Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AQUEOUS ANTIPERSPIRANT/DEODORANT COMPOSITION
Document Type and Number:
WIPO Patent Application WO/2011/087702
Kind Code:
A2
Abstract:
An aqueous antiperspirant/deodorant composition comprising: (a) at least one active chosen from an antiperspirant active and a deodorant active, (b) a mixture comprising at least one basic compound chosen from a basic amide and a basic amine and a counterpart material for the basic amide and/or basic amine, and (c) at least 10 weight% water. Also, a method of manufacturing the composition.

Inventors:
FITZGERALD MICHAEL C (US)
PAN LONG (US)
PAPPAS IRAKLIS (US)
KILPATRICK-LIVERMAN LATONYA (US)
Application Number:
PCT/US2010/060633
Publication Date:
July 21, 2011
Filing Date:
December 16, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COLGATE PALMOLIVE CO (US)
FITZGERALD MICHAEL C (US)
PAN LONG (US)
PAPPAS IRAKLIS (US)
KILPATRICK-LIVERMAN LATONYA (US)
International Classes:
A61Q15/00
Domestic Patent References:
WO2007059530A22007-05-24
Foreign References:
US20060204463A12006-09-14
US6375937B12002-04-23
US20040109833A12004-06-10
US7074394B22006-07-11
US6960338B22005-11-01
US20040198998A12004-10-07
US7105691B22006-09-12
US6007799A1999-12-28
Attorney, Agent or Firm:
MORGAN, Michael F. (Patent Department909 River Roa, Piscataway New Jersey, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. An aqueous antiperspirant/deodorant composition comprising:

a. at least one active chosen from an antiperspirant active and a deodorant active, b. a mixture comprising at least one basic compound chosen from a basic amide and a basic amine and a counterpart material for the basic amide and/or basic amine, and

c. at least 10 weight% water.

2. The antiperspirant/deodorant composition of claim 1, wherein the at least one basic compound chosen from a basic amide and a basic amine is present in an amount up to 45, 40, 35, 30, 25, 20 15, or 10 weight%.

3. The antiperspirant/deodorant composition of any preceding claim, wherein the counterpart material is present in an amount up to 45, 40, 35, 30, 25, 20 15, or 10 weight%.

4. The antiperspirant/deodorant composition of any preceding claim, wherein the at least one antiperspirant active, the at least one basic compound and the counterpart material form a ternary antiperspirant system.

5. The antiperspirant/deodorant composition of any preceding claim, wherein the at least one basic compound is chosen from at least one of urea, arginine, lysine, acetamide, and guanidine.

6. The antiperspirant/deodorant composition of any preceding claim, wherein the counterpart material is a proton-accepting zwitterionic stabilizing ligand for the antiperspirant active.

7. The antiperspirant/deodorant composition of any preceding claim, wherein the counterpart material is at least one material chosen from trimethylglycine, trimethylglycine hydrochloride, trimethylamine N-oxide (TMAO), carnitine, sarcosine, opines, taurine, choline, and dimethylsulfoniopropionate.

8. The antiperspirant/deodorant composition of any preceding claim, wherein the at least one basic compound is urea and the counterpart material is trimethylglycine.

9. The antiperspirant/deodorant composition of claim 8, wherein the urea and trimethylglycine are in a molar ratio of 1 :0.01 to 1 :10, optionally 10:1 to 1 :1.

10. The antiperspirant/deodorant composition of claim 8, wherein the urea and trimethylglycine are in a molar ratio of about 2:1.

1 1. The antiperspirant/deodorant composition of any preceding claim, wherein the at least one basic compound is urea and the counterpart material is trimethylglycine, and the urea and trimethylglycine form a ternary system with the antiperspirant active.

12. The antiperspirant/deodorant composition of any preceding claim, wherein the antiperspirant active is present in an amount of 5 to 25 weight%.

13. The antiperspirant/deodorant composition of any preceding claim, wherein the antiperspirant active comprises an aluminum salt.

14. The antiperspirant/deodorant composition of claim 13, wherein the antiperspirant active comprises A1C13'6H20.

15. The antiperspirant/deodorant composition of claim 14, wherein the ternary system comprises A1C13 6H20 as the antiperspirant active, urea and trimethylglycine.

16. The antiperspirant/deodorant composition of claim 15, wherein the ternary system comprises 5 to 15 weight% A1C13»6H20, 5 to 10 weight% urea, and 5 to 10 weight% trimethylglycine.

17. The antiperspirant/deodorant composition of any preceding claim, which has a pH of 2.5 to 6, optionally 3 to 5.

18. The antiperspirant/deodorant composition of any preceding claim, comprising at least 20 weight% water.

19. A method of producing an aqueous antiperspirant composition, the method comprising the steps of:

a. providing a composition of at least one active chosen from an antiperspirant active and a deodorant active, a mixture comprising at least one basic compound chosen from a basic amide and a basic amine and a counterpart material for the basic amide and/or basic amine, and at least 10 weight% water; and b. heating the composition to form a stabilized system of the at least one active, the mixture, and water.

20. The method of claim 19, wherein the at least one basic compound chosen from a basic amide and a basic amine is present in an amount up to 45, 40, 35, 30, 25, 20 15, or 10 weight%.

21. The method of claim 19 or 20, wherein the counterpart material is present in an amount up to 45, 40, 35, 30, 25, 20 15, or 10 weight%.

22. The method of any one of claims 19 to 21, wherein the mixture comprises at least 20 weight% water.

23. The method of any one of claims 19 to 22, wherein the at least one antiperspirant active, the at least one basic compound and the counterpart material form a ternary antiperspirant system.

24. The method of any one of claims 19 to 23, wherein the at least one basic compound is chosen from at least one of urea, arginine, lysine, acetamide, and guanidine.

25. The method of any one of claims 19 to 23, wherein the counterpart material is a proton- accepting zwitterionic stabilizing ligand for the antiperspirant active.

26. The method of any one of claims 19 to 25, wherein the counterpart material is at least one material chosen from trimethylglycine, trimethylglycine hydrochloride, trimethylamine N- oxide (TMAO), carnitine, sarcosine, opines, taurine, choline, and dimethylsulfoniopropionate.

27. The method of any one of claims 19 to 26, wherein the at least one basic compound is urea and the counterpart material is trimethylglycine.

28. The method of claim 27, wherein the urea and trimethylglycine are in a molar ratio of 1 :0.01 to 1 : 10, optionally 10:1 to 1 :1.

29. The method of claim 27, wherein the urea and trimethylglycine are in a molar ratio of about 2:1.

30. The method of any one of claims 1 to 29, wherein the at least one basic compound is urea and the counterpart material is trimethylglycine, and the urea and trimethylglycine form a ternary system with the antiperspirant active.

31. The method of any one of claims 17 to 30, wherein the antiperspirant active is present in an amount of 5 to 25 weight%.

32. The method of any one of claims 19 to 31, wherein the antiperspirant active comprises an aluminum salt.

33. The method of claim 32, wherein the antiperspirant active comprises Α103·6Η20.

34. The method of claim 33, wherein the ternary system comprises Α103·6Η20 as the antiperspirant active, urea and trimethylglycine.

35. The method of claim 34, wherein the ternary system comprises 5 to 15 weight% ΑΚ¾·6Η20, 5 to 10 weight% urea, and 5 to 10 weight% trimethylglycine.

36. The method of any one of claims 19 to 35, wherein the aqueous antiperspirant composition has a pH of 2.5 to 6, optionally 3 to 5.

37. The method of any one of claims 19 to 36, wherein in step (b) the mixture is heated at a temperature of 90 to 110°C for a period of 1 to 8 hours.

38. A method comprising applying to an axillary area the aqueous antiperspirant composition of any one of claims 1 to 18 or produced by a method according to any one of claims 19 to 37.

Description:
AQUEOUS ANTIPERSPIRANT/DEODORANT COMPOSITION

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No. 61/289,433, filed on 23 December 2009, which is incorporated herein by reference.

BACKGROUND

[0002] There have been several forms of antiperspirant products, such as sticks, soft solids, roll- ons, and aerosols. The antiperspirant products may additionally contain deodorant actives. The different forms deliver antiperspirant actives, and optionally deodorant actives, to axillary areas. There can be disadvantages when formulating these types of products.

[0003] One disadvantage is that when an antiperspirant active is included, steps need to be taken to stabilize the antiperspirant from hydrolyzing and polymerizing during storage. When an antiperspirant polymerizes into larger species, the efficacy is reduced.

[0004] Another disadvantage is that materials used for delivery, such as in the sticks or soft solids, can leave a white residue on the skin. This can be aesthetically unpleasing when seen on skin or when transferred to clothing during wearing.

[0005] It would be advantageous to develop a new form of delivery of antiperspirant and/or deodorant actives.

SUMMARY

[0006] Provided is an aqueous antiperspirant/deodorant composition comprising: (a) at least one active chosen from an antiperspirant active and a deodorant active, (b) a mixture comprising at least one basic compound chosen from a basic amide and a basic amine and a counterpart material for the basic amide and/or basic amine, and (c) at least 10 weight% water.

[0007] Also provided is a method of producing an aqueous antiperspirant composition, the method comprising the steps of: (a) providing a composition of at least one active chosen from an antiperspirant active and a deodorant active, a mixture comprising at least one basic compound chosen from a basic amide and a basic amine and a counterpart material for the basic amide and/or basic amine, and at least 10 weight% water; and (b) heating the composition to form a stabilized system of the at least one active, the mixture, and water. BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Figure 1 is an SEC peak distribution of an antiperspirant active produced in accordance with an embodiment of the present invention (solid line) and of a first comparative antiperspirant active (dashed line) not in accordance with to the present invention.

[0009] Figure 2 is an SEC peak distribution of an antiperspirant active produced in accordance with an embodiment of the present invention (solid line) and of a second comparative antiperspirant active (dashed line) not in accordance with to the present invention.

[0010] Figure 3 is an SEC peak distribution of an antiperspirant active produced in accordance with an embodiment of the present invention (solid line) and of a third comparative antiperspirant active (dashed line) not in accordance with to the present invention.

97

[0011] Figures 4 and 5 show Al NMR spectra of an antiperspirant active produced in accordance with an embodiment of the present invention respectively before and after hydrothermal treatment of the antiperspirant active.

DETAILED DESCRIPTION

[0012] As used throughout, ranges are used as a shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.

[0013] Unless otherwise specified, all percentages and amounts expressed herein and elsewhere in the specification should be understood to refer to percentages by weight. The amounts given are based on the active weight of the material unless otherwise specified.

[0014] Provided is an aqueous antiperspirant/deodorant composition comprising: (a) at least one active chosen from an antiperspirant active and a deodorant active, (b) a mixture comprising at least one basic compound chosen from a basic amide and a basic amine and a counterpart material for the basic amide and/or basic amine, and (c) at least 10 weight% water.

[0015] The composition can contain at least 10, 15, 20, 25, or 30 weight% water. In one embodiment, the antiperspirant composition comprises at least 20 weight% water. [0016] The at least one basic compound chosen from a basic amide and a basic amine and the counterpart material are present in the composition as a mixture that can be considered an osmolyte system and/or an ionic liquid. This means that the selection of the type and amount of each material is such that an osmolyte system and/or ionic liquid is formed. This is distinguished from previous compositions in which either of these materials could have been present in an antiperspirant/deodorant composition but not in the form of an osmolyte system and/or ionic liquid. In certain embodiments the amount of the osmolyte system and/or ionic liquid is present in an amount that is 100 weight% minus the amount of water in the composition.

[0017] The counterpart material is any material that can form an osmolyte system and/or ionic liquid with the at least one basic compound chosen from a basic amide and a basic amine.

[0018] Optionally, the at least one antiperspirant active, the at least one basic compound and the counterpart material form a ternary antiperspirant system.

[0019] Optionally, the at least one basic compound is a hydrogen bond donor and/or selected from at least one of urea, arginine, lysine, acetamide, and guanidine. Optionally, the counterpart material is a proton-accepting zwitterionic stabilizing ligand. The counterpart material may comprise at least one of trimethylglycine, trimethylglycine hydrochloride, trimethylamine N-oxide (TMAO), carnitine, sarcosine, opines, taurine, choline, and dimethylsulfoniopropionate.

[0020J In one embodiment, the at least one basic compound is urea and the counterpart material is trimethylglycine. The urea and trimethylglycine may be in a molar ratio of 1 :0.01 to 1 : 10, optionally 10:1 to 1 :1, optionally about 2:1.

[0021] In one embodiment, the at least one basic compound is urea and the counterpart material is trimethylglycine, and the urea and trimethylglycine form a ternary system with the antiperspirant active.

[00221 Optionally, the antiperspirant active is present in an amount of 5 to 25 weight%. Optionally, the antiperspirant active comprises an aluminum salt, typically A1C1 3 *6H 2 0.

[0023] In one embodiment, the at least one basic compound chosen from a basic amide and a basic amine is present in the composition in an amount up to 45 weight%. In other embodiments, the amount is up to 40, 35, 30, 25, 20, 15, or 10 weight %. In other embodiments, the amount is at least 1, 2, 3, 4, or 5 up to any of the previously listed maximum weight%. In one embodiment, the amount is 5 to 10 weight %.

[0024] In one embodiment, the counterpart material is present in the composition in an amount up to 45 weight%. In other embodiments, the amount is up to 40, 35, 30, 25, 20, 15, or 10 weight %. In other embodiments, the amount is at least 1, 2, 3, 4, or 5 up to any of the previously listed maximum weight%. In one embodiment, the amount is 5 to 10 weight %.

[0025] In one embodiment, the ternary system comprises Α1€ΐ3·6Η 2 0 as the antiperspirant active, urea and trimethyl glycine. Optionally, the ternary system comprises 5 to 15 weight% AlCl 3 *6H 2 0, 5 to 10 weight% urea, and 5 to 10 weight% trimethyl glycine.

[0026] In certain embodiments, the antiperspirant composition typically has a pH of 2.5 to 6, optionally 3 to 5.

[0027] Also provided is a method of producing an aqueous antiperspirant composition, the method comprising the steps of: (a) providing a composition of at least one antiperspirant active including a metal salt, a mixture in which the at least one antiperspirant active is dissolved, and at least 10 weight% water, wherein the mixture comprises at least one basic compound chosen from a basic amide and a basic amine and a counterpart material for the basic amide and/or basic amine, and (b) heating the composition to form a stabilized system of the at least one antiperspirant active, the mixture, and water.

[0028] Typically, in step (b) the composition is heated at a temperature of 90 to 1 10°C for a period of 1 to 8 hours.

[0029] Betaine in IUPAC nomenclature is l-carboxy-N,N,N-trimethylmethanaminium hydroxide-inner salt, with alternative names including carboxymethyl-trimethyl-ammonium betaine or (carboxymethyl)trimethylammonium hydroxide-inner salt or glycine betaine or glycol betaine or glycyl betaine or trimethylglycine or trimethylglycol. Betaine is not to be confused with betaine surfactants.

[0030] The present inventors discovered that antiperspirant compositions containing a metal salt, in particular an aluminum salt, and more particularly AICI3 6H2O as the active, can be present as a stabilized solution at a higher pH, and so at a pH closer to that of skin pH, than previous generation antiperspirant compositions containing Α1Ο 3 ·6Η 2 0 as the active. In particular, the present inventors have found a buffer system that can stabilize an excess of the small aluminum species in those solutions of A1C1 3 -6H 2 0 at a pH closer to that of skin, which can provide desired mildness to skin and fabric.

[0031] The present inventors have devised a buffer system that can stabilize an excess of the small aluminum species in those solutions at a pH closer to skin pH. This provides an effective route to enhanced sweat protection because the technology is based on a time-tested antiperspirant active, A1C1 3 -6H 2 0, and the present inventors have improved upon known low pH effects of that active by raising the pH with a skin-compatible buffer.

[0032] Furthermore, the present inventors discovered that hydrothermally treating a combination of an aqueous solution of an antiperspirant active, in particular an aluminum-containing antiperspirant active such as A1C1 3 -6H 2 0, in the presence of an organic basic amine and/or amide (e.g. urea) with the addition of a counterpart material (e.g. trimethylglycine) aids the synthesis and improves the characteristics of an antiperspirant composition having the combination of high antiperspirant efficacy and mildness to the skin and clothing. It is believed that under the hydrothermal reaction conditions, urea provides a source of base in situ that gradually raises the pH of the solution to a level dependant on the reaction conditions.

[0033] It is known to add buffers, especially urea, to A1C1 3 -6H 2 0 solutions to increase the pH. However, it is not known to use a combination of a base such as a urea and a counterpart material. It is also not known that such a combination of components in a ternary system, or the use of a hydrothermal treatment to produce such an antiperspirant active form such a combination of components, can provide enhanced antiperspirant efficacy.

[0034] Employed in an aqueous system is a counterpart material, such as trimethylglycine, which aids in synthesis, stabilizes the product, and functions with urea, particularly when a 1 :2 trimethylglycine to urea molar ratio is employed, as a complementary stabilizing system.

[0035] This permits the ternary antiperspirant system to be synthesized in one step and in one vessel. Such a simple synthesis can select between a multitude of reaction conditions that can be selected for specific outcomes, such as different pH, concentration, etc. [0036] In one embodiment, the ternary antiperspirant system is based on a metal salt, a basic amide/amine, and a counterpart material, preferably a proton-accepting zwitterionic ligand, the latter typically being trimethylglycine, which is a permanent zwitterion.

[0037] In one embodiment, the antiperspirant active can provide a number of technical benefits and advantages over known antiperspirant actives and systems.

[0038] In particular, the antiperspirant active may provide enhanced efficacy, so that extended protection can be achieved by stabilizing smaller aluminum species, which are known to be more effective antiperspirants, in aqueous solution. The antiperspirant active may provide reduced irritation and fabric damage by raising the pH of the aqueous solution. Such reduced irritation may be achieved by using a skin-compatible buffering system, e.g. urea-trimethylglycine, for the active aluminum compound. Still further, reduced visibility of residue on skin and fabric can be achieved by stabilizing the active in an aqueous solution rather than dispersing an opaque powder in a given formulation or by using an opaque formula base, for example a roll-on formulation.

[0039] When urea is used to neutralize aluminum chloride, and the counterpart material provides a stabilizing effect as a ligand, an aqueous liquid state antiperspirant composition is obtained that is mainly composed of the smaller aluminum species, which can be demonstrated by standard Size Exclusion Chromatograph (SEC). The SEC spectrum of this antiperspirant composition is dominated by "peak 5", which is the smaller aluminum species that are known to have very good antiperspirant efficacy.

[0040] In certain variations of the carrier comprising the trimethylglycine and urea embodiment, a portion of the urea can be replaced by other buffers or hydrogen bond donors. In one embodiment, 20-50 molar % of the urea can be replaced.

[0041] Antiperspirant actives include, but are not limited to, aluminum chloride, in particular Α1Ο 3 ·6Η 2 0 as the antiperspirant active, aluminum chlorohydrate, aluminum sesquichlorohydrate, aluminum-zirconium hydroxychlorides, complexes or adducts of the above-mentioned active ingredients with glycol, such as propylene glycol (for example, "Rehydrol" II from

SummitReheis), and combinations thereof. Known aluminum-zirconium salts in combination with neutral amino acids, such as glycine (e.g., aluminum-zirconium tetrachlorohydrex Gly) can also be used. Generally, any of the Category I active antiperspirant ingredients, listed in the Food and Drug Administration's Monograph on Antiperspirant Drug Products for overall-the- counter human use (Oct. 10, 1973) can be used. Specific examples of commercialized aluminum-zirconium salts include AZP-908 and Z-576 from SummitReheis (Huguenot, NY).

[0042] In other embodiments, the antiperspirant active is an aluminum salt and/or an aluminum- zirconium salt, such as those described above, that are further stabilized by betaine and a calcium salt. More information about betaine and calcium salt stabilized antiperspirant salts can be found in U.S. Patent Application Publication No. 2006/0204463 to Tang et al.

[0043] In other embodiments, the antiperspirant active, such as those described above, is selected to have a low metal to chloride ratio. Examples of these antiperspirant actives can be found in U.S. Patent No. 6,375,937 to Chopra et al. and in U.S. Patent Application Publication No. 2004/0109833 to Tang et al.

[0044] In other embodiments, the type of salt of interest, an aluminum zirconium tetrasalt or octasalt free of glycine are used wherein aluminum zirconium salt is stabilized by betaine and has a metal to chloride ratio of about 0.9:1 to about 1.3: 1 (and in other embodiments of about 0.9: 1 to about 1.2: 1 or about 0.9: 1 to about 1.1 : 1). For the tetrasalt, the Al/Zr atomic ratio can be about 3.2:1 to about 4.1 : 1.0 and the betaine:zirconium mole ratio can be about 0.2: 1 to about 3.0: 1 (or in other embodiments of about 0.4: 1 to about 1.5: 1). Another salt that can be used is an aluminum chloride salt buffered by betaine, wherein the salt has a metal to chloride ratio of 0.9: 1 to 1.3: 1 (and in other embodiments of about 0.9: 1 to about 1.2: 1 or about 0.9: 1 to about 1.1 : 1). For the octasalt the Al/Zr atomic ratio is about 6.2:1 to about 10.0:1 and the betaine:Zr mole ratio is about 0.2: 1 to about 3.0: 1 (or in other embodiments of about 0.4: 1 to about 1.5: 1). In one embodiment, in the case of a salt that contains zirconium, the betaine is incorporated during the synthesis of the salt so as to maximize the stabilizing effect this ingredient has (especially on the zirconium species). Alternatively, it can be post added to a glycine- free salt along with additional active phase ingredients to form a betaine stabilized active.

[0045] Examples of commercially available glycine- free low M:C1 ratio tetrasalts and octasalts include, but are not limited to, REZAL™ AZP 955 CPG and REZAL™ AZP 885 respectively (both from SummitReheis Chemical Company, Huguenot, NY). A more detailed description of making such commercially available salts can be found for example, in U.S. Patent Nos.

7,074,394 and 6,960,338. Further examples of making these types of salt complexes are described in U.S. Patent Application Publication No. 2004/0198998 and United States Patent No. 7, 105,691.

[0046] Additionally, the antiperspirant active can be a calcium salt stabilized antiperspirant active. Examples of calcium salt stabilized antiperspirant actives can be found in U.S. Patent Application Publication No. 2006/0204463.

[0047] In addition, any new ingredient, not listed in the Monograph, such as aluminum nitratohydrate and its combination with zirconyl hydroxychlorides and nitrates, or aluminum- stannous chlorohydrates, can be incorporated as an antiperspirant active. Antiperspirant actives can include, but are not limited to, the following: astringent salt of aluminum, astringent salt of zirconium, aluminum bromohydrate, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate, aluminum chlorohydrex PG, aluminum dichlorohydrex PG, aluminum sesquichlorohydrex PG, aluminum chlorohydrex PEG, aluminum dichlorohydrex PEG, aluminum sesquichlorohydrex PEG, aluminum chloride, aluminum sulfate, aluminum zirconium chlorohydrate, aluminum zirconium trichlorohydrate, aluminum zirconium

tetrachlorohydrate, aluminum zirconium pentachlorohydrate, aluminum zirconium

octachlorohydrate, aluminum zirconium tetrachlorhydrex propylene glycol, aluminum zirconium tri chlorohydrex Gly, aluminum zirconium tetrachlorohydrex Gly, aluminum zirconium pentachlorohydrex Gly, aluminum zirconium octachlorohydrex Gly, buffered aluminum sulfate, potassium alum, sodium aluminum chlorohydroxy lactate. In one embodiment, the

antiperspirant active is aluminum chlorhydrate. In another embodiment, the antiperspirant active is aluminum zirconium tetrachlorhydrex propylene glycol.

[0048] The amount of antiperspirant active can be any of the regulatory allowed amounts for each type of antiperspirant active. In certain embodiments, the amount is up to 25 weight% for an over the counter composition. In certain embodiments, the amount is 5 to 25 weight% of the composition. In other embodiments, the amount is at least 5, 10, or 15 up to 20 weight% of the composition.

[0049] Aluminum chloride refers to the hydrate forms. In one embodiment, the hydrate form comprises Α10 3 ·6Η 2 0. In one embodiment, the amount of aluminum chloride is up to 20 weight%. In other embodiments, the amount is up to 18, 17, 16, 15, 14, 13, 12, 1 1, 10, 9, 8, 7, 6, or 5 weight%. [0050] In one embodiment, a ternary system based on (i) an aluminum source; (ii) a basic amine and/or a basic amide; and (iii) a counterpart material, typically a proton-accepting zwitterionic stabilizing ligand, for example trimethylglycine.

[0051] The aluminum source may comprise ΑΚ¾·6Η 2 θ or alternative aluminum sources, such as ACH, ASCH, etc. When the aluminum source is other than A1C1 3 -6H 2 0 it may be necessary to add a pH modifier to control pH to be within the desired mild pH range, for example by adding an acid, such as an inorganic acid, e.g., HC1, or an organic acid.

[0052] Non-limiting examples of such basic amine and/or basic amide are urea, arginine, lysine, acetamide, and guanidine.

[0053] The counterpart material may comprise trimethylglycine, or alternative or related compounds such as, to give some non-limiting examples, trimethylamine N-oxide (TMAO), carnitine, sarcosine, opines, taurine, choline, dimethylsulfoniopropionate, etc..

[0054] One embodiment provides a ternary system based on (i) A1C1 3 -6H 2 0 as an aluminum source; (ii) urea and (iii) trimethylglycine, to provide an AlCl 3 -6H 2 0-urea-trimethylglycine ternary system.

[0055] For the ternary system of the antiperspirant active according to an embodiment employs A1C1 3 -6H 2 0 as the aluminum source, such as in the AlCl 3 -6H 2 0-urea-trimethylglycine ternary system, the final A10 3 -6H 2 0 concentration can be any amount, but it is usually < 15 weight%, to comply with an FDA Monograph regulation.

[0056] The synthesis of an antiperspirant active composition, as a ternary system, according to various embodiments may be carried out using a hydrothermal treatment as follows. In particular, an aqueous solution of the (i) aluminum source, for example A1C1 3 -6H 2 0; (ii) at least one basic compound chosen from a basic amide and a basic amine, for example urea; and (iii) a counterpart material, for example trimethylglycine, that contains at least 10 (preferably at least 20) weight% water is prepared. In certain embodiments, the amounts of components (i), (ii) and (iii) are selected so that all of the components will fall within the proper concentration ranges and ratios when diluted and/or formulated to a desired product formula. The initial synthesized ternary system and the subsequent dilution and/or formulation are selected to permit the final composition to have a portion of its composition which can be comprised of additional formulators, such as water, silicones, emulsifiers, etc., which can be added after synthesis of the ternary antiperspirant active system.

[0057] The aqueous solution is heated at an elevated temperature, typically 90°C to 1 10°C, for example 100°C, preferably with constant stirring. The heating is conducted for a selected period of time, typically 1 to 8 hours, for example 3 hours, depending on concentrations in the synthesis mixture and the desired final pH.

[0058] After heating the resulting solution can be stored for some amount of time or immediately diluted or formulated.

[0059] The pH of the antiperspirant active ternary system is typically within the range of greater than pH 2.5 and up to pH 6. This provides the property of mildness to skin. In certain embodiments, the pH is 3 to 5, 3.5-4.5, or 3.5-4. Typically, when the Α10 3 ·6Η 2 0 content is at 12 weight% in the final antiperspirant composition to provide enhanced antiperspirant efficacy the pH is 3.5 to 4 to provide mildness to skin and fabric.

[0060] The aluminum species size is determined using size exclusion chromatography (SEC) which is well known for use in antiperspirant active analysis. The SEC results for when A1C1 3 -6H 2 0 is used in certain embodiments indicate that the peak 5 area is > 50%, or > 75%, of the total peak area, and that the combined area of peaks 4 and 5 is >60%, or >80%, of the total peak area. Also the combined area of peaks 3 and 4 in certain embodiments is <50%, or <30% of the total peak area. Using 27 A1 NMR, qualitative analysis shows an abundance of Al monomer, and may also indicate the presence of small Al polymers such as Al dimer, Al i 3 and Al 30 .

[0061] The SEC data is obtained using an SEC chromatogram using the following parameters: Waters®600 analytical pump and controller, Rheodyne® 77251 injector, Protein-Pak® 125 (Waters) column, Waters 2414 Refractive Index Detector. 5.56mM nitric acid mobile phase, 0.50ml/min flow rate, 2.0 microliter injection volume. Data was analyzed using Water® Empower software (Waters Corporation, Milford, Mass.). The concentration of the antiperspirant in aqueous solution does not affect the retention time in the machine. The relative retention time (" d") for each of these peaks varies depending on the experimental conditions, but the peaks remain relative to each other. [0062] Examples of deodorant actives include, but are not limited to, antimicrobial actives, alcohols, 2, 4,4 '-trichloro-2' -hydroxy diphenyl ether (Triclosan), benzethonium chloride, polyhexamethylene biguanides, triethyl citrate, 2-amino-2-methyl-l-propanol (AMP), cetyl- trimethylammomium bromide, cetyl pyridinium chloride, farnesol (3,7,1 l-trimethyl-2,6, 10- dodecatrien-l-ol), bactericides, and/or bacteriostats. In certain embodiments, the amount of deodorant actives is 1 to 20 weight% of the composition.

[0063] A stabilizing agent can optionally be included in the composition. The stabilizing agent is any material that is present in an amount such that the composition is liquid below 100°C. The amount of stabilizing agent varies by the stabilizing capability of each stabilizing agent. In certain embodiments, the amount of stabilizing agent is 1 to 20 weight% of the composition. In other embodiments, the amount of stabilizing agent is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 up to 20 weight% of the composition. In other embodiments, the amount is less than 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 down to 1 weight% of the composition. Examples of stabilizing agents include, but are not limited to, PPG- 14 butyl ether, chloride salts, sodium chloride (NaCl), potassium chloride, bromides, nitrates, organic acids, glycerin, alcohol, ethanol, and isopropanol.

[0064] To improve the skin feel of the composition, skin-feel additives can be added. In one embodiment, the amount of skin-feel additives is 1 to 8 weight% of the composition. In other embodiments, the amount is at least 1 , 2, 3, 4, or 5 up to 8 weight%. In other embodiments, the amount is less than 8, 7, 6, 5, 4, 3, or 2 down to 1 weight%. In certain embodiments, the amount of skin- feel additives is up to 10 weight% to allow for more delivery of the antiperspirant active.

[0065] The optional skin-feel additives that can be used include, but are not limited to, water, isopropanol, ethanol, cocamidopropyl betaine, cyclomethicone (such as DC345), PEG- 12 dimethicone copolyol (DC5329), steareth-2/steareth-20, polyoxyethylene homopolymer (POLYOX™ WSR-N 750 from Dow Chemical), palm kernel oil, mineral oil, and silicone polyether wax (Silwax from Siltech).

[0066] The antiperspirant/deodorant composition may be present in any convenient form, such as a water-based roll-on, or it can be formulated into a stick, soft solid, gel, or aerosol. The antiperspirant actives may be dissolved in aqueous solution in these compositions, which may accordingly be transparent compositions. This can substantially avoid having white residue when applied to skin, which is undesirable to consumers. The antiperspirant/deodorant composition provides a transparent product with no white residue. Also, the product may have a long shelf life, for example up to 10 years can be expected.

[0067] The composition can optionally contain emollients in any desired amount to achieve a desired emollient effect. Emollients are known in the art and are used to impart a soothing effect on the skin. Non-volatile emollients are preferable. Classes of non- volatile emollients include non-silicone and silicone emollients. Non-volatile, non-silicone emollients include C 12-15 alkyl benzoate. The non-volatile silicone material can be a polyethersiloxane, polyalkyarylsiloxane or polyethersiloxane copolymer. An illustrative non-volatile silicone material is phenyl

trimethicone. Non-limiting examples of emollients can be found in United States Patent No. 6,007,799. Examples include, but are not limited to, PPG- 14 butyl ether, PPG-3 myristyl ether, stearyl alcohol, stearic acid, glyceryl monoricinoleate, isobutyl palmitate, glyceryl monostearate, isocetyl stearate, sulphated tallow, oleyl alcohol, propylene glycol, isopropyl laurate, mink oil, sorbitan stearate, cetyl alcohol, hydrogenated castor oil, stearyl stearate, hydrogenated soy glycerides, isopropyl isostearate, hexyl laurate, dimethyl brassylate, decyl oleate, diisopropyl adipate, n-dibutyl sebacate, diisopropyl sebacate, 2-ethyl hexyl palmitate, isononyl isononanoate, isodecyl isononanoate, isotridecyl isononanoate, 2-ethyl hexyl palmitate, 2-ethyl hexyl stearate, Di-(2-ethyl hexyl) adipate), Di-(2-ethyl hexyl) succinate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, octacosanol, butyl stearate, glyceryl monostearate, polyethylene glycols, oleic acid, triethylene glycol, lanolin, castor oil, acetylated lanolin alcohols, acetylated lanolin, petrolatum, isopropyl ester of lanolin, fatty acids, mineral oils, butyl myristate, isostearic acid, palmitic acid, PEG-23 oleyl ether, olelyl oleate, isopropyl linoleate, cetyl lactate, lauryl lactate, myristyl lactate, quaternised hydroxy alkyl, aminogluconate, vegetable oils, isodecyl oleate, isostearyl neopentanoate, myristyl myristate, oleyl ethoxy myristate, diglycol stearate, ethylene glycol monostearate, myristyl stearate, isopropyl lanolate, paraffin waxes, glycyrrhizic acid, hydrocyethyl stearate amide.

[0068] The composition can contain a fragrance. Any known fragrance can be used in any desired amount. In one embodiment, the amount of fragrance is 0.01 to 10 weight%.

[0069] Antioxidants may be added to the composition, preferably to act as ingredient protectants and for maintenance of long-term stability of the composition. Examples of antioxidants include, but are not limited to butylated hydroxytoluene, pentaerythrityl tetra-di-t-butyl hydroxyhydrocinnamate (Tinogard™ TT from Ciba).

[0070] Any of the liquid antiperspirant/deodorant compositions can be applied to axillary areas to reduce sweat and/or odor. The compositions can be applied by hand or via their packaging.

SPECIFIC EMBODIMENTS

[0071] The invention is further described in the following examples. The examples are merely illustrative and do not in any way limit the scope of the invention as described and claimed.

[00721 Example 1

[0073] This Example synthesized an antiperspirant active composition using a solution containing 30 weight% water, 26.45 weight% A1C1 3 *6H 2 0, 22.05 weight% urea, and 21.5 weight% trimethylglycine. This solution was diluted with diluents or formulated to provide a final target concentration (after dilution or formulation) of 12 weight% A1C1 3 -6H 2 0, 10 weight% urea and 9.75 weight% trimethylglycine (and 13.6 weight% water from the original 30 weight% water present in the synthesized solution). The synthesized solution therefore provided for, in addition to the water in the synthesized solution, up 54.6 weight% chosen diluent(s)/formulation additives to be formulated together with the antiperspirant active composition.

[0074] During the synthesis process, the solution containing 30 weight% water, 26.45 weight% A1C1 3 *6H 2 0, 22.05 weight% urea, and 21.5 weight% trimethylglycine was heated at 100°C for 3 hours with constant stirring. Any mass loss during heating (due to evaporation of water and/or off- gassing of C0 2 ) was compensated with water directly after synthesis. After heating, the solution was diluted with water to reach the target concentration for the resultant antiperspirant active of 12% A1C1 3 -6H 2 0, 10% urea, and 9.75% trimethylglycine.

[0075] The pH of the resultant diluted solution was measured and found to be is stable at pH 4.05.

[0076] The resultant diluted solution containing the resultant antiperspirant active was analyzed using SEC and 27 A1 NMR.

[0077] For the SEC analysis, Figure 1 illustrates an SEC chromatogram of the resultant antiperspirant active (the solid line). Later elution times indicate smaller particle size, corresponding to enhanced antiperspirant efficacy. It may be seen that there is a large peak 5, a much smaller peak 4, and a smaller still peak 3. [0078] The ternary antiperspirant active system according to different embodiments may be compared to known compositions.

[0079] One such known composition is CertainDri ® , a commercially available over-the-counter antiperspirant based on a 12 weight% solution of A1C1 3 -6H 2 0 buffered with NaHC0 3 to pH -2.5. That composition has been analyzed using SEC, the SEC profile containing peak 5 only.

[0080] Other such known composition comprise Aln and Al 3 o polymer compositions which can be synthesized at high purity in the laboratory and elute entirely under peak 4 when analyzed with that SEC method. A currently employed ACH that returns SEC peaks 3, 4, and 5, and " Al NMR analysis of the antiperspirant system validates an abundance of Al monomers, and may also indicate the presence of small Al polymers (e.g., Al dimer), AI13, and AI30.

[0081] For comparison, Figure 1 also illustrates an SEC chromatogram of the commercially available CertainDri ® antiperspirant active (the dashed line).

[0082] The Certain-Dri antiperspirant active has only one peak at the latest elution time. However, the composition has very low pH and is not mild. In contrast, the resultant antiperspirant active has higher pH (4.05 in this Example) and is mild. The peak 5 has been substantially stabilized, compared to the high efficacy Certain-Dri antiperspirant active, at a higher pH, while preventing significant formation of species as large or larger than peak 4. It is evident in the chromatogram that the resultant antiperspirant active has maintained predominantly small species, as represented by the peak 5 area comprising about 80% of the total area Peak 5).

[0083] Additionally for the SEC analysis, Figure 2 compares the SEC chromatogram of the resultant antiperspirant active (the solid line) against the SEC chromatogram of the known Alj 3-mer and Al 3 o- mer salts (the dashed line). It is evident from the chromatograms that the Ali 3-mer and Al 3 o- me r salts have reduced efficacy as compared to the resultant antiperspirant active because of the predominance of the peak 4 area for the Ali 3-mer and Al 3 o -m er salts as compared to the predominance of the peak 5 area the resultant antiperspirant active.

[0084] Yet further for the SEC analysis, Figure 3 compares the SEC chromatogram of the resultant antiperspirant active (the solid line) against the SEC chromatogram of the current commercially available ACH salt (the dashed line). Compared to ACH, the resultant antiperspirant active has reduced peaks 3 and 4, and increased peak 5 representing stabilized smaller species, at a similar pH. The minimized peak 3 and 4 species compared to ACH represents enhanced antiperspirant efficacy. [0085] Figures 4 and 5 show " Al NMR results for the resultant antiperspirant active respectively before and after hydrothermal treatment of the ternary system.

[0086] In Figure 4, before hydrothermal treatment in the 27 Al NMR result there is a strong resonance at ~0ppm corresponding to monomeric Al, and a small peak at -4-1 Oppm corresponding to small Al polymers. After hydrothermal synthesis, the Al NMR result of Figure 5 indicates that Al monomer is still present, there is a significant boost in small Al polymers, and two new peaks at ~63ppm and ~70ppm appear corresponding to formation of AI13 and AI30 respectively.