Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ALL-SOLID-STATE BATTERY, MANUFACTURING METHOD THEREFOR, SECONDARY BATTERY COMPRISING SAME AND MONOLITHIC BATTERY MODULE COMPRISING SAME
Document Type and Number:
WIPO Patent Application WO/2019/098613
Kind Code:
A1
Abstract:
The present invention relates to an all-solid-state battery, a manufacturing method therefor, a secondary battery comprising same and a monolithic battery module comprising same, the all-solid-state battery comprising: a battery support comprising a garnet-structured oxide-based solid electrolyte; a positive electrode positioned at a first surface of the battery support; and a negative electrode positioned at a second surface of the battery support. The positive electrode comprises: a positive electrode active material layer making contact with the first surface of the battery support and comprising an ion conductor and a positive electrode active material represented by a specific chemical formula; and a positive electrode current collector positioned on the positive electrode active material layer.

Inventors:
NAM, Sang Cheol (101-1602, 471 Cheonggyecheon-ro,,Dongdaemun-gu, Seoul, 02587, KR)
LEE, In Sung (105-402, 30 Yeonnam-ro,Mapo-gu, Seoul, 03989, KR)
NOH, Eul (609-901, 99 Daesan-ro,Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10388, KR)
Application Number:
KR2018/013638
Publication Date:
May 23, 2019
Filing Date:
November 09, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY (67 Cheongam-ro, Nam-guPohang-si, Gyeongsangbuk-do, 37673, KR)
International Classes:
H01M10/0562; H01M2/02; H01M4/131; H01M4/1391; H01M4/525; H01M4/62; H01M10/0585; H01M14/00; H01M16/00
Foreign References:
KR20170065982A2017-06-14
KR20160034516A2016-03-30
KR20120064609A2012-06-19
KR20150047181A2015-05-04
KR20150129953A2015-11-23
Attorney, Agent or Firm:
YOU ME PATENT AND LAW FIRM (115 Teheran-ro, Gangnam-gu, Seoul, 06134, KR)
Download PDF:
Claims:
2019/098613 1»(:1^1{2018/013638

【청구범위】

【청구항 1]

가넷구조의 산화물계고체 전해질을포함하는전지지지체;

상기 전지 지지체의 제 1면에 위치하는양극; 및

상기 전지 지지체의 제 2면에 위치하는음극

을포함하고,

상기 양극은,

상기 전지 지지체의 제 1 면과 접하며 화학식 1로 표시되,는 양극 활물질및 이온전도체를포함하는양극활물질층, 그리고

상기 양극 활물질층 상에 위치하는 양극 집전체를 포함하는 전고체 전지 .

[화학식 1]

(상기 화학식 1에서,

0.97<31< 1.07, 0.75<131<0.95, 0.03<(:1<0. 13, 0.001<(11<0. 12,

0<61<0.05, 0<打<0.01 , +(:1+(11+61+£1=1이고,

, X, , 池, , 此, 如, 볘, Pd , 쇼용, 0(1 , 1 ¾, 用 및 이들의 조합으호부터 선택된 하나이고,

¾12는比民 01 ,먀, I 및 이들의 조합으로부터 선택된하나임)

【청구항 2]

제 1항에 있어서,

상기 화학식 1에서 은 0.8£131£0.95범위인전고체 전지.

【청구항 3】

제 1항에 있어서,

상기 양극활물질의 평균입경은,

1 내지 10인전고체전지 .

【청구항 4】

제 1항에 있어서,

상기 양극활물질은, 2019/098613 1»(:1^1{2018/013638

상기 양극 활물질층을 기준으로, 55 부피% 내지 80 부피% 범위로 포함되는전고체 전지 .

【청구항 5]

제 1항에 있어서,

상기 가넷구조의 산화물계 고체 전해질은하기 화학식 2로표시되는 전고체 전지.

[화학식 2]

匕 1(7-쑈 - ^3止¾¾ - 1\14 5¾012

(상기 화학식 2에서,

군에서 선택되고,

군에서 선택되고

0 <크2 < 0.1이고,

0 < X < 0.5이고, .

0.005 < < 0.5이고,

0.1 < < 0.5이고,

0 < < 0.15임)

【청구항 6]

제 1항에 있어서,

상기 이온전도체는,

트리 리튬 보레이트( 표여) , 리튬 테트라보레이트 (니21¾07), 리튬 보로 실리케이트 (니8 04), 리튬 알루미노 실리케이트(:니시 04), 리튬 티타늄 포스페이트(니 203043), 리륨 보로 실리콘 포스페이트(니20-^02-¾03-¾05), 리튬 알루미늄 티타늄 포스페이트(니1.必10.3 1.7(1¾43), 리륨 알루미늄 게르마늄

이루어진 그룹에서 선택된 1종 이상의 무기계 화합물을 포함하는 전고체 전지 . 【청구항 7]

제 1항에 있어서,

상기 이온전도체는,

상기 양극 활물질층을 기준으로, 5 부피% 내지 15 부피% 범위로 포함되는전고체 전지 .

【청구항 8]

제 1항에 있어서,

상기 양극활물질층은, 도전재를더 포함하는전고체 전지 .

【청구항 91

제 8항에 있어서,

상기 도전재는,

코발트산화물 (C03O4), 세륨옥사이드 (Ce¾), 인듐주석 산화물 (IT0), 인둠 아연 산화물 (IZ0), 란탄 코발트 산화물 (LaCo03), 구리 망간 산화물 (Cu2Mn()4)및은 (Ag)으로이루어진그룹에서 선택된 1종이상의 도전성 물질을포함하는전고체 전지 .

【청구항 10】

제 8항에 있어서,

상기 도전재는,

상기 양극 활물질층을 기준으로, 10 부피% 내지 35 부피% 범위로 포함되는전고체 전지 .

【청구항 11】

제 1항에 있어서,

상기 양극집전체는,

스테인리스 금속 (SUS, steel use stainl ess) , 금 (Au) , 백금 (Pt) , 니켈 (Ni) , 알루미늄 (A1) , 몰리브덴 (Mo) , 탄소 (C) , 은 (Ag) , 인둠 (In) , 및 주석 (Sn) 중에서 선택되는 1종의 물질, 또는 이들 중 2종 이상의 물질을 포함하는전고체 전지 .

【청구항 12】

제 1항에 있어서,

상기 전지 지지체의 두께는 60 내지 1,000/an범위인전고체 전지. 2019/098613 1»(:1^1{2018/013638

【청구항 13】

제 1항에 있어서,

상기 음극은,

리튬금속, 리튬금속의 합금 , 리륨티타네이트 (니1: 11111 1: 311 6 ,4 5012), 또는이들의 조합을포함하는전고체 전지.

【청구항 14]

가넷 구조의 산화물계 고체 전해질을 포함하는 전극 지지체의 제 1 면에 양극활물질슬러리를코팅하여 양극활물질층을형성하는단계;

상기 양극활물질층상에 양극집전체를형성하는단계; 그리고 상기 전극지지체의 제 2면에 음극을형성하는단계;

를포함하고,

상기 양극 활물질 슬러리는 하기 화학식 1로 표시되는 양극 활물질 및 이온전도체를포함하는전고체 전지의 제조방법 .

[화학식 1]

31 1。0(;1¾1¾1¾[: 1!、(12{1()2-£1

(상기 화학식 1에서,

0.97<31<1.07, 0.75<131<0.95, 0.03<(:1<0.13, 0.001<(11<0.12,

0<61<0.05, 0< <0.01, +(:1+(11+61+£1=1이고,

06 , 1¾>, ¾· , 이들의 조합으로부터 선택된하나이고,

¾12는 民 01 , , I및 이들의조합으로부터 선택된하나임) 【청구항 15】

제 14항에 있어서,

상기 전극 지지체의제 1 면에 양극 활물질 슬러리를 도포하여 양극 활물질증을형성하는단계는,

1초 내지 30초 동안 프린팅하는 방법으로 수행되는 전고체 전지의 제조방법 .

【청구항 16】

제 15항에 있어서, 2019/098613 1»(:1^1{2018/013638

상기 프린팅하는방법은,

닥터 블래이드,오프셋,그라비어,실크스크린및스프레이 중적어도 하나의 프린팅 법을이용하여수행되는전고체 전지의 제조방법.

【청구항 17】

제 14항에 있어서

상기 가넷구조의 산화물계 고체 전해질은,

하기 화학식 2로표시되고,

상기 가넷구조의 산화물계고체 전해질을 60 111내지 1,000 두께의 전지 지지체로 성형하는 단계를 포함하여 제조되는 전고체 전지의 제조 방법 .

[화학식 2]

1ᅳ, 1(7-크2 - x)M3cLa3ZG 2 - -' 3公¾4]\15¾012

(상기 화학식 2에서,

, , ¾), 03 , 肝, ¾他, 03 , 및 이들의 조합으로 이루어진 군에서 선택되고, 이들의 조합으로이루어진 군에서 선택되고,

0 <크2 < 0.1이고,

0 < X < 0.5이고

0.005 < < 0.5이고,

0. 1 £ å £ 0.5이고,

0 £ ^ < 0.15임)

【청구항 18】

제 14항에 있어서,

상기 양극활물질슬러리는도전재를더 포함하고,

상기 도전재는, 코발트 산화물(0¾04), 세륨 옥사이드 0¾02), 인둠 주석 산화물( ⑴, 인둠 아연 산화물(比⑴, 란탄 코발트 산화물(1 (:003), 구리 망간 산화물((:11211()4) 및 은 용)으로 이루어진 그룹에서 선택된 1종 이상의 도전성 물질을포함하는전고체 전지의 제조방법 . 【청구항 19】

제 14항에 있어서,

상기 전지 지지체의 타면에 음극을형성하는단계는,

리튬금속, 리륨금속의 합금, 리륨티타네이트 (Li thium t i tanate, Li4Ti5012), 또는이들의 조합인음극활물질을상기 전지 지지체의 제 2면에 진공열증착하여, 박막형태의 음극을형성하는방법, 또는,

상기 음극 활물질로 이루어진 포일 (foi l )을 펀칭 (punching)하고, 상기 전지 지지체의 제 2 면에 열을 가하여 상기 펀칭된 포일을 부착하는 방법 중어느하나의 방법으로수행되는전고체 전지의 제조방법 .

【청구항 20]

제 1항내지 제 13항중어느한항에 따른전고체 전지로구성된단위 셀;

일면에 개구를포함하며 , 상기 단위 셀을수납하는제 1외장재; 및 상기 제 1 외장재의 개구를 밀봉하는 제 2 외장재를 포함하는 이차 전지.

【청구항 21】

제 20항에 있어서,

상기 단위 셀이 일 방향으로 복수개가 적층되어 전기적으로 연결된 이차전지 .

【청구항 22]

제 20항에 있어서,

상기 제 1외장재는, 세라믹, 유리 및 절연층을표면에 포함하는금속 중적어도하나의 재료를포함하는이차전지 .

【청구항 23]

제 20항에 있어서,

상기 제 2 외장재는, 코바, 인바, 스테인레스스틸 구리 및 니켈 중 적어도하나의 금속재료를포함하는이차전지.

【청구항 24】

상기 제 23항에 있어서,

상기 제 1외장재의 개구 테두리에 위치하는금속재질의 지지부재를 2019/098613 1»(:1^1{2018/013638

포함하고,

상기 지지부재 및상기 제 2외장재는레이저 용접을이용하여 밀봉된 이차전지.

【청구항 25】

5 제 20항에 따른이차전지, 및

상기 이차전지와전기적으로연결된방사성 동위원소전지 를포함하는모놀리식 전지 모듈.

【청구항 26]

제 20항에 따른이차전지, '

10 상기 이차전지와전기적으로연결된방사성 동위원소전지 ,

상기 이차전지와전기적으로연결된에너지 하베스팅 소자, 및 상기 이차전지와전기적으로연결된센서

를포함하는모놀리식 전지모듈.

【청구항 27】

15 제 25항또는제 26항에 있어서 ,

상기 방사성 동위원소전지는,

-63, 1¾-147, ^3, ¾-90, 1¾-238 및 (:0_6◦를 사용하는 전지 중 적어도하나인모놀리식 전지 모듈.

【청구항 28]

20 제 25항또는제 26항에 있어서 ,

상기 단위 셀 및 상기 방사성 동위원소 전지는, 제어부를 매개로 연결되고,

상기 제어부는저속충전이 가능한모놀리식 전지모듈.

25

Description:
2019/098613 1»(:1^1{2018/013638

【발명의 설명】

【발명의 명칭】

전고체 전지, 이의 제조 방법, 이를 포함하는 이차 전지 및 이를 포함하는모놀리식 전지 모듈

【기술분야】

본발명은방사성 동위원소전지의 구동소자로유용하게 적용할수 있는 전고체 전지, 이의 제조 방법, 이를 포함하는 이차 전지 및 이를 포함하는모놀리식 전지 모듈에 관한것이다.

【발명의 배경이 되는기술】

베타전지는방사선동위원소에서 방출하는 (3선으로부터 전기에너지를 변환하는에너지 변환소자이다. 이러한베타전지는극지, 오지 등과같이 사람의 손길이 닿기 힘든환경에서 환경 모니터링을위한센서의 전흰또는 교량, 터널, 핵발전소원자로내부등의 오염이나진동을모니터링하기 위한 센서의 전원으로사용가능하다.

베타 전지에 사용 가능한 방사선 동위원소로는 -63, ¾-147 및 묘_3등이 있으나이중 100년이상의 반감기와 16.¾ 의 평균에너지를가지며, 비교적 을 이용하여 베타선 흡수체 제작이 용이한 -63이 베타 전지에 사용가능성이 높은동위원소로주목받고있다.

그러나, 附-63를 방사선 동위원소로 사용하는 베타 전지의 경우, 출력전류는수 1 , 출력전압은 출력전력이 1 /0 11 2 이하로낮다. 따라서,이러한베타전지를실제 적용하기 위해서는,직렬및 병렬로 연결하여 전압과 전류를 높여야 한다. 또한, 베타전지를실제 구동소자와 모놀리식 (미 01101 1 比比)구조로 기판에 적층시키기 위해서는 평상시에 일정하게 생성되는 전력을 이차전지에 저장할 필요가 있다. 그러나, 상기 베타 전지는 (3선을 지속적으로 방출하기 때문에, 구동소자로는 이러한 방사선노출에 견딜수있는이차전지가필수적이다.

이와 관련하여, 일반적으로 사용되는 이차 전지는 유기계 전해질 또는 고분자 소재를 포함하기 때문에 전술한 바와 같이 베타 전지로부터 변환되는전력을효과적으로저장할수없는문제 점이 있다.

따라서, 용량이 우수하면서도 내방사선을 갖는 . 전지의 개발이 2019/098613 1»(:1^1{2018/013638

시급하다.

【발명의 내용】 ,

【해결하고자하는과제】

본 실시예들은 내방사선 특성이 우수하면서도 용량을 현저하게 향상시킬수 있고, 아울러 생산공정 단순화및 비용절감이 가능한전고체 전지 및 이의 제조방법을제공하고자한다.

또한, 본실시예들은고전압이 필요한장치에 연결할수 있고, 또는 방사선 동위원소 전지와의 모놀리식 구조를 쉽게 구현할 수 있는 전고체 전지를포함하는이차전지를제공하고자한다.

【과제의 해결수단】

본 발명의 일 실시예에 따른 전고체 전지는, 가넷 구조의 산화물계 고체 전해질을 포함하는 전지 지지체, 상기 전지 지지체의 제 1 면에 위치하는양극및 상기 전지 지지체의 제 2면에 위치하는음극을포함하고, 상기 양극은, 상기 전지 지지체의 제 1 면과 접하며 화학식 1로 표시되는 양극활물질 및 이온 전도체를포함하는 양극 활물질층, 그리고상기 양극 활물질층상에 위치하는양극집전체를포함할수있다.

[화학식 1]

3 1。0 ¾1¾11( 3 1所25102 1

상기 화학식 1에서, 0.97< < 1.07, 0.75<1)1<0.95, 0.03<산<0. 13 ,

하나이고, 2는 01 , , I 및 이들의 조합으로부터 선택된 하나이다.

상기 화학식 1에서 은 0.8£1)1£0.95범위일수있다.

상기 양극활물질의 평균입경은, 1 내지 1◦ / 해범위일수있다. 상기 양극활물질은, 상기 양극활물질층을기준으로, 55부피%내지 80부피%범위로포함될수있다.

상기 가넷구조의 산화물계고체 전해질은하기 화학식 2로표시되는 것일수있다. 2019/098613 1»(:1/10公018/013638

[화학식 2]

Li (7-a2-x) M3 x L3 3 2r 2-y-w T3 y M4 z M5 w 0i 2

상기 화학식 2에서, M3은 Al, Na, K, Rb, Cs, Fr, Mg, Ca, 및 이들의 조합으로이루어잔군에서 선택되고, M4는 B이고, M5는 Nb, Sb, Sn, Hf, Bi, ff, Se, Ga, Ge,및 이들의 조합으로이루어진군에서 선택되고, 0 < a2 < 0.1 이고, 0 £ x £ 0.5이고, 0.005 < y < 0.5이고, 0.1 £ z £ 0.5이고, 0 < w < 0.15이다.

상기 이온 전도체는, 트리 리튬 보레이트 (Li 3 B0 3) , 리륨 테트라 보레이트 (Li 2 B 407) , 리륨 보로 실리케이트 (LiBSi04), 리륨 알루미노 실리케이트 (LiAlSi04), 리튬 티타늄 포스페이트 (LiTi 2( P0 4)3), 리튬 보로 실리콘 포스페이트 (Li 20- Si0 2- B 203- P 205) , 리륨 알루미늄 티타늄 포스페이트 (LiuAluTh . XPOJs), 리륨 알루미늄 게르마늄 포스페이트 (Lh . sAlo . sGe L dPOJs) 및 황화물계 이온 전고체 (Li 2 S-P 2 S 5) 로 이루어진그룹에서 선택된 1종이상의 무기계화합물을포함할수있다. 상기 이온전도체는,상기 양극활물질층을기준으로, 5부피%내지 15 부피%범위로포함될수있다.

상기 양극활물질층은, 도전재를더 포함할수있다.

상기 도전재는, 코발트 산화물 (C03O4), 세륨 옥사이드 (CeC> 2), 인둠 주석 산화물 (IT0), 인둠 아연 산화물 (IZ0), 란탄 코발트 산화물 (LaCo0 3), 구리 망간 산화물 (Cu 2 Mn0 4) 및 은 (Ag)으로 이루어진 그룹에서 선택된 1종 이상의 도전성 물질을포함할수있다.

상기 도전재는, 상기 양극 활물질층을 기준으로, 10부피%내지 35 부피%범위로포함될수있다.

한편, 상기 양극 집전체는, 스테인리스 금속 (SUS, steel use stainless) , 금 (Au), 백금 (Pt), 니켈 (Ni), 알루미늄 (A1), 몰리브덴 (Mo), 탄소 (C),은 (Ag),인둠 (In),및주석 (Sn)중에서 선택되는 1종의 물질, 또는 이들중 2종이상의 물질을포함할수있다.

상기 전지 지지체의 두께는 60m내지 1,000 범위일수있다.

상기 음극은, 리튬 금속, 리륨 금속의 합금, 리륨 티타네이트 (Lithium titanate, Li^isO^) ,또는이들의조합을포함할수있다. 2019/098613 1»(:1^1{2018/013638

본 발명의 일 실시예에 따른 전고체 전지의 제조 방법은, 가넷 구조의 산화물계 고체 전해질을 포함하는 전극 지지체의 제 1 면에 양극 활물질 슬러리를 코팅하여 양극 활물질층을 형성하는 단계, 상기 양극 활물질층 상에 양극 집전체를 형성하는 단계, 그리고 상기 전극 지지체의 제 2 면에 음극을 형성하는 단계를 포함하고, 상기 양극 활물질 슬러리는 하기 화학식 1 로표시되는양극활물질및 이온전도체를포함할수있다 .

[화학식 1]

상기 화학식 1에서, 0.97£31£1.07, 0.75 1£0.95, 0.03<01<0 13 , 0.001<(11<0.12 , 0< 6 1<0.05 , 0< 1<0.01, +쎄+쎄 이고, 은犯, 쇼1, , 0크, 80 , 11 , V, 15, 0, (XI, 211, 크, 1¾, ¾· , \ , !· , ?¾, 0, ¾, 如, 此, 山 쇼용, 0(1, III, ¾, 및 이들의 조합으로부터 선택된 하나이고, ¾12는 民 (:1, , I 및 이들의 조합으로부터 선택된 하나이다.

상기 전극 지지체의 제 1 면에 양극 활물질 슬러리를 도포하여 양극 활물질층을 형성하는 단계는, 1초 내지 30초 동안 프린팅하는 방법으로 수행될수있다.

상기 프린팅하는 방법은, 닥터 블래이드, 오프셋, 그라비어, 실크스크란및 스프레이 중적어도하나의 프린팅 법을이용하여 수행될수 있다.

상기 가넷 구조의 산화물계 고체 전해질은, 하기 화학식 2로 표시되고, 상기 가넷 구조의 산화물계 고체 전해질을 60炯 내지 1,000_ 두께의 전지 지지체로성형하는단계를포함하여 제조될수있다.

[화학식 2] 및 이들의 조합으로이루어진군에서 선택되고

用, G^ , 0 6, 및 이들의 조합으로이루어진군에서 선택되고, 0 < 32 < 0. 1 이고, 0 £ X £ 0.5이고, 0.005 £ £ 0.5이고, 0.1 £ £ 0.5이고, 0 < < 0.15이다. 상기 양극 활물질 슬러리는 도전재를 더 포함하고, 상기 도전재는, 코발트 산화물 (C 03 O 4) , 세륨 옥사이드 (Ce¾), 인둠 주석 산화물 (IT0) , 인둠 아연산화물 (IZ0) , 란탄코발트산화물 (LaCo¾) , 구리 망간산화물 (Cu 2 Mn0 4) 및은 (Ag)으로이루어진그룹에서 선택된 1종이상의 도전성 물질을포함할 수있다.

상기 전지 지지체의 타면에 음극을형성하는단계는,리륨금속,리륨 금속의 합금, 리튬티타네이트 (Li thium t i tanate, Li^isO^) , 또는 이들의 조합인 음극 활물질을 상기 전지 지지체의 제 2 면에 진공 열 증착 하여, 박막 형태의 음극을 형성하는 방법, 또는, 상기 음극 활물질로 이루어진 포일 (foi l )을 펀칭 (punching)하고, 상기 전지 지지체의 제 2 면에 열을 가하여 상기 펀칭된포일을부착하는방법 중어느하나의 방법으로수행될 수있다.

본발명의 일 실시예에 따른 이차전지는, 일 실시에에 따른전고체 전지로구성된단위 셀, 일면에 개구를포함하며,상기 단위 셀을수납하는 제 1외장재 , 및상기 제 1외장재의 개구를밀봉하는제 2외장재를포함할수 있다.

본발명의 다른실시예에 따른 이차전지는, 단위 셀이 일 방향으로 복수개가적층되어 전기적으로연결된것일수있다.

한편,상기 제 1외장재는,세라믹,유리 및 절연층을표면에 포함하는 금속중적어도하나의 재료를포함할수있다.

상기 제 2 외장재는, 코바, 인바, 스테인레스스틸 구리 및 니켈 중 적어도하나의 금속재료를포함할수있다.

또한, 상기 이차전지는, 상기 제 1외장재의 개구테두리에 위치하는 금속 재질의 지지부재를 포함하고, 상기 지지부재 및 상기 제 2 외장재는 레이저 용접을이용하여 밀봉된것일수있다.

본 발명의 일 실시예에 따른 모놀리식 전지 모듈은, 실시예들에 따른 이차전지, 및 상기 이차전지와전기적으로 연결된 방사성 동위원소 전지를포함할수있다.

본발명의 일실시예에 따른모놀리식 전지 모듈은, 실시예들에 따른 이차 전지, 상기 이차 전지와 전기적으로 연결된 방사성 동위원소 전지, 2019/098613 1»(:1^1{2018/013638

상기 이차전지와 전기적으로 연결된 에너지 하베스팅 소자, 및 상기 이차 전지와전기적으로연결된센서를포함할수있다 .

상기 방사성 동위원소전지는, -63, 1½-147, 1{-3, -90,的-238및 ( -60를사용하는전지 중적어도하나일수있다.

상기 단위 셀 및 상기 방사성 동위원소 전지는, 제어부를 매개로 연결되고, 상기 제어부는저속충전이 가능한것일수있다.

【발명의 효과】

실시예들에 따르면 , 종래에 .비해 전지의 용량을현저하게 향상시킴과 동시에 공정을 단순화 시키고 아울러 생산 비용을 현저하게 저감시킬 수 있는전고체 전지 및 이의 제조방법을제공할수있다.

또한, 실시예들에 따르면, 필요에 따라 고전압이 필요한 장치에 연결하기 위한서차전지를쉽게구현할수있다.

아울러 방사성 동위원소 전지와의 모놀리식 구조를 효과적으로 구현할수있는전고체 전지를포함하는아차전지를제공할수있다.

【도면의 간단한설명】

도 1은일실시예에 따른전고체 전지를개략적으로나타낸것이다. 도 2는일실시예에 따른이차전지를개략적으로나타낸것이다. 도 3은다른실시예에 따른이차전지를개략적으로나타낸것이다. 도 4는 일 실시예에 따른모놀리식 전지 모듈을 개략적으로 나타낸 것이다.

도 5에는 유기계 전해액을사용하는 이차 전지에 대한 방사선 조사 전후의 충전및방전테스트결과를나타내었다.

도 6은실시예 1에 따라제조된 이차전지의 전극지지체 및 양극의 단면을측정한況 사진을나타낸 .것이다.

도 7은 실시예 1에 따라 제조된 이차 전지의 양극 활물질층 내에 포함되는각구성 원소를매핑한결과를나타낸것이다.

도 8은실시예 1에 따라제조된 이차 전지에 대한 0 측정 결과를 나타낸것이다.

도 9는 실시예 1에 따라 제조된 이차 전지를 10) 패널에 연결하여 구동여부를테스트하는과정을나타낸것이다. 2019/098613 1»(:1^1{2018/013638

도 10은또다른일실시예에 따른모놀리식 전지 모듈을개략적으로 나타낸것이다.

【발명을실시하기 위한구체적인내용】

이하, 첨부한도면을참고로하여 본발명의 여러 실시예들에 대하여 본발명이 속하는기술분야에서 통상의 지식을가진자가용이하게 실시할 수있도록상세히 설명한다. 본발명은여러 가지 상이한형태로구현될수 있으며 여기에서설명하는실시예들에 한정되지 않는다.

본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를통하여 동일또는유사한구성요소에 대해서는 동일한참조부호를붙이도록한다.

또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 다타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.

또한, 명세서 전체에서, 어떤부분이 어떤구성요소를 "포함” 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라다른구성요소를더 포함할수있는것을의미한다.

도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다 . 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 ”위에’ 있다고 할때, 이는다른부분 "바로위에’ 있는경우뿐 아니라그 중간에 또 다른 부분이 있는 경우도포함한다. 반대로 어떤 부분이 다른 부분 "바로위에" 있다고할때에는중간에 다른,부분이 없는것을뜻한다. 이하에서는 일 실시예에 따른 전고체 전지에 관하여 도면을 참고로 하여상세하게설명한다.

도 1에는 본 발명의 일 실시예에 따른 전고체 전지를 개략적으로 나타내었다.

도 1을 참고하면 , 일 실시예에 따른 전고체 전지 (10)는, 전지 지지체 (13)의 제 1면에 양극 (11)이 위치하고, 제 1면의 반대 면인 제 2면에 음극 (12)이 위치한다.

상기 양극 (11)은, 전지 지지체 (13)의 제 1면과접하여 위치하는양극 2019/098613 1»(:1^1{2018/013638

활물질층 (5) 및 상기 양극 활물질층 (5) 상에 위치하는 양극 집전체 (4)를 포함한다.

양극 활물질층 (5)은, 화학식 1로 표시되는 양극 활물질 (1) 및 이온 전도체 (2)를포함할수있다.

[화학식 1]

1 1 0 1 ¾ 1 1、11 £;1 12 £1()2 1

상기 화학식 1에서, 0.97< ¾ 1<1.07, 0.75<1 ) 1<0.95, 0.03< ( :1<0.13, 0.001< 11<0.12, 0< 6 1<0.05, 0< 1<0.01, +쎄+에 1=1이고, 은 , 1想, 쇼1, 13, 0 ,어, ¾, Gs L Ge 1¾, , V, !、 , 1 0 , 光, 如, 此, 用 및 이들의 조합으로부터 선택된 하나이고, 1«2는 01 , , I 및 이들의 조합으로부터 선택된 하나이다.

상기 양극활물질 (1)은내방사선용전고체 전지에사용될수있다. 상기 화학식 1에서 1 1은 0.8£1 3 1£0.95 또는 0.85<1 3 1<0.95 범위인 것이 고용량의 전고체 전기를구현할수있다는면에서 보다바람직하다. 상기 양극활물질 (1)의 평균입경은 10쌘!,보다구체적으로 1^내지 5 / 페범위일 수 있다. 양극활물질 (1)의 평균 입경이 상기 범위를 만족하는경우, 균일한양극활물질슬러리를제조할수있는장점 이 있다. 또한,상기 양극활물질 (1)은,양극활물질층 (5)을기준으로, 55부피% 내지 80부피%, 보다구체적으로, 60부피%내지 75부피%범위로포함될수 있다. 양극 활물질 (1)의 부피 비율이 상기 범위를 만족하는 경우, 단위 면적당 방전 용량이 우수하고, 이에 따라 고용량을 갖는 전고체 전지를 구현할수있다. 전고체 전지는내방사선용일수있다.

현재까지 알려진 양극 활물질 재료 중 상업화가 가능한 재료 중 하나로니00 2 가 있다. 그러나, 니 여는 60 // 1 / 2 정도의 낮은 용량으로 인해 이를 양극 활물질로 이용하는 이차 전지의 경우 적용할 수 있는 분야에 한계가있다.

이에 본발명자들은전고체 전지의 고용화를위한일환으로, , 0 0 및加을포함 (이하, 계조성)함과동시에 의 조성의 양극활물질을전고체 전지의 양극활물질로적용하기 위한시도를하였다. 2019/098613 1»(:1^1{2018/013638

즉, 상기 화학식 1과 같이 의 몰비가 적어도 0.75 이상인 계 조성의 양극활물질을전고체 전지에 적용함으로써,실시예들에 따른전고체 전지의 용량을효과적으로증가시킬수있다.

한편, 상기 이온 전도체 (2)는, 고체 전해질을 포함하는 전지 지지체로부터 리튬 이온을 이동시키는 매개체로써의 역할을 수행한다. 일반적인 전고체 전지의 경우, 양극 활물질과 고체 전해질 사이의 계면 특성이 나빠, 이를제어하기가매우어렵다고알려져 있다.

그러나본실시예에서는상기 이온 전도체 (2)를 적용함으로써, 양극 활물질층 (5)과 고체 전해질 사이의 계면、특성을 현저하게 향상시킬 수 있다.

보다 구체적으로, 상기 전지 지지체를 이루는 고체 전해질을 제 1 상으로볼 때, 상기 양극활물질 층에 포함된상기 이온전도체 (2)는 리륨 이온을 이동시킬 수 있는제 2상의 고체 전해질로볼수 있다. 이에 따라, 상기 제 1상의 고체 전해질과상기 양극활물질사이에 상기 제 2상의 고체 전해질이 위치하여, 리륨 이온이 양극활물질 내로 원활히 이동할수 있는 것이다.

상기 이온전도체 (2)는,예를들면,트리 리튬보레이트 ( 묘어),리튬 테트라보레이트 (니出 407) , 리륨보로실리케이트此내 04) , 리륨알루미노 실리케이트 (니시 04) , 리튬 티타늄 포스페이트 (니 2( 4)3) , 리륨 보로 실리콘 포스페이트 (니 20 -^0 2 -¾0 3 -¾0 5) , 리륨 알루미늄 티타늄 포스페이트 (니니시 나 여九) , 리륨 알루미늄 게르마늄 및 황화물계 이온 전고체 (니 23-1 3 2 ¾)로 이루어진그룹에서 선택된 1종이상의무기계 화합물을포함할수있다. 상기 이온전도체 (2)는, 양극활물질층 (5)을기준으로, 5부피%내지 15부피%범위로포함될수있다.이온전도체 (2)의 부피 비율이 상기 범위를 만족하는 경우, 단위 면적당 방전 용량이 우수하고, 이에 따라 고용량을 갖는전고체 전지를구현할수있다. 전고체 전지는내방사선용일수있다. 한편,상기 양극활물질층 (5)은도전재 (3)를더 포함할수있다.상기 도전재 (3)는 양극 전류 집전체로부터 전자를 받아, 양극 활물질로 전자를 공급하는 역할을 한다. 이와 같이 도전재 (3)를 포함시켜 양극 전류 집전체로부터 양극활물질로의 전자흐름을원활히 함으로써 , 전지의 용량을 향상시킬수있다.

구체적으로, 액체 전해질을사용하는 리륨 이온 전지의 경우흑연계 도전재를사용하는것이 일반적이지만,본실시예에서는상기 전지 지지체의 표면에 양극활물질슬러리를코팅한후열처리하여 상기 양극활물질층을 형성하므로, 흑연계도전재를사용하는것이 부적절하다.

상기 도전재 (3)는, 예를 들면, 코발트 산화물 (Co 304) , 세륨 옥사이드 (Ce0 2) ,인둠주석 산화물 (IT0),인둠아연산화물 (IZ0) ,란탄코발트 산화물 (LaCo¾), 구리 망간 산화물 (Cu 2 Mn0 4) 및 은 (Ag)으로 이루어진 그룹에서 선택된 1종이상의 도전성 물질을포함할수있다.

상기 도전재 (3)는, 양극활물질층 (5)을기준으로, 10부피%내지 35 부피%, 보다구체적으로, 15부피%내지 30부피%범위로포함될 수 있다. 도전재 (3)의 부피 비율이 상기 범위를 만족하는 경우, 단위 면적당 방전 용량이 우수하고, 이에 따라고용량을갖는전고체 전지를구현할수 있다. 전고체 전지는내방사선용일수있다.

다음, 상기 양극집전체는, 예를들면, 스테인리스금속 (SUS, steel use stainless) , 금 (Au) , 백금 (Pt) , 니켈 (Ni ) 알루미늄 (Al), 몰리브덴 (Mo) , 탄소 (C) , 은 (Ag) , 인둠 (In) , 및주석 (Sri)중에서 선택되는 1종의 물질, 또는 이들중 2종이상의 물질을포함할수있다.

한편, 상기 전지 지지체는 가넷 구조의 산화물계 고체 전해질로 구성될수있다.

상기 가넷 구조의 산화물고체 전해질은하기 화학식 2로표시될수 있다.

[화학식 2]

L i (7-a2-x) M3 x Ls 3 Zr 2-y-w T 3y M4 z M5 ¾ 0i 2

상기 화학식 2에서, M3은 Al , Na, K, Rb, Cs, Fr, Mg, Ca, 및 이들의 조합으로이루어진군에서 선택되고, M4는 B이고, M5는 Nb, Sb, Sn, Hf , Bi, W, Se, Ga, Ge, 및 이들의 조합으로 이루어진 군에서 선택되며, 0 < a2 < 0.1이고, 0 < x < 0.5이고, 0.005 < y < 0.5이고, 0.1 < z < 0.5이며, 0 < < 0.15이다. 상기 가넷 구조의 산화물은 전위창이 비교적 넓고 수분 반응성이 낮을 뿐만 아니라, 금속 리륨과의 반응성이 적기 때문에 고체 전해질로. 사용하기에 적합하다.

본실시예에 따른 가넷 구조의 산화물 고체 전해질은, 가넷 구조의 기본조성 (Li 7 La 3 Zr 2012) 에 대하여, 탈탄 (Ta)을도핑시켜 고체 전해질의 이온 전도도를 향상시켰다. 구체적으로, 탄탈 (Ta)의 경우, 소량 도핑 시 라륨 (Li)과의 반응성이 없지만, 상기 가넷 구조의 기본 조성에서 지르코늄 (Zr) 자리에 치환되어 리튬 (Li )의 함량을 감소시킴에 따라, 리륨 (Li )의 함량 (contents)을 감소시킬 수 있다. 이로 인해, 리륨 (Li )의 공석률 (vacancy)을증가시켜 이온전도도를개산하는데 기여할수있다. 또한, 상기 화학식 1로표시되는고체 전해질은, 보론 (B)의 도핑량을 증가시킴으로써, 액체상소결 ( l iquid phase sinter ing)을가능케하여가넷 구조산화물의 소결특성을개선시켰다.또한,상기 보론은입방정계구조인 산화물의 구조가치밀해지게끔하는도핑 원소이다.

아울러,상기 화학식 1로표시되는고체 전해질은,알루미늄 (A1)이 더 도핑될 수 있고, 이 경우 알루미늄 이온 (즉, Al 3+ ) 1개는 리륨 이온 (U + ) 3개에 상응하는 것인 바, 알루미늄 (A1 )의 도핑에 의해 리륨 (Li)의 공석 (vacancy)이 증가하며 , 이에 따라상기 입방정계 구조인산화물의 격자 구조가 더욱 무질서 (di sorder ing)하게 되어, 리튬 이온 전도도가 보다 증가할수 있다. 또한, 알루미늄 (A1)은상기 가넷 (Garnet) 구조의 산화물에 도핑되어, 펠렛 밀도를 향상시키며, 기공을 감소시키는 데 기여할 수도 있다.

상기 전지 지지체의 두께는 60, 내지 1,000 / 께, 보다 구체적으로, 100/M 내지 500 / mi 범위일 수 있다. 전지 지지체의 두께가 상기 범위를 만족하는경우전고체 전지의 박막화가용이하다.

한편, 일반적으로 리륨 이차 전지는 유기계 전해액을 사용한다. 그러나 후술하는 실험예 1을 참고하면, 유기계 전해액을 사용하는 이차 전지의 경우, 방사선 조사시 유기계 전해액의 분해 등으로 인해 전지가 열화되어 전기화학적 특성이 현저하게 저하되는 문제점이 있다. 따라서, 유기계 전해액을 사용하는 리튬 이차 전지를 이용하는 경우에는 방사선 동위원소 전지로부터 방출되는 전력을 효과적으로 저장할 수 없다. 이에 따라본발명의 발명자는그대안으로고체 전해질 전지를사용하는방법을 개발하였다.

이와 관련하여, 종래의 전고체 전지에서는 일반적으로 Li 3.1 PO 3.3 No .6( 상업명: LIPON, Li thium phosphorous oxyni tr ide)를 고체 전해질로 사용하였다. 그러나, 이는 양극 박막상부에 박막형태로 구현 하기가쉽지 않고, 또한기판 (substrate)을수급하기가어려울뿐만아니라 낮은증착속도 (<10nm/min)로인해 제조비용이 상승하는문제가있다.

그러나 본 실시예에서는 화학식 1로 표시되는 가넷 구조의 산화물 고체 전해질을사용하기 때문에 쉽게 시트 (sheet) 형태로성형하여 두께를 감소시킬수있고, 전지 지지체로도용이하게 적용할수있다.

한편, 전지 지지체의 제 2면에는음극이 위치한다.

상기 음극은, 예를 들면, 리륨 금속, 리륨 금속의 합금, 리튬 티타네이트 (Li thium t i tanate, LuTisOu) , 또는 이들의 조합을 포함할 수 있다. 여기서, 상기 리튬금속의 합금으로는리륨과 Na, K, Rb , Cs, Fr , Be, Mg, Ca, Sr , Si , Sb , Pb , In, Zn, Ba, Ra, Ge, A1또는 Sn의 금속과의 합금이 사용될수있다.

다음으로, 본 발명의 일 실시예에 따른 전고체 전지의 제조 방법을 설명하기로한다.

일실시예에 따른전고체 전지의 제조방법은, 가넷구조와산화물계 고체 전해질을 포함하는 전극 지지체의 제 1 면에 양극 활물질 슬러리를 코팅하여 양극 활물질층을 형성하는 단계, 상기 양극 활물질층 상에 양극 집전체를 형성하는 단계, 그리고 상기 전극 지지체의 제 2 면에 음극을 형성하는단계를포함한다.

상기 전고제 전지는내방사선용일수있다.

본 실시예에서, 양극 활물질층 형성을 위한 상기 양극 활물질 슬러리를 제조하는공정은, 슬러리 내 각물질이 균일하게 혼합될 수 있는 방법이라면 어떠한 방법으로든 수행될 수 있다. 구체적으로 예를 들면, 트리롤밀링 ( three rol卜 11 ing)을사용하여 수행될수있다.

또한, 상기 전극지지체의 제 1면에 양극활물질슬러리를도포하여 2019/098613 1»(:1^1{2018/013638

양극활물질층을형성하는단계는, 1초내지 30초동안프린팅하는방법으로 수행될 수 있다. 즉, 프린팅 법을 이용하여 양극 활물질층을 형성하기 때문에 종래의 스퍼터링 공정을 이용하는 경우와 비교할 때 제조 시간을 현저하게 단축시킬수있다.

상기 프린팅하는방법은,예를들면,닥터블래이드 오프셋,그라비어 , 실크스크린 및 스프레이 중적어도하나의 프린팅 법을이용하여 수행될수 있다.

종래의 전고체 전지는 스퍼터링 공정을 이용하여 양극 활물질층을 형성한다. 그러나, 본 발명과 같이 몰비가 높은 조성의 양극 활물질을이용하여 스퍼터링 공정을수행하는경우, 양극활물질층내에 조성이 균일하게분포되기가어려워 전지의 특성이 매우저하된다.

그러나, 본 실시예에서는 프린팅 법을 이용하여 양극 활물질층을 형성하기 때문에 제조시간을 현저하게 단죽시킴과동시에 몰비가높은 1祀¾1계 조성의 양극활물질을 이용하여 고용량의 전고체 전지를쉽게 제조할 수있다.

한편,상기 전지 지지체의 타면에 음극을형성하는단계는,리륨금속, 리튬금속의 합금,또는이들의 조합인음극을상기 전지 지지체의 제 2면에 진공 열 증착 하여, 박막 형태의 음극을 형성하는 방법, 또는, 상기 음극활물질로 이루어진 포일 ( 0 11 )을 펀칭 (에 土 당)하고, 상기 전지 지지체의 제 2 면에 열을 가하여 상기 펀칭된 포일을부착하는 방법 중 어느 하나의 방법으로수행될수있다.

한편, 상기 양극 활물질 슬러리는 하기 화학식 1로 표시되는 양극 활물질및 이온전도체를포함할수있다.

[화학식 1]

상기 화학식 1에서, 0.97< < 1.07 , 0.75<1)1<0.95, 0.03<(:1<0. 13 , 0.00네<0. 12 , 0<61<0.05 ,네<0.01, 1)1+(:1+(11+쎄=1이고, 은犯, ¾¾, 쇼1 , , X, 0크, , 11 , V, 6, 0 , 01, Zn, 크, 1¾ , 10 ,

¾, 如, 此, ?1, 쇼요, 01, 1 ¾!, 및 이들의 조합으로부터 선택된 하나이고, 1«2는 I 및 이들의 조합으로부터 선택된 2019/098613 1»(:1^1{2018/013638

하나이다.

상기 이온전도체는, 리튬이온을전달하는기능을수행하는것으로, 예를 들면, 트리 리튬 보레이트(니 3 표0 3 ), 리튬 테트라 보레이트 (1 128407 ) , 리륨 보로 실리케이트 比犯 04), 리륨 알루미노 실리케이트(니시 04), 리륨 티타늄 포스페이트(니 2 0 4 3 ), 리륨 보로 실리콘 포스페이트(니 20 - 0 2 -¾0 3- ¾0 5 ), 리륨 알루미늄 티타늄 포스페이트(니 1.3 0.3 1.7 (1 3 0 4 3 ), 리튬 알루미늄 게르마늄 포스페이트(니나시 出라 여九) 및 황화물계 이온 전고체 (니 23 -¾¾)로 이루어진그룹에서 선택된 1종이상의무기계 화합물을포함할수있다. 또한, 상기 양극 활물질 슬러리는 도전재를 더 포함하고, 상기 도전재는, 코발트 산화물 ^03()4), 세륨 옥사이드 근어), 인둠 주석 산화물이⑴, 인둠 아연 산화물(比⑴, 란탄 코발트 산화물(1 (: 003 ), 구리 망간산화물(어 2] «1104) 및 은 8 )으로 이루어진 그룹에서 선택된 1종 이상의 도전성 물질을포함할수있다.

한편, 상기 가넷 구조의 산화물계 고체 전해질은, 하기 화학식 2로 표시되고, 상기 가넷 구조의 산화물계 고체 전해질을 60쌔! 내지 1,000_, 보다구체적으로, 100 내지 500,범위의 전지 지지체로성형하는단계를 포함하여 제조될수있다.

[화학식 2]

11(ᅡ比 - 3止크 3 ¾ - "1크¾14 2 1\15/) 12

상기 화학식 2에서, !«3은시,他, ¾, 0 8 , , ¾¾, 0 3 , 및 이들의 조합으로이루어진군에서 선택되고,

, 0 3, 및 이들의 조합으로이루어진군에서 선택되고, 0 < 32 < 0. 1 이고, 0 £ X £ 0.5이고, 0.005 < < 0.5이고, 0.1 < < 0.5이고, 0 < 用 < 0.15이다.

상기 화학식 2로 표시되는 가넷 ½ 0 구조의 산화물계 고체 전해질 분말을 제조하는 것은, 상기 화학식 2의 화학 양론비를 고려하여, 적절한 리륨 원료 물질, 란탄 원료물질, 지르코늄 원료 물질, 탄탈 원료 물질, 기타도핑 원료물질을혼합하여 볼밀 0꼬11- 1 11)하고, 소성한다음, 입경 제어를위해 다시금볼밀 0 1 11)하는공정을포함할수있다. 이때, 2019/098613 1»(:1^1{2018/013638

도핑 원소에 따라, 소성 온도가 1,000 ^미만으로낮아질수있고, 제조된 펠렛은 0.9난0 _ ¾/페이상의 리륨이온전도도를나타낼수있다.

상기 양극 활물질, 이온 전도체, 도전재 및 가넷 구조의 산화물계 고체 전해질에 관한보다구체적인 설명은전술한것과동일한바여기서는 생략하기로한다.

다음으로, 본 발명의 일 실시예에 따른 이차 전지를 설명하기로 한다.

도 2는일실시예에 따른이차전지를개략적으로나타낸것이다. 도 2를참고하면,일실시예에 따른이차전지 (100)는,전고체 전지로 구성된단위 셀 (10)및상기 단위 셀 (10)을내장하는케이스를포함한다. 이때, 상기 전고체 전지는 본 발명의 일 실시예에 따른 전고체 전지의 특징과동일한바여기서는생략하기로한다.

상기 케이스는 일 면에 개구를 포함하며, 상기 단위 셀을수납하는 제 1외장재 (111) 및상기 제 1외장재의 개구를밀봉하는제 2외장재 (112)를 포함한다.

제 1 외장재 (111)는, 단위 셀 (10)을 수납할 수 있는 수납부를 포함한다.

또한, 단위 셀 (10)의 바닥에는 외부와의 통전을 위한 전극 (51)이 내장될수있다.

상기 제 1외장재 (111)는,예를들면,세라믹,유리 및절연층을표면에 포함하는금속중적어도하나의 재료로이루어질수있다.

상기 제 2외장재 (112)는, 코바 0¾ 새), 인바 (1 能), 스테인레스스틸 구리 및니켈중적어도하나의 금속재료로이루어질수있다.

이때, 단위 셀 (10)의 삽입 방향에 따라제 1외장재 (111)에 포함되는 전극및제 2외장재 (112)의 재료가바뀔수도있다.

구체적으로, 단위 셀 (10)의 음극이 제 1 외장재 (111)의 바닥 면과 인접하도록삽입되는경우에는제 1외장재 (111)의 바닥에 내장된전극 (51)은 음극 (-)이고, 제제 2외장재 (112)는 (+)극을띠는재질을사용한다.

또한,단위 셀 (10)의 양극이 제 1외장재 (111)의 바닥면과인접하도록 삽입되는 경우에는 제 1 외장재 (111)의 바닥에 내장된 전극 (51)은 2019/098613 1»(:1^1{2018/013638

양극 (+)이고, 제 2외장재 (112)는 (-)극을띠는재질을사용한다.

제 1 외장재 (111)의 개구 테두리에는 금속 재질의 지지 부재 (30)가 위치할 수 있다. 상기 지지 부재 (30)는 제 1 외장재 (111) 및 제 2 외장재 (112)를 밀봉하는 역할을 한다. 즉 지지 부재 (30) 및 저 12 외장재 (112)를레이저 용접을이용하여 밀봉할수있다.

한편, 상기 이차 전지 (100)는, 단위 셀 (10)의 음극 및 제 1 외장재 (111)의 바닥면사이에 소프트한리륨금속포일 1 )을더 포함할 수있다.

이와같이 단위 셀 (10)의 음극및 제 1외장재 (111)의 바닥면사이에 소프트한리튬금속포일 (군 1 )을더 포함하는경우,제 1외장재 (111)및 제 2 외장재 (112)와 단위 셀 (10)의 양극 및 음극 간의 통전 특성을 보다 향상시킬수있다.

본실시예에 따른 이차전지는 밀봉특성이 우수하므로장치 보전이 가능하고, 이를후술할모놀리식 전지 모듈에 적용하는경우매우용이하다. 도 3은다른실시예에 따른이차전지를개략적으로나타낸것이다. 도 3을 참고하면, 다른실시예에 따른 이차 전지 ' (200)는본 발명의 일 실시예에 따른 전고체 전지로 구성된 단위 셀 (10)이 일.방향으로 복수 개가적층되어 전기적으로연결된구조일수있다.

상기 단위 셀 (10)은직렬로연결되므로고전압의 장치에 이차전지를 적용하고자하는경우, 매우유리하다.

단위 셀 (10)이 복수개가적층되는것을제외한다른특징은도 2를 참고하여 설명한 일 실시예에 따른 이차 전지와 동일한 바 여기서는 생략하기로한다.

도 4는 일 실시예에 따른 모놀리식 전지 모듈을 개략적으로 나타낸 것이다.

도 4를참고하면,모놀리식 전지 모듈 (300)은,일실시예에 따른이차 전지 (100) 및 상기 이차 전지 (100)와 전기적으로 연결된 방사성 동위원소 전지 (50)를포함한다.

상기 방사선 동위원소 전지 (50)는 예를 들면/ -63, ¾-147, 11-3, -90, ¾_238및어-60를사용하는전지 중적어도하나일수있다. 또한, 상기 이차 전지 (100) 및 상기 방사성 동위원소 전지 (50)는, 제어부 (40)를 매개로연결될수 있다. 상기 제어부 (40)는, 방사성 동위원소 전지 (50)로부터 방출되는미세전류를전력 소모를최대한낮추어 상기 이차 전지로효율적으로저장하는역할을한다.

또한, 상기 제어부 (40)는 저속 충전 (tr ickle charging)이 가능하기 때문에 방사선 동위원소로부터 생성되는 nA급 미세 전류를 효과적으로 포집할수있다.

한편, 본 실시예에서 상기 전지 모듈 (300)에 포함되는 이차 전지로 다른실시예에 따른이차전지 (200)가적용될수있음은물론이다.

도 10은또다른일실시예에 따른모놀리식 전지 모듈을개략적으로 나타낸것이다.

도 10을참고하면, 모놀리식 전지 모듈 (400)은, 일실시예 따른이차 전지 (100) 및 상기 이차 전지 (100)와 전기적으로 연결된 방사성 동위원소 전지 (50)뿐만이 아니라, 에너지 하베스팅 소자 (60, Energy harvest ing devi ces) 및센서 (70)를더 포함한다.

상기 방사선 동위원소 전지 (50)는 예를 들면, Ni-63, Pm- 147, H_3, Sr-90, Pu-238및 Co_60를사용하는전지 중적어도하나일수있다.

또한, 상기 이차 전지 (100) 및 상기 방사성 동위원소 전지 (50)는, 제어부 (40)를매개로연결될수 있다. 상기 제어부 (40)는, 방사성 동위원소 전지 (50)로부터 방출되는미세전류를전력 소모를최대한낮추어 상기 이차 전지로효율적으로저장하는역할을한다.

또한, 상기 제어부 (40)는 저속 충전 (tr i ckle charging)이 가능하기 때문에 방사선 동위원소로부터 생성되는 nA급 미세 전류를 효과적으로 포집할수있다.

또한, 상기 에너지 하베스팅 소자 (60)는 충전을 위한 전원소스의 역할을한다.

또한, 센서 (70)는전지의 부하의 역할을한다.

한편, 본 실시예에서 상기 전지 모듈 (400)에 포함되는 이차 전지로 다른실시예에 따른이차전지 (200)가적용될수있음은물론이다.

이하본 발명의 바람직한실시예 및 이에 따른 실험예를 기재한다. 그러나 하가실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는것은아니다.

실시예 1-고용량전고체전지 단위셀제조

(1)고체전해질로이루어진전지지지체의 제조

먼저, Lis .g sLaaZruTaojB Q. sAl t uOu조성의 고체 전해질을제조하였다. 원료물질로, Li0H-H 20 (Al fa Aesar, 99.995%) , La 203( Kanto, 99.99%) , Zr0 2( Kanto, 99%) , Ta 205 (Aldr i ch, 99%) , H 3 B0 3 (Aldr ich, 99.9%) , 및 Y_Al 203( Aldr i ch, 99%)을각각준비하였다.

이때,상기 La 203 분말은 900 ° C 에서 24시간건조하여 흡착된수분을 모두 제거하였으며, 상기 Li0H-H 20 분말 역시 200 ° C 에서 6시간 건조하여 표면에 흡착된수분을제거하였다.

다음으로, La 203 분말, Zr0 2 분말, Ta 205 분말, H 3 B0 3 분말, 및 Y_A1 203 분말을, 상기 목적하는 Li 6.98 La 3 Zr 1.65 Tao .35 Bo .3 Alo. 2 O 12 의 몰비에 부합하도록 각각칭량하였다.

또한, 리륨 원료 물질인 Li0H¾0분말의 경우, 추후 펠렛 소결 시 리륨이 휘발되는 것을 고려하여, 상기 목표 조성 대비 약 5 mol% 정도 과량 (excess)으로준비하였다. 이 경우, 액상소결 ( l iquid phase s inter ing) 효과를기대할수도있다.

다음,상기건조된 La此및 U0H¾0분말과함께 Zr0 2 분말, Ta 205 분말, HsBOs 분말, 및 Y_A1 2 0 3 분말을 혼합하고, 직경 3mm 및 5mm의 지르코니아 (Zi rconi a)가 1: 1의 비율로 혼합된 볼과 함께 Nalgene bott le에 장입한뒤、 무수 이소프로필알콜 ( Isopropyl alcohol)을첨가하고 25 °C에서 24시간동안볼밀하였다. 이때, 혼합성능을 개선하기 위해, 분산제로 28% 농도의 암모니아수를소량 (상기 혼합분말의 전체중량에 대해, 약 1중량%) 첨가하였다.

상기 볼밀된분말을 200 ° C 의 건조로에서 24시간건조한후, 900 V 의 소결로에서 7시간소성하였으며,이때의 승온속도는 2 °C/min였다.상기 소성된 분말을 25 °C에서 12 시간 동안볼밀함으로써, 평균 입경이 2 m 이하로균일한고체 전해질분말을수득할수있었다.

구체적으로, 상기 수득된 고체 전해질 분말은, Li6.98La3Zn.65Ta0.3 5 B0.3Al0.2O12 의 조성을 만족하는 가넷 구조의 산화물 분말이다. 이를건조한뒤, 성형 몰드 (mold)로 2ton/cm 2 의 압력을 인가하여 펠렛 (pel let)으로형성한뒤, 산소분위기, 14시간동안소결하였다. 이때, 상기 소결 시 승온 온도는 2 °C /min로 하며, 최종 소결 온도는 950 ° C로 제어하였다.

이렇게 제조된 펠렛은, 3.53x l0 -4 S/cm의 리튬 이온 전도도를 나타내었으며, 펠렛 밀도 4.6 g/cm 3 , 활성화에너지 4.2 의 특성을 나타내었다'

이렇게 제조된 고체 전해질 펠렛 (pel let)은 전지 지지체로사용하기 위해 두께를감소시켜야하며, 건식법으로연마 (pol i shing)하여 최종두께를 약 400 ^■ 로하였다.

(2)이온전도체의 제조

양극 활물질 분말과 분말 사이에서 리튬 이온 이동을 매개해줄 고체상태의 상온 이온전도체로는 트리 리륨 보레이트 ( l i thium borate)화합물 (Li3B03)을사용하였다.

구체적으로, 원료 물질로는 Li0H-H 2 0(Al fa Aesar , 99.9%) 및

H 3 B0 3( Aldr i ch, 99.9%)를목적하는조성의 몰비에 맞게 칭량하여 준비하였다. 상기 준비한 각 원료 물질을 균일하게 혼합한 후, 상기 혼합물을 도가니에 넣고 600 °C에서 12시간동인 ^열처리하였다.

열처리된화합물은분쇄 공정을거친후분급하여 평균 입경이 1 크기인분말을수득하였다.

상기 분말은 수분에 민감하므로, 제조 후 이슬점 (dew point) -50 ° C이하의 드라이 룸에서 보관하였다.

(3)양극활물질의 제조

통상적인 공침법에 따라 평균 직경 (D50)이 3~4 이며, (Nio.88COo.095Mno.025) (OH) 2 조성을갖는전구체를제조하였다.

상기 전구체 및 리튬 염인 Li0H¾0(삼전화학, battery grade)를

1: 1.05몰비가되도록균일하게혼합하였다.

상기 혼합물을 내경이 50mm이고, 길이가 1,000mm 원형 노 (tube furnace)에 장입한후산소를 200mL/min로유입시키면서 소성하였다. 소성시, 480°C에서 5h 유지한 후, 700 내지 750°C에서 16h 유지하였으며, 승온속도는 5°C/min였다. 이에 따라 Li i . o 5 Nio .88 Coo . o 95 Mno . o 2502 조성을갖는양극활물질을수득하였다.

(4)양극활물질슬러리의 제조

양극 활물질로· 상기 (3)에서 제조된 Li i.o 5 Ni Q.88 Co Q.Q95 Mno.o 25()2 를 사용하고, 양극 활물질 분말과 분말 사이, 양극 집전체로부터의 원활한 전자전도를위하여 산화물계도전재의 일종인 Co 304 를사용하였다.

이때,상기 도전재는 00 3 0 4( A1 r i ch, 99.5%)를 50nm이하의 나노분말로 준비하였다.

양극 활물질 및 도전재를 균일하게 혼합한후 여기에 이온전도체인 상기 트리 리꼼 보레이트를 주가하였다. 이때, L i 1.05 N i o . 88 C0 0. o95Mno .025 O 2 : Co 304 : 리튬보레이트의 부피비는 73: 19: 8이 되도록하였다.

도전재와이온전도체가양극슬러리 내에 균일하게 분포하도록하기 위해 트리롤밀링 (three rol l mi l l ing)법으로 슬러리를 제조하였으며, 이를 3회 반복하였다. 이때, 바인더 (binder)로 에틸 셀룰로오스 (ethyl cel lulose)를 lg 첨가하였으며, 용매로 테르피네올 (Terpineol)을 사용하였다.

(5)전고체전지의 제조

(1)에서 제조한 전지 지지체는 직경이 6mm(0.28cm 2 )인 원형으로 절단하고, 상기 전지 지지체의 제 1 면에 폴리에틸렌 (polyethylene) 패턴 마스크를사용하여 (4)에서 제조한 양극 활물질 슬러리를 균일하게 도포한 후 100 ° C에서 2시간건조하여 용매를모두제거하였다.

이후, 이를가열로에 장입시켜 450 °C에서 4시간동안 1차열처리한 뒤, 600 °C에서 2시간 동안 2차 열처리하여 슬러리 내에 포함된 유기물 바인더 (binder)를 모두 제거하여 전지 지지체의 제 1 면에 양극 활물질층을 형성하였다.

상기와 같이 형성된 양극 활물질층의 전체 면적을 모두 덮을 수 있도록 8 m의 직경의 양극전류집전체를증착하였다.구체적으로, (Au)을 진공열증착방식으로증착하여, 300 ran두께로증착하였다.

다음,전지 지지체의 제 2면에는,진공열층착방식으로 3 pm두께 및 2019/098613 1»(:1^1{2018/013638

8■의 직경으로리튬(니)금속을증착하여 전고체 전지를제조하였다.

이렇게 제조된 전고체 전지는, 고체 전해질로 이루어진 전지 지지체의 양면에, 각각양극및 음극이 위치하고, 상기 전지 지지체가상기 양극및상기 음극을서로분리시켜주는구조이다.

(6)전고체전지를포함하는이차전지의 제조

(5)와같이 제조된 전고체 전지로구성된 단위 셀을 일 면에 개구를 포함하며 바닥면에 금속단자를포함하는세라믹으로이루어진제 1외장재 내부에 수납하였다. 이때, 단위 셀은음극이 하부를향하고, 양극이 개구를 향하도록배치하였다.

다음, 200_ 두께의 리륨 금속 포일 1 )을 제 1 외장재의 바닥 면적에 맞게 재단한후, 바닥면에 배치하였다.

제 1 외장재의 개구는 금속으로 이루어진 제 2 외장재를 이용하여 밀봉한다.구체적으로,제 1외장재의 개구테두리에 금속재질의 지지 부재를 배치한 후 상기 지지 부재와 제 2 외장재를 접촉시킨 다음, 이를 레이저 용접한다.

이때, 도전성 금 11) 페이스트를 사용하여 상기 단위 셀을 제 2 외장재와부착시켜 도 2와같은구조를갖는이차전지를제조한다.

실시예 2

(4)에서 양극활물질슬러리 제조시나 1.05 1 0. 88 00.095 11().()25 0 2 : 0 03 0 4 : 트리 리륨보레이트의 부피비는 63 : 29 : 8이 되도록 한것을제외하고는 실시예 1의 (1)내지 (6)과동일한방법으로이차전지를제조하였다.

실시예 3

실시예 1에서 (1)내지 (5)와동일한방법으로제조된 전고체 전지를 4. 까지 충전한 후 2개를 직렬로 적층한 후 실시예 1의 (6)과 동일한 방법으로이차전지를제조하였다.

실시예 4

실시예 1에서 (1)내지 (5)와동일한방법으로제조된전고체 전지를 4. 까지 충전한 후 3개를 직렬로 적층한 후 실시예 1의 (6)과 동일한 방법으로이차전지를제조하였다.

실시예 5 2019/098613 1»(:1^1{2018/013638

실시예 1에서 (1)내지 (5)와동일한방법으로제조된전고체 전지를 4. 까지 충전한 후 2개를 병렬로 적층한 후 실시예 1의 (6)과 동일한 방법으로이차전지를제조하였다.

실시예 6

실시예 1에서 (1) 내지 (5)와동일한방법으로제조된 전고체 전지를

4.2까지 충전한 후 3개를 병렬로 적층한 후 실시예 1의 (6)과 동일한 방법으로이차전지를제조하였다.

실시예 7

실시예 1에서 (1)내지 (5)와동일한방법으로제조된전고체 전지를 . 4. 까지 충전한 후 5개를 병렬로 적층한 후 실시예 1의 (6)과 동일한 방법으로이차전지를제조하였다.

실시예 8

실시예 1에서 (1)내지 (5)와동일한방법으로제조된 전고체 전지를 4. 까지 충전한 후 7개를 병렬로 적층한 후 실시예 1의 (6)과 동일한 방법으로이차전지를제조하였다.

비교예 1

양극 활물질로 평균 직경어50)이 5 안 니00 2 를 사용하는 것을 제외하고는 실시예 1의 (1) 내지 (6)과 동일한 방법으로 이차 전지를 제조하였다.

참고예 1

(4)에서 양극활물질슬러리 제조시니 1.05 . 88 0 0().095 1 10.025 0 2 : 0 03 0 4 : 트리 리튬 보레이트의 부피비는 83 : 9 : 8이 되도록 한 것을 제외하고는 실시예 1의 (1)내지 (6)과동일한방법으로이차전지를제조하였다.

참고예 2

(4)에서 양극활물질슬러리 제조시

트리 리튬 보레이트의 부피비는 90 : 2 : 8이 되도록 한 것을 제외하고는 실시예 1의 (1)내지 (6)과동일한방법으로이차전지를제조하였다.

참고예 3

(4)에서 양극활물질슬러리 제조시니 1.05 0.88( ¾ ).095¾1¾. ( 여 : 0 03 0 4 : 트리 리튬보레이트의 부피비는 54 : 38 : 8이 되도록 한것을 제외하고는 실시예 1의 (1)내지 (6)과동일한방법으로이차전지를제조하였다.

참고예 4

(4)에서 양극활물질슬러리 제조시 Li i . o 5 Nio .88 Coo . o 9 sMno .025 O 2 : C03O 4 : 트리 리륨보레이트의 부피비는 45 : 47 : 8이 되도록 한것을제외하고는 실시예 1의 (1)내지 (6)과동일한방법으로이차전지를제조하였다.

실험예 1

(1)유기계전해액을사용하는이차전지의 제조

양극 활물질로 Li i . o 5 Nio .88 Coo . o 95 Mno . o 25 0 2 92.5중량%, 도전재로 덴카 블랙 (denka black) 3.5 중량%, 바인더로 폴리비닐리덴플루라이드 (PVDF, KF1100) 4중량%를고형분이 약 30%가되도록 NMP(N-Methy卜 2-pyrrol idone) 용매에 혼합하여 양극활물질슬러리를제조하였다.

알루미늄 호일 (A1 foi l )에 상기 양극 활물질 슬러리를 닥더 블래이드 (Doctor blade)를 이용하여 1¾· 두께로 도포 및 건조시킨 후 압연하여 양극을제조하였다.

이때, 전극로딩량은 14.6mg/cm 2 , 압연밀도는 3.1g八: m 3 이었다.

상기와 같이 제조한 양극 및 상대 전극으로 200m 두께의 리륨 금속 (Li-metal, Honzo metal )을 사용하고, 전해액으로는 에틸렌 카보네이트 (EC, Ethylene Carbonate) : 디메틸 카보네이트 (DMC, Dimethyl Carbonate) : 에틸메틸 카보네이트 (EMC, Ethyl Methyl Carbonate)의 부피 비율이 3:4:3인혼합용매에 1몰의 LiPF 6 용액을용해시킨것을사용하였다. 상기 각 구성 요소를 사용하여, 통상적인 제조방법에 따라 코인 셀 (CR2032)타입와이차전지를두세트 (set)제조하였다.

(2)충전및방전테스트의진행

상기 (1)에 따라 제조된 이차 전지를 이용하여 충전 및 방전 테스트를수행하였다.

용량 평가는 212mAh/g을 기준용량으로 하였고, 충방전조건은 CC/CV 2.5-4.25V, 1/20C cut-of f를적용하였다. 초기 용량은 0.1C충전八). : LC방전후, 0.2C충전八).2C방전을수행한결과로부터 산출하였다.

상기 (1)에 따라제조된 이차전지 중한세트는방사선조사용으로 사용하고, 다른 한 세트는 비교용으로 사용하였다. 이때, 방사선 조사는 2019/098613 1»(:1^1{2018/013638

고에너지 방사선 선을 0.5¾로 30초간 15번 로조사하였다. 도 5에는 유기계 전해액을사용하는 이차 전지에 대한 방사선 조사 전후의 결과를나타내었다.

도 5를참조하면, 방사선조사전의 유기계 전해액을사용하는이차 전지는 약 210 01 새 의 방전용량과 4. 와 영역에서 근 를 갖는 정상적인 충전 및 방전 곡선을나타냄을 알수 있다. 그러나, 방사선조사 후의 유기계 전해액을 사용하는 이차 전지는 201.¾ 1 새/요으로 방전용량이 감소하였다.

또한, 충전 중 3.6 내지 3/ 부근에서 전압이 상승하지 못하고 끌리는 현상과 방전 중 3.7 이하에서 급격한 전압강하현상이 관찰되었다. 이를 통해 방사선 조사 후의 이차 전지는 전지내부에 인터칼레이 무관한비패러데이 0 1011- £ 3 대(1 3 1(:)현상등의 부반응이 발생하는것을알수있다.

이를통해유기계 전해액을사용하는이차전지에 방사선을조사하는 경우 전해질의 분해 또는 전극 표면에서의 표면 반응이 전지 열화의 주요 원인으로작용하는것을추론할수있다.

실험예 2

실시예 1에 따라제조된 이차전지의 전극지지체 및 양극의 단면을 450배율로측정한 요 사진을도 6에 나타내었다.

도 6을 참고하면, 산화물계 고체 전해질 용대比)들로 이루어진 전지 지지체(도 6의 6부분)층이 매우치밀하게 형성되어 있음을 확인할수있다.

또한, 상기 전지 지지체 상에 양극 활물질층(도 6의 1부분)이 약 50^ 두께로 형성되었으며, 상기 양극 활물질층의 상부에 양극 집전체(도 6의 0부분)가증착된것을확인할수있다.

특히, 고체 전해질로 이루어진 전지 지지층과 양극활물질층이 탈리 또는 탈착 현상 없이 계면이 치밀하게 잘 형성된 것을 알 수 있다. 이에 따라, 리튬이온이 상기 계면을따라원활하게 이동할수있음을추론할수 있다.

실험예 3 실시예 1에 따라 제조된 이차 전지의 양극 활물질층을 이온빔 단면 가공장치 (CP, Cross Sect ion Pol i sher)를 이용하여 가공한 후 전자선 마이크로 · 애널라이저 (FE_EPMA(Field Emi ss ion Electron Probe Micro-Analyser )를 이용하여 양극 활물질층 내에 포함되는 각구성 원소를 매핑하여 그결과를도 7에 나타내었다.

실시예 1에 따른 양극 활물질층 내에서 양극 활물질 (NCM) :도전재 (CO30 4) : 이온 전도체 (LB0)는 73: 19:8 八0의 조성을 갖는다.

도 7을 참고하면, 의 매핑 결과로부터 양극 활물질로사용한 NCM 소재가양극활물질층내에 균일하게분포하고있음을알수있다.

또한, Co의 매핑 결과로부터 도전재로 사용한 Co 3 0 4 가 양극 활물질 사이에 균일하게분포하고있음을알수있다.

묘의 매핑 결과로부터 이온 전도체로 사용한 리륨 보레이트 (Lithium borate) 역시 양극활물질사이에 고르게분포함을확인할수있다.

실험예 4

실시예 1내지 2, 참고예 1내지 4및 비교예 1에 따라제조된 이차 전지에 대하여 4.2V내지 3V영역에서의 초기 방전량을측정하여 그결과를 하기 표 1에 나타내었다.

구체적으로,건조실 (dry room)내에서,실시예 1내지 2,참고예 1내지 4 및 비교예 1에 따라 제조된 이차 전지에 대하여, 상온에서 스테인레스 스틸 (stainless steel )로제작된외부연결단자를연결하고, 충방전기 (VMP3 , bioLogics사)를 사용하여 10 uA전류를 정전류로 인가하면서 전지의 방전 용량을측정하였다

【표 1]

표 1을참고하면, NCM88조성의 양극활물질을사용함과동시에 양극 활물질층내에 양극활물질이 적어도 60내지 80부피%이상포함되는경우, 단위 면적당약 0.41mAh八: m 2 내지 약 0.43mAh八: m 2 의 방전용량을나타낸 .것을 확인할수있다.

' 그러나, NCM88 조성의 양극 활물질을 사용하더라도 양극 활물질층 내에 양극활물질이 80부피%를초과하는참고예 1및 2와양극활물질이 60 부피%미만으로 포함되는 참고예 3 및 4의 경우, 단위 면적당 방전용량이 현저하게 저하됨을확인할수있다.

또한, 1X0조성의 양극 활물질을사용한비교예 1의 경우에도 단위 면적당방전용량이 실시예들과비교할때 현저하게 저하됨을알수있다.

실험예 5

실시예 1에 따라제조된이차전지의 자가방전율을확인하기 위하여 개방전압 (OCV, open circui t vol tage)을측정하였다.

구체적으로, 실시예 1에 따라 제조된 이차 전지에 대하여, 초기에 4.2V까지 충전한 후 이를 대기 분위기 하에서 상온 (25°C)으로 방치한 후,

1주일 간격으로 10주동안 전지의 0CV및 용량.변화를 기록하였다. 결과는 도 8에 나타내었다.

도 8을 참고하면, 실시예 1에 따른 이차 전지는 초기에 4.02V의 0CV룰나타내었고, 이는 10주가경과하는동안거의 일정하게유지되었다. 즉, 10주후에도 실시예 1에 따라 제조된 이차 전지의 0CV는 3.98V 이상으로자가방전율특성이 우수한것을알수있다.

또한, 실시예 3및 4에 따라제조된 이차전지에 대하여 전술한것과 동일한 방법으로 초기 0CV를 측정하고, 실험예 4와 동일한 방법으로 단위 면적당방전용량을측정하였다. 결과는하기 표 2에 나타내었다.

【표 2]

2019/098613 1»(:1^1{2018/013638 표 2를 참고하면, 실시예 3에 따라 제조된 이차 전지는 8.03의 00를 나타내었으며, 이를 6까지 10 의 정전류를 인가하면서 방전한 경우에도약 0.39 /(페 2 의용량을나타내었다.

또한, 실시예 4에 따라 제조된 이차 전지도 12. 의 (XV 및

0.4 八: 01 2 의 방전용량을나타내는것을확인할수있다.

따라서, 본 실시예에 따른 전고체 전지로 구성된 단위 셀을 직렬로 연결하는 경우 고전압이 요구되는 장치에 유용하게 적용할 수 있음을 확인할수있다.

실험예 6

실시예 1및 2에 따라제조된 이차전지에 대하여,실험예 1과동일한 방법으로방사선을조사한후실험예 4및 5와동일한방법으로 0( 및단위 면적당방전용량을측정하였다.

구체적으로, 고에너지 방사선인 6 로 (3선을 0.5¾로 30초간 15번 1 11136 로조사한후, 0 및방전용량을측정하였다.

그결과는표 3에 나타내었다.

【표 3】

표 3을참고하면,실시예 1및 2에 따라제조된이차전지는방사선을 조사한 후에도 0 및 단위 면적당 방전 용량에 거의 변화가 없는 것을 확인할수있다.

따라서, 유기계 전해액이나 고분자 소재가 전혀 포함되지 않는 본 발명의 실시예들과 같은 전고체 전지의 경우에는 내방사선 특성이 우수한 바, 고에너지 방사선 조사 환경에서도 전혀 영향을 받지 않고 전력을 2019/098613 1»(:1^1{2018/013638

저장하는것을알수있다.

실험예 7

실시예 1에 따라제조된 전고체 전지에 대하여, 1 1 의 부하를 갖는 10) 패널에 연결하여 구동 여부를 테스트 하였다. 테스트 과정은 도 9에 나타내었다.

구체적으로, 이차 전지의 전극 단자는

근 )로제작된지그에 (+)와(-)를집게를이용하여 고정한후, 1X1)패널에 연결하였다.

이때, 스테인레스 스틸 지그(』 )는 전지의 쇼트를 방지하기 위해 폴리카보넨이트( 1> 31 1 3011 6 )내부에 삽입되도록설계하였다.

테스트 결과 실시예 1에 따른 전고체 전지에 연결된 抑단자는 약 400시간이상정상적으로작동하였다.

실험예 8

◦ .½새八: III 2 의 단위면적당 용량을 가진 단위셀을 병렬로 연결한 실시예 5 내지 8에 따라 제조된 전고체 전지에 대하여, 전지용량을 측정하였다. 이 때, 전지용량의 측정방법은양극슬러리 코팅 면적 0.280 11 2 을 고려하여, 전지용량만을측정하였으며,실시예 1의 (6)의 외장재에 배치하기 전에 구리배선을 이용하여 각 단위셀의 양극부는 양극부대로, 음극부는 음극부대로연결시킨후 10 /전지갯수를인가하여 방전용량을측정하였다. 결과는하기 표 4에 나타내었다.

[표 4]

표 4를참고하면, 전지 패키지 내에 병렬로연결된전지를삽입하여, 단위셀의 낮은용량을극복한다는것을알수있었다.

본발명은상기 실시예들에 한정되는것이 아니라서로다른다양한 2019/098613 1»(:1^1{2018/013638

형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 5 한정적이 아닌것으로이해해야만한다.

【부호의 설명】

1: 양극활물질

2: 이온전도체

3: 도전재

10 4: 양극집전체

5: 양극활물질층

11: 양극

12: 음극

13: 전지 지지체

15 10: 전고체 전지

30: 지지부재

40 : 제어부

50: 방사성 동위원소전지

51: 전극

20 60: 에너지 하베스팅 소자 .

70: 센서

100, 200: 이차전지

111: 제 1외장재

112: 제 2외장재 '

25 300, 400: 모놀리식 전지 모듈