Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ALUMINUM-BASED BANDAGES TO AID IN MEDICAL HEALING AND METHODS OF USE
Document Type and Number:
WIPO Patent Application WO/2013/019266
Kind Code:
A1
Abstract:
The inventive disclosure contained herein is generally directed to a class of medical bandages that in many embodiments are effective in the treatment of various types of tissue burns, whether be burns due to thermal burns, sun exposure, or rashes. Such products can include a plurality of specialized bandages and wraps that incorporate an extremely thin layer of aluminum at the base of a substrate adapted to be in direct contact with a burn wound, while manufacturing the top side of the aluminum substrate to have a heat-dissipationenhancing topography to help cool burns faster. The bandage can also feature a thermochromic indicator for users to realize the thermal-cooling status of a burn to which a bandage has been applied.

Inventors:
FREER CARL (US)
FREER ERICKA (US)
WYLES TERRENCE (US)
Application Number:
PCT/US2011/067256
Publication Date:
February 07, 2013
Filing Date:
December 23, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ALUMINAID INTERNATIONAL AG (CH)
FREER CARL (US)
FREER ERICKA (US)
WYLES TERRENCE (US)
International Classes:
A61L15/18; A61F13/02; A61L15/22
Foreign References:
US6164279A2000-12-26
KR200394032Y12005-09-07
US20100069813A12010-03-18
US20090204100A12009-08-13
Attorney, Agent or Firm:
WYLES, Terrence, M. (Inc.7301 Medical Center Drive, Suite 20, West Hills CA, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A bandage for a burn wound, comprising: a first layer, substantially comprised of a thin aluminum substrate, having a first surface and a second surface, wherein said aluminum substrate's first surface is substantially flat and adapted to make direct contact with a burn wound, and wherein most of said aluminum substrate's second surface has a non-flat, heat- dissipation-enhancing surface topography that rises above the base plane of said aluminum substrate adapted to be directly exposed to air.

2. The bandage of claim 1, further comprising a second layer, substantially comprised of a substantially polymeric material, having a first surface and a second surface, wherein said second layer' s first surface is adapted to mate with and cover at least two of the perimeter edges of said second surface of said first layer, but leaving most of said first layer's second surface uncovered and exposed to the air, wherein said second layer extends beyond said at least two perimeter edges of said first layer, wherein said at least two perimeter edges of said first layer are bonded to a portion of the first surface of said second layer, wherein the remainder of the first surface of said second layer is substantially coated with a non-toxic adhesive material adapted for use on user skin, and wherein said first and second layers are sized and shaped to a form factor that is adapted to one or more areas of a user body.

3. The bandage of claim 1, wherein said non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing protrusions, said protrusions selected from the group consisting of cone-like protrusions, half-dome-like protrusions, and pyramid- like protrusions.

4. The bandage of claim 3, wherein said plurality of heat-dissipation-enhancing

protrusions are disposed in rows on said first layer, the positioning of every row with respect to its adjacent row(s) is selected from the group consisting of staggered and non-staggered.

5. The bandage of claim 3, wherein at least one heat-dissipation-enhancing protrusion has a hole disposed from its apex toward the base plane of said aluminum substrate. 6. The bandage of claim 1, wherein said non-flat, heat-dissipation-enhancing surface

topography includes a plurality of heat-dissipation-enhancing corrugations, the cross- sectional shape of said corrugations selected from the group consisting of triangle, square, rectangular, half-circle, and convex quadrilateral.

7. The bandage of claim 1, wherein said first layer includes a plurality of manufactured aeration holes in said aluminum substrate.

8. The bandage of claim 5, wherein said at least one heat-dissipation-enhancing protrusion with a hole disposed from its apex toward the base plane of said aluminum substrate has its hole extending all the way through said aluminum substrate.

9. The bandage of claim 1, wherein the material in said aluminum substrate is comprised of an aluminum alloy containing at least 92% aluminum and about 5% magnesium.

10. The bandage of claim 9, wherein said aluminum alloy is annealed by a process

comprising the step of subjecting said aluminum alloy to a temperature in the range of 775 °C to 900 °C.

11. The bandage of claim 10, further comprising the step of allowing said aluminum alloy to naturally cool; that is, non-furnace cool, thereby substantially removing any strain hardening of said aluminum alloy and ensuring that the re-crystallization of said aluminum alloy results in substantially uniform grain growth and directional orientation.

12. The bandage of claim 1, further comprising a thermochromic indicator member, wherein said thermochromic indicator member is in thermal communication with a burn wound via said first layer, and wherein said thermochromic indicator member is comprised of material calibrated to: indicate to a user when a burn on which said bandage is applied is still too warm for safe removal of said bandage, based on a predetermined threshold, and indicate to a user when a burn has cooled to at least a predetermined threshold such that said bandage can be safely removed and/or changed-out for a new medical dressing. 13. The bandage of claim 12, wherein said thermochromic indicator member provides

color-based user indications as to the thermal status of the burn to which said bandage is applied.

14. The bandage of claim 12, wherein said thermochromic indicator member provides icon- based user indications as to the thermal status of the burn to which said bandage is applied.

15. The bandage of claim 12, wherein said thermochromic indicator member is comprised of material selected from the group consisting of thermochromic liquid crystals and leuco dyes.

16. The bandage of claim 2, wherein said second layer is substantially comprised of

perforated 1527-ENP ethylene vinyl acetate (EVA).

17. The bandage of claim 2, wherein said form factor is adapted to facilitate bandage

application to a part of a human body selected from the group consisting of finger, thumb, toe, elbow, wrist, knee, ankle, and hand palm.

18. The bandage of claim 2, wherein said form factor is of a shape selected from the group consisting of rectangle, square, rounded-corner rectangle, circle, oval, triangle, rounded- corner triangle, and continuous strip roll.

19. A method of making a bandage for a burn wound, comprising the step of: providing a first layer, substantially comprised of a thin aluminum substrate, having a first surface and a second surface, wherein said aluminum substrate's first surface is adapted to make direct contact with a burn wound, and wherein most of said aluminum substrate's second surface has a non-flat, heat- dissipation-enhancing surface topography that rises above the base plane of said aluminum substrate adapted to be directly exposed to air.

20. The method of claim 19, further comprising the step of providing a second layer, substantially comprised of a substantially polymeric material, having a first surface and a second surface, wherein said second layer' s first surface is adapted to mate with and cover at least two of the perimeter edges of said second surface of said first layer, but leaving most of said first layer's second surface uncovered and exposed to the air, wherein said second layer extends beyond said at least two perimeter edges of said first layer, wherein said at least two perimeter edges of said first layer are bonded to a portion of the first surface of said second layer, wherein the remainder of the first surface of said second layer is substantially coated with a non-toxic adhesive material adapted for use on user skin, and wherein said first and second layers are sized and shaped to a form factor that is adapted to one or more areas of a user body.

21. The method of claim 19, wherein said non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing protrusions, said protrusions selected from the group consisting of cone-like protrusions, half-dome-like protrusions, and pyramid- like protrusions.

22. The method of claim 19, wherein said plurality of heat-dissipation-enhancing

protrusions are disposed in rows on said first layer, the positioning of every row with respect to its adjacent row(s) is selected from the group consisting of staggered and non-staggered.

23. The method of claim 21, wherein at least one heat-dissipation-enhancing protrusion has a hole disposed from its apex toward the base plane of said aluminum substrate.

24. The method of claim 19, wherein said non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing corrugations, the cross- sectional shape of said corrugations selected from the group consisting of triangle, square, rectangular, half-circle, and convex quadrilateral.

25. The method of claim 19, further comprising the step of providing a plurality of

manufactured aeration holes in said aluminum substrate of said first layer.

26. The method of claim 23, wherein said at least one heat-dissipation-enhancing protrusion with a hole disposed from its apex toward the base plane of said aluminum substrate has its hole extending all the way through said aluminum substrate.

27. The method of claim 19, wherein the material in said aluminum substrate is comprised of an aluminum alloy containing at least 92% aluminum and about 5% magnesium.

28. The method of claim 27, wherein said aluminum alloy is annealed by a process

comprising the step of subjecting said aluminum alloy to a temperature in the range of 775 °C to 900 °C.

29. The method of claim 28, further comprising the step of allowing said aluminum alloy to naturally cool; that is, non-furnace cool, thereby substantially removing any strain hardening of said aluminum alloy and ensuring that the re-crystallization of said aluminum alloy results in substantially uniform grain growth and directional orientation.

30. The method of claim 19, further comprising the step of providing a thermochromic indicator member, wherein said thermochromic indicator member is in thermal communication with a burn wound via said first layer, and wherein said thermochromic indicator member is comprised of material calibrated to: indicate to a user when a burn on which said bandage is applied is still too warm for safe removal of said bandage, based on a predetermined threshold, and indicate to a user when a burn has cooled to at least a predetermined threshold such that said bandage can be safely removed and/or changed-out for a new medical dressing.

31. The method of claim 30, wherein said thermochromic indicator member provides color- based user indications as to the thermal status of the burn to which said bandage is applied.

32. The method of claim 30, wherein said thermochromic indicator member provides icon- based user indications as to the thermal status of the burn to which said bandage is applied.

33. The method of claim 31, wherein said theraiochromic indicator member is comprised of material selected from the group consisting of thermochromic liquid crystals and leuco dyes.

34. The method of claim 20, wherein said second layer is substantially comprised of

perforated 1527-ENP ethylene vinyl acetate (EVA).

35. The method of claim 20, wherein said form factor is adapted to facilitate bandage

application to a part of a human body selected from the group consisting of finger, thumb, toe, elbow, wrist, knee, ankle, and hand palm.

36. The method of claim 20, wherein said form factor is of a shape selected from the group consisting of rectangle, square, rounded-corner rectangle, circle, oval, triangle, rounded- corner triangle, and continuous strip roll.

37. A method of using a bandage according to claim 1, comprising the steps of: obtaining a bandage according to claim 1; applying said bandage to a burn wound with the first surface of said first layer in direct contact with said burn wound; and securing said bandage in position over said burn wound by applying adhesive medical tape along some or all of the edges of said bandage and extending to the tissue surrounding non-burned tissue, wherein the top side of said bandage first layer is mostly left uncovered and exposed to the ambient environment.

38. The method of claim 37, wherein said non-flat, heat-dissipation-enhancing surface

topography includes a plurality of heat-dissipation-enhancing protrusions, said protrusions selected from the group consisting of cone-like protrusions, half-dome-like protrusions, and pyramid- like protrusions.

39. The method of claim 38, wherein said plurality of heat-dissipation-enhancing

protrusions are disposed in rows on said first layer, the positioning of every row with respect to its adjacent row(s) is selected from the group consisting of staggered and non-staggered.

40. The method of claim 38, wherein at least one heat-dissipation-enhancing protrusion has a hole disposed from its apex toward the base plane of said aluminum substrate.

41. The method of claim 37, wherein said non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing corrugations, the cross- sectional shape of said corrugations selected from the group consisting of triangle, square, rectangular, half-circle, and convex quadrilateral.

42. The method of claim 38, wherein said first layer includes a plurality of manufactured aeration holes in said aluminum substrate.

43. The method of claim 40, wherein said at least one heat-dissipation-enhancing protrusion with a hole disposed from its apex toward the base plane of said aluminum substrate has its hole extending all the way through said aluminum substrate.

44. The method of claim 37, wherein the material in said aluminum substrate is comprised of an aluminum alloy containing at least 92% aluminum and about 5% magnesium.

45. The method of claim 44, wherein said aluminum alloy is annealed by a process

comprising the step of step of subjecting said aluminum alloy to a temperature in the range of 775 °C to 900 °C.

46. The method of claim 45, further comprising the step of allowing said aluminum alloy to naturally cool; that is, non-furnace cool, thereby substantially removing any strain hardening of said aluminum alloy and ensuring that the re-crystallization of said aluminum alloy results in substantially uniform grain growth and directional orientation.

47. The method of claim 37, said bandage further comprising a thermochromic indicator member, wherein said thermochromic indicator member is in thermal communication with a burn wound via said first layer, and wherein said thermochromic indicator member is comprised of material calibrated to: indicate to a user when a burn on which said bandage is applied is still too warm for safe removal of said bandage, based on a predetermined threshold, and indicate to a user when a burn has cooled to at least a predetermined threshold such that said bandage can be safely removed and/or changed-out for a new medical dressing.

48. The method of claim 47, wherein said thermochromic indicator member provides color- based user indications as to the thermal status of the burn to which said bandage is applied.

49. The method of claim 47, wherein said thermochromic indicator member provides icon- based user indications as to the thermal status of the burn to which said bandage is applied.

50. The method of claim 47, wherein said thermochromic indicator member is comprised of material selected from the group consisting of thermochromic liquid crystals and leuco dyes.

51. The method of claim 47, further comprising the steps of: observing said thermochromic indicator member; if said thermochromic indicator member indicates that said burn wound is too warm, then continuing the application of said bandage on said burn wound to further cooling of said burn wound; if said thermochromic indicator member indicates that said burn wound has cooled sufficiently, then removing said bandage from said burn wound and applying a different medical dressing to said burn wound; and repeating the previous steps as necessary until said bandage has been removed from said burn wound.

52. The method of claim 51, wherein said different medical dressing is any one or

combination of dressings selected from the group consisting of medicinal compounds, therapeutic compounds, and sterile gauze-based or cotton-based bandages.

53. The method of claim 37, wherein said form factor is adapted to facilitate bandage

application to a part of a human body selected from the group consisting of finger, thumb, toe, elbow, wrist, knee, ankle, and hand palm.

54. The method of claim 37, wherein said form factor is of a shape selected from the group consisting of rectangle, square, rounded-corner rectangle, circle, oval, triangle, rounded- corner triangle, and continuous strip roll.

55. The method of claim 37, further comprising the step of subjecting the exposed

aluminum substrate of said applied bandage to forced-air cooling.

56. A method of using a bandage according to claim 2, comprising the steps of: obtaining a bandage according to claim 2; applying said bandage to a burn wound with the first surface of said first layer in direct contact with said burn wound; and securing said bandage in position over said burn wound with said adhesive material disposed on the first side of said second layer of said bandage.

57. The method of claim 56, wherein said non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing protrusions, said protrusions selected from the group consisting of cone-like protrusions, half-dome-like protrusions, and pyramid- like protrusions.

58. The method of claim 56, wherein said plurality of heat-dissipation-enhancing

protrusions are disposed in rows on said first layer, the positioning of every row with respect to its adjacent row(s) is selected from the group consisting of staggered and non-staggered.

59. The method of claim 57, wherein at least one heat-dissipation-enhancing protrusion has a hole disposed from its apex toward the base plane of said aluminum substrate.

60. The method of claim 56, wherein said non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing corrugations, the cross- sectional shape of said corrugations selected from the group consisting of triangle, square, rectangular, half-circle, and convex quadrilateral.

61. The method of claim 56, wherein said first layer includes a plurality of manufactured aeration holes in said aluminum substrate.

62. The method of claim 56, wherein said at least one heat-dissipation-enhancing protrusion with a hole disposed from its apex toward the base plane of said aluminum substrate has its hole extending all the way through said aluminum substrate.

63. The method of claim 56, wherein the material in said aluminum substrate is comprised of an aluminum alloy containing at least 92% aluminum and about 5% magnesium.

64. The method of claim 63, wherein said aluminum alloy is annealed by a process

comprising the step of subjecting said aluminum alloy to a temperature in the range of 775 °C to 900 °C.

65. The method of claim 64, further comprising the step of allowing said aluminum alloy to naturally cool; that is, non-furnace cool, thereby substantially removing any strain hardening of said aluminum alloy and ensuring that the re-crystallization of said aluminum alloy results in substantially uniform grain growth and directional orientation.

66. The method of claim 56, said bandage further comprising a thermochromic indicator member, wherein said thermochromic indicator member is in thermal communication with a burn wound via said first layer, and wherein said thermochromic indicator member is comprised of material calibrated to: indicate to a user when a burn on which said bandage is applied is still too warm for safe removal of said bandage, based on a predetermined threshold, and indicate to a user when a burn has cooled to at least a predetermined threshold such that said bandage can be safely removed and/or changed-out for a new medical dressing.

67. The method of claim 66, wherein said thermochromic indicator member provides color- based user indications as to the thermal status of the burn to which said bandage is applied.

68. The method of claim 66, wherein said thermochromic indicator member provides icon- based user indications as to the thermal status of the burn to which said bandage is applied.

69. The method of claim 66, wherein said thermochromic indicator member is comprised of material selected from the group consisting of thermochromic liquid crystals and leuco dyes.

70. The method of claim 66, further comprising the steps of: observing said thermochromic indicator member; if said thermochromic indicator member indicates that said burn wound is too warm, then continuing the application of said bandage on said burn wound to further cooling of said burn wound; if said thermochromic indicator member indicates that said burn wound has cooled sufficiently, then removing said bandage from said burn wound and applying a different medical dressing to said burn wound; and repeating the previous steps as necessary until said bandage has been removed from said burn wound.

71. The method of claim 70, wherein said different medical dressing is any one or

combination of dressings selected from the group consisting of medicinal compounds, therapeutic compounds, and sterile gauze-based or cotton-based bandages.

72. The method of claim 56, wherein said form factor is adapted to facilitate bandage

application to a part of a human body selected from the group consisting of finger, thumb, toe, elbow, wrist, knee, ankle, and hand palm.

73. The method of claim 56, wherein said form factor is of a shape selected from the group consisting of rectangle, square, rounded-corner rectangle, circle, oval, triangle, rounded- corner triangle, and continuous strip roll.

74. The method of claim 56, wherein said second layer is substantially comprised of

perforated 1527-ENP ethylene vinyl acetate (EVA).

75. The method of claim 56, further comprising the step of subjecting the exposed

aluminum substrate of said applied bandage to forced-air cooling.

Description:
ALUMINUM-BASED BANDAGES TO AID IN MEDICAL HEALING

AND METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS The present patent application claims the benefit of U.S. Patent Application No.

61/513,366, filed on July 29, 2011, for "Aluminum-Infused Compositions and Devices to Aid in Medical Healing and Methods of Use", and hereby incorporates by reference U.S. Patent Application No. 61/513,366 in its entirety for all purposes.

BACKGROUND

Burn injuries are caused by fire, chemicals, electricity, and friction and can vary in severity. First degree burns are the least severe, causing redness, and healing relatively quickly. On the other end of the spectrum, fourth degree burns are the most severe, burning down to the level of the muscle and bone. Second and third degree burns fall between these extremes. Medical professionals often try to strike a balance when deciding how to treat burns.

On one hand, if a burn is superficial and relatively dry, then many feel that the wound should be kept moist with water or some sort of ointment or cream. For example, Dr Xu of China National has developed an "alternative" technique called Moist Exposed Burn Therapy, which, unlike the conventional way to heal a burn victim by keeping the burn wound dry, Professor Xu keeps the patient's burn wound moist. Dr. Xu's treatment regimen requires very little administration of antibiotics and disinfectants to the burn wound. Instead, Dr. Xu uses natural herbs to aid burn- wound healing, wherein natural-plant extracts at the base of a beeswax is the main ingredient used. However, a problem with applying many ointments and/or creams is that such applications often do not help draw heat away from a wound. On the other hand, if a burn is more serious, such as a second-degree burn that is oozing fluid, then there is an enhanced fear of infection. In such cases, some medical professionals feel that such wounds should be kept relatively dry, while still others may advocate for the application of various ointment dressings with antibiotic properties to fight infection. Hence, it would be desirable to come up with a treatment strategy that is able to provide the best of all worlds.

On August 30, 1948, Time Magazine reported that steam from an exploding locomotive had scalded Fireman Frank Mihlan of the Erie Railroad. When Mihlan was carried into Cleveland's Charity Hospital on July 15, 1948, 70% of his body was burned, and doctors thought that Mihlan had little chance of survival. However, attending surgeons decided to try wrapping the Mihlan' s burns in thin strips of aluminum foil, a technique developed by Toronto's Dr. Alfred W. Farmer. It was the first time that aluminum foil for burns had been used in the U.S.; the first time it had ever been used for burns of the whole body. Relief from pain was "miraculous", and within 20 minutes of application, Mihlan was resting comfortably. As an added precaution, Mihlan was given intravenous fluids and penicillin. The aluminum foil, which looked like the inside wrapping of a cigarette package, apparently acted as a seal for the body fluids that seep from burned surfaces. It also apparently helped kill bacteria, speeding the healing process. Twelve days after being bandaged in the aluminum foil wrappings, Mihlan was out of bed. Eventually, Mihlan left the hospital unscarred, albeit temporarily reddened.

Further, a 2004 American Journal article reported:

Aluminum foil as a dry sterile initial covering for thermal burns under

occlusive pressure dressings has been presented as a method of diminishing the maceration of a burn surface. The method appeared to influence favorably the local result by elimination of the use of ointments and by facilitating the dispersion of exudate to the periphery of the burn. No evidence of toxicity as a result of the treatment was found. The systemic reaction was, if anything, less obvious.

Despite the above-mentioned anecdotal report and the reported research, public data is not readily accessible in-relation to the practicable applications of using aluminum foil as a healing agent. In addition, to date, there appears to be no commercially designed aluminum- derived medical products for general-purpose sale other than large blankets usually reserved for Emergency-Services organizations.

One existing known use for aluminum-derived products is in the employment of the astringent aluminum-based compound, aluminum chloride, which has been used in various concentrations in the art to apply to deodorant pads in order to cause constriction of sweat pores. For example, U.S. Patent No. 5,403,588 to Santa Ana is directed to a disposable body deodorant pad and deodorant preparation therefor. The Santa Ana Patent basically dissolves 3 to 4 grams of aluminum chloride into about 130 cc of an acetone-isopropyl alcohol solution to achieve an effective constriction of the user's sweat pores. Despite this known use, there are no aluminum-based compositions of matter available on the market for acting as a styptic or otherwise sealing a wound.

Ostensibly, there simply is no specific product range available to the general public that employs both the natural and by-product medical advantages of aluminum. For example, there are no bandages on the market that are comprised of extremely thin aluminum layers or strips, and nor are there therapeutic creams, ointments, or other medicinal compositions that are infused with molecular compositions that substantially include aluminum.

It would be advantageous to develop a set of aluminum-infused healing/therapeutic products (e.g., specialized bandages, burn creams, etc.) that are easy for a consumer to safely use.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A depicts one embodiment of an Aluminaid™ bandage (large-rectangular general form factor), showing the top-side topography that features a field of heat- dissipation-enhancing cone-like protrusions.

Figure IB depicts one embodiment of an Aluminaid™ bandage (large-rectangular general form factor), showing the bottom-side topography that features a substantially smooth aluminum substrate, which is intended to make contact with a user's tissue.

Figure 2A depicts one embodiment of an Aluminaid™ bandage (large-rectangular general form factor), showing the top-side topography that features a field of heat- dissipation-enhancing pyramid-like protrusions.

Figure 2B depicts one embodiment of an Aluminaid™ bandage (large-rectangular general form factor), showing the bottom-side topography that features a substantially smooth aluminum substrate, which is intended to make contact with a user's tissue. Figure 3A depicts one embodiment of an Aluminaid™ bandage (narrow,

substantially rectangular general form factor), showing the top-side topography that features a field of heat-dissipation-enhancing cone-like protrusions.

Figure 3B depicts one embodiment of an Aluminaid™ bandage (narrow, substantially rectangular general form factor), showing the bottom-side topography that features a substantially smooth aluminum substrate, which is intended to make contact with a user's tissue.

Figure 4A depicts one embodiment of an Aluminaid™ bandage (narrow,

substantially rectangular general form factor), showing the top-side topography that features a field of heat-dissipation-enhancing pyramid-like protrusions. Figure 4B depicts one embodiment of an Aluminaid™ bandage (narrow, substantially rectangular general form factor), showing the bottom-side topography that features a substantially smooth aluminum substrate, which is intended to make contact with a user's tissue.

Figure 5 A depicts one embodiment of an Aluminaid™ bandage (finger-form-factor), showing the top-side topography that features a field of heat-dissipation-enhancing cone-like protrusions. This form factor includes an end adhesive tab 35 adapted to engage the end of a finger, and three incrementally sized sections 20, 25, 30 for engaging an associated region of a finger the bandage is applied to.

Figure 5B depicts one embodiment of an Aluminaid™ bandage (narrow finger-form- factor), showing the bottom-side topography that features a substantially smooth aluminum substrate, which is intended to make contact with a user's tissue. This form factor includes an end adhesive tab 35 adapted to engage the end of a finger, and three incrementally sized sections 20, 25, 30 for engaging an associated region of a finger the bandage is applied to.

Figure 6 A depicts one embodiment of an Aluminaid™ bandage (finger-form-factor), showing the top-side topography that features a field of heat-dissipation-enhancing pyramid- like protrusions. This form factor includes an end adhesive tab 35 adapted to engage the end of a finger, and three incrementally sized sections 20, 25, 30 for engaging an associated region of a finger the bandage is applied to.

Figure 6B depicts one embodiment of an Aluminaid™ bandage (narrow finger-form- factor), showing the bottom-side topography that features a substantially smooth aluminum substrate, which is intended to make contact with a user's tissue. This form factor includes an end adhesive tab 35 adapted to engage the end of a finger, and three incrementally sized sections 20, 25, 30 for engaging an associated region of a finger the bandage is applied to.

Figure 7 depicts one embodiment of a roll of Aluminaid™ bandage material, wherein the majority of the surface area is dedicated to an aluminum substrate with a smooth side (the side to be applied to tissue) and with a side having a field of heat-dissipation-enhancing protrusions or ridges. In some embodiments, the top and bottom edges of the roll include a line of polymer material with an adhesive to facilitate attachment to a part of a user body. In other variations, these polymer-adhesive strips are not included and the dispensed amount of bandage roll is secured to a user's body with strips of medical tape and/or gauze. Figure 8 depicts one embodiment of a side view of an Aluminaid™ bandage, showing the relationship between the aluminum substrate and the surrounding second layer/adhesive. Figure 9A depicts one embodiment of a possible topography for the air-exposed side of an Aluminaid™ bandage's aluminum substrate, featuring in this case, as an example, a plurality of rows of cone-shaped or mound-shaped protrusions, every other row staggered relative to its neighbor rows to maximize the outer surface area available to facilitate heat transfer away from a user's body/wound. In this particular example, each protrusion is shown separated by a distance along the aluminum substrate from each other, and that distance can be varied between embodiments, and can even be a zero distance in some variations).

Figure 9B depicts one embodiment of a possible topography for the air-exposed side of an Aluminaid™ bandage's aluminum substrate, featuring in this case, as an example, a plurality of rows of pyramid-shaped protrusions to maximize the outer surface area available to facilitate heat transfer away from a user' s body/wound. In this particular example, each protrusion is shown immediately adjacent to each other; however, in other embodiments, the protrusions can be separated by a distance along the aluminum substrate. Figures 10A-10N each depicts one embodiment of a possible heat-dissipation- enhancing protrusions, including various exemplary embodiments of pyramid-type protrusions, cone-like protrusions, half-dome-like protrusions, and protrusions hollows manufactured in the top-center that can extend down the length of the raised protrusion and even all the way through the aluminum substrate of an Aluminaid™ bandage. Figure 11A depicts one embodiment of an Aluminaid™ bandage (general form factor), wherein the external surface topography of the aluminum substrate (that is, the surface not designed to be in direct contact with a user' s skin) is increased with a plurality ridges in order to increase heat dissipation.

Figure 11B depicts one embodiment of a magnified section of the aluminum substrate of the embodiment of an Aluminaid™ bandage depicted in Figure 11A.

Figure 12 A depicts one embodiment of a partial- side view of an Aluminaid™ bandage (general form factor), wherein the outer surface area of the aluminum substrate (that is, the surface not designed to be in direct contact with a user's skin) is increased with a plurality of surface protrusions; e.g., ridges, cones, or pyramids; in order to increase heat dissipation.

Figure 12B depicts one embodiment of a close-up, partial side view of an

Aluminaid™ bandage depicted in Figure 12A, wherein the outer surface area of the aluminum substrate (that is, the surface not designed to be in direct contact with a user's skin) is increased with a plurality of surface protrusions; e.g., ridges, cones, or pyramids; in order to increase heat dissipation, and wherein some candidate dimensions are introduced. It should be noted that the dimensions provided are exemplary only and are not intended to limit the scope of the inventive disclosure.

Figure 13A depicts one embodiment of an Aluminaid™ bandage (general form factor), and also includes thermochromic visual indicators, which display themselves when the aluminum substrate to which they are coupled experiences certain temperatures.

Figure 13B depicts one embodiment of a cutaway- view of an Aluminaid™ bandage (general form factor), which also shows the relationship between the thermochromic visual indicator(s) and the aluminum substrate.

Figure 14 depicts one embodiment of an Aluminaid™ bandage (general form factor), and also includes a thermochromic visual indicator, suspended above the aluminum substrate via a "bridge" comprised of aluminum strips, which indicates when the aluminum substrate experiences certain predetermined temperatures.

Figure 15 depicts one embodiment of an Aluminaid™ bandage (general form factor), and also includes a thermochromic visual indicator, wherein thermochromic compound is disposed on the tops of a subset of the aluminum substrate protrusions, the subset of thermochromic coated protrusions indicating when the aluminum substrate experiences certain predetermined temperatures.

Figure 16 depicts one embodiment of an Aluminaid™ bandage (large-rectangular general form factor), showing the top-side topography that features a field of heat- dissipation-enhancing cone-like protrusions, a thermochromic visual indicator in thermal communication with the aluminum substrate, and a plurality of rows of manufactured aeration holes to supplement the randomly occurring pinholes that are part of the normal aluminum-rolling process due to impurities. Though this particular embodiment shows only rows of aeration holes, in other variations, columns of aeration holes can be present on the aluminum substrate as well. The size and population densities of the aeration holes can be varied with particular applications. Figure 17 depicts one embodiment of an Aluminaid™ bandage (large-rectangular general form factor), showing the top-side topography that features a field of heat- dissipation-enhancing pyramid-like protrusions, a thermochromic visual indicator in thermal communication with the aluminum substrate, and a plurality of rows of manufactured aeration holes to supplement the randomly occurring pinholes that are part of the normal aluminum-rolling process due to impurities. Though this particular embodiment shows only rows of aeration holes, in other variations, columns of aeration holes can be present on the aluminum substrate as well. The size and population densities of the aeration holes can be varied with particular applications.

Figure 18 depicts one embodiment of an Aluminaid™ bandage (narrow, substantially rectangular general form factor), showing the top- side topography that features a field of heat-dissipation-enhancing cone-like protrusions, a thermochromic visual indicator in thermal communication with the aluminum substrate, and a plurality of rows of manufactured aeration holes to supplement the randomly occurring pinholes that are part of the normal aluminum-rolling process due to impurities. Though this particular embodiment shows only rows of aeration holes, in other variations, columns of aeration holes can be present on the aluminum substrate as well. The size and population densities of the aeration holes can be varied with particular applications.

Figure 19 depicts one embodiment of an Aluminaid™ bandage (narrow, substantially rectangular general form factor), showing the top- side topography that features a field of heat-dissipation-enhancing pyramid-like protrusions, a thermochromic visual indicator in thermal communication with the aluminum substrate, and a plurality of rows of manufactured aeration holes to supplement the randomly occurring pinholes that are part of the normal aluminum-rolling process due to impurities. Though this particular embodiment shows only rows of aeration holes, in other variations, columns of aeration holes can be present on the aluminum substrate as well. The size and population densities of the aeration holes can be varied with particular applications. DETAILED DESCRIPTION

I. Overview

The inventive disclosure contained herein is generally directed to a class of medical products that in many embodiments are effective in the treatment of tissue burns, whether be burns due to thermal burns, sun exposure, or rashes. Such products can include a plurality of specialized bandages and wraps that incorporate an extremely thin layer of aluminum with enhanced material and surface features to ensure flexibility and effective heat-transfer characteristics to cool a burn wound. Besides exhibiting multiple properties that are beneficial to healing certain types of tissue wounds, as discussed infra, aluminum is nontoxic, easy to sterilize, and abundantly mined worldwide.

Hereinafter, the overall class of products described in this embodiment is referred to as "Aluminaid™" or "Aluminaids™". These aluminum-derived products are specifically designed to alleviate the discomfort and pain caused by thermal burns. Additionally,

Aluminaids™, through a combination of natural composition and the prevailing production processes, inherit the potential to minimize scarring, inhibit infection, prevent maceration, and reduce the necessity for later skin grafting.

II. Terminology

The terms and phrases as indicated in quotes (" ") in this section are intended to have the meaning ascribed to them in this Terminology section applied to them throughout this patent application, unless clearly indicated otherwise in context. Further, as applicable, the stated definitions are to apply, regardless of the word or phrase's case, to the singular and plural variations of the defined word or phrase. The term "or", as used in this patent application, is not meant to be exclusive; rather, the term is inclusive, meaning "either or both".

References in this patent application to "one embodiment", "an embodiment", "a preferred embodiment", "an alternative embodiment", "a variation", "one variation", and similar phrases mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an embodiment of the invention. The appearances of the phrase "in one embodiment" and/or "in one variation" in various places in this patent application are not necessarily all meant to refer to the same embodiment.

The term "couple" or "coupled", as used in this specification and the appended claims, refers to either an indirect or a direct connection between the identified elements, components, or objects. Often, the manner of the coupling will be related specifically to the manner in which the two coupled elements interact.

The term "removable", "removably coupled", "readily removable", "readily detachable", "detachably coupled", and similar terms, as used in this patent application specification (including the claims and drawings), refer to structures that can be uncoupled from an adjoining structure with relative ease (i.e., non-destructively, and without a complicated or time-consuming process) and that can also be readily reattached or coupled to the previously adjoining structure. Directional and/or relational terms such as, but not limited to, left, right, nadir, apex, top, bottom, vertical, horizontal, back, front, and lateral are relative to each other, are dependent on the specific orientation of an applicable element or article, are used accordingly to aid in the description of the various embodiments in this specification and the appended claims, and are not necessarily intended to be construed as limiting.

As applicable, the terms "about" or "generally", as used herein in the specification and appended claims, and unless otherwise indicated, means a margin of +- 20%. Also, as applicable, the term "substantially" as used herein in the specification and appended claims, unless otherwise indicated, means a margin of +- 10%. It is to be appreciated that not all uses of the above terms are quantifiable such that the referenced ranges can be applied.

The term "aluminum", "aluminum compound", aluminum alloy", and similar terms, as used in this patent application (including the drawings and claims), refer to any material is substantially comprised of the element Aluminum (Period Element Symbol "Al", atomic number 13). Generally, any machined or otherwise processed aluminum composition or structure (e.g., very thin aluminum sheets or strips) that can be effectively incorporated into a medicinal ointment or cream, or into sheeting to make special bandages, is included in this definition. Examples of aluminum-based molecular compounds that can be used with the teachings of this disclosure include aluminum oxides (e.g. A1 2 0 3 ), aluminum sulfates (e.g., Al 2 (S0 4 ) 3 (H 2 0)i8), aluminum chlorides (e.g., A1C1 3 ), aluminum salts (e.g., aluminum diacetate (H0A1(C 2 H 3 0 2 ) 2 )), etc. Many such compounds can be used by the teachings of this disclosure to enhance the effectiveness of aluminum-based or aluminum-infused medical and first-aid products. For example, aluminum diacetate can enhance the antiseptic and astringent properties of a medical bandage, while also enhancing the thermal conductivity away from a burn wound. III. Aluminaid™ Bandages and/or Wraps

A. Aluminaid™ Theory of Operation

Aluminaid™ products deploy natural occurrences of physics combined with specific application and form factor. Essentially, Aluminaids™ include the physical properties inherent in aluminum, such as "specific heat capacity" and "thermal conductivity". Taking an Aluminaid™ bandage as an example, specific heat capacity accounts for the amount of heat that the aluminum foil disposed in the bandage can store at any one time and thermal conductivity accounts for how fast that aluminum material can potentially conduct heat (somewhat analogous to how fast an electrical wire of a given material can conduct electricity).

There are three ways in which thermal energy transfer can be described:

• Conduction;

· Convection; and

• Radiation.

Conduction requires physical contact (similar to the flow of electricity in wire).

Convection emanates from the movement of molecules (e.g., the way in which heated and cooled water or other fluid moves up and down). Radiation does not necessarily involve direct contact (e.g., the way the sun emits light rays).

At any given temperature, a given mass of aluminum holds much less energy than an equivalent mass of human flesh. For instance, in convection or conduction, if one touches aluminum foil from an oven during the cooking process, a subject's hand and the foil share the thermal energy. The hand (of much greater mass) requires much more energy to raise its temperature (if at all, depending upon the physical connection between the foil and the food). When the subject touches aluminum foil, the foil transfers heat to the flesh; however, due to the aluminum's low specific -heat capacity, the foil quickly loses energy, barely raising the temperature of the skin in contact. Because aluminum foil does not effectively store conducted heat, it therefore facilitates the "cooling" of a burn whilst simultaneously (in part) preventing other associated risks such as infection, dehydration, and hypothermic symptoms.

While aluminum does not effectively store conducted heat, aluminum is nonetheless an excellent conductor of heat. Aluminum will conduct any heat from the point of contact and will readily give the heat up to any heat sink, even to the ambient. This has a cooling effect to the source of the thermal heat and a heating effect to the heat sink. In short, aluminum foil can be an effective conductor of a subject's body heat, alleviating pain which emanates from added warmth on a subject's burn wound.

Table 1 shows the comparatively low specific resistance of aluminum: TABLE 1:

Comparison of Specific Resistance of Aluminum to Various Metals at 20 Degrees Celcius

Material Element/Alloy ohm-cmil/ft. micro-ohm-cm

Magnesium (element) 26.41 4.390

Aluminum (Element) 15.94 2.650

Gold (Element) 13.32 2.214

Copper (Element) 10.09 1.678

Silver 9.546 1.587

Further still, aluminum foil as a dry, sterile, initial covering for thermal burns under occlusive pressure dressings has been presented as a method of diminishing the maceration of a burn surface. The method appears to influence favorably the local result by elimination of the use of ointments, and by facilitating the dispersion of exudate to the periphery of the burn. No evidence of toxicity as a result of the treatment was found. The systemic reaction was, if anything, less obvious.

This elimination or at least minimization of applied ointments and other topical treatments by employing aluminum-based bandages and/or wrapping can help avoid adverse consequences to a patient. For example, titanium dioxide exposure cream, as a burn ointment, was considered to be irritating from the evidence of production of pain, delayed healing, and possible destruction of epithelial remnants. Moreover, it has been observed that when massive doses of ascorbic acid was administered to burn patients, the doses quickly corrected the state of ascorbic acid depletion; however, the general systemic reaction to thermal burns was not found to be influenced by this form of treatment, and the general signs of illness were marked in severe cases.

B. General Aluminaid™ Bandage Forms

Refer to Figures 1A-19, which depict examples of some exemplary embodiments of Aluminaid™ bandages, which are discussed in the written disclosure herein. It should be noted that many of the exemplary embodiments have similar, but differently configured components, and as such said components are given common reference numbers. For example, all embodiments of the Aluminaid™ bandages include an aluminum substrate, given the reference number of "5". The surrounding second-layer substrate is assigned the reference number of "15". However, if a given discussion of a bandage component is particularly tied to a specific Figure, then the Figure number is provided along with the reference number. In many embodiments, Aluminaid™ bandages 10 are designed for use in the treatment of low-degrees of burn instances (usually first or second-degree burns). In specific embodiments directed to bandages and other types of applied medical wrappings,

Aluminaid™ bandages 10 are designed to fit most body shapes, sizes, and provision for children, teenagers, and adults (of both genders). In typical embodiments, the aluminum base 5 of a bandage 10 is coupled about its perimeter with a material 15 to facilitate adhesive coupling to user skin, wherein the second material 15 extends beyond the boundaries of the aluminum substrate 5. In variations, the aluminum base 5 has a smooth side adapted to make direct contact with a burn wound, while the other side is manufactured to have a plurality of surface protrusions; such as cone, half-sphere, or pyramid shaped-shaped nodes (see Figures 10A-10N).

In many embodiments, each Aluminaid™ product can be designed to fit a wide variety of different form factors directly relating to specific body parts, such as fingers and hands. For example, a form- fitting glove with a thin aluminum lining to thermally conduct heat away from the burned tissue of a hand can be used, wherein the outer surface of the glove exposes the other side of the aluminum lining to the air for heat dissipation. In other variations, more-general form factors; such as circular, rectangular strips, ovals, etc. are used to produce general-purposes pads. (See, e.g., Figures 1A-7; 11A-11B.) Such embodiments are adapted to easily conform to the contours of specific parts of the body, but are sufficiently robust to avoid fractionation specifically during application, prevailing healing and removal.

In still other embodiments, aluminum foils 5 up to 0.5 mil thick are used, which are impermeable to oxygen and water, and which become slightly permeable due to minute pinholes caused by the production process. In other variations, however, such permeability can be desirable in cases where a medical professional desires to allow a burn wound to drain and dry out, while still providing the thermal-conduction benefits of the applied aluminum.

It should be noted that due to the manufacturing process, typical aluminum foil has a shiny side and a matte side (the reflectivity of the shiny side is typically 88%, while the dull, matte side typically has about 80% reflectivity). However, there does not appear to be any statistically significant difference in effectiveness between applications where the shiny side is applied to the wound or where the matte side is applied to the wound 60. The shiny side is produced when the aluminum is rolled during the final pass. It is difficult to produce rollers with a gap fine enough to cope with the foil gauge; therefore, for the final pass, two sheets are rolled at the same time, doubling the thickness of the gauge at entry to the rollers. When the sheets are later separated, the inside surface is dull, and the outside surface is shiny. The resultant manufactured material is often gas and liquid permeable. In some other

embodiments, the aluminum substrate 5 of the bandage is comprised of either permeable aluminum foils or sheets/strips of aluminum foils with intentionally manufactured gaps. In order to enhance the heat-dissipation capabilities and efficacy of Aluminaid™ bandages 10, the mass of the aluminum substrate 5 is strategically configured via top-side topographies that both optimize the overall mass of the aluminum substrate enough to improve thermal conductivity at the bio-interface of the bandage 10, as well as increase the available exposed surface area in order to increase thermal convection processes to the ambient air.

In still more embodiments, the aluminum substrate 5 is manufactured for one side to include a plurality of very small protrusions and/or corrugations, which increases the effective surface area for the dissipation of heat away from a burn wound. For example, referring to Figures 1A-7, in a variation, the outer surface area of the aluminum substrate 5 (that is, the surface not designed to be in direct contact with a user's skin) is increased with a dense plurality of discrete protrusions (see Figures 10A-10N) that can have any of a variety of shapes and sizes. In some variations, these discrete protrusions can be cone-shaped, mound-shaped, and/or pyramid-like shaped, though other shapes are possible as well. In some variations, referring to Figure 9A, alternating rows of cones/mounds are staggered with respect to adjacent rows in order to be able to pack in more such heat-dissipation- enhancement protrusions on the aluminum substrate 5. Conversely, referring to Figure 9B, in other embodiments, the rows of heat-dissipation-enhancing protrusions are not staggered.

In variations, each of the plurality of discrete heat-dissipation-enhancing protrusions and/or ridges is separated along the base plane of the aluminum substrate 5 by a distance. The separation distance used impacts the overall flexibility of the aluminum substrate, as well as the heat-dissipation effectiveness because as the distance increases, fewer discrete heat- dissipation-enhancing protrusions and/or ridges can populate the aluminum substrate 5. In various embodiments, the separation distances generally range between 0 (zero) and 0.5 mm, but can be increased in other applications. It should be appreciated by those skilled in the art that as the separation distance decreases and as the angle incline of the adjacent discrete protrusions increases, then the concave flexibility of the aluminum substrate 5 is adversely impacted.

Referring to Figures 17-19, in a variation, a plurality of rows of aeration holes 95 are disposed between rows of heat-dissipation-enhancement protrusions or ridges. In another variation, a plurality of rows and columns of aeration holes 95 are disposed between rows and columns of heat-dissipation-enhancement protrusions. In some embodiments, the

manufactured aeration holes are 0.2 mm in diameter, with other variations using aeration holes with diameters that range in size from 0.1 to 0.3 mm. In variations, the spacing between the manufactured aeration holes, which inherently correlates to the number of manufactured aeration holes provided over an entire aluminum substrate 5, strikes a balance the efficacy of the healing effects of the bandage 10 and concerns over the structural integrity of the aluminum substrate. If too many manufactured aeration holes of a given size are placed too close together in a row, then the aluminum substrate 5 could have some weak points subject to easy tearing. In general, such aeration holes are equi-spaced between the heat-dissipation-enhancement protrusions or ridges, with sufficient space between the aeration holes so that the aluminum substrate 5 can flex along a line of said aeration holes without tearing the substrate material between the holes. In the case of relatively small-sized bandages 10, a common spacing between the aeration holes is about 4 mm. For relatively medium-sized bandages, a common spacing between the aeration holes is about 6 mm. For relatively large bandage applications, a common spacing between the aeration holes is about 8 mm. It should be appreciated by those skilled in the art that the aforementioned aeration hole spacing are exemplary only, and the needed spacing distances can vary according to a variety of factors, including the exact aluminum alloy used, whether any strain hardening or annealing processes occurred on the alloy, etc.

In yet another variation, referring to Figures 10J-10N, the some or all of the plurality of discrete protrusions on the aluminum substrate include a hole in the middle of the protrusion. In some versions of this, the protrusion's central hole is a tapered hole and extends all the way through the aluminum substrate, thereby providing a strategically sized and placed aeration hole to aid in burn- wound healing. In addition, the presence of a substantial hole into the body of the protrusion also increases the surface area of the protrusion that is available for thermal convection.

In still more variations, referring to Figures 11A-12B, a dense plurality of corrugations or ridges 50, 55 are provided on the outer surface of the aluminum substrate 5 to enhance the heat- transfer/dissipation capabilities of the aluminum substrate 5. However, because in some embodiments the aluminum substrate 5 material can be strain hardened, especially in the thicker (corrugated) regions of the aluminum substrate 5, bandages using such corrugations/ridges may not be optimally flexible along the axis parallel with the rows of ridges/corrugations. This renders a bandage less useful for application to various parts of the body as it may be more difficult for a user to conform a bandage's aluminum substrate 5 to a particular part of a user body without overly stressing the aluminum substrate 5 along the longitudinal axis of the ridges, thus compromising the integrity and possible effectiveness of the bandage 10.

In some embodiments, a plurality of pyramid-shaped, cone-shaped, and/or dome- shaped protrusions manufactured in the aluminum substrate 5 is preferred over

corrugations/ridges because, while the available outer surface area for heat-dissipation enhancement is largely equal between the two solutions (assuming equivalent widths and peak heights), an aluminum substrate 5 with a plurality of non-ridge-like protrusions is more flexible along multiple axes. This is important because it furthers the goal of being able to readily apply bandages 10 to a wide variety of body applications and form factors.

It should be appreciated by one ordinarily skilled in the art that number,

size/dimensions, and shape of the heat-sink protrusions and/or corrugations depicted in

Figures 1A-19 are merely exemplary, and that many other shapes and sizes of cone-like or ridge-like structures (or similarly effective geometric structures) could be used for the aluminum substrate 5 in order to enhance the heat transfer of the bandage 10.

In yet more variations, a thermally conductive adhesive, paste, gel, or grease is applied to the area of a user's skin to enhance the heat transfer from a burn wound to the aluminum substrate heat sink 5. In some of these variations, the thermally conductive compound is derived from metal or silicone (usually with a zinc-oxide or aluminum-oxide inclusion to improve conductivity), and essentially fills gaps where air would normally be present. The thermally conductive compound provides a superior conductor (as compared to air) almost equal to that of the conductor (the aluminum substrate 5) itself. The performance of thermally conductive compound is measured in W/m-K. Standard silicon/zinc-oxide thermal compound has thermal conductivities in the range of 0.7-0.9 W/m-K.

In such variations, the thermally conductive medium used can also be an aluminum- infused medicinal/therapeutic cream, ointment, or other compound. In more variations, the second, polymeric, outer layer 15 of the bandage 10 is coupled about the periphery of the aluminum substrate 5, yet leaves most of the top surface of the aluminum substrate 5 uncovered so as to better allow heat thermally conducted from a burn wound through the aluminum substrate 5 to dissipate via thermal convection and/or radiation to the ambient air.

In some alternate variations, a roll or sheet of aluminum substrate 5 is used without a couple second layer 15, wherein the aluminum substrate is applied over a burn wound, and is fixed into place around the edges of the application with medical tape or gauze, while leaving most of the aluminum substrate 5 open to the air to facilitate heat dissipation.

The following is a list of some example form-factor dimensions used in some embodiments. It should be noted that this list is not intended to limit the scope of the inventive disclosure herein in any way.

In still more embodiments, the substantially polymeric and porous second layer 15 of the bandage 10 incorporates a thermochromic compound 40, 45, 70, or 80 (similar to what is typically found in mood rings) so that a user can actually see a visual indicator of the heat being removed from the user's skin/burn. In a variation, referring to Figures 13A-13B, the top side of the aluminum substrate 5 has an extended member 5A that extends under the second layer 15 to be under and in direct contact with the thermochromic compound 40, 45, wherein the aluminum extension 5A provides thermal communication between a burn wound (via the aluminum substrate 5) and the thermochromic compound 40, 45. In another variation, referring to Figure 14, the top, exposed textured side of the aluminum substrate 5 (that is, the heat-dissipation-enhancing topography side) has one or more thin aluminum strips 75 that are used to support and position a thermochromic indicator member 70 over the exposed top side of the aluminum substrate 5. In still more variations, referring to Figure 15, a small subset of the heat-dissipation protrusions on the top side of the aluminum substrate 5 are coated at their tip with thermochromic compound 80. In other variations, referring to Figures 17-19, the top side of the aluminum substrate 5 has a thermal-communication member 90 that extends to the thermochromic indicator 85, wherein the thermal- communication member 90 provides thermal communication between a burn wound (via the aluminum substrate 5) and the thermochromic indicator 85. In some embodiments, the thermal-communication member 90 can be an etched line of thermochromic paint or can be an aluminum conduit.

In some embodiments, the thermochromic indicators 40, 45, 70, 80, 85 have compounds calibrated to indicate when a burn is sufficiently cooled (in some cases providing a color indicator; e.g., "green"; and/or an icon indicator; e.g., a "smilie face") or still too warm (in some cases providing a color indicator; e.g., "red"; and/or an icon indicator; e.g., a "frownie face"). As an example, a user might apply an Aluminaid™ bandage 10 to a burn from a hot pan, and initially, the user can see a red iconic thermochromic indicator 40, 70, 80, which indicates that a user should keep the Aluminaid™ bandage 10 in place. Later, the pain subsides and the burned tissue cools, the user can see a green iconic thermochromic indicator 45, 70, 80, 85, which indicates to the user that the Aluminaid™ bandage 10 can be safely changed out to a traditional medical dressing.

C. Details of Aluminaid™ Bandage Materials Refer to Figures 1A-19.

Aluminum

In many embodiments of bandages assuming a specific form factor (e.g., a finger- form-factor dressing, Figures 5A-6B), the first bandage layer 5 disposed to make direct contact with the burn wound covers approximately 30-100% of the entire length of the bandage 10. The outer edges of the product are reserved for a suitable adhesive which forms the bond between the outer sheath (cotton wool or polymer) and the aluminum dressing.

The aluminum material used in the substrate 5 is generally comprised of at least 90% aluminum, and is essentially an amphoteric material. Other composites can occur as a result of naturally occurring processes and sometimes some contamination during manufacture. However, none of these other additional substances are toxic in-relation to the scope of the prescribed application. In some embodiments, the aluminum material is annealed in order to make the material more ductile to better facilitate various form factors. The annealing process includes gauging the aluminum substrate 5 and specifically annealing it to enhance ductility in order to optimally navigate the contours of body parts (e.g., finger and hands, but not excluding general-purpose forms, such as rectangle and square-shaped dressings).

In variations, the aluminum may be subjected to electroplating or other non-toxic coating in order to facilitate ductility, improve performance, and enhance durability.

When aluminum combines with oxygen, the two elements undergo a spontaneous reaction:

4A1 (s) + 30 2 (g) -> 2A1 2 0 3 (s)

The properties of the aluminum used in some embodiments of the Aluminaid™ bandages and wraps can be summarized as follows:

• Main Composite: > 90% aluminum, but is preferred to be > 99% aluminum o In some embodiments, the aluminum used is an alloy comprised of > 92% aluminum and approximately 5% magnesium, with the balance of the alloy being naturally occurring impurities. This alloy is especially suited for a proprietary annealing process designed to enhance the ductility of the aluminum substrate used in bandages, discussed infra. o The atomic weigh of the aluminum used is approximately 26.98 AMU.

Form: Solid with specifically formed ridges to maximize the available heat- transfer surfaces for cooling a wound.

Annealed: Yes, in order to optimally navigate the contours of body parts (e.g., fingers and hands, but not excluding general-purpose forms, such as rectangle and square-shaped dressings). In some embodiments, a proprietary annealing process is used, as discussed infra.

Thickness: < 1 mm, as measured from the bottom of the aluminum substrate to the average peak height of the plurality of heat-dissipation-enhancement protrusions/ridges on the top side of the substrate. In areas of the substrate between such heat-dissipation-enhancement protrusions/ridges, the thickness is

< 0.1 mm.

Thermal Conductivity: approximately 209 W/m-k

Density: > 2.699g/cm 3 . • Metallurgical Index: 8217

• Toxicity: Non-toxic (aluminum- oxide layer coating)

• Porosity: Defined as sufficient to enable the administration of a controlled release remedial substance, and/or to enable paths for oxygen to be introduced to a burn wound. The aluminum foil used must not exceed the defined thickness needed to ensure that the foil does not become impermeable to oxygen. Porosity can be obtained by either the inherent by-product of the aluminum-rolling process, or by mechanically introducing pinholes. Section III.B, supra, discusses some strategies for mechanically introducing aeration holes in the aluminum substrate beyond those that normally occur as a by-product of the manufacturing process.

• Recycle: The aluminum alloy used in the substrate 5 can be recycled and can be made of recycled aluminum alloy.

Annealing of Aluminum

In some embodiments, the aluminum substrate 5 is subjected to an annealing process to enhance the ductility and flexibility of the aluminum substrate as it is applied to various parts of a user body. It is a heat treatment used to soften the aluminum alloys to that they can be easily worked and formed. The annealing process gives the resultant alloy a temper designation of "0", which is very soft. In a variation, instead of quenching the aluminum material immediately after heating (as in the solution heat treatment of aluminum process), the aluminum material is cooled in stages at specified temperatures.

In a specialized embodiment, an aluminum alloy comprised of approximately 92% aluminum and approximately 5% magnesium is used (with the remainder of the constituents being naturally occurring impurities). Magnesium is added to the alloy because of its curative elements, its non-toxicity, and reasonable thermal conductivity (even though it is less than aluminum, it will not significantly degrade the alloy's overall thermal conductivity).

In a variation, the Aluminum-magnesium alloy is annealed to condition "1100-0". It is annealed for approximately one hour at a temperature range of 775 °C - 900 °C. In some embodiments, the annealed aluminum alloy is furnace cooled. However, in another embodiment, the aluminum alloy is then allowed to naturally cool; that is, non-furnace cool, thereby substantially removing any strain hardening. The aluminum alloy re-crystallizes during this natural cooling process such that there is greater consistency in the direction of grain growth (that is, most, if not all, of the grains are oriented in a uniform direction), giving the material dramatically greater ductility. These specialized fabrication techniques result in a reduced resistance to thermal conductivity, or greater thermal-conductivity gain, as well as better malleability (less structural resistance at the atomic level). This re-crystallized aluminum alloy is used in some embodiments as the primary material for the aluminum substrate 5 in Aluminaid™ bandages and wraps.

Perimeter Polymer Covering

In some embodiments of bandages 10, one or more edges of the aluminum substrate 5 are coupled to a second layer 15 which extends beyond the boundaries of the aluminum substrate 5 and typically has adhesive material disposed on its bottom surface to facilitate coupling to a user's skin. A selection of materials commonly used in medical bandages may be used as an effective second layer 15, but a perforated polymer such as 1527-ENP ethylene vinyl acetate (EVA) is preferred in many embodiments.

In another embodiment, the second layer 15 is comprised of 3M™ Transpore™ Tape. In many variations, the adhesive compound disposed on the exposed bottom side of the second layer 15 can be comprised of any non-toxic medical adhesive commonly used in the art.

Thermochromic Compounds

In some variations, the incorporated thermochromic materials 40, 45, 70, 80, 85 used in the outer bandage layers are comprised of thermochromic liquid crystals (for example, but not limited to, cholesteryl ester carbonates, chiral nematic (non-sterol) aryl compounds, and (2-methylbutyl)phenol 4-alkyl(oxy)benzoates) and/or leuco dyes (for example, but not limited to, spirolactones, fluorans, spiropyrans, and fulgides). In even more variations, the thermochromic-impregnated bandage materials are calibrated to display a "neutral" color at the average human skin temperature; that is, approximately 98.6 °F (37.0 °C).

In other variations, the thermochromic indicator materials 40, 45, 70, 80, 85 used can be a paint, a gel, or a thermochromic-compound-impregnated polymer.

In an embodiment, the thermochromic indicator material 40, 45, 70, 80, 85 comprises liquid crystals calibrated to display a green color indicator when the associated aluminum substrate has cooled to a predetermined threshold, and also comprises liquid crystals calibrated to display a red color indicator when the associated aluminum substrate exceeds a predetermined threshold. IV. A Bandage for a Burn Wound Embodiment

In one embodiment, the inventive concept is directed to a bandage that is adapted to treat a burn wound. Refer to Figures 1A-19. In an embodiment, the bandage 10 comprises a first layer 5, substantially comprised of a thin aluminum substrate 5, having a first surface and a second surface, wherein the aluminum substrate's first surface is substantially flat and adapted to make direct contact with a burn wound, and most of the aluminum substrate's second surface has a non-flat, heat-dissipation-enhancing surface topography that rises above the base plane of the aluminum substrate adapted to be directly exposed to air.

This embodiment can be enhanced wherein the bandage 10 further comprises a second layer 15, which is substantially comprised of a substantially polymeric material, having a first surface and a second surface, wherein:

• The second layer's 15 first surface is adapted to mate with and cover at least two of the perimeter edges of the second surface of the first layer 5, but leaving most of the first layer's second surface uncovered and exposed to the air; · The second layer extends beyond said at least two perimeter edges of the first layer 5;

• The at least two perimeter edges of the first layer 5 are bonded to a portion of the first surface of the second layer;

• The remainder of the first surface of the second layer 15 is substantially coated with a non-toxic adhesive material adapted for use on user skin, and

• The first and second layers 5, 15 are sized and shaped to a form factor that is adapted to one or more areas of a user body.

This embodiment can be enhanced wherein the non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing protrusions (see, e.g., Figures 10A-10N), the protrusions selected from the group consisting of cone-like protrusions, half-dome-like protrusions, and pyramid-like protrusions.

This embodiment can be enhanced wherein said plurality of heat-dissipation-enhancing protrusions are disposed in rows on the first layer 5, the positioning of every row with respect to its adjacent row(s) is selected from the group consisting of staggered and non-staggered. (See, e.g., Figures 1A-7; 13A-19.)

This embodiment can be enhanced wherein at least one heat-dissipation-enhancing protrusion has a hole disposed from its apex toward the base plane of said aluminum substrate. (See, e.g., Figures 10J-10N.)

This embodiment can be enhanced wherein the non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing corrugations, the cross- sectional shape of the corrugations selected from the group consisting of triangle, square, rectangular, half-circle, and convex quadrilateral. (See, e.g., Figures 5A-6B.)

This embodiment can be enhanced wherein the first layer 5 includes a plurality of manufactured aeration holes 95 in the aluminum substrate 5. (See, e.g., Figures 16-19.)

This embodiment can be enhanced wherein the at least one heat-dissipation-enhancing protrusion with a hole disposed from its apex toward the base plane of the aluminum substrate 5 has its hole extending all the way through the aluminum substrate 5.

This embodiment can be enhanced wherein the material in the aluminum substrate 5 is comprised of an aluminum alloy containing at least 92% aluminum and about 5%

magnesium.

This embodiment can be enhanced wherein the aluminum alloy used in the first layer 5 is annealed by a process comprised of the steps of:

• Subjecting the aluminum alloy to a temperature in the range of 775 °C to 900 °C; and

• Either subjecting the annealed aluminum alloy to furnace cooling or allowing the aluminum alloy to naturally cool; that is, non-furnace cool. It should be noted, however, that the natural cooling step results in substantially removing any strain hardening of the aluminum alloy and ensuring that the re-crystallization of the aluminum alloy results in substantially uniform grain growth and directional orientation.

This embodiment can be enhanced by further comprising a thermochromic indicator member 40, 45, 70, 80, 85, wherein:

• The thermochromic indicator member 40, 45, 70, 80, 85 is in thermal

communication 5A, 75, 90 with a burn wound via said first layer, and

• The thermochromic indicator member 40, 45, 70, 80, 85 is comprised of material calibrated to indicate to a user when a burn on which the bandage 10 is applied is still too warm for safe removal of said bandage, based on a predetermined threshold, and indicate to a user when a burn has cooled to at least a predetermined threshold such that the bandage 10 can be safely removed and/or changed-out for a new medical dressing.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 provides color-based user indications as to the thermal status of the burn to which the bandage 10 is applied.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 provides icon-based user indications as to the thermal status of the burn to which the bandage 10 is applied. This embodiment can be enhanced wherein the thermochromic indicator member 40,

45, 70, 80, 85 is comprised of material selected from the group consisting of thermochromic liquid crystals and leuco dyes.

This embodiment can be enhanced wherein the second layer 15 is substantially comprised of perforated 1527-ENP ethylene vinyl acetate (EVA). This embodiment can be enhanced wherein the bandage 10 form factor is adapted to facilitate bandage application to a part of a human body selected from the group consisting of finger, thumb, toe, elbow, wrist, knee, ankle, and hand palm.

This embodiment can be enhanced wherein the bandage 10 form factor is of a shape selected from the group consisting of rectangle, square, rounded-corner rectangle, circle, oval, triangle, rounded-corner triangle, and continuous strip roll.

V. A Method of Making a Bandage for a Burn Wound Embodiment

This embodiment is directed to a method of making a bandage adapted for treating burns and other wounds. Refer to Figures 1A-19. The method comprises the step of providing a first layer 5, substantially comprised of a thin aluminum substrate, having a first surface and a second surface, wherein the aluminum substrate's 5 first surface is adapted to make direct contact with a burn wound, and most of the aluminum substrate's 5 second surface has a non-flat, heat-dissipation-enhancing surface topography that rises above the base plane of the aluminum substrate 5 adapted to be directly exposed to air.

This embodiment can be enhanced by further comprising the step of providing a second layer 15, substantially comprised of a substantially polymeric material, having a first surface and a second surface, wherein: • The second layer's 15 first surface is adapted to mate with and cover at least two of the perimeter edges of the second surface of the first layer 5, but leaving most of the first layer's second surface uncovered and exposed to the air;

• The second layer extends beyond said at least two perimeter edges of the first layer 5;

• The at least two perimeter edges of the first layer 5 are bonded to a portion of the first surface of the second layer;

• The remainder of the first surface of the second layer 15 is substantially coated with a non-toxic adhesive material adapted for use on user skin, and

• The first and second layers 5, 15 are sized and shaped to a form factor that is adapted to one or more areas of a user body.

This embodiment can be enhanced wherein the non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing protrusions (see, e.g., Figures 10A-10N), the protrusions selected from the group consisting of cone-like protrusions, half-dome-like protrusions, and pyramid-like protrusions.

This embodiment can be enhanced wherein said plurality of heat-dissipation-enhancing protrusions are disposed in rows on the first layer 5, the positioning of every row with respect to its adjacent row(s) is selected from the group consisting of staggered and non-staggered. (See, e.g., Figures 1A-7; 13A-19.)

This embodiment can be enhanced wherein at least one heat-dissipation-enhancing protrusion has a hole disposed from its apex toward the base plane of said aluminum substrate. (See, e.g., Figures 10J-10N.)

This embodiment can be enhanced wherein the non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing corrugations, the cross- sectional shape of the corrugations selected from the group consisting of triangle, square, rectangular, half-circle, and convex quadrilateral. (See, e.g., Figures 5A-6B.)

This embodiment can be enhanced wherein the first layer 5 includes a plurality of manufactured aeration holes 95 in the aluminum substrate 5. (See, e.g., Figures 16-19.)

This embodiment can be enhanced wherein the at least one heat-dissipation-enhancing protrusion with a hole disposed from its apex toward the base plane of the aluminum substrate 5 has its hole extending all the way through the aluminum substrate 5. This embodiment can be enhanced wherein the material in the aluminum substrate 5 is comprised of an aluminum alloy containing at least 92% aluminum and about 5%

magnesium.

This embodiment can be enhanced wherein the aluminum alloy used in the first layer 5 is annealed by a process comprising the steps of:

• Subjecting the aluminum alloy to a temperature in the range of 775 °C to 900 °C; and

• Allowing the aluminum alloy to naturally cool; that is, non-furnace cool, thereby substantially removing any strain hardening of the aluminum alloy and ensuring that the re-crystallization of the aluminum alloy results in substantially uniform grain growth and directional orientation.

This embodiment can be enhanced by further comprising the step of providing a thermochromic indicator member 40, 45, 70, 80, 85, wherein:

• The thermochromic indicator member 40, 45, 70, 80, 85 is in thermal

communication 5A, 75, 90 with a burn wound via said first layer, and

• The thermochromic indicator member 40, 45, 70, 80, 85 is comprised of material calibrated to indicate to a user when a burn on which the bandage 10 is applied is still too warm for safe removal of said bandage, based on a predetermined threshold, and indicate to a user when a burn has cooled to at least a predetermined threshold such that the bandage 10 can be safely removed and/or changed-out for a new medical dressing.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 provides color-based user indications as to the thermal status of the burn to which the bandage 10 is applied.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 provides icon-based user indications as to the thermal status of the burn to which the bandage 10 is applied.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 is comprised of material selected from the group consisting of thermochromic liquid crystals and leuco dyes. This embodiment can be enhanced wherein the second layer 15 is substantially comprised of perforated 1527-ENP ethylene vinyl acetate (EVA).

This embodiment can be enhanced wherein the bandage 10 form factor is adapted to facilitate bandage application to a part of a human body selected from the group consisting of finger, thumb, toe, elbow, wrist, knee, ankle, and hand palm.

This embodiment can be enhanced wherein the bandage 10 form factor is of a shape selected from the group consisting of rectangle, square, rounded-corner rectangle, circle, oval, triangle, rounded-corner triangle, and continuous strip roll.

VI. A Method of Using a Bandage for a Burn Wound Embodiment

This embodiment is directed to a method of using a bandage according to either

Section III or Section IV, supra, adapted for treating burns and other wounds. Refer to

Figures 1A-19. It should be noted that this particular embodiment pertains to bandages without a second layer 15. The method comprises the steps of:

• Obtaining a bandage 10 according to either Section III or Section IV, supra; and · Applying the bandage 10 to a burn wound 60 with the first surface of the first layer 5 in direct contact with said burn wound 60; and

• Securing the bandage 10 in position over the burn wound 60 by applying adhesive medical tape along some or all of the edges of the bandage 10 and extending to the tissue surrounding non-burned tissue, wherein the top side of the bandage first layer 5 is mostly left uncovered and exposed to the ambient environment.

This embodiment can be enhanced wherein the non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing protrusions (see, e.g., Figures 10A-10N), the protrusions selected from the group consisting of cone-like protrusions, half-dome-like protrusions, and pyramid-like protrusions. This embodiment can be enhanced wherein said plurality of heat-dissipation-enhancing protrusions are disposed in rows on the first layer 5, the positioning of every row with respect to its adjacent row(s) is selected from the group consisting of staggered and non-staggered. (See, e.g., Figures 1A-7; 13A-19.)

This embodiment can be enhanced wherein at least one heat-dissipation-enhancing protrusion has a hole disposed from its apex toward the base plane of said aluminum substrate. (See, e.g., Figures 10J-10N.)

This embodiment can be enhanced wherein the non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing corrugations, the cross- sectional shape of the corrugations selected from the group consisting of triangle, square, rectangular, half-circle, and convex quadrilateral. (See, e.g., Figures 5A-6B.)

This embodiment can be enhanced wherein the first layer 5 includes a plurality of manufactured aeration holes 95 in the aluminum substrate 5. (See, e.g., Figures 16-19.)

This embodiment can be enhanced wherein the at least one heat-dissipation-enhancing protrusion with a hole disposed from its apex toward the base plane of the aluminum substrate 5 has its hole extending all the way through the aluminum substrate 5.

This embodiment can be enhanced wherein the material in the aluminum substrate 5 is comprised of an aluminum alloy containing at least 92% aluminum and about 5%

magnesium.

This embodiment can be enhanced wherein the aluminum alloy used in the first layer 5 is annealed by a process comprising the steps of:

• Subjecting the aluminum alloy to a temperature in the range of 775 °C to 900 °C; and

• Either subjecting the annealed aluminum alloy to furnace cooling or allowing the aluminum alloy to naturally cool; that is, non-furnace cool. It should be noted, however, that the natural cooling step results in substantially removing any strain hardening of the aluminum alloy and ensuring that the re-crystallization of the aluminum alloy results in substantially uniform grain growth and directional orientation.

This embodiment can be enhanced wherein the bandage further comprises a thermochromic indicator member 40, 45, 70, 80, 85, wherein:

• The thermochromic indicator member 40, 45, 70, 80, 85 is in thermal

communication 5A, 75, 90 with a burn wound via said first layer, and

• The thermochromic indicator member 40, 45, 70, 80, 85 is comprised of material calibrated to indicate to a user when a burn on which the bandage 10 is applied is still too warm for safe removal of said bandage, based on a predetermined threshold, and indicate to a user when a burn has cooled to at least a predetermined threshold such that the bandage 10 can be safely removed and/or changed-out for a new medical dressing.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 provides color-based user indications as to the thermal status of the burn to which the bandage 10 is applied.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 provides icon-based user indications as to the thermal status of the burn to which the bandage 10 is applied.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 is comprised of material selected from the group consisting of thermochromic liquid crystals and leuco dyes.

This embodiment can be enhanced by further comprising the steps of:

• Observing the thermochromic indicator member 40, 45, 70, 80, 85;

• If the thermochromic indicator member 40, 45, 70, 80, 85 indicates that the burn wound 60 is too warm, then continuing the application of the bandage 10 on the burn wound 60 to further cooling of the burn wound 60;

• If the thermochromic indicator member 40, 45, 70, 80, 85 indicates that the burn wound 60 has cooled sufficiently, then removing the bandage 10 from the burn wound 60 and applying a different medical dressing to the burn wound 60; and

• Repeating the previous steps as necessary until the bandage 10 has been removed from the burn wound 60.

This embodiment can be enhanced wherein the different medical dressing referred to above is any one or combination of dressings selected from the group consisting of medicinal compounds, therapeutic compounds, and sterile gauze -based or cotton-based bandages.

This embodiment can be enhanced wherein the bandage 10 form factor is adapted to facilitate bandage application to a part of a human body selected from the group consisting of finger, thumb, toe, elbow, wrist, knee, ankle, and hand palm.

This embodiment can be enhanced wherein the bandage 10 form factor is of a shape selected from the group consisting of rectangle, square, rounded-corner rectangle, circle, oval, triangle, rounded-corner triangle, and continuous strip roll. This embodiment can be enhanced by further comprising the step of subjecting the exposed aluminum substrate 5 of the applied bandage 10 to forced-air cooling in order to speed cooling of the burn wound 60.

VII. A Method of Using a Bandage for a Burn Wound Embodiment

This embodiment is directed to a method of using a bandage according to either

Section III or Section IV, supra, adapted for treating burns and other wounds. Refer to

Figures 1A-19. It should be noted that this particular embodiment pertains to bandages with a second layer 15. The method comprises the steps of:

• Obtaining a bandage 10 according to either Section III or Section IV, supra; and · Applying the bandage 10 to a burn wound 60 with the first surface of the first layer 5 in direct contact with said burn wound 60; and

• securing the bandage 10 in position over the burn wound 60 with the adhesive material disposed on the first side of the second layer 15 of the bandage 10.

This embodiment can be enhanced wherein the non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing protrusions (see, e.g., Figures 10A-10N), the protrusions selected from the group consisting of cone-like protrusions, half-dome-like protrusions, and pyramid-like protrusions.

This embodiment can be enhanced wherein said plurality of heat-dissipation-enhancing protrusions are disposed in rows on the first layer 5, the positioning of every row with respect to its adjacent row(s) is selected from the group consisting of staggered and non-staggered. (See, e.g., Figures 1A-7; 13A-19.)

This embodiment can be enhanced wherein at least one heat-dissipation-enhancing protrusion has a hole disposed from its apex toward the base plane of said aluminum substrate. (See, e.g., Figures 10J-10N.) This embodiment can be enhanced wherein the non-flat, heat-dissipation-enhancing surface topography includes a plurality of heat-dissipation-enhancing corrugations, the cross- sectional shape of the corrugations selected from the group consisting of triangle, square, rectangular, half-circle, and convex quadrilateral. (See, e.g., Figures 5A-6B.)

This embodiment can be enhanced wherein the first layer 5 includes a plurality of manufactured aeration holes 95 in the aluminum substrate 5. (See, e.g., Figures 16-19.) This embodiment can be enhanced wherein the at least one heat-dissipation-enhancing protrusion with a hole disposed from its apex toward the base plane of the aluminum substrate 5 has its hole extending all the way through the aluminum substrate 5.

This embodiment can be enhanced wherein the material in the aluminum substrate 5 is comprised of an aluminum alloy containing at least 92% aluminum and about 5%

magnesium.

This embodiment can be enhanced wherein the aluminum alloy used in the first layer 5 is annealed by a process comprising the steps of:

• Subjecting the aluminum alloy to a temperature in the range of 775 °C to 900 °C; and

• Either subjecting the annealed aluminum alloy to furnace cooling or allowing the aluminum alloy to naturally cool; that is, non-furnace cool. It should be noted, however, that the natural cooling step results in substantially removing any strain hardening of the aluminum alloy and ensuring that the re-crystallization of the aluminum alloy results in substantially uniform grain growth and directional orientation.

This embodiment can be enhanced wherein the bandage further comprises a thermochromic indicator member 40, 45, 70, 80, 85, wherein:

• The thermochromic indicator member 40, 45, 70, 80, 85 is in thermal

communication 5A, 75, 90 with a burn wound via said first layer, and

• The thermochromic indicator member 40, 45, 70, 80, 85 is comprised of material calibrated to indicate to a user when a burn on which the bandage 10 is applied is still too warm for safe removal of said bandage, based on a predetermined threshold, and indicate to a user when a burn has cooled to at least a predetermined threshold such that the bandage 10 can be safely removed and/or changed-out for a new medical dressing.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 provides color-based user indications as to the thermal status of the burn to which the bandage 10 is applied.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 provides icon-based user indications as to the thermal status of the burn to which the bandage 10 is applied.

This embodiment can be enhanced wherein the thermochromic indicator member 40, 45, 70, 80, 85 is comprised of material selected from the group consisting of thermochromic liquid crystals and leuco dyes.

This embodiment can be enhanced by further comprising the steps of:

• Observing the thermochromic indicator member 40, 45, 70, 80, 85;

• If the thermochromic indicator member 40, 45, 70, 80, 85 indicates that the burn wound 60 is too warm, then continuing the application of the bandage 10 on the burn wound 60 to further cooling of the burn wound 60;

• If the thermochromic indicator member 40, 45, 70, 80, 85 indicates that the burn wound 60 has cooled sufficiently, then removing the bandage 10 from the burn wound 60 and applying a different medical dressing to the burn wound 60; and

• Repeating the previous steps as necessary until the bandage 10 has been removed from the burn wound 60.

This embodiment can be enhanced wherein the different medical dressing referred to above is any one or combination of dressings selected from the group consisting of medicinal compounds, therapeutic compounds, and sterile gauze-based or cotton-based bandages.

This embodiment can be enhanced wherein the bandage 10 form factor is adapted to facilitate bandage application to a part of a human body selected from the group consisting of finger, thumb, toe, elbow, wrist, knee, ankle, and hand palm.

This embodiment can be enhanced wherein the bandage 10 form factor is of a shape selected from the group consisting of rectangle, square, rounded-corner rectangle, circle, oval, triangle, rounded-corner triangle, and continuous strip roll.

This embodiment can be further enhanced wherein the second layer 15 is substantially comprised of perforated 1527-ENP ethylene vinyl acetate (EVA).

This embodiment can be enhanced by further comprising the step of subjecting the exposed aluminum substrate 5 of the applied bandage 10 to forced-air cooling in order to speed cooling of the burn wound 60.

Alternative Embodiments and Other Variations

The various embodiments and variations thereof described herein (including the appended claims) and/or illustrated in the accompanying Figures are merely exemplary and are not meant to limit the scope of the inventive disclosure. It should be appreciated that numerous variations of the invention have been contemplated as would be obvious to one of ordinary skill in the art with the benefit of this disclosure.

Hence, those ordinarily skilled in the art will have no difficulty devising myriad obvious variations and improvements to the invention, all of which are intended to be encompassed within the scope of the description and Figures herein.