Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ARRANGEMENT FOR LASER BEAM CUTTING WORKPIECES
Document Type and Number:
WIPO Patent Application WO/2019/179851
Kind Code:
A1
Abstract:
The invention relates to an arrangement for laser beam cutting, in which a laser beam can be split by means of optical elements into at least two partial beams interfering with one another in an interference volume, wherein the interference volume of the partial beams interfering with one another is arranged in the region of the material of a workpiece to be cut.

Inventors:
KUNZE TIM (DE)
BAUMANN ROBERT (DE)
Application Number:
PCT/EP2019/056320
Publication Date:
September 26, 2019
Filing Date:
March 13, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FRAUNHOFER GES FORSCHUNG (DE)
International Classes:
B23K26/38; B23K26/067
Domestic Patent References:
WO2012107535A12012-08-16
WO2018184934A12018-10-11
WO2018162356A12018-09-13
Foreign References:
DE102012011343A12013-12-12
DE102013007524A12014-10-23
DE102013004869A12014-09-25
Other References:
None
Attorney, Agent or Firm:
PFENNING, MEINIG & PARTNER MBB (DE)
Download PDF:
Claims:
Patentansprüche

1. Anordnung zum Laserstrahlschneiden, bei der ein Laserstrahl (A) mit tels optischer Elemente (BS1, BS2, Ml, M2, 2, 31, 41) in mindestens zwei in einem Interferenzvolumen (12) miteinander interferierende Teilstrahlen (1.1, 1.2, Bl, B2) aufteilbar ist, wobei das Interferenzvolu men (12), der miteinander interferierenden Teilstrahlen (1.1, 1.2, Bl, B2), im Bereich von Werkstoff eines zu schneidenden Werkstücks (S) angeordnet ist.

2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die An ordnung so ausgebildet ist, dass mindestens einer der folgenden drei Effekte a bis c erreichbar ist, so dass a die Strukturperiode L der miteinander interferierenden Teil strahlen (1.1, 1.2, Bl, B2, D), b die Ausrichtung der Strukturperiode L in Bezug zur optischen Achse des Laserstrahls (A) durch Drehung der Strukturperiode L um diese oder eine parallel dazu ausgerichtete Achse und c die Position des Interferenzvolumens (12) in Bezug zur Oberflä che des zu schneidenden Werkstücks (S) mit seinem Zentrum in Bezug zur Oberfläche des zu schneidenden Werkstücks (S) während der Vorschubbewegung der miteinander interferierenden Teilstrahlen (1.1, 1.2, Bl, B2, D) veränderbar ist.

3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Struk turperiode L der miteinander interferierenden Teilstrahlen (1.1, 1.2, Bl, B2, D), die Ausrichtung der Strukturperiode L in Bezug zur opti schen Achse des Laserstrahls (A) durch Drehung der Strukturperiode L um diese oder eine parallel dazu ausgerichtete Achse und/oder die Po sition des Interferenzvolumens (12) in Bezug zur Oberfläche des zu schneidenden Werkstücks (S) mit seinem Zentrum in Bezug zur Ober fläche des zu schneidenden Werkstücks kontinuierlich oder stufenwei se veränderbar ist.

4. Anordnung nach einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass die Drehung der Strukturperiode L mit einem Win kel cpx erfolgt.

5. Anordnung nach einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass die Drehung der Strukturperiode L mit einem Doveprisma, dass parallel zu den parallel zueinander ausgerichteten optischen Achsen der Teilstrahlen drehbar ist und/oder

mit zwei um jeweils eine senkrecht zueinander ausgerichtete Achse verschwenkbaren reflektierenden Elementen (9, 10), auf die die paral lel zueinander ausgerichteten Teilstrahlen auftreffen, erreichbar ist und/oder

miteinander interferierende Teilstrahlen (D) auf am äußeren Umfang eines Polygonspiegels (P) angeordnete mehrere reflektierende Ober flächen auftreffen und mit den um eine senkrecht zur Auftreffrichtung der Teilstrahlen rotierenden reflektierenden Oberflächen auf eine zu bearbeitende Oberfläche eines Werkstücks (S) gerichtet sind.

6. Anordnung nach einem der zwei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Drehrichtung der Strukturperiode L verän derbar ist.

7. Anordnung nach einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass die Position des Interferenzvolumens in Bezug zur jeweiligen Werkstückoberfläche mit Hilfe mindestens eines dynamisch in x-, y- und/oder z-Achsrichtung bewegbaren, optischen Elementes veränderbar ist, wobei die Position bezüglich der Oberfläche des Werkstücks (S) durch Modulation der Strahldivergenz mit einer Höhe Ah in z-Achsrichtung veränderbar ist.

8. Anordnung nach dem vorhergehenden Anspruch, dadurch gekenn zeichnet, dass das mindestens eine optische Element ein abbildendes optisches Element, insbesondere mindestens einer optischen Linse, ein akusto-optischer, ein elektro-optischer oder mechano-optischer Mo dulator ist.

9. Anordnung nach einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass der Laserstrahl (A) gepulst mit einer Einzelpulsdau er im Femtosekundenbereich bis maximal 100 ns und/oder mit einer Leistung von mindestens 0,1 W im gesamten Spektralbereich der ein gesetzten Laserstrahlung betreibbar ist.

Description:
ANORDNU NG ZUM LASERSTRAHLSCHN EI DEN VON WERKSTÜCKEN

Die Erfindung betrifft eine Anordnung zum Laserstrahlschneiden von Werk stücken, bei der Laserstrahlinterferenz ausgenutzt werden kann.

Beim herkömmlichen Laserstrahlschneiden treten Probleme auf, auf die nach folgend eingegangen werden soll.

Problemstellung 1: Das Laserschneiden/Trennen von Materialien, insbeson- dere Metallen, mit Dicken von über 6 mm stellt eine deutliche Herausforde rung an die notwendige Laserleistung sowie die dafür notwendigen optischen Komponenten dar. Die Nutzung höherer Laserleistungen führt zwar zu einer deutlichen Verbesserung der erreichbaren Schnittgeschwindigkeiten sowie verbesserter Schnittkantenqualität aber gleichzeitig steigen die Betriebs- und Investitionskosten aufgrund der verwendeten Anlagentechnik (d.h. höhere

Laserleistung erfordert Hochleistungsoptiken mit entsprechend höheren An- schaffungs- und Betriebskosten). Problemstellung 2: Das Laserschneiden/Trennen von Materialien, z.B. metalli schen Schäumen, mit Dicken von weniger als 1 mm ist prinzipiell mittels Laser- Remote-Schneidprozessen schnell und flexibel möglich. Das Schneiden der Materialien erfordert aber dabei ein mehrfaches Überfahren der gewünsch ten Schnittkontur. Dabei führen höhere Laserleistungen zu weniger benötig ten Überfahrten und folglich höheren Schnittgeschwindigkeiten, jedoch steigt die Beanspruchung der optischen Strahlformungs- und Führungselemente deutlich. Optische Bearbeitungselemente (Scannerspiegel), welche den hohen Laserleistungen prozesssicher standhalten können weisen aufgrund ihrer grö ßeren Apertur eine geringe Dynamik auf. Dies wirkt der maximal-möglichen Schnittgeschwindigkeit entgegen.

Problemstellung 3: Beim Trennen von dünnen Folien (z.B. Batteriefolien - Anoden und Kathoden) mit Dicken kleiner als 200 pm kommt es zu Material- auswurf bzw. Materialanhäufung an der Oberfläche, was zu Qualitätseinbu ßen oder erforderlichen Nacharbeiten führt. Dies kann beispielsweise bei ei ner Weiterverarbeitung zu elektrischen Kurzschlüssen führen und die jeweili ge Batterie in ihrer Funktion stören bzw. vollständig funktionsunfähig machen. Es werden höhere Laserintensitäten erforderlich, so dass ein höherer Materi alverdampfungsanteil entstehen kann und der am Prozess beteiligte Schmelz anteil reduziert wird. Der alleinigen Aufskalierung der Laserintensität d.h. La serleistung steht aber eine höhere Anforderung an die optischen Komponen ten sowie Einbußen in der Prozessdynamik entgegen (siehe Problemstellung 2).

Bei allen Laserschneidanwendungen gilt die Anforderung einer hohen Laserin tensität, einer hohen Prozessdynamik bzw. -geschwindigkeit (geringe lokale Interaktionszeit) bei gleichzeitig möglichst geringem Strahldurchmesser in der Fokusebene (Brennfleck).

Der Problemstellung 1 wurde bisher mit einer Modulation des Laserstrahlpro- fils/Laserstrahlquerschnittsflächengeoemtrie entweder über statische opti sche Elemente (Diffraktive optische Elemente - DOE) oder über statisch verteilte und symmetrische, jedoch in ihrer Intensität anpassbare, Strahlprofi le (Coherent - Adjustable Ring Mode Fiber Laser) entgegen gewirkt. Die damit realisierbaren Laserstrahlprofile ermöglichen aber nur ein 1-dimensionales Modulieren der lokalen Laserintensität. Insbesondere beim statischen DOE- Ansatz muss beispielsweise für komplexe Schneidkonturen der Schneidkopf oder aber das Bauteil gedreht werden. Weitere Ansätze von modulierten Strahlprofilen ergeben sich durch das sogenannte Strahlpendeln, bei dem ein Laserstrahl mit konstanter Strahlintensitätsverteilung mittels hochdynami schen Scannern so schnell abgelenkt wird, dass eine dynamisierte Laserinten sitätsverteilung erreicht werden kann. Nachteilig beim Strahlpendeln wirkt es sich aber aus, dass optische Bearbeitungselemente (Scannerspiegel), welche den hohen Laserleistungen prozesssicher standhalten können, aufgrund ihrer größeren Apertur eine geringe Dynamik aufweisen. Dies wirkt der maximal möglichen Schnittgeschwindigkeit entgegen, so dass die Modulationsfrequenz der Scannerspiegel auf ca. 4 kHz begrenzt ist.

Der Problemstellung 2 wurde bisher entgegengewirkt, in dem Materialien mit einer Stärke von weniger als 1 mm mittels Laser-Remote-Schneiden (LRS) hochqualitativ und effizient bearbeitet wurden. Die verwendeten Strahlprofile besitzen üblicherweise eine statische, gaußverteilte Laserenergieverteilung (Single-Mode; TEM00). Das Schneiden der Materialien benötigt dabei mit zu nehmender Materialstärke eine größere Anzahl erforderlicher Überfahren, wodurch die Anwendbarkeit des LRS auf dünne Bauteile beschränkt ist. Das LRS ist derzeit auf ca. 0,4 mm Blechstärke begrenzt.

Problemstellung 3 wurde bisher entgegen gewirkt, in dem gepulste Laserquel len zum Schneiden von Folien oder anderen dünnen Bauteilen eingesetzt wurden. Die dabei entstehenden Schmelzpartikel müssen in einem nachgela gerten Prozessschritt entfernt oder durch Anwenden dickerer Separatorfolien oder Abdeckungen kompensiert werden. Das Nutzen höherer Laserintensitä ten führt wieder zu höheren Anforderungen an die optischen Komponenten sowie Einbußen in der Prozessdynamik.

Es ist daher Aufgabe der Erfindung, Möglichkeiten zum Laserstrahlschneiden anzugeben, mit denen die Kosten reduziert, die Bearbeitungsgeschwindigkeit erhöht oder bei verbesserter Qualität beibehalten werden kann. Erfindungsgemäß wird diese Aufgabe mit einer Anordnung, die die Merkmale des Anspruchs 1 aufweist, gelöst. Vorteilhafte Ausgestaltungen und Weiter bildungen der Erfindung können mit in untergeordneten Ansprüchen bezeich- neten Merkmalen realisiert werden.

Bei der erfindungsgemäßen Anordnung ist ein Laserstrahl mittels optischer Elemente in mindestens zwei in einem Interferenzvolumen miteinander inter ferierende Teilstrahlen aufteilbar. Das Interferenzvolumen, der miteinander interferierenden Teilstrahlen, ist dabei im Bereich von Werkstoff eines zu schneidenden Werkstücks angeordnet.

Die Anordnung sollte vorteilhaft so ausgebildet sein, dass mindestens einer der folgenden drei Effekte a bis c erreichbar ist. a die Strukturperiode L der miteinander interferierenden Teilstrahlen, b die Ausrichtung der Strukturperiode L in Bezug zur optischen Achse des Laserstrahls durch Drehung der Strukturperiode L um diese oder eine parallel dazu ausgerichtete Achse und c die Position des Interferenzvolumens in Bezug zur Oberfläche des zu schneidenden Werkstücks mit seinem Zentrum in Bezug zur Oberfläche des zu schneidenden Werkstücks (in z-Achsrichtung) ist während der Vorschubbewegung der miteinander interferierenden Teil strahlen veränderbar.

Während der Vorschubbewegung des Brennflecks beim Laserschneiden, der mit den mindestens zwei interferierenden Teilstrahlen gebildet ist, sollte vor teilhaft mindestens einer der drei genannten Effekte realisiert sein.

Die Strukturperiode L, der miteinander interferierenden Teilstrahlen, die Aus richtung der Strukturperiode L in Bezug zur optischen Achse des Laserstrahls durch Drehung der Strukturperiode L um diese oder eine parallel dazu ausge richtete Achse und/oder die Position des Interferenzvolumens in Bezug zur Oberfläche des zu schneidenden Werkstücks kann/können vorteilhaft mit sei- nem Zentrum in Bezug zur Oberfläche des zu schneidenden Werkstücks (in z- Achsrichtung) kontinuierlich oder stufenweise veränderbar sein. Bei einer kontinuierlichen Veränderung kann die Strukturperiode L von einem Mini malwert bis zu einem Maximalwert und wieder zurück verändert werden. Es kann auch so eine Drehung erreicht werden, in dem die miteinander interfe rierenden Teilstrahlen so beeinflusst werden, dass eine kontinuierliche Dre hung der Ausrichtung der Strukturperiode L durch Drehung mit konstanter Winkelgeschwindigkeit erreicht werden kann.

Die Positionierung des Interferenzvolumens der miteinander interferierenden Teilstrahlen kann ebenfalls zwischen einem Minimal- und einem Maximalwert durch Verschiebung des Interferenzvolumens in z-Achsrichtung mit konstanter Geschwindigkeit realisiert werden. Dabei sollte der jeweils bereits erfolgte Werkstoffabtrag im Bereich der Schnittfuge berücksichtigt werden. Dies kann durch eine Steuerung oder bevorzugt eine Regelung erreicht werden. Bei ei ner Regelung kann beispielsweise der jeweils erfolgte Werkstoffabtrag mit mindestens einem berührungslos arbeitenden Sensor bestimmt und dies bei der Bewegung des Interferenzvolumens in z-Achsrichtung berücksichtigt wer den können. Dazu ist beispielsweise ein Abstandssensor geeignet.

Eine Regelung oder Steuerung kann auch so durchgeführt werden, dass das Interferenzvolumen so insbesondere in z-Achsrichtung positioniert wird, dass die Ebene des Interferenzvolumens mit der größten Energiedichte der mitei nander interferierenden Laserstrahlung im Bereich der Oberfläche angeordnet wird, in der momentan ein Werkstoffabtrag erfolgt.

Die Position des Interferenzvolumens kann in Bezug zur jeweiligen Werk stückoberfläche mit Hilfe mindestens eines dynamisch in x-, y- und/oder z- Achsrichtung bewegbaren, optischen Elementes verändert werden. Dazu kann mindestens ein optisches Element ein abbildendes optisches Element, insbe sondere eine optische Linsen, ein akusto-optischer, ein elektro-optischer oder mechano-optischer Modulator sein. Die Position bezüglich der Oberfläche des Werkstücks (S) sollte mit einer Höhe Ah in z-Achsrichtung veränderbar sein.

Bei einer gestuften Veränderung der Effekte a) bis c) kann eine sprunghafte Veränderung mit Werten für eine veränderte Strukturperiode mit Stufen von DL, eine Drehung mit Werten von Df und/oder einer Bewegung der Position des Interferenzvolumens mit Werten von Dή in z-Achsrichtung bei einem kar tesischen Koordinatensystem sein. Die jeweiligen D-Werte können für die je weilige Schneidaufgabe optimiert gewählt werden.

Eine Drehung der Strukturperiode mit den interferierenden Teilstrahlen kann auch mit wechselnder Drehrichtung erfolgen.

Die Drehung der Strukturperiode A kann mit einem Doveprisma, das parallel zu den parallel zueinander ausgerichteten optischen Achsen der Teilstrahlen drehbar ist, erreicht werden. Dabei treffen die bis dahin parallel zueinander ausgerichteten Teilstrahlen auf eine in einem Winkel ungleich 90 ° in Bezug zu den optischen Achsen der Teilstrahlen abgewinkelte Stirnfläche eines Doveprisma auf und treten an einer ebenfalls in einem Winkel ungleich 90 ° abgewinkelten Stirnfläche des Doveprisma aus. Bei der Drehung des

Doveprismas kann die Strukturperiode L entsprechend gedreht werden.

Allein oder zusätzlich dazu kann eine auch zweidimensionale Vorschubbewe gung des Interferenzmusters, das mit den interferierenden Teilstrahlen erhal ten worden ist, auf der Oberfläche eines Bauteils auch mit zwei um jeweils eine senkrecht zueinander ausgerichtete Achse verschwenkbaren reflektie renden Elementen, auf die die parallel zueinander ausgerichteten Teilstrahlen auftreffen, erreicht werden. Dabei sind die beiden reflektierenden Elemente im Strahlengang der Teilstrahlen nacheinander angeordnet, so dass die Teil strahlen erst auf ein reflektierendes Element und nach Reflexion von dort auf ein zweites reflektierendes Element auftreffen. Ein solcher Aufbau kann auch als Galvo-Spiegelaufbau bezeichnet werden. Je nach den eingestellten Schwenkwinkeln der beiden reflektierenden Element kann die Position des Brennflecks, der mit den interferierenden Teilstrahlen erhalten worden ist, mit der Strukturperiode L in eine bestimmte Position durch Verschwenkung der reflektierenden Flächen der reflektierenden Elemente in bestimmten vorgebbaren Winkeln während der Schneidbearbeitung sukzessive oder kon tinuierlich verändert werden.

In einer Nullstellung sollte die im Strahlengang der Teilstrahlen zuerst ange ordnete reflektierende Fläche in einem Winkel von 45 ° in Bezug zu den dort auftreffenden Teilstrahlen ausgerichtet sein und sich um diesen Winkel in zwei entgegengesetzte Richtungen verschwenken lassen. Die maximalen Verschwenkwinkel sollten so gewählt werden, dass die von dort reflektierten Teilstrahlen auf die reflektierende Oberfläche des im Strahlengang der Teil strahlen nachfolgend angeordneten weiteren reflektierenden Elements auf treffen können. Die reflektierende Oberfläche des weiteren reflektierenden Elements kann in einer Nullstellung bevorzugt parallel zu einer Oberfläche eines zu schneidenden Substrats bzw. Werkstücks ausgerichtet und um diese Nullstellung verschwenkbar sein.

Unter Nutzung eines strahlpaarrotierenden Elementes, wie dies ein

Doveprisma ist, können die Teilstrahlen um einen kontinuierlichen Winkel gedreht werden. Die Rotationsgeschwindigkeit kann konstant variiert oder um ein festes Inkrement erhöht werden. Die rotierenden Teilstrahlen können in auch mit einem Galvanometer-Aufbau (Scanner) mit den um senkrecht zuei nander ausgerichteten Rotationsachsen, um die sie verschwenkbar sind, so beeinflussen, dass eine Rotation des Interferenzmusters auf der Oberfläche des Substrates zur Optimierung des Schneidprozesses genutzt werden kann.

Eine Veränderung der Ausrichtung der Interferenzperiode L durch Drehung kann auch mit miteinander interferierenden Teilstrahlen, die auf am äußeren Umfang eines Polygonspiegels angeordnete mehrere reflektierende Oberflä chen auftreffen und mit den um eine senkrecht zur Auftreffrichtung der Teil strahlen rotierenden reflektierenden Oberflächen auf eine zu bearbeitende Oberfläche eines Werkstücks gerichtet sind, erreicht werden.

Als neuer Lösungsansatz zur Überwindung bestehender Beschränkungen des Laserstrahlschneidens wird eine höchstdynamische Strahlmodulation mittels direktem Laserinterferenzverfahren vorgeschlagen. Hierfür werden kohärente Laserstrahlen überlagert, die ein Interferenzmuster erzeugen. In Folge kann die Laserstrahlungsintensität I, welche maßgeblich für den Schmelzaustrieb durch erhöhten Verdampfungsanteil verantwortlich ist, lokal definiert stark erhöht werden (siehe Abbildung 1). Der funktionale Zusammenhang der lokalen Laserintensität infolge Laserinter ferenz ergibt sich dabei im Wesentlichen aus der lokalen elektrischen Feld stärke E (mit k als Konstante) zu:

I = k * | E | 2

Vorteile ergeben sich aus der Flexibilität in der Erzeugung des Interferenzmus ters bezogen auf die sich ausprägende Interferenzperiode L im Schnittspalt. Diese Interferenzperiode L kann gemäß der Formel

L = l / (2 * sin (Q/2)) unter Berücksichtigung der Laserwellenlänge l sowie des Winkels Q zwischen den interferierenden Teilstrahlen kontrolliert werden. Durch geeignete (kon stant-gehaltene) Wahl einer oder in-line Variation der Interferenzperiode L kann die lokale Laserintensität während des Schneidprozesses angepasst bzw. optimiert werden.

Es ist auch vorteilhaft, wenn eine variable Orientierung des Laserinterferenz musters während des Prozesses genutzt wird. Durch geeignete Wahl der Ori entierung des Interferenzmusters bzgl. der Vorschubrichtung kann ebenfalls der Schneidprozess positiv beeinflusst werden. Figur 1 zeigt mögliche I nterfe renzmuster (links) sowie beispielhafte Interferenzmuster in Vorschubrichtung des Schnittspalts (rechts). Der Abstand L in Figur 1 bestimmt die Überlappung der Interferenzmuster. Dabei können die Strukturperiode L und/oder die Aus richtung des jeweiligen Interferenzmusters in Vorschubbewegungsrichtung durch Drehung um einen Winkel cpx verändert werden. Die Drehung kann da bei kontinuierlich oder auch stufenweise mit vorgebbarem Winkel Df erreicht werden. Auch die Richtung in der das Interferenzmuster gedreht wird, kann bei der Vorschubbewegung verändert werden.

Es kann auch eine dynamische Prozessführung auch als Kombination mit ver änderbarere Interferenzperiode und -orientierung vorteilhaft genutzt wer den. Diese Kombination ermöglicht einen hochdynamischen Schneidprozess in Analogie zum bereits bekannten Laserstrahlpendeln. Der wesentliche Unter schied zum etablierten Laserstrahlpendelverfahren ist die interferenzmuster- bedingte Substruktur im Laserstrahlprofil in der Brennfleckebene und die in Folge bedeutend erhöhte Laserintensität während des Schneidprozesses (er höhter Schmelzanteil). Prinzipiell können alle genannten Vorteile zusätzlich noch mit konventionellen Konzepten bestehender Laserschneidköpfe mit Pro zessgasdüse gekoppelt werden, so dass der Materialaustrieb und die resultie rende Schneidgeschwindigkeit insbesondere für den in Problemstellung 1 ge nannten Sachverhalt verbessert werden kann.

Durch Erweiterung des optischen Aufbaus kann allein oder zusätzlich zu den zwei bereits genannten Möglichkeiten die Strahldivergenz so kontrolliert wer den, dass die sich ausprägenden Interferenzmuster (d.h. die Position des In terferenzvolumens) in ihrer z-Achsenposition (z-Ebene) dynamisch moduliert werden können. Infolge kann eine Art vertikale Strahloszillation (Variations höhe h) generiert werden, welche sich positiv auf das Schneidergebnis aus wirkt (siehe Figur 2).

Der Laserstrahl kann bevorzugt gepulst mit einer Einzelpulsdauer im

Femtosekundenbereich bis maximal 100 ns und/oder mit einer Leistung von mindestens 0,1 W im gesamten Spektralbereich der eingesetzten Laserstrah lung betrieben werden. Es besteht aber auch die Möglichkeit eines kontinuier lichen cw-Betriebes des Laserstrahls.

Der wichtigste Vorteil der Erfindung ergibt sich aus der Erhöhung der maximal nutzbaren Intensität bei gleichbleibender Laserleistung sowie die damit ein hergehende Reduzierung der Strahltaille. Daher kann schon eine moderate Erhöhung der Laserleistung zu einer deutlich erhöhten Prozessgeschwindig keit führen ohne die Dynamik der verwendeten Scannerspiegel oder andere Möglichkeiten zur Strahlauslenkung bzw. der Relativbewegung zwischen dem interferierenden Laserstrahl und einem Werkstück verändern zu müssen.

Für das Trennen von Folien besteht der Vorteil eines höheren Verdampfungs anteils im Schnittspalt. Werkstoff eines Werkstücks, das in die Dampfphase überführt worden ist, kann wesentlich besser von der Prozesszone und vom Bauteil weggeführt werden. Dies erhöht die Qualität der erhaltenen Werkstü cke, da weniger Material aus dem Schnittspalt sich auf der Werkstückoberflä- che niederschlägt. Gleichzeitig kann der thermisch induzierte Stress, der beim Laserschneidprozess auftritt, deutlich reduziert werden.

Nachfolgend soll die Erfindung beispielhaft näher erläutert werden.

Dabei zeigen:

Figur 1 Möglichkeiten zur Veränderung der Ausrichtung eines Interfe renzmusters in Bezug zur Vorschubbewegungsrichtung;

Figur 2 Möglichkeiten zur Beeinflussung der Position des Interferenzvo lumens in ihrer z-Achsenposition während des Schneidvorgangs infolge Fo kusvariation bzw. Divergenzmodulation vor Eintritt des Laserstrahls in den Teil der Anordnung mit dem die direkte Laserinterferenz erreichbar ist (DLIP Se tup);

Figur 3 in schematischer Form ein Beispiel einer optischen Anordnung, wie sie bei der Erfindung eingesetzt werden kann;

Figur 4a-c in schematischer Form Beispiele eines verschwenkbaren weite ren Strahlteilers allein (a), in Kombination mit einem Fokussierungssystem (b) oder ein Laser-Scanner (c), wie sie ebenfalls bei der Erfindung eingesetzt wer den können;

Figur 5 in schematischer Form ein weiteres Beispiel einer Anordnung, die bei der Erfindung eingesetzt werden kann;

Figur 6 in schematischer Form ein weiteres Beispiel einer Anordnung, wie sie bei der Erfindung eingesetzt werden kann;

Figur 7 die mögliche Anwendung eines Doveprismas zur Drehung der

Interferenzstrukturperiode L und

Figur 8 zwei um jeweils eine senkrecht zueinander ausgerichtete Achse verschwenkbaref reflektierendef Elemente zur flexiblen Realisierung einer Vorschubbewegung beim Laserstrahlschneiden in Kombination mit einem Doveprisma.

In Figur 1 ist schematisch gezeigt, wie während des Schneidvorgangs aktiv Einfluss genommen werden kann, in dem die Strukturperiode L während der Vorschubbewegung des Laserstrahls in Bezug zu einem Werkstück verändert werden kann. Dadurch lässt sich die Energiedichte im Interferenzvolumen während der Vorschubbewegung verändern. So weist die Strukturperiode Al eine veränderte lokale Energiedichte auf als die Strukturperiode L2.

Der unteren Reihe von Figur 1 kann man entnehmen, dass während der Vor schubbewegung auch eine Drehung der Strukturperiode L möglich ist. Sie kann um einen Winkel cp senkrecht in Bezug zur optischen Achse des Laser strahls gedreht werden, wie dies im allgemeinen Teil der Beschreibung bereits erläutert worden ist.

Figur 2 kann man entnehmen, dass auch die Möglichkeit besteht, die Position des Interferenzvolumens in z-Achsrichtung während der Vorschubbewegung des Laserstrahls zu verändern. Dies stellt ebenfalls eine Art eines Pendelns allerdings in z-Achsrichtung und nicht wie üblich in x-y-Achsrichtung dar.

Durch den Wechsel der Position des Interferenzvolumens in z-Achsrichtung kann ebenfalls lokal Einfluss auf die jeweilige Energiemenge genommen wer den, die vom Werkstückwerkstoff absorbiert und in Wärme bzw. kinetische Energie umgewandelt werden kann, um ein Schneiden an einem Werkstück zu erreichen.

In Figur 3 ist eine Anordnung gezeigt, die man bei der Erfindung einsetzen kann. Dabei wird ein Laserstrahl A von einer Laserstrahlquelle 1 emittiert und gelangt zu einem optischen System 2 zur Fokussierung, ein zu einem opti schen Element 3 zur Strahlformung, einen Polarisator 4 und dann auf einen ersten Strahlteiler BS1. Die Oberflächen des ersten Strahlteilers BS1 auf die der Laserstrahl A auftritt und ein Teilstrahl B2 austritt sind in einem Winkel von 45 ° zur optischen Achse des Laserstrahls A geneigt. Der austretende La serstrahl Bl trifft auf ein den Teilstrahl Bl reflektierendes Element M2, dessen reflektierende Oberfläche parallel zu den Oberflächen des ersten Strahlteilers BS1 also ebenfalls in einem Winkel von 45 ° in Bezug zur optischen Achse des Laserstrahls A und des Teilstrahls B2 ausgerichtet ist. Der Teilstrahl B2 wird auf eine Oberfläche eines weiteren Strahlteilers BS2 mit einem mit seiner re flektierenden Oberfläche im 45 ° Winkel ausgerichteten reflektierenden Ele ment M2 gerichtet und transmittiert durch den weiteren Strahlteiler BS2.

Der vom Strahlteiler BS1 reflektierte Teilstrahl Bl trifft auf eine parallel zu den Oberflächen des ersten Strahlteilers BS1 ausgerichtete reflektierende Oberflä che des reflektierenden Elements Ml, die wiederum in einem Winkel von 45 ° in Bezug zur optischen Achse des ersten Teilstrahls Bl ausgerichtet ist. Der dort reflektierte Teilstrahl Bl gelangt über ein optisches Element 5 zur Über wachung des Polarisations- oder Phasenzustandes des Teilstrahls Bl auf eine Oberfläche des weiteren Strahlteilers BS2 und tritt infolge Transmission durch diesen weiteren Strahlteiler BS2 hindurch.

Die beiden Teilstrahlen Bl und B2 werden so gerichtet, dass am weiteren Strahlteiler BS2 Interferenz erreicht ist, so dass die aus dem weiteren Strahl teiler BS2 durch Transmission hindurch tretenden Paare von miteinander interferierenden Teilstrahlen C und D miteinander interferieren. Zur Beein flussung der Interferenz und des Phasenunterschieds der einzelnen Teilstrah len eines Paares interferierender Teilstrahlen C und D kann der weitere Strahl teiler BS2 um einen bestimmten vorgebbaren Winkel Q in Bezug zu den opti schen Achsen der Teilstrahlen Bl und B2 verschwenkt sein oder verschwenkt werden.

Bei dem in Figur 3 gezeigten Beispiel treffen die miteinander interferierenden und zueinander phasenverschobenen Teilstrahlen D auf ein um mindestens eine Achse verschwenkbares, reflektierendes Element 6, das in nicht darge stellter Form auch ein Polygonspiegel P sein kann. Bei dem gezeigten Beispiel kann es sich bei dem optischen Element 6 insbesondere um einen Scanner oder Galvospiegel handeln. Mit diesem kann die Richtung der miteinander interferierenden Teilstrahlen D auf eine zu bearbeitenden Oberfläche eines Substrats S und bei diesem Beispiel auf ein vor der Oberfläche angeordnetes fokussierendes optisches Element L verändert werden, wodurch ein veränder tes Interferenzmuster mit größerer Fläche auf der Oberfläche des Substrates S ausgebildet werden kann. Die miteinander interferierenden Teilstrahlen C treffen bei diesem Beispiel auf einen optische Detektor 7 auf, mit dem die Position, die Einhaltung der Inter ferenz und der Phasenverschiebung der miteinander interferierenden Teil strahlen C überwacht und dabei die Messsignale des Detektors 7 für eine Re gelung, insbesondere des Schwenkwinkels Q.1 des weiteren Strahlteilers BS2, der von 45 ° abweicht, genutzt werden kann.

Anstelle des optischen Detektors 7 könnte man aber auch eine weitere Ober fläche eines Substrates S in einem zweiten von dem Strahlteiler BS2 ausge henden Strahlpfad 7 mit den miteinander interferierenden Teilstrahlen C be arbeiten. Dazu kann man zwischen dieser zu bearbeitenden Oberfläche eine weiteres Element zur Ablenkung der miteinander interferierenden Teilstrah len C in Richtung auf diese zusätzlich zu bearbeitende Oberfläche oder aber auch als zusätzlicher Bearbeitungsstrahl auf das Substrat S sowie ggf. ein wei teres diese Teilstrahlen C fokussierendes Element vorsehen.

Bei dem in Figur 3 gezeigten Beispiel ist für die miteinander interferierenden Teilstrahlen D vor der zu bearbeitenden Oberfläche des Substrates S ein fo kussierendes optisches Element L angeordnet, mit dem die Teilstrahlen D fo kussiert werden. Durch eine parallele Bewegung des fokussierenden opti schen Elements L in Bezug zur optischen Achse der vom zweiten Strahlteiler BS2 in Richtung Werkstück S gerichteten interferierenden Laserstrahlung kann eine Veränderung der Position des Interferenzvolumens in Bezug zur Werk stückoberfläche, also eine Verschiebung in z-Achsrichtung erreicht werden.

In Figur 4a ist in einer vergrößerten Darstellung gezeigt, wie der weitere Strahlteiler BS2 um eine Achse mit dem von 45 ° abweichenden Schwenkwin kel Q.1 verschwenkt werden kann, so dass die gewünschte Interferenz und der Phasenunterschied der jeweils durch den weiteren Strahlteiler BS2 hindurch tretenden und dann miteinander interferierenden Teilstrahlen C und D er reicht werden können.

Bei dem in Figur 4c gezeigten Beispiel treffen die miteinander interferieren den Teilstrahlen D auf am äußeren Umfang eines Polygonspiegels P angeord nete reflektierende Oberflächen (Facetten). Der Polygonspiegel dreht sich dabei um eine Rotationsachse, wie dies mit dem Pfeil angedeutet ist. Durch die Drehung und dementsprechende Bewegung der bei diesem Beispiel sechs reflektierenden Flächen des Polygonspiegels erfolgt eine Auslenkung der mit einander interferierenden Teilstrahlen D in Richtung auf die jeweilige zu bea r beitende Oberfläche des Werkstücks S, vor der auch hier wieder ein fokussie rendes optisches Element L angeordnet ist.

In Figur 5 ist beispielhaft eine Anordnung gezeigt, bei der ein Laserstrahl A auf ein diffraktives optisches Element 22 gerichtet ist, mit dem bei diesem Bei spiel der eine Laserstrahl A in zwei Teilstrahlen 1.1 und 1.2 aufgespalten und beide Teilstrahlen 1.1 und 1.2 um jeweils einen Winkel a in Bezug zur opti schen Achse des Laserstrahls A abgelenkt werden. Beide Teilstrahlen 1.1 und 1.2 treffen auf eine senkrecht zur optischen Achse des Laserstrahls A ausge richtete Oberfläche eines optischen Prismas, als weiteres optisches Element 31 auf. Da das weitere optische Element 31 für die Laserstrahlung transparent ist, erfolgt an der gegenüberliegenden Oberfläche des weiteren optischen Elements 3, die in einem Winkel F 90 ° in Bezug zur optischen Achse geneigt ist, eine weitere Ablenkung der beiden Teilstrahlen 1.1 und 1.2 in Abhängig keit des Neigungswinkels dieser Oberfläche und des optischen Brechungsin dex des weiteren optischen Elements 31. Dabei sollten die beiden Teilstrahlen 1.1 und 1.2 bevorzugt parallel zur optischen Achse und dabei in jeweils glei chem Abstand Dc zur optischen Achse des Laserstrahls A zwischen dem weite ren optischen Element 31 und der fokussierenden optischen Linse 41 verla u fen.

Beide Teilstrahlen 1.1 und 1.2 werden dann mit der fokussierenden optischen Linse 41 auf die zu schneidende Oberfläche fokussiert und treffen an einer gemeinsamen Position mit jeweils dem gleichen Einfallswinkel ß aus verschie denen Richtungen gespiegelt zur optischen Achse des Laserstrahls A auf die zu strukturierende Oberfläche des Werkstücks auf. Dort erfolgt ein gezielter Werkstoffabtrag oder eine Veränderung des Bauteilwerkstoffs durch eine Phasenumwandlung oder ein Aufschmelzen infolge der Interferenz der beiden Teilstrahlen 1.1 und 1.2.

An Stelle des optischen Prismas können auch zwei Keilplatten eingesetzt wer den. Es kann auch ein anderes diffraktives optisches Element 21 eingesetzt werden, mit dem der Laserstrahl A in mehr als zwei Teilstrahlen aufgespalten werden kann. In diesem Fall sollte ein an die Lage und Ausrichtung der mehr als zwei Teilstrahlen angepasstes weiteres optisches Element 31 eingesetzt werden.

Besonders vorteilhaft kann der Abstand dl zwischen dem diffraktiven opti schen Element 21 und dem weiteren optischen Element 31 verändert werden. Dadurch kann die Strukturperiode L sehr einfach ebenfalls verändert werden, so dass unterschiedliche Energiedichten an der Oberfläche eines zu schnei denden Werkstücks im Bereich der Schnittfuge ausgenutzt werden können.

In Figur 6 ist ein weiteres Beispiel gezeigt, Bei dem ein Laserstrahl 1 auf eine reflektierende Oberfläche eines reflektierenden Elements M auftrifft und von dort auf einen Strahlteiler BS1 auftrifft. Ein erster Teilstrahl 1.1 wird an der Oberfläche des ersten Strahlteilers BS1 in Richtung eines optischen Aufbaus mit vier reflektierenden Elementen M6 gerichtet. Durch die Reflexion des ers ten Teilstrahls 1.1 erfolgt eine Weglängenkompensation in Bezug zur

Weglänge, die der zweite Teilstrahl 1.2 bis zum Erreichen der Oberfläche des zu schneidenden Bauteils S zurück legt. Der zweite Teilstrahl 1.2, also der Teil des Laserstrahls 1, der durch den Strahlteiler BS1 transmittiert ist, trifft auf einen Dach-Pentaspiegel RPM1 mit zwei den zweiten Teilstrahl 1.2 reflektie renden Oberflächen, die in einem Winkel von 45 ° zueinander ausgerichtet sind, auf und wird von dort im Wesentlichen parallel zum ersten Teilstrahl 1.1 in Richtung zu schneidender Oberfläche gerichtet.

Bei diesem Beispiel durchdringt der zweite Teilstrahl 1.2 eine planparallele Wellenplatte (l/2-Platte) 15.

Beide Teilstrahlen 1.1 und 1.2 werden mit der optischen Linse L in Richtung Bauteiloberfläche durch optische Brechung so umgelenkt, dass ihr Interfe renzvolumen 12 im Bereich der zu schneidenden Werkstückoberfläche ange ordnet ist.

Für beide Beispiele ist unterhalb der Anordnung verdeutlicht worden, dass die Überlappungsebene der Teilstrahlen 1.1 und 1.2 bei dem links in Figur 7 an geordneten Beispiel kürzer, als bei dem rechts in Figur 7 gezeigten Beispiel ist. In Figur 7 ist gezeigt wie zwei Teilstrahlen Bl und B2 auf eine in einem Winkel von 45 ° in Bezug zu den optischen Achsen der Teilstrahlen Bl und B2 geneig te Stirnfläche eines Doveprismas 8 auftreffen, durch das Doveprisma 8 trans- mittiert werden und aus der gegenüberliegend angeordneten ebenfalls in einem Winkel von 45 ° in Bezug zu den optischen Achsen der Teilstrahlen Bl und B2 schräg geneigten Stirnfläche austreten.

Bei Drehung des Doveprismas 8 um eine parallel zu den optischen Achsen der Teilstrahlen Bl und B2 ausgerichteten Rotationsachse kann die Strukturperio de L gedreht werden. So kann eine Drehung des Doveprismas 8 um 10 ° zu einer Drehung der Strukturperiode L um den Winkel Df von 20 ° führen.

Eine Beeinflussung der Vorschubbewegung während des Laserstrahlschnei dens kann mit zwei reflektierenden Elementen 9 und 10 ermöglicht werden. Dabei treffen zwei Teilstrahlen Bl und B2 auf eine reflektierende Oberfläche eines reflektierenden Elements 9 auf. Dieses reflektierende Element 9 kann um eine Achse, die bei dem gezeigten Beispiel senkrecht in die Zeichnungs ebene gerichtet ist, verschwenkt werden.

Die beiden an der reflektierenden Oberfläche des reflektierenden Elements 9 reflektierten Teilstrahlen Bl und B2 treffen dann auf eine reflektierende Ober fläche eine weiteren reflektierenden Elements 10 auf und werden von dort auf eine fokussierende optische Linse L gerichtet. Das weitere reflektierende Element 10 kann um eine parallel zur Zeichnungsebene ausgerichtete Achse gedreht werden, so dass das weitere reflektierende Element 10 um diese Ach se verschwenkt werden kann.

Mit der Verschwenkung der beiden reflektierenden Elemente 9 und 10 kann eine definierte Bewegung des Brennflecks, der mit der Interferenzperiode L gebildet ist, die eine Vorschubbewegung der miteinander interferierenden Teilstrahlen Bl und B2 allein bewirken kann oder mit einer weiteren Möglich keit zur Bewirkung einer Vorschubbewegung gemeinsam angewendet werden kann. In letztgenanntem Fall können zwei Vorschubbewegungen überlagert werden.

Die Rotationsachsen der reflektierenden Elemente 9 und 10 sind senkrecht zueinander ausgerichtet.

Bei dem in Figur 8 gezeigten Beispiel werden die beiden Teilstrahlen Bl und B2 durch ein Dove-Prisma 8 transmittiert, wie dies beim Beispiel nach Figur 7 der Fall war, und dann auf die reflektierenden Oberflächen der reflektieren den Elemente 9 und 10 gerichtet.