Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ALPHA-SUBSTITUTED OMEGA-3 LIPIDS THAT ARE ACTIVATORS OR MODULATORS OF THE PEROXISOME PROLIFERATORS-ACTIVATED RECEPTOR (PPAR).
Document Type and Number:
WIPO Patent Application WO/2008/053331
Kind Code:
A1
Abstract:
Omega-3 lipid compounds of the general formula (I): wherein R1 and R2 are the same or different and may be selected from a group of substitu- ents consisting of a hydrogen atom, a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an al- kynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a car- boxy group, an alkylsulfmyl group, an alkylsulfonyl group, an amino group, and an alkylamino group; - X represents a carboxylic acid or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide; and - Y is a C16 to C22 alkene with two or more double bonds, having E and/or Z configuration, are disclosed. Also disclosed are pharmaceutical compositions and lipid compositions comprising such compounds, and to such compounds for use as medicaments in particular for the treatment of cardiovascular and metabolic diseases.

Inventors:
BRYHN MORTEN (NO)
HOLMEIDE ANNE KRISTIN (NO)
ROSMAN JENNY (SE)
Application Number:
PCT/IB2007/003305
Publication Date:
May 08, 2008
Filing Date:
November 01, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PRONOVA BIOPHARMA NORGE AS (NO)
BRYHN MORTEN (NO)
HOLMEIDE ANNE KRISTIN (NO)
ROSMAN JENNY (SE)
International Classes:
C07C69/587; A61K31/202; A61K31/232; A61P1/16; A61P3/04; A61P3/10; A61P29/00; C07C57/13; C07C69/602; C07C69/732; C07C69/734; C07C229/30; C07C323/54; C11C3/00; A61K49/00
Domestic Patent References:
WO2004078166A22004-09-16
WO2005060954A12005-07-07
Foreign References:
US4264517A1981-04-28
EP1544281A12005-06-22
US5656667A1997-08-12
US20040162348A12004-08-19
US20060135610A12006-06-22
Other References:
DATABASE CAPLUS [online] KUKLEV D.V. ET AL.: "Synthesis of C2-elongated polyunsaturated fatty acids", XP003021300, accession no. STN Database accession no. (1996:483717)
LARSEN L.N. ET AL.: "alfa- and beta-Alkyl-Substituted Eicosapentaenoic Acids", BIOCHEMICAL PHARMACOLOGY, vol. 55, no. 4, 1998, pages 405 - 411, XP003021299
VAAGENES H. ET AL.: "Low Doses of Eicosapentaenoic Acid, Docosahexaenoic Acid, and Hypolipidemic Eicosapentaenoic Acid Derivatives Have No Effect on Lipid Peroxidation in Plasma", LIPIDS, vol. 33, no. 11, 1998, pages 1131 - 1137, XP000878922
KATO T. ET AL.: "Abnormal Catabolites of Unsaturated Fatty Acids by In Vitro Reaction of Crude Enzyme from Infected Higher Plants", CHEMISTRY LETTERS, vol. 4, 1994, pages 761 - 762, XP003021501
MEYER A. ET AL.: "Biosynthesis of Docosahexaenoic Acid in Euglena gracilis: Biochemical and Molecular Acyl Group Desaturase", BIOCHEMISTRY, vol. 42, no. 32, 2003, pages 9779 - 9788, XP002298344
LARSEN L.N. ET AL.: "Sulfur-Substituted and alfa-Methylated Fatty Acids as Peroxisome Proliferator-Activated Receptor Activators", LIPIDS, vol. 40, no. 1, 2005, pages 49 - 57, XP003000338
See also references of EP 2094640A4
Download PDF:
Claims:

CLAIMS

1. An omega-3 lipid compound of formula (I):

wherein

- R 1 and R 2 are the same or different and may be selected from a group of substitu- ents consisting of a hydrogen atom, a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an al- kynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a car- boxy group, an alkylsulfinyl group, an alkylsulfonyl group, an amino group, and an alkylamino group;

- X represents a carboxylic acid or a derivative thereof, a carboxylate, a carboxylic anhydride, or a carboxamide; and

- Y is a C 16 to C 22 alkene with two or more double bonds, having E and/or Z con- figuration;

or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof,

with the provisos that: • R 1 and R 2 are not simultaneously a hydrogen atom or a fluorine atom; and

• the compound of formula (I) is not: o a 2-substituted (all-Z)-4,7, 10, 13 , 16, 19-docosahexaenoic acid in the form of a carboxylic acid, a carboxylate, a carboxylic anhydride or a carboxamide, o (all-Z)-2-methyl-5,8, 11,14,17 eicosapentaenoic acid, or its ethyl ester;

(all-Z)-2-ethyl-5,8,l 1,14,17 eicosapentaenoic acid, or its ethyl ester;

o (all-Z)-2,2-dimethyl-5,8, 11 , 14, 17 eicosapentaenoic acid, or its ethyl ester; o (all-Z)-2-benzyl-5,8, 11 , 14, 17 eicosapentaenoic acid, or its ethyl ester; or o (all-Z)-2-hydroxy-9,12,15-octadecatrienoic acid, or its ethyl ester. o (all-Z)-2-carboxy-6,9,12,15,18,21-tetracosahexaenoic acid o ethyl (all-Z)-2-ethoxycarbonyl-6,9, 12, 15,18,21 -tetracosahexaenoate

2. A compound according to claim 1, wherein Y is a C 16 -C 20 alkene with 2-6 double bonds.

3. A compound according to claim 1, wherein Y is a C 16 -C 20 alkene with 2-6 methylene interrupted double bonds in Z configuration.

4. A compound according to claim 1, wherein Y is a C 16 -C 20 alkene with 3-5 double bonds.

5. A compound according to claim 1, wherein Y is a C 16 -C 20 alkene with 3-5 methylene interrupted double bonds in Z configuration.

6. A compound according to claim 1, wherein Y is a C 2 o alkene with 5 double bonds in Zconfiguration.

7. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration.

8. A compound according to claim 1, wherein Y is a C 16 alkene with 3 double bonds in Z-configuration.

9. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration.

10. A compound according to any one of the claims 1-9 in the form of a salt

wherein X is COO " ,

Z + is selected from the group consisting OfLi + , Na + , K + , NH 4 + ,

Meglumine,

Tris(hydroxymethyl)aminomethane,

H 2 + Diethylamine, and

Arginine

11. A compound according to any one of the claims 1-9 in the form of a salt

wherein X = COO " ,

16

Z 7 2+ is selected from the group consisting of Mg .2+ , / C-.a„2' 2++

Ethylenedi amine, and

Piperazine

12. A compound according any one of the claims 1-9 in the form of a salt

wherein X is COO " Z n+ is

Chitosan

13. A compound according to any one of the claims 1-9, wherein X is a carboxylic acid in the form of a phospholipid, represented by formula (II)

wherei

14. A compound according to any one of the claims 1-9 wherein X is a carboxylic acid in the form of a phospholipid, represented by formula (III)

wherei

15. A compound according to any one of the claims 1-9, wherein X is a carboxylic acid in the form of a phospholipid, represented by formula (IV)

(IV)

wherein

16. A compound according to any one of the claims 1-9, wherein X is a carboxylic acid in the form of a triglyceride, represented by formula (V)

17. A compound according to any one of the claims 1-9, wherein X is a carboxylic acid in the form of a 1-monoglyceride, represented by formula (VI)

18. A compound according to any one of the claims 1-9, wherein X is a carboxylic acid in the form of a 2-monoglyceride, represented by formula (VII)

19. An omega-3 lipid compound selected from the group derived from:

• (all-Z)- 9, 12, 15-octadecatrienoic acid

• (all-2)-6,9,12,15-octadecatetraenoic acid

• (all-Z)-7,10,13,16 5 19-docosapentaenoic acid

• (all-2)- 11 , 14, 17-eicosatrienoic acid

• (all-Z)-6,9, 12, 15, 18,21 -tetracosahexaenoic acid

• (4E, 8Z, 1 IZ, UZ, 17Z)-4,8,11,14,17-eicosapentaenoic acid

• (5E, 8Z 3 1 IZ, 14Z, 17Z)-5,8,11,14,17-eicosapentaenoic acid

• (all-Z)-8,l l,14,17-eicosatetraenoic acid • (4E, IZ, 1 OZ, 13Z, 16Z, 19Z)-A, 1, 10, 13, 16, 19-docosahexaenoic acid

in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide,

or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof,

wherein said compound is substituted at carbon 2, counted from the functional group of the omega-3 lipid compound, with at least one substituent selected from the group consisting of:

a hydrogen atom, a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an alkynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a carboxy group, an alkylsulfmyl group, an alkylsulfonyl group, an amino group, and an alkylamino group

with the provisos that the omega-3 lipid compound is not o substituted with two hydrogen atoms o (all-Z^-carboxy-βj^πjlSjlδ^l-tetracosahexaenoic acid o ethyl (all-Z)-2-ethoxycarbonyl-6,9,12,15,18,21-tetracosahexaenoate o (all-Z)-2-hydroxy-9,12,15-octadecatrienoic acid or ethyl (all-Z)-2-hydroxy-9, 12,15-octadecatrienoate.

20. A compound according to any one of the claims 1-12 or claim 19, wherein said compound is

(all-Z)-2-ethyl-ll,14,17-eicosatrienoic acid meglumine salt

21. A compound according to any one of the claims 1-12 or claim 19, wherein said compound is

(all-Z)-2-ethyl-9,12,15-octadecatrienoic acid magnesium salt

22. A compound according to any one of the claims 1-12 or claim 19, wherein said compound is

(all-Z)-2-ethyl-7, 10,13,16,19-docosapentaenoic acid tris(hydroxymethy)aminomethane salt

23. A compound according to any one of the claims 1-12 or claim 19, wherein said compound is

(all-Z)-2-ethyl-7,l 0,13, 16,19-docosapentaenoic acid ammonium salt

24. An omega-3 lipid compund, which is derived from

(all~Z)-5,8,l 1,14,17-eicosaρentaenoic acid (EPA), represented by the formula (VIII)

in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, represented by X

or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof,

wherein R 1 and R 2 are the same or different and may be selected from the group consisting of a hydrogen atom, a hydroxy group, a C 3 -C 7 alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an alkynyl group, an alkylthio group, an alkoxycarbonyl group, a carboxy group, an alkylsulfmyl group, an alkylsulfonyl group, an amino group, and an alkylamino group,

with the proviso that R 1 and R 2 are not simultaneously a hydrogen atom.

25. A compound according to claim 24, wherein R 1 and R 2 are selected from the group consisting of a hydrogen atom, a C 3 -C 7 alkyl group, an alkoxy group, an alkylthio group, an amino group, an alkylamino group, an alkoxycarbonyl group, and a carboxy group.

26. A compound according to claim 25, wherein R 1 and R 2 are selected from the group consisting of a hydrogen atom, a C 3 -C 7 alkyl group, a Ci-C 7 alkoxy group, a Ci-C 7 alkyltio group, an amino group, a Ci-C 7 alkylamino group, a Ci-C 7 alkoxycarbonyl group, and a carboxy group.

27 . A compound according to claim 26, wherein said C 3 -C 7 alkyl group is propyl; said Ci-C 7 alkoxy group is methoxy, ethoxy or propoxy; said C 1 -C 7 alkylthio group is methylthio, ethylthio, or propylthio; said C 1 -C 7 alkylamino group is ethylamino or diethylamino; and

X represents a carboxylate or a carboxylic acid

28. An omega-3 lipid compund, which is derived from

(all-Z)-5,8,l 1,14,17-eicosapentaenoic acid (EPA), represented by the formula (VIII)

in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, represented by X

or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof,

wherein said compound is substituted at carbon 2, counted from the functional group of the omega-3 lipid compound, with two substituents, represented by R 1 and R 2 , selected from the group consisting of:

a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an alkynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a carboxy group, an alkylsulfinyl group, an alkylsulfonyl group, an amino group, and an alkylamino group,

with the proviso that said compound is not 2,2,-dimethyl-5,8,l 1,14,17 eicosapentaenoic acid.

29. A compound according to claim 28, wherein R 1 and R 2 are selected from the group consisting of an alkyl group, an alkoxy group, an alkylthio group, an amino group, an alkylamino group, an alkoxycarbonyl group, and a carboxy group.

30 . A compound according to claim 29, wherein R 1 and R 2 are selected from the group consisting of a C 1 -C 7 alkyl group, a C 1 -C 7 alkoxy group, a C 1 -C 7 alkyltio

group, an amino group, a C 1 -C 7 alkylamino group, a C 1 -C 7 alkoxycarbonyl group, and a carboxy group.

31. A compound according to claim 30, wherein said C 1 -C 7 alkyl group is methyl, ethyl, or propyl; said C 1 -C 7 alkoxy group is methoxy, ethoxy or propoxy; said C 1 -C 7 alkylthio group is methylthio, ethylthio, or propylthio; said C 1 -C 7 alkylamino group is ethylamino or diethylamino; and X represents a carboxylate or a carboxylic acid

32. An omega-3 lipid compound according to any one of the claims 1-9, 19, 24-26. 28-30, wherein said derivative of a carboxylic acid is a phospholipid, or a tri-, di-, or monoglyceride.

33. An omega-3 lipid compund, which is derived from

(all-Z)-5,8,l 1,14,17-eicosapentaenoic acid (EPA), represented by the formula (VIII)

in the form of a phospholipid, a tri-, di-, or monoglyceride, a carboxylate, a carboxylic anhydride or a carboxamide, represented by X, or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof,

wherein R 1 and R 2 are the same or different and may be selected from the group consisting of a hydrogen atom, a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an alkynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a carboxy group, an alkylsulfmyl group, an alkylsulfonyl group, an amino group, and an alkylamino group,

with the provisos that

• R 1 and R 2 are not simultaneously a hydrogen atom, and said compound is not:

• (all-Z)-2-methyl-5, 8,11,14,17 eicosapentaenoic acid, or its ethyl ester; • (all-Z)-2-ethyl-5 ,8, 11 , 14, 17 eicosapentaenoic acid, or its ethyl ester;

• (all-Z)-2,2-dimethyl-5,8, 11 , 14, 17 eicosapentaenoic acid, or its ethyl ester

34. A compound according to claim 33, wherein R 1 and R 2 are selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an amino group, an alkylamino group, an alkoxycarbonyl group, and a carboxy group.

35. A compound according to claim 34, wherein R 1 and R 2 are selected from the group consisting of a hydrogen atom, a C 1 -C 7 alkyl group, a C 1 -C 7 alkoxy group, a C 1 -C 7 alkyltio group, an amino group, a C 1 -C 7 alkylamino group, a C 1 -C 7 alkoxycarbonyl group, and a carboxy group.

36. A compound according to claim 35, wherein said C 1 -C 7 alkyl group is methyl, ethyl, or propyl; said C 1 -C 7 alkoxy group is methoxy, ethoxy or propoxy; said C 1 -C 7 alkylthio group is methylthio, ethylthio, or propylthio; said C 1 -C 7 alkylamino group is ethylamino or diethylamino; and X represents a carboxylate or a carboxylic acid.

37. A compound according to any one of the claims 33-36, represented by formula (II), wherein Y is a C 18 alkene with 5 double bonds and X is a carboxylic acid in the form of a phospholipid

(II) wherein

38. A compound according to claim 37, wherein said compound is

1 ,2-Di((all-Z)-2-ethyl-5,8, 11,14.17-eicosapentaenoyl)-s«-glycero-3-phosphocholine

39. A compound according to any one of the claims 33-36, represented by formula (HI), wherein Y is a C 18 alkene with 5 double bonds and X is a carboxylic acid in the form of a phospholipid

wherein

, or

40. A compound according to claim 39, wherein said compound is 2-(all-Z)-2-ethyl-5 ,8, 11 , 14, 17-eicosapentaenoyl-,sπ-glycero-3 -phosphoethanolamine

41. A compound according to any one of the claims 33-36, represented by formula (IV), wherein Y is a C 18 alkene with 5 double bonds and X is a carboxylic acid in the form of a phospholipid

wherein

42. A compound according to any one of the claims 33-36, represented by formula (V), wherein Y is a C 18 alkene with 5 double bonds and X is a carboxylic acid in the form of a triglyceride

43. A compound according to claim 42, wherein said compound is

l,2,3-tris((all-Z)-2-ethyl-5,8,l l,14,17-eicosapentaenoyl)->yπ-glycerol

44. A compound according to any one of the claims 33-36, represented by formula (VI), wherein Y is a C 18 alkene with 5 double bonds and X is a carboxylic acid in the form of a 1-monoglyceride

(VI)

45. A compound according to any one of the claims 33-36, represented by formula (VII), wherein Y is a C 18 alkene with 5 double bonds and X is a carboxylic acid in the form of a 2-monoglyceride

(VII)

46. A compound according to claim 45, wherein said compound is

2-((all-Z)-2-ethyl-5,8, 11 , 14, 17-eicosapentaenoyl)-w-glycerol

47. A compound according to any one of the claims 1-19 or 28-30, 33-35, wherein said alkyl group is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-buthyl, sec. -butyl, and n-hexyl.

48. A compound according to any one of the claims 24-26, wherein said alkyl group is selected from the group consisting of n-propyl, isopropyl, n-butyl, iso-buthyl, sec- butyl, n-and hexyl.

49. A compound according to any one of the claims 1-19, 24-37, 39, 41-42, 44-45 wherein said halogen atom is fluorine.

50. A compound according to any one of the claims 1-19, 24-26, 28-30, 32-35, 37, 39, 41-42, 44-45 wherein said alkoxy group is selected from the group consisting of methoxy, ethoxy, propoxy, isopropoxy, sec.-butoxy, phenoxy, benzyloxy, OCH 2 CF 3 , and OCH 2 CH 2 OCH 3 .

51. A compound according to any one of the claims 1-19, 24-37, 39, 41-42, 44-45, wherein said alkenyl group is selected from the group consisting of allyl, 2-butenyl, and 3-hexenyl.

52. A compound according to any one of the claims 1-19, 24-37, 39, 41-42, 44-45, wherein said alkynyl group is selected from the group consisting of propargyl, 2- butynyl, and 3-hexynyl.

53. A compound according to any one of the claims 1-19, 24, 28, 32-33, 37, 39, 41- 42, 44-45, wherein said aryl group is selected from a benzyl group, and a substituted benzyl group.

54. A compound according to any one of the claims 1-19, 24-26, 28-30, 32-35, 37, 39, 41-42, 44-45, wherein said alkylthio group is selected from the group consisting of methylthio, ethylthio, isopropylthio, and phenylthio.

55. A compound according to any one of the claims 1-19, 24-26, 28-30, 32-35, 37, 39, 41-42, 44-45, wherein said alkoxycarbonyl group is selected from the group consisting of methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, and butoxycarbonyl.

56. A compound according to any one of the claims 1-19, 24-37, 39, 41-42, 44-45, wherein said alkylsulfinyl group is selected from the group consisting of methanesulfinyl, ethanesulfinyl, and isopropanesulfinyl.

57. A compound according to any one of the claims 1-19, 24-37, 39, 41-42, 44-45, wherein said alkylsulfonyl group is selected from the group consisting of methanesulfonyl, ethanesulfonyl, and isopropanesulfonyl.

58. A compound according to any one of the claims 1-19, 24-26, 28-30, 32-35, 37, 39, 41-42, 44-45, wherein said alkylamino group is selected from the group consisting of methylamino, dimethylamino, ethylamino, and diethylamino.

59. A compound according to any one of the claims 1-9, 19, 24-26, 28-30, 32-35, wherein said carboxylate group is selected from the group consisting of ethyl carboxylate, methyl carboxylate, n-propyl carboxylate, isopropyl carboxylate, n-butyl carboxylate, sec-butyl carboxylate, and n-hexyl carboxylate.

60. A compound according to any one of the claims 1-9, 19, 24-26, 28-30, 32-35, wherein said carboxamide group is selected from the group consisting of primary carboxamide, N-methyl carboxamide, N,N-dimethyl carboxamide, N-ethyl carboxamide, and N,N-diethyl carboxamide.

61. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is methyl and the other one is a hydrogen atom.

62. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is ethyl and the other one is a hydrogen atom.

63. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is propyl and the other one is a hydrogen atom.

64. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is methoxy and the other one is a hydrogen atom.

65. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is ethoxy and the other one is a hydrogen atom.

66. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one of R 1 and R 2 is propoxy and the other one is a hydrogen atom.

67. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one QfR 1 and R 2 is thiomethyl and the other one is a hydrogen atom.

68. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is thioethyl and the other one is a hydrogen atom.

69. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is thiopropyl and the other one is a hydrogen atom.

70. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is ethylamino and the other one is a hydrogen atom.

71. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is diethylamino and the other one is a hydrogen atom.

72. A compound according to claim 1, wherein Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is amino and the other one is a hydrogen atom.

73. A compound according to any one of the claims 61-72, wherein the double bonds are located in positions 9, 12, and 15 of said omega-3 lipid compound.

74. A compound according to any one of the claims 61-73, wherein X is ethylcarboxylate.

75. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is methyl and the other one is a hydrogen atom.

76. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration, one of Rj and R 2 is ethyl and the other one is a hydrogen atom.

77. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration, one of R] and R 2 is propyl and the other one is a hydrogen atom.

78. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration, one of Ri and R 2 is methoxy and the other one is a hydrogen atom.

79. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration, one of Rj and R 2 is ethoxy and the other one is a hydrogen atom.

80. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is propoxy and the other one is a hydrogen atom.

81. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is thiomethyl and the other one is a hydrogen atom.

82. A compound according to claim 1, wherein Y is a C 20 alkene with 5 methylene interrupted double bonds in Z configuration, one OfR 1 and R 2 is thioethyl and the other one is a hydrogen atom.

83. A compound according to claim 1, wherein Y is a C 2 o alkene with 5 methylene interrupted double bonds in Z configuration, one of Ri and R 2 is thiopropyl and the other one is a hydrogen atom.

84. A compound according to any one of the claims 76-83, wherein the double bonds are located in positions 7, 10, 13, 16 and 19 of said omega-3 lipid compound.

85. A compound according to any one of the claims 1-9, 24-36, wherein X is ethylcarboxylate.

86. A compound according to claim 1-18, 20-46, wherein Rj and R 2 are different.

87. A compound according to claim 86 in racemic form.

88. A compound according to claim 86 in the form of its R stereoisomer.

89. A compound according to claim 86 in the form of its S stereoisomer.

90. A pharmaceutical composition comprising a compound according to any one of the claims 1-89.

91. A pharmaceutical composition according to claim 90, further comprising a pharmaceutically acceptable carrier, excipient or diluent, or any combination thereof.

92. A pharmaceutical composition according to claim 90 or 91, formulated for oral administration.

93. A pharmaceutical composition according to claim 92, in the form of a capsule, a sachet or a solid dosage form.

94. A pharmaceutical composition according to any one of the claims 90 to 93, formulated to provide a daily dosage of 1 mg to 10 g of said compound.

95. A pharmaceutical composition according to claim 94, formulated to provide a daily dosage of 50 mg to 1 g of said compound.

96. A pharmaceutical composition according to claim 95, formulated to provide a daily dosage of 50 mg to 200 mg of said compound.

97. A pharmaceutical composition according to any one of the claims 90-96 for use as a medicament.

98. A lipid composition comprising an omega-3 lipid compound according to any one of the claims 1 to 89.

99. A lipid composition according to claim 98, wherein at least 60% by weight of the lipid composition is comprised of said compound.

100. A lipid composition according to claim 99, wherein at least 80% by weight of the lipid composition is comprised of said compound.

101. A lipid composition according to any one of the claims 98 to 100, further comprising fatty acids selected from (all-Z)-5,8,l l,14,17-eicosapentaenoic acid (EPA), (all-Z)-4,7,10,13,16 5 19-docosahexaenoic acid (DHA), (all-Z)-6,9,12,15,18- heneicosapentaenoic acid (HPA), and/or (all-Z)-7,10,13,16,19-docosapentaenoic acid (DPA).

102. A lipid composition according to claim 101, wherein said fatty acids are present in their alpha substituted form.

103. A lipid composition according to any one of claims 98 to 102, further comprising a pharmaceutically acceptable antioxidant.

104. A lipid composition according to claim 103, wherein said antioxidant is tocopherol.

105. A lipid composition according to any one of the claims 98 to 104, for use as a medicament.

106. Use of a compound according to any one of the claims 1-89 for the production of a medicament related to activation or modulation of at least one of the human peroxisome proliferator-activated receptor (PPAR) isoforms.

107. Use according to claim 106, wherein said peroxisome proliferator-activated receptor (PPAR) is PPAR α.

108. Use according to claim 106, wherein said peroxisome proliferator-activated receptor (PPAR) is peroxisome proliferant-activated receptor (PPAR) α and/or γ.

109. Use of a compound according to any one of the claims 1-89 for the production of a medicament for the treatment and/or the prevention of peripheral insulin resistance and/or a diabetic condition.

110. Use of a compound according to any one of the claims 1-89 for the production of a medicament for reduction of plasma insulin, blood glucose and/or serum triglycerides.

111. Use of a compound according to any one of the claims 1-89 for the production of a medicament for the treatment and/or the prevention of type 2 diabetes.

112. Use of a compound according to any one of the claims 1-89 for the production of a medicament for the prevention and/or treatment of elevated triglyceride levels, and/or non-HDL cholesterol, LDL cholesterol and VLDL cholesterol levels.

113. Use of a compound according to any one of the claims 1-89 for the production of a medicament for the prevention and/or treatment of a hyperlipidemic condition.

114. Use according to claim 113, wherein said hyperlipidemic condition is hypertriglyceridemia (HTG).

115. Use of a compound according to any one of the claims 1-89 for the production of a medicament for increasing serum HDL levels in humans.

116. Use of a compound according to any one of the claims 1-89 for the production of a medicament for the treatment and/or the prevention of obesity or an overweight condition.

117. Use of a compound according to any one of the claims 1-89 for the production of a medicament for reduction of body weight and/or for preventing body weight gain.

118. Use of a compound according to any one of the claims 1-89 for the production of a medicament for the treatment and/or the prevention of a fatty liver disease.

119. Use according to claim 118, wherein said fatty liver diesase is non-alcoholic fatty liver disease (NAFLD).

120. Use of a compound according to any one of the claims 1-89 for the production of a medicament for treatment of insulin resistance, hyperlipidemia and/or obesity or an overweight condition.

121. Use of a compound according to any one of the claims 1-89 for the production of a medicament for the treatment and/or the prevention of an inflammatory disease or condition.

122. A compound according to any of the claims 1-89 for the treatment and/or prevention of a condition related to elevated functions of at least one of the human peroxisome proliferator-activated receptor (PPAR) isoforms.

123. A compound according to claim 122, wherein said peroxisome proliferator- activated receptor (PPAR) is PPAR α.

124. A compound according to claim 122, wherein said peroxisome proliferator- activated receptor (PPAR) is peroxisome proliferant-activated receptor (PPAR) α and/or γ.

125. A compound according to any of the claims 1-89 for the treatment and/or prevention of peripheral insulin resistance and/or a diabetic condition.

126. A compound according to any of the claims 1-89 for the reduction of plasma insulin, blood glucose and/or serum triglycerides.

127. A compound according to any of the claims 1-89 for the treatment and/or the prevention of type 2 diabetes.

128. A compound according to any of the claims 1-89 for the prevention and/or treatment of elevated triglyceride levels, non-HDL cholesterol, LDL cholesterol and VLDL cholesterol levels.

129. A compound according to any of the claims 1-89 for the prevention and/or treatment of a hyperlipidemic condition.

130. A compound according to claim 129, wherein said hyperlipidemic condition is hypertriglyceridemia (HTG).

131. A compound according to any of the claims 1 -89 for increasing serum HDL levels in humans.

132. A compound according to any of the claims 1-89 for the treatment and/or the prevention of obesity or an overweight condition.

133. A compound according to any of the claims 1-89 for the reduction of body weight and/or for preventing body weight gain.

134. A compound according to any of the claims 1-89 for the treatment and/or the prevention of a fatty liver disease.

135. A compound according to claim 134, wherein said fatty liver diesase is nonalcoholic fatty liver disease (NAFLD).

136. A compound according to any of the claims 1-89 for the treatment of insulin resistance, hyperlipidemia and/or obesity or an overweight condition.

137. A compound according to any of the claims 1-89 for the treatment and/or the prevention of an inflammatory disease or condition.

138. A method for the treatment and/or prevention of a condition related to elevated functions of at least one of the human peroxisome proliferator-activated receptor (PPAR) isoforms, comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

139. A method according to claim 138, wherein said peroxisome proliferator- activated receptor (PPAR) is peroxisome proliferant-activated receptor α .

140. A method according to claim 138, wherein said peroxisome proliferator- activated receptor (PPAR) is peroxisome proliferant-activated receptor α and/or γ.

141. A method for the treatment and/or the prevention of peripheral insulin resistance and/or a diabetic condition comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1- 89.

142. A method for reduction of plasma insulin, blood glucose and/or serum triglycerides comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

143. A method for the treatment and/or the prevention of type 2 diabetes comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

144. A method for the prevention and/or treatment of elevated triglyceride levels, and/or non-HDL cholesterol, LDL cholesterol and VLDL cholesterol levels, compris-

ing administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

145. A method for the prevention and/or treatment of a hyperlipidemic condition comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

146. A method according to claim 145, wherein said hyperlipidemic condition is hypertriglyceridemia (HTG).

147. A method for increasing serum HDL levels in humans comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

148. A method for the treatment and/or the prevention of obesity or an overweight condition comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

149. A method for reduction of body weight and/or for preventing body weight gain comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

150. A method for the treatment and/or the prevention of a fatty liver disease comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

151. A method according to claim 150, wherein said fatty liver diesase is nonalcoholic fatty liver disease (NAFLD).

152. A method for treatment of insulin resistance, hyperlipidemia and/or obesity or an overweight condition comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

153. A method for the treatment and/or the prevention of an inflammatory disease or condition comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

154. A method for the treatment and/or the prevention of a cognitive disorder comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to any one of the claims 1-89.

155. A compound according to any one of the claims 1-89 for use as a medicament.

156. A method for the production of a compound according to any one of the claims 1-89.

Description:

Alpha-substituted omega-3 lipids that are activators or modulators of the peroxisome proliferators-activated receptor (PPAR) .

Technical field The present invention relates to omega-3 lipid compounds of the general formula (I):

It also relates to pharmaceutical compositions and lipid compositions comprising such compounds, and to such compounds for use as medicaments, in particular for the treatment of cardiovascular and metabolic diseases.

Background of the invention

Dietary polyunsaturated fatty acids (PUFAs) have effects on diverse physiological processes impacting normal health and chronic diseases, such as the regulation of plasma lipid levels, cardiovascular and immune functions, insulin action, and neuronal development and visual function. Ingestion of PUFAs (generally in ester form, e.g. in glycerides or phospholipids) will lead to their distribution to virtually every cell in the body with effects on membrane composition and function, eicosanoid synthesis, cellular signaling and regulation of gene expression.

Variations in distribution of different fatty acids/lipids to different tissues in addition to cell specific lipid metabolism, as well as the expression of fatty acid- regulated transcription factors, is likely to play an important role in determining how cells respond to changes in PUFA composition. (Benatti, P. Et al, J. Am. Coll. Nutr. 2004, 23, 281).

PUFAs or their metabolites have been shown to modulate gene transcription by interacting with several nuclear receptors. These are the peroxisome proliferators- activated receptors (PPARs), the hepatic nuclear receptor (FfNF -4), liver X receptor (LXR), and the 9-cis retinoic acid receptor (retinoic X receptor, RXR). Treatment with PUFAs can also regulate the abundance of many transcriptional factors in the nucleus, including SREBP, NFkB, c/EBPβ, and HIF-I α. These effects are not due to

direct binding of the fatty acid to the transcription factor, but involve mechanisms that affect the nuclear content of the transcription factors.

The regulation of gene transcription by PUFAs have profound effects on cell and tissue metabolism and offer a credible explanation for the involvement of nutri- ent-gene interactions in the initiation and prevention or amelioration of diseases such as obesity, diabetes, cardiovascular disorders, immune-inflammatory diseases and cancers (Wahle, J., et al, Proceedings of the Nutrition Society, 2003, 349).

Fish oils rich in the omega-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown to reduce the risk of car- diovascular diseases partly by reduction of blood triglyceride concentration. This favorable effect mainly results from the combined effects of inhibition of lipogenesis by decrease of SPEBP-I and stimulation of fatty acid oxidation by activation of PPAR-α in the liver.

Omega-3 polyunsaturated fatty acids in fish oil have been reported to improve the prognosis of several chronic inflammatory diseases characterized by leukocyte accumulation and leukocyte-mediated tissue injury, including atherosclerosis, IgA nephropathy, inflammatory bowel disease, rheumatoid arthritis, psoriasis, etc. (Mishra, A., Arterioscler. Thromb. Vase. Biol., 2004, 1621).

Due to their limited stability in vivo and their lack of biological specificity, PUFAs have not achieved widespread use as therapeutic agents. Chemical modifications of the omega-3 polyunsaturated fatty acids have been performed by several research groups in order to change or increase their metabolic effects.

For example, the hypolipidemic effects of EPA was potentiated by introducing methyl or ethyl in α- position of EPA ethyl ester. (Vaagenes et.al Biochemical Pharm. 1999, 58, 1133).

In a recent work published by L. Larsen (Larsen, L. et al, Lipids, 2005, 40, 49) the authors show that the α-methyl derivatives of EPA and DHA increased the activation of the nuclear receptor PPARa and thereby the expression of L-FABP compared to EPA/DHA. The authors suggest that delayed catabolism of these α- methyl PUFAs contribute to their increased effects.

Nuclear receptors (NRs) constitute a large and high conserved family of ligand activated transcriptional factors that regulate diverse biological processes such

as development, metabolism, and reproduction. It is recognized that ligands for these receptors might be used in the treatment of common diseases such as atherosclerosis, diabetes, obesity, and inflammatory diseases. As such, NRs have become important drug targets, and the identification of novel NR ligands is a subject of much interest. The activity of many nuclear receptors is controlled by the binding of small, lipophilic ligands that include hormones, metabolites such as fatty acids, bile acids, oxysteroles and xeno- and endobiotics. Nuclear receptors can bind as monomers, homodimers, or RXR heterodimers to DNA.

The transcription factor NF-κB is an inducible eukaryotic transcription factor of the rel family. It is a major component of the stress cascade that regulate the activation of early response genes involved in the expression of inflammatory cytokines, adhesion molecules, heat-shock proteins, cyclooxygenases, lipoxygenases, and redox enzymes.

Zhao, G. et al (Biochemical and Biophysical Research Comm., 2005, 909) suggest that the anti-inflammatory effects of PUFAs in human monocytic THP-I cells are in part mediated by inhibition of NF-κB activation via PPAR-γ activation. Others have suggested that the anti-inflammatory effect of PUFAs is mediated through a PPAR-α dependent inhibition of NF-κB activation.

To sum up, there is vast ongoing research in the field of PUFAs, and in par- ticular omega-3 polyunsaturated fatty acids. However, their pharmaceutical potential has not yet been fully evaluated, and there is thus a continuing need for further evaluation and development of such compounds in order to increase their medical usefulness.

Summary of the invention

One object of the present invention is to provide omega-3 lipid compounds having pharmaceutical activity.

This object is achieved by an omega-3 lipid compound of formula (I):

wherein

- Ri and R 2 are the same or different and may be selected from a group of substitu- ents consisting of a hydrogen atom, a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an al- kynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a car- boxy group, an alkylsulfinyl group, an alkylsulfonyl group, an amino group, and an alkylamino group; and

- X represents a carboxylic acid or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, - Y is a C 16 to C 22 alkene with two or more double bonds, having E and/or Z configuration or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof, with the provisos that:

• Ri and R 2 are not simultaneously a hydrogen atom or a fluorine atom; and • the compound of formula (I) is not: o a 2-substituted (all-Z)-4,7, 10, 13 , 16, 19-docosahexaenoic acid in the form of a carboxylic acid, a carboxylate, a carboxylic anhydride or a carboxamide; o (all-Z)-2-methyl-5,8,l 1,14,17 eicosapentaenoic acid, or its ethyl ester; o (all-Z)-2-ethyl-5,8, 11 , 14, 17 eicosapentaenoic acid, or its ethyl ester; o (all-Z)-2,2-dimethyl-5,8, 11 , 14, 17 eicosapentaenoic acid, or its ethyl ester; o (all-Z)-2-benzyl-5,8, 11 , 14, 17 eicosapentaenoic acid, or its ethyl ester; or o (all-Z)-2-hydroxy-9,12,15-octadecatrienoic acid, or its ethyl ester. o (all-Z)-2-carboxy-6,9, 12, 15, 18,21 -tetracosahexaenoic acid o ethyl (all-Z)-2-ethoxycarbonyl-6,9, 12, 15, 18,21 -tetracosahexaenoate In particular, the present invention relates to omega-3 lipid compounds of formula (I) wherein: Y is a C 16 -C 20 alkene with 2-6 double bonds;

Y is a C 16 -C 2 O alkene with 2-6 methylene interrupted double bonds in Z configuration;

Y is a C 16 -C 2O alkene with 3-5 double bonds;

Y is a C 16 -C 20 alkene with 3-5 methylene interrupted double bonds in Z configuration;

Y is a C 2 o alkene with 5 double bonds in Z-configuration; Y is a C 2 o alkene with 5 methylene interrupted double bonds in Z configuration;

Y is a C 16 alkene with 3 double bonds in Z-configuration; or

Y is a C 16 alkene with 3 methylene interrupted double bonds in Z configuration. The invention also relates to salts of the compound of formula (I). Such salts may be represented by

wherein X is COO ' ,

Z + is selected from the group consisting OfLi + , Na + , K + , NH 4 + ,

Meglumine,

Tris(hydroxymethyl)aminomethane,

' N ^ H 2 +

Diethylamine,

and

Arginine;

or by

wherein X = COO " ,

Z 2+ is selected from the group consisting OfMg 2+ , Ca 2+ ,

+ H 3 N^ NH3+ Ethylenediamine,

and

Piperazine.

Another representative salt is

wherein X is COO "

Z n+ is

Chitosan

Furthermore, the present invention relates to compounds of formula (I), wherein X is a carboxylic acid in the form of a phospholipid. Such compounds may be represented by the following formulas,

(II)

wherein

and

(III)

wherein

and

(IV)

wherein

Compounds of formula (I), wherein X is a carboxylic acid in the form of a triglyceride, a 1-monoglyceride and a 2-monoglyceride are also included in the present invention. These are hereinafter represented by the formulas (V) 5 (VI) and (VII), respectively.

(VI)

More precisely, the present invention relates to an omega-3 lipid compound selected from the group consisting of:

• (all-Z)- 9, 12, 15-octadecatrienoic acid

• (all-Z)-6,9, 12,15-octadecatetraenoic acid

• (all-Z)-7,10,13,16,19-docosapentaenoic acid

• (all-Z)- 11 , 14, 17-eicosatrienoic acid

• (aIl-Z)-6,9,12,15,18,21-tetracosahexaenoic acid

• (4E, 8Z, HZ, 14Z, 17Z)-4,8,ll,14,17-eicosapentaenoic acid

• (5E 3 8Z 3 1 IZ, 14Z, 17Z)-5,8,11,14,17-eicosaρentaenoic acid • (all-Z)-8, 11,14,17-eicosatetraenoic acid

• (4E, IZ, 1OZ, 13Z, 16Z, 19Z)-A, 1, 10,13,16,19-docosahexaenoic acid in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof, wherein said compound is substituted at carbon 2 counted from the functional group of the omega-3 lipid compound, with at least one substituent selected from the group consisting of: a hydrogen atom, a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an alkynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a carboxy group, an alkylsulfmyl group, an alkylsulfonyl group, an amino group, and an alkylamino group with the provisos that the omega-3 lipid compound is not o substituted with two hydrogen atoms o (all-Z)-2-carboxy-6,9, 12, 15, 18,21 -tetracosahexaenoic acid o ethyl (all-Z)-2-ethoxycarbonyl-6,9, 12, 15, 18,21 -tetracosahexaenoate o (all-Z)-2-hydroxy-9,12,15-octadecatrienoic acid, or its ethyl ester

Examples of salts of the above mentioned compounds include

(all-Z)-2-ethyl-l 1,14,17-eicosatrienoic acid meglumine salt,

(all-Z)-2-ethyl~9,12,15-octadecatrienoic acid magnesium salt,

(all-Z)-2-ethyl-7, 10, 13 , 16, 19-docosapentaenoic acid tris(hydroxymethy)aminornethane salt,

(all-Z)-2-ethyl-7, 10, 13, 16, 19-docosapentaenoic acid ammonium salt

In addition, the present invention relates to an omega-3 lipid compund, which is derived from (all-Z)-5,8,l l,14,17-eicosapentaenoic acid (EPA). Such a compound can be represented by the following formula

in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, represented by X or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof, wherein

• R 1 and R 2 are the same or different and may be selected from the group consisting of a hydrogen atom, a hydroxy group, a C 3 -C 7 alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl

group, an alkynyl group, an alkylthio group, an alkoxycarbonyl group, a carboxy group, an alkylsulfinyl group, an alkylsulfonyl group, an amino group, and an alkylamino group with the proviso that R 1 and R 2 are not simultaneously a hydrogen atom. Typically, R 1 and R 2 are selected from a hydrogen atom, a C 3 -C 7 alkyl group, an alkoxy group, an alkylthio group, an amino group, an alkylamino group, an alkoxycarbonyl group, and a carboxy group. More typically R 1 and R 2 are selected from a hydrogen atom, a C 3 -C 7 alkyl group, preferably propyl, a C 1 -C 7 alkoxy group, preferably methoxy, ethoxy or propoxy, a C 1 -C 7 alkyltio group, preferably methylthio, ethylthio, or propylthio, an amino group, a C 1 -C 7 alkylamino group, preferably an ethylamino or diethylamino group, a C 1 -C 7 alkoxycarbonyl group, and a carboxy group.

• the compound is substituted at carbon 2, counted from the functional group of the omega-3 lipid compound, with two substituents, represented by R 1 and R 2 , selected from the group consisting of a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an alkynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a carboxy group, an alkylsulfinyl group, an alkylsulfonyl group, an amino group, and an alkylamino group, with the proviso that said compound is not 2,2,-dimethyl-5,8, 11 , 14, 17 eicosapentaenoic acid. Typically, R 1 and R 2 are selected from an alkyl group, an alkoxy group, an alkylthio group, an amino group, an alkylamino group, an alkoxycarbonyl group, and a carboxy group. More typically, R 1 and R 2 are selected from a C 1 -C 7 alkyl group, preferably methyl, ethyl, or propyl, a C 1 -C 7 alkoxy group, preferably methoxy, ethoxy or propoxy, a C 1 -C 7 alkyltio group, preferably methylthio, ethylthio, or propylthio, an amino group, a C 1 -C 7 alkylamino group, preferably ethylamino or diethylamino, a C 1 -C 7 alkoxycarbonyl group, and a carboxy group.

In the compounds of formulas (I) and (VIII), X typically represents an carboxy late or a carboxylic acid. However, X may also be a derivative of a carboxy lie acid in the form of phospholipid or a tri-di, or monoglyceride.

Furthermore, the present invention relates to an omega-3 lipid compund, which is derived from (all-Z)-5.8,l 1,14,17-eicosapentaenoic acid (EPA), represented by formula (VIII)

in the form of a phospholipid, a tri-, di-, or monoglyceride, a carboxylate, a carbox- ylic anhydride or a carboxamide, represented by X, or any pharmaceutically acceptable complex, salt, solvate or pro-drug thereof, wherein R 1 and R 2 are the same or different and may be selected from the group consisting of a hydrogen atom, a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an alkynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a carboxy group, an al- kylsulfmyl group, an alkylsulfonyl group, an amino group, and an alkylamino group, with the proviso that R 1 and R 2 are not simultaneously a hydrogen atom. The compound of formula (VIII) is not any one of

• (all-Z)-2-methyl-5,8, 11,14,17 eicosapentaenoic acid, or its ethyl ester;

• (all-Z)-2-ethyl-5, 8,11,14,17 eicosapentaenoic acid, or its ethyl ester;

• (all-Z)-2,2-dimethyl-5,8, 11 , 14, 17 eicosapentaenoic acid, or its ethyl ester. Typically, R 1 and R 2 are the same or different and are selected from a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an amino group, an alkylamino group, an alkoxycarbonyl group, and a carboxy group. More typically, R 1 and R 2 are selected from a hydrogen atom, a C 1 -C 7 alkyl group, preferably methyl, ethyl, or propyl , a C 1 -C 7 alkoxy group, preferably methoxy, ethoxy or propoxy, a C 1 -C 7 alkyltio group, preferably methylthio, ethylthio, or propylthio an amino group, a C 1 -C 7 alkylamino group, preferably ethylamino or diethylamino, a C 1 -C 7 alkoxycarbonyl group, and a carboxy group.

In compounds of formula (VIII) above, X may represent a carboxylate or a carboxylic acid. However, X may also be represented by a carboxylic acid in the form of a phospholipid according to the formulas (II), (III) and (IV) specified above. Examples of such compounds include:

1 ,2-Di((all-Z)-2-ethyl-5,8, 11 , 14, 17-eicosapentaenoyl)-£«-glycero-3-phosphocholine,

2-(all-Z)-2-ethyl-5,8, 11 , 14, 1 y-eicosapentaenoyl-sn-glycero-S-phosphoethanolamine

Furthermore X may also be represented by a carboxylic acid in the form of a triglyceride according to formula (V) above. An example of such a compound is

1 ,2,3-tris((all-Z)-2-ethyl-5,8, 11,14,17-eicosapentaenoyl>_?w-glycerol.

X may also be represented by a carboxylic acid in the form of a 2- monoglyceride of formula (VII). An example of such a compound is

2-((all-Z)-2-ethyl-5,8, 11,14,17-eicosapentaenoyl)-w-glycerol

In a compound according to the invention, said alkyl group may be selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-buthyl, sec. -butyl, and n-hexyl; said halogen atom may be fluorine; said alkoxy group may be selected from the group consisting of methoxy, ethoxy, propoxy, isopropoxy, sec- butoxy, phenoxy, benzyloxy, OCH 2 CF 3 , and OCH 2 CHiOCH 3 ; said alkenyl group may be selected from the group consisting of allyl, 2-butenyl, and 3-hexenyl; said alkynyl group may be selected from the group consisting of propargyl, 2-butynyl, and 3-hexynyl; said aryl group may be selected from a benzyl group, and a substituted benzyl group; said alkylthio group may be selected from the group consisting of methylthio, ethylthio, isopropylthio, and phenylthio; said alkoxycarbonyl group may be selected from the group consisting of methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, and butoxycarbonyl; said alkylsulfinyl group may be selected from the group consisting of methanesulfmyl, ethanesulfinyl, and isopropanesulfinyl; said alkylsulfonyl group may be selected from the group consisting of methanesulfonyl, ethanesulfonyl, and isopropanesulfonyl; and said alkylamino group may be selected from the group consisting of methylamino, dimethylamino, ethylamino, and diethylamino. The derivative of a carboxylic acid may be a phospholipid, or a tri-, di-, or monoglyceride, i.e. the compound according to the invention may exist in the form of a phospholipid, a tri-, di- or monoglyceride, or in the form of a free acid.

According to the present invention, said carboxylate group may be selected from the group consisting of ethyl carboxylate, methyl carboxylate, n-propyl carboxylate, isopropyl carboxylate, n-butyl carboxylate, sec-butyl carboxylate, and

n-hexyl carboxylate, and said carboxamide group may be selected from the group consisting of primary carboxamide, N-methyl carboxamide, N,N-dimethyl carboxamide, N-ethyl carboxamide, and N,N-diethyl carboxamide.

Examples of compounds according to the invention are those in which X is ethylcarboxylate, and Y is a C 16 alkene with 3 methylene interrupted double bonds, located in Z configuration in positions 9, 12, and 15, wherein: one OfR 1 and R 2 is methyl and the other one is a hydrogen atom; one OfR 1 and R 2 is ethyl and the other one is a hydrogen atom; one OfR 1 and R 2 is propyl and the other one is a hydrogen atom; one OfR 1 and R 2 is methoxy and the other one is a hydrogen atom; one OfR 1 and R 2 is ethoxy and the other one is a hydrogen atom; one OfR 1 and R 2 is propoxy and the other one is a hydrogen atom; one OfR 1 and R 2 is thiomethyl and the other one is a hydrogen atom; one OfR 1 and R 2 is thioethyl and the other one is a hydrogen atom; one OfR 1 and R 2 is thiopropyl and the other one is a hydrogen atom; one OfR 1 and R 2 is ethylamino and the other one is a hydrogen atom; one OfR 1 and R 2 is diethylamino and the other one is a hydrogen atom; or one OfR 1 and R 2 is amino and the other one is a hydrogen atom. Other examples of compounds according to the invention are those in which X is ethylcarboxylate, and Y is a C 20 alkene with 5 methylene interrupted double bonds located in Z configuration in positions 7, 10, 13, 16 and 19, wherein: one OfR 1 and R 2 is methyl and the other one is a hydrogen atom; one OfR 1 and R 2 is ethyl and the other one is a hydrogen atom; one OfR 1 and R 2 is propyl and the other one is a hydrogen atom; one OfR 1 and R 2 is methoxy and the other one is a hydrogen atom; one OfR 1 and R 2 is ethoxy and the other one is a hydrogen atom; one OfR 1 and R 2 is propoxy and the other one is a hydrogen atom; one of Ri and R 2 is thiomethyl and the other one is a hydrogen atom; one OfR 1 and R 2 is thioethyl and the other one is a hydrogen atom; or one OfR 1 and R 2 is thiopropyl and the other one is a hydrogen atom.

In the omega-3 lipid compound according to formula (I) of the present invention, R 1 and R 2 may be the same or different. When they are different, the compounds of formula (I) are capable of existing in stereoisomeric forms. It will be

understood that the invention encompasses all optical isomers of the compounds of formula (I) and mixtures thereof, including racemates. Therefore, the present invention includes, where R 1 is different from R 2 , compounds of formula (I) that are racemic or enantiomerically pure, either as the (S) or (R) enantiomer. The present invention also relates to an omega-3 compound according of formula (I) for use as a medicament or for diagnostic purposes, for instance positron emission tomography (PET).

Further, the present invention relates to a pharmaceutical composition comprising an omega-3 lipid compound according to formula (I). The pharmaceutical composition may comprise a pharmaceutically acceptable carrier, excipient or diluent, or any combination thereof, and is suitably formulated for oral administration, e.g. in the form of a capsule or a sachet. A suitable daily dosage of the compound according to formula (I) is 1 mg to 10 g of said compound; 50 mg to 1 g of said compound, or 50 mg to 200 mg of said compound. The present invention also relates to lipid composition comprising an omega-3 lipid compound according to formula (I). Suitably, at least 60% by weight, or at least 80% by weight of the lipid composition is comprised of said compound. The lipid composition may further comprise fatty acids selected from (all-Z)-5, 8,11,14,17- eicosapentaenoic acid (EPA), (all-Z)-4,7,10,13,16,19-docosahexaenoic acid (DHA), (all-Z)-6,9 3 12,15,18-heneicosapentaenoic acid (HPA), and/or (all-Z)-7,10,13,16,19- docosapentaenoic acid (DPA), or derivatives thereof, i.e. presented in their alpha substituted form, and/or a pharmaceutically acceptable antioxidant, e.g. tocopherol.

Further, the invention relates to the use of an omega-3 lipid compound according to formula (I) for the production of a medicament for: • activation or modulation of at least one of the human peroxisome pro- liferator-activated receptor (PPAR) isoforms, wherein said peroxisome proliferator-activated receptor (PPAR) is peroxisome proliferator- activated receptor (PPAR)α and/or γ.

• the treatment and/or the prevention of peripheral insulin resistance and/or a diabetic condition.

• reduction of plasma insulin, blood glucose and/or serum triglycerides.

• the treatment and/or the prevention of type 2 diabetes.

• the prevention and/or treatment of elevated triglyceride levels, and/or non-HDL cholesterol, LDL cholesterol and VLDL cholesterol levels

• the prevention and/or treatment of a hyperlipidemic condition, e.g. hypertriglyceridemia (HTG). • increasing serum HDL levels in humans.

• the treatment and/or the prevention of obesity or an overweight condition.

• reduction of body weight and/or for preventing body weight gain.

• the treatment and/or the prevention of a fatty liver disease, e.g. non- alcoholic fatty liver disease (NAFLD).

• treatment of insulin resistance, hyperlipidemia and/or obesity or an overweight condition.

• the production of a medicament for the treatment and/or the prevention of an inflammatory disease or condition. The invention also relates to a compound according to formula (I) for the treatment and/or prevention of the conditions listed above, and to methods for the treatment and/or prevention of the conditions listed above, comprising administering to a mammal in need thereof a pharmaceutically active amount of a compound according to formula (I). In addition, the present invention encompasses methods for manufacturing omega-3 lipid compounds according to formula (I).

Detailed description of the invention

In the research work leading to the present invention, it was surprisingly found that omega-3 lipid compounds represented by the general formula (I) have a remarkably high affinity for the nuclear receptors of the PPAR family.

It is known that PP ARa is the most promiscuous of the PPARs, interacting with both saturated and unsaturated fatty acids. PPARδ interacts with saturated and unsaturated fatty acids, albeit less efficiently than PP ARa. PP ARy shows the most restricted fatty acid binding profile, interacting most efficiently with PUFAs and only weakly with monounsaturated fatty acids (Xu et al, Molecular Cell, 1999, 397-403).

The effects of the PUFAs on these nuclear receptors are not only a result of fatty acid structure and affinity to the receptor. Factors contributing to the composition of the intracellular non-esterified fatty acids (NEFA) levels are also important. This NEFA pool is affected by the concentration of exogenous fatty acids entering the cell and the amount of endogenous synthesised fatty acids, their removal via incorporation into lipids as well as their oxidation pathways. (Pawar, A. & Jump, DB, Journal of Biological chem., 2003, 278, 35931).

According to the invention, introducing at least one substituent in the opposition of different polyunsaturated fatty acids leads to an accumulation of fatty acid derivatives in the NEFA pool, rather than incorporation into neutral lipids or oxidation of these fatty acids. The omega-3 lipid compounds according to the present invention accumulates in the intracellular NEFA pool and trigger local nuclear receptor activity to a greater extent than unsubstitued fatty acids.

Different substituents of the PUFAs according to the invention will give variable affinities of the derivatives to nuclear receptors, and in particular to the

PPARs. Changes in affinity to the different receptor in addition to different co-factor reqruitment lead to changes in the biological activity of these α-substituted lipid derivatives of formula (I).

Because different PUFAs accumulate differently in different tissues, these modified PUFAs have the potential for being tissue specific ligands for nuclear receptors. Because many of the nuclear receptors are distributed differently in different tissues it is important to make ligands that in vivo are able to target specified cells in order to bind and activate the target receptor.

In addition to being better ligands for nuclear receptors, the derivatives of the invention are not as easily degraded by α- and β-oxidation pathways as natural PU- FAs due to substitution in α-position.

Nomenclature and terminology

Fatty acids are straight chain hydrocarbons possessing a carboxyl (COOH) group at one end (α) and (usually) a methyl group at the other (ω) end. In physiology, fatty acids are named by the position of the first double bond from the co end. The term ω-3 (omega-3) signifies that the first double bond exists as the third carbon-

carbon bond from the terminal CH 3 end (ω) of the carbon chain. In chemistry, the numbering of the carbon atoms starts from the α end.

As used herein, the expression "methylene interrupted double bonds" relates to the case when a methylene group is located between to separate double bonds in a carbon chain of an omega-3 lipid sompound.

Throughout this specification, the terms "2-substituted", substituted in position 2, and "substituted at carbon 2, counted from the functional group of the omega-3 lipid compound" refers to a substitution at the carbon atom denoted 2 in accordance with the above numbering of the carbon chain. Alternatively, such a substitution may be called an "alpha substitution".

Throughout this specification, the term "omega-3 lipid compound" (corresponding to ω-3, or n-3) relates to a lipid compound having the first double bond at the third carbon-carbon bond from the ω end of the carbon chain, as defined above.

The basic idea of the present invention is an omega-3 lipid compound of formula (I):

X x CD R 2 Ri

wherein

- Ri and R 2 are the same or different and may be selected from a group of substitu- ents consisting of a hydrogen atom, a hydroxy group, an alkyl group, a halogen atom, an alkoxy group, an acyloxy group, an acyl group, an alkenyl group, an al- kynyl group, an aryl group, an alkylthio group, an alkoxycarbonyl group, a car- boxy group, an alkylsulfinyl group, an alkylsulfonyl group, an amino group, and an alkylamino group;

- X represents a carboxylic acid or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide; and

- Y is a Ci 6 to C 22 alkene with two or more double bonds, having E and/or Z configuration. The resulting compound is an alpha substituted omega-3 lipid compound, i.e. an omega-e lipid compound substituted in position 2 of the carbon atom, counted from the carbonyl end. More particularly, the resulting compound is an alpha substituted polyunsaturated omega-3 fatty acid, which may be present as a carboxylic acid, or a derivative thereof, as a carboxylate, as a carboxylic anhydride or as a carbox- amide. The present inventors have surprisingly found that the following omega-3 fatty acids are particularly suitable for being substituted in alpha position as outlined in formula (I):

• (all-Z)- 9, 12, 15-octadecatrienoic acid

• (all-Z)-6,9, 12,15-octadecatetraenoic acid • (all-Z)-7,10,13,16,19-docosapentaenoic acid

• (all-Z)- 11,14, 17-eicosatrienoic acid

• (all-Z)-6,9,12,15,18,21-tetracosahexaenoic acid

• (AE, 8Z, 1 IZ, 14Z, 17Z)-4,8,11,14,17-eicosapentaenoic acid

• (5E, 8Z, 1 IZ, 14Z, 17Z)-5,8,11,14,17-eicosapentaenoic acid • (all-Z)-8, 11,14,17-eicosatetraenoic acid

• (4£, 7Z, 1OZ, 13Z, 16Z, 19Z)-4,7,10,13,16,19-docosahexaenoic acid. Among the possible substituents listed above, lower alkyl groups, in particular methyl and ethyl groups, have proven very useful for achieving the desired pharmaceutical activity. Other very useful substituents are lower alkylthio and lower al- kylamino groups, e.g. having 1-3 carbon atoms. The substitution of either R 1 or R 2 with one of these suitable substituents, while the other one is hydrogen, is believed to provide the most efficient result.

(all-Z)-5, 8,11,14,17-eicosapentaenoic acid (EPA) is another omega-3 fatty acid which has proven useful for substitution in its alpha position as suggested according to the present invention. For EPA, suitable substituents are lower alkylthio groups and lower alkylamino groups, e.g. having 1-3 carbon atoms. By analogy with the above, the substitution of either R 1 or R 2 with one of these substituents, while the

other one is hydrogen, is believed to provide the most efficient result. The case when both R 1 and R 2 are ethyl is another suitable substitution of EPA.

Preferred omega-3 lipid compounds according to the present invention are divided into the following categories A-F:

Category A - (all-Z)-9,12,15-octadecatrienoic acid (alpha-linolenic acid, ALA) in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, substituted in position 2:

Y = C 16 alkene with 3 double bonds in Z-confϊguration in positions 9, 12 and 15

Category B - (all-Z)-7,10,13,16,19-docosapentaenoic acid (clupanodonic acid, DPA) in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, substituted in position 2:

Y = C 20 alkene with 5 double bonds in Z-confϊguration in positions 7, 10, 13,16 and 19

Category C - (all-Z)-l 1,14,17-eicosatrienoic acid in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, substituted in position 2:

Y = Ci g alkene with 3 double bonds in Z-confϊguration in positions 11, 14, and 17

Category D - (4E 5 8Z, 1 IZ, 14Z, 17Z)-eicosapentaenoic acid in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, substituted in position 2:

Y = C 18 alkene with 5 double bonds in positions 4, 8, 11 5 14, and 17, where the double bonds in position 8, 11, 14 and 17 are in Z-configuration, and the double bond in position 4 is in E configuration

Category E - (all-Z)-5,8,l 1,14,17-eicosapentaenoic acid (EPA) in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, substituted in position 2:

Y = C 1S alkene with 5 double bonds in Z-configuration in positions 5, 8, 11, 14, and 17.

Category F - (4E, 7Z, 1OZ, 13Z, 16Z 5 19Z)-docosahexaenoic acid (trans-DHA) in the form of a carboxylic acid, or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide, substituted in position 2:

Y = C 2 o alkene with 6 double bonds in positions 4, 7, 10, 13, 16, and 19, where the double bonds in position 7, 10, 13, 16, and 19 are in Z-configuration, and the double bond in position 4 is in E configuration.

Specific examples of preferred omega-3 lipid compounds according to the invention are:

Category A - examples (1)-(12):

For all examples (1)-(12): X = ethylcarboxylate

Y = C 16 alkene with 3 double bonds in Z-configuration in positions 9, 12 and 15

Ethyl (all-Z)-2-methyl-9,12,15-octadecatrienoate (1) R 1 = methyl, and R 2 = a hydrogen atom, or R 2 = methyl, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-ethyl-9,12,15-octadecatrienoate (2) R 1 = ethyl, and R 2 = a hydrogen atom, or R 2 = ethyl, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-propyl-9,12,15-octadecatrienoate (3) R 1 = propyl, and R 2 = a hydrogen atom, or

R 2 = propyl, and Ri = a hydrogen atom

Ethyl (all-Z)-2-methoxy-9 5 12, 15-octadecatrienoate (4) R 1 = methoxy, and R 2 = a hydrogen atom, or R 2 = methoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-ethoxy-9, 12,15-octadecatrienoate (5) R 1 = ethoxy, and R 2 = a hydrogen atom, or R 2 = ethoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-propoxy-9,12,15-octadecatrienoate (6) R 1 = propoxy, and R 2 = a hydrogen atom, or R 2 = propoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-thiomethyl-9, 12,15-octadecatrienoate (7)

R 1 = methylthio, and R 2 = a hydrogen atom, or R 2 = methylthio, and R 1 = a hydrogen atom

Ethyl (all~Z)-2-thioethyl-9,12,15-octadecatrienoate (8) Ri = ethylthio, and R 2 = a hydrogen atom, or R 2 = ethylthio, and Ri = a hydrogen atom

Ethyl (all-Z)-2-thiopropyl-9,12,15-octadecatrienoate (9) Ri = propylthio, and R 2 = a hydrogen atom, or R 2 = propylthio, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-ethylamino-9,12,15-octadecatrienoate (10) R 1 = ethylamino, and R 2 = a hydrogen atom, or R 2 = ethylamino, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-diethylamino-9,12,15-octadecatrienoate (11) Ri = diethylamino, and R 2 = a hydrogen atom, or

R 2 = diethylamino, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-amino-9,12,15-octadecatrienoate (12) R 1 = amino, and R 2 = a hydrogen atom, or R 2 = amino, and Ri = a hydrogen atom

Category B - examples (13)-(21):

For all examples (13)-(21): X = ethylcarboxylate

Y = C 20 alkene with 5 double bonds in Z-configuration in positions 7, 10, 13,16 and 19

Ethyl (all-Z)-2-methyl-7,10,13,16,19-docosapentaenoate (13) R 1 = methyl, and R 2 = a hydrogen atom, or R 2 = methyl, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-ethyl-7,10,13,16,19-docosaρentaenoate (14) Ri = ethyl, and R 2 = a hydrogen atom, or R 2 = ethyl, and Ri = a hydrogen atom

Ethyl (all-Z)-2-propyl-7,10,13,16,19-docosapentaenoate (15) R 1 = propyl, and R 2 = a hydrogen atom, or R 2 = propyl, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-methoxy-7,10,13,16,19-docosapentaenoate (16) R 1 = methoxy, and R 2 = a hydrogen atom, or R 2 = methoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-ethoxy-7,10,13,16,19-docosapentaenoate (17) R 1 = ethoxy, and R 2 = a hydrogen atom, or R 2 = ethoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-propoxy-7,10,13,16,19-docosapentaenoate (18) R 1 = propoxy, and R 2 = a hydrogen atom, or R 2 = propoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-thiomethyl-7,10,13,16,19-docosapentaenoate (19) R 1 = methylthio, and R 2 = a hydrogen atom, or R 2 = methylthio, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-thioethyl-7,10,13,16,19-docosapentaenoate (20) Ri = ethylthio, and R 2 = a hydrogen atom, or R 2 = ethylthio, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-thioproρyl-7, 10, 13 , 16, 19-docosapentaenoate (21 ) R 1 = propylthio, and R 2 = a hydrogen atom, or R 2 = propylthio, and R 1 = a hydrogen atom

Category C - examples (23)-(24) and (27)-(35):

For all examples (23)-(24) and (27)-(35):

Y = C 18 alkene with 3 double bonds in Z-configuration in positions 11, 14, and 17

Ethyl (all-Z)-2-e%l,2-ethoxycarbonyl-l 1,14,17-eicosatrienoate (23) R 1 = ethoxycarbonyl, and R 2 = ethyl, or R 2 = ethoxycarbonyl, and R 1 = ethyl X = ethylcarboxylate

(all-Z)-2-ethyl,2-carboxy-l l,14,17-eicosatrienoic acid (24) R 1 = carboxy, and R 2 = ethyl, or R 2 = carboxy, and R 1 = ethyl X = acetic acid

For all examples (27)-(35): X = ethylcarboxylate

Ethyl (all-Z)-2-methyl-l 1,14,17-eicosatrienoate (27) Ri = methyl, and R 2 = a hydrogen atom, or R 2 = methyl, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-ethyl-l 1,14,17-eicosatrienoate (28) R 1 = ethyl, and R 2 = a hydrogen atom, or R 2 = ethyl, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-propyl-l l,14,17-eicosatrienoate (29) R 1 = propyl, and R 2 = a hydrogen atom, or R 2 = propyl, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-methoxy-l l,14,17-eicosatrienoate (30) R 1 = methoxy, and R 2 = a hydrogen atom, or R 2 = methoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-ethoxy-l l,14,17-eicosatrienoate (31) R 1 = ethoxy, and R 2 = a hydrogen atom, or R 2 = ethoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-propoxy-ll,14,17-eicosatrienoate (32) R 1 = propoxy, and R 2 = a hydrogen atom, or R 2 = propoxy, and R 1 = a hydrogen atom

Ethyl (all~Z)-2-thiomethyl-l l,14,17-eicosatrienoate (33) R 1 = methylthio, and R 2 = a hydrogen atom, or R 2 = methylthio, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-thioethyl-ll,14,17-eicosatrienoate (34) R 1 = ethylthio, and R 2 = a hydrogen atom, or R 2 = ethylthio, and Rj = a hydrogen atom

sAλλλ a

Ethyl (all-Z)-2-thiopropyl-l l,14,17-eicosatrienoate (35) R 1 = propylthio, and R 2 = a hydrogen atom, or R 2 = propylthio, and R 1 = a hydrogen atom

Category D - examples (36)-(44):

For all examples (36)-(44)

Y = C 18 alkene with 5 double bonds in positions 4, 8, 11, 14, and 17, where the double bonds in position 8, 11, 14 and 17 are in Z-configuration, and the double bond in position 4 is in E configuration. X = ethylcarboxylate

Ethyl (4E, 8Z 5 I lZ, 14Z,17Z)-2-methyl-4,8,l l,14,17-eicosapentaenoate (36) R 1 = methyl, and R 2 = a hydrogen atom, or R 2 = methyl, and R 1 = a hydrogen atom

Ethyl (4E, 8Z.11Z, 14Z,17Z)-2-ethyl-4,8,l l,14,17-eicosapentaenoate (37) R 1 = ethyl, and R 2 = a hydrogen atom, or R 2 = ethyl, and R 1 = a hydrogen atom

Ethyl (4E, 8Z, 11 Z, 14Z, 17Z)-2-propyl-4,8, 11,14,17-eicosapentaenoate (38) R 1 = propyl, and R 2 = a hydrogen atom, or R 2 = propyl, and R 1 = a hydrogen atom

Ethyl (4E, 8Z 5 IlZ, 14Z,17Z)-2-metoxy-4,8,ll,14,17-eicosaρentaenoate (39) R 1 = methoxy, and R 2 = a hydrogen atom, or R 2 = methoxy, and R 1 = a hydrogen atom

Ethyl (4E, 8Z 3 I lZ, 14Z,17Z)-2-etoxy-4,8 5 l l,14,17-eicosapentaenoate (40) R 1 = ethoxy, and R 2 = a hydrogen atom, or R 2 = ethoxy, and R 1 = a hydrogen atom

Ethyl (4E, 8Z, 11 Z, 14Z, 17Z)-2-propoxy-4,8, 11 , 14, 17-eicosapentaenoate (41 ) R 1 = propoxy, and R 2 = a hydrogen atom, or R 2 = propoxy, and Ri = a hydrogen atom

Ethyl (4E, 8Z 5 I lZ, 14Z,17Z)-2-thiomethyl-4,8,l 1,14,17-eicosapentaenoate (42) R 1 = methylthio, and R 2 = a hydrogen atom, or R 2 = methylthio, and R 1 = a hydrogen atom

Ethyl (4E, 8Z 5 I lZ, 14Z 5 17Z)-2-thioethyl-4,8,l 1,14,17-eicosapentaenoate (43) Ri = ethylthio, and R 2 = a hydrogen atom, or R 2 = ethylthio, and R 1 = a hydrogen atom

Ethyl (4E, 8Z 3 I lZ, 14Z,17Z)-2-thioρroρyl-4,8,l l,14,17-eicosapentaenoate (44) R 1 = propylthio, and R 2 = a hydrogen atom, or R 2 = propylthio, and R 1 = a hydrogen atom

Category E - examples (45)-(50):

For all examples (45)-(50):

X = ethylcarboxylate

Y = C 18 alkene with 5 double bonds in Z-configuration in positions 5, 8, 11, 14, and

17.

Ethyl (all-Z)-2-methoxy-5,8,ll,14,17-eicosaρentaenoate (45) R 1 = methoxy, and R 2 = a hydrogen atom, or R 2 = methoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-ethoxy-5,8,l l,14,17-eicosaρentaenoate (46) R 1 = ethoxy, and R 2 = a hydrogen atom, or R 2 = ethoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-proρoxy-5,8,l l,14,17-eicosapentaenoate (47) R 1 = propoxy, and R 2 = a hydrogen atom, or R 2 = propoxy, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-thiomethyl-5,8,l l,14 5 17-eicosapentaenoate (48) R 1 = methylthio, and R 2 = a hydrogen atom, or R 2 = methylthio, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-thioethyl-5,8,l l,14,17-eicosapentaenoate (49) R 1 = ethylthio, and R 2 = a hydrogen atom, or R 2 = ethylthio, and R 1 = a hydrogen atom

Ethyl (all-Z)-2-thiopropyl-5,8 5 ll,14,17-eicosaρentaenoate (50) R 1 = propylthio, and R 2 = a hydrogen atom, or R 2 = propylthio, and R 1 = a hydrogen atom

Category F - examples (51)-(59):

For all examples (51)-(59):

X = ethylcarboxylate

Y = C 2 o alkene with 6 double bonds in positions 4, 7, 10, 13, 16, and 19, where the double bonds in position 7, 10, 13, 16, and 19 are in Z-configuration, and the double bond in position 4 is in E configuration

Ethyl 4E,7Z, 1 OZ, 13Z, 16Z, 19Z-2-metyl-4,7, 10,13,16,19-docosahexaenoate (51) R 1 = methyl, and R 2 = a hydrogen atom, or R 2 = methyl, and R 1 = a hydrogen atom

Ethyl 4E,7Z, 1 OZ, 13Z, 16Z, 19Z-2-ethyl-4,7, 10, 13, 16, 19-docosahexaenoate (52) R 1 = ethyl, and R 2 = a hydrogen atom, or R 2 = ethyl, and R 1 = a hydrogen atom

Ethyl 4E,7Z, 1 OZ, 13Z, 16Z, 19Z-2-propyl-4,7, 10, 13, 16, 19-docosahexaenoate (53) R 1 = propyl, and R 2 = a hydrogen atom, or R 2 = propyl, and R 1 = a hydrogen atom

Ethyl 4E,7Z, 1 OZ, 13Z, 16Z, 19Z-2-metoxy-4,7, 10 5 13 , 16, 19-docosahexaenoate (54) R 1 = methoxy, and R 2 = a hydrogen atom, or R 2 = methoxy, and Ri = a hydrogen atom

Ethyl 4E,7Z, 1 OZ, 13Z, 16Z, 19Z-2-ethoxy-4,7,l 0, 13, 16, 19-docosahexaenoate (55) Ri = ethoxy, and R 2 = a hydrogen atom, or R 2 = ethoxy, and R 1 = a hydrogen atom

Ethyl 4E,7Z, 1 OZ, 13Z, 16Z, 19Z-2-propxy-4,7, 10, 13, 16, 19-docosahexaenoate (56) R 1 = propoxy, and R 2 = a hydrogen atom, or R 2 = propoxy, and R 1 = a hydrogen atom

Ethyl 4E,7Z, 1 OZ, 13Z 5 16Z 3 19Z-2-thiomethyl-4,7, 10,13,16,19-docosahexaenoate (57) Ri = methylthio, and R 2 = a hydrogen atom, or R 2 = methylthio, and Ri = a hydrogen atom

Ethyl 4E,7Z, 1 OZ, 13Z, 16Z, 19Z-2-thioethyl-4,7, 10,13,16,19-docosahexaenoate (58) R 1 = ethylthio, and R 2 = a hydrogen atom, or R 2 = ethylthio, and R 1 = a hydrogen atom

Ethyl 4E,7Z, 1 OZ, 13Z, 16Z, 19Z-2-thiopropyl-4,7, 10,13,16,19-docosahexaenoate (59) R 1 = propylthio, and R 2 = a hydrogen atom, or R 2 = propylthio, and R 1 = a hydrogen atom

Other examples of compounds according to the invention

Further preferred compounds include the following compounds/intermediates:

Ethyl (all-Z)-2-hydroxy-7,10,13,16,19-docosapentaenoate (65)

Ethyl (all-Z)-2-hydroxy-9,12,15-octadecatrienoate (61)

The compounds according to the categories A to F may be present as salts, as tri- 5 di-, and monoglycerides and phospholipids as discussed previously.

It is to be understood that the present invention encompasses any possible pharmaceutically acceptable complexes, solvates or pro-drugs of the omega-3 lipid compounds of formula (I).

"Prodrugs" are entities which may or may not possess pharmacological activity as such, but may be administered (such as orally or parenterally) and thereafter subjected to bioactivation (for example metabolization) in the body to form the agent of the present invention which is pharmacologically active. A "pharmaceutically active amount" relates to an amount that will lead to the desired pharmacological and/or therapeutic effects, i.e. an amount of the omega-3 lipid compound which is effective to achieve its intended purpose. While individual patient needs may vary, determination of optimal ranges for effective amounts of the omega-3 lipid compound is within the skill of the art. Generally, the dosage regimen for treating a condition with the compounds and/or compositions of this invention is selected in accordance with a variety of factors, including the type, age, weight, sex, diet and medical condition of the patient.

By "a medicament" is meant an omega-3 lipid compound according to formula (I), in any form suitable to be used for a medical purpose, e.g. in the form of a medicinal product, a pharmaceutical preparation or product, a dietary product, a food stuff or a food supplement.

"Treatment" includes any therapeutic application that can benefit a human or non-human mammal. Both human and veterinary treatments are within the scope of the present invention. Treatment may be in respect of an existing condition or it may be prophylactic.

The omega-3 lipid compounds of formula (I) may be used on their own but will generally be administered in the form of a pharmaceutical composition in which the compounds of formula (I) (the active ingredient) are in association with a pharmaceutically acceptable carrier, excipient or diluent (including combinations thereof).

Acceptable carriers, excipients and diluents for therapeutic use are well known in the pharmaceutical art, and can be selected with regard to the intended route of administration and standard pharmaceutical practice. Examples

encompass binders, lubricants, suspending agents, coating agents, solubilising agents, preserving agents, wetting agents, emulsifiers, sweeteners, colourants, flavouring agents, odourants, buffers, suspending agents, stabilising agents, and/or salts. A pharmaceutical composition according to the invention is preferably formulated for oral administration to a human or an animal. The pharmaceutical composition may also be formulated for administration through any other route where the active ingredients may be efficiently absorbed and utilized, e.g. intravenously, subcutaneously, intramuscularly, intranasally, rectally, vaginally or topically. In a specific embodiment of the invention, the pharmaceutical composition is shaped in form of a capsule, which could also be a microcapsule generating a powder or a sachet. The capsule may be flavoured. This embodiment also includes a capsule wherein both the capsule and the encapsulated composition according to the invention is flavoured. By flavouring the capsule it becomes more attractive to the user. For the above-mentioned therapeutic uses the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated.

The pharmaceutical composition may be formulated to provide a daily dosage of e.g. 5 mg to 1O g; 50 mg to 1 g; or 50 mg to 200 g of the omega-3 lipid compound. By a daily dosage is meant the dosage per 24 hours.

The dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated. Typically, a physician will determine the actual dosage which will be most suitable for an individual subject. The specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy. The omega-3 lipid compound and/or the pharmaceutical composition of the present invention may be administered in accordance with a regimen of from 1 to 10 times per day, such as once or twice per day. For oral and parenteral administration to human patients, the daily dosage level of the agent may be in single or divided doses.

A further aspect of the present invention relates to a lipid composition comprising omega-3 lipid compounds of formula (I). The lipid composition may comprise in the range of 60 to 100 % by weight of the omega-3 lipid compounds of formula (I), all percentages by weight being based on the total weight of the lipid composition. For example, at least 60 %, at least 70 %, at least 80%, or at least 95 % by weight of the lipid composition is comprised of omega-3 lipid compounds of formula (I).

The lipid composition may further comprise at least one of the fatty acids (all- Z)-5,8,l l,14,17-eicosapentaenoic acid (EPA), (all-Z)-4,7,10,13,16,19- docosahexaenoic acid (DHA), (all-Z)-6,9,12,15,18-heneicosapentaenoic acid (HPA), (all-Z)-7,10,13,16,19-docosapentaenoic acid (DPA, n-3), (all-Z)-8, 11,14,17- eicosatetraenoic acid (ETA, n-3), (all-Z)-4,7,10,13,16-Docosapentaenoic acid (DPA, n-6) and/or (all-Z)-5,8,l l,14-eicosatetraenoic acid (ARA) 5 or derivatives thereof, i.e. present in their alpha substituted forms. In specific embodiments of the invention, the lipid composition is a pharmaceutical composition, a nutritional composition or a dietary composition.

The lipid composition may further comprise an effective amount of a pharmaceutically acceptable antioxidant, e.g tocopherol or a mixture of tocopherols, in an amount of up to 4 mg per g, e.g. 0.05 to 0.4 mg per g, of tocopherols, of the total weight of the lipid composition.

The omega-3 compounds and compositions according to the invention are useful for the treatment of a wide range of diseases and conditions, as will be described in more detail below.

There are two major forms of diabetes mellitus. One is type 1 diabetes, which is known as insulin-dependent diabetes mellitus (IDDM), and the other one is type 2 diabetes, which is also known as non-insulin-dependent diabetes mellitus (NIDDM). Type 2 diabetes is related to obesity/overweight and lack of exercise, often of gradual onset, usually in adults, and caused by reduced insulin sensitivity, so called periferral insulin resistance. This leads to a compensatory increase in insulin production. This stage before developing full fetched type 2 diabetes is called the metabolic syndrome and characterized by hyperinsulinemia, insulin resistance, obesity, glucose intolerance, hypertension, abnormal blood lipids, hypercoagulopathia, dyslipidemia and inflammation. Thus, the present invention provides the use of an omega-3 lipid

compound of formula (I) for the manufacturing of a medicament for the treatment and/or prevention of the multi metabolic syndrome termed "metabolic syndrome", and their conditions mentioned above. Later when insulin production seizes, type 2 diabetes mellitus develops. In one embodiment, the compounds according to formula (I) may used for the treatment of type 2 diabetes.

The omega-3 lipid compounds according to formula (I) may also be used for the treatment of other types of diabetes selected from the group consisting of, secondary diabetes, such as pancreatic, extrapancreatic/endocrine or drug-induced diabetes, or exceptional forms of diabetes, such as lipoatrophic, myatonic or a disease caused by disturbance of the insulin receptors.

Suitably, omega-3 lipid compounds of formula (I), as hereinbefore defined, may activate nuclear receptors, preferably PPAR (peroxisome proliferator-activated receptor) α and/or γ.

The omega-3 lipid compounds of formula (I) may also be used for the treatment and/or prevention of obesity. Obesity is usually linked to an increased insulin resistance and obese people run a high risk of developing type 2 diabetes which is a major risk factor for development of cardiovascular diseases. Obesity is a chronic disease that afflict an increasing proportion of the population in Western societies and is associated, not only with a social stigma, but also with decreasing life span and numerous problems, for instance diabetes mellitus, insulin resistance and hypertension. The present invention thus fulfils a long-felt need for a drug that will reduce total body weight, or the amount of adipose tissue, of preferably obese humans, towards their ideal body weight without significant adverse side effects. Additionally, nonalcoholic fatty liver disease is a common condition associated with metabolic syndrome. More specific fatty liver is primry associated with hypertinsulinemia and insulin-resistance. In one embodiment of the invention an omega-3 lipid compound of formula (I) may act as an insulin-sensitizing agent and reduce liver steatosis.

Moreover, fatty liver disease accours in two major forms - alcoholic and nonalcoholic. Both terms are marked by accumulation of fat in the liver with variable amounts of liver injury, inflammation, and fibrosis. The spectrum of fatty liver disease ranges from simple steatosis (considered benign and non-progressive), to steatohepatitis (fatty liver with liver cell injury and infalmmation), to progressiv

hepatic fibrosis and cirrhosis. All these conditions are included in the prevention and/or treatment with an omega-3 lipid compound of formula (I) according to the invention.

Furthermore, the omega-3 lipid compounds of formula (I), as hereinbefore defined, are valuable for the treatment and prophylaxis of multiple risk factors known for cardiovascular diseases, such as hypertension, hypertriglyceridemia and high coagulation factor VII phospholipid complex activity. The omega-3 lipid compounds of formula (I) may be used for the treatment of elevated blood lipids in humans, acting as an lipid lowering or decreasing drug. The present invention also provides the use of an omega-3 lipid compound of formula (I) for the manufacture of a medicament for lowering triglycerides in the blood of mammals and/or evelating the HDL cholesterol levels in the serum of a human patients.

In a further aspect, the present invention relates to the use of an omega-3 lipid compound according to formula (I) for the manufacture of a medicament or pharmaceutical for the treatment and/or the prevention of at least one of; atherosclerosis or IgA Nephropathy, prophylaxis of multiple risk factors for cardiovascular diseases, heart failure, atrial fibrillation and/or a post-myocardial infarct, stroke, cerebral or transient ischaemic attacks related to atherosclerosis of several arteries, treatment of TBC or HIV, and treatment of HTG in HIV patients.

In one embodiment, the present invention also provides the use of an omega-3 lipid compound according to formula (I) for the manufacture of a medicament or pharmaceutical for the treatment and/or the prevention of psoriasis, multiple sclerosis and/or rheumatoid arthrit. Omega-3 lipid compounds of formula (I), or compositions including omega-3 lipid compounds of formula (I), is a least one of a human peroxisome proliferant- activated receptor (PPAR) α, γ and/or δ activator or modulator. As previously known, the PP ARa receptor is more promiscuous compared to PPARγ, meaning that PP ARa will accept a greater variety of fatty acids as ligands compared to PPARγ. However, since patients with metabolic syndrome or type 2 diabetes are usually obese or overweight and have pathologic blood lipids, mainly elevated triglycerides and low High-Density Cholesterol (HDL-chol) activation of the PP ARa receptor is important. Therefore, in a more specific embodiment of the invention, the compound of formula

(I) is a selective human peroxisome proliferant-activated receptor (PPAR) α activator or modulator. Moreover, an ideal drug for treatment of metabolic syndrome or type 2 diabetes may act as ligand to both these receptors. Thus, the present invention provides the use of a compound of formula (I) as a dual human peroxisome proliferant-activated receptor (PPAR) activator or modulator, α/ γ and/or α/δ, preferably a PPAR α/ γ activator or modulator. The present invention also includes the case than a compound of formula (I) is a PPAR pan-agonists (i.e. an alpha, beta and gamma agonists).

Methods for preparing the compounds according to the invention

The omega-3 lipid compound of formula (I) where R 1 (or R 2 ) is a hydrogen may be prepared through the following processes (Scheme 1). Omega-3 lipid compounds represented by the general formula (I) where Rj is a hydrogen and R 2 denotes a C 1 -C 6 alkyl group, a benzyl, a halogen, a benzyl, an alkenyl, an alkynyl are prepared by reacting a long chain polyunsaturated ester with a strong non-nucleophilic base like lithium diisopropylamine, potassium/sodium hexamethyldisilazide or KH/NaH in DMF in a solvent such as tetrahydrofuran, diethylether at temperatures of -60 to -78 0 C, to provide the ester enolate (process 1).

Method I

1st process 2nd process

3rd process

Scheme 1: R 3 =alkyl group (methyl, ethyl, propyl)

This ester enolate is reacted with an electrophilic reagent like an alkylhalide exemplified by ethyliodine, benzylcloride, an acyl halide exemplified by; acetyl chloride, benzoyl bromide, a carboxylic anhydride exemplified by acetic anhydride or a electrophilic halogenation reagent exemplified by N-fluorobenzene sulfonimide (NFSI), N-bromosuccinimide or iodine etc. to provide the substitued derivative (process 2). The 2-halo substituted derivatives can be reacted with a nucleophilic reagent such as tiols to provide 2-alkylthio-derivatives.

The ester is further hydrolysed in a solvent like ethanol or methanol to the carboxylic acid derivative by addition of a base like lithium/sodium/potassium hydroxide in water at temperatures between 15 0 C and reflux.

Claisen condensation of the long chain polyunsaturated ester occurs during the treatment of ester with a strong base. (This condensation product might possess interesting biologically activity. Thus, in one embodiment of the invention the condensation (intermediate) product mentioned above, as well as the use of this product for treatment and/or prevention of diseases according to the present invention, are disclosed.)

Moreover, in a further embodiment, compounds represented by the general formula (I) are synthesised through following processes (Scheme 2).

Method II:

4th process

5th process

7th process 6th process

Scheme 2: R 3 =alkyl group (methyl, ethyl, propyl)

Compounds represented by the general formula (I) where R 1 is a hydrogen and R 2 denotes a hydroxy, an alkoxy group, an acyloxy are prepared by reacting a long chain polyunsaturated ester with a strong non-nucleophilic base like lithium diisopropylamine or potassium/sodium hexamethyldisilazide in a solvent such as tet- rahydrofuran, diethylether at temperatures of -60 to -78 0 C, to provide the ester enolate (process 4). This ester enolate is reacted with an oxygen source like di- methyldioxirane, 2-(phenylsulfonyl)-3-phenyloxaziridine, molecular oxygen with different additives like trimethylphosphite or different catalysts like a Ni(II) complex to provide alpha-hydroxy ester (process 5). Reaction of the secondary alcohol with a base like sodiumhydride in a solvent like THF or DMF generates an alkoxide that is reacted with different electrophilic reagents as alkyliodide for example; methyl iodide, ethyl iodide, benzylbromide or an acyl halide, for example; acetyl chloride, benzoyl bromide (process 6). The ester is hydrolysed in a solvent like ethanol or methanol to the carboxylic acid derivative by addition of a base like lith- ium/sodium/potassium hydroxide in water at temperatures between 15 0 C to reflux (process 7).

The alpha-hydroxy ester is a useful intermediate for the introduction of other functional groups in the α-position according to the invention. The hydroxyl function can be activated by conversion to a halide or tosylate prior to reaction with different nucleophiles like ammonia, amines, thiols, etc. The Mitsunobu reaction is also useful for the conversion of a hydroxylgroup into other functional groups. (Mitsunobu, O, Synthesis, 1981, 1).

Compounds represented by the general formula (I) where R 1 is a hydrogen and R 2 denotes an alkyl, phenyl, hydroxymethyl, carboxyl, alkoxycarbonyl, hydroxymethyl, hydroxy, an alkoxy group, an acyloxy can be prepared by reacting a long chain polyunsaturated tosylate, mesylate or halide with dialkylmalonate or substituted dialkyl malonates. Method III, scheme 3. Hydrolysis of the diester and decarboxylation gives alpha-substituted products.

Method III

Hydrolysis, decarboxylation 10th process

Scheme 3

The long chain polyunsaturated tosylates used in method III can be prepared from the corresponding long chain polyunsaturated alcohol. These alcohols may be prepared directly from the carboxylic esters of the naturally occurring unsaturated fatty acids; alpha-linolenic acid, conjugated linoleic acid, eicosapentaenoic acid, etc. by reduction with a reducing agent like lithium aluminiumhydride or diisobultylaluminiumhydride at -10 to 0 0 C. Using the alcohol derived from ethyl- (all-Z)-5,8,l 1,14,17-eicosapentaenoate in the reaction secuence described in method III, 2-substituted DPA derivatives will be prepared. The alcohols can also be prepared by degradation of the polyunsaturated fatty acids EPA and DHA as described by Holmeide et al. (J.Chem. Soc, Perkin Trans. 1, 2000, 2271). In this case one can start with purified EPA or DHA, but it is also possible to start with fish oil containing EPA and DHA in mixture. The reason for this is that DHA reacts faster in an iodolactonisation reaction than EPA to form an iodo δ-lactone (Corey et al, Proc. Natl. Acad. ScI USA, 1983, 3581, Wright et al, J. Org. Chem., 1987, 4399), Kuklev et al, Phytochemistry, 1992, 2401). (all-Z)-3,6,9,12,15-octadecapentaenol can be prepared from DHA by this literature method. Using this alcohol as a reagent in methods III will afford 2-substituted EPA derivatives.

Combining method III with method I can give disubstituted derivatives.

Method IV.

The compounds of formula (I) wherein X is a carboxylic acid and in the form of a phospholipid can be prepared through the following processes.

Acylation of sn-glycero-3-phosphocholine (GPC) with an activated fatty acid, such as fatty acid imidazolides, is a standard procedure in phosphatidylcholine synthesis. It is usually carried out in the presence of DMSO anion with DMSO as solvent (Hermetter; Chemistry and Physics of lipids, 1981, 28, 111). Sn-Glycero-3- phosphocholine, as cadmium (II) adduct can also be reacted with the imidazolide activated fatty acid in the presence of DBU (l,8-diazabicyclo[5.4.0]undec-7-ene] to prepare the phosphatidylcholine of the respective fatty acid (International application number PCT/GB2003/002582). Enzymatic transphosphatidylation can effect the transformation of phosphstidylcholine to phosphatidyletanolamine (Wang et al, J. Am. Chem. Soc, 1993, 115, 10487).

Polyunsaturated containing phospholipids may be prepared by various ways, mainly by chemical synthesis of phospholipids as described, by enzymatic esterification and transesterification of phospholipids or enzymatic transphosphatidylation of phospholipids. (Hosokawa, J.Am. Oil Chem.Soc. 1995, 1287, Lilja-Hallberg, Biocatalysis, 1994, 195). For such enzymatic applications a preferred embodiment of the invention is a compound according to formula I wherein R 1 or R 2 are hydrogen. The compounds of formula (I) wherein X is a carboxylic acid and in the form of a triglyceride can be prepared through the following processes. Excess of the novel fatty acid can be coupled to glycerol using dimethylaminopyridine (DMAP) and 2- ( 1 H-benzotriazol- 1 -yl)-N,N,N' ,N' -tetramethyluroniumhexafluorophosphate (HBTU).

The compounds of formula (I) wherein X is a carboxylic acid and in the form of a diglyceride can be prepared by reaction of the fatty acid (2 equivalents) with glycerol (1 equivalent) in the presence of 1,3-dicyclohexylcarbondiimide (DCC) and 4-dimethylaminopyridine (DMAP). The compounds of formula (I) wherein X is a carboxylic acid and in the form of a monoglyceride can be prepared through the following processes. Acylation of 1,2-O-isopropylidene-sn-glycerol with a fatty acid using DCC and DMAP in chloroform gives a monodienoylglycerol. Deprotection of the isopropylidene group can be done by treating the protected glycerol with an acidic (HCl, acetic acid etc.) (O'Brian, J.Org.Chem., 1996, 5914).

1,2-O-isopropylidene- sn-glycerol

There are several common synthetic methods for the preparation of monoglycerides with the fatty acid in 2-position. One method utilizes esterification of the fatty acid with glycidol in the presence of l-(3-dimethylaminopropyl)-3- ethylcarbodiimidehydrochloride (EDC) and 4-dimethylaminopyridine (DMAP) to produce a glycidyl derivative. Treatment of the glycidyl derivative with trifluoroacetic anhydride (TFAA) prior to trans-esterification the monoglyceride is obtained (Parkkari et al, Bioorg. Med. Chem.Lett. 2006, 2437).

(glycidyl derivative)

Pyridine/IWeOH

Further common methods for the preparation of mono-, di- and tri-glycerides of fatty acid derivatives are described in international patent application, PCT/FR02/02831.

It is also possible to use enzymatic processes (lipase reactions) for the transformation of a fatty acid to a mono-, di-, tri-glyceride. A 1,3-regiospecific lipase from the fungus Mucor miehei can be used to produce triglycerides or diglycerides from polyunsaturated fatty acids and glycerol. A different lipase, the non-regiospecific yeast lipase from Candida antartica is highly efficient in generating triglycerides from polyunsaturated fatty acids (Haraldsson, Pharmazie, 2000, 3). For this enzymatic application a preferred embodiment of the invention is a compound according to formula I wherein R 1 and R 2 are hydrogen.

Synthesis protocols

The invention will now be described in more detail by the following examples, which are not to be constructed as limiting the invention. In the following examples the structures were verified by NMR and by Mass Spectrometry (MS) . The NMR spectra were recorded in CDCI 3 . J values are given in Hz.

Ethyl (alI-ZV2-ethyl-7,10,13,16.19-docosapentaenoate (14)

Butyllithium (0.96 ml, 1.54 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of diisopropylamine (0.23 ml, 1.60 mmol) in dry THF (5 ml) under N 2 at O 0 C. The resulting solution was stirred at O 0 C for 20 min., cooled to -78 0 C and stirred an additional 10 min. before dropwise addition of ethyl (all-Z)-7,10,13,16,19- docosapentaenoate (0.50 g, 1.40 mmol) in dry THF (5 mL) during 10 min. The green solution was stirred at -78 0 C for 10 min. before ethyl iodide (0.16 ml, 2.09 mmol) was added. The resulting solution was allowed to reach ambient temperature over one hour, portioned between water (10 mL) and heptane (10 mL). The aqueous layer was extracted with heptane (20 mL) and the combined organic layer was washed with IM HCl and dried (Na 2 SO 4 ). Concentration under reduced pressure and purification by flash chromatography (Heptane : EtOAc 98:2) afforded 0.37 g (68%) of the title compound 14 as a colorless oil.

1 H-NMR (200 MHz, CDCl 3 ): δ 0.83-0.99 (m, 6H), 1.20-1.60 (m, HH), 2.05 (m, 4H), 2.19 (m, IH), 2.81 (m, 8H), 4.11 (q, 2H), 5.35 (m, 10H); 13 C-NMR (50 MHz, CDCl 3 ): δ 11.72, 14.18, 14.28, 20.47, 25.43, 25.45,

25.54, 26.99, 29.45, 30.22, 31.91, 37.70, 47.19, 59.82, 85.73, 126.94, 127.72, 127.79, 127.85, 128.05, 128.09, 128.36, 128.44, 129.97, 176.17; MS (electrospray): 409.3 [M+Na].

Ethyl (all-Z)-2-hydroxy-7,l(U3 ,16,19-doeosapentaeiioate (65)

A solution of KHMDS (533.9 mg, 2.68 mmol) in THF, 10 mL, was cooled to -78°C under N 2 -atmosphere before a solution of (all-Z)-7,10,13,16,19- docosapentaenoate (478.8 mg, 1.33 mmol) in THF, 2.5 mL, was added drop wise. The mixture was stirred at -78 0 C for 30 minutes before a solution of trans-2- phenylsulfonyl)-3-phenyloxaziridine (Davis' reagent) (525.3 mg, 2.01 mmol) in THF, 1.5 mL, was added drop wise. The reaction mixture was stirred at -78 0 C for 1 hr 50 minutes before it was quenched with NH 4 Cl sat, 20 mL, after warming to room temperature the mixture was extracted with diethyl ether, 50 mL x2, the organic

phase was washed with brine, 20 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo. The resulting crude product was subjected to flash chromatography on silica gel eluting with heptane/EtOAc (100:1) - (95:5) yielding 293 mg (59%) of the product 65 as a colorless liquid. 1 H NMR (200 MHz, CDCl 3 ) δ 0.95 (t, J=7.5 Hz, 3H), 1.28 (t, J=I.1 Hz, 3H),

1.38-1.46 (m, 4H), 1.49-1.81 (m, 2H), 2.02-2.13 (m, 4H), 2.76-2.85 (m, 9H), 4.12 (dd, J=2.5, 6.9 Hz, IH), 4.22 (q, J=7.1 Hz, 2H), 5.32-5.41 (m, 10H)

13 C NMR (50 MHz, CDCl 3 ) δ 14.1, 14.2, 20.4, 24.4, 25.5, 25.6, 27.0, 29.3, 34.3, 61.5, 70.3, 127.0, 127.8, 127.87, 127.92, 128.08, 128.15, 128.4, 128.5, 129.9, 132.0, 175.3 (2 signals hidden)

MS (electrospray); 397 [M+Na] +

Ethyl rall-Z)-2-ethoxy-7,10 J3,16,19-docosapentaenoate (17)

A suspension of 35 % KH (92.4 mg, 0.806 mmol KH) in DMF, 3 mL, was cooled under N 2 -atmosphere to 0 0 C and a solution of ethyl (all-Z)-2-hydroxy- 7,10,13,16,19-docosaρentaenoate (65) (101 mg, 0.27 mmol) in DMF, 2 mL, was added drop wise. The mixture was stirred for 30 minutes at 0°C before EtI (0.22 mL, 2.73 mmol) was added. The mixture was then allowed to slowly reach room temperature and stirred for 4 hrs. The reaction was quenched with NH 4 Cl sat., 20 mL, and extracted with diethyl ether, 50 mL x 2. The organic phase was washed with brine, 20 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo and subjected to flash chromatography on silica gel eluting with heptane:EtOAc (100:1) -(95:5) yielding 19.4 mg (18%) of the product 17 as a colorless liquid.

1 H NMR (300 MHz, CDCl 3 ) δ 0.95 (t, J=7.5 Hz, 3H), 1.20 (t, J=7.0 Hz, 3H), 1.26 (t, J=7.1 Hz, 3H), 1.31-1.47 (m, 5H), 1.66-1.72 (m, 2H), 2.03-2.11 (m, 5H), 2.77-2.84 (m, 6H), 3.33-3.47 (m, IH), 3.55-3.65 (m, IH), 3.78 (t, J=6.4 Hz, IH), 4.14-4.22 (m, 2H), 5.27-5.39 (m, 10H)

13 C NMR (75 MHz, CDCl 3 ) δ 14.3, 15.2, 20.6, 25.0, 25.5, 25.6 (2 signals),

27.0, 29.3, 32.9, 60.6, 65.9, 79.0, 127.0, 127.9 (2 signals), 128.0, 128.1, 128.2, 128.4, 128.5, 130.0, 132.0, 173.2 (2 signals hidden) MS (electrospray); 425 [M+Naf

(all-Z)-2-ethoxy-7,10,13,16,19-docosapentaeiioie acid (69)

To a solution of Ethyl_(all-Z)-2-ethoxy-7,10,13,16,19-docosapentaenoate (17) (66.1 mg, 0.164 mmol) in EtOH (5 ml) was added a solution of LiOH-H 2 O (57.7 mg, 1.38 mmol) in water (5 ml). The reaction mixture was stirred under N 2 -atmosphere at 80°C for 19 1 A hrs. After coolingl M HCl was added (to pH ~1). The resulting mixture was extracted with diethyl ether (50 ml), dried (MgSO 4 ) and evaporated in vacuo yielding 55 mg (90%) of the title compound as a light yellow oil. 1 U NMR (200 MHz, CDCl 3 J δ 0.95 (t, J=7.5 Hz, 3H), 1.24 (t, J=7.0 Hz, 3H),

1.38-1.41 (m, 4H), 1.75-1.85 (m, 2H), 2.03-2.13 (m, 4H), 2.80-2.83 (m, 8H), 3.46- 3.71 (m, 2H), 3.88 (t, J=5.8 Hz, IH), 5.23-5.44 (m, 10H) MS (electrospray); 373 [M-H] "

Ethyl (all-Z)-2-ethyl-9,12,15-octadecatrienoate (2)

To a solution of diisopropyl amine (265 μL, 1.88 mmol) in dry THF, 5 mL, under N 2 -atmosphere at O 0 C was added drop wise 1.6 M BuLi in hexane (1.15 mL, 1.84 mmol). The resulting mixture was stirred at -78 0 C for 20 minutes before a solution of ethyl (all-Z)-9,12,15-octadecatrienoate.(502 mg, 1.64 mmol) in THF 5 5 mL, was added drop wise. The resulting reaction mixture was stirred for 30 minutes at -78°C before EtI (0.20 mL, 2.48 mmol) was added drop wise. The ice bath was

removed an the reaction mixture was stirred for 3 hrs and 45 minutes before it was quenched with water, 25 mL, and extracted with diethyl ether, 50 mL x 2. The organic phase was washed with 1 M HCl (aq), 20 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo. The resulting crude product was subjected to flash chromatography on silica gel eluting with heptane/EtOAc (100:1) yielding 216 mg (39%) of ethyl (all-Z)-2-ethyl-9,12,15-octadecatrienoate (2).as a colorless liquid.

1 H NMR (200 MHz 5 CDCl 3 ) δ 0.84 (t, J=7.4 Hz, 3H), 0.93 (t, J=7.5 Hz, 3H), 1.21 (t, J=7.1 Hz, 3H), 1.25 (m, 8H), 1.33-1.65 (m, 4H), 2.02 (q, J=7.0 Hz, 4H), 2.13- 2.27 (m, IH), 2.76 (t, J=5.6 Hz, 4H), 4.10 (q, J=7.1 Hz, 2H), 5.20-5.41 (m, 6H) 13 C NMR (50 MHz, CDCl 3 ) δ 11.7, 14.2, 14.3, 20.5, 25.4, 25.5, 27.1, 27.3,

29.0, 29.4, 29.5, 32.0, 47.2, 59.8, 127.0, 127.6, 128.1, 130.1, 131.8, 176.2 (2 signals hidden)

MS (electrospray); 357 [M+Naf

(alI-Z)-2-ethvI-9J2,15-octadecatrienoic acid (70)

To a solution of ethyl (all-Z)-2-ethyl-9,12,15-octadecatrienoate (2) (111 mg, 0.312 mmol) in EtOH (10 ml) was added a solution OfLiOH-H 2 O (108 mg, 2.57 mmol) in water (10 ml). The reaction mixture was stirred under N 2 -atmosphere at 80°C for 15 hrs. After cooling 1 M HCl was adde (to pH ~2). The resulting mixture was extracted with diethyl ether (50 ml), dried (MgSO 4 ) and evaporated in vacuo yielding 81 mg (79%) of the title compound as a yellow oil.

1 H NMR (200 MHz, CDCl a ) δ 0.83-0.99 (m, 6H), 1.20-1.29 (m, 8H), 1.41- 1.78 (m, 4H), 1.99-2.13 (m, 4H), 2.21-2.30 (m, IH), 2.76-2.82 (m, 4H), 5.23-5.44 (m, 6H)

MS (electrospray); 305 [M-H] "

Ethyl (all-ZV2-iodo-9,12,15-octadecatrienoate (60)

To a solution of diisopropyl amine (322 μL, 2.28 mmol) in dry THF, 5 niL, under N 2 -atmosphere at O 0 C was added drop wise 1.6 M BuLi in hexane (1.25 niL, 2.0 mmol). The resulting mixture was stirred at -78°C for 20 minutes before a solution of of ethyl (all-Z)-9, 12, 15-octadecatrienoate_(501 mg, 1.63 mmol) in THF, 5 mL, was added drop wise. The resulting yellow reaction mixture was stirred for 35 minutes at -78°C before a solution of I 2 (704 mg, 2.77 mmol) in THF, 5 mL was added drop wise. The reaction mixture was stirred at -78°C for 25 minutes before it was quenched with 1 M HCl, 20 mL, and extracted with heptane, 50 mL. The organic phase was washed with 10% Na 2 S 2 θ 3 (aq), 25 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo. The resulting crude product was subjected to flash chromatography on silica gel eluting with heptane/EtOAc (100:1) yielding 152 mg (22%) of ethyl (all-Z)-2-iodo-9,12,15-octadecatrienoate (60) as a colorless liquid.

1 HNMR (200 MHz, CDCl 3 ) δ 0.95 (t, J=7.5 Hz, 3H), 1.25 (t, J=7.1 Hz, 3H), 1.30 (m, 8H), 1.89-2.09 (m, 6 H) 3 2.78 (t, J=5.5 Hz, 4H), 4.13-4.28 (m,, 3H), 5.25-5. (m, 6 H)

13 C NMR (50 MHz, CDCl 3 ) δ 13.7, 14.2, 20.5, 21.4, 25.5, 25.6, 27.1, 28.5, 28.9, 26.3, 29.4, 36.0, 61.6, 127.0, 127.8, 128.2, 128.3, 130.1, 131.9, 171.4

MS (electrospray); 455 [M+Na] +

Ethyl (alI-ZV2-thiomethvI-9,12,15-oetadeeatrienoate (7)

Ethyl (all-Z)-2-iodo-9,12,15-octadecatrienoate (60) (146 mg, 0.338 mmol) was dissolved in THF, 5mL, and cooled to 0°C under N 2 -atmosphere before MeSNa was added. The reaction mixture was stirred at 0°C for 1 hr before it was diluted with heptane, 50 mL, washed with water, 2x20 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo. The resulting crude product was subjected to flash chromatography on silica gel eluting with heptane/EtOAc (100:1) - (95:5) yielding

110 mg (92%) of ethyl (all-Z)-2-thiomethyl-9, 12, 15-octadecatrienoate (7) as a colorless liquid.

1 H NMR (200 MHz 3 CDCl 3 ) δ 0.94 (t, J=7.5Hz, 3H), 1.23 (t, J=7.1 Hz, 3H), 1.29 (m, 8H) 3 (m, IH) 5 (m, IH), 2.09(s, 3H) 3 1.97-2.13 (m, 8H), 2.77 (t, J=5.6 Hz 5 4H) 3 3.12 (dd 5 J=6.8, 8.3 Hz, IH) 3 4.17 (q, J=7.1Hz, 2H) 5 5.26-5.37 (m, 6H)

13 C NMR (50 MHz, CDCl 3 ) δ 13.7, 14.2, 20.5, 25.5, 25.6, 27.1, 27.2, 28.97, 29.04, 29.4, 30.6, 47.3, 60.9, 127.1, 127.7, 128.17, 128.23, 130.1, 131.9, 172.4 (1 signal hidden)

MS (electrospray); 375 [M+Na] +

Ethyl (all-ZV2-hvdroxy-9,12.15-octadecatrienoate (61)

A solution of KHMDS (5.24 g, 26.2 mmol) in THF, 100 niL, was cooled to - 78°C under N 2 -atmosphere before a solution of ethyl (all-Z)- 9,12,15- octadecatrienoate (4.01g, 13.1 mmol) in THF, 25 niL, was added drop wise. The mixture was stirred at -78 0 C for 30 minutes before a solution of trans-2- phenylsulfonyl)-3-phenyloxaziridine (Davis' reagent) (5.13 g, 19.6 mmol) in THF, 15 mL, was added drop wise. The reaction mixture was stirred at -78°C for 1 1 A hrs. before it was quenched with NH 4 Cl sat, 30 mL, after warming to room temperature the mixture was extracted with diethyl ether, 100 mL x2, the organic phase was washed with brine, 30 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo. The resulting crude product was subjected to flash chromatography on silica gel eluting with heptane/EtOAc (100:1) - (95:5) yielding 2.67 g (63%) of ethyl (all-Z)-2- hydroxy-9, 12, 15-octadecatrienoate (61) as a colorless liquid.

1 H NMR (200 MHz, CDCl 3 ) δ 0.92 (t, J=7.5Hz, 3H), 1.24 (t, J=7.1 Hz, 3H), 1.28 (m, 8H), 1.53-1.75 (m, 2H), 1.96-2.10 (m, 4H) 5 2.76 (t, J=5.6 Hz 5 5H), 4.11 (dd, J=4.0, 6.7 Hz, IH), 4.19 (q, J=7.1 Hz, 2H), 5.22-5.41 (m, 6H)

13 C NMR (50 MHz, CDCl 3 ) δ 14.09, 14.14, 20.4, 24.6, 25.4, 25.5, 27.1, 29.0, 29.1, 29.4, 34.3, 61.4, 70.3, 127.0, 127.7, 128.11, 128.14, 130.1, 131.8, 175.3

MS (electrospray); 345 [M+Na] +

Ethyl (aII-Z)-2-ethoxy-9,12,15-octadecatrienoate (5)

A suspension of 35 % KH (84.3 mg, 0.735 nimol KH) in DMF, 2 niL, was cooled under N 2 -atmosphere to O 0 C and a solution of ethyl (all-Z)-2-hydroxy- 9,12,15-octadecatrienoate (61) (119.7 mg, 0.37 mmol) in DMF, 2 niL, was added drop wise. The mixture was stirred for 30 minutes at 0 0 C before EtI (0.15 mL, 1.87 mmol) was added. The mixture was then allowed to slowly reach room temperature and stirred over night. The reaction was quenched with NH 4 Cl sat., 20 mL, and extracted with diethyl ether, 50 mL x 2. The organic phase was washed with brine, 20 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo and subjected to flash chromatography on silica gel eluting with heptane:EtOAc (100:1) -(95:5) yielding 31.5 mg (24%) of the product 5 as a colorless liquid. 1 H NMR (200 MHz, CDCl 3 ) δ 0.95 (t, J=7.5 Hz, 3H), 1.20 (t, J=7.0 Hz, 3H),

1.22-1.30 (m, HH), 1.63-1.71 (m, 2H), 1.98-2.12 (m, 4H), 2.78 (t, J=5.5 Hz, 4H), 3.33-3.45 (m, IH), 3.52-3.64 (m, IH) 5 3.78 (t, J=6.4 Hz, IH), 4.12-4.24 (m, 2H), 5.27-5.40 (m, 6H)

13 C NMR (50 MHz, CDCl 3 ) δ 14.2, 15.1, 20.5, 25.2, 25.5, 25.6, 27.2, 29.0, 29.1, 29.2, 29.5, 33.0, 60.6, 65.9, 79.0, 127.1, 127.7, 128.2 (2 signals), 130.2, 131.9, 173.3

MS (electrospray); 373 [M+Na] +

Ethyl (all-ZV 2-phtaIimide-9,12,15-octadeeatrienoate f62)

A solution of ethyl (all-Z)-2-hydroxy-9,12,15-octadecatrienoate (61) (176.8 mg, 0.548mmol), phtalimide (97.6 mg, 0.663 mmol) and triphenylphosphine (178.3 mg, 0.680 mmol) in THF was cooled to O 0 C under N 2 -atmosphere before addition of diisopropyl azodicarboxylate (DIAD) (128 μL, 0.660 mmol). The ice bath was removed and the mixture was stirred for 22 hrs. The reaction mixture was evaporated in vacuo and subjected to flash chromatography on silica gel eluting with heptane:EtOAc (95:5) - (4:1) yielding 153.8 mg (62%) of ethyl (all-Z)- 2-phtalimide- 9,12,15-octadecatrienoate (62) as a colorless liquid.

1 H NMR (200 MHz, CDCl 3 ) δ 0.92 (t, J=7.5 Hz, 3H), 1.18 (t, J=7.1 Hz, 3H), 1.29 (m, 8H), 1.97-2.10 (m, 4H), 2.17-2.24 (m, 2H), 2.72-2.79 (m, 4H), 4.17 (q, J=7.1 Hz, 2H), 4.79 (dd, J=9.6, 6.0 Hz, IH), 5.24-5.35 (m, 6H), 7.68-7.74 (m, 2H), 7.79-7.85 (m, 2H)

13 C NMR (50 MHz, CDCl 3 ) δ 14.0, 14.2, 20.4, 25.4, 25.5, 26.2, 27.0, 28.5, 28.8, 28.9, 29.4, 52.3, 61.6, 123.4, 127.0, 127.6, 128.11, 128.16, 130.1, 131.7, 131.8, 134.0, 167.6, 169.3

MS (electrospray); 474 [M+Na] +

Ethyl (all-ZV2-amino-9,12,15-octadecatrienoate (12)

A solution of ethyl (all-Z)- 2-phtalimide-9,12,l 5-octadecatrienoate (62) (104.6 mg, 0.232 mmol) in EtOH, 4 mL, was added hydrazine hydrate (17 μL, 0.35 mmol) and the mixture was refluxed under N 2 -atmosphere for 15 hrs. The reaction mixture was cooled, evaporated in vacuo and subjected to flash chromatography on silica gel eluting with CH 2 C1 2 :2M NH 3 in MeOH (97.5:2.5) to yield 58.4 mg (78 %) of ethyl (all-Z)-2-amino-9, 12, 15-octadecatrienoate (12) as a colorless liquid.

1 H NMR (200 MHz, CDCl 3 ) δ 0.92 (t, J=7.5 Hz, 3H), 1.21 (t, J=7.1 Hz, 3H), 1.27 (m, 8H), 1.37-1.69 (m, 4H), 1.95-2.09 (m, 4H), 2.74 (t, J=5.6 Hz, 4H) 5 3.36 (bs, IH), 4.11 (q, J=7.1 Hz, 2H), 5.22-5-37 (m, 6H)

13 C NMR (50 Iv-Hz 5 CDCl 3 ) δ 14.1 (2 C), 20.4, 25.4, 25.45, 25.49, 27.1, 29.0,

29.2, 29.4, 34.8, 54.3, 60.6, 127.0, 127.6, 128.11, 128.15, 130.1, 131.8, 176.1 MS (electrospray); 322 [M+H] + , 344 [M+Na] +

Ethyl (all-Z)-2-diethylamino-9 ,12,15-octadecatrienoate (10) and Ethyl (all-Z)-2- ethylamino-9,12,15-oetadecatrienoate (ll)

A mixture of ethyl (all-Z)-2-amino-9,12,15-octadecatrienoate (12) (551.7 mg, 1.72 mmol), LiOH-H 2 O (144.6 mg, 3.45 mmol) and molsieve 4A (507 mg) in DMF, 4 niL, was added ethylbromide (2.6 mL, 34.8 mmol) and the resulting mixture was stirred at ambient temperature for 46 hrs. The mixture was diluted with diethyl ether, 100 mL, and filtered. The organic phase was washed with 1 M NaOH, 20 mL, and brine, 20 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo and subjected to flash chromatography on silica gel eluting with heptane :EtO Ac (95:5) - CH 2 Cl 2 :2M NH 3 in MeOH (98:2) to yield 357 mg (55 %) of the diethylamino ester 10 as a colorless liquid and 161 mg (27%) of the ethylamino ester 11 as a yellow liquid.

Ethyl (aH-Z)-2-diethylamino-9,12,15-octadeeatrienoate (10)

1 H NMR (200 MHz, CDCl 3 ) δ 0.93 (t, J=7.5 Hz, 3H), 0.99 (t, J=7.1 Hz, 6H), 1.22 (t, J=7.1 Hz, 3H), 1.27 (m, 8H), 1.51-1.70 (m, 2H), 1.96-2.11 (m, 4H), 2.43

(sextet, J=6.8 Hz, 2H), 2.66 (q, J=7.3 Hz, 2H), 2.71-2.79 (m, 4H), 3.28 (t, J=7.4 Hz, IH), 4.10 (q, J=7.1 Hz, 2H), 5.22-5.38 (m, 6H)

13 C NMR (50 MHz, CDCl 3 ) δ 13.9, 14.2, 14.4, 20.5, 25.4, 25.5, 26.3, 27.1, 29.1, 29.3, 29.5, 29.9, 44.4, 59.7, 63.0, 127.0, 127.6, 128.2 (2C), 130.2, 131.8, 173.5 MS (electrospray); 378 [M+H] + , 400 [M+Naf

Ethyl (all-Z)-2-ethylamino-9J2,15-octadecatrienoate (11)

1 H NMR (200 MHz, CDCl 3 ) δ 0.91 (t, J=7.5 Hz, 3H), 1.02 (t, J=7.1 Hz, 3H), 1.24 (m, HH), 1.55 (m, 3H), 1.94-2.08 (m, 4H), 2.35-2.65 (m, 2H), 2.73 (t, J=5.6 Hz, 4H), 3.14 (t, J=6.6 Hz, IH), 4.11 (q, J=7.1 Hz, 2H), 5.17-5.38 (m, 6H)

13 C NMR (50 MHz, CDCl 3 ) δ 14.1, 14.2, 15.2, 20.4, 25.4, 25.5, 25.6, 27.0,

28.9, 29.2, 29.4, 33.5, 42.3, 60.3, 61.3, 127.0, 127.6, 128.09, 128.11, 130.1, 131.8, 175.5

MS (electrospray); 350 [M+H] + , 372 [M+Na] +

(all-ZV 4,7,10 ,13,16,19-docosahexaenol (63)

A solution of ethyl (all-Z)-4,7,10,13,16,19-docosahexaenoate (10.72 g, 30.0 mmol) in THF, 30 niL, was added drop wise to a suspension OfLiAlH 4 in THH, 140 niL, under N 2 -atmosphere at O 0 C. The resulting mixture was stirred at O 0 C for 50 minutes, before it was quenched with water, 50 mL, added IM HCl 5 100 mL, and stirred at room temperature for 1 hr. The phases were separated and the water phase was extracted with diethyl ether, 100 mL x2. The organic phase was washed with IM HCl, 50 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo yielding 8.56 g (91%) of (all-Z)-4,7,10,13,16,19-docosahexaenol (63) as a colorless liquid.

1 H NMR (200 MHz, CDCl 3 ) δ 1.00 (t, J=7.5 Hz, 3H), 1.63-1.73 (m, 2H), 1.83 (bs, IH), 2.04—2.24 (m, 4H), 2.88 (bs, 10H), 3.67 (t, J=6.4 Hz, 2H), 5.41 (bs, 12H)

(all-Z)- 4,7,10,13,16,19-doeosahexaeii-tosylate (64)

A solution of (all-Z)-4,7,10,13,16,19-docosahexaenol (63 ) (8.50 g, 27.0 mmol) and tosyl chloride (5.41 g, 28.4 mmol) in dry CH 2 Cl 2 , 30 mL, was cooled to O 0 C before addition OfEt 3 N (4.15 mL, 29.8 mmol). The reaction mixture was placed in the refrigerator. After 17 hrs an additional amount of tosyl chloride (774 mg, 4.06 mmol) and Et 3 N (565 μL, 4.06 mmol) was added and the mixture was placed in the refrigerator for 21 1 A hrs. The reaction mixture was poured in ice-water and extracted with CH 2 Cl 2 , 50 mL x2, and evaporated in vacuo. The residue was dissolved in heptane, 100 mL, washed with water, 30 mL, IM HCl, 30 mLx2, and brine, 30 mL,

dried (Na 2 SO 4 ), filtered and evaporated in vacuo. The residue was added pyridine, 1.6 mL, and water, 1.25 mL, and stirred at room temperature for 1 hr. The mixture was diluted with heptane, 100 mL, and washed with water, 25 mL, 1 M HCl, 25 mL x 2, brine, 25 mL, dried (Na 2 SO 4 ), filtered and evaporated in vacuo yielding 10.27 g (81%) of the tosylate 64 as a colorless oil.

1 H NMR (200 MHz 5 CDCl 3 ) δ 0.94 (t, J=7.5 Hz 5 3H) 5 1.61-1.75 (m, 2H) 5 1.97-2.12 (m, 4H), 2.41 (s, 3H), 2.70-2.89 (m, 10H) 5 4.00 (t, J=6.4 Hz, 2H) 5 5.27-5.38 (m, 12H). 7.31 (d, 2H), 7.76 (d, 2H)

MS (electrospray); 491 [M+Naf

(all-Z)-9,12,15-oetadeeatrienol (66)

ALA EE 66

To a stirred suspension of LAH (0.130 g, 3.43 mmol) in dry THF (10 mL) held at O 0 C under inert atmosphere was added a solution of ethyl (all-Z)-9, 12,15- octadecatrienoate (1.0 g, 3.26 mmol) in dry THF (15 mL) dropwise. The resulting solution was stirred at O 0 C for one hour, added 10% NH 4 Cl (15 mL) and filtrated through a short pad of celite. The celite was washed with water (10 mL) and heptane (20 ml) and the layers were separated. The aqueous layer was extracted with heptane (20 mL) and the combined organic layer was washed with brine (20 mL) and dried (MgSO 4 ). This afforded 0.78 g (91%) of (all-Z)-9 5 12,15-octadecatrienol (66) as a colorless oil.

1 H-NMR (200 MHz, CDCl 3 ): δ 0.95 (t, 3H), 1.20-1.35 (m, 10H) 5 1.48-1.58 (m, 2H), 1.98-2.09 (m, 4H), 2.76-2.82 (m, 4H), 5.23-5.44 (m, 6H); MS (electrospray): 287.3 [M+Na].

(all-Z) -9.12,15-octadecatrien-tosylate (67)

To a stirred solution of (all-Z)-9,12,15-octadecatrienol (66) (0.78 g, 2.95 mmol) in dry CH 2 Cl 2 (15 niL) held at O 0 C under inert atmosphere was added toluene- 4-sulfonyl chloride (1.12 g, 5.90 mmol) and Et 3 N (0.82 niL, 5.90 mmol). The resulting solution was stirred at O 0 C for five hours and then 66 hours at ambient temperature. The mixture was poured into ice/water (40 mL) and the layers were separated. The aqueous layer was extracted with CH 2 Cl 2 (20 mL) and the combined organic layer was concentrated. The crude product was added 2 mL pyridine and 1.6 mL water and the mixture was stirred at ambient temperature for 30 minutes. Heptane (70 mL) was added and the organic layer was washed with water (30 mL), IM HCl (30 mL) and brine (30 mL). Drying (MgSO 4 ) and concentration under reduced pressure afforded 0.68 g (55%) of the tosylate 67 as a colorless oil. .

1 H-NMR (200 MHz, CDCl 3 ): δ 0.91 (t, 3H), 1.15-1.35 (m, 10H) 5 1.53-1.60 (m, 2H), 1.98-2.12 (m, 4H), 2.43 (s, 3H), 2.70-2.80 (m, 4H), 5.22-5.40 (m, 6H), 7.31 (d, 2H) 5 7.76 (d, 2H);

MS (electrospray): 441.2 [M+Na].

Ethyl (all-Z)-2-ethyl, 2-ethoxycarbonyl-ll,14,17-eicosatrienoate (23)

A stirred suspension of NaH (60 %, 0.098 g, 2.44 mmol) in dry THF (15 mL) and dry DMF (3 mL) held at O 0 C under inert atmosphere was added diethyl ethylmalonate (0.61 mL, 3.25 mmol) dropwise. The resulting mixture was stirred at O 0 C for ten minutes, given ambient temperature and stirred for another 20 minutes. The tosylate 67 (0.68 g, 1.62 mmol) in dry THF (3 mL) was added, followed by NaI (0.098 g, 0.65 mmol). The resulting solution was then stirred at 7O 0 C for four hours,

cooled and portioned between 10% NH 4 Cl (30 mL) and heptane (30 mL). The aqueous layer was extracted with heptane (20 mL) and the combined organic layer was washed with brine (30 mL) and dried (Na 2 SO 4 ). This afforded 0.70 g (quant, yield) of the title compound 23 as colorless oil.

1 H-NMR (200 MHz, CDCl 3 ): δ 0.91 (t, 3H) 5 1.18-1.30 (m, 19H), 1.80-2.10 (m, 10H), 2.75-2.81 (m, 4H), 4.16 (m, 4H), 5.28-5.38 (m, 6H);

MS (electrospray): 457.3 [M+Na].

(aII-Z)-2-ethyI, 2-carboxy-ll,14,17-eicosatrienoic acid (24)

Ethyl (all-Z)-2-ethyl, 2-ethoxycarbonyl-l l,14,17-eicosatrienoate (23) (0.70 g, 1.61 mmol) was dissolved in 96% ethanol (20 mL) and added 5M KOH (2.6 mL, 13 mmol). The resulting mixture was stirred at reflux for 19 hours, cooled and concentrated under reduced pressure. The resulting crude product was added IM HCl (20 mL) and extracted twice with diethyl ether (30 mL). The combined organic layer was washed with brine (30 mL) and dried (MgSO 4 ). Concentration under reduced pressure afforded 0.60 g (quant, yield) of the title compound 24 as a pale brown oil. MS (electrospray): 377.2 [M-H].

faIl-Z)-2-ethvI-ll,14,17-eicosatrienoic acid (68)

Neat (all-Z)-2-ethyl, 2-carboxy-l 1,14,17-eicosatrienoic acid (24)_(0.60 g, 1.59 mmol) under inert atmosphere was given 16O 0 C for two hours, cooled and purified by flash chromatography (heptane : EtOAc 9:1 then 4:1). This afforded 0.33 g (62 %) of the title (all-Z)-2-ethyl-l 1,14,17-eicosatrienoic acid (68) as a colourless oil.

1 H-NMR (200 MHz 5 CDCl 3 ): δ 0.84-0.99 (m, 8H) 5 1.15-1.35 (m, 10H) 5 1.35-

1.70 (m, 4H) 5 2.00-2.15 (m, 4H), 2.20-2.30 (m, IH) 5 2.75-2.85 (m, 4H) 5 5.25-5.45 (m,

6H);

MS (electrospray): 333.2 [M-H].

Ethyl (all-Z) 2-ethyl-ll,14,17-eicosatrienoate (28)

(all-Z)-2-ethyl-l 1,14,17-eicosatrienoic acid (0.15 g, 0.45 mmol) was dissolved in abs EtOH (5 niL), added a drop of concentrated H 2 SO 4 and stirred at reflux under inert atmosphere for 18 hours. The mixture was cooled, concentrated and purified by flash chromatography (heptane : EtOAc 95:5). This afforded 0.13 g (80 %) of the title compound 28 as a colorless oil.

1 H-NMR (200 MHz 5 CDCl 3 ): δ 0.85 (t, 3H) 5 0.94 (t, 3H), 1.18-1.34 (m, 13H) 5 1.45-1.59 (m, 4H) 5 1.97-2.08 (m, 4H), 2.25 (m ,1H) 5 2.74-2.85 (m ,4H) 5 4.09 (q, 4H), 5.24-5.42 (m, 6H) ;

13 C-NMR (50 MHz 5 CDCl 3 ): δ 11.76, 14.21, 14.3O 5 20.49, 25.46, 25.56, 27.18, 27.37, 29.22, 29.41, 29.42, 29.5O 5 29.59, 32.06, 47.29, 59.83, 127.06, 127.59, 128.18, 128.21, 130.27, 131,85, 176.33; MS (electrospray): 385.3 [M+Na] + .

2-(Tall-Z)-2-ethyl-5,8,l 1 ,14,17-eicosapentaenoyl)-rø-glvcerol (71)

_!i Glycidyl (all-Z)-2-ethyl-5,8,l 1,14,17-eicosapentaenoate

A solution of (all-Z)-2-ethyl-5 5 8,l l,14,17-eicosapentaenoic acid (1.00 g, 3.03 mmol), glycidol (167 μl, 2.52 mmol), JV-ethyl-JV-(3- dimethylaminopropyl)carbodiimide hydrochloride (585 mg, 3.05 mmol) and DMAP (372 mg, 3.05 mmol) in dry CH 2 Cl 2 (10 ml) was stirred for 18 hrs under N 2 -

atmosphere at room temperature. The mixture was evaporated in vacuo. The residue was purified by flash chromatography on silica gel eluting with heptane - heptane:EtOAc (95:5) yielded 647 mg (55%) of the title product as a slightly yellow liquid.

1 H NMR (200 MHz, CDCl 3 ) δ 0.85-0.99 (m, 6H), 1.42-1.80 (m, 5H), 2.03- 2.09 (m, 4H), 2.28-2.42 (m, IH) 5 2.60-2.64 (m, IH), 2.79-2.82 (m, 8H), 3.14-3.21 (m, IH), 3.88-3.97 (m, IH), 4.36-4.46 (m, IH), 5.23-5.51 (m, 10H)

MS (electrospray); 409 [M+Na] +

Step 2: 1 ,3-di(trifluoroacetate)-2-((all-Z)-2-ethyl-5,8, 11,14,17-eicosapentaenoyl)-5«- glycerol

A solution of glycidyl (all-Z)-2-ethyl-5, 8,11,14,17-eicosapentaenoate (641 mg, 1.66 mmol) in dry, alcohol-free CH 2 Cl 2 (6.5 ml) was cooled to -20 0 C under N 2 - atmosphere. A solution of trifiuoroacetic acid anhydride (TFAA) (0.93 ml, 6.69 mmol) in dry CH 2 Cl 2 (6.5 ml) was added portion wise. The cooling bath was removed and the mixture was stirred for 70 minutes. The solvent and unreacted TFAA was evaporated in vacuo (t < 40°C) and the residue was dissolved in toluene (15 ml) and passed through a silica gel pad (16.5 g) eluting with toluene (350 ml). This yielded 607 mg (61%) of the crude title product as a yellow oil.

1 H NMR (200 MHz, CDCl 3 ) δ 0.83-0.99 (m, 6H), 1.54-1.67 (m, 4H), 1.99- 2.13 (m, 4H), 2.27-2.38 (m, IH), 2.63-2.82 (m, 8H), 4.44 (dd, J=I 1.8 Hz, 5.7 Hz, 2H), 4.62(dd, J=I 1.9 Hz, 4.1 Hz, 2H), 5.20-5.45 (m, HH)

Step 3: 2-((all-Z)-2-ethyl-5 ,8, 11,14,17-eicosapentaenoyl)-OT-glycerol

A solution of I,3-di(trifluoroacetate)-2-((all-Z)-2-ethyl-5,8,l 1,14,17- eicosapentaenoyl)-5π-glycerol (607 mg, 1.02 mmol) in pentane/CH 2 Cl 2 (2:1, 10 ml) was cooled to -20°C under N 2 -atmosphere. A solution of pyridine (0.83 ml, 10.3 mmol) and MeOH (0.62 ml, 15.3 mmol) in pentane/CH 2 Cl 2 (2:1, 9 ml) was added drop wise. The cooling bath was removed and the mixture was stirred for 4 hrs. The resulting mixture was evaporated in vacuo. Flash chromatography on silica gel eluting with heptane - heptane.εtOAc 1 : 1 yielded 352 mg (86 %) of the title product as a slightly yellow oil. 1 H NMR (200 MHz, CDCl 3 ) δ 0.86-0.99 (m, 6H), 1.43-1.81 (m, 4H); 1.94 (bs,

2H), 2.02-2.13 (m, 4H), 2.29-2.43 (m, IH), 2.79-2.83(m, 8H), 3.81 (d, J=4.8 Hz, 4H), 4.89-4.98 (m, IH), 5.22-5.43 (m, 10H)

MS (electrospray); 427 [M+Na] +

l,2,3-tris(fall-Z)-2-ethyl-5,8,ll,14,17-eicosapentaenoyl) -w-gIvceroI

(72)

(all-Z)-2-ethyl-5,8,l l,14,17-eicosapentaenoic acid (501 mg, 1.52 mmol), DMAP (185 mg, 1.52 mmol), N-ethyl-N-(3-dimethylamino-propyl)carbodiimide hydrochloride (295 mg, 1.54 mmol) and dry CH 2 Cl 2 (5 ml) were added to a solution of glycerol (31.6 mg, 0.343 mmol) in DMF (2 ml). The resulting mixture was stirred for 17 Vi hrs under ν 2 -atmosphere at room temperature. Diethyl ether (50 ml) was added and the resulting mixture was washed with IM HCl (20 ml) and brine (20 ml), dried (Na 2 SO 4 ) and evaporated in vacuo. Repeated flash chromatography on silica gel eluting with heptane - heptane:EtOAc (100:1) - (95:5) yielded 206 mg (58%) of the title product as a colorless oil.

1 H NMR (200 MHz, CDCl 3 ) δ 0.83-0.99 (m, 18H), 1.43-1.77 (m, 12H), 1.98-

2.13 (m, 12H), 2.23-2.37 (m, 3H) 5 2.77-2.85 (m, 24H) 3 4.04-4.18 (m, 2H), 4.28-4.42 (m, 2H), 5.23-5.49 (m, 31H)

MS (electrospray); 1051 [M+Na] +

The compounds listed in tables 1-3 can be obtained similarly to the above described examples:

TABLE l

Example Rl R2 K. Methods

CH 3 H * I or III

CH 2 CH 3 H * I or III

CH 3 CH 3 * I or (III and

CH 2 CH 3 CH 2 CH 3 * I or (III and

CH 3 CH 2 CH 3 * I or (III and

H * I or III

OCH 3 H * II

OCH 2 CH 3 H * II

OCH 2 CH 2 CH 3 H * II

SCH 3 H * I or II

SCH 2 CH 3 H * I or II

SCH 2 CH 2 CH 3 H * I or II

NHCH 3 H * II

NHCH 2 CH 3 H * II

N(CH 3 ), H * II

N(CH 2 CH 3 ), H * II

OH H * II

The possibility when R 1 and R 2 are inverse is also included. * wherein X represents a carboxylic acid or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide.

TABLE 2

Example Rl R2 Methods

CH 3 H ** I or III CH 2 CH 3 H ** I or III

CH 3 CH 3 ** I or III CH 2 CH 3 CH 2 CH 3 * I or (III and

CH 3 CH 2 CH 3 * I or (III and CH 2 CH 2 CH 3 H I or III

OCH 3 H * II or III

OCH 2 CH 3 H * II or I

OCH 2 CH 2 CH 3 H * II or I

SCH 3 H * I or I I I

The possibility when R 1 and R 2 are inverse is also included. * wherein X represents a carboxylic acid or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide. ** wherein X represents a carboxylic anhydride, a carboxamide, a mono- di or triglyceride, or a phospholipid.

TABLE 3

Example Rl R2 Methods

CH 3 H I CH 2 CH 3 H I

CH 3 CH 3 I CH 2 CH 3 CH 2 CH 3 I

CH 3 I CJhι?O.H.2 CH.3 H I

OCH 3 H II

OCH 2 CH 3 H II

OCH 2 CH 2 CH 3 H II

SCH 3 H I or II

SCH 2 CH 3 H I or II

SCH 2 CH 2 CH 3 H I or II

NHCH 3 H II NHCH 2 CH 3 H II

N(CH 3 ) 2 H II

N(CH 2 CH 3 ) 2 H II

OH H II

The possibility when R 1 and R 2 are inversely is also included. * wherein X represents a carboxylic acid or a derivative thereof, a carboxylate, a carboxylic anhydride or a carboxamide.

The invention shall no be limited to the shown embodiments and examples.