Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ALUMINUM DIE CASTING ALLOY
Document Type and Number:
WIPO Patent Application WO/2023/099520
Kind Code:
A1
Abstract:
The invention relates to an aluminum die casting alloy having the following alloy constituents: 5 to 9 wt. %, in particular 6.5 to 8 wt. %, silicon, 0.05 to 0.3 wt. %, in particular 0.1 to 0.2 wt. %, nickel, manganese and/or chromium and/or molybdenum and/or vanadium, the sum of said elements being 0.05 to 1.0 wt. %, in particular 0.2 to 0.6 wt. %, the remainder consisting of aluminum and inevitable impurities.

Inventors:
HUMMEL MARC (DE)
OTTERBACH STEFFEN (DE)
KOHLHEPP MARIUS (DE)
Application Number:
PCT/EP2022/083766
Publication Date:
June 08, 2023
Filing Date:
November 30, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AUDI AG (DE)
International Classes:
C22C21/02; B22D21/00; C22F1/043
Domestic Patent References:
WO2014027184A12014-02-20
WO2009106327A12009-09-03
Foreign References:
JP2005139552A2005-06-02
EP3825428A12021-05-26
EP1443122B12009-07-29
EP1719820A22006-11-08
DE102006039684B42008-08-07
DE102010055011A12012-06-21
DE102019205267B32020-09-03
DE102005037738A12007-02-22
EP1978120A12008-10-08
DE10062547A12002-06-20
EP2138593A22009-12-30
DE102016118729A12017-04-20
CH168202A1934-03-31
GB595531A1947-12-08
US20050224145A12005-10-13
Other References:
KORKUT M. H. ET AL: "Effect of silicon content on wear resistance and corrosion behaviour of Al-Si eutectic alloy", TRIBOLOGY - MATERIALS, SURFACES & INTERFACES,, vol. 1, no. 3, 1 September 2007 (2007-09-01), pages 154 - 160, XP093025725, ISSN: 1751-5831, DOI: 10.1179/175158408X273630
Download PDF:
Claims:
PATENTANSPRÜCHE:

1. Aluminium-Druckgusslegierung mit folgenden Legierungsbestandteilen:

5 bis 9 Gew.-%, insbesondere 6,5 bis 8 Gew.-%, Silizium, 0,05 bis 0,3 Gew.-%, insbesondere 0,1 bis 0,2 Gew.-%, Nickel, Mangan, wobei der Anteil dieses Elements 0,2 bis 0,6 Gew.-%, beträgt, optional 0,008 bis 0,025 Gew.-%, insbesondere 0,01 bis 0,02 Gew.-%, Strontium, optional 0,05 bis 0,2 Gew.-%, insbesondere 0,11 bis 0,18 Gew.-%, Titan, optional 0,05 bis 0,15 Gew.-%, insbesondere 0,05 bis 0,10 Gew.-%, Zirkonium, optional 0,2 bis 0,5 Gew.-%, insbesondere 0,32 bis 0,4 Gew.-%, Magnesium, optional 0,001 bis 0,2 Gew.-%, insbesondere 0,001 bis 0,12 Gew.-%, Kupfer, optional 0,05 bis 0,4 Gew.-%, insbesondere 0,12 bis 0,25 Gew.-%, Zink, Rest Aluminium und unvermeidbare Verunreinigungen.

2. Verfahren zur Wärmebehandlung eines aus einer aushärtbaren Aluminium-Druckgusslegierung hergestellten Bauteils für ein Kraftfahrzeug, wobei das Bauteil für eine Dauer von 0,5 bis 2 h, insbesondere 0,5 bis 1 h, bei einer Temperatur von 120 bis 190 °C, insbesondere 150 °C bis 170 °C, vorausgelagert und anschließend für eine Dauer von 0,5 bis 2 h bei einer Temperatur von 150 bis 210 °C einem Trocknungsschritt eines Lackierprozesses unterzogen wird.

3. Verfahren zur Wärmebehandlung eines aus einer Aluminium-Druckgusslegierung nach Anspruch 1 hergestellten Bauteils für ein Kraftfahrzeug, wobei das Bauteil für eine Dauer von 0,5 bis 2 h bei einer Temperatur von 150 bis 210 °C einem Trocknungsschritt eines Lackierprozesses unterzogen wird, wobei 0,2 bis 0,5 Gew.-%, insbesondere 0,32 bis 0,4 Gew.-%, Magnesium und 0,001 bis 0,2 Gew.-%, insbesondere 0,001 bis 0,12 Gew.-%, Kupfer in der Aluminium-Druckgusslegierung vorgesehen sind. Bauteil für ein Kraftfahrzeug, insbesondere großvolumiges und/oder großflächiges Strukturbauteil für eine Karosserie des Kraftfahrzeugs, hergestellt aus einer Aluminium-Druckgusslegierung nach Anspruch 1 oder hergestellt gemäß einem Verfahren nach Anspruch 2 oder 3.

Description:
Aluminium-Druckgusslegierung

BESCHREIBUNG:

Die Erfindung betrifft eine Aluminium-Druckgusslegierung, ein Verfahren zur Wärmebehandlung eines aus einer Aluminium-Druckgusslegierung hergestellten Bauteils sowie ein Bauteil für ein Kraftfahrzeug.

Aus der EP 1 443 122 B1 ist eine Aluminiumlegierung zum Druckgießen von Bauteilen mit hoher Dehnung im Gusszustand bekannt. Weitere Zusammensetzungen für Aluminium-Druckgusslegierungen sind in der EP 1 719 820 A2, der DE 10 2006 039 684 B4, der DE 10 2010 055 011 A1 oder der DE 10 2019 205 267 B3 beschrieben.

Die DE 102005 037 738 A1 beschreibt eine Aluminium-Gusslegierung, die Silizium, Magnesium, Eisen, Kupfer, Zink, Mangan, Titan, Zirkonium, Nickel und Kobalt enthält.

Aus der EP 1 978 120 A1 ist eine Aluminium-Silizium-Gusslegierung bekannt, die zusätzlich unter anderem Magnesium, Titan, Zirkonium, Mangan, Eisen, Kupfer und Nickel enthält.

Eine aushärtbare Aluminium-Gusslegierung mit Silizium, Magnesium, Nickel und Kobalt ist in der DE 100 62 547 A1 beschrieben.

Aus der WO 2009/106327 A1 ist ein Verfahren zum Wärmebehandeln und Beschichten eines Bauteils sowie ein nach dem Verfahren hergestelltes Bauteil bekannt. Aus der EP 2 138 593 A2 ist ein Verfahren zur Herstellung eines Gussbauteils aus einer Aluminium-Druckgusslegierung, bei welchem das Gussbauteil nach dem Gießen einem Wärmebehandlungsverfahren unterzogen wird, wobei eine Aluminium-Druckgusslegierung eingesetzt wird, bekannt.

Aus der DE 10 2016 118 729 A1 sind kupferfreie Aluminiumlegierungen, geeignet für Hochdruckgießen, die einer Aushärtung bei erhöhten Temperaturen unterzogen werden können, bekannt.

Die CH 168202 A offenbart eine Aluminiumlegierung mit einem Gehalt von 8 bis 15 % Silizium, 0,1 bis 0,6 % Magnesium und außerdem 1 % an mindestens einer, die Erhöhung der Ermüdungsfestigkeit bedingenden Legierungskomponente.

Aus der GB 595,531 A ist eine aluminiumbasierte Legierung mit einer exzellenten Gießeignung bekannt.

Die US 2005/0224145 A1 offenbart Gussteile aus einer Aluminiumlegierung, welche hohen thermischen und mechanischen Belastungen ausgesetzt sind.

Die aus diesen Dokumenten bekannten Legierungszusammensetzungen werden für Motorkomponenten, wie Kurbelgehäuse, Zylinderköpfe und gegebenenfalls Kolben eingesetzt.

Grundsätzlich steht aus dem Stand der Technik damit eine Vielzahl an Aluminium-Druckgusslegierungen mit zahlreichen Zusammensetzungen und Wärmebehandlungen zur Herstellung von Strukturbauteilen zur Verfügung. Durch den Trend zu großflächigen Strukturgussbauteilen kommen viele davon aber nicht mehr in Frage.

Die beste Kombination aus Festigkeit und Duktilität kann mit aushärtbaren Aluminiumlegierungen im T6-Zustand erreicht werden, wodurch diese sowohl hinsichtlich des Leichtbaupotenzials als auch für den Einsatz bei Fügeverfahren wie dem Halbhohlstanznieten sehr attraktiv sind. Abhängig davon, ob die gewünschte Festigkeitssteigerung nur durch Mischkristallverfestigung und Kaltverfestigung oder zusätzlich durch eine Ausscheidungshärtung erreicht wird, wird zwischen aushärtbaren und naturharten, d.h. nicht aushärtbaren Legierungen unterschieden. Die naturharten Legierungen sind beispielsweise vom Typ AIMg, AIMn, AIMgMn und AlSi. Die aushärtbaren Legierungen sind beispielsweise vom Typ AICuMg, AICuSiMn, AISiMg, AIZnMg und AIZnMgCu. Nachteilig bei großflächigen Strukturgussbauteilen sind jedoch der zu einer geringen Maßhaltigkeit führende Verzug bei der Wärmebehandlung sowie die hohen Kosten für die Wärmebehandlung durch die geringe Packungsdichte und der damit verbundene Flächenbedarf durch große Ofenanlagen.

Eine weitere Option stellt die Wärmebehandlung im T5-Zustand dar, die unter anderem sehr kosteneffizient durch den Lackierprozess erfolgen kann und dadurch keine nachgelagerte Wärmebehandlung benötigt. Durch den Wegfall des Lösungsglühens wird die Maßhaltigkeit nicht beeinträchtigt. Zudem wird durch den Wegfall von Ofenanlagen die Fertigung verschlankt. Das Erreichen hoher Festigkeiten im Lackierprozess gestaltet sich jedoch herausfordernd, da dort der Trend zu niedrigeren Temperaturen und kürzeren Zeiten zum Zweck der Energieersparnis und Nachhaltigkeit ein sehr geringes Aushärtepotenzial für Strukturbauteile bietet. Zum Erreichen hoher Festigkeiten wird jedoch oftmals eine Kombination aus Magnesium und einem höheren Kupfergehalt oder eine nachgelagerte T5-Wärmebehandlung benötigt. Allerdings wird die Legierung durch die Verwendung eines hohen Kupferanteils anfällig für Korrosion. Des Weiteren führt Kupfer zu einer Versprödung des Materials und verringert aufgrund einer erhöhten Heißrissneigung die Schweißbarkeit. Bei T5-Legierungen ohne Kupfer wird lediglich Magnesium als Legierungsbestandteil verwendet, wodurch jedoch nur mittelhohe Festigkeiten erreicht werden können. Durch eine nachgelagerte T5-Wärmebehand- lung hingegen relativiert sich der Kostenvorteil gegenüber der T6-Legierung, da ebenfalls eine Ofenanlage benötigt wird. Zudem müssen Fügeoperationen dann im bereits ausgehärteten Zustand erfolgen, wodurch diese erschwert werden. Eine weitere Möglichkeit besteht darin, naturharte Legierungen zu verwenden. Diese können jedoch nur begrenzte Festigkeiten erreichen und besitzen daher ein sehr begrenztes Leichtbaupotenzial.

Es ist daher Aufgabe der vorliegenden Erfindung, eine Aluminium-Druckgusslegierung sowie ein Verfahren zur Wärmebehandlung eines aus einer aushärtbaren Aluminium-Druckgusslegierung hergestellten Bauteils für ein Kraftfahrzeug zu schaffen, aus denen Bauteile mit einer hohen Festigkeit und einer hohen Duktilität sowie einem möglichst geringen Verzug hergestellt werden können.

Erfindungsgemäß wird diese Aufgabe durch die in Anspruch 1 genannten Merkmale gelöst.

Die erfindungsgemäße Aluminium-Druckgusslegierung, die als Legierungsbestandteile 5 bis 9 Gew.-%, insbesondere 6,5 bis 8 Gew.-%, Silizium; 0,05 bis 0,3 Gew.-%, insbesondere 0,1 bis 0,2 Gew.-%, Nickel; Mangan und/oder Chrom und/oder Molybdän und/oder Vanadium, wobei die Summe dieser Elemente 0,05 bis 1 ,0 Gew.-%, insbesondere 0,2 bis 0,6 Gew.-%, beträgt, mit dem Rest Aluminium und unvermeidbare Verunreinigungen, besitzt nach dem Abguss im Gusszustand ein besonders gutes Verhältnis aus Festigkeit und Duktilität, wodurch eine hervorragende Fügbarkeit gewährleistet ist. Durch die erfindungsgemäße Legierungskombination, die gute Gießbarkeit, ein vorteilhaftes Verhältnis aus Festigkeit und Duktilität, sowie gute Fügbarkeit im Gusszustand und eine hohe Aushärtung im T5-Zustand miteinander vereint, wird eine ideale Grundlage für den Einsatz in großflächigen und/oder großvolumigen, insbesondere dünnwandigen, Strukturgussbauteilen geschaffen. Optional sind in der erfindungsgemäßen Aluminium-Druckgusslegierung Strontium, Titan, Zirkonium, Magnesium, Kupfer und/oder Zink mit den nachfolgend beschriebenen Anteilen vorgesehen.

Dabei gewährleistet der gegenüber üblichen Aluminium-Silizium-Druckguss- legierungen für Strukturgussteile reduzierte Silizium-Gehalt ein gutes Verhältnis aus Festigkeit und Duktilität im Gusszustand. Der verminderten Gießbarkeit durch die Reduktion des Siliziums wird erfindungsgemäß mittels der Zugabe von Nickel gegengewirkt. Überraschenderweise zeigt sich dieser Effekt nur im Bereich zwischen 0,05 bis 0,3%, insbesondere 0,1 bis 0,2% Nickel. Zusätzlich wird durch die Verwendung von Nickel, solange ein Anteil von 0,3 %, insbesondere 0,2 %, nicht überschritten wird, die Festigkeit im Gusszustand erhöht, ohne die Duktilität zu beeinträchtigen. Bei Gehalten darüber hinaus fällt die Duktilität jedoch sehr stark ab. Darüber hinaus wirkt Nickel ebenfalls gegen Formkleben, wodurch der Anteil an Mangan reduziert werden kann, was wiederum die Duktilität verbessert.

Die Elemente Mangan und/oder Chrom und/oder Molybdän und/oder Vanadium werden zur Reduktion des Formklebens zugegeben, wobei deren Anteil durch den oben beschriebenen Einsatz von Nickel deutlich reduziert werden kann, sodass die Summe dieser Elemente 0,05 bis 1 ,0 Gew.-%, insbesondere 0,2 bis 0,6 Gew.-%, beträgt.

In einer sehr vorteilhaften Weiterbildung der Aluminium-Druckgusslegierung kann diese 0,008 bis 0,025 Gew.-%, insbesondere 0,01 bis 0,02 Gew.-%, Strontium aufweisen. Durch die Zugabe von Strontium ergibt sich eine Veredelung bzw. Verfeinerung des Siliziumgefüges.

In einer weiteren vorteilhaften Weiterbildung der Aluminium-Druckgusslegierung kann diese 0,05 bis 0,2 Gew.-%, insbesondere 0,11 bis 0,18 Gew.-%, Titan aufweisen.

Alternativ oder zusätzlich kann die erfindungsgemäße Aluminium-Druckgusslegierung 0,05 bis 0,15 Gew.-%, insbesondere 0,05 bis 0,10 Gew.-%, Zirkonium aufweisen.

Zirkonium und Titan wirken kornfeinend und bilden intermetallische Phasen und Ausscheidungen im Gefüge. Dadurch erhöht sich die Festigkeit im Gusszustand, ohne die Duktilität und Fügbarkeit zu beeinträchtigen. Dies stellt sich insbesondere ein, wenn Zirkonium und Titan gemeinsam eingesetzt werden. Überaschenderweise hat sich hier ein Überschuss von Titan im Verhältnis von Titan zu Zirkonium als besonders effektiv erwiesen. Im Gegensatz zu bekannten Lösungen, bei denen Titan-Gehalte von 0,05 bis 0,10 % und höhere Zirkonium-Gehalte von 0,15 bis 0,30 % eingesetzt werden, zeigte sich ein Anteil von 0,18 % Titan und 0,06 % Zirkonium als besonders effektiv, da hier sowohl Festigkeit und Duktilität ansteigen als auch eine Kornfeinung sichtbar ist. Wird der Zirkonium-Gehalt hingegen zu hoch gewählt, entstehen grobe intermetallische Phase, welche die Duktilität stark einschränken. Ein zu niedriger Titan-Gehalt hingegen lässt keine Kornfeinung im Druckguss zu. Durch den oben beschriebenen Überschuss von Titan im Verhältnis von Titan zu Zirkonium ergibt sich demnach eine verbesserte Festigkeit im Gusszustand bei ausreichender Duktilität und Fügbarkeit.

In einer weiteren vorteilhaften Weiterbildung der Aluminium-Druckgusslegierung kann diese 0,2 bis 0,5 Gew.-%, insbesondere 0,32 bis 0,4 Gew.-%, Magnesium aufweisen.

Alternativ oder zusätzlich kann die erfindungsgemäße Aluminium-Druckgusslegierung 0,001 bis 0,2 Gew.-%, insbesondere 0,001 bis 0,12 Gew.-%, Kupfer aufweisen.

Durch den Einsatz von Magnesium und/oder Kupfer ergibt sich eine optionale Aushärtbarkeit der erfindungsgemäßen Aluminium-Druckgusslegierung. Vorzugsweise wird dabei das Verhältnis von Kupfer zu Magnesium unter 0,66 gehalten, wodurch sich ein verbesserter Korrosionsschutz ergibt. Durch die Zugabe von Kupfer kann die Aushärtung der erfindungsgemäßen Aluminium-Druckgusslegierung, wenn diese, wie oben angegeben, 0,2 bis 0,5 Gew.-%, insbesondere 0,32 bis 0,4 Gew.-%, Magnesium enthält, für eine Auslagerung in einem Trocknungsschritt eines Lackierprozesses stark beschleunigt werden. Dabei sollte, neben dem oben angegebenen Verhältnis von Kupfer zu Magnesium, die Grenze von max. 0,2 %, insbesondere max. 0,12 %, an Kupfer nicht überschritten werden, da es ansonsten zu einer erhöhten Korrosion des Bauteils kommen kann. Des Weiteren kann die Aluminium-Druckgusslegierung 0,05 bis 0,4 Gew.-%, insbesondere 0,12 bis 0,25 Gew.-%, Zink aufweisen. Zink führt zu einer feineren Ausbildung der Magnesium-Ausscheidungen und verbessert damit die erreichbare Festigkeit im T5-Zustand durch den Trocknungsschritt des Lackierprozesses, wobei sich zugleich eine Erhöhung der Heißrissbeständigkeit ergibt.

Ein Verfahren zur Wärmebehandlung eines aus einer aushärtbaren Aluminium-Druckgusslegierung hergestellten Bauteils für ein Kraftfahrzeug ist in Anspruch 2 angegeben. Dabei wird das Bauteil für eine Dauer von 0,5 bis 2 h, insbesondere 0,5 bis 1 h, bei einer Temperatur von 120 bis 190 °C, insbesondere 150 °C bis 170 °C, vorausgelagert und anschließend für eine Dauer von 0,5 bis 2 h bei einer Temperatur von 150 bis 210 °C einem Trocknungsschritt eines Lackierprozesses unterzogen. Mit einem solchen Verfahren lässt sich ein Bauteil aus einer aushärtbaren Aluminium-Druckgusslegierung mit einer hohen Festigkeit und einer hohen Duktilität herstellen, wobei die Bauteile einen sehr geringen Verzug aufweisen.

Überraschenderweise hat sich gezeigt, dass eine kurze Vorauslagerung unmittelbar nach dem Abguss die Aushärtung im späteren Lackierprozess, d.h. in dem Trocknungsschritt des Lackierprozesses, enorm beschleunigen kann. Die dafür notwendige Wärmebehandlungsstation fällt darüber hinaus sehr klein aus und kann optional in die Gießzelle integriert werden. Hierdurch ergeben sich folgende Vorteile: Es muss keine nachgelagerte Wärmebehandlung des Bauteils erfolgen, die Ofenanlagen dafür entfallen. Stattdessen kann dank einer kurzen Vorauslagerung das volle Aushärtepotenzial im Lackierprozess erreicht werden. Durch die beschleunigte Aushärtung können selbst im Lackierprozess mit niedrigen Temperaturen und kurzen Zeiten sehr hohe Festigkeiten erzeugt werden, wodurch sehr dünnwandige Bauteile mit niedrigem Gewicht möglich sind. Die Festigkeit steigt während der Vorauslagerung nur geringfügig an, wodurch bei Fügeoperationen weiterhin von der niedrigen Festigkeit profitiert werden kann. Die eigentliche Aushärtung erfolgt dann beschleunigt im Trocknungsschritt des Lackierprozesses. Die Korrosionseigenschaften bleiben sehr gut, da dank der beschleunigten Aushärtung durch die Vorauslagerung auf die Verwendung von hohen Anteilen an Kupfer verzichtet werden kann.

Ein besonders hohes Verhältnis aus Festigkeit und Duktilität lässt sich dabei durch die Kombination der Vorauslagerung mit einer optimierten Legierungszusammensetzung nach Anspruch 1 erzielen.

Ein weiteres Verfahren zur Wärmebehandlung eines aus einer Aluminium- Druckgusslegierung nach Anspruch 1 , wobei 0,2 bis 0,5 Gew.-%, insbesondere 0,32 bis 0,4 Gew.-%, Magnesium und 0,001 bis 0,2 Gew.-%, insbesondere 0,001 bis 0,12 Gew.-%, Kupfer in der Aluminium-Druckgusslegierung vorgesehen sind, hergestellten Bauteils für ein Kraftfahrzeug ergibt sich aus Anspruch 3. Dabei weist die Aluminium-Druckgusslegierung 0,2 bis 0,5 Gew.-%, insbesondere 0,32 bis 0,4 Gew.-%, Magnesium und/oder 0,001 bis 0,2 Gew.-%, insbesondere 0,001 bis 0,12 Gew.-%, Kupfer auf und das Bauteil wird für eine Dauer von 0,5 bis 2 h bei einer Temperatur von 150 bis 210 °C einem Trocknungsschritt eines Lackierprozesses unterzogen. Durch eine solche T5-Wärmebehandlung, die Bestandteil des Trocknungsschritts eines Lackierprozesses ist, ergibt sich eine maximale Aushärtung, wodurch hohe Festigkeiten erreicht werden und sich ein hohes Leichtbaupotenzial für das Bauteil ergibt.

Ein Bauteil für ein Kraftfahrzeug, insbesondere ein großvolumiges und/oder großflächiges Strukturbauteil für eine Karosserie des Kraftfahrzeugs, hergestellt aus einer Aluminium-Druckgusslegierung nach Anspruch 1 oder hergestellt gemäß einem Verfahren nach Anspruch 2 oder 3, ist in Anspruch 4 angegeben.

In der nachfolgenden Tabelle sind unterschiedliche Aluminium-Druckgusslegierungen sowie bestimmte, durch Versuche ermittelte Merkmale und physikalische Größe und ggf. deren Ausprägungen angegeben. Die mit „SdT“ bezeichneten Legierungen sind aus dem allgemeinen Stand der Technik bekannt, die mit „Erf“ bezeichneten Legierungen entsprechen den Vorgaben des Patentanspruchs 1 und ggf. eines oder mehrerer Unteransprüche. Die Angabe in der Spalte „Korrosion“ beschreibt schlechte, durchschnittliche, gute oder sehr gute Korrosionseigenschaften der jeweiligen Legierung: * 1 Taktile Vermessung realer Gussbauteile im Einbauzustand ins Fahrzeug

(Mittelwert aller betragsmäßigen Abweichungen)

* 2 DIN EN ISO 9227NSS * 3 Heißrisslänge durch eine MIG-Metall Inertgas Schweißnaht am Schweiß- nahtendkrater

Aus der Tabelle ist ersichtlich, dass die mit „Erf“ bezeichneten, den Vorgaben des Patentanspruchs 1 und ggf. eines oder mehrerer Unteransprüche entspre- chenden Legierungen zwar nicht in allen Merkmalen bzw. Eigenschaften besser sind als die mit „SdT“ bezeichneten, aus dem allgemeinen Stand der Technik bekannten Legierungen, dass jedoch keines ihrer Merkmale bzw. Eigenschaften einer Verwendung als Bauteil für ein Kraftfahrzeug, insbesondere als großvolumiges und/oder großflächiges Strukturbauteil für eine Karosserie eines Kraftfahrzeugs, entgegensteht.

Die Legierung AISi7MnO,4MgO,3NiO,2ZnO,2CuO,1 (T5 mittels Vorauslagerung und nachfolgendem Lackierprozess) erfüllt die Anforderungen in besonders hohem Maße und erreicht trotz guter Fügbarkeit nach der Vorauslagerung durch den Trocknungsschritt innerhalb des Lackierprozesses das Festigkeitsniveau der T6-Legierung.

Nachfolgend werden weitere Eigenschaften der erfindungsgemäßen Aluminium-Druckgusslegierung anhand mehrerer Schaubilder erläutert.

Es zeigt:

Fig. 1 ein Schaubild, in dem eine Änderung der Dehngrenze R P o.2 und der Bruchdehnung A in Abhängigkeit des Nickelgehalts in der Aluminium- Druckgusslegierung dargestellt ist;

Fig. 2 ein Schaubild, in dem die Fließfähigkeit in Abhängigkeit des Nickelgehalts dargestellt ist; und

Fig. 3 ein Schaubild, in dem die Dehngrenze R P o.2 und die Bruchdehnung A in Abhängigkeit des Titan- und Zirkoniumgehalts in der Aluminium- Druckgusslegierung dargestellt ist.

Fig. 4 ein Schaubild, in dem die Dehngrenze R P o.2 in Abhängigkeit der Dauer des Trocknungsschritts eines Lackierprozesses und einer Vorauslagerung dargestellt ist.

Aus den Fig. 1 , in der eine Änderung der Dehngrenze R P o.2 und der Bruchdehnung A in Abhängigkeit des Nickelgehalts in der Aluminium-Druckgusslegierung dargestellt ist, ist ersichtlich, dass durch die Verwendung von Nickel in einer Aluminium-Druckgusslegierung, solange ein Anteil von 0,3 Gew.-%, insbesondere 0,2 Gew.-%, nicht überschritten wird, die Festigkeit im Gusszustand erhöht wird, ohne die Duktilität zu beeinträchtigen. Bei Gehalten darüber hinaus fällt die Duktilität jedoch sehr stark ab. Darüber hinaus wirkt Nickel ebenfalls gegen Formkleben, wodurch der Anteil an Mangan reduziert werden kann, was wiederum die Duktilität verbessert. Mit „Referenz“ ist die Dehngrenze R P o.2 und die Bruchdehnung A einer AISi7-Basislegierung dargestellt. Der mit „1“ bezeichnete Bereich zeigt der Bereich, in dem die Legierung ein optimales Verhältnis aus Festigkeit und Duktilität aufweist.

In Fig. 2, in der die Fließfähigkeit in Abhängigkeit des Nickelgehalts dargestellt ist, ist erkennbar, dass in dem mit „1“ bezeichneten Bereich auch die Fließfähigkeit der Legierung ein Optimum erreicht.

Fig. 3 zeigt ein Schaubild, in dem die Dehngrenze R P o.2 und die Bruchdehnung A in Abhängigkeit des Titan- und Zirkoniumgehalts für vier unterschiedliche Aluminium-Druckgusslegierungen dargestellt ist. Dabei ist mit „2“ eine Legierung bezeichnet, in der der Titangehalt zu niedrig ist und somit keine Wirkung erzielt werden kann. Die mit „3“ bezeichnete Legierung weist die beste Kombination aus Festigkeit und Duktilität auf und es konnten ausschließlich feine Phasen in dem Gefüge beobachtet werden. Bei der mit „4“ bezeichneten Legierung war der Zirkoniumgehalt zu hoch, weshalb die Duktilität absank. Das Gefüge zeigte sehr grobe Phasen.

Aus dem Schaubild ergibt sich demnach, dass, im Gegensatz zu bekannten Lösungen, bei denen Titan-Gehalte von 0,05 bis 0,10 Gew.-% und höhere Zirkonium-Gehalte von 0,15 bis 0,30 Gew.-% eingesetzt werden, ein Anteil von 0,18 Gew.-% Titan und 0,06 Gew.-% Zirkonium besonders effektiv ist, da hier sowohl Festigkeit und Duktilität ansteigen als auch eine Kornfeinung sichtbar ist. Wird der Zirkonium-Gehalt hingegen zu hoch gewählt, entstehen grobe intermetallische Phase, welche die Duktilität stark einschränken. Ein zu niedriger Titan-Gehalt hingegen lässt keine Kornfeinung im Druckguss zu. Das Verhältnis und die Menge der Legierungsbestandteile Titan und Zirkonium hat demnach Auswirkungen auf die physikalischen Eigenschaften der Aluminium-Druckgusslegierung. Aus dem Schaubild von Fig. 4, in dem der Verlauf der Dehngrenze über die Dauer des Trocknungsschritts eines Lackierprozesses, insbesondere einer Kathodentauchlackierung (KTL), für die Legierung AISi7MnO,4MgO,3NiO,2ZnO,2CuO,1 mit und ohne Vorauslagerung dargestellt ist, ist erkennbar, dass die Aushärtung des Bauteils mit einer Vorauslagerung deutlich beschleunigt stattfindet. Neben einer Kathodentauchlackierung ist innerhalb des Lackierprozesses auch eine Anodentauchlackierung oder ein anderes geeignetes Verfahren denkbar.