Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ARRANGEMENTS FOR DRAWING IN AIR AND TRAPPING FOREIGN BODIES IN AN AIRCRAFT PROPULSION ASSEMBLY
Document Type and Number:
WIPO Patent Application WO/2016/083743
Kind Code:
A1
Abstract:
The invention relates to an arrangement, in a pod of an aircraft propulsion assembly, for drawing in air and trapping foreign bodies. Said arrangement includes a main air inlet duct (11) separating into, on one hand, a channel (13) for leading air to a compressor and, on the other hand, a bypass channel (12) capable of trapping foreign bodies (5) that enter said main duct (11). Said arrangement comprises a heat exchanger (6) that extends along a section of the bypass channel (12). Said heat exchanger (6) carries out surface heat exchange along said section and is coupled with an external oil system in order to cool the oil thereof by heat exchange with the air (4) flowing in the bypass channel (12). Said bypass channel (12) has an air outlet (12a) acting as a means for discharging the foreign bodies (5).

Inventors:
POUYAU GUILLAUME (FR)
COUILLEAUX ALEXANDRE (FR)
SIRVIN NICOLAS (FR)
Application Number:
PCT/FR2015/053219
Publication Date:
June 02, 2016
Filing Date:
November 26, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SNECMA (FR)
International Classes:
F02C7/05; B64D33/10; F01D25/12; F02C7/14; F02C7/18
Domestic Patent References:
WO2014135942A12014-09-12
Foreign References:
EP2724940A22014-04-30
US5269135A1993-12-14
EP0924407A21999-06-23
EP1018468A12000-07-12
FR2614072A11988-10-21
EP2724940A22014-04-30
Attorney, Agent or Firm:
REGIMBEAU (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Agencement à entrée d'air et piège de corps étrangers dans une nacelle d'un ensemble propulsif d'aéronef, comprenant un conduit principal (11) d'entrée d'air se séparant d'une part en un canal d'amenée d'air (13) vers un compresseur et d'autre part en un canal de dérivation (12) apte à piéger des corps étrangers (5) pénétrant dans ledit conduit principal (11), caractérisé en ce qu'il comporte un échangeur de chaleur (6) qui s'étend le long d'un tronçon du canal de dérivation (12), ledit échangeur de chaleur (6) réalisant un échange thermique surfacique le long dudit tronçon et étant accouplé à un circuit d'huile externe pour en refroidir l'huile par échange thermique avec l'air (4) circulant dans le canal de dérivation (12), ledit canal de dérivation présentant une sortie d'air (12a) servant d'évacuation pour les corps étrangers (5).

2. Agencement selon la revendication 1, caractérisé en ce que la sortie d'air (12a) du canal de dérivation (12) est disposée en confluence d'une sortie (9a) de tuyère (9) d'échappement de l'ensemble propulsif, l'écoulement de l'air (4) circulant dans le canal de dérivation (12) étant accéléré par la basse pression créée par l'écoulement des gaz d'échappement en sortie (9a) de la tuyère (9).

3. Agencement selon la revendication 1 ou 2, caractérisé en ce que, le canal de dérivation (12) étant conformé avec une déviation par rapport au conduit principal (11), l'échangeur de chaleur (6) est disposé dans une zone (8a) du canal de dérivation (12) en dehors du prolongement du conduit principal (11) dans ledit canal de dérivation (12), de sorte qu'un corps étranger (5) circulant dans le canal de dérivation (12) ne vienne pas impacter directement l'échangeur de chaleur (6).

4. Agencement selon l'une des revendications 1 à 3, caractérisé en ce que l'échangeur de chaleur (6) est un échangeur surfacique du type à plaque à lamelles, et en ce que les lamelles de ladite plaque sont dirigées dans la direction de l'écoulement de l'air (4) qui circule dans ledit canal de dérivation (12), de sorte à maximiser les échanges thermiques.

5. Agencement selon l'une des revendications 1 à 3, caractérisé en ce que ledit échangeur de chaleur (6) utilise une paroi interne du tronçon dudit canal de dérivation (12) pour réaliser l'échange de chaleur avec l'air (4) circulant dans le canal de dérivation (12) .

6. Agencement selon la revendication 5, caractérisé en ce que l'échangeur de chaleur (6) est constitué d'une canalisation (60) à l'intérieur de laquelle l'huile circule, ladite canalisation (60) étant enroulée le long d'une paroi externe du tronçon du canal de dérivation (12).

7. Agencement selon la revendication 6, caractérisé en ce que le tronçon du canal de dérivation (12) est constitué d'un matériau métallique.

8. Agencement selon la revendication 7, caractérisé en ce que ladite canalisation (60) est en contact étroit, et est fixée d'une manière rigide, avec le tronçon du canal de dérivation (12) de façon à renforcer la rigidité dudit tronçon, en particulier dans des zones dudit tronçon susceptibles d'être impactées directement par des corps étrangers (5) circulant dans le canal de dérivation (12), et à augmenter les échanges thermiques.

9. Agencement selon la revendication 8, caractérisé en ce que ladite canalisation (60) comprend un tube tronqué (61) s'étendant selon un chemin en serpentin le long du tronçon, ledit tube étant fixé de façon étanche audit tronçon du canal de dérivation (12) de telle sorte que la paroi externe dudit tronçon forme une paroi de la canalisation (60). 10. Nacelle de turbomachine comportant un agencement selon l'une des revendications précédentes.

Description:
AGENCEMENTS A ENTREE D'AIR ET PIEGE DE CORPS ETRANGERS DANS UN ENSEMBLE PROPULSIF D'AERONEF

La présente invention concerne les agencements à entrée d'air et piège de corps étrangers dans un ensemble propulsif d'aéronef.

Elle trouve avantageusement, mais non limitativement, application dans le cas de turbopropulseurs d'avion.

DOMAINE TECHNIQUE GÉNÉRAL ET ETAT DE LA TECHNIQUE

Les turbomachines ont généralement des besoins en lubrification importants. Dans le cas des turbopropulseurs d'avion notamment, les boîtes de réduction disposées entre le moteur et l'hélice du turbopropulseur représentent un poste prépondérant en consommation d'huile. Or, les frottements qui ont lieu au sein de la boîte de réduction engendrent une quantité de chaleur importante qu'il est nécessaire de dissiper.

Pour refroidir l'huile d'un circuit à proximité de la manche d'entrée d'air d'une nacelle de turbopropulseur, il a déjà été proposé par la demande EP 1.018.468 de prévoir, en aval de l'entrée d'air, un prélèvement d'air qui est envoyé sur un échangeur air-huile du type volumique tel un radiateur, afin de refroidir l'huile circulant dans celui- ci. La fente de prise d'air qui est utilisée pour envoyer le prélèvement d'air sur l'échangeur est de faible diamètre, ce qui limite les performances de refroidissement. Une telle solution de refroidissement nécessite en outre de prévoir en aval de l'échangeur une sortie régulée par laquelle de l'air-comprimé prélevé sur la turbomachine est injecté en sortie du canal de prélèvement. Cette sortie d'air-comprimé permet de maintenir le débit d'air souhaité, y compris lors des phases de ralenti du moteur.

Pour résoudre la problématique du refroidissement des circuits d'huile des turbomachines, une autre solution qui pourrait être envisagée consisterait à disposer le radiateur/échangeur de chaleur directement dans le conduit formant piège que les turbomachines de type turbopropulseur comportent classiquement au niveau de leur agencement d'entrée d'air, pour, ainsi que par exemple décrit dans la demande de brevet FR 2.614.072, piéger les corps étrangers pénétrant dans la manche d'entrée d'air.

Cependant, les corps étrangers (comme de la grêle ou des oiseaux) qui sont susceptibles de circuler dans le conduit de piège de corps étrangers pourraient causer de lourds dommages à l'échangeur de chaleur s'ils le percutaient.

II serait alors nécessaire de disposer d'une trappe telle qu'un volet pivotant pour la protection de l'échangeur dans les phases de vol à risque et l'évacuation des corps étrangers par une sortie verticale en amont de l'échangeur de chaleur, ce qui limiterait l'écoulement d'air au niveau de l'échangeur de chaleur et ne permettrait pas un refroidissement optimal.

Cette limitation du refroidissement du fait de la trappe de protection et d'évacuation serait d'autant plus critique que les phases de vol où les risques de collision avec les corps étrangers sont les plus importants, sont des phases à basse vitesse (décollage, montée initiale, approche finale et atterrissage), où l'écoulement d'air à l'intérieur du canal servant de piège pour les corps étrangers serait le plus faible.

On connaît également le document EP 2.724.940, qui décrit une solution équivalente au document FR 2.614.072, dans lequel un échangeur de chaleur volumique (qui occupe l'intégralité du volume du tronçon du canal dans lequel il est installé) est protégé contre les corps étrangers traversant le canal dans lequel ledit échangeur de chaleur est installé par un système de protection complexe situé en amont de l'échangeur de chaleur. De plus, un tel système de protection tend également à limiter l'écoulement de l'air au niveau de l'échangeur. PRÉSENTATION GÉNÉRALE DE L'INVENTION

Un but général de l'invention est de proposer une solution pour le refroidissement de circuits d'huile qui soit simple et permette des performances de refroidissement améliorées, sans impacter les performances de la turbomachine.

Un autre but encore de l'invention est de proposer une solution de ce type qui permette de bonnes performances de refroidissement, notamment lors des phases durant lesquelles l'avion est à une vitesse réduite.

Notamment, l'invention propose un agencement à entrée d'air et piège de corps étrangers dans une nacelle d'un ensemble propulsif d'aéronef, comprenant un conduit principal d'entrée d'air se séparant d'une part en un canal d'amenée d'air vers un compresseur et d'autre part en un canal de dérivation apte à piéger des corps étrangers pénétrant dans ledit conduit principal, caractérisé en ce qu'il comporte un échangeur de chaleur qui s'étend le long d'un tronçon du canal de dérivation, ledit échangeur de chaleur réalisant un échange thermique surfacique le long dudit tronçon et étant accouplé à un circuit d'huile externe pour en refroidir l'huile par échange thermique avec l'air circulant dans le canal de dérivation, ledit canal de dérivation présentant une sortie d'air servant d'évacuation pour les corps étrangers.

De cette façon, les débits d'air importants circulant dans le canal de dérivation formant piège pour les corps étrangers sont mis à profit pour refroidir l'échangeur de chaleur, celui-ci réalisant un échange thermique surfacique. Cette disposition permet de ne pas avoir à prévoir de trappe en amont de l'échangeur pour l'évacuation des corps étrangers.

En outre, en réalisant un échange thermique surfacique, la traînée de captation est minimisée en comparaison avec un échange thermique volumique. Selon une caractéristique particulière, la sortie d'air du canal de dérivation est disposée en confluence d'une sortie de tuyère d'échappement de l'ensemble propulsif, l'écoulement de l'air circulant dans le canal de dérivation étant accéléré par la basse pression créée par l'écoulement des gaz d'échappement en sortie de la tuyère.

Selon une caractéristique supplémentaire, le canal de dérivation étant conformé avec une déviation par rapport au conduit principal, l'échangeur de chaleur est disposé dans une zone du canal de dérivation en dehors du prolongement du conduit principal dans ledit canal de dérivation, de sorte qu'un corps étranger circulant dans le canal de dérivation ne vienne pas impacter directement l'échangeur de chaleur.

Selon une caractéristique additionnelle, l'échangeur de chaleur est un échangeur à chaleur surfacique du type à plaque à lamelles, et les lamelles de ladite plaque sont dirigées dans la direction de l'écoulement de l'air qui circule dans ledit canal de dérivation, de sorte à maximiser les échanges thermiques.

Selon une autre caractéristique, l'échangeur de chaleur utilise une paroi interne du tronçon du canal de dérivation pour réaliser l'échange de chaleur avec l'air circulant dans le canal de dérivation.

Selon une caractéristique particulière, l'échangeur de chaleur est constitué d'une canalisation à l'intérieure de laquelle l'huile circule, ladite canalisation étant enroulée le long d'une paroi externe du tronçon du canal de dérivation.

Selon une caractéristique supplémentaire, le tronçon du canal de dérivation est constitué d'un matériau métallique.

Selon une caractéristique additionnelle, ladite canalisation est en contact étroit et est fixée d'une manière rigide avec le tronçon du canal de dérivation de façon à renforcer la rigidité dudit tronçon, en particulier dans des zones dudit tronçon susceptibles d'être impactées directement par des corps étrangers circulant dans le canal de dérivation , et à augmenter les échanges thermiques. Selon une autre caractéristique, ladite canalisation comprend un tube tronqué s'étendant selon un chemin en serpentin, ledit tube étant fixé de façon étanche au tronçon du canal de dérivation de telle sorte que la surface externe dudit tronçon forme une paroi de la canalisation.

Selon un autre aspect, l'invention porte également sur une nacelle de turbopropulseur comportant un agencement selon l'une des caractéristiques citées précédemment. DESCRIPTIF DES FIGURES

D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels :

· la figure 1 représente schématiquement un agencement d'entrée d'air et de canal de dérivation d'un ensemble de propulsion d'un aéronef selon un mode de réalisation possible pour l'invention ;

• la figure 2 illustre la disposition de l'échangeur surfacique par rapport à la trajectoire des corps étrangers dans le canal de dérivation ;

• la figure 3 illustre une disposition préférée de la sortie du canal de dérivation par rapport à l'écoulement de sortie de la tuyère d'échappement de l'ensemble de propulsion d'un aéronef ;

• la figure 4 illustre schématiquement un turbopropulseur comportant un agencement du type de celui illustré sur les figures 1 à 3 ;

• La figure 5 illustre une variante de réalisation de l'échangeur surfacique dans laquelle ledit échangeur de chaleur surfacique est constitué d'une canalisation enroulée autour du canal de dérivation ; • La figure 6 représente un mode de réalisation particulier d'un échangeur surfacique en canalisation enroulée autour du canal de dérivation.

DESCRIPTION D'UN OU PLUSIEURS MODES DE REALISATION L'agencement 1 selon un premier mode de réalisation illustré sur la figure 1 comporte un conduit d'entrée d'air 11 qui se divise en deux canaux séparés, l'un (canal de dérivation 12), en partie basse, qui constitue un canal qui sert de piège pour les corps étrangers, l'autre (canal d'amenée d'air 13) qui assure l'amenée d'air jusqu'au compresseur.

Avec une telle disposition, des éventuels corps étrangers 5 qui sont charriés par un écoulement d'air 4 qui pénètre dans l'agencement d'entrée d'air de l'ensemble propulsif d'aéronef par le conduit 11, sont dirigés vers le canal de dérivation 12 formant piège et ne pénètrent pas dans le canal d'amenée d'air 13. L'ensemble propulsif d'aéronef est ainsi protégé des dégâts potentiels que peuvent créer les corps étrangers 5.

L'agencement comporte également, à l'intérieur du canal de dérivation 12, un échangeur de chaleur 6 qui est surfacique (par exemple un échangeur de type « SACOC » (Surface Air Cooler Oil Cooler, selon la terminologie anglo-saxonne)) et qui est disposé en étant affleurant le long d'une paroi interne d'un tronçon dudit canal de dérivation 12.

Cet échangeur de chaleur 6 surfacique sert à refroidir l'huile d'un circuit d'huile de lubrification, par exemple, dans le cas d'un turbomoteur, le circuit d'huile de la boîte de réduction entre le compresseur et l'hélice. Dans le mode de réalisation présenté sur la figure 1, il est par exemple constitué d'une plaque à lamelles sur la paroi interne du canal 12, dans le fond de celui-ci. Les lamelles de circulation de l'huile de ladite plaque sont alors dirigées dans la direction de l'écoulement de l'air 4 qui circule dans ledit canal de dérivation 12, de sorte à maximiser les échanges thermiques entre l'huile et l'air 4.

Cet échangeur de chaleur 6 surfacique réalise un échange thermique surfacique le long du tronçon du canal de dérivation 12. En effet, l'échange thermique à lieu au niveau de la surface du tronçon qui est couverte par l'échangeur de chaleur 6 surfacique, et non dans l'intégralité du volume dudit tronçon. En effet, les échangeurs de chaleur volumiques occupent l'intégralité du volume du tronçon du canal dans lequel ils sont situés, réalisant ainsi l'échange thermique sur l'intégralité du volume dudit tronçon, ce qui les rend sensibles aux impacts des corps étrangers 5.

Un échange thermique surfacique (et donc un échangeur de chaleur 6 surfacique) offre l'avantage de ne pas nécessiter de trappe d'évacuation en amont de l'échangeur de chaleur 6. L'échangeur de chaleur 6 peut par conséquent bénéficier de l'ensemble du débit dans le canal de dérivation 12 qui sert de piège pour les corps étrangers. Ainsi, les performances de refroidissement de l'huile de lubrification sont améliorées. De plus, le fait de ne pas utiliser de système de protection dédié à protéger l'échangeur de chaleur 6 des corps étrangers 5 permet de simplifier la structure de l'agencement 1.

En outre, étant donné que l'échangeur de chaleur 6 est choisi surfacique, et donc n'occupe pas ou qu'une très faible partie de l'espace intérieur du canal de dérivation 12, on minimise les impacts avec les corps étrangers 5, ceux-ci s'évacuant du canal de dérivation 12 par une sortie d'air 12a unique que ledit canal de dérivation 12 comporte.

Par ailleurs, afin de limiter les impacts des corps étrangers 5 sur l'échangeur de chaleur 6, on place ledit échangeur de chaleur 6 dans une zone du canal de dérivation 12 qui est peu susceptible d'être impactée d'une façon directe par les corps étrangers 5.

Notamment, le canal de dérivation 12 présente une courbure descendante par rapport à l'entrée d'air 11 et l'échangeur de chaleur 6 surfacique est situé dans le fond de cette courbure descendante, de façon à ne pas être dans le prolongement direct du conduit d'entrée d'air 11.

Sur la figure 2, les lignes 7 en traits mixtes schématisent le prolongement dudit conduit d'entrée 11 et la direction générale du flux de l'air 4 lorsqu'il entre dans le canal de dérivation 12 formant piège pour les corps étrangers. La zone 8a sous ce flux d'air est une zone protégée des impacts par les corps étrangers 5, tandis que la zone 8b entre les lignes 7 est quant à elle directement impactée par lesdits corps étrangers 5.

Avec une telle disposition où l'échangeur de chaleur 6 est placé dans la zone protégée des impacts 8a, dans la partie située à l'extérieur des lignes de prolongement 7 de l'entrée d'air 11, les corps étrangers 5 ne viennent pas impacter directement l'échangeur de chaleur 6.

Par ailleurs, ainsi qu'illustré sur la figure 3, afin d'augmenter la vitesse de l'écoulement de refroidissement à l'intérieur du canal de dérivation 12 formant piège pour les corps étrangers 5, la sortie d'air 12a de celui-ci est prévue non pas au niveau du corps de la tuyère 9 d'échappement, mais en confluence avec la sortie 9a de la tuyère 9 de l'ensemble de propulsion.

De cette façon, l'écoulement d'air sortant de la sortie 9a de la tuyère 9 crée une dépression au niveau de la sortie d'air 12a du canal de dérivation 12 et l'écoulement de l'air 4 circulant dans le canal de dérivation 12 est accéléré par l'écoulement de sortie de la tuyère 9 grâce à un effet de type « trompe à jet ».

Ainsi, l'écoulement dans le canal 12 a en permanence une vitesse élevée, ce qui assure un refroidissement efficace de l'huile au niveau de l'échangeur de chaleur 6, y compris lors des phases durant lesquelles l'avion est à basse vitesse.

Comme on l'aura compris, et ainsi qu'illustré sur la figure 4, un agencement du type de celui qui vient d'être décrit est avantageusement utilisé dans le cadre d'un turbopropulseur. C'est ce qu'illustre la figure 4, sur laquelle on a représenté un turbopropulseur TP comportant une hélice H, ainsi qu'un réducteur R et son circuit d'huile C. Ce circuit d'huile y est refroidi par un échangeur de chaleur 6 surfacique disposé sur la paroi interne du canal de dérivation 12. Selon une variante de réalisation, qui peut être réalisée par exemple par un agencement tel que celui illustré sur la figure 5, l'échangeur de chaleur 6 surfacique utilise une paroi interne du tronçon dudit canal de dérivation 12 pour réaliser l'échange de chaleur avec l'air 4 circulant dans le canal de dérivation 12. Plus précisément, dans cette variante, l'échange thermique entre l'air 4 et l'échangeur de chaleur 6 s'effectue au niveau de la paroi interne du tronçon sur lequel l'échangeur de chaleur est disposé.

Selon une variante de réalisation illustrée sur la figure 5, l'échangeur de chaleur 6 peut être constitué d'une canalisation 60 qui est enroulée sous la forme d'un serpentin le long d'une paroi externe d'un tronçon du canal de dérivation 12. L'huile de lubrification qui doit être refroidie circule à l'intérieur de la canalisation 60, formant ainsi une surface de refroidissement 7 qui couvre le pourtour du tronçon sur lequel la canalisation 60 est enroulée. Ainsi, l'échangeur de chaleur 6 selon une telle variante réalise un échange thermique surfacique le long du tronçon du canal de dérivation 12.

Dans la variante illustrée figure 5, l'échangeur de chaleur 6 est tel que l'échange de chaleur avec l'air 4 se fait par une paroi interne du tronçon du canal de dérivation 12.

Afin d'améliorer l'échange de chaleur entre l'huile circulant dans la canalisation 60 et l'air 4 circulant à l'intérieur du canal de dérivation 12, le tronçon du canal de dérivation 12 est constitué d'un matériau métallique.

Selon une caractéristique avantageuse, la canalisation 60 est en contact étroit et est fixée d'une manière rigide avec le tronçon du canal de dérivation 12, permettant ainsi d'une part d'augmenter les échanges de chaleur entre l'huile et l'air 4, et d'autre part de renforcer la rigidité du tronçon du canal de dérivation 12, en particulier dans les zones dudit tronçon qui sont susceptibles d'être impactées directement par les corps étrangers 5.

L'avantage d'une telle variante est que l'échangeur de chaleur 6 n'est pas disposé à l'intérieur du canal de dérivation 12, et qu'ainsi l'échangeur de chaleur 6 est beaucoup moins vulnérable aux corps étrangers 5. De plus, l'échangeur de chaleur 6 ne perturbe pas le flux de l'air 4 qui circule à l'intérieur du canal de dérivation 12.

Selon un mode de réalisation particulier de la variante d'échangeur de chaleur 6 en canalisation 60 enroulée autour du canal de dérivation 12 qui est présenté figure 6, la canalisation 60 comprend un tube tronqué 61 qui est fixé de manière étanche sur le tronçon du canal de dérivation 12 selon un chemin en serpentin, de sorte à former une cavité dans laquelle circule l'huile de lubrification à refroidir. Ainsi, l'huile de lubrification circule entre le tube tronqué 61 et le tronçon du canal de dérivation 12, et la paroi externe dudit tronçon forme une paroi de la canalisation 60.

Plus précisément, le tube tronqué 61 est une paroi en forme de chapeau dont la concavité est dirigée vers le canal de dérivation 12, de sorte à former la cavité dans laquelle circule l'huile de lubrification à refroidir.

Le tube tronqué 61 peut être fixé au canal de dérivation 12 par soudage, ou bien par rivetage et avec des joints d'étanchéité.

Il est entendu que l'invention est applicable non seulement à des turbopropulseurs mais également à d'autres types de turbomachines. En particulier, l'invention trouve un intérêt dans des turbomachines à hélices contrarotatives non carénées, appelées également « OPEN ROTOR », et plus particulièrement dans les architectures dites « puller » c'est-à-dire dans lesquelles le doublet d'hélices contrarotatives est positionné à l'avant du moteur.