 32, 34 is prevented. Furthermore, once the piston 22 has moved into the third position as described above, the compressed air acts over the third piston surface 45 resulting in a pressure force on the piston 22 sufficient to overcome the biasing force of the coil spring 76 and thereby maintain the piston 22 in die second position

The plug 75 includes a vent passage 77 formed as a lecessed channel in an outer surface of a distal poition thereof. The vent passage 77 is configuied so that when the valve moves into the second position, die vent passage 77 moves past die first seal 60 to fluidly communicate the fourtii outiet 35 with the first chamber 46 and the tliird outiet 34, allowing the air in the head harness 14 to vent to atmosphere. This causing the head harness 14 to deflate and contract around the wearer's head, firmly securing the respirator 12 in place.

The lespiiator mask 12 remains in tins operative position secured to a wearer's head allowing the wearer to safely breathe air from the supply via the control valve 20 and demand valve 50 and to evacuate the hazardous environment. Although in the above described embodiment the control valve 20 comprises first, second and third outlets 32, 33, 34 such that the control valve may be used with a breathing apparatus comprising an inflatable head harness, it is also intended that an alternative embodiment of control valve (not shown) is to be encompassed within the scope of the invention. Such an alternative embodiment of control valve may omit the third outlet 34 described above. The control valve 20 may then be used, for example, with a breathing apparatus 10 that comprises a conventional head-strap harness as opposed to the inflatable harness 14 described above. Such an alternative embodiment of control valve would still comprise a first outiet fluidly communicated with the respirator 12, to provide a flushing flow of air thereto at a reduced flow rate, and a second outiet in fluid communication with a demand valve of the respirator to provide an unrestricted supply of compressed air at a relatively increased flow rate once the wearer has donned the respirator 12. In operation of such an alternative control valve, upon initial supply of compressed air to the inlet port 31, since there would be no third outlet and no inflatable head harness to inflate, the piston would immediately move to the intermediate position until the respirator mask is donned. All other features of such an alternative embodiment of control valve, and breathing apparatus including such a control valve, would be as described previously, and would function correspondingly.

Although embodiments of the invention have been shown and described above in the context of an 'escape set', it is intended that the invention is not limited to such application and may be used in any other type of breathing appaiatus including 'working sets', self contained breathing apparatuses, and other such devices.

Although embodiments of the invention have been shown and described above by way of example only, the invention is not intended to be limited to these embodiments and is intended to include any combination of non-mutually exclusive features described above.