Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUSES AND METHODS FOR ADJUSTING DELAY OF COMMAND SIGNAL PATH
Document Type and Number:
WIPO Patent Application WO/2018/038835
Kind Code:
A1
Abstract:
Apparatuses and methods related to adjusting a delay of a command signal path are disclosed. An example apparatus includes: a timing circuit that includes a divider circuit that receives a first clock signal having a first frequency and provides a complementary pair of second and third clock signals having a second frequency that is half the first frequency; a first delay circuit that receives the second clock signal and provides a delayed second clock signal responsive to the second clock signal; and a second delay circuit that receives the third clock signal and provides a delayed third clock signal responsive to the third clock signal. The timing circuit receives a first signal, latches the first signal responsive to the delayed second clock signal to provide a second signal and latches the second signal responsive to either the second clock signal or the third clock signal responsive to latency information.

Inventors:
MIYANO, Kazutaka (Inc.2-1 Yaesu 2-chom, Chuo-ku Tokyo, 104-0028, JP)
MOMMA, Atsuko (Inc.2-1 Yaesu 2-chom, Chuo-ku Tokyo, 104-0028, JP)
Application Number:
US2017/043350
Publication Date:
March 01, 2018
Filing Date:
July 21, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MICRON TECHNOLOGY, INC. (8000 South Federal Way, Boise, ID, 83716, US)
International Classes:
G11C7/22; G11C7/10
Foreign References:
US20130329503A12013-12-12
US20040000934A12004-01-01
US20140177361A12014-06-26
US20110058437A12011-03-10
US6292040B12001-09-18
Attorney, Agent or Firm:
ENG, Kimton et al. (Dorsey & Whitney LLP, 701 5th AveSuite 610, Seattle WA, 98104, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. An apparatus comprising:

a first delay circuit configured to receive a first clock signal and further configured to provide a first delayed clock signal responsive, at least in part, to the first clock signal:

a second delay circuit configured to receive a second clock signal and further configured to provide a second delayed clock signal responsive, at least in part, to the second clock signal, wherein the second clock signal is complementary to the first clock signal;

first and second circuit nodes;

a first timing circuit coupled between the first and second circuit nodes, configured to latch a first signal on the first circuit node to provide a first latched signal responsive, at least in part, to the first delayed clock signal and further configured to provide the first latched signal on the second circuit node responsive, at least in part, to one of the first and second clock signals: and

a second timing circuit coupled between the first and second circuit nodes in parallel to the first timing circuit, configured to latch the first signal on the first circuit node to provide a second latched signal responsive, at least in part, to the second delayed clock signal and further configured to provide the second latched signal on the second circuit node responsive, at least in part, to the other of the first and second clock signals.

2. The apparatus as claimed in claim 1 , further comprising a selector circuit coupled to the first and second timing circuits and configured to provide the one of the first and second clock signals to the first timing circuit and the other of the first and second clock signals to the second timing circuit responsive, at least in part, to latency information.

3. The apparatus as claimed in claim 1 , further comprising a divider circuit configured to receive a third clock signal and further configured to provide the first and second clock signals by dividing a frequency of the third clock signal.

4. The apparatus as claimed in claim 3, further comprising:

a third delay circuit coupled to the second circuit node and configured to receive the first and second latched signals and further configured to provide a second signal by shifting a received one of the first and second latched signals responsive, at least in part, to the third clock signal; and

a fourth delay circuit configured to receive the third clock signal and further configured to provide a fourth clock signal having a second delay relative to the third clock signal; and

a fifth delay circuit coupled to the third delay circuit configured to receive the second signal and further configured to provide a third signal having the second delay relative to the second signal.

5. The apparatus as claimed in claim 4, further comprising a delay control circuit coupled to the fourth and fifth delay circuits and configured to adjust the second delay responsive, at least in part, to the third and fourth clock signals.

6. The apparatus of claim 4, wherein the fourth delay circuit is further configured to receive the third clock signal and to provide the fourth clock signal while the apparatus performs one of read and write operations, and further configured to suspend receiving the third clock signal and to suspend providing the fourth clock signal while the apparatus performs an on-die termination (ODT) operation.

7. The apparatus as claimed in claim 4, wherein the third delay circuit is configured to shift a received one of the first and second latched signals responsive, at least in part, to latency information.

8. The apparatus of claim 3. further comprising:

a third delay circuit configured to receive the third clock signal and further configured to provide a fourth clock signal having a second delay relative to the third clock signal; and

a fourth delay circuit configured to receive the first and second latched signals and further configured to provide a second signal having the second delay relative to a received one of the first and second latched signals.

9. The apparatus of claim 8, further comprising a delay control circuit coupled to the third and fourth delay circuits and configured to adjust the second delay responsive, at least in part, to the third and fourth clock signals.

10. The apparatus of claim 9, further comprising a gate circuit coupled to the third delay circuit and configured to provide the third clock signal to the fourth delay circuit while the apparatus performs either read, write or ODT operations.

11. The apparatus as claimed in claim 1 , wherein the first signal is an ODT signal.

12. The apparatus as claimed in claim 11, further comprising:

third and fourth circuit nodes;

a third timing circuit coupled between the third and fourth circuit nodes, configured to latch one of read and write command signals on the third circuit node responsive, at least in part, to the first delayed clock signal and further configured to provide a latched command signal on the fourth circuit node responsive, at least in part, to one of the first and second clock signals; and

a fourth timing circuit coupled between the third and fourth circuit nodes in parallel to the third timing circuit, configured to latch the one of read and write command signals on the third circuit node responsive, at least in part, to the second delayed clock signal and mrther configured to provide the latched command signal on the fourth circuit node responsive, at least in part, to the other of the first and second clock signals.

13. The apparatus as claimed in claim 1 , wherein the first delayed clock signal has a first delay relative to the first clock signal and the second delayed clock signal has the first delay relative to the second clock signal.

14. An apparatus comprising:

a timing circuit comprising:

a divider circuit configured to receive a first clock signal having a first frequency and further configured to provide a second clock signal and a third clock signal being a complementary signal of the second clock signal, the second clock signal and the third clock signal having a second frequency that is half the first frequency;

a first delay circuit configured to receive the second clock signal and further configured to provide a delayed second clock signal responsive to the second clock signal; and

a second delay circuit configured to receive the third clock signal and further configured to provide a delayed third clock signal responsive to the third clock signal,

wherein the timing circuit is configured to receive a first signal, to latch the first signal responsive to the delayed second clock signal to provide a second signal, to latch the first signal responsive to the delayed third clock signal to provide a third signal, and further configured to latch the second signal responsive to either the second clock signal or the third clock signal responsive to latency information.

15. The apparatus of claim 14, wherein the first signal is a command signal indicative of a read command or a write command.

16. The apparatus of claim 14, wherein the first signal is an ODT signal indicative of an ODT command.

17. The apparatus of claim 14, wherein the timing circuit further comprises: a selector circuit configured to provide either the second clock signal or the third clock signal, responsive to the latency information; and

a first timing circuit comprising:

a flip flop circuit configured to latch the first signal responsive to the delayed second clock signal to provide the second signal; and

a latch circuit configured to provide the second signal responsive to either the second clock signal or the third clock signal from the selector.

18. The apparatus of claim 14, wherein the timing circuit further comprises:

a first timing circuit comprising a first flip-flop circuit configured to latch the first signal responsive to the delayed second signal to provide the second signal; a second timing circuit comprising a second flip-flop circuit configured to latch the first signal responsive to the delayed third signal to provide the third signal; and

a selector circuit configured to receive the second signal and the third signal and further configured to provide either the second signal or the third signal to the first timing circuit responsive to the latency information,

wherein the first timing circuit further comprises a latch circuit configured to latch either the second signal or the third signal from the selector circuit responsive to the second clock signal.

19. A method comprising:

receiving a first clock signal having a first frequency;

providing a second clock signal and a third clock signal that is complementary signal of the second clock signal, the second clock signal and the third clock signal having a second frequency that is half the first frequency;

providing a delayed second clock signal responsive to the second clock signal;

latching a first signal responsive to the delayed second clock signal to provide a second signal; and latching the second signal responsive to either the second clock signal or the third clock signal responsive to latency information.

20. The method of claim 19 further comprises:

providing either the second clock signal or the third clock signal as a fourth clock signal, responsive to the latency information; and

latching the second signal responsive to the fourth clock signal.

21. The method of claim 19 further comprises:

latching the first signal responsive to the delayed third clock signal to provide a third signal;

providing either the second signal or the third signal as a fourth signal, responsive to the latency information; and

latching the fourth signal responsive to the second clock signal.

Description:
APPARATUSES AND METHODS FOR ADJUSTING DELAY OF

COMMAND SIGNAL PATH

TECHNIC AL FIELD

[001] Embodiments of the invention relate generally to semiconductor memory, and more specifically, in one or more described embodiments, to signal paths and adjusting the timing of command signals through the signal path.

BACKGROUND OF THE INVENTION

[002] In semiconductor memory, proper operation of the memory is based on the correct timing of various internal command and clock signals. For example, in reading data from the memory, internal clock signals that clock data path circuitry to provide (e.g. output) the read data may need to be provided substantially concurrently with internal read command signals to properly enable the data path circuitry to output the read data. If the timing of the internal read command signal is not such that the data path circuitry is enabled at the time the internal clock signal clocks the data path circuitry to output the read data at an expected time, the read command may be inadvertently ignored or the read data provided by the memory may not be correct (e.g., the data associated with another read command). Likewise, in writing data to memory internal clock signals that clock data path circuitry to latch write data may need to be provided with specific timing relationships with internal write command signals to properly enable the data path circuitry to provide the latched write data for writing to memory. Inaccurate timing of the internal command and clock signals could result in the write command being inadvertently ignored or incorrect write data being provided to the memory may (e.g., the write data is associated with another write command). Another example of a command that may require the correct timing of internal clock signals and the command for proper operation include, for example, on-die termination enable commands.

[003] Moreover, as known, a "latency" may be selected (e.g., programmed, desired, used, given, etc.) to set a time, typically in numbers of clock periods T, between receipt of a read command by the memory and when the data is output by the memory. A "write latency" may also be selected to set a time, also typically in numbers of T, between receipt of a write command by the memory and when the write data is provided to the memory. The latencies may be selected, for example, to accommodate clock signals of different frequencies (i.e., different clock periods).

[004] Complicating the generating of correctly timed internal clock and command signals is the relatively high frequency of memory clock signals, such as 1 GHz or higher. For example, memory clock signals can exceed 1 GHz. Further complicating the matter is that multi-data rate memories may provide and receive data at a rate higher than the memory clock signal, which may represent the rate at which commands may be executed. As a result, command signals and an internal clock signal may need to be in sync in order to maintain proper timing. An example of a multi-data rate memory is one that outputs read data at a rate twice that of the clock frequency, such as outputting data synchronized with clock edges of the memory clock signal.

SUMMARY

[005] Example apparatuses arc disclosed herein. An example apparatus may include a first delay circuit configured to receive a first clock signal and to provide a first delayed clock signal responsive, at least in part, to the first clock signal. The example apparatus may also include a second delay circuit configured to receive a second clock signal and to provide a second delayed clock signal responsive, at least in part, to the second clock signal. The second clock signal may be complementary to the first clock signal. The example apparatus may further include first and second circuit nodes; and a first timing circuit coupled between the first and second circuit nodes, where the first timing circuit may be configured to latch a first signal on the first circuit node to provide a first latched signal responsive, at least in part, to the first delayed clock signal. The first timing circuit may also be configured to provide the first latched signal on the second circuit node responsive, at least in part, to one of the first and second clock signals. The example apparatus may further include a second timing circuit coupled between the first and second circuit nodes in parallel to the first timing circuit, where the second timing circuit may be configured to latch the first signal on the first circuit node to provide a second latched signal responsive, at least in part, to the second delayed clock signal. The second timing circuit may also be configured to provide the second latched signal on the second circuit node responsive, at least in part, to the other of the first and second clock signals.

[006] Another example apparatus may include a timing circuit comprising a divider circuit configured to receive a first clock signal having a first frequency and further configured to provide a second clock signal and a third clock signal being a complementary signal of the second clock signal. The second clock signal and the third clock signal may have a second frequency that is half the first frequency. The timing circuit may further comprise a first delay circuit configured to receive the second clock signal a to provide a delayed second clock signal responsive to the second clock signal. The timing circuit may also further comprise a second delay circuit configured to receive the third clock signal and to provide a delayed third clock signal responsive to the third clock signal The timing circuit may be configured to receive a first signal, to latch the first signal responsive to the delayed second clock signal to provide a second signal. The timing circuit also may be configured to latch the first signal responsive to the delayed third clock signal to provide a third signal. The timing circuit may be further configured to latch the second signal responsive to either the second clock signal or the third clock signal responsive to latency information.

[007] Example methods are disclosed herein. An example method may include receiving a first clock signal having a first frequency and providing a second clock signal and a third clock signal that is complementary signal of the second clock signal. The second clock signal and the third clock signal may have a second frequency that is half the first frequency. The example method may further include providing a delayed second clock signal responsive to the second clock signal and latching a first signal responsive to the delayed second clock signal to provide a second signal; and latching the second signal responsive to either the second clock signal or the third clock signal responsive to latency information.

BRIEF DESCRIPTION OF THE DRAWINGS

[008] Fig. 1 is a block diagram of an apparatus including a control circuit in accordance with an embodiment of the present disclosure.

[009] Fig. 2 is a block diagram of a control circuit, in accordance with an embodiment of the present disclosure. [010] Fig. 3 is a block diagram of a timing circuit of Fig. 2, in accordance with an embodiment of the present disclosure.

[Oil] Fig. 4 is a timing diagram of various signals during operation of the timing circuit of Fig. 3 in accordance with an embodiment of the present disclosure.

[012] Fig. 5 is a timing diagram of various signals during operation of the timing circuit of Fig. 3 in accordance with an embodiment of the present disclosure.

[013] Fig. 6 is a block diagram of a timing circuit of Fig. 2, in accordance with an embodiment of the present disclosure.

[014] Fig. 7 is a block diagram of a control circuit, in accordance with an embodiment of the present disclosure.

DETAILED DESCRIPTION

[015] Certain details are set forth below to provide a sufficient understanding of embodiments of the invention. However, it will be clear to one skilled in the art that embodiments of the invention may be practiced without these particular details. Moreover, the particular embodiments of the present invention described herein are provided by way of example and should not be used to limit the scope of the invention to these particular embodiments. In other instances, well-known circuits, control signals, timing protocols, and software operations have not been shown in detail in order to avoid unnecessarily obscuring the invention.

[016] Fig. 1 is a block diagram of a portion of an apparatus 100 including a control circuit in accordance with an embodiment of the present disclosure. As used herein, an "apparatus" can refer to, for example, circuitry, a semiconductor die, a device, or a system. The apparatus 100 includes a memory array 101 of memory cells, which may be, for example, dynamic random access memory (DRAM) memory cells, static random access memory (SRAM) memory cells, flash memory cells, or some other types of memory cells. The apparatus 100 includes a control circuit 102 that receives memory commands and provides (e.g., generates) corresponding control signals within the apparatus 100 to execute various memoiy operations.

[017] Row and column address signals are provided (e.g., applied) to the apparatus

100 via an address latch 1 10. The address latch captures the received address signals, and then provides a column address and a row address to a column address decoder 121 and a row address decoder 122, respectively. The column address decoder 121 selects bit lines extending through the memory array 101 corresponding to respective column addresses. The row address decoder 122 is coupled to a word line driver 124 that activates respective rows of memory cells in the memory array 101 corresponding to received row addresses. The selected data line (e.g., a bit line or bit lines) corresponding to a received column address are coupled to a read/write circuit 130 to provide read data to an input/output (I/O) data block 134. Write data are provided to the memory array 101 through the I/O data block 134 and the read/write circuit 130. The I/O data block 134 may include an output data block 135 and an input data block 136 that operate responsive to an internal clock signal CLKOUT and an internal command signal CMDOUT, for example. The output data block 135 may provide read data from the memory array 101, responsive to a command for read operations. In some embodiments, the output data block 135 may provide the read data responsive to the internal command signal CMDOUT. The input data block 136 may receive write data responsive to a command for write operations.

[018] The control circuit 102 includes a clock path 103. The clock path 103 receives an external clock signal CLKIN and propagates an internal clock signal CLKOUT which is based at least in part on the external clock signal CLKIN to the I O data block 134.

[019] The control circuit 102 also includes a command path 104. The command path 104, which is shown in Fig. 1 as being included in the control circuit 102, but is not limited to such a configuration, provides the internal command signal CMDOUT to the I/O data block 134. The control circuit 102 responds to memory commands CMDIN to perform various operations on the memory array 101. In particular, the control circuit 102 is used to provide internal control signals to read data from and write data to the memory array 101. The command path 104 receives latency signals such as a CAS latency signal CL and a CAS write latency signal CWL. The command path 104 also receives internal clock signals from the clock path 103.

[020] Fig. 2 is a block diagram of a control circuit 200, in accordance with an embodiment of the present disclosure. For example, the control circuit 200 may be used as the control circuit 102 in Fig. 1 that may include the clock path 103 and the command path 104. The control circuit 200 may include a timing circuit 204 in the command path and a delay ( DLL) circuit 207 among the clock path 103 and the command path 1 4. The clock path 103 includes a clock input buffer 201. The clock input buffer 201 may receive a pair of complementary clock signals CK and CKB based on a clock signal CLKIN, for example, and provides a system clock signal SCLK. The SCLK signal may be provided to a command input buffer/decoder circuit 202, a timing circuit 204, and an ODT dQ-Enable-Delay (QED) circuit 206 on the command path 104 and an AND circuit 205 on the clock path 103.

[021] The DLL circuit 207 may include a delay line (DLINE CLK) 209 and a delay control (DLCTL) circuit 208 on the clock path 103. The SCLK signal may be provided to a delay line (DLINE CLK) 209 on the clock path 103 via the AND circuit 205 that may provide the SCLK signal responsive to a system clock enable signal SCLKEN that is responsive to the CM DI signal indicative of the read command or the write command. Thus, the DLL circuit 207 may be active during the read and write operations. In some embodiments, the DLL circuit 207 may be inactive during the ODT operation. The DLL circuit 207 may adjust the delay of the delay lines 209, 210 and 21 1 by changing a delay control signal DCTL responsive to the SCLK signal and a DLL clock signal when it is activated. On the other hand, the DLL circuit 207 may keep the delay of the delay lines 209, 210 and 211 without adjusting the delay when it is deactivated. For example, the delay line 209 may be an adjustable delay line including a duty cycle controller (DCC), a coarse delay line and a fine delay line. An adjustable delay of the delay line 209 may adjust based on a delay control signal DCTL provided by the DLCTL circuit 208. The delay line 209 may provide a DLL clock signal DLLCLK having the adjustable delay relative to the SCLK signal on the clock path 103. The DLCTL circuit 208 may provide the DCTL signal to the delay line 209, responsive to the SCLK signal from the AND circuit 205 and the DLLCLK signal. The delay line 209 may further provide the DLLCLK signal to a read/write (R/W) dQ-Enable-Delay (QED) circuit 213 on the command path 104.

[022] The command path 104 in the control circuit 200 includes the command input buffer/decoder circuit 202. The command input buffer/decoder circuit 202 may receive command signals CMDIN and the SCLK signal. The CMDIN signals may convey a memory access command, such as a read command, a write command, or an on-die termination (ODT) command indicative of instructing a read operation, a write operation or an on-die termination, respectively. The command input buffer/decoder circuit 202 may decode the CMDIN signals, responsive to the SCLK signal. The command input buffer/decoder circuit 202 may provide an internal command signal ICMD to the timing circuit 204 and may further provide a read/write selection signal RWSEL indicative or read operation or write operation and the SCLKEN signal responsive to the CMDIN signal indicative of the read command or the write command. The ICMD signal may be a read signal or a write signal. The timing circuit 204 may provide a latched command signal LCMD responsive to the ICMD signal and an L3CYCEN signal that may be described later in detail, where the timing circuit 204 may control a timing of the LCMD signal relative to the ICMD signal such that the LCMD signal is synchronized with the SCLK signal. The command input buffer/decoder circuit 202 may provide an internal ODT command signal IODT to the timing circuit 204 responsive to the CMDIN signal indicative of the ODT command. The IODT signal may be an on-die termination signal. The timing circuit 204 may provide a latched ODT command signal LODT responsive to the IODT signal and an L3CYCEN signal that may be described later in detail. The timing circuit 204 may control a timing of the LODT signal relative to the IODT signal.

] The ODT QED circuit 206 may receive the SCLK signal. The ODT QED circuit 206 may further receive an NT value that may indicate a number of clock cycles equivalent to a delay of the DLLCLK signal relative to the SCLK signal and a CAS writing latency signal CWL. The CWL value is CAS write latency that may account for a delay time between when an apparatus receives a write command and when the input data block 136 in Fig. 1 receives write data responsive to the write command based on DQS signals (not shown) including time for data to be accessed and provided to an input bus (e.g., via a DQ pad before the input data block 136). The CWL value may be frequency dependent value and represented as numbers of clock cycles of the SCLK signal. For example, the ODT QED circuit 206 may be a delay circuit that may adjust the LODT signal from the timing circuit 204 with the SCLK signal from the clock input buffer 201, for example, by adjusting a latency (e.g., shifting, delaying) of the LODT signal using the NT value and the CWL value. For example, in some embodiments, the ODT QED circuit 206 may shift the LODT signal for the ODT command responsive to the CW T L. An adjustment factor may also be considered. For example, in some embodiments, the NT value may be greater than or equal to nine. For example, in some embodiments, the CWL value and the NT value may have to satisfy a condition that a difference between the CWL value and the NT value (e.g., CWL-NT) is greater or equal to two. The ODT QED circuit 206 may provide a shifted ODT signal SODT that is the shifted LODT signal.

[024] The DLL circuit 207 may further include a delay line (DLINE ODT) 211 coupled to the ODT QED circuit 206 on the command path 104. For example, the delay line 211 may be an adjustable delay line including a DCC, a coarse delay line and a fine delay line. In some embodiments, the delay line 211 may have substantially the same circuit structure as the delay line 209 and may provide substantially the same delay as the delay line 209. An adjustable delay of the delay line 21 1 may adjust based on the delay control signal DCTL provided by the DLCTL circuit 208. The SODT signal from the ODT QED circuit 206 is transmitted to the delay line 211. The delay line 211 may provide a delayed ODT signal DODT responsive to the SODT signal and further responsive to the DCTL signal that is based on the SCLK signal and the DLLCLK signal.

[025] The DLL circuit 207 may further include a delay line (DLINE R W) 210 coupled to the timing circuit 204 on the command path 104. For example, the delay line 210 may be an adjustable delay line including a DCC, a coarse delay line and a fine delay line. In some embodiments, the delay line 210 may have substantially the same circuit structure as the delay line 209 and may provide substantially the same delay as the delay line 209. An adjustable delay of the delay line 210 may adjust based on the delay control signal DCTL provided by the DLCTL circuit 208. The LCMD signal from the timing circuit 204 is transmitted to the delay line 210. The delay line 210 may provide a delayed command signal DCMD responsive to the LCMD signal and further responsive to the DCTL signal that is based on the SCLK signal and the DLLCLK signal. The DCMD signal may be transmitted to a demultiplexer 212. The demultiplexer 212 may provide either a delayed command read signal DCMDR or a delayed command write signal DCMDW responsive to the read command or the write command.

[026] The command path 104 further includes the R/W QED circuit 213. The R/W

QED circuit 213 may receive a selected latency (e.g., a CL value and/or a CWL value) and an NT value. The R/W QED circuit 213 may further receive the DLLCLK signal from the delay line 209. The latency may be defined by a number of clock cycles, for example, of the CLK signal. The NT value may be a number of clock cycles equivalent to a delay between receipt of the SCLK signal and the DLLCLK signal. The CL value is column address strobe (CAS) latency that may account for a delay time between when the apparatus receives the read command and when an output buffer in a data queue system (DQ sys) circuit 214 receives read data responsive to the read command based on a clock signal (e.g., the DLLCLK signal) including time for data to be accessed and provided to an output bus (e.g., via a DQ pad in the DQ sys circuit 214). The CWL value is CAS write latency that may account for a delay time between when the apparatus receives the write command and when the input data block 136 in Fig. 1 receives write data responsive to the write command based on DQS signals (not shown) including time for data to be accessed and provided to an input bus (e.g., via a DQ pad before the input data block 136). The CL value and the CWL value may be represented as numbers of clock cycles of the CLK signal. The CL value and the CWL value may be frequency dependent value, for example.

] The R/W QED circuit 213 may synchronize the DCMDR signal or the

DCMDW signal from the demultiplexer 212 with the DLLCLK signal from the delay line 209, for example, by adjusting a latency (e.g., shifting) of the DCMDR signal or the DCMDW signal using the NT value and the CL value or the CW T L value. For example, in some embodiments, the R/W QED circuit 213 may shift the DCMDR signal for the read command responsive to the CL. In some embodiments, the R/W QED circuit 213 may shift the DCMDW signal for the write command responsive to the CWL. An adjustment factor may also be considered. For example, in some embodiments, the NT value may be greater than or equal to nine. For example, in some embodiments, the CL value and the NT value may have to satisfy the condition that a difference between the CL value and the NT value (e.g., CL-NT) is greater or equal to two. In some embodiments, the R W QED circuit 213 shifts the DCMDR signal by (CL-(N+2)) clock cycles of the DLLCLK signal for read commands, where two is the adjustment factor. The R/W QED circuit 213 may provide a latency three-cycle-operation enable signal L3CYCEN to the timing circuit 204 responsive to latency information (e.g., based on a calculation of the CL value or the CWL value and the NT value). For example, (CL- NT) may be calculated and whether the (CL-NT) is greater than a predetermined value that is defined as a number of clock cycles is determined. If the (CL-NT) is greater than the predetermined value, the L3CYCEN signal may be activated and the timing circuit 204 may perform a three-cycle-operation that will be described later in detail. If the (CL-NT) is less than or equal to the predetermined value, the timing circuit 204 may perform a two-cycle-operation that will be described later in detail. In operation, the read command or the write represented by the CMDIN signal is provided to the command path 104 and propagated through the command input buffer/decoder circuit 202 as the ICMD signal, the timing circuit 204 as the LCMD signal, the delay line 210 as the DCMD signal, the demultiplexer 212 as the DCMDR signal or the DCMDW signal, and the R/W QED circuit 213. The R/W QED circuit 213 adds clock cycles of the DLLCLK signal to the propagating command signal, either the DCMDR signal or the DCMDW signal, to provide a shifted command read signal SCMDR or a shifted command write signal SCMDW resulting propagation delay for the command path 104 responsive to the selected latency.

[028] The I/O data block 134 in Fig. 1 may include the DQ sys circuit 214 in Fig.

2. The DQ sys circuit 214 may receive the DLLCLK signal, the SCMDR signal and the SCMDW signal, the DODT signal. For example, the DQ sys circuit 214 may include a parallel-serial converter which converts data of a plurality of bits read in parallel from the memory array 101 in Fig. 1 via the R/W circuit 130 to a set of serial data in an appropriate order based on the timings. The DQ sys circuit 214 may provide the data to a data queue (e.g., DQx) on a data path.

[029] Fig. 3 is a block diagram of a timing circuit 300, in accordance with an embodiment of the present disclosure. Figs. 4 and 5 are timing diagrams of various signals during operations of the timing circuit of Fig. 3 in accordance with an embodiment of the present disclosure. For example, the timing circuit 300 may be used as the timing circuit 204 in Fig. 2. The timing circuit 300 may receive the system clock signal SCLK that has a clock cycle of tCK. The system clock signal SCLK may include even cycles (e.g., cycle 0, cycle 2 and cycle 4 in Fig. 4) and odd cycles (e.g., cycle I, cycle 3 and cycle 5 in Fig. 4). The timing circuit 300 may include a divider circuit 301. The divider circuit 301 may be a frequency divider that may provide an even system clock signal SCLK_E and an odd system clock signal SCLK O responsive to the SCLK signal. For example, the divider circuit 301 may divide a frequency of the SCLK signal, thus a frequency of the SCLK E and the SCLK O signals is substantially half the frequency of the SCLK signal. The SCLK_E signal may have even cycles of the SCLK signal as positive half cycles and odd cycles of the SCLK signal as negative half cycles. The SCLK O signal is a complementary signal of the SCLK E signal and the SCLK O signal may have odd cycles of the SCLK signal as positive half cycles and even cycles of the SCLK signal as negative half cycles. In other words, a phase difference between the SCLK E signal and the SCLK O signal is about 180 degrees. The SCLK E signal and the SCLK O signal may have a clock cycle that is equivalent to two clock cycles of the SCLK (=2tCK).

] The timing circuit 300 may include delay circuits 304 and 305, a selector circuit 306, a command timing circuit 302 and an ODT timing circuit 303. The command timing circuit 302 may include circuit nodes 320 and 329. The command timing circuit 302 may further include an even command timing circuit CTC E 321 and an odd command timing circuit CTC_0 325 coupled between the circuit nodes 320 and 329. The ODT timing circuit 303 may include circuit nodes 330 and 339. The ODT timing circuit 303 may further include an even ODT timing circuit OTC E 331 and an odd ODT timing circuit OTC O 335 coupled between the circuit nodes 330 and 339. The delay circuit 304 may receive the SCLK_E signal and may further provide a delayed even system clock signal DSCLK E having a delay Dl relative to the SCLK E signal. The delay circuit 305 may receive the SCLK O signal and may further provide a delayed odd system clock signal DSCLK_0 having a delay Dl relative to the SCLK_0 signal. The CTC E 321 may include a flip-flop circuit (FF) 322 that may latch the ICMD signal on the circuit node 320 responsive to the DSCLK_E signal and may further provide an even internal command signal ICMD E. The CTC O 325 may include a flip-flop circuit (FF) 326 that may latch the ICMD signal on the circuit node 320 responsive to the DSCLK O signal and may further provide an odd internal command signal ICMD_0. The OTC E 331 may include a flip-flop circuit (FF) 332 that may latch the IODT signal on the circuit node 330 responsive to the DSCLK E signal and may further provide an even ODT signal IODT E. The OTC O 335 may include a flip-flop circuit (FF) 336 that may latch the IODT signal on the circuit node 330 responsive to the DSCLK O signal and may further provide an odd ODT signal IODT O.

] The timing circuit 300 may receive the L3CYCE signal from the R/W

QED circuit 213 in Fig. 2 at the selector circuit 306. The timing circuit 300 may perform the three-cycle-operation responsive to the active L3CYCEN signal (e.g., a logic high level) and may further perform the two-cycle-operation responsive to the inactive L3CYCEN signal (e.g., a logic low level). In the three-cycle-operation, time adjustment of the CMD signal and the ODT signal may use three clock cycles of the SCLK signal in the timing circuit 300. The selector circuit 306 may provide, in the three-cycle-operation, the SCLK_E signal to the CTC_E 321 and the OTC E 331 responsive to the active L3CYCEN signal. The CTC E 321 may include a latch circuit 323 and a switch 324. The latch circuit 323 may receive the ICMD E signal and the SCLK E signal and may further latch the ICMD E signal responsive to the SCLK E signal from the selector circuit 306. The switch 324 may provide an even latched command signal LCMD_E from the latch circuit 323 on the circuit node 329 responsive to the SCLK E signal from the selector circuit 306. The OTC E 331 may include a latch circuit 333 and a switch 334. The latch circuit 333 may receive the IODT_E signal and the SCLK E signal and may further latch the IODT E signal responsive to the SCLK_E signal from the selector circuit 306. The switch 334 may provide an even latched command signal LODT E from the latch circuit 333 on the circuit node 339 responsive to the SCLK_E signal from the selector circuit 306. The selector circuit 306 may further provide, in the three-cycle-operation, the SCLK O signal to the CTC_0 325 and the OTC_0 335 responsive to the active L3CYCEN signal. The CTC_0 325 may include a latch circuit 327 and a switch 328. The latch circuit 327 may receive the ICMD O signal and the SCLK O signal and may further latch the ICMD O signal responsive to the SCLK O signal from the selector circuit 306. The switch 328 may provide an odd latched command signal LCMD O from the latch circuit 327 on the circuit node 329 responsive to the SCLK O signal from the selector circuit 306. The OTC_0 335 may include a latch circuit 337 and a switch 338. The latch circuit 337 may receive the IODT O signal and the SCLK O signal and may further latch the IODT_0 signal responsive to the SCLK_0 signal from the selector circuit 306. The switch 338 may provide an odd latched command signal LODT O from the latch circuit 337 on the circuit node 339 responsive to the SCLK_0 signal from the selector circuit 306.

[032] Fig. 4 is the timing diagram of various signals during operation of the timing circuit of Fig. 3 in the three-cycle-operation. Here, cycle 0, cycle 1, cycle 2, cycle 3, cycle 4, and cycle 5 of the SCLK signal are periods between TO and Tl , Tl and T2, T2 and T3, T3 and T4, T4 and T5, T5 and T6, respectively. The SCLK_E signal is active in cycles 0, 2, 4 and the SCLK_0 signal is active in cycles 1, 3 and 5. The delay of the DSCLK_E signal relative to the SCLK E signal provided by the delay circuit 304 is Dl , and the DSCLK E signal has rising edges at time T0+D1 , T2+D1 and T4+D1. The delay of the DSCLK_0 signal relative to the SCLK O signal provided by the delay circuit 305 is Dl , and the DSCLK O signal has rising edges at time Tl+Dl, T3├ĚD1 and T5+D1. For example, the FF 322 may latch the ICMD signal responsive to the rising edge of the DSCLK E signal at time TO+Dl until the next rising edge of the DSCLK E signal at time T2+D1. The FF 322 may provide the ICMD E signal that has a rising edge at time TEO and a falling edge at time TEl responsive to the rising edges of the DSCLK E signal at times T0+D1 and T2+D1, respectively. The latch circuit 323 may latch the ICMD E signal responsive to the rising edge of the SCLK E signal at time T2 until the next rising edge of the SCLK E signal at time T4. The latch circuit 323 may provide the LCMD signal that has a rising edge at time TL0 (e.g., after T2) and a falling edge at time TLl (e.g., after T4) responsive to the rising edges of the SCLK E signal at times T2 and T4, respectively. Thus, a time period between a time when the CMD signal is deactivated and the time TLl when the LCMD signal may be deactivated becomes approximately three clock cycles that is the time adjustment of the CMD signal at the timing circuit 300.

[033] A latency value (e.g., CL) represented by a number of clock cycles may vary inversely with a clock cycle tCK of the SCLKS signal. For example, a longer clock cycle results in a smaller number of clock cycles representing the latency value. Fig. 5 is a timing diagram of various signals during operation of the timing circuit 300 of Fig. 3 in accordance with an embodiment of the present disclosure. For example, the operation of the timing circuit in the Fig. 5 is the two-cycle-operation. In the two-cycle- operation, the time adjustment of the CMD signal and the ODT signal may use two clock cycles of the SCLK signal in the timing circuit 300. The selector circuit 306 may provide the SCLK O signal to the CTC E 321 and the OTC E 331 responsive to the inactive L3CYCEN signal. The latch circuit 323 may receive the ICMD E signal and the SCLK O signal and may further latch the ICMD E signal responsive to the SCLK O signal from the selector circuit 306. The switch 324 may provide an even latched command signal LCMD E from the latch circuit 323 on the circuit node 329 responsive to the SCLK O signal from the selector circuit 306. The latch circuit 333 may receive the IODT E signal and the SCLK O signal and may further latch the IODT E signal responsive to the SCLK O signal from the selector circuit 306. The switch 334 may provide an even latched command signal LODT E from the latch circuit 333 on the circuit node 339 responsive to the SCLK O signal from the selector circuit 306. The selector circuit 306 may provide the SCLK_E signal to the CTC O 325 and the OTC O 335 responsive to the inactive L3CYCEN signal. The latch circuit 327 may receive the ICMD O signal and the SCLK E signal and may further latch the ICMD O signal responsive to the SCLK E signal from the selector circuit 306. The switch 328 may provide an odd latched command signal LCMD_0 from the latch circuit 327 on the circuit node 329 responsive to the SCLK E signal from the selector circuit 306. The latch circuit 337 may receive the IODT O signal and the SCLK_E signal and may further latch the IODT O signal responsive to the SCLK E signal from the selector circuit 306. The switch 338 may provide an odd latched command signal LODT_0 from the latch circuit 337 on the circuit node 339 responsive to the SCLK E signal from the selector circuit 306.

] Fig. 5 is a timing diagram of various signals during operation of the timing circuit of Fig. 3 in accordance with an embodiment of the present disclosure. Here, cycle 0, cycle 1 , cycle 2 and cycle 3 of the SCLK signal are periods between TO and Tl , Tl and T2, T2 and T3, T3 and T4, respectively. The SCLK_E signal is active in cycles 0 and 2 and the SCLK O signal is active in cycles 1 and 3. The delay of the DSCLK E signal relative to the SCLK E signal provided by the delay circuit 304 is Dl, and the DSCLK E signal has rising edges at time T0+D1 and T2+ D 1. The delay of the DSCLK O signal relative to the SCLK O signal provided by the delay circuit 305 is Dl , and the DSCLK O signal has rising edges at time Tl+Dl and T3+D1. For example, the FF 322 may latch the ICMD signal responsive to the rising edge of the DSCLK E signal at time T0+D1 until the next rising edge of the DSCLK_E signal at time T2+D1. The FF 322 may provide the ICMD E signal that has a rising edge at time TEO and a falling edge at time TE1 responsive to the rising edges of the DSCLK_E signal at times T0+D1 and T2+D1 , respectively. The latch circuit 323 may latch the ICMD_E signal responsive to the rising edge of the SCLK O signal at time Tl until the next rising edge of the SCLK_0 signal at time T3. The latch circuit 323 may provide the LCMD signal that has a rising edge at time TLO (e.g., after Tl) and a falling edge at time TL1 (e.g., after T3) responsive to the rising edges of the SCLK_0 signal at times Tl and T3, respectively. Thus, a time period between a time when the CMD signal is deactivated and the time TLl when the LCMD signal may be deactivated becomes shorter than three clock cycles that is the time adjustment of the CMD signal at the timing circuit 300.

[035] Thus, the timing circuit 300 may adjust time represented by a number of clock cycles of the SCLK signal in response to the latency value. The latch circuits 323, 327, 333, 338 and the switches 324, 328, 334, 338 may provide high impedance output signals responsive to the inactive level of the selected clock signal from the selector circuit 306.

[036] Fig. 6 is a block diagram of a timing circuit 600 of Fig. 2, in accordance with an embodiment of the present disclosure. For example, the timing circuit 600 may be used as the timing circuit 204 in Fig. 2. The timing circuit 600 may include a divider circuit 601 and delay circuits 604 and 605 that have substantially the same circuit structure as the divider circuit 301 and the delay circuits 304 and 305 and the description of the divider circuit 601 and the delay circuits 604 and 605 will not be repeated. The timing circuit 600 may include a command timing circuit 602 and an ODT timing circuit 603. The command timing circuit 602 may include an even command timing circuit CTC E 621 and an odd command timing circuit CTC O 625. The ODT timing circuit 603 may include an even ODT timing circuit OTC E 631 and an odd ODT timing circuit OTC O 635. The CTC E 621 may include a flip-flop circuit (FF) 622 that may latch the ICMD signal responsive to the DSCLK E signal and may further provide an even internal command signal ICMD E. The CTC_0 625 may include a flip-flop circuit (FF) 626 that may latch the ICMD signal responsive to the DSCLK O signal and may further provide an odd internal command signal ICMD O. The OTC_E 631 may include a flip-flop circuit (FF) 632 that may latch the IODT signal responsive to the DSCLK E signal and may further provide an even ODT signal IODT E. The OTC O 635 may include a flip-flop circuit (FF) 636 that may latch the IODT signal responsive to the DSCLK O signal and may further provide an odd ODT signal IODT O.

[037] The timing circuit 600 may perform the three-cycle-operation responsive to the active L3CYCEN signal (e.g., a logic high level) and may further perform the two- cycle-operation responsive to the inactive L3CYCEN signal (e.g., a logic low level). In the three-cycle-operation, time adjustment of the CMD signal and the ODT signal may use three clock cycles of the SCLK signal in the timing circuit 600. The timing circuit 600 may receive the L3CYCEN signal from the R/W QED circuit 213 in Fig. 2 at selector circuits 629 and 639. The command timing circuit 602 may include the selector circuit 629. The CTC E 621 may include a latch circuit 623 and a switch 624. The CTC_0 625 may include a latch circuit 627 and a switch 628. The selector circuit 629 may provide the ICMD E signal to the latch circuit 623 and the ICMD O signal to the latch circuit 627 responsive to the active L3CYCEN signal. The latch circuit 623 may receive the ICMD_E signal and the SCLK E signal and may further latch the ICMD_E signal responsive to the SCLK E signal. The switch 624 may provide an even latched command signal LCMD E from the latch circuit 623 responsive to the SCLK E signal. The latch circuit 627 may receive the ICMD O signal and the SCLK O signal and may further latch the ICMD O signal responsive to the SCLK O signal. The sw itch 628 may provide an odd latched command signal LCMD O from the latch circuit 627 responsive to the SCLK O signal.

[038] The ODT timing circuit 603 may include the selector circuit 639. The

OTC E 631 may include a latch circuit 633 and a switch 634. The OTC O 635 may include a latch circuit 637 and a switch 638. The selector circuit 639 may provide the IODT E signal to the latch circuit 633 and the IODT O signal to the latch circuit 637 responsive to the active L3CYCEN signal. The latch circuit 633 may receive the IODT E signal and the SCLK E signal and may further latch the IODT E signal responsive to the SCLK_E signal. The switch 634 may provide an even latched ODT signal LODT E from the latch circuit 633 responsive to the SCLK E signal. The latch circuit 637 may receive the IODT O signal and the SCLK O signal and may further latch the IODT O signal responsive to the SCLK O signal. The switch 638 may provide an odd latched ODT signal LODT O from the latch circuit 637 responsive to the SCLK O signal.

[039] In the two-cycle-operation, the time adjustment of the CMD signal and the

ODT signal may use two clock cycles of the SCLK signal in the timing circuit 600. The selector circuit 629 may provide the ICMD O signal to the latch circuit 623 and the ICMD E signal to the latch circuit 627 responsive to the inactive L3CYCEN signal. The latch circuit 623 may receive the ICMD O signal and the SCLK E signal and may further latch the ICMD O signal responsive to the SCLK_E signal. The switch 624 may provide an even latched command signal LCMD E from the latch circuit 623 responsive to the SCLK E signal. The latch circuit 627 may receive the ICMD_E signal and the SCLK_0 signal and may further latch the ICMD_E signal responsive to the SCLK_0 signal. The switch 628 may provide an odd latched command signal LCMD O from the latch circuit 627 responsive to the SCLK O signal.

[040] The selector circuit 639 may provide the IODT O signal to the latch circuit

633 and the IODT_E signal to the latch circuit 637 responsive to the inactive L3CYCEN signal. The latch circuit 633 may receive the IODT_0 signal and the SCLK E signal and may further latch the IODT O signal responsive to the SCLK_E signal. The switch

634 may provide an even latched ODT signal LODT E from the latch circuit 633 responsive to the SCLK E signal. The latch circuit 637 may receive the IODT E signal and the SCLK O signal and may further latch the IODT E signal responsive to the SCLK O signal. The switch 638 may provide an odd latched ODT signal LODT O from the latch circuit 637 responsive to the SCLK_0 signal.

[041] Thus, the timing circuit 600 may provide the three-cycle operation and the two cycle operation having system clock signals, delayed system clock signals, internal command signals and the latched command signals having timings as illustrated in timing diagrams of Figs. 4 and 5.

[042] Fig. 7 is a block diagram of the control circuit of Fig. 1, in accordance with an embodiment of the present disclosure. For example, the control circuit 700 may be used as the control circuit 102 in Fig. 1 that may include the clock path 103 and the command path 104. The control circuit 700 may include a timing circuit 704 in the command path and a delay (DLL) circuit 707 among the clock path 103 and the command path 104. The clock path 103 includes a clock input buffer 701 that may function as the clock input buffer 201 in Fig. 2. The SCLK signal may be provided to a command input buffer/decoder circuit 702 and a timing circuit 704 on the command path 104, and an AND circuit 705 on the clock path 103.

[043] The DLL circuit 707 may include a delay line (DLINE CLK) 709 and a delay control (DLCTL) circuit 708 on the clock path 103. The SCLK signal may be provided to a delay line (DLINE CLK) 709 on the clock path 103 via the AND circuit 705 that may provide the SCLK signal responsive to a system clock enable signal SCLKEN responsive to the CMDIN signal indicative of the read command, the write command or the ODT command. For example, the delay line 709 may be an adjustable delay line including a duty cycle controller (DCC), a coarse delay line and a fine delay line. An adjustable delay of the delay line 709 may be based on a delay control signal DCTL provided by the DLCTL circuit 708. The delay line 709 may provide a DLL clock signal DLLCLK having the adjustable delay relative to the SCLK signal on the clock path 103. The DLCTL circuit 708 may provide the DCTL signal responsive to the SCLK signal from the AND circuit 705 and the DLLCLK signal. The delay line 709 may further provide the DLLCLK signal to a dQ-Enable-Delay (QED) circuit 713 on the command path 104.

[044] The command path 104 in the control circuit includes the command input buffer/decoder circuit 702. The command input buffer/decoder circuit 702 may receive command signals CMDIN and the SCLK signal. The CMDIN signals may convey a memory access command, such as a read command, a write command, or an on-die termination (ODT) command indicative of instructing a read operation, a write operation or an on-die termination, respectively. The command input buffer/decoder circuit 702 may decode the CMDIN signals, responsive to the SCLK signal. The command input buffer/decoder circuit 702 may provide an internal command signal ICMD to the timing circuit 704 and may further provide a read/write selection signal RWSEL indicative or read operation or write operation and the SCLKEN signal responsive to the CMDIN signal indicative of the read command, the write command or the ODT command. The ICMD signal may be a read signal or a write signal. The timing circuit 704 may provide a latched command signal LCMD responsive to the ICMD signal, where the timing circuit 704 may control a timing of the LCMD signal relative to the ICMD signal. The command input buffer/decoder circuit 702 may provide an internal ODT command signal IODT to the timing circuit 704 responsive to the CMDIN signal indicative of the ODT command. The IODT signal may be an on-die termination signal. The timing circuit 704 may provide a local ODT command signal LODT responsive to the IODT signal and an L3CYCEN signal that may be described later in detail. The timing circuit 704 may control a timing of the LODT signal relative to the IODT signal.

[045] The DLL circuit 707 may further include a delay line (DLINE R/W) 710 and a delay line (DLINE ODT) 711 coupled to the timing circuit 704 on the command path 104. For example, each of the delay lines 710 and 711 may be an adjustable delay line including a DCC, a coarse delay line and a fine delay line. In some embodiments, the delay lines 710 and 71 1 may have substantially the same circuit structure as the delay line 709 and may provide substantially the same delay as the delay line 209. The LCMD signal from the timing circuit 704 is transmitted to the delay line 710. The delay line 710 may provide a delayed command signal DCMD responsive to the LCMD signal and further responsive to the DCTL signal that is based on the SCLK signal and the DLLCLK signal. The DCMD signal may be transmitted to a demultiplexer 712. The demultiplexer 712 may provide either a delayed command read signal DCMDR or a delayed command write signal DCMDW responsive to the read command or the write command. The LODT signal from the timing circuit 704 is transmitted to the delay line 711. The delay line 71 1 may provide a delayed ODT signal DODT responsive to the LODT signal and further responsive to the DCTL signal that is based on the SCLK signal and the DLLCLK signal.

[046] The command path 104 further includes the QED circuit 713. The QED circuit 713 may receive a selected latency (e.g., a CL value and/or a CWL value) and an NT value. Description of the latency and the NT value corresponding to the latency and the NT value in Fig. 2 will not be repeated. The QED circuit 713 may further receive the DLLCLK signal from the delay line 709. The QED circuit 713 may synchronize the DCMDR signal or the DCMDW signal from the demultiplexer 712, or the DODT signal from the delay line 711 with the DLLCLK signal from the delay line 709, for example, by adjusting a latency (e.g., shifting) of the DCMDR signal, the DCMDW 7 signal or the DODT signal using the NT value and the CL value or the CWL value. For example, in some embodiments, the QED circuit 713 may shift the DCMDR signal for the read command responsive to the CL. In some embodiments, the QED circuit 713 may shift the DCMDW signal for the write command responsive to the CWL. In some embodiments, the QED circuit 713 may shift the DODT signal for the ODT command responsive to the CWL. Description of an adjustment factor based on the NT value corresponding to the adjustment factor in Fig. 2 will not be repeated. For example, in read operations, if the (CL-NT) is greater than the predetermined value, the L3CYCEN signal may be activated and the timing circuit 704 may perform a three-cycle-operation that will be described later in detail. If the (CL-NT) is less than or equal to the predetermined value, the timing circuit 704 may perform a two-cycle-operation that will be described later in detail. In operation, the read command or the write command represented by the CMDIN signal is provided to the command path 104 and propagated through the command input buffer/decoder circuit 702 as the ICMD signal, the timing circuit 704 as the LCMD signal, the delay line 710 as the DCMD signal, the demultiplexer 712 as the DCMDR signal or the DCMDW signal, and the QED circuit 713. The ODT command represented by the CMDIN signal is provided to the command path 104 and propagated through the command input buffer/decoder circuit 702 as the IODT signal, the timing circuit 704 as the LODT signal, the delay line 71 1 as the DODT signal, and the QED circuit 713. The QED circuit 713 adds clock cycles of the DLLCLK signal to the propagating command signal, either the DCMDR signal, the DCM DW signal or the DODT signal to provide a shifted command read signal SCMDR, a shifted command write signal SCMDW or the SODT signal resulting propagation delay for the command path 104 responsive to the selected latency.

[047] The I/O data block 134 in Fig. I may include the DQ sys circuit 714 in Fig.

7. The DQ sys circuit 714 may receive the DLLCLK signal and the SCMDR signal, the SCMDW signal or the SODT signal. For example, the DQ sys circuit 714 may include a parallel-serial converter which converts data of a plurality of bits read in parallel from the memory array 101 in Fig. 1 via the R/W circuit 130 to a set of serial data in an appropriate order based on the timings. The DQ sys circuit 714 may provide the data to a data queue (e.g., DQx) on a data path.

[048] Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, other modifications which are within the scope of this invention will be readily apparent to those of skill in the art based on this disclosure. It is also contemplated that various combination or sub-combination of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying mode of the disclosed invention. Thus, it is intended that the scope of at least some of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above.