Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS FOR TISSUE ABLATION USING MAGNETIC BEADS
Document Type and Number:
WIPO Patent Application WO/2005/032659
Kind Code:
A1
Abstract:
A system for treating tissue includes a source of conductive and/or magnetic beads, a first member, e.g., a catheter or cannula, coupled to the source of magnetic beads, and a second member, e.g., a catheter or cannula, carrying a magnet on its distal end. The system is used for ablating or otherwise treating tissue within a target tissue region including a blood vessel contacting or passing therethrough. Magnetic beads are introduced into the target tissue region, e.g., using the first member, and a magnetic field is generated within the target tissue region, e.g., using the second member, to cause the magnetic beads to migrate towards a wall of the vessel. Energy is delivered into the target tissue region, e.g., to heat tissue therein, and the magnetic beads may attenuate or enhance treatment of tissue adjacent to the vessel.

Inventors:
RIOUX ROBERT (US)
GARABEDIAN ROBERT (US)
Application Number:
PCT/US2004/028715
Publication Date:
April 14, 2005
Filing Date:
September 03, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCIMED LIFE SYSTEMS INC (US)
RIOUX ROBERT (US)
GARABEDIAN ROBERT (US)
International Classes:
A61N1/40; A61N2/08; A61N2/02; (IPC1-7): A61N1/40
Domestic Patent References:
WO2003084593A12003-10-16
Foreign References:
US20020087177A12002-07-04
US6148236A2000-11-14
US6296604B12001-10-02
Other References:
MOROZ P ET AL: "MAGNETICALLY MEDIATED HYPERTHERMIA: CURRENT STATUS AND FUTURE DIRECTIONS", INTERNATIONAL JOURNAL OF HYPERTHERMIA, BASINGSTOKE, GB, vol. 18, no. 4, July 2002 (2002-07-01), pages 267 - 284, XP009034356, ISSN: 0265-6736
Attorney, Agent or Firm:
Burse, David T. (Suite 1800 San Francisco, California, US)
Download PDF:
Claims:
CLAIMS
1. A system for treating tissue within a target tissue region, comprising: a source of magnetic beads configured for delivering magnetic beads into a target tissue region; a first elongate member comprising a proximal end, a distal end configured for introduction into the target tissue region, and a magnet carried by the distal end, the magnet configured for inducing a magnetic field within the target tissue region to cause magnetic beads within the target tissue region to migrate in a desired manner; and a source of energy for delivering energy for treating tissue within the target tissue region, the magnetic beads configured for at least one of attenuating and enhancing treatment of the tissue with the energy.
2. The system of claim 1, wherein the magnet is an electromagnet, and wherein a source of energy is coupled to the electromagnet for selectively activating the electromagnet.
3. The system of claim 1, wherein the source of magnetic beads comprises a second elongate member comprising a proximal end, a distal end configured for introduction into the target tissue region, and a lumen extending between the proximal and distal ends for delivering magnetic beads from the source of magnetic beads to one or more outlets in the distal end of the second elongate member.
4. The system of claim 3, wherein the first elongate member comprises a catheter insertable into a vessel contacting or passing through the target tissue region.
5. The system of claim 4, wherein the second elongate member comprises a cannula that may be introduced into the target tissue region until the distal end of the cannula is disposed adjacent the vessel.
6. The system of claim 5, wherein the cannula comprises a sharpened distal tip to facilitate insertion through tissue.
7. The system of claim 4, wherein the second elongate member comprises a flexible tubular member insertable into another vessel contacting or passing through the target tissue region.
8. The system of claim 1, wherein the source of energy comprises one or more electrodes having a size for introduction into the target tissue region, and a electrical generator coupled to the one or more electrodes for delivering electrical energy to the electrodes, the magnetic beads comprising electrically conductive material.
9. The system of claim 8, wherein the one or more electrodes comprise one or more needles insertable through tissue.
10. The system of claim 1, wherein the first elongate member comprises a catheter insertable into a vessel contacting or passing through the target tissue region.
Description:
APPARATUS FOR TISSUE ABLATION USING MAGNETIC BEADS FIELD OF THE INVENTION This invention relates generally to apparatus for treating tissue within a patient, and, more particularly, to apparatus for delivering beads into tissue to enhance treating the tissue, and to apparatus for assisting treating tissue using conductive and/or magnetic beads, e. g. , during an ablation procedure.

BACKGROUND Electrosurgical instruments for delivering radio frequency (RF) electrical energy into tissue are known. For example, U. S. Patent No. 5,868, 740 discloses electrosurgical probes that include a plurality of wire electrodes that may be advanced into tissue from the distal end of a cannula. The electrodes may be energized with RF energy in a monopolar or bipolar mode to heat and/or necrose a target tissue region. Such probes have been suggested for treating tumors within organs, such as the liver, kidney, pancreas, stomach, lungs, and spleen.

One concern with RF ablation is the"heat sink"effect, which may occur because of the vascular nature of the tissue being treated. For example, within the liver, RF energy may be delivered to heat and necrose a tumor. If the tumor is located near a large vessel, blood passing through the vessel may conduct heat away from the tumor. This may cause the heat to be distributed unevenly, possibly resulting in tumor cells adjacent to the vessel not being sufficiently heated and/or destroyed. To ensure that the cells nearer to the vessel are sufficiently heated, additional energy may be applied to the

tumor, but this may expand the heated region into tissue located away from the vessels, which may risk damaging healthy tissue adjacent to the tumor.

SUMMARY OF THE INVENTION The invention is directed to apparatus for treating tissue within a patient, and, more particularly, to apparatus for delivering particles or beads into tissue to enhance treating the tissue, and to apparatus for assisting ablating or otherwise treating tissue, e. g., with thermal energy and/or therapeutic agents, using conductive and/or magnetic beads.

In accordance with one aspect of the invention, a system is provided for treating tissue within a target tissue region that includes a source of conductive and/or magnetic beads for delivering the beads into the target tissue region, a first elongate member including a proximal end, a distal end configured for introduction into the target tissue region, and a magnet carried by the distal end, the magnet configured for inducing a magnetic field within the target tissue region to cause the beads within the target tissue region to migrate in a desired manner.

In addition or alternatively, the first elongate member may be a flexible or semi- rigid catheter insertable into a vessel contacting or passing through the target tissue region. In a further alternative, the first elongate member may be a substantially rigid, semi-rigid, or flexible cannula that may be introduced into the target tissue region.

Other aspects and features of the invention will be evident from reading the following detailed description of the preferred embodiments, which are intended to illustrate, not limit, the invention.

BRIEF DESCRIPTION OF THE DRAWINGS The drawings illustrate the design and utility of embodiments of the invention, in which similar elements are referred to by common reference numerals, and in which: FIG. 1 is a side view of an embodiment of a system for treating tissue using magnetic beads to enhance ablation using electrical energy, in accordance with the invention.

FIGS. 2-4 are cross-sectional views of alternative embodiments of a distal portion of a catheter illustrated in FIG. 1.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS Turning to the drawings, in which similar or corresponding parts are identified with the same reference numeral, FIG. 1 shows one embodiment of an ablation system 10 that includes a first member 20 carrying a magnet 22, and a second member 30 coupled to a source of magnetic beads 40 for delivering magnetic beads into a patient's body, in <BR> accordance with the invention. Alternatively, a single member, e. g. , a catheter or cannula including a magnet and coupled to a source of magnetic beads (not shown), may be provided for introducing magnetic beads and for generating magnetic fields within a patient's body.

The first member 20 may be a catheter or other elongate member including a proximal end 24 and a distal end 26 having a size and shape to facilitate insertion into a patient's body (not shown). Optionally, the first member or catheter 20 may include a <BR> lumen 28 extending between the proximal and distal ends 24,26, e. g. , for advancing the catheter 20 over a guidewire or other rail (not shown) and/or for introducing fluid

therethrough. One or more leads, e. g. , wires or other conductive paths (not shown), may extend from the magnet 22 towards the proximal end 24 of the catheter 20.

The catheter 20 may be formed from conventional materials, e. g. , metal, plastic, and the like. In one embodiment, the catheter 20 may increase in flexibility from the proximal end 24 to the distal end 26. For example, a distal portion of the catheter 20 may <BR> <BR> be substantially flexible and soft (e. g. , a"floppy"catheter) to facilitate advancement into and/or manipulation within tortuous anatomy. A proximal portion of the catheter 20 may be semi-rigid or substantially rigid, e. g. , to facilitate pushing the catheter 20 without buckling or kinking. In other embodiments, the catheter 20 may have other variations in flexibility along its length, depending on a particular application. Alternatively, the first <BR> <BR> member 20 may be a substantially rigid probe, e. g. , a needle with a sharpened distal tip and a magnet on or adjacent the distal tip (not shown) or a blunt tipped cannula carrying a magnet (also not shown). Exemplary embodiments of catheters that may be used are disclosed in U. S. Patent No. 6,540, 657.

The proximal end 24 of the first member 20 may include one or more connectors (not shown) for connecting to other components of the system 10. For example, if the magnet 22 is an electromagnet, the proximal end 24 may include an electrical connector <BR> <BR> for coupling the magnet 22 to a source of energy 50, e. g. , an electrical generator and/or battery, as described further below. In addition, the proximal end 24 may include one or <BR> <BR> more elements, e. g. , a luer lock connector for connecting a source of fluid, e. g. , saline or contrast (not shown), to the first member 20, or one or more ports for introducing a guide wire or other rail through the lumen 28, as is known in the art.

The second member 30 may be a cannula or catheter including a proximal end 34, a distal end 36, and a lumen 38 extending between the proximal and distal ends 34,36.

The second member 30 may be a substantially rigid needle having a sharpened distal tip 32, as shown in FIG. 1, such as a twenty two gauge (22 ga. ) needle. Alternatively, the second member 30 may be a substantially rigid, semi-rigid, or flexible cannula or catheter that may be advanced through an introducer (not shown). In a further alternative, the <BR> <BR> second member 30 may be a catheter, e. g. , between about three and five French (1-1.67 mm), constructed similar to the catheter described above (but without the magnet), that may be sufficiently flexible for advancement through a patient's vasculature.

The proximal end 34 may include a luer lock connector and the like (not shown) for connecting the source of magnetic beads 40 to the second member 30 such that magnetic beads may be delivered through the lumen 28. The distal end 36 may include a single outlet, as shown in FIG. 1, or may include a plurality of openings (not shown) for delivering the magnetic beads in a desired pattern.

In one embodiment, the beads provided from the source 40 may be spheres or particles having cross-sectional dimensions, e. g. , diameters, between about ten nanometers (10 nm) and about twelve hundred microns (1200 zm), and preferably between about one and forty microns (1-40 zm). The beads, however, may also have other cross-sectional dimensions, as long as they are capable of migrating within a body.

In addition, the beads may have other geometric shapes besides spherical shapes. The beads may be made from a biocompatible material that is highly conductive to heat, such <BR> <BR> as one or more metals, e. g. , gold and/or ferric materials. Preferably, the beads are also<BR> magnetic. As used herein, "magnetic"refers to any material or composition that is

capable of being magnetized or that is capable of being attracted to or repelled by a magnet.

In addition or alternatively, the beads may be coated with therapeutic or <BR> <BR> diagnostic compounds, e. g. , on an outer surface of the beads. In addition or alternatively, the beads may be impregnated with such compounds. For example, the beads may be porous or may at least partially dissolve within the body to deliver compounds therein.

The compounds carried by the beads may include chemotherapeutic agents that may enhance necrosis or other treatment of tissue. In addition or alternatively, the beads may carry a polyvinyl alcohol (PVA) particle, which may be used to absorb a drug. In yet a further alternative embodiment, the beads may include microparticles secured thereto that may be released from the beads when exposed to a magnetic field or other energy.

Exemplary microparticles that may be used are available from FeRx Incorporated.

In one embodiment, the beads may include circuits and/or switches configured for generating and/or regulating an amount of heat in response to a signal, e. g. , radio frequency signals, received from an external control system or transmitter (not shown).

An example of such beads is disclosed in U. S. Patent No. 6,423, 056. In an alternative embodiment, the beads may include nano-particles tuned to absorb or scatter light at desired wavelengths, including ranges where human tissue is relatively transparent. For example, an infrared laser may be positioned outside a body and used to irradiate the nano-particles, thereby causing them to deliver heat sufficient to heat, ablate, or otherwise treat tissue. Nano-particles are commercially available from Nanospectra Biosciences, Inc. , Houston, Texas. In yet a further alternative embodiment, the beads

may generate heat in response to a magnetic field, such as those disclosed in U. S. Patent No. 6,149, 576.

The first and second members 20,30 may have a length between about ten centimeters and about one hundred eighty centimeters (10-180 cm), and/or an outer <BR> <BR> diameter or cross-section between about three and eight French (3-8 FR) (i. e. , between about 1-2.7 mm). However, the first and second members 20,30 may also have other lengths and outer cross sectional dimensions suitable for a particular application.

Turning to FIG. 2, the magnet 22 on the distal end 26 of the first member or catheter 20 may be a coiled solenoid or induction electromagnet. Alternatively, the distal end 26 of the catheter 20 may carry a permanent magnet (not shown) instead of an electromagnet 22. The magnet 22 may be connected to the distal end 26 of the catheter 20 such that the magnet 22 is at least partially exposed or uncovered. For example, the magnet 22 may be secured to the distal end 26 by welding, brazing, gluing, other suitable adhesive, and the like, depending on the materials from which the electromagnet 22 and the distal end 26 are made. As shown in FIG. 2, if the magnet 22 is an electromagnet, one or more leads 23 may extend from the magnet 22 towards the proximal end 24 of the catheter 20, e. g. , for coupling to the source of energy 50 (not shown, see FIG. 1).

Optionally, the catheter 20 may include a sensor, such as a temperature sensor and/or a magnetic field sensor (not shown) carried by the distal end 26.

Electrical current may be supplied to the magnet 22 by the source of energy 50 via lead wire 23a and returned by return wire 23b to induce a first magnetic field.

Polarity through the magnet 22 may be reversed to induce a second magnetic field in an opposite direction from the first magnetic field. The magnet 22 may be configured for

generating a sufficient magnetic field to mobilize or otherwise manipulate magnetic beads, such as those described above. The magnet 22 may generate higher magnetic fields for heavier beads, beads disposed in dense or viscous fluid, and/or beads that are further away from the magnet 22.

The strength of the magnetic field generated by the magnet 22 may depend upon a number of factors, such as the geometry of the magnet 22, the material from which the magnet 22 is made, and/or the amount of power supplied to the magnet 22 by the source of energy 50. In one embodiment, the power delivered to the magnet 22 from the source of energy 50 is adjustable. In this case, during use, the power may be incrementally increased until a desired magnetic field intensity is achieved. Alternatively, the power delivered to the magnet 22 may be fixed at a set level when activated. In this case, the source of energy 50 may deliver sufficient power to mobilize the beads within a prescribed distance from the magnet 22.

In another embodiment, the magnet 22 may be an adjustable electromagnet that may be configured for varying the intensity of the magnetic field. For example, the catheter 20 may include a core wire or other element (not shown) having a distal end (also not shown) secured to the distal end of the magnet 22. For example, the core wire may be disposed in the lumen 28 or within another lumen (not shown) within the catheter 20. The core wire may be advanced distally, thereby increasing the spacing between the pitches of the coils of the magnet 22 and increasing the intensity of the magnetic field, and retracted proximally to increase the intensity of the magnetic field.

In a further alternative embodiment, the magnet 22 may include two or more portions with each portion electrically isolated from the other portion (s). Each of the

portions may be electrically connected to the source of energy 50, and may be individually or collectively activated to generate a magnetic field. If a weak magnetic field is desired, then only one of the portions may be activated. If a relatively stronger magnetic field is desired, then one or more additional portions may be activated.

It should be noted that the manner in which the magnet 22 is secured to the distal end 26 and/or the configuration of the magnet 22 relative to the distal end 26 should not be limited to that shown in FIG. 2. For example, turning to FIG. 3, another embodiment of a catheter 20'is shown that includes a magnet 22'that is located at least partially <BR> <BR> within a wall of the catheter 20'at or adjacent to its distal end 26, 'and preferably<BR> completely embedded in the wall of the catheter 20. 'In a further alternative, shown in FIG. 4, the distal end 26"of the catheter 20"may include a recessed portion that carries a magnet 22"thereon.