Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS FOR TREATING PATHOLOGICAL CELLS
Document Type and Number:
WIPO Patent Application WO/2018/172863
Kind Code:
A1
Abstract:
An electromagnetic field generating apparatus for treating pathological cells, in particular with tumor suppression function. The ratio of static magnetic field to alternating magnetic field is in the range of 0.5-2.5, and the total intensity is in the range up to 100 imT. It provides non-invasive low toxicity and side effects, significantly inhibiting a plurality of tumors, influencing the intracellular superoxide radical content, and promoting cell autophagy. The mechanism of action of the magnetic field is on the electron spin energy levels and consequently on the free radicals concentration. Additional magnetic field having frequency up to 100 MHz and intensity down to microTesla range can be also used to improve the antitumor efficacy in combination with the static as well as the extremely low frequency electromagnetic field (1 -300 Hz) influencing the spin hyperfine resonance. A combination method is also provided of a power- frequency electromagnetic field generating device and a platinum-based medicine. The in vitro and in vivo experiments confirmed that the tumor therapeutic electromagnetic field combined with platinum-based chemotherapy drugs can enhance the efficacy of platinum-based chemotherapy drugs and magnetic field alone, a significant inhibition of a variety of tumors; can reduce the dose of cisplatin and reduce side effects.

Inventors:
TOFANI SANTI (IT)
XI CHEN
LINQING YUAN
KEXIN SHI
CHAO YANG
SUCHEN BIAN
JINHU WANG
KUN ZHU
MIN YANG
WEIZHONG GU
SHIQIANG SHANG
HUAMEI LI
ZHENG SHEN
CAN WANG
Application Number:
PCT/IB2018/050765
Publication Date:
September 27, 2018
Filing Date:
February 07, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TOFANI SANTI (IT)
International Classes:
A61N2/02; A61N2/00
Domestic Patent References:
WO1999066987A11999-12-29
WO2008087489A22008-07-24
WO2009153818A12009-12-23
WO2001015770A22001-03-08
WO1999066987A11999-12-29
Foreign References:
EP0966988A11999-12-29
EP1741467A12007-01-10
US6461289B12002-10-08
CN106621050A2017-05-10
CN106902464A2017-06-30
US8019414B22011-09-13
US8406870B22013-03-26
CN90100152A1990-01-16
CN94111668A1994-03-09
Other References:
ARTACHO-CORDON FRANCISCO ET AL., INT J MOL SCI, 2013
TOFANI S, CURR TOPICS IN MED CHEM, 2015
TOFANI S, PHYSICA MEDICA, 1999
BARNES FS ET AL., BIOELECTROMAGNETICS, 2015
TOFANI S ET AL., IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002
RONCHETTO F ET AL., BIOELECTROMAGNETICS, 2004
WHITE E ET AL., C LIN CANERRES, 2009
HANAHAN D ET AL., CELL, 2011
BOOTH LA ET AL., CELL SIGNAL, 2014
MARCHESI N ET AL., CELLULAR PHYSIOLOGY, 2014
TOFANI ET AL., BIOELECTROMAGNETICS, 2001
TOFANI, IEEE PLASMA SCIENCE, 2002
TOFANI, BIOELECTROMAGNETICS, 2002
TOFANI, IEEE TRANSACTION ON EMC, 2002
Attorney, Agent or Firm:
CELESTINO, Marco (IT)
Download PDF:
Claims:
C LAIMS

1 . Apparatus fortreating pathological cells, neuroblastoma and nephroblastoma type, comprising a workspace (8) configured to receive a target body, at least one set of coils (6, 7) arranged to irradiate a static electromagnetic field in said workspace and also arranged to irradiate an alternating magnetic field in said workspace (8), a control unit (12) arranged to supply selectively current to said at least one set of coils (6,7) in such a way to irradiate in said workspace a static electromagnetic field and an alternating magnetic field for predetermined time intervals T1 ,T 2, T 3, ϋ Tn, said control unit (12) arranged to supply selectively current to said at least one set of coils (6,7) in such a way to irradiate in said workspace said static electromagnetic field and an alternating magnetic field superimposed to each other with a maximum superimposed strength of 100mT and ratio of static electromagnetic field to alternating magnetic field is in the range of 0.5-2.5, said static electromagnetic field having an intensity selected in such a way that said static electromagnetic field and alternating magnetic field superimposed to each other have always a positive strength.

2. The apparatus according to claim 1 , wherein said control unit (12) keeps the total magnetic field at a same overall strength in said workspace (8), said overall strength comprised within a range of 1 .0-7.0mT, wherein the average strength is comprised between 4 and 6mT, in particular the average strength is 4.5 - 5.5 mT, preferably 5.1 mT.

3. The apparatus according to claim 1 , wherein said set of coils is selected from the group consisting of

□ a single set of coils in which a voltage supply is applied superimposing a static DC supply and an alternating AC supply,

□ a first set of coils (6) arranged to irradiate a static electromagnetic field in said workspace and a second set of coils (7) arranged to irradiate a alternating electromagnetic field in said workspace.

A. Apparatus according to claim 1 , wherein said control unit is configured to supply selectively current to said set of coils (6,7) in each time interval T1 -Tn according to a predetermined voltage scheme, according to which in each time interval T 1 -Tn the DC voltage applied to said set of coils is in a voltage range between 1 -5mV, resulting in a static electromagnetic field in a strength range between 1 -5mT, the AC voltage applied to said set of coils is in an average voltage range between 1 - 5mV, resulting in an alternating electromagnetic field with an average strength range of 1 -5mT.

5. The apparatus according to claim 1 , characterized in that the control unit (12) is configured to selectively change the voltage scheme in each time interval T 1 -Tn, and the magnetic field strength is divided into a total of eight time periods T 1 -T8:

□ T 1 time period DC voltage of 3mV, resulting in a static electromagnetic field strength of 2.97mT, AC voltage average 1 .5mV, the average intensity of alternating electromagnetic field is 1 .48mT

□ T2 time period the DC voltage is 4mV, the static electromagnetic field strength is 3.95mT, the average of AC voltage is 2.5mV, the average strength of alternating electromagnetic field is 2.47mT;

□ T3 time period DC voltage of 3mV, resulting in a static electromagnetic field strength of 2.97mT, the average AC voltage of 1 .5mV, resulting in alternating magnetic field average strength of 1 .48mT;

□ T4 time period DC voltage of 4mV, resulting in static electromagnetic field strength of 3.95mT, AC voltage The average is 2.5mV, produce alternating electromagnetic field average strength of 2.47mT;

□ T5 DC voltage of 3mV, resulting in static electromagnetic field The average value of AC voltage is 1 mV, the average strength of alternating electromagnetic field is 1 .08mT;

□ the direct current voltage is 4mV in T6, the static electromagnetic field strength is 3.95mT and the average value of AC voltage is 1 .5mV, resulting in alternating electromagnetic field The average strength of 1 .48mT;

□ T7 time period DC voltage of 3mV, resulting in a static electromagnetic field strength of 2.97mT, the average AC voltage of 1 mV, resulting in alternating magnetic field average strength of 1 .08mT;

□ T8 time DC voltage of 4mV, resulting in static electromagnetic field The strength is 3.95mT, the average value of AC voltage is 1 .5mV, and the average strength of alternating electromagnetic field is 1 .48mT.

15. The apparatus according to claim 1 , characterized in that the control unit (12) is configured to setthe duration of the magnetic field each time the voltage is changed for each time interval T 1 -Tn in such a way that the electromagnetic irradiation is continued for 3.5-10 minutes and the irradiation time per rotation is 30-90 minutes, and the total irradiation time is 60-180 minutes for two rotations T 1 -Tn.

27. Apparatus according to claim 1 , wherein the AC supply for providing the electromagnetic alternating field has a frequency of 50-60Hz.

8. Apparatus according to claim 1 , wherein a further AC supply is provided to cause an alternating electromagnetic signal in said at least one coil, said further AC signal being superimposed to the magnetic static field and the AC electromagnetic alternating field, said further AC supply having a frequency between 1 Hz and 100MHz and an intensity between I microTesla (rrT) and 100mT.

9. Apparatus for irradiating a power frequency electromagnetic field, according to claim 1 in combination with a treatment of subministration of a platinum-based medicine.

D O. Apparatus according to claim 1 , configured to provide a combination treatment of a power frequency electromagnetic field generating device and a treatment with a platinum-based chemotherapeutic agent is realized by the following steps:

□ constructing a power frequency electromagnetic field generating device, adopting a power frequency 50/60 Hz power supply, continuously changing the voltage through a direct current and alternating current auto-transformers, Thereby creating a superimposed static and alternating electromagnetic field within the irradiated part with an average loading magnetic field of 1 -7 millitesla and a total irradiation time of 60-120 minutes per day for the irradiated parts on the irradiated parts, Irradiated components on the exposure, the dose of platinum- based chemotherapeutic agents: in vitro concentration of 500nM, once a day dosing, the role of the body dose of 20mg / kg, administered three times a week; the power frequency electromagnetic field generating means The utility model is composed of a power frequency power supply (1 ), a first a utotrans former (2), a second autotransformer (3), a first diode bridge (4), a second diode bridge The first set of coils (6), the second set of coils (7), the irradiating member (8), the voltage detecting member (9), the magnetic field detecting member (10), the temperature measuring member (1 1 ) and the terminal computer , The power frequency power supply (1 ) is respectively connected with the first autotransformer (2) and the second autotransformer (3) , The other ends of the first autotransformer (2) and the second autotransformer (3) are respectively connected with the first diode bridge (4) and the second diode bridge (5), the first The other end of the diode bridge is connected to the first group of coils and the other end of the second diode bridge is connected to the second group of coils, (6) and a second group of coils (7), one end of the voltage detection component (9) is respectively connected with the first group of coils (6) and the second group of coils (7), and the other end is connected with the terminal The computer (12) is connected with a magnetic field detecting part (10) and a temperature measuring part (1 1 ), one end of each of the magnetic field detecting part (10) and the temperature measuring part (1 1 ) is respectively connected with the irradiating part (8) and the other end of each is connected with the terminal computer (12) respectively.

I1 1 . Apparatus for irradiating a power frequency electromagnetic field, according to claim 1 in combination with a treatment of subministration of a platinum-based medicine.

12. Apparatus according to claim 1 , wherein a combination of power frequency electromagnetic field generating device and platinum-based chemotherapeutic agents, characterized by the following steps: using frequency from 1 Hz to 100 MHz and strength from 1 nrT to 100 mT.. S o as to generate superimposed static and alternating electromagnetic fields within the irradiated components. The specific voltage scheme and the applied magnetic field strength are as follows: divided into T 1 -T8 for a total of 8 time periods and T1 time-period DC voltage of 3mV to generate static electromagnetic field strength Is 2.97mT, the average value of AC voltage is 1 .5mV, the average strength of alternating electromagnetic field is 1 .48mT; the DC voltage is 4mV at T2, the static electromagnetic field strength is 3.95mT and the average AC voltage is 2.5mV, resulting in alternating electromagnetic field The average strength of 2.47mT; T3 time period DC voltage of 3mV, resulting in a static electromagnetic field strength of 2.97mT, the average AC voltage of 1 .5mV, resulting in alternating electromagnetic field average strength of 1 .48mT; T4 time DC voltage of 4mV, resulting in static The strength of electromagnetic field is 3.95mT, the average value of AC voltage is 2.5mV, and the average strength of alternating electromagnetic field is 2.47mT. In T5, Is 3mV, the static electromagnetic field strength is 2.97mT, the average value of AC voltage is 1 mV, the average strength of alternating electromagnetic field is 1 .08mT; the direct current voltage is 4mV in T6, the static electromagnetic field strength is 3.95mT and the average value of AC voltage is 1 .5 mV, resulting in an average alternating electromagnetic field strength of 1 .48mT; T7 time DC voltage of 3mV, resulting in a static electromagnetic field strength of 2.97mT, the average AC voltage of 1 mV, alternating electromagnetic field generated an average strength of 1 .08mT; T8 time DC voltage Is 4mV, the static electromagnetic field strength is 3.95mT, the average AC voltage is 1 .5mV, and the average strength of the alternating electromagnetic field is 1 .48mT.

13. The apparatus according to claim 1 , characterized in that superimposed static and alternating electromagnetic fields are generated inside the irradiating part through an autotransformer, the total magnetic field strength is the same at different positions inside the irradiating region, and during the irradiation period the loading magnetic field varies from 1 .0 to 7.0 mT, in particular with an average strength of 5.09 mT.

[14. The apparatus according to claim 1 , characterized in that the action time of the magnetic field is that each time the voltage is changed for each time period, the irradiation is continued for 3.5-10 minutes, the irradiation time for each wheel is 30- 90 minutes, and the time for the cells and animalsjhe total irradiation time is 60- 120 minutes.

0 5. The apparatus according to claim 1 , wherein the other platinum-based chemotherapeutic agents is selected from the group comprised of cisplatin, carboplatin and oxaliplatin.

□ .

Description:
TITLE

APPARATUS FOR TREATING PATHOLOGICAL CELLS

DESCRIPTION

Field of the invention

[0001] The present invention belongs to the field of physics, biology and medicine and relates to medical devices, especially capable of providing tumor therapeutic electromagnetic fields.

[0002] In particular, it provides an apparatus for suppressing malignant cells, especially of the neuroblastoma and nephroblastoma type.

[0003] The invention also provides such an apparatus configured to generate a power frequency electromagnetic field in combination with the administration of a platinum-based chemotherapeutic agent.

[0004] The invention also provides such an apparatus configured to affect the concentration of oxygen free radicals and for influencing genetic pathway in pathological cells.

[0005] The present invention claims conventional priority of already published CN106621050A and CN106902464A, that are here incorporated by reference.

Background art

[0006] Low-frequency electromagnetic field frequencies within 300 kilohertz (kHz) can have biological effects related to acting on charged macromolecules and altering their functional status. The inhibitory effect of magnetic fields on tumors has been widely reported (see Artacho-Cordon Francisco et al., 2013, Int J Mol Sci; Tofani S, 2015, Curr Topics in Med Chem).

[0007] The European Union and the U.S. FDA have approved the use of a tumor therapeutic magnetic field generating device (Novocure, Israel) for the clinical treatment of multiform glioblastoma, by a magnetic field of 100-300 kHz (see US8019414 , US8019414, US8406870).

[0008] A variety of magnetic field applications with tumor suppression effects have also been proposed using strong magnetic fields greater than 0.4 tesla (T) (see Chinese patent application CN901 00152) and pulsed magnetic field (see Chinese patent application CN941 1 1668). [0009] Application of a static electromagnetic field generated by DC superimposed with an alternating magnetic field generated by a ultra-low frequency AC has proven to provide effects on the singlet-triplet transition of free-radical lone pair electrons, increasing the chances of level transitions and change of the half- life of free radicals, thereby increasing their biological effects (see Tofani S , 1 999, P hysica Medica; Barnes F S et al., 201 5, Bioelectromagnetics, as well as W09966987A1 ).

[00010] No significant systemic side effects have been found in low-frequency electromagnetic fields acting on animals and humans (see Tofani S et al., 2002, IE E E Transactions on P lasma S cience; Ronchetto F et al., 2004, Bioelectromagnetics).

[0010] C ell autophagy has important pathophysiological functions. Taku Kokura received the Nobel P rize in Medicine and P hysiology for his pioneering contributions in this area. Autophagy has a double-edged sword effect on the fate of cells and can help cells survive or induce apoptosis. It is an important biological feature and therapeutic target for malignant tumors (see White E et al., 2009, C lin Caner Res; Hanahan D et al., 201 1 , C ell; Booth LA et al., 2014, Cell S ignal). Low- frequency magnetic fields have the effect of inducing autophagy (see Marchesi N et al., 2014, C ellular P hysiology), but how this affects tumor cell survival and death, as well as specific molecular mechanisms, is not yet known.

[001 1 ] As two common childhood malignancies, nephroblastoma is a kidney tumor and neuroblastoma typically occurs in the adrenal gland. They are both derived from undifferentiated or poorly differentiated embryonic cells. C urrent clinical treatment procedures include surgery, radiation, chemotherapy and stem cell transplantation. The clinical outcomes depend on the staging of the patients and the differential state of tumor cells. For patients with relapse and metastasis, anaplastic tumor cells are usually resistant to conventional radio- and chemotherapies, and there is still lack of treatment options, thus the fatality rate remains high. Moreover, the surviving patients frequently suffer from side effects as a consequence of radiation and cytotoxic drugs. There is always demand for development of novel therapeutic options to treat the highly malignant tumors and to reduce the side effects of conventional therapeutics. S ummary of the invention

[0012] It is an object of the present invention to provide an apparatus for successfully treat and suppress malignant cells of the neuroblastoma and nephroblastoma type using non-invasive application of static and alternating electromagnetic fields.

[0013] According to a first aspect of the invention, an apparatus for treating pathological cells, in particular of neuroblastoma and nephroblastoma type, comprises a workspace configured to receive a target body, at least one set of coils arranged to irradiate a static electromagnetic field in said workspace and also arranged to irradiate an alternating magnetic field in said workspace, a control unit arranged to supply selectively current to said at least one set of coils in such a way to irradiate in said workspace a static electromagnetic field and an alternating magnetic field for predetermined time intervals T 1 ,T2, T3, ϋ Tn, said control unit arranged to supply selectively current to said at least one set of coils in such a way to irradiate in said workspace said static electromagnetic field and an alternating magnetic field superimposed to each other with a maximum superimposed strength of 100mT and ratio of static electromagnetic field to alternating magnetic field is in the range of 0.5-2.5, said static electromagnetic field having an intensity selected in such a way that said static electromagnetic field and alternating magnetic field superimposed to each other have always a positive strength.

[0014] P referably, said control unit keeps the total magnetic field at a same overall strength in said workspace, said overall strength comprised within a range of 1 .0-7.0mT, wherein the average strength is comprised between 4 and 6mT, in particular the average strength is 4.5 - 5.5 mT, preferably 5.1 mT.

[001 5] According to a preferred embodiment, said set of coils is selected from the group consisting of

□ a single set of coils in which a voltage supply is applied superimposing a static DC supply and an alternating AC supply,

□ a first set of coils arranged to irradiate a static electromagnetic field in said workspace and a second set of coils arranged to irradiate an alternating electromagnetic field in said workspace.

[001 6] The patient can be arranged to move relatively to the single set of coils or multiple set of coils. [0017] Advantageously, said control unit is configured to supply selectively current to said set of coils in each time interval T 1 -Tn according to a predetermined voltage scheme, according to which in each time interval T 1 -Tn the DC voltage applied to said set of coils is in a voltage range between 1 -5mV, resulting in a static electromagnetic field in a strength range between 1 -5mT, the AC voltage applied to said set of coils is in an average voltage range between 1 -5mV, resulting in an alternating electromagnetic field with an average strength range of 1 -5mT.

[001 8] In particular, a power frequency electromagnetic field generating apparatus with tumor suppression function, comprises a power frequency power source, two autotransformers, two diode bridges, two groups of coils, an irradiation part, a voltage detection part, a magnetic field detection part, temperature measurement components and terminal computer components.

[001 9] In a possible embodiment, said AC supply is provided at a frequency of 50 / 60Hz, through the DC and AC autotransformer constantly changing voltage, thus generating superimposed static and alternating electromagnetic fields in the irradiated parts.

[0020] In possible advantageous embodiments, the electromagnetic alternating field with tumor suppression effect of the present invention can provide a frequency in the range up to 100 MHz, the ratio of static electromagnetic field to alternating magnetic field always in the range of 0.5-2.5, and the total strength is in the range up to 100 mT.

[0021 ] The invention is a special power frequency electromagnetic field generating device and application mode, which is designed rationally and can act on the organism, has the advantages of non-invasive low toxicity and side effects, significantly inhibits a plurality of tumors, and can influence the intracellular superoxide radical content, and promote cell autophagy.

[0022] The hypnotized mechanism of action is the influence of the magnetic field on the electron spin energy levels and consequently on the free radicals concentration through the Zeeman effect. Additional magnetic field having frequency up to 100 MHz and strength down to micro Tesla range may be also used to improve the antitumor efficacy of the treatment due to the combine effect between the MHz field and the static as well as the extremely low frequency magnetic field (1 -300 Hz) on the spin hyperfine resonance. [0001 1 ] According to an aspect of the invention, an apparatus configured to generate a power frequency electromagnetic field in combination with the administration of a platinum-based chemotherapeutic agent is provided

[0023] The apparatus can therefore provide a combination treatment of a power-frequency electromagnetic field generating device and a platinum-based chemotherapeutic agent.

[0024] The power frequency 50 / 60Hz power supply is used to constantly change the voltage through the direct current and alternating current auto- transformers, internal generated superimposed static and alternating electromagnetic fields, the average loading magnetic field strength of 4,5 to 5,5 millitesla, in particular 5.1 millitesla, irradiated components on the exposure to the total daily irradiation time of 60-120 minutes, the platinum-based chemotherapeutic agent applied to the irradiated components.

[0025] The device has the advantages of reasonable design, unique frequency, static and alternating electromagnetic fields loaded at the same time, the magnetic field strength generated by the device is uniform, highly controllable and convenient to implement; the interference of the illuminated object is small and non-invasive; the in vitro and in vivo experiments confirmed that the tumor therapeutic electromagnetic field combined with platinum-based chemotherapy drugs can enhance the efficacy of platinum-based chemotherapy drugs and magnetic field alone, a significant inhibition of a variety of tumors; can reduce the dose of cisplatin and reduce side effects.

[0026] It is an object of the present invention to provide a power frequency electromagnetic field generating device with tumor suppressing effect comprising a magnetic field generating unit providing an application sequence of ultra-low frequency, low strength, capable of acting on a living body and generating a specific biological effect. The application sequence has tumor inhibitory effect both in vitro and in vivo.

[0027] In possible embodiments of the present invention the same exposure apparatus previous established [Tofani et al., 2001 Bioelectromagnetics; Tofani, 2002 IE E E P lasma S cience; Tofani, 2002 Bioelctromagnetics] can be used. The characteristics of the MF generated by this embodiment have been reported in details [Tofani, 2002, IE E E Transaction on E MC]. Here we have selected specific exposure conditions slightly different from that previously established. In the experiments carried out according to the invention, the time-average strength of the MF was slightly different from the previous studies, 5.09 mT instead of 5.5 mT. This is due to the modification of the time duration of each of the many rounds constituting one MF treatment session. The present exposure conditions result to be effective in new cancer types (neuroblastoma and nephroblastoma) before not considered

[0028] In a possible embodiment the power frequency electromagnetic field generating device comprises a power frequency power source, a first a utotrans former (AC/AC ), a second autotransformer (DC), a first diode bridge and a second diode, a first set of coils, a second set of coils, an irradiation part, a voltage detection part, a magnetic field detection part, a temperature measurement part and a terminal computer.

[0029] In a possible embodiment, The power frequency power supply can be respectively connected with one end of the first autotransformer and the second autotransformer, the other ends of the first autotransformer and the second autotransformer are respectively connected with the first diode bridge and the second diode bridge, the other end of the first diode bridge is connected with the first group of coils. The other end of the second diode bridge is connected with the second group of coils, the irradiation component is placed between the first group of coils and the second group of coils, one end of the voltage detection component is respectively connected with the first group of coils and the second group of coils and the other end is connected with the terminal computer.

[0030] In such embodiment, one end of each of the magnetic field detection component and the temperature measurement component ca ne respectively connected with the irradiation component, and the other end of the magnetic field detection component and the temperature measurement component are respectively connected with the terminal computer.

[0031 ] Two types of irradiation components can be provided, a first one is a cell irradiation platform designed for the cell culture plate and the culture plate, which consists of the first plate, the second plate, and the stage between the two separators. The cell culture plate is placed on a stage with a spacing d, which can be for example of 12.9 cm between the spacer and the spacer. The height of the stage is adjustable to ensure that the bottom of the cell culture plate is located in the middle of the irradiated area. A second irradiation unit, in the experimental prototype designed for animal irradiation platform, designed primarily for mice, consisted of a first separator, a second separator two, and located between the two separators of the six animal irradiation cabins composed of animal irradiation chamber, the parts including a front baffle, a rear baffle, an intermediate baffle, and four chamber baffles. Four front baffles and rear baffles can provide drilled multiple holes for ventilation Hole, so as to avoid animal hypoxia, a spacer and spacer two spacing of 12.9 cm, six irradiation cell is located in the middle of the irradiation area, each round of irradiation can handle 6 mice. Irradiation components made of transparent resin plate material, can be cleaned and UV disinfection.

[0032] According to a particular aspect of the present invention a method of magnetic field application using the device, by:

using 50 / 60Hz frequency power supply, through the DC and AC autotransformer constantly changing the voltage, thus generating superimposed static (from the DC) and alternating (from AC) electromagnetic field within the irradiated components; specific changes in the voltage scheme and the application of the magnetic field The intensities are as follows: divided into T 1 -T8 for a total of eight time periods, DC voltage of 3 millivolts (mV) during the T1 time period, resulting in a static electromagnetic field strength of 2.97 milli-Tesla (mT) and an average AC voltage of 1 .5 mV. The average strength of alternating electromagnetic field is 1 .48mT; the DC voltage is 4mV at T2, the static electromagnetic field strength is 3.95mT, the average value of AC voltage is 2.5mV, the average strength of alternating electromagnetic field is 2.47mT, and the DC voltage is 3mV , Resulting in a static electromagnetic field strength of 2.97mT, the average AC voltage of 1 .5mV, resulting in alternating electromagnetic field average strength of 1 .48mT; T4 time DC voltage of 4mV, resulting in a static electromagnetic field strength of 3.95mT, AC voltage average of 2.5mV , Resulting in an average alternating electromagnetic field strength of 2.47mT; T5 time period DC voltage of 3mV, resulting in a static electromagnetic field strength of 2.97mT, AC voltage average of 1 mV, alternating current The average field strength is 1 .08mT; the DC voltage is 4mV in T6, the static electromagnetic field strength is 3.95mT, the average value of AC voltage is 1 .5mV, the average strength of alternating electromagnetic field is 1 .48mT, and the DC voltage is 3mV in T7 The static electromagnetic field strength is 2.97mT, the average value of AC voltage is 1 mV, the average strength of alternating electromagnetic field is 1 .08mT; the DC voltage is 4mV at T8, the static electromagnetic field strength is 3.95mT, the average value of AC voltage is 1 .5mV The average magnetic field strength is 1 .48mT; the total magnetic field strength is the same at different positions inside the irradiated region, the average magnetic field strength is 5,09 mT from T 1 to T8; each time the T 1 -T8 time is changed, the voltage is continuously irradiated for 3.5-10 minutes, Irradiation time accumulated 30-90 minutes, 2-4 rounds of daily irradiation, the total daily irradiation time of 60- 120 minutes for cells and animals.

[0033] The electromagnetic field with tumorsuppression effect described in this advantageous configuration has a frequency in the range of 30-300 Hz, a total strength of static (direct current) and alternating (alternating current) electromagnetic fields in the range of 1 -10 mT, static (direct current) and alternating (alternating current) strength ratio of electromagnetic field is in the range of 0.5- 2.5.

[0034] The apparatus can be configured to provide a magnetic field effect time, each time the voltage changes continued irradiation 3.5-10 minutes, each round of irradiation time 30-90 minutes, the total daily irradiation time 60-120 minutes, the device and method provide application on a variety of tumors having a significant inhibitory effect in vitro and in vivo, magnetic field can increase the content of superoxide radicals and promote autophagy.

[0035] The electromagnetic field generating device and the application method described in the present invention have significant in vitro and in vivo inhibitory effects on various tumors. The magnetic field can increase the intracellular superoxide radical content and promote cell autophagy. In vitro cell culture experiments and cell viability experiments showed that the generated magnetic field can inhibit a variety of tumor cell growth, including nephroblastoma, neuroblastoma, breast cancer, colorectal cancer and other cells; in vitro experiments can be effective Inhibits the growth and metastasis of colorectal and breast cancers.

[0036] The invention has the following beneficial effects: (1 ) the device has a reasonable design, adopts a unique power frequency and is convenient to implement (2) the static electromagnetic field generated by the direct current is superposed with the alternating magnetic field generated by the alternating current and can affect free radicals in the magnetic field and enlarge its biological effect (3) uniform strength of the magnetic field in the irradiated part; (4) easy operation, application scheme can be realized by changing the voltage; (5) continuous monitoring of the relevant voltage, magnetic field strength, Highly controlled; (6) placed in the irradiated parts of the organism suffered little interference, no trauma;

(7) has a significant inhibitory effect on a variety of tumors, and low side effects;

(8) enhancement.

[0037] According to a particular object of the present invention a combination method of a power frequency electromagnetic field generating device and a platinum-based drug is provided, whose combined is greater than a platinum- based drug or an electromagnetic field are used alone.

The above exposure apparatus was found to exert synergistic effect with chemotherapeutic agent cisplatin in a Luis lung carcinoma (Tofani 2003 P harmacological Research), in the present invention, we show that specific sequences of the old magnetic fields treatment are able to exert synergistic activity with cisplatin in a different tumor, that is nephroblastoma.

[0038] The combination method of the power frequency electromagnetic field generating device and the platinum-based medicine provided by the present invention is realized through the following steps:

[0039] The construction of power frequency electromagnetic field generator, using frequency 50/60 Hz power supply, through the DC and AC autotransformer constantly changing voltage, thus generating superimposed static (from DC) and alternating (from AC ) electromagnetic field inside the irradiated parts, loading T he average strength of the magnetic field can be for example 5.09 mT, and the total irradiation time per day for irradiated components is 60-120 minutes; the exposure of the platinum-based drug to the irradiated components, the platinum-based drug The use of cisplatin, carboplatin, oxaliplatin and other platinum-based chemotherapeutic agents, use and dosage: in vitro concentration of 500nM, dosing once a day, the body dose of 20mg / kg, administered three times a week, this Is the lower dose selected in the cisplatin effective dose range.

[0040] The apparatus of the invention provides that the combination of the tumor therapeutic electromagnetic field and the platinum-based chemotherapeutic drugs such as cisplatin can enhance antitumor effect through in vitro and in vivo experiments instead of simple superposition.

[0041 ] Therefore, the present invention has the following beneficial effects: (1 ) The device uses a unique power frequency and loads static (direct current) and alternating (alternating current) electromagnetic fields at the same time, and the magnetic field strength generated by the device is uniform and highly controllable; 2) The organism is less disturbed and non-invasive; (3) It can enhance the curative effect of platinum-based chemotherapy drugs and has significant inhibitory effect on various tumors; (4) It can reduce the dose of cisplatin and reduce the side effects.

[0042] According to a particularaspect of the invention, magnetic fields at much higher frequency (MHz magnitude, for example between 100kHz and 100MHz) used in combination with static electromagnetic fields can also have importance in influencing the spin states and then the correspondent chemical reactions. In fact, multiple interactions in which weak magnetic fields (strength on the order micro Tesla, or =T) at higher frequency can change the population distribution in the various spin states, among them the electron-nuclear hyperfine interaction. E xternal static in combination with high frequency magnetic fields can alter radical pair spin dynamics by Zeeman and H FI resonance effects, and thereby change the relative yields of reaction products that derive, alternatively, from singlet and triplet radical pair states. Many biological molecules exhibit hyperfine splitting constant that range from 0,1 to 35 MHz , so fields of this frequency may be used to influence hyperfine coupling resonance. Magnetic fields at this higher frequency and very low strength have been used, together with static electromagnetic fields, to influence hyperfine resonance decreasing the intracellular superoxide concentration to selectively increase rat pulmonary arterial smooth muscle cells proliferation (Tofani S ., 201 8, Cancer Treatment , Intech, in press).

Brief description of the drawings

[0043] The invention will be now shown with the following description of its exemplary embodiments, exemplifying but not limitative, with reference to the attached drawings in which:

F igure 1 is a schematic structural view of the electromagnetic field generating device of the present invention.

F igure 2 is a schematic diagram of a cell irradiation platform placed in a magnetic field, one of the irradiation components of the device of the present invention. F ig. 3 is a schematic diagram of an animal irradiation platform placed in a magnetic field, which is the second part of the irradiation device of the present invention.

FIG . 4 shows the main parameters of the electromagnetic field application method according to the present invention, that is, the DC and AC voltage variations and the corresponding electromagnetic field intensities are shown. The AC voltage is shown as an average.

F ig. 5 is a graph showing the inhibitory effect of G401 against nephroblastoma cells of the present invention.

F ig. 6 shows the inhibitory effect of the invention on neuroblastoma cell line C H LA255.

F ig. 7 is an effect diagram of changing the content of superoxide radical in G401 of the nephroblastoma cell by the electromagnetic field in the present invention.

F igure 8 is a schematic diagram of the electromagnetic field inhibition of tumor cells G401 and C H LA255 in the present invention, including the development of autophagy-related protein bands by H R P chemiluminescence.

F ig. 9 is a graph showing the effect of the present invention on growth of nephroblastoma G401 in vivo.

F ig. 10 shows the effect of the present invention on liver and kidney function of G401 mouse model of nephroblastoma.

F ig. 1 1 and 12 show perspective views of possible embodiments of the apparatus according to the invention.

Detailed description

[0044] The present invention is further described below with reference to the accompanying drawings and embodiments.

E mbodiment 1

[0045] The embodiment provides a power frequency electromagnetic field generating device with tumor suppression function, which comprises a commercial power supply 1 , a first autotransformer 2 (AC AC), a second autotransformer 3 (DC) A first diode bridge 4, a second diode bridge 5, a first group of coils 6, a second group of coils 7, an irradiation unit 8, a voltage detection unit 9, a magnetic field detection unit 10, a temperature measurement unit 1 1 and A terminal computer 12, a power frequency power supply 1 is respectively connected with one end of the first autotransformer 2 and the second autotransformer 3, the other end of the first autotransformer 2 and the second autotransformer 3 are respectively connected with the first diode The bridge 4 is connected to the second diode bridge 5, the other end of the first diode bridge 4 is connected to the first group of coils 6, and the other end of the second diode bridge 5 is connected to the second group of coils 7, the irradiation unit 8 is disposed between the first set of coils (6) and the second set of coils (7), one end of the voltage detection unit 9 is connected to the first set of coils (6) and the second set of coils (7), respectively, and the other end is connected to the terminal computer 12 , One end of each of the magnetic field detecting part 10 and the temperature measuring part 1 1 is respectively connected with the irradiating part 8, 12 is connected to the computer.

[0046] There are two types of irradiation components 8, the first one is a cell irradiation platform designed for the cell culture plate and the petri dish, and consists of a spacer 13, a spacer 14, and a stage 15 located between the two partitions The cell culture plate is placed on the stage. The distance d between the first plate 13 and the second plate 14 can be for example 12.9 cm. The height of the stage can be adjustable to ensure that the bottom of the cell culture plate is located in the middle of the irradiation zone.

[0047] The second irradiation unit 8 can be an animal irradiation platform and is mainly designed for mice. The irradiation unit can be broadly defined as a workspace 8. Of course, a design for therapeutic application can be provided, as depicted in figures 1 1 and 12.

[0048] The irradiation unit 8. It can be is composed of a partition plate 13, a partition plate 14 and six animal irradiation chambers 1 6 arranged between two partition plates to form an animal The components of the irradiation chamber 16 include a front baffle 18, a back baffle 1 9, a middle baffle 20, a small baffle 21 , a small baffle 22, a small baffle 23 23 and a small baffle 24 24, wherein the front baffle P late 18 and the tailgate 19 drilled a plurality of small holes 17 as a vent to avoid animal hypoxia, a spacer 13 and the spacer 14 spacing of 12.9 cm, six irradiation chamber 1 6 is located in the middle of the irradiation area, S ix mice can be treated per round of irradiation. The material of the irradiation part 8 is made of transparent resin plate, which can be cleaned and disinfected with ultraviolet light. [0049] The specific magnetic field application method adopts the scheme as shown in F ig. 4, adopting a power frequency of 50/60 Hz, continuously changing the voltage through the direct current and the alternating current a utotrans former, thereby generating the static and alternating field superposition electromagnetic field inside the irradiating component; The program and the generated magnetic field strength are as follows: divided into T 1 -T8 a total of 8 time periods, T 1 time period DC voltage of 3mV, resulting in a static electromagnetic field strength of 2.97mT, the average AC voltage of 1 .5mV, the average alternating electromagnetic field strength 1 .48mT; T2 time period DC voltage of 4mV, resulting in a static electromagnetic field strength of 3.95mT, AC voltage average of 2.5mV, resulting in alternating electromagnetic field average strength of 2.47mT; T3 time DC voltage of 3mV, resulting in static electromagnetic field strength 2.97mT, the average value of AC voltage is 1 .5mV, the average strength of alternating electromagnetic field is 1 .48mT; the DC voltage is 4mV in T4 time, the static electromagnetic field strength is 3.95mT, the average value of AC voltage is 2.5mV, The strength is 2.47mT; T5 time period the direct current voltage is 3mV, produces the static electromagnetic field strength 2.97mT, the average value of the alternating current voltage is 1 mV, produces the exchange The average strength of the electromagnetic field is 1 .08mT; the DC voltage is 4mV in T6, the static electromagnetic field strength is 3.95mT, the average value of AC voltage is 1 .5mV, the average strength of alternating electromagnetic field is 1 .48mT, and the DC voltage is 3mV in T7, The static electromagnetic field strength is 2.97mT, the average value of AC voltage is 1 mV, the average strength of alternating electromagnetic field is 1 .08mT; the DC voltage is 4mV at T8, the static electromagnetic field strength is 3.95mT, the average value of AC voltage is 1 .5mV The average magnetic field strength is 1 .48mT; the total magnetic field strength is the same at different positions inside the irradiated region, the average magnetic field strength is 5,09 mT from T 1 to T8; each time the T1 -T8 time is changed, the voltage is continuously irradiated for 3.5- 10 minutes, Irradiation time accumulated 30-90 minutes, 2-4 rounds of daily irradiation, the total daily irradiation time of 60-120 minutes for cells and animals.

[0050] E mbodiment 2

[0051 ] E ffect of the P resent Invention on C ultured Nephroblastoma C ell G401 Using the apparatus shown in FIG . 1 and FIG . 2, the cells were treated according to the protocol described in FIG . 4, and each time the voltage was changed for 3.5 minutes, the action time per round was about 30 minutes, four days a day, a total of 2 hours of electromagnetic field irradiation time; negative control group cells placed in the electromagnetic field coil is placed between the platform, the same time; positive control cisplatin (J iangsu Howson P harmaceutical C o., Ltd. C ompany) at a concentration of 500 nM administered once daily.

[0052] S pecific implementation process

[0053] C ell Lines and Methods of C ulture: Nephroblastoma cells G401 , adherent cells, cultured in a 37 e C incubator with 5% carbon dioxide and saturated steam in McC oy medium with 1 0% fetal bovine serum;

[0054] Major equipment: power frequency electromagnetic field device, cell incubator, living cell counter, multi-functional microplate reader;

[0055] Main reagents: C C K8 kit, fluorescent probe DC F H-DA, BCA kit, 40% acrylamide gel stock solution, Tris base, T E ME D, S DS , protease inhibitors, protein standards, H R P chemiluminescence detection kit;

[0056] Antibodies: primary antibody including LC 3, GAP DH, p62, anti-mouse and anti-rabbit H R P conjugated secondary antibody;

[0057] C ell viability test: The nephroblastoma cell line G401 was seeded in a 6-well plate at a density of 1 B 10 5 cells / well, and three replicate wells per treatment condition. The control group, the irradiation group and the cisplatin group were treated according to the above protocol Were dealt with, the day before the collection of cells treated with a living cell counter count, calculated according to reading the number of cells to make cell proliferation curve and electromagnetic field inhibition curve;

[0058] Statistical analysis: E ach irradiation conditions were repeated 3 times, each time three holes, the results were mean e standard error, the results do T test, with P <0.05 as a significant difference in indicators;

[0059] As shown in F igure 5, the left panel shows the cell proliferation curve, where the X-axis is the number of days of magnetic field irradiation, the Y-axis is the number of cells, the curve one is the cell proliferation curve of the control group, the curve two is the cell proliferation curve of the irradiation group, As the positive control group, cell proliferation curve of cisplatin group; the right side of the figure is the cell inhibition curve, where the X-axis magnetic field irradiation days, Y axis inhibition rate (%), the curve for the irradiation group cell inhibition rate curve C isplatin group cell inhibition rate curve; T he results showed that irradiation group cells slowed down, the inhibition rate increased;

[0060] Determination of superoxide radical content: T he nephroblastoma cells G401 were seeded into 96-well plates at a dens ity of 1 B '\ 0 & cells / well, and each treatment condition was 3 wells. T he irradiation group was treated as s hown in F igure 4 , E ach round of time 30 minutes, the control group placed in the electromagnetic field coil is not placed between the stage, a total of four rounds of treatment, a total of 1 20 minutes irradiation time, after each round of treatment with fluorescent probe DC F H-DA (1 0 =M) Incubation in the incubator for 20 minutes, incubated with P BS after washing did not enter the cell probe, with a multi-function microplate reader detection, excitation wavelength 488nm, absorption wavelength 525nm, respectively, read the fluorescence strength values of each group; as shown in F igure 7, Where the X-axis is the magnetic field irradiation time, the Y- axis is the intracellular probe fluorescence strength, that is the relative content of superoxide free radicals, the curve one is the relative content of superoxide free radicals in the control cells, and the curve two is the irradiation group The relative content of superoxide free radicals in the cells showed that the intracellular superoxide radicals in the irradiation group were higher than the control group after receiving a round of 30-minute irradiation, and continued until 1 20 minutes To a level close to the control group, the result said C learly this magnetic field application method can indeed increase the content of free radicals in the cell, and markedly rapid, time in 1 hour.

[0061 ] Immunoblotting experiments: C ells were centrifuged after treatment, washed in P BS , suspended in prechilled RIPA buffer (added with protease and phosphorylase inhibitor), and then subjected to BCA method for protein quantification, and the proteins were separated by S DS -PAG E gel electrophoresis , E ach hole sample amount of 20 =g, with the appropriate antibody for immunization hybridization, H R P chemiluminescence method of protein bands, as shown in F igure 8, p62 decreased after irradiation, LC 3-II increased, indicating that irradiation can induce G401 Autophagy.

[0062] E mbodiment s

[0063] T he present invention acts on cultured neuroblastoma cells, C H LA255, using the apparatus shown in FIG . 1 and F IG . 2, and the cells were treated according to the protocol as shown in FIG . 4, and each time the voltage was changed for 3.5 minutes and the action time per round was about 30 Minutes, 4 days a day, a total of 2 hours of electromagnetic field irradiation time; negative control group cells placed in the coil between the electromagnetic field application platform between the same time; positive control for cisplatin (J iangsu Howson P harmaceutical C o., Ltd.) , Administered at a concentration of 500 nM once daily.

[0064] The specific implementation process is:

[0065] C ell lines and culture methods: Neuroblastoma cells C HLA255, adherent cells, cultured in 37 e C incubator with 10% fetal bovine serum in IMDM medium containing 5% carbon dioxide and saturated water vapor;

[0066] Major equipment: power frequency electromagnetic field device, cell incubator, live cell counter;

[0067] Main reagents: C C K8 kit, BCA kit, 40% acrylamide gel storage solution, Tris base, T E ME D, S DS , protease inhibitors, protein application standards, H R P chemiluminescence detection kit;

[0068] Antibodies: primary antibody including LC 3, GAP DH, p62, anti-mouse and anti-rabbit H R P conjugated secondary antibody;

[0069] C ell Viability Assay: The neuroblastoma cells, C H LA255, were seeded in 6-well plates at a density of 1 B 10 5 / well with 3 replicate wells per treatment condition. C ontrol, radiation and cisplatin groups were treated as described above Were dealt with, the day before the collection of cells treated with a living cell counter count, calculated according to reading the number of cells to make cell proliferation curve and electromagnetic field inhibition curve;

[0070] Statistical analysis: E ach irradiation conditions were repeated 3 times, each time three holes, the results were mean e standard error, the results do T test, with P <0.05 as a significant difference in indicators;

[0071 ] As shown in F igure 6, the left panel shows the cell proliferation curve, in which the X-axis is the days of magnetic field irradiation, the Y-axis is the cell number, the curve one is the cell proliferation curve of the control group, the curve two is the cell proliferation curve of the irradiation group, Is the cell proliferation curve of cisplatin group; the right graph is the cell inhibition curve, wherein the X- axis is the days of magnetic field irradiation, the Y axis is the inhibition rate (%), the curve is the cell inhibition rate curve of irradiation group, P latinum group cell inhibition rate curve, the figure results showed that irradiation group cells slowed down, the inhibition rate increased; [0072] Immunoblotting experiments: C ells were centrifuged, washed in P BS , suspended in prechilled RIPA buffer (protease and phosphorylase inhibitor added), and protein quantified by BCA method, and the proteins were separated by S DS - PAG E gel electrophoresis As shown in F igure 8, p62 decreased and LC3-II increased after irradiation, indicating that irradiation can induce C HLA255 cells to self-immunize bite.

[0073] E xample 4.

[0074] A magnetic field generating device of the present invention can be combined to a platinum-based chemotherapeutic agent treatment.

[0075] The method is implemented by the following steps: constructing a power frequency electromagnetic field generating device, adopting a power frequency of 50/60 Hz, continuously changing the voltage through a DC-AC autotransformer to generate superposition static (by DC) and alternating (by AC) electromagnetic field with an average magnetic field for example of 5.09 milliTesla (mT) for a total irradiation time of 60-120 minutes per day for the irradiated parts on the irradiated part; applying the platinum-based drug to the irradiated part exposure, platinum- based chemotherapeutic agents selected cisplatin, carboplatin, oxaliplatin and other platinum-based chemotherapeutic agents, use and dosage: in vitro concentration of 500nM, dosing once a day, the body dose of 20mg / kg, each Weekly dosing 3 times, this is the lower dose selected in the effective dose range of cisplatin.

[0076] The power frequency electromagnetic field generator comprises a power frequency power source 1 , a first autotransformer 2 (AC AC ), a second autotransformer 3 (DC DC), a first diode bridge 4, a second A diode bridge 5, a first group of coils 6, a second group of coils 7, an irradiation unit 8, a voltage detection unit 9, a magnetic field detection unit 10, a temperature measurement unit 1 1 and a terminal computer 12. The commercial power supply 1 , One end of the first autotransformer 2 and the second autotransformer 3 are connected, the other end of the first autotransformer 2 and the second autotransformer 3 are respectively connected with the first diode bridge 4 and the second diode electrification The bridge 5 is connected, the other end of the first diode bridge 4 is connected to the first set of coils (6), the other end of the second diode bridge 5 is connected to the second set of coils (7), the irradiation member 8 is placed on the first Between the set of coils 6 and the second set of coils (7), one end of the voltage detection unit 9 is connected to the first set of coils (6) and the second set of coils (7), respectively, and the other end is connected to the terminal computer

12. E ach of the magnetic field detection unit 10 and the temperature measurement unit 1 1 One end of each is connected to the irradiation unit 8, and the other end of each is connected to the terminal computer 12, respectively.

[0077] In FIG . 3, there are two types of irradiation components 8, the first is a cell irradiation platform designed for cell culture plates and dishes, the first partition

13, the second partition 14, and located in the two partitions Between the stage 15 composition, the cell culture plate placed on the stage, a spacer 13 and the spacer 14 spacing of 12.9 cm, the stage height adjustable to ensure that the bottom of the cell culture plate is located in the irradiation area Middle position.

[0078] The specific magnetic field loading mode adopts the scheme as shown in FIG . 2, adopting a power frequency of 50/60 Hz, continuously changing the voltage through the DC and AC autotransformers, and generating the electromagnetic field superimposed on the DC and AC within the irradiated part through the following steps: T1 -T8 is divided into 8 time periods, T 1 time period DC voltage of 3 millivolts (mV), resulting in a static electromagnetic field strength of 2.97 millitesla (mT), the average AC voltage of 1 .5mV, alternating electromagnetic fields The average strength is 1 .48mT; the DC voltage at T2 is 4mV, the static electromagnetic field strength is 3.95mT, the average AC voltage is 2.5mV, the average strength of alternating electromagnetic field is 2.47mT; and the DC voltage at T3 is 3mV, The electromagnetic field strength is 2.97mT, the average value of AC voltage is 1 .5mV, the average strength of alternating electromagnetic field is 1 .48mT; the DC voltage is 4mV in T4 time, the static electromagnetic field strength is 3.95mT and the average value of AC voltage is 2.5mV The average field strength of the electromagnetic field is 2.47mT; the DC voltage is 3mV in the T5 period, the static electromagnetic field strength is 2.97mT and the average value of the AC voltage is 1 mV, resulting in an alternating electromagnetic field The average strength is 1 .08mT; T6 time period DC voltage is 4mV, resulting in a static electromagnetic field strength of 3.95mT, the average AC voltage of 1 .5mV, alternating electromagnetic field generated average strength of 1 .48mT; T7 time DC voltage of 3mV, resulting in static The electromagnetic field strength is 2.97mT, the average value of AC voltage is 1 mV, the average strength of alternating electromagnetic field is 1 .08mT; the direct current voltage is 4mV at T8, the static electromagnetic field strength is 3.95mT and the average value of AC voltage is 1 .5mV, The average strength of the electromagnetic field is 1 .48mT; the total magnetic field strength is the same at different positions within the irradiated region, the average magnetic field strength is 5.09 mT from T1 to T8; and each time the T 1 - Irradiation of the drug applied to the irradiated parts 8 of the object the choice of platinum-based chemotherapeutic agents cisplatin, carboplatin, oxaliplatin, each round of irradiation time 30-90 minutes, 2-4 rounds per day irradiation, for cells And animal daily total irradiation time is 60-120 minutes. The subject selected cells or animals.

[0079] This example as a combination of drug selection cisplatin, its chemical formula well known.

[0080] Other platinum-based chemotherapeutic agents, including carboplatin, oxaliplatin and other therapeutic fields with the tumor, also belong to the scope of the patent protection.

[0081 ] E xample 5, the present invention acts on cultured nephroblastoma cells G401 , and the control group, the irradiation group, the cisplatin group and the combination group are respectively treated, and each treatment condition is three replicate wells, and the cells treated one day before are collected , C ounted with a living cell counter, counted the number of cells according to the reading, and made a cell proliferation curve and an inhibition curve of the electromagnetic field to the cell.

[0082] The specific implementation process is as follows:

[0083] C ell Lines and Methods of C ulture: Nephroblastoma cells G401 , adherent cells, were cultured in McC oy's medium with 10% fetal bovine serum at 37 e C in an incubator containing 5% carbon dioxide and saturated water vapor.

[0084] Major equipment: power frequency electromagnetic field device, cell incubator, living cell counter.

[0085] C ell viability assay: G 141 cells were seeded into 6-well plates at a density of 1 B 10 Λ 5 cells / well. The irradiation group was treated with the apparatus as shown in FIG . 1 , and the cells were treated according to the protocol described in FIG . 4, Voltage for 3.5 minutes, the role of each round of about 30 minutes, 4 days a day, a total of 2 hours of electromagnetic field irradiation time; cisplatin group added cisplatin (J iangsu Howson P harmaceutical C o., Ltd.), the drug concentration of 500nM, Administered once a day; combination group radiation and cisplatin combination of radiation loading mode and cisplatin administration and the same single-use group; control group cells placed in the electromagnetic field coil is not placed between the stage , 2 hours a day, and added with cisplatin group, the same volume of saline; daily collection of cells treated the day before, with live cell counter count calculate the number of cells according to the reading, cell proliferation curve and electromagnetic field inhibition curve.

[0086] Statistical Analysis: E ach irradiation conditions repeated three times, each three holes, the results were mean e standard error, the results do T test with P <0.05 as a significant difference in indicators.

[0087] As shown in F ig. 5, the left panel shows the proliferation curve of G401 cells, wherein the X axis is the number of days of cell treatment, the Y axis is the number of cells, the curve one is the cell proliferation curve of the control group, the curve two is the cell proliferation curve of the irradiation group, Is the cell proliferation curve of cisplatin group, curve four is the cell proliferation curve of the combination group; the right graph is the cell inhibition curve, wherein the X axis is the cell treatment days, the Y axis is the cell inhibition rate (%), and the curve one is the irradiation group C ell inhibition curve, the second curve is the cisplatin cell inhibition rate curve, the third curve for the combination group cell inhibition rate curve; the results showed that radiation group, cisplatin group, combination group cells were slow proliferation, cell inhibition The rate of increase, of which the combined group of cells the slowest rate of cell proliferation, the highest inhibition rate.

[0088] In E xample 6, the present invention acts on cultured neuroblastoma cells C H LA255, the control group, the irradiation group, the cisplatin group and the combination group separately, and each of the treatment conditions is three replicate wells, and the cells treated by the previous day are collected , C ounted with a living cell counter, counted the number of cells according to the reading, and made a cell proliferation curve and an inhibition curve of the electromagnetic field to the cell.

[0089] The specific implementation process is as follows:

[0090] C ell Lines and Methods of C ulture: Neuroblastoma cells, C H LA255, which are adherent cells, are grown in 37 e C incubator with 10% fetal calf serum in McC oy's medium containing 5% carbon dioxide and saturated water vapor. [0091 ] Major equipment: power frequency electromagnetic field device, cell incubator, living cell counter.

[0092] C ell viability assay: Neuroblastoma cells, C H LA255, were seeded in 6- well plates at a density of 1 B 10 5 cells / well. The irradiation group was treated with the apparatus shown in FIG . 1 , and the cells were treated according to the protocol described in FIG . 4, Voltage for 3.5 minutes, the role of each round of about 30 minutes, 4 days a day, a total of 2 hours of electromagnetic field irradiation time; cisplatin group added cisplatin (J iangsu Howson P harmaceutical C o., Ltd.), the drug concentration of 500nM, Administered once a day; combination group radiation and cisplatin combination of radiation loading mode and cisplatin administration and the same single-use group; control group cells placed in the electromagnetic field coil is not placed between the stage , 2 hours a day, and added with cisplatin group, the same volume of saline; daily collection of cells treated the day before, with live cell counter count calculate the number of cells according to the reading, cell proliferation curve and electromagnetic field inhibition curve .

[0093] Statistical Analysis: E ach irradiation conditions repeated three times, each three holes, the results were mean e standard error, the results do T test with P <0.05 as a significant difference in indicators.

[0094] As shown in F igure 6, the left panel shows the proliferation curve of C H LA255 cells, wherein the X-axis is the number of days of cell treatment, the Y- axis is the number of cells, the curve one is the cell proliferation curve of the control group, the curve two is the cell proliferation curve of the irradiation group, Is the cell proliferation curve of cisplatin group, curve four is the cell proliferation curve of the combination group; the right graph is the cell inhibition curve, wherein the X axis is the cell treatment days, the Y axis is the cell inhibition rate (%), and the curve one is the irradiation group C ell inhibition curve, the second curve is the cisplatin cell inhibition rate curve, the third curve for the combination group cell inhibition rate curve; the results showed that radiation group, cisplatin group, combination group cells were slow proliferation, cell inhibition The rate of increase, of which the combined group of cells the slowest rate of cell proliferation, the highest inhibition rate.

[0095] E xample 7: G401 nephroblastoma model was established in nude mice and the animals were randomly divided into 4 groups with 8 mice in each group. The control group, irradiation group, cisplatin group and combination group were treated respectively for 1 5 days The animals were sacrificed 3 days after the treatment, the tumor weights were weighed and the biochemical indicators related to the blood analysis were taken to determine the hepatotoxicity of the drugs and irradiation.

[0096] Tumor models were established: Male nude mice were infants aged 3- 4 weeks old. Nephroblastoma G401 was inoculated into the axilla and the number was 5 B 10 ¾> / volume. The volume was 200 microliters. After one week of inoculation, the tumor could be touched. The animals were randomized G roup, control group, irradiation group, cisplatin group, combination group separately.

[0097] Major equipment: low-frequency electromagnetic field device, animal irradiation platform, automatic biochemical analyzer (Beckman C oulter Au5800).

[0098] Tumor growth inhibition in vivo: nude mice were randomly divided into 4 groups, control group, irradiation group, cisplatin group, combined group, each group of 8, irradiation group according to the scheme shown in F igure 4, each time to change the voltage effect 10 Minutes, each round of action time of about 90 minutes a day for a total of 14 days; cisplatin group was given cisplatin (J iangsu Howson P harmaceutical C o., Ltd.) 20mg / kg, ip three times a week, The rats in the control group were given cisplatin at the same time as the irradiation. The control animals were placed in the animals irradiated with electromagnetic field- free coils for 90 minutes every day, and injected intra peritonea lly with the same volume of physiology S aline; all animals were sacrificed 3 days after the neck, the eyeball to take whole blood, E DTA anticoagulant, after centrifugation to take the biochemical indicators of blood plasma, remove underarm growth tumor, weighed tumor weight, tissue cryopreservation.

[0099] Statistical analysis: E ach group of 8 animals, the results were mean e standard deviation, the results of T test, P <0.05 as a significant difference in indicators.

[00100] As shown in FIG . 9, * indicates P <0.05, which is significantly different from that of the control group. S ignificant differences in tumor weight appear between the combination group and the control group, while the irradiation group, the cisplatin group and the control group There was no significant difference, indicating that radiation and cisplatin combination of growth inhibition of tumors in vivo is better than radiation or cisplatin alone. [00101 ] As shown in FIG . 10, * indicates P <0.05, and there is a significant difference compared with the control group. P lasma albumin, globulin, aspartate aminotransferase, alanine aminotransferase, and serum creatinine reflecting renal function reflect liver function, Urea nitrogen in these indicators, only a plasma globulin, cisplatin group and combination group significantly lower than the control group, the change is mainly associated with cisplatin hepatotoxicity, and in the experiment using the electromagnetic field irradiation conditions , F ound no animal liver and kidney damage, preliminary evidence of systemic toxicity of radiation is low.

With reference to F igs. 1 1 and 12, two different embodiments of the apparatus according to the invention are shown.

At least one coil can be provided, for example arranged in two separate coils 6 and 7 integrated in respective plates.

It is possible that the patient represents all the workspace 8, or, alternatively, the patient moves relatively to the workspace, either translating the support orthe coils 6,7.