Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ANTHRANILIC ACID DERIVATIVES AS ANTICANCER AGENTS AND PROCESS FOR THE PREPARATION THEREOF
Document Type and Number:
WIPO Patent Application WO/2008/114275
Kind Code:
A2
Abstract:
The present invention provides novel anthranilic acid derivative useful as potential anticancer agent. More particularly, the present invention relates novel anthranilic acid derivative of general formula (8), R' = alkyl-2-methoxyphenyl piperazine (or) benzyl, R = 2 mthoxy phenyl, piperazine, 2-pyridyl piperazine, 2-pyrimidyl piperazine, 4-quinazolinyI piperazine, 9H-9-fluorenylamine, 4-{(2{amino-5-(methoxy)-4-[(phenylmethyl)oxy]phenyl} carbonyl)hexahydro-1-pyrazinyl], and [(4[2amino-4-(benzyloxy)-5-methoxybenzoyl] aminophenyI)sulfonyl]-4-benzamine; X = H (or) pyrazine-2-carbonyl. The present invention also provides a process for the preparation of novel anthranilic acid derivative of general formula (8), which is useful as potential anticancer agent.

Inventors:
KAMAL AHMED (IN)
PRASAD BANDARI RAJENDRA (IN)
Application Number:
PCT/IN2008/000143
Publication Date:
September 25, 2008
Filing Date:
March 13, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COUNCIL SCIENT IND RES (IN)
KAMAL AHMED (IN)
PRASAD BANDARI RAJENDRA (IN)
International Classes:
A61K31/517; C07C237/44; A61P35/00; C07C317/40; C07D213/74; C07D239/94; C07D295/192
Domestic Patent References:
WO1998017648A11998-04-30
Other References:
COCCO M T ET AL: "Synthesis of new N-(2-(trifluoromethyl)pyridin-4-yl)anthran ilic acid derivatives and their evaluation as anticancer agents" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 14, no. 23, 6 December 2004 (2004-12-06), pages 5787-5791, XP004611120 ISSN: 0960-894X cited in the application
LABRIE P ET AL: "In vitro activity of novel dual action MDR anthranilamide modulators with inhibitory activity at CYP-450" BIOORGANIC AND MEDICINAL CHEMISTRY 20061201 GB, vol. 14, no. 23, 1 December 2006 (2006-12-01), pages 7972-7987, XP002494604 ISSN: 0968-0896
Attorney, Agent or Firm:
SALHOTRA, Anuradha (Plot N° B-28 Sector-32,Institutional Area,Gurgaon 1, Haryana, IN)
Download PDF:
Claims:

We claim:

1. Novel anthranilic acid derivative of general formula 8, useful as potential anticancer agent

Formula 8 wherein R' is selected from alkyl-2-methoxyphenyl piperazine and benzyl, R is selected from the group consisting of 2-mthoxy phenyl piperazine, 2- pyridyl piperazine, 2-pyrimidyl piperazine, 4-quinazolinyl piperazine, 9H-9- fluorenylamine,4-[(2-{amino-5-(methoxy)-4-[(phenylmethyl)oxy]phenyl} carbonyl)hexahydro-1-pyrazinyl], and [(4[2-amino-4-(benzyloxy)-5- methoxybenzoyl] aminophenyl)sulfonyl]-4-benzamine;

X is selected from H and

2. Novel anthranilic acid derivative according to claim 1 , wherein the representative compounds of anthranilic acid derivative of formula 8 are as follows:

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-methoxyphenyl)piperazino] methanone( 8a);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyridyl)piperazino] methanone (8b);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyrimidinyl)piperazino] methanone (8c);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(4-quinazolinyl)piperazino] methanone (8d); N 1 -(9H-9-fluorenyl)-2-amino-4-(benzyloxy)-5-methoxybenzamide(8e)

(4-(benzyloxy)-5-methoxy-2-(pyrazine-2-carbamido)phenyl)(4-(2- methoxyphenyl) piperazin-1-yl)methanone (Bf);

{2-amino-5-(methyloxy)-4[(phenylmethyl)oxy]phenyl}[4τ({2-amino-5-

(methyloxy)-4-[(phenylmethyl)oxy]phenyl}carbonyl)hexahydro-1- piperazinyl]methanone (8g);

N1-4-[(4-[2-amino-4-(benzyloxy)-5-methoxybenzoyl]aminophenyl)sulfonyl] phenyl-2-amino-4-(benzyloxy)-5-methoxybenzamide(8h);

(2-amino-5-methoxy-4-3-[4-(2-methoxyphenyl)piperazino] propoxyphenyl)

[4-(2-methoxyphenyl)piperazino]methanone (11).

3. Novel anthranilic acid derivative according to claim 1, wherein the structural formula of the representative compounds of anthranilic acid derivative of general formula 8 are as follows:

4. Novel anthranilic acid derivatives according to claim 1 has the following characteristics: Thermal denaturation data of Anthranilic acid with calf thymus (CT) DNA

[ANCD/DNA] δT m ( °C) a after incubation

Compounds molar ratio 5 at 37 0 C for

O h 18 h 36h

8a 1 :5 1.2 1.7 2.2

8b 1 :5 1.5 2.1 2.6

8c 1 :5 1.4 1.6 2.3

8d 1 :5 1.5 1.9 2.7

8e 1 :5 1.9 2.3 2.8

8f 1:5 1.3 2.1 3.0

8g 1 :5 1.6 2.6 2.9

9a 1 :5 1.5 2.3 2.4

11 1 :5 1.4 2.1 2.1

DC-81 1 :5 0.3 0.7 a For CT-DNA alone at pH 7.00 ± 0.01 , T m = 69.6 X ± 0.01 (mean value from 10 separate determinations), all δT m values are ± 0.1 - 0.2 0 C. b For a 1 :5 molar ratio of [Iigand]/[DNA], where CT-DNA concentration = 100 μM and ligand concentration = 20 μM in aqueous sodium phosphate buffer [10 mM sodium phosphate + 1 mM EDTA, pH 7.00 ± 0.01]. ANCD = Anthranilic acid derivative.

5. Novel anthranilic acid derivatives according to claim 1 exhibits in vitro anticancer activity against human cell lines.

6. Novel anthranilic acid derivatives according to claim 5, wherein the human cancer lines used are derived from the cancer type selected from the group consisting of colon, leukemia, prostate, ovarian, oral, lung, cervix,

CNS, melanoma and breast cancer.

7. Novel anthranilic acid derivative according to claim 1, wherein the compounds 8a to 8e exhibits log 10 GI50 (50% cell growth inhibition) mean graphs mid point against human tumour cell lines in the range of -5.0 to - 7.0.

8. Novel anthranilic acid derivative according to claim 1, wherein the compounds 8a to 8e exhibits logioTGI (total cell growth inhibition) mean graphs mid point against human tumour cell lines in the range of -5.0 to - 6.5. 9. Novel anthranilic acid derivative according to claim 1 , wherein the compounds 8a to 8e exhibits log 10 LC50 (50% cell death) mean graphs mid point against human tumour cell lines in the range of -4.0 to -5.0.

10. Novel anthranilic acid derivative according to claim 1 , wherein the compounds 8a to 8e exhibits logi 0 GI50 (mol/L causing 50% growth inhibition) against human tumour cell lines in the range of -5.0 to -8.0.

11. A process for the preparation of novel anthranilic acid derivative of general formula 8, useful as potential anticancer agent

wherein R' is selected from alkyl-2 methoxyphenyl piperazine and benzyl, R is selected from the group consisting of 2 methoxy phenyl piperazine, 2- pyridyl piperazine, 2-pyrimidyl piperazine, 4-quinazolinyl piperazine, 9H-9- fluorenylamine,4-[(2{amino-5-(methoxy)-4-[(phenylmethyl)oxy]phenyl} carbonyl)hexahydro-1-pyrazinyl], and [(4[2amino-4-(benzyloxy)-5- methoxybenzoyl] aminophenyl)sulfonyl]-4-benzamine;

X is selected from H and and the said process comprising the steps of: a) preparing the compound 4-benzoyloxy-5-methoxy-2-nitro benzoic acid of formula 6 from the compound of formula 1 by known method;

b) adding dimethylfoimamide (DMF) to a suspension of 4- benzyloxy-5-methoxy-2-nitro benzoic acid and thionyl chloride in dry benzene, under stirring, for a period of 5-7 hrs, followed by the evaporation of benzene , under vacuum, and redissolving the resultant oil in dry THF, c) adding the above said resultant oil in dry THF obtained in step (b) to a suspension of triethyl amine and a reagent selected from the group consisting of 2 methoxy phenyl piperazine, 2-pyridyl piperazine, 2-pyrimidyl piperazine, 4-quinazolinyl piperazine, 9H-

9-fluorenylamine, 4-[(4-aminophenyl)sulfonyl]aniline and piperazine, over a period of 1-2hrs, followed by the evaporation of THF, under vacuum, and washing the aqueous layer with ethyl acetate, adjusting the pH of the aqueous phase at 3 with HCI and extracting it with ethyl acetate, followed by washing with brine and drying to obtain the resultant compounds 7a-e and 7g-h, d) reducing the above said compounds 7a-e obtained in step ( c) with SnCb in methanol, followed by evaporation of methanol , under vacuum, and adjusting the pH of the aqueous layer at 8-8.5 with NaHCOβ solution and extracting it with ethyl acetate, drying the combined organic phase, followed by evaporation, under vacuum, to obtain the desired corresponding anthranilic acid derivatives of formula 8a-e and 8g-h,

e) adding DMF to a suspension of pyrazine-2-carboxylic acid and thionyl chloride in dry benzene, under stirring, for 5-6 hrs, followed" by the evaporation of benzene, dissolving the resultant oil in dry THF and adding it drop wise to a suspension of triethylamine and [2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-methoxyphenyl) piperazino] methanone (8a) obtained in step (d), evaporating THF after completion of the reaction and washing the aqueous layer with ethyl acetate and adjusting the pH at 3-3.5 with HCI, followed by extraction with ethyl acetate, washing and drying by -known method, followed by evaporation to obtain the desired anthranilic acid derivative of formula 8f, f) adding TFA to a suspension of [4-(benzyloxy)-5-methoxy-2- nitrophenyl][4-(2-methoxyphenyl)piperazino]methanone (7a) obtained in step (d), under stirring, and refluxing for a period of 7- 9 hrs, followed by evaporation and adjusting the pH of the resultant oil at 8-8.5 with NaHCO 3 solution and extracting it with ethyl acetate, drying the combined organic phase, followed by evaporation, under vacuum, to obtain the compound [4-(hydroxyl- 5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl)piperazino] methanone of formula 8', g) reacting the compound [4-(hydroxyl-5-methoxy-2-nitrophenyl][4- (2-methoxyphenyl)piperazino] methanone of formula 8' obtained in step (f) with 1 ,3-dibromo propane and K 2 CO 3 in acetone, under stirring, for a period of 20-30 hrs, followed by evaporation of acetone, washing and extracting with ethyl acetate, followed by drying and evaporation to obtain the compound [4-(3-bromo propyloxy)-5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl) piperazino] methanone (9), h) reacting the compound [4-(3-bromo propyloxy)-5-methoxy-2- nitrophenyl][4-(2-methoxyphenyl) piperazino] methanone of formula 9 obtained in step (g) with 1 -(2-methoxyphenyl) piperazine in acetone, under stirring, for 15-17 hrs, followed by evaporation of acetone, washing and extracting with ethyl acetate,

followed by drying and evaporation to obtain the compound (5- methoxy-4-3-[4-(2-methoxyphenyl) piperazino]propoxy-2- nitrophenyl)[4-(2-methoxyphenyl)piperazino]methanone (10), i) reducing the above said compound 10 obtained in step (h) with SnCb in methanol, followed by evaporation of methanol , under vacuum, and adjusting the pH of the aqueous layer at 8-8.5 with NaHCθ 3 solution and extracting it with ethyl acetate, drying the combined organic phase, followed by evaporation, under vacuum, to obtain the desired corresponding anthranilic acid derivative (11) 12. A process according to claim 11 , wherein the compound 7 obtained in step (d) are as follows:

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl) piperazino] methanone (7a);

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-pyridyl)piperazino]methano ne (7b);

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-pyrimidinyl)piperazino] methanone (7c);

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(4-quinazolinyl)piperazino] methanone (7d); N1-(9H-9-fluorenyl)^4-(benzyloxy)-5-methoxy-2-nitrobenzamide (7e);

N1-4-[(4-[4-(benzyloxy)-5-methoxy-2-nitrobenzoyl]aminophenyl)sulfonyl] phenyl-4-(benzyloxy)-5-methoxy-2-nitrobenzamide (7g); {5-(methyloxy)-2-nitro-4-[(phenylmethyl)oxy]phenyl}[4-({5-(methyloxy)-2- nitro-4-[(phenylmethyl)oxy]phenyl}carbonyl)hexahydro-1-pyrazinyl] methanone (7h).

13. A process according to claim 11, wherein the representative compounds of anthranilic acid derivative of formula 8 are as follows: [2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-methoxyphenyl)piperazino] methanone( 8a); [2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyridyl)piperazino] methanone (8b);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyrimidinyl)piperazino] methanone (8c);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(4-quinazolinyl)piperazino] methanone (8d);

N 1 -(9H-9-fluorenyl)-2-amino-4-(benzyloxy)-5-methoxybenzamide(8e)

(4-(benzyloxy)-5-methoxy-2-(pyrazine-2-carbamido)phenyl)(4-(2- methoxyphenyl) piperazin-1-yl)methanone (8f);

{2-amino-5-(methyloxy)-4[(phenylmethyl)oxy]phenyl}[4-({2-amino-5-

(methyloxy)-4-[(phenylmethyl)oxy]phenyl}carbonyl)hexahydro-1- piperazinyl]methanone (8g);

N1-4-[(4-[2-amino-4-(benzyloxy)-5-methoxybenzoyl]aminophenyl)sulfonyl] phenyl-2-amino-4-(benzyloxy)-5-methoxybenzamide(8h);

(2-amino-5-methoxy-4-3-[4-(2-methoxyphenyl)piperazino] propoxyphenyl)

[4-(2-methoxyphenyl)piperazino]methanone (11 ). 14. A process according to claims 11 and 13, wherein the general structural formula of the representative compounds of anthranilic acid derivative of general formula 8 are as follows:

Description:

"NOVEL ANTHRANILIC ACID DERIVATIVE AS POTENTIAL ANTICANCER

AGENT AND A PROCESS FOR THE PREPARATION THEREOF-

FIELD OF THE INVENTION

The present invention relates to novel anthranilic acid derivative useful as potential anticancer agent. More particularly, the present invention relates novel anthranilic acid derivative of general formula 8

R' = alkyl-2 methoxyphenyl piperazine (or) benzyl,

R = 2 mthoxy phenyl piperazine, 2-pyridyl piperazine, 2-pyrimidyl piperazine, 4-quinazolinyl piperazine, 9H-9-fluorenylamine, 4-[(2{amino-5-(methoxy)-4- [(phenylmethyl)oxy]phenyl} cartonyl)hexahydro-1 -pyrazinyl], and [(4[2amino-4- (benzyloxy)-5-methoxybenzoyl] aminophenyl)sulfonyl]-4-benzamine; X = H (or) pyrazine-2-carbonyl

The present invention also relates to a process for the preparation of novel anthranilic acid derivative of general formula 8, which is useful as potential anticancer agent.

BACKGROUND OF THE INVENTION

An efficient synthesis of new anthranilic acid derivatives led us to identify a series of potential anticancer agents. The in vitro anticancer screening performed by the NCI reveals that some esters of λ/-(2-(trifluoromethyl) pyridin-4- yl)anthranilic acid demonstrated interesting inhibitory properties against a wide array of human tumour cell lines. In particular, compounds 8a, 8b, 8c, 8d and 8e exhibited antiproliferative activity in nanomolar to low micromolar concentrations against most of the tested cell lines. On the basis of observed biological activities and compare analysis, putative cox-dependent/independent mechanisms responsible for antitumour activity were proposed.

Among the wide variety of synthetic compounds recognized as potential anticancer drugs, molecules based on the anthranilic acid scaffold have attracted great interest in recent years. Experimental and preclinical models demonstrated that a number of these compounds elicited outstanding anticancer activity through a range of biological activities implicated with the development and

maintenance of tumour cells. In this context, several reports describing the antitumour evaluation of anthranilate derivatives appeared in the recent literature. For example, Tranilast (Figure 1) has been reported to exhibit antiproliferative activity against cultured leiomyoma cells, through the oppression of cyclin-dependent kinase (CDK) 2 activity. Yashiro et al. have described that Tranilast decreases the production of matrix metallo-proteinase-2 (MMP-2) and transforms the growth factor-a1 (TGF-a1) from fibroblasts, resulting in significant suppression of the invasion ability of gastric cancer cells. Famesyl anthranilate has been shown to reveal tumour growth-suppressive action in experimental murine melanomas models, as a probable consequence of down regulation of 3- hydroxyτ3-methylglutaryl coenzyme A (HMG CoA) reductase activity. Antitumour activity of the anthranilamide CM 040 has been demonstrated in preclinical models, particularly for pancreas, colon, and breast cancers. The CM 040 activity has been correlated with its inhibition of mitogen-activated protein kinase (MAPk) cascade pathway. Moreover, the anthranilamide AAL993 has been described as a lead compound. (Cocco MT, Congiu C, Lilliu V Onnis V, Bioorg Med Chem Lett, 2004, 23, 5787-5791, Cenzo Congiu, Maria Teresa Cocco, Lilliu V 1 Onnis V 1 J. Med. Chem. 2005, 48, 8245-8252)

However, the clinical efficacy for these anticancer agents is hindered by several limitations, such as poor water solubility, cardio toxicity, development of drug resistance and metabolic inactivation

Traπιlast Famesyl anthranilate

AN -iii

OBJECTIVES OF THE INVENTION

The main objective of the present invention is to provide novel anthranilic acid derivatives useful as antitumour agents. Another object of the present invention is to provide a process for the preparation of novel anthranilic acid derivatives.

SUMMARY OF THE INVENTION

Accordingly the present invention provides novel anthranilic acid derivative of general formula 8, useful as potential anticancer agent

Formula 8 wherein R' is selected from alkyl-2-methoxyphenyl piperazine and benzyl, R is selected from the group consisting of 2-mthoxy phenyl piperazine, 2- pyridyl piperazine, 2-pyrimidyl piperazine, 4-quinazolinyl piperazine, 9H-9- fluorenylamine,4-[(2-{amino-5-(methoxy)-4-[(phenylmethyl)oxy ]phenyl} carbonyl)hexahydro-1-pyrazinyl], and [(4[2-amino-4-(benzyloxy)-5- methoxybenzoyl] aminophenyl)sulfonyl]-4-benzamine;

X is selected from H and In an embodiment of the present invention the representative compounds of anthranilic acid derivative of formula 8 are as follows:

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-methoxypheny l)piperazino] methanone( 8a);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyridyl)pipe razino] methanone (8b);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyrimidinyl) piperazino] methanone (8c);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(4-quinazolinyl )piperazino] methanone (8d);

N1-(9H-9-fluorenyl)-2-amino-4-(benzyloxy)-5-methoxybenzam ide(8e) (4-(benzyloxy)-5-methoxy-2-(pyrazine-2-carbamido)phenyl)(4-( 2- methoxyphenyl) piperazin-1-yl)methanone (8f); {2-amino-5-(methyloxy)-4[(phenylmethyl)oxy]phenyl}[4-({2-ami no-5- (methyloxy)-4-[(phenylmethyl)oxy]phenyl}carbonyl)hexahydro-1 - piperazinyl]methanone (8g);

N1-4-[(4-[2-amino-4-(benzyloxy)-5-methoxybenzoyl]aminophe nyl)sulfonyl] phenyl-2-amino-4-(benzyloxy)-5-methoxybenzamide(8h); (2-amino-5-methoxy-4-3-[4-(2-methoxyphenyl)piperazino] propoxyphenyl) [4-(2-methoxyphenyl)piperazino]methanone (11).

In yet another embodiment the structural formula of the representative compounds of anthranilic acid derivative of general formula 8 are as follows:

In yet another embodiment the novel anthranilic acid derivatives have the following characteristics:-

Thermal denaturation data of Anthranilic acid with calf thymus (CT) DNA

[ANCD/DNA] δT m (° C) a after incubation

Compounds molar ratio" at 37 0 C for

Oh 18h 36h

8a 1:5 1.2 1.7 2.2

8b 1:5 1.5 2.1 2.6

8c 1:5 1.4 1.6 2.3

1:5 1.5 1.9 2.7

8e 1:5 1.9 2.3 2.8

8f 1:5 1.3 2.1 3.0

8g 1:5 1.6 2.6 2.9

9a 1:5 1.5 2.3 2.4

11 1:5 1.4 2.1 2.1

DC-81 1:5 0.3 0.7

a For CT-DNA alone at pH 7.00. ± 0.01 , T m = 69.6 0 C ± 0.01 (mean value from 10 separate determinations), all δ7 " m values are ± 0.1 - 0.2 0 C. b For a 1 :5 molar ratio of [Iigand]/[DNA], where CT-DNA concentration = 100 μM and ligand concentration = 20 μM in aqueous sodium phosphate buffer [10 mM sodium phosphate + 1 mM EDTA, pH 7.00 ± 0.01]. ANCD

= Anthranilic acid derivative

In yet another embodiment the novel anthranilic acid derivatives exhibits in vitro anticancer activity against human cell lines.

In yet another embodiment the human cancer lines used are derived from the cancer type selected from the group consisting of colon, leukemia, prostate, ovarian, oral, lung, cervix, CNS, melanoma and breast cancer.

In yet another embodiment the compounds 8a to 8e exhibits logi 0 GI50 (50% cell growth inhibition) mean graphs mid point against human tumour cell lines in the range of -5.0 to -7.0. In yet another embodiment the compounds 8a to 8e exhibits logioTGI

(total cell growth inhibition) mean graphs mid point against human tumour cell lines in the range of -5.0 to -6.5.

In yet another embodiment the compounds 8a to 8e exhibits logi 0 LC50 (50% cell death) mean graphs mid point against human tumour cell lines in the range of -4.0 to -5.0.

In yet another embodiment the compounds 8a to 8e exhibits logi 0 GI50 (mol/L causing 50% growth inhibition) against human tumour cell lines in the range of -5.0 to -8.0.

The present invention further provides a process for the preparation of - novel anthranilic acid derivative of general formula 8, useful as potential anticancer agent

wherein R' is selected from alkyl-2 methoxyphenyl piperazine and benzyl, R is selected from the group consisting of 2 methoxy phenyl piperazine, 2- pyridyl piperazine, 2-pyrimidyl piperazine, 4-quinazolinyl piperazine, 9H-9-

fluorenylamine,4-[(2{amino-5-(methoxy)-4-[(phenylmethyl)o xy]phenyl} carbonyl)hexahydro-1-pyrazinyl], and [(4[2amino-4-(benzyloxy)-5- methoxybenzoyl] aminophenyl)sulfonyl]-4-benzamine;

X is selected from H and and the said process comprising the steps of: a) preparing the compound 4-benzoyloxy-5-methoxy-2-nitro benzoic acid of formula 6 from the compound of formula 1 by known method;

b) adding dimethylformamide (DMF) to a suspension of 4- benzyloxy-5-methoxy-2-nitro benzoic acid and thionyl chloride in dry benzene, under stirring, for a period of 5-7 hrs, followed by the evaporation of benzene , under vacuum, and redissolving the resultant oil in dry THF, c) adding the above said resultant oil in dry THF obtained in step

(b) to a suspension of triethyl amine and a reagent selected from the group consisting of 2 methoxy phenyl piperazine, 2-pyridyl piperazine, 2-pyrimidyl piperazine, 4-quinazolinyl piperazine, 9H- 9-fluorenylamine, 4-[(4-aminophenyl)sulfonyl]aniline and piperazine, over a period of 1-2hrs, followed by the evaporation of

THF 1 under vacuum, and washing the aqueous layer with ethyl acetate, adjusting the pH of the aqueous phase at 3 with HCI and extracting it with ethyl acetate, followed by washing with brine and drying to obtain the resultant compounds 7a-e and 7g-h, d) reducing the above said compounds 7a-e obtained in step ( c) with SnCI 2 in methanol, followed by evaporation of methanol , under vacuum, and adjusting the pH of the aqueous layer at 8-8.5 with NaHCO 3 solution and extracting it with ethyl acetate, drying the combined organic phase, followed by evaporation, under

vacuum, to obtain the desired corresponding anthranilic acid derivatives of formula 8a-e and 8g-h, e) adding DMF to a suspension of pyrazine-2-carboxylic acid and thionyl chloride in dry benzene, under stirring, for 5-6 hrs, followed by the evaporation of benzene, dissolving the resultant oil in dry

THF and adding it drop wise to a suspension of triethylamine and [2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-methoxyphenyl) piperazino] methanone (8a) obtained in step (d), evaporating THF after completion of the reaction and washing the aqueous layer with ethyl acetate and adjusting the pH at 3-3.5 with HCI, followed by extraction with ethyl acetate, washing and drying by known method, followed by evaporation to obtain the desired anthranilic acid derivative of formula 8f, f) adding TFA to a suspension of [4-(benzyloxy)-5-methoxy-2- nitrophenyl][4-(2-methoxyphenyl)piperazino]methanone (7a) obtained in step (d), under stirring, and refluxing for a period of 7- 9 hrs, followed by evaporation and adjusting the pH of the resultant oil at 8-8.5 with NaHCO 3 solution and extracting it with ethyl acetate, drying the combined organic phase, followed by evaporation, under vacuum, to obtain the compound [4-(hydroxyl-

5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl)piperazino] methanone of formula 8', g) reacting the compound [4-(hydroxyl-5-methoxy-2-nitrophenyl][4- (2-methoxyphenyl)piperazino] methanone of formula 8' obtained in step (f) with 1,3-dibromo propane and K 2 CO 3 in acetone, under stirring, for a period of 20-30 hrs, followed by evaporation of acetone, washing and extracting with ethyl acetate, followed by drying and evaporation to obtain the compound [4-(3-bromo propyloxy)-5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl) piperazino] methanone (9), h) reacting the compound [4-(3-bromo propyloxy)-5-methoxy-2- ^ nitrophenyl][4-(2-methoxyphenyl) piperazino] methanone of formula 9 obtained in step (g) with 1-(2-methoxyphenyl)

piperazine in acetone, under stirring, for 15-17 hrs, followed by evaporation of acetone, washing and extracting with ethyl acetate, followed by drying and evaporation to obtain the compound (5- methoxy-4-3-[4-(2-methoxyphenyl) piperazino]propoxy-2- nitrophenyl)[4-(2-methoxyphenyl)piperazino]methanone (10), i) reducing the above said compound 10 obtained in step (h) with SnCb in methanol, followed by evaporation of methanol , under vacuum, and adjusting the pH of the aqueous layer at 8-8.5 with NaHCθ 3 solution and extracting it with ethyl acetate, drying the combined organic phase, followed by evaporation, under vacuum, to obtain the desired corresponding anthranilic acid derivative (11) In yet another embodiment the compound 7 obtained in step (d) are as follows:

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-methoxypheny l) piperazino] methanone (7a);

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-pyridyl)pipe razino]methano ne (7b);

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-pyrimidinyl) piperazino] methanone (7c); [4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(4-quinazolinyl)pi perazino] methanone (7d);

N 1 -(9H-9-fluorenyl)-4-(benzyloxy)-5-methoxy-2-nitrobenzamide (7e); N1-4-[(4-[4-(benzyloxy)-5-methoxy-2-nitrobenzoyl]aminophenyl )sulfonyl] phenyl-4-(benzyloxy)-5-methoxy-2-nitrobenzamide (7g); {5-(methyloxy)-2-nitro-4-[(phenylmethyl)oxy]phenyl}[4-({5-(m ethyloxy)-2- nitro-4-[(phenylmethyl)oxy]phenyl}carbonyl)hexahydro-1-pyraz inyl] methanone (7h).

In yet another embodiment the representative compounds of anthranilic acid derivative of formula 8 are as follows: [2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-methoxyphenyl)p iperazino] methanone( 8a);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyridyl)pipe razino] methanone (8b);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyrimidinyl) piperazino] methanone (8c);

[2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(4-quinazolinyl )piperazino] methanone (8d); N 1 -(9H-9-fluorenyl)-2-amino-4-(benzyloxy)-5-methoxybenzamide(8 e)

(4-(benzyloxy)-5-methoxy-2-(pyrazine-2-carbamido)phenyl)( 4-(2- methoxyphenyl) piperazin-1-yl)methanone (8f);

{2-amino-5-(methyloxy)-4[(phenylmethyl)oxy]phenyl}[4-({2- amino-5-

(methyloxy)-4-[(phenylmethyl)oxy]phenyl}carbonyl)hexahydr o-1- piperazinyl]methanone (8g);

N1-4-[(4-[2-amino-4-(benzyloxy)-5-methoxybenzoyl]aminophe nyl)sulfonyl] phenyl-2-amino-4-(benzyloxy)-5-methoxybenzamide(8h);

(2-amino-5-methoxy-4-3-[4-(2-methoxyphenyl)piperazino] propoxyphenyl)

[4-(2-methoxyphenyl)piperazino]methanone (11 ).

DETAIL DESCRIPTION OF THE INVENTION

These new analogues of anthranilic acid hybrids linked at secondary amine position have shown promising DNA binding activity and efficient anticancer activity in various cell lines. The molecules synthesized are of immense biological significance with potential sequence selective DNA-binding property. This resulted in design and synthesis of new congeners as illustrated in Scheme-1 , which comprise:

1. The ether linkage at C-8 position of anthranilic acid intermediates with [2- (n-bromoalkyl)-5-chloropheny](phenyl) methanone moiety.

2. The amide linkage at acid position of anthranilic acid intermediates.

3. Refluxing the reaction mixtures for 16 h.

4. Synthesis of novel anthranilic acid hybrids anticancer agents.

5. Purification by column chromatography using different solvents like ethyl acetate, hexane, dichloromethane and methanol.

Scheme 1

min 8b)2-pyridyl piperazine, 9H-9-fluorenylamine, R 2 = pyraane-2-cortonyl,

SnQ 4 -HNO 3 , CH 2 CI 2 , -25 oC. 5 mm, 88% d) 1M L-pπHine methyester hydrochloride, Et3N H 2 O. O EtSH-TMSα, CH 2 α 2 , rt. 16 h, 85% h) N-methyl MeOH. reflux, 40 min. 75 % j) HgCt^CaCO 3 ,

Scheme 2

(i) piperazine.THF, rt (H) -4 -[ (4-aminophenyl)sulfbnyl]aniline,THF,rt (iii) SnCI 2 .2H 2 O, MeOH.Reflux (iv) SnCI 2 .2H 2 O, MeOH.Reflux

The following examples are given by way of illustration and therefore should not be construed to the present limit of the scope of invention.

Example 1 [4-(Benzyloxy)-5-methoxy-2-nitrophenyi][4-(2-methoxyphenyl) piperazino] methanone (7a)

DMF was added to a stirred suspension of 4- benzoyloxy-5-methoxy -2-nitro benzoic acid (6) (0.500mg, 1.65mmol) and thionyl chloride (3 ml) in dry benzene (30 ml) and Jhe stirring was continued for 6h. The benzene was evaporated in vacuum and the resultant oil dissolved in dry THF (50 ml) and added drop wise over a period of 1h to a stirred suspension of 1-(2-methoxyphenyl) piperazine (316mg 15.6mmol) triethyl amine (5ml,). After the completion of addition, the reaction mixture was brought to ambient temperature and stirred for an additional hour. The THF was evaporated in vacuum and the aqueous layer was washed with ethyl acetate. The aqueous phase was then adjusted to pH 3 using 6 N HCI and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product of 2-amino-4- benzyloxy)-5-methoxyphenyl][4-(2-methoxyphenyl) piperazino] methanone (7a) in 93% yield (670 mg, 85 % yield). 1 H NMR (CDCl 3 ) δ 3.20- 3.30 (m, 4H), 3.40-3.55 (m, 4H), 3.85 (S, 3H), 3.95 (s, 3H), 5.20 (s, 2H), 6.80-7.00 (m, 5H), 7.30-7.50 (m, 5H), 7.70 (s, IH); FABMS: 477 (M+H).

Example 2

[2-Amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-methoxypheny l) piperazino] methanone (8a)

[4-(Benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl)p iperazino] methanone (7a) (500 mg, 1.04 mmol) was dissolved in methanol (10 mL), SnCI 2 .2H 2 O (706 mg, 3.14 mmol) was added and refluxed until the TLC indicated the completion of the reaction. The methanol was evaporated by vacuum and the aqueous layer was then adjusted to pH 8 with 10% NaHCU 3 solution and extracted with ethyl acetate (2x30 mL). The combined organic phase was dried over Na 2 SO 4 and evaporated under vacuum to afford the crude.

This was further purified by column chromatography using ethyl acetate: hexane - (6:4) as a solvent system to obtain the pure product (8a) (425 mg, 91% yield). 1H NMR (CDCl 3 ) δ 3.20- 3.30 (m, 4H), 3.45-3.55 (m, 4H), 3.85 (s, 3H), 3.98 (s, 3H), 5.20 (s, 2H) 5 6.19 (s, broad NH 2 ) 6.80-7.00 (m, 5H), 7.30-7.50 (m, 5H), 7.70 (s, IH); FABMS: 447 (M+H).

Example 3 [4-(Benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-pyridyl)piperaz ino]methanone (7b)

DMF was added to a stirred suspension of 4- benzoyloxy-5-methoxy -2-nitro benzoic acid (6) (0.500mg, 1.65 mmol) and thionyl chloride (3 ml) in dry benzene (30 ml) and the stirring was continued for 6h. The benzene was evaporated in vacuum and the resultant oil dissolved in dry THF (50 ml) and added dropwise over a period of 1 h to a stirred suspension of (2-pyridyl) piperazine (268mg 1.65 mmol) triethyl amine (5ml). After the completion of addition, the reaction mixture was brought to ambient temperature and stirred for an additional hour. The THF was evaporated in vacuum and the aqueous layer was washed with ethyl acetate. The aqueous phase was then adjusted to pH 3 using 6 N HCI and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product [4-(benzyloxy)-5-methoxy-2- nitrophenyl][4-(2-pyridyl) piperazino] methanone (7b) (610 mg, in 82% yield). 1H NMR (CDCl 3 ) δ 3.10- 3.25 (m, 4H), 3.65-3.80 (m, 4H), 3.95 (s, 3H), 5.20 (s, 2H), 7.00-7.50 (m, 5H), 7.70 (s, IH), 8.25-8.35 (d, J=9.05,2H); FABMS: 448 (M+H).

Example 4 [2-Amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyridyl)piperaz ino]methanone (8b);

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-pyridyl)piperaz ino]methanone (7b) (500 mg, 1.11 mmol) was dissolved in methanol (10 mL), SnCI 2 .2H 2 O (753 mg, 3.3 mmol) was added and refluxed until the TLC indicated the completion of the reaction. The methanol was evaporated by vacuum and the aqueous layer was then adjusted to pH 8 with 10% NaHCO 3 solution and extracted with ethyl acetate (2x30 mL). The combined organic phase was dried over Na 2 SO 4 and evaporated under vacuum to afford the crude (450 mg, 95% yield), This was

further purified by column chromatography using ethyl acetate: hexane {6:4) as a solvent system to obtain the pure product 8b (650 mg, in 94% yield). 1 H NMR (CDCl 3 ) δ 3.15- 3.30 (m, 4H), 3.70-3.80 (m, 4H), 3.95 (s, 3H), 5.20 (s, 2H), 6.20 (s, br,) 7.00-7.50 (m, 5H), 7.70 (s, IH), 8.25-8.35 (d, J=9.05, 2H); FABMS: 418 (M+H).

Example 5

[4~(Benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-pyrimidinyl)pip erazino]methanone (7c) DMF was added to a stirred suspension of 4- benzoyloxy-5-methoxy -2-nitro benzoic acid (6) (0.500mg, 1.65 mmol) and thionyl chloride (3 ml) in dry benzene (30 ml) and the stirring was continued for 6h. The benzene was evaporated in vacuum and the resultant oil dissolved in dry THF (50 ml) and added dropwise over a period of 1h to a stirred suspension of 1-(2-pyrimidinylpyperazine) piperazine (270mg 1.65 mmol) triethyl amine (5ml,). After the completion of addition, the reaction mixture was brought to ambient temperature and stirred for an additional hour. The THF was evaporated in vacuum and the aqueous layer was washed with ethyl acetate. The aqueous phase was then adjusted to pH 3 using 6 N HCI and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product of (7c), (635 mg, in 85% yield).

1 H NMR (CDCl 3 ) δ 3.10- 3.25 (m, 4H), 3.60-3.80 (m, 4H), 3.95 (s, 3H), 5.20 (s, 2H), 6.55-6.55, (t, IH) 6.75 (s, IH), 7.30-7.60 (m, 5H), 7.80 (s, IH); FABMS: 449 (M+H).

Example 6 [2-Amino-4-(benzyloxy)-5-methoxyphenyl][4-(2-pyrimidinyl) piperazino] methanone (8c)

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(2-pyrimidinyl)pip erazino]methanone (7c) (500 mg, 1.11 mmol) was dissolved in methanol (10 ml_), SnCI 2 .2H 2 O (751 mg, 3.3 mmol) was added and refluxed until the TLC indicated the completion of the reaction. The, methanol was evaporated by vacuum and the aqueous layer was then adjusted to pH 8 with 10% NaHCO 3 solution and extracted with ethyl acetate (2x30 ml_). The combined organic phase was dried over Na 2 SO 4 and evaporated under vacuum to afford the crude This was further purified by column

chromatography using ethyl acetate: hexane (6:4) as a solvent system to obtain the pure product (8c) (420 mg, 90% yield)/

1 H NMR (CDCl 3 ) δ 3.10- 3.25 (m, 4H), 3.60-3.80 (m, 4H), 3.95 (s, 3H), 5.20 (s, 2H), 6.20 (s, br), 6.45-6.55 (t, IH) 6.75 (s, IH), 7.30-7.55 (m, 5H), 7.80 (s, IH); FABMS: 419 (M+H).

Example 7

[4-(Benzyloxy)-5-methoxy-2-nitrophenyl][4-(4-quinazolinyl) piperazinoj methanone (Td) DMF was added to a stirred suspension of 4- benzoyloxy-5-methoxy -2-nitro benzoic acid (6)(0.500mg, 1.65 mmol) and thionyl chloride (3 ml) in dry benzene (30 ml) and the stirring was continued for 6h. The benzene was evaporated in vacuum and the resultant oil dissolved in dry THF (50 ml) and added dropwise over a period of 1h to a stirred suspension of (4-quinazolinyl) piperazine (350mg, 1.65 mmol) triethyl amine (5ml,). After the completion of addition, the reaction mixture was brought to ambient temperature and stirred for an additional hour. The THF was evaporated in vacuum and the aqueous layer was washed with ethyl acetate. The aqueous phase was then adjusted to pH 3 using 6 N HCI and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product of (7d), (700mg in 84% yield).

1 H NMR (CDCl 3 ) δ 3.15- 3.30 (m, 4H), 3.65-3.75 (m, 4H), 3.95 (s, 3H), 5.20 (s, 2H), 6.45-6.55 (t, IH) 6.70 (s, IH), 7.30-7.50 (m, 5H), 7.55-7.65 (t, IH), 7.65 (s, IH), 7.70- 7.90(m, 2H), 7.85-7.95 (m, 2H); FABMS: 500 (M+H).

Example 8

[2-Amino-4-(benzyloxy)-5-methoxyphenyl][4-(4-quinazolinyl )piperazino] methanone (8d)

[4-(benzyloxy)-5-methoxy-2-nitrophenyl][4-(4-quinazolinyl)pi perazino]methanone (600 mg, 1.2 mmol) was dissolved in methanol (10 ml_), SnCI 2 .2H 2 O (810 mg, 3.6 mmol) was added and refluxed until the TLC indicated the completion of the reaction. The methanol was evaporated by vacuum and the aqueous layer was then adjusted to pH 8 with 10% NaHCO 3 solution and extracted with ethyl acetate (2x30 mL). The combined organic phase was dried over Na 2 SO 4 and

evaporated under vacuum to afford the crude . (450 mg, 95% yield),. This was , - further purified by column chromatography using ethyl acetate: hexane (6:4) as a solvent system to obtain the pure product (8d) (672 mg, 80% yield). 1H NMR (CDCl 3 ) δ 3.20- 3.30 (m, 4H), 3.65-3.75 (m, 4H), 3.95 (s, 3H), 5.20 (s, 2H), 6.20 (s, broad NH 2 ), 6.45-6.55, (t, IH) 6.70 (s, IH), 7.30-7.50 (m, 5H), 7.55-7.65 (t, IH), 7 ; 65 (s, IH), 7.70-7.90, (m, 2H), 7.85-7.95, (m, 2H); FABMS: 470 (M+H).

Example 9

N1-(9H-9-FluorBnyl)-4-(benzyloxy)-5-methoxy-2-nitrobenzam ide { 7e) [DMF was added to a stirred suspension of 4- benzoyloxy-5-methoxy -2-nitro benzoic acid (6)(0:500mg, 1.65 mmol) and thionyl chloride (3 ml) in dry benzene

(30 ml) and the stirring was continued for 6h. The benzene was evaporated in vacuum and the resultant oil dissolved in dry THF (50 ml) and added dropwise over a period of 1h to a stirred suspension of 9H-9-fluorenamine (326,15.6mmol) triethylamine (5ml,). After the completion of addition, the reaction mixture was brought to ambient temperature and stirred for an additional hour. The THF was evaporated in vacuum and the aqueous layer was washed with ethyl acetate.

The aqueous phase was then adjusted to pH 3 using 6 N HCI and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product of (7e) (620 mg in 80% yield).

1 H NMR (CDCl 3 ) δ 3.95 (s, 3H), 5.20 (s, 2H), 5.70 (s, IH), 6.70 (s, IH), 7.00-7.41 (m, 5H), 7.45-7.706 (m, 9H); FABMS: 466 (M+H)

Example 10 N1-(9H-9-FluorenyO-2-amino-4-(benzyloxy)-5-methoxybenzamide (Se)

λ/1-(9H-9-fluorenyl)-4-(benzyloxy)-5-methoxy-2-nitrobenzami de of formula (7e) (500 mg, 1.07 mmol) was dissolved in methanol (10 ml_), SnCI 2 .2H 2 O (839 mg, 3.2mmol) was added and refluxed until the TLC indicated the completion of the reaction. The methanol was evaporated by vacuum and the aqueous layer was then adjusted to pH 8 with 10% NaHCO 3 solution and extracted with ethyl acetate (2x30 ml_). The combined organic phase was dried over Na 2 SO 4 and evaporated under vacuum to afford the crude N1τ(9H-9-fluorenyl)-2-amino-4- (benzyloxy)-5-methoxybenzamide (450 mg, 95% yield). This was further purified

by.λColumn chromatography using ethyl acetate: hexane (6:4) as... a . solvent system to obtain the pure product (8e) (610 mg, 84% yield). 1H NMR (CDCl 3 ) δ 3.95 (s, 3H), 5.20 (s, 2H), 5.70 (s, IH), 6.70 (s, IH), 7.00-7.41 (m, 5H), 7.45-7.706 (m, 9H); FABMS: 436 (M+H).

Example 11

N1-4-[(4-[4-(Benzyloxy)-5^methoxy-2-nitrobenzoyl]aminophenyl )sulfonyl] phenyl-4-(benzyloxy)-5-methoxy-2-nitrobenzamide (7h) DMF was added to a stirred suspension of 4- benzoyloxy-5-methoxy -2-nitro benzoic acid (6) (500 mg, 1.65 mmol) and thionyl chloride (5 ml_) in dry benzene (30 mL) and the stirring was continued for 6 h. The benzene was evaporated in vacuum and the resultant oil dissolved in dry THF (50 mL) and added drop wise over a period of 1 h to a stirred suspension of 4-[(4-aminophenyl)sulfonyl]aniline (326 mg, 15.6 mmol) triethylamine (5 mL). After the completion of addition, the reaction mixture was brought to ambient temperature and stirred for an additional hour. The THF was evaporated in vacuum and the aqueous layer was washed with ethyl acetate. The aqueous phase was then adjusted to pH 3 using 6 N HCI and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product of 7h (830 mg in 84% yield).

1 H NMR (CDCl 3 ): 5.20 (s, 4H), 6.85 (s, IH), 7.20-7.90 (m, 12H), 8.05-8.25(m, 10H); FABMS: 818 (M+H) + .

Example 12 N1-4-[(4-[2-Amino-4-(benzyloxy)-5-methoxybenzoyl]aminophenyl )sulfonyl] phenyl-2-amino-4-(benzyloxy)-5-methoxybenzamide(8h)

λ/1-4-[(4-[4-(benzyloxy)-5-methoxy-2-nitrobenzoyl]aminophen yl)sulfonyl]Phenyl- 4-(benzyloxy)-5-methoxy-2-nitrobenzamide of formula 7h (500 mg, 1.27 mmol) was dissolved in methanol (10 mL), SnCl 2 .2H 2 O (943 mg, 3.2mmol) was added and refluxed until the TLC indicated the completion of the reaction. The methanol was evaporated by vacuum and the aqueous layer was then adjusted to pH 8 with 10% NaHCO 3 solution and extracted with ethyl acetate (2x30 mL). The combined organic phase was dried over Na 2 SO 4 and evaporated under vacuum to afford the crude λ/1-4-[(4-[2-amino-4-(benzyloxy)-5-methoxybenzoyl]

aminophenyl)sulfonyl] phenyl-2-amino-4-(benzyloxy)-5-methoxybenzamide (650 mg, 95% yield). This was further purified by column chromatography using ethyl acetate: hexane (6:4) as a solvent system to obtain the pure product 8h (425 mg, 84% yield). 1 H NMR (CDCl 3 ): 5.22 (s, 4H), 6.88 (s, IH), 7.21-7.94 (m, 12H), 8.10-8.30(m, 10H); FABMS: 758 (M+H) + .

Example 13

[4-(Hydroxy-5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl) piperazino] methanone (&') Trifluoro acetic acid (TFA) was added to a stirred suspension of [4-(benzyloxy)- 5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl)piperazino]metha none (7a) (500 mg, 1.65 mmol) the stirring with refluxed has continued for 8h. The TFA was evaporated in vacuum and the oil residue was then adjusted to pH 8 with 10% NaHCU 3 solution and extracted with ethyl acetate (2x30 mL). The combined organic phase was dried over Na 2 SO 4 and evaporated under vacuum to afford the crude /4-(Hydroxy-5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl)pipe ra zino]methanone.This was further purified by column chromatography using ethyl acetate:hexane (6:4) as a solvent system to obtain the pure product 8' (410 mg, 82% yield). 1 H NMR (CDCl 3 ): δ 3.20- 3.30 (m, 4H), 3.40-3.55 (m, 4H), 3.85 (s, 3H), 3.95 (s,

3H), 5.20 (s, 2H), 6.85 (s, IH), 7.30-7.50 (m, 4H), 7.70 (s, IH); FABMS: 309 (M+H) + .

Example 14

[4-(3-Bromo propyloxy)-5-methoxy-2-nitrophenyl][4-(2-methoxyphenyl) piperazino]methanone (9)

To a stirred suspension of /4-(Hydroxy-5-methoxy-2-nitrophenyl][4-(2- methoxyphenyl) piperazino]methanone(8') (500 mg, 1.65 mmol), 1 ,3-dibromo propane (316 mg 15.6 mmol) and K 2 CO 3 (816 mg 26.6 mmol) in acetone (30 mL) and the stirring was continued for 24h. The acetone was evaporated in vacuum and the aqueous layer was washed with ethyl acetate and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product to /4-(3-bromo propyloxy)-5-methoxy-2-

nitrophenyl][4-(2-methoxyphenyl) piperazino]methanone (9) in. 93% yield (630 , mg, 85 % yield). . -

1 H NMR (CDCl 3 ): 1.60-2.15 (m, 2H), 2.98-3.12 (t, 2H, J= 7.31 Hz), 3.20- 3.30 (m, 6H), 3.40-3.55 (m, 4H), 3.85 (s, 3H), 3.95 (s, 3H), 5.20 (s, 2H), 6.85 (s, IH), 7.30-7.50 (m, 4H), 7.70 (s, IH); FABMS: 431 (M+H) + .

Example 15

(5-Methoxy-4-3-[4-(2-methoxyphenyl)piperazino]propoxy-2-nitr ophenyl)[4-(2- methoxyphenyl)piperazino]methanone (10) To a stirred suspension of /4-(3-bromo propyloxy)-5-methoxy-2-nitrophenyl][4-(2- methoxyphenyl)piperazino]methanone (9) (500 mg, 1.65 mmol), 1-(2- methoxyphenyl) piperazine (316 mg 15.6 mmol) and K 2 CO 3 (816 mg 26.6 mmol) in acetone (30 mL) and the stirring was continued for 16h. The acetone was evaporated in vacuum and the aqueous layer was washed with ethyl acetate and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product to (5-methoxy-4-3-[4-(2- methoxyphenyl)piperazino]propoxy-2-nitrophenyl)[4-(2-methoxy phenyl)piperazino]methanone (10) in 93% yield (670 mg, 85 % yield). 1H NMR (CDCl 3 ): 1.60-2.15 (m, 2H), 2.98-3.12 (t, 2H, / = 7.31 Hz), 3.18- 3.36 (m, 8H), 3.38-3.60 (m, 10H), 3.85 (m, 3H), 3.95 (s, 3H), 4.00-4.15 (m, 3H) 6.85-7.00 (m, 8H), 7.20-7.40 (m, IH), 7.70-7.80 (d,lH, / = 6.81 Hz); FABMS: 619 (M+H) + .

Example 16

(2-Amino-5-methoxy-4-3-[4-(2-methoxyphenyl)piperazino]pro poxyphenyl)[4-(2- methoxyphenyl)piperazino]methanone (11)

(5-methoxy-4-3-[4-(2-methoxyphenyl)piperazino]propoxy-2-nitr ophenyl)[4-(2- methoxy phenyl)piperazino]methanone of formula (10) (500 mg, 1.07 mmol) was dissolved in methanol (10 mL), SnCI 2 .2H 2 O (839 mg, 3.2mmol) was added and refluxed until the TLC indicated the completion of the reaction. The methanol was evaporated by vacuum and the aqueous layer was then adjusted to pH 8 with 10% NaHCO 3 ' solution and extracted with ethyl acetate (2x30 mL). The combined organic phase was dried over Na 2 SO 4 and evaporated under vacuum to afford the crude N1-(9H-9-fluorenyl)-2-amino-4-(benzyloxy)-5-

methoxybenzamide . (450 mg, 95% yield). This was further purified by: column chromatography using ethyl acetate: hexane (6:4) as a solvent system to obtain the pure product (11) (610 mg, 84% yield).

1 H NMR (CDQ 3 ): 2.10-2.80 (m, 4H), 2.98-3.18 (m, 8H), 3.38-3.60 (m, 10H), 3.85- 3.95-4.05 (m, 6H), 6.78-7.45 (m, 9H), 7.70-7.80 (m,lH); FABMS: 589 (M+H) + .

Example 17

(4-(Benzyloxy)-5-methoxy-2-(pyrazine-2-carbamido)phenyl)(4-( 2-methoxyphenyl) piperazin-1-yl)methanone (8f) DMF was added to a stirred suspension of pyrazine-2-carboxylic acid (248 mg, 2.0 mmol) and thionyl chloride (5 ml_) in dry benzene (30 ml_) and the stirring was continued for 6 h. The benzene was evaporated in vacuum and the resultant oil dissolved in dry THF (50 mL) and added drop wise over a period of 1 h to a stirred suspension of [2-amino-4-(benzyloxy)-5-methoxyphenyl][4-(2- methoxyphenyl)piperazino]methanone (8a) (457 mg, 1.0 mmol) and triethylamine (5 mL). After the completion of addition, the reaction mixture was brought to ambient temperature and stirred for an additional hour. The THF was evaporated in vacuum and the aqueous layer was washed with ethyl acetate. The aqueous phase was then adjusted to pH 3 using 6 N HCI and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product of (8f) (400 mg, 71% yield). 1 H NMR (CDCl 3 ) δ 3.21- 3.32 (m, 4H), 3.46-3.55 (m, 4H), 3.86 (s, 3H), 3.97 (s, 3H), 5.22 (s, 2H), 6.80-7.03 (m, 5H), 7.32-7.52 (m, 5H), 7.59-7.65 (m, 2H), 7.71 (s, IH), 7.83 (s, IH), ; FABMS: 553 (M+H)+. Example-18

{5-(Methyloxy)-2-nitro-4-[(phenylmethyl)oxy]phenyl}[4-({5 -(methyloxy)-2-nitro-4-

[(phenylmethyl)oxy]phenyl}carbonyl)-1-piperazinyl]methano ne (7g)

DMF was added to a stirred suspension of 4- benzoyloxy-5-methoxy -2-nitro benzoic acid (6) (1.8gm, β.Ommol) and thionyl chloride (10 ml) in dry benzene (50 ml) and the stirring was continued for 6h. The benzene was evaporated in vacuum and the resultant oil dissolved in dry THF (50 ml) and added drop wise over a period of 1h to a stirred suspension of piperazine (172mg 2.0mmol) and triethyl amine (6ml,). After the completion of addition, the reaction mixture was

brought to ambient temperature and stirred for an additional hour. The THF was evaporated in vacuum and the aqueous layer was washed with ethyl acetate. The aqueous phase was then adjusted to pH 3 using 6 N HCI and extracted with ethyl acetate and washed with brine, dried over Na 2 SO 4 and evaporated in vacuum to afford the crude product of {5-(methyloxy)-2-nitro-4- [(phenylmethyl)oxy]phenyl}[4-({5-(methyloxy)-2-nitro-4-

[(phenylmethyl)oxyjphenyl} carbonyl)hexahydro-1-pyrazinyl]methanone (7g) in (650 mg, 50 % yield).

1 H NMR (CDCl 3 ) δ 3.22- 3.34 (m, 4H), 3.43-3.56 (m, 4H), 3.86 (s, 6H), 5.21 (s, 4H), 6.81-7.11 (m, 12H), 7.71 (s, 2H); FABMS: 656 (M+H) + .

Example-19

{2-Amin(>5-(methyloxy)-4[(phenylmethyl)oxy]phenyl}[4-({2- amino-5-(methyloxy)- 4-[(phenylmethyl)oxy]phenyl}carbonyl)hexahydro-1-pyrazinyl]m ethanone (8g) {5-(methyloxy)-2-nitro-4-[(phenylmethyl)oxy]phenyl}[4-({5-(m ethyloxy)-2-nitro-4- [(phenylmethyl)oxy]phenyl}carbonyl)hexahydro-1-pyrazinyl]met hanone of formula (7g) (400 mg, 0.6 mmol) was dissolved in methanol (10 mL), SnCI 2 .2H 2 O (685 mg, 3.0mmol) was added and refluxed until the TLC indicated the completion of the reaction. The methanol was evaporated by vacuum and the aqueous layer was then adjusted to pH 8 with 10% NaHCO 3 solution and extracted with ethyl acetate (2x30 mL). The combined organic phase was dried over Na 2 SO 4 and evaporated under vacuum to afford the crude product 8g {5- (methyloxy)-2-nitro-4-[(phenylmethyl)oxy]phenyl}[4-({5-(meth yloxy)-2-nitro-4- [(phenylmethyl)oxy] phenyl}carbonyl)hexahydro-1 -pyrazinyl]methanone.This was purified by column chromatography using ethyl acetate: hexane (6:4) as a solvent system to obtain the pure product (8g) (180 mg, 50% yield). 1 H NMR (CDCl 3 ) δ 3.22- 3.36 (m, 4H), 3.42-3.55 (m, 4H), 3.85 (s, 6H), 5.23 (s, 4H), 6.25 (s, broad 2H) 6.81-7.11 (m, 12H), 7.71 (s, 2H); FABMS: 596 (M+H) + .

Thermal denaturation studies

Compounds were subjected to thermal denaturation studies with duplex- form calf thymus DNA (CT-DNA) using an adaptation of a reported procedure. Working solutions in aqueous buffer (10 mM NaH 2 PO 4 ZNa 2 HPO 4 , 1 mM

Na 2 EDTA, pH 7.00+0.01) containing CT-DNA (100 urn in phosphate) and the PBD (20 μm) were prepared by addition of concentrated ANCD solutions in DMSO to obtain a fixed [ANCD]/[DNA] molar ratio of 1:5. The DNA- ANCD solutions were incubated at 37 0 C for 0, 18, and 36 h prior to analysis. Samples were monitored at 260 nm using a Beckman DU-7400 spectrophotometer fitted with high performance temperature controller, and heating was applied at 1 0 C min-1 in the 40-90 0 C range. DNA helix coil transition temperatures (Tm) were obtained from the maxima in the (dλ260)/d T derivative plots. Results are given as the mean ± standard deviation from three determinations and are corrected for the effects of DMSO co-solvent using a linear correction term. Drug-induced alterations in DNA melting behaviour are given by: ATm=Tm (DNA+ANCD) -Tm (DNA alone), where the Tm value for the ANCD -free CT-DNA is 69.0 ± 0.01. The fixed [ANCD]/[DNA] ratio used did not result in binding saturation of the host DNA duplex for any compound examined. Compound 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h and 11 at 0 hr, 18 hr and 36 hr gradually increased at 37°C.

Table 1. Thermal denaturation data of Anthanilic acid with calf thymus (CT) DNA

[ANCD/DNA] δr m ( °C) a after incubation

Compounds molar ratio at 37 °C for

O h 18 h 36h

8a 1:5 1.2 1.7 2.2

8b 1:5 1.5 2.1 2.6

8c 1:5 1.4 1.6 2.3

8d 1:5 1.5 1.9 2.7

8e 1:5 1.9 2.3 2.8

8f 1:5 1.3 2.1 3.0

8g 1:5 1.6 2.6 2.9

8h 1:5 1.5 2.3 2.4

11 1:5 1.4 2.1 2.1

DC-81 1:5 0.3 0.7 a For CT-DNA alone at pH 7.00 ± 0.01, T m = 69.6 0 C ± 0.01 (mean value from 10 separate determinations), all δT m values are ± 0.1 - 0.2 0 C. b For a 1:5 molar ratio of [ligand]/[DNA], where CT-DNA concentration = 100 μM and ligand concentration = 20 μM in aqueous sodium phosphate buffer [10 mM sodium phosphate + 1 mM EDTA, pH 7.00 ± 0.01]. c ANCD = Anthranilic acid derivative

Biological Activity: some of compounds down in vitro biological activity studies were carried out at the National Cancer Institute, Marryland, USA. In vitro evaluation of cytotoxic activity: Compounds were evaluated for in vitro anticancer activity against sixty human tumour cells derived from nine cancer types (colon, prostate, oral, lung, cervix and breast cancer) as shown in (Table 1,2 and 3) 8b, 8c, 8d, and 8e, were evaluated for in vitro anticancer activity against sixty human tumour cells derived from nine cancer types (leukemia, non-small-cell lung, colon, CNS, melanoma, ovarian, prostate, and breast cancer) as shown in (Table 2 and 3). For the compound, dose response curves for each cell line were measured at a minimum of five concentrations at 10 fold dilutions. A protocol of 48 h continuous drug exposure was used and a sulforhodamine B (SRB) protein assay was used to estimate cell viability or growth. The concentration causing 50% cell growth inhibition (GI50), total cell growth inhibition (TGI 0% growth) and 50% cell death (LC50, -50% growth) compared with the control was calculated. The mean graph midpoint values of log io TGI and logi 0 LC50 as well as logio GI50 for 8a, 8b, 8c, 8d, and 8e, are listed in (Table 2 and 3). As demonstrated by mean graph pattern, compound 8b, 8c, 8d, and 8e exhibited an interesting profile of activity and selectivity for various cell lines. The mean graph mid point of log 10 TGI and logio LC50 showed similar pattern to the logio GI50 mean graph mid points.

Table .2 logioGI50 logioTGI and logi 0 LC50 mean graphs midpoints (MG_MID) of in vitro cytotoxicity data for the representative compounds against human tumour cell lines

Compound LogioGI50 Log 10 TGI50 Log 10 LC50

8a -5.47 -5.24 -4.19

8b -5.62 -5.12 -4.05

8c -5.47 -5.47 -4.47

8d -5.62 -5.62 -4.62

8e -6.47 -6.06 -4.19

Table 3 Log GI50 (concentration in mol/L causing 50% growth inhibition) values for anthranilic acid hybrids

Each cancer type represents the average of six to nine different cancer cell lines. The compound 8a, 8b, 8c, 8d, 8e and 8f were evaluated for in vitro anticancer activity against sixty human tumour cells derived from nine cancer types (leukemia, colon, prostate, renal melanoma CNS, lung, cervix and breast cancer) as shown in Table 3. Compound 8b, 8c, 8d and 8e show promising cytotoxicity against some cancer cell lines (Table 2). Compounds 8b, 8c, 8d and 8e have been evaluated for their in vitro cytotoxicity in selected human cancer cell lines of colon (Colo205), lung (Hop-62), cervix (SiHa), prostate (DU 145, PC3), oral (DWD, HT1080), and breast (MCF7, Zr-75-1) origin. A protocol of 48 h continuous drug exposure has been used and an Adriamycin (ADR) protein assay has been used to estimate cell viability or growth. The results are expressed as percent of cell growth determined relative to that of untreated control cells. Among them 8a, 8d and 8e, exhibits a wide spectrum of activity against sixty cell lines in nine cell panels, with GUo value of <20 nM. In the non- small cell lung cancer panel, the growth of EKVX, NCI-H226 cell lines leukemia cell cancer panel the growth of HL-60 (TB) were affected by compound 8b with GUo values as 12.4, 13.6 and 16.5 nM respectively. In the breast cancer panel, the growth of BT-549, MCF-7 cell lines are 10.3, and 17.6. In the prostate cancer panel, the growth of DU-145, PC-3 cell lines are 11.3, and 19.2.The Gl 50 values of compound In the CNS cancer panel, the growth of SF-539, SNB-75 cell lines are 12.3,14.6 and 17.5.The GI 50 values of compound 8d against colon cancer

COLO 205, , HCT.-116 and KM12 cell lines are 11:2, 16.3 and 14.6 nM respectively. The GUo values for compound 8d against CNS SF-295, SF-539, SNB-19 and SNB-75 cell lines are in a range of 11.8-24.2 nM. Two cancer cell lines (MCF-7, T-47D) in the breast cancer cell panel were affected by compound 8d with GI 50 values of 12.6, 13.2, nM respectively. In this study compound 8d exhibited cytotoxicity activity against renal and prostate cancer panels with Gl 50 values (11.6-32.4 nM), compound 8b exhibits activity against fifty-five cell lines in nine cancer cell panels with GI 50 values of < 10 mM. Compound 8e exhibits activity against fifty-seven cell lines in nine cancer cell panels, GI 50 values of < 10 mM. In vitro cytotoxicity of compounds 8a, and 8b in selected cancer cell lines has been illustrated in Table 3. The average GI 50 values for each cancer panel of compounds 8b, 8c, 8d and 8e have been illustrated in above Table 2 and 3