Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ATOMIZER
Document Type and Number:
WIPO Patent Application WO/2013/167429
Kind Code:
A1
Abstract:
The invention relates to a device for atomizing preferably powdery medical formulations, wherein atomization is supported by a propellant. According to the invention, the propellant is fed to the powder cavity (1) containing the formulation in a pulsed manner, to which powder cavity the nozzle (3) from which the aerosol escapes is connected. In comparison with the aerosol generation of a commercially available MDI, better coordination of the inhalation behavior of a user with the aerosol generation is possible when the device according to the invention is used as an inhaler due to the extension of the aerosol generation over time resulting from the pulsing. In addition, the emptying of the powder cavity (1) is improved by suitably selecting the length and the time interval of the pulses. The atomization of relatively large amounts of powder in only one use of the atomizer is thus enabled. In addition, the propellant is conducted through an evaporator (6) or heat exchanger before entering the powder cavity (1), whereby the propellant is converted to the gaseous form thereof before the propellant hits the powder. This causes an increase in the proportion of particles that can pass into the lungs in the aerosol escaping from the nozzle (3).

More Like This:
Inventors:
WINKLER ROBERT GERHARD (DE)
WACHTEL HERBERT (DE)
DUNNE STEPHEN TERENCE (GB)
JUNG ANDREE (DE)
Application Number:
PCT/EP2013/059011
Publication Date:
November 14, 2013
Filing Date:
April 30, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOEHRINGER INGELHEIM INT (DE)
International Classes:
A61M11/02
Domestic Patent References:
WO2003045483A22003-06-05
WO2011067763A12011-06-09
WO2011077414A22011-06-30
WO2006090149A22006-08-31
WO2002056948A12002-07-25
WO2004110536A12004-12-23
Foreign References:
GB1562098A1980-03-05
EP2042208A12009-04-01
US20110297151A12011-12-08
US7533668B12009-05-19
EP1731186A12006-12-13
Attorney, Agent or Firm:
SIMON ET AL, Elke (DE)
Download PDF:
Claims:
Gerät zur Zerstäubung einer vorzugsweise pulverförmigen medizinischen Formulierung, bei dem die Zerstäubung durch ein Treibmittel unterstützt wird, das einer Kavität zugeführt wird, in der sich eine abgemessene Menge der Formulierung befindet,

dadurch charakterisiert, dass das Gerät eine Vorrichtung aufweist, die einen Einlass hat, an dem Treibmittel anliegt, und durch die das Treibmittel durchgeleitet werden kann, wobei die Vorrichtung bei Durchleitung des Treibmittels in diesem ein derartiges Strömungsverhalten bewirkt, dass es aus der Vorrichtung in Form von mehreren aufeinander folgenden, von einander abgegrenzten Pulsen oder Schüben austritt und in Form von mehreren aufeinander folgenden, von einander abgegrenzten Pulsen oder Schüben der Kavität zugeführt wird.

Gerät nach Anspruch 1 dadurch gekennzeichnet, dass die Pulse oder Schübe derart von einander abgegrenzt sind, dass die Strömung des

Treibmittels zwischen den Pulsen abreißt und/oder der Druck des aus der Vorrichtung austretenden Treibmittels auf Null oder nahezu Null absinkt. Gerät nach einem der vorherigen Ansprüche dadurch gekennzeichnet, dass das Treibmittel in Form von verflüssigtem Treibgas in einem Behälter oder einer Kartusche (5) bevorratet ist, wobei das Gerät ein Dosierventil zur Entnahme eines abgemessenen Volumens an Treibmittel aus dem Behälter oder der Kartusche (5) aufweist und sich die Vorrichtung zur Erzeugung von Pulsen im Treibmittel stromabwärts des Dosierventils befindet. Gerät nach Anspruch 3, dadurch gekennzeichnet, dass die Vorrichtung die Pulse im Treibmittel derart erzeugen kann, dass das abgemessene Volumen an Treibmittel derart in Pulse oder Schübe aufgeteilt wird, dass die Aufteilung des abgemessenen Volumens in Pulse oder Schübe einer Aufteilung von 100 Mikrolitern auf mindestens 7 Pulse oder Schübe entspricht.

Gerät nach einem der vorherigen Ansprüche dadurch gekennzeichnet, dass das Treibmittel über ein Ventilzugeführt wird, das durch mehrere Öffnungs- und Schließvorgänge das anliegende Treibmittel in mehrere Pulse aufteilt. Gerät nach Anspruch 5 dadurch gekennzeichnet, dass das Ventil ein ansteuerbares Magnetventil (13) ist.

Gerät nach Anspruch 5 oder 6 dadurch gekennzeichnet, dass Ventil während des Betriebs des Geräts Öffnungszeiten im Bereich von 3 bis 30, besonders bevorzugt im Bereich von 5 bis 10 Millisekunden und

Verschlusszeiten im Bereich von 60 bis 500 Millisekunden, besonders bevorzugt im Bereich von 100 bis 200 Millisekunden aufweist.

Gerät nach einem der Ansprüche 1 , 2 oder 3 dadurch gekennzeichnet, dass das Treibmittel über eine einen mikrofluidischen Oszillator bildende Kanalstruktur zugeführt wird, in der die Pulse oder Schübe im Treibmittel erzeugt werden.

Gerät nach Anspruch 8 dadurch gekennzeichnet, dass die Kanalstruktur mindestens eine Gabelung und einen Mischbereich für Fluidstrahlen aufweist.

10. Gerät nach einem der vorangegangenen Ansprüche dadurch

gekennzeichnet, dass das Treibmittel vor seiner Zuführung in die Kavität durch einen Verdampfer (6) oder Wärmetauscher geleitet wird.

1 1 . Gerät nach Anspruch 10 dadurch gekennzeichnet, dass der Verdampfer (6) einen Hohlraum (9a) aufweist und in seinem Hohlraum (9a) ein oder mehrere Wärmetausch-Elemente beinhaltet.

12. Gerät nach Anspruch 1 1 dadurch gekennzeichnet, dass Metallkugeln und/oder Metalldrähte das Wärmetausch-Element oder die Wärmetausch- Elemente bilden.

13. Gerät nach einem der vorangegangenen Ansprüche dadurch gekennzeichnet, dass ein mit Formulierung beladener Treibmittelstrom von der Kavität aus in eine Düse (3) geleitet wird und die Düse (3) einen im Wesentlichen geradlinigen Düsenkanal (3a) aufweist.

14. Gerät nach Anspruch 13 dadurch charakterisiert, dass die Zuleitung von Treibmittel in die Kavität und die Achse durch den Düsenkanal (3a) beide in einem Winkel zwischen 30° und insbesondere 45° in der Kavität und/oder in diesem Winkel relativ zum Boden der Kavität eintreffen, wobei beide Winkel vorzugsweise gleich groß sind.

15. Gerät nach einem der Ansprüche 13 oder 14 dadurch gekennzeichnet, dass der Düsenkanal (3a) einen Einlasskonus (3b) und/oder einen

Auslasskonus (3c) aufweist und/oder die Wand des Düsenkanals (3a) zumindestens in einem zentralen Bereich zylinderförmig ist.

16. Gerät nach einem der Ansprüche 13 bis 15 dadurch gekennzeichnet, dass es ein Gerät zur Zerstäubung von pulverförmigen medizinischen Formulierungen ist, und die Kavität, in der sich eine abgemessene Menge der pulverförmigen Formulierung befindet, d.h. die Pulverkavität (1), stromlinienförmig ist.

17. Gerät nach Anspruch 16 dadurch gekennzeichnet, dass die Pulverkavität (1a) eine Tropfenform aufweist, wobei das schmalere Ende des Tropfens in Richtung des Einlass des Düsenkanals (3a) zeigt.

18. Gerät nach einem der Ansprüche 16 oder 17 dadurch gekennzeichnet, dass die Pulverkavität (1a) eine Schräge (1c) am Boden der Pulverkavität (1a) aufweist, wobei diese Schräge (1c) die Strömung in Richtung des Einlass des Düsenkanals (3a) leitet, wobei vorzugsweise die Richtung der Schräge (1c) und des Düsenkanals (3a) identisch sind.

19. Verfahren zur Zerstäubung von pulverförmigen medizinischen Formulierungen, bei dem die Zerstäubung durch ein Treibmittel unterstützt wird, das in Form von mehreren aufeinander folgenden, von einander abgegrenzten Pulsen oder Schüben einer Kavität zugeführt wird, in der sich eine abgemessene Menge der Formulierung befindet,

Description:
Zerstäuber

Die vorliegende Erfindung betrifft Geräte zur Zerstäubung von medizinischen, Formulierungen, bei denen die Zerstäubung der Formulierung durch Treibmittel unterstützt wird. Insbesondere betrifft die Erfindung Geräte, die als Inhalatoren zur Verabreichung von pulverförmigen Formulierungen verwendet werden können.

Der Einsatz von Medikamenten, die mittels Inhalatoren verabreicht werden, zielt insbesondere auf Wechselwirkungen mit speziellen Bereichen im Atmungssystem eines Patienten ab. Diese Bereiche beinhalten die Nasengänge, den Rachenraum und verschiedene Stellen innerhalb der Lunge, wie die Bronchien, Bronchiolen und Alveolen. Die Möglichkeit, Medikamente in einem dieser Zielbereiche zu verabreichen, hängt unter anderem von den aerodynamischen Durchmessern der jeweiligen Partikel oder Tröpfchen ab, die bei Anwendung des Inhalators eingeatmet werden. Derzeit geht man davon aus, dass Partikel mit

aerodynamischen Durchmessern zwischen 2 und etwa 5 Mikrometern gut den Bronchien und Bronchiolen zugeführt werden können. Kleinere Partikel können potentiell in die Alveolen vordringen. Partikel, deren aerodynamische

Durchmesser größer 6 Mikrometer und insbesondere größer als 10 Mikrometer sind, eignen sich typischerweise zur Ablagerung im Rachenraum und in den Nasengängen.

Bei Inhalatoren, mit denen ein Medikament in die Lunge eingebracht werden soll, ist es in der Regel wünschenswert, wenn ein hoher Anteil des verabreichten Medikaments insbesondere hinsichtlich der Teilchengröße inhalierbar ist und eine hohe Ablagerungsrate des Medikaments in der Lunge selbst erzielt werden kann. Dies hängt von mehreren Faktoren ab, wie insbesondere den Eigenschaften einer mit dem Inhalator erzeugten Sprühwolke. Diese Eigenschaften sind beispielsweise die Geschwindigkeit der Wolke, die Größen der Partikel und ihre

Größenverteilung, der Anteil kleiner Partikel, die Bestandteile des Gases usw.. In der vorliegenden Erfindung weist die Sprühwolke vorzugsweise einen hohen Anteil von Partikeln mit Durchmessern von 6 Mikrometern oder kleiner, bevorzugt von kleiner 5 Mikrometern auf.

Die vorliegende Erfindung bezieht sich auf die Zerstäubung von medizinischen Formulierungen. Unter dem Begriff„medizinische Formulierung" oder

„Arzneimittelformulierung" sind bei der vorliegenden Erfindung über Medikamente hinaus auch Therapeutica oder dergleichen, insbesondere also jede Art von Mitteln zur Inhalation oder sonstigen Anwendung zu verstehen. Der Begriff „Formulierung" bezieht sich hier insbesondere auf Pulver, kann aber auch

Flüssigkeiten beinhalten. Dementsprechend können die Partikel sowohl fest als auch flüssig sein. Der Begriff„Flüssigkeit" umfasst neben reinen Flüssigkeiten und Lösungen zusätzlich Dispersionen, Suspensionen, Suslutionen (Mischungen aus Lösungen und Suspensionen) oder dergleichen.

Die folgende Beschreibung wird sich auf die Verabreichung von pulverförmigen Formulierungen konzentrieren, die Erfindung ist aber auch auf die Verabreichung von flüssigen Formulierungen anwendbar. Insbesondere bezieht sich die vorliegende Erfindung auf Inhalatoren zur

Einbringung von trockenem Pulver in die Lunge. Viele Pulverinhalatoren sind bereits im Handel oder anderweitig bekannt. Man unterscheidet zwischen zwei Arten von Inhalatoren: aktiven und passiven. In passiven Inhalatoren wird allein der Einatemsog des Anwenders bzw. des Patienten für die Deagglomeration des Pulvers und für den Transport des Pulvers in die Lunge verwendet. Der Transport und die Deagglomeration des Pulvers sind daher abhängig von der Flussrate, mit welcher der Patient Luft durch das Gerät einatmet. Dadurch ist der inhalierbare Anteil bzw. der Teil des Pulvers, das tatsächlich die Lunge erreicht, stark vom Einatemverhalten des Patienten abhängig und variiert von Patient zu Patient. Aktive Inhalatoren beinhalten im Gegensatz zu passiven Inhalatoren eine zusätzliche Energiequelle, welche die Deagglomeration und den Transport des Pulvers unterstützt. Das Pulver wird mit solchen Geräten aktiv zerstäubt.

Aktive Inhalatoren mit einem langjährigen hohen Marktanteil sind insbesondere konventionelle Treibmittel-getriebene Dosieraerosole (im Folgenden häufig mit der im Englischen üblichen Abkürzung MDI für„metered dose inhaler" bezeichnet). In einem MDI liegt das Medikament als Suspension oder Lösung in einem Treibmittel vor. Das Treibmittel befindet sich unter Überdruck in einem Behälter mit einem Dosierventil. Bei Aktivierung gibt das Dosierventil eine einzelne abgemessene menge (Dosis) des Medikaments in Form eines Gasstroms aus. Für MDIs geeignete Treibmittel können Hydrofluoralkane (HFA) oder andere Fluorkohlenwasserstoffe (FKW) mit niedrigen Siedepunkten beinhalten. Aufgrund der hohen Druckdifferenz zwischen dem Inneren des Treibmittel-Behälters

(typischerweise um die 5 bar) und der Umgebungsluft (1 bar) tritt bei

konventionellen MDIs das Treibmittel mit einer hohen Geschwindigkeit aus, die sogar in den Bereich von Überschallgeschwindigkeit kommen kann. Dadurch ist die Zeitdauer für die Entleerung der Ventilkammer und somit die Zeitdauer einer Zerstäubung so gering (typischerweise etwa 50 Millisekunden bei Abgabe von 100 Mikrolitern), dass es einem Patienten erschwert ist, sein Einatemverhalten derart an den kurzen Puls anzupassen, dass er wirklich das ganze zerstäubte Volumen einatmen kann. Außerdem tritt das Treibmittel teilweise flüssig aus dem Gerät aus. Dadurch und auch durch die große Austrittsgeschwindigkeit wird ein großer Anteil des Medikaments in einer derart groben Form abgegeben, dass er sich direkt im Mund-Rachenraum eines Patienten ablagert ohne in die Lunge transportiert werden zu können.

Die WO20041 10536A1 zeigt ein Ausgabegerät für ein pulverförmiges

Medikament, in der eine Aufnahme mit pulverförmigen Medikament und eine Treibmittelquelle derart in einem Gehäuse angeordnet sind, dass das Treibmittel über einen Einlass auf das pulverförmige Medikament trifft. In der Aufnahme kann sich das dabei gebildete Aerosol ausdehnen, bevor es über eine Ausgabeöffnung aus dem Gerät abgegeben wird. Für das Gerät sind Wechseleinsätze mit kombinierten Pulver- und Treibmittel-Einsätzen vorgesehen. Als mögliche

Treibmittelquellen werden komprimierte Gase wie Kohlendioxid, Stickstoff oder Luft oder als konventionelle Treibmittel Fluorkohlenwasserstoffe wie HFA-134a oder HFC-227 angegeben. Im Rahmen von Versuchen für Klinikstudien werden in der Schrift WO20041 10536A1 u.a. Zerstäubungsergebnisse zu Geräte- Konfigurationen mit 120 Milligramm mikronisiertem Wirkstoff gefüllten Aufnahmen und Stickstoff als Treibmittel mit Drucken von 6 bis 14 bar aufgeführt. Im Vergleich zu den geschilderten Versuchsdaten bringen handelsübliche (nicht kapselbasierte, meist passive) Pulverinhalatoren in der Regel lediglich Pulvereinheiten in der Größenordnung von 6 bis 400 Mikrogramm pro Anwendung aus (Bei der

Verwendung von Kapseln sind höhere Füllmengen bekannt; so ist auch ein kapselbasierter Pulverinhalator bekannt, in dem die Kapsel 28 Milligramm aufnimmt). Die verbreiteten auf der Ausbringung mittels Treibmittel basierten MDIs bringen typischerweise nur um die 200 Mikrogramm Wirkstoffmenge pro

Anwendung aus. Inhalatoren zur Ausbringung größerer Formulierungsmengen sind in diesem Zusammenhang, soweit den Erfindern bekannt, nicht im Markt erhältlich.

Die Schrift US4534345 zeigt beispielsweise einen aktiven Inhalator, der einen Treibmittel-Behälter, eine Vorratskammer mit pharmazeutisch aktiver Substanz in fester, mikronisierter Form und eine Dosis-Lade-Vorrichtung mit einer perforierten Membran beinhaltet. In einer ersten Position werden Perforationen in der

Membran mit der Substanz befüllt, in einer zweiten werden die Perforationen in einen Kanal für das Treibmittel eingeschoben. Bei Betätigung einer zugehörigen Vorrichtung wird das Treibmittel aus seinem Behältnis in den Kanal abgegeben und trägt die Substanz durch eine Düse des Inhalators aus.

Inhalatoren für trockenes Pulver werden unterteilt in Geräte für die Verabreichung einzelner Dosiseinheiten und in Mehrdosis-Geräte.

Mehrdosis-Geräte werden des weiteren unterteilt in Geräte mit vorabgemessenen und einzeln gelagerten Dosis-Einheiten (hier wird die übliche Abkürzung„pmDPI" verwendet, welche der entsprechenden englische Bezeichnung "pre-metered Dry Powder Inhaler" entstammt) und in solche Geräte, in denen jede Pulver-Einheit innerhalb des Geräts aus einem Reservoir mittels einer Abmessvorrichtung abgemessen wird.

Die Verwendung von pmDPIs hat den Vorteil, dass die einzelnen Dosis-Einheiten unter überwachten Fabrik-Bedingungen abgemessen werden und das Pulver dabei vergleichsweise einfach von Umgebungsluft und anderen äußeren

Einflüssen geschützt werden kann. Bei vielen Anwendungen wird eine

Formulierung in Form einer Mischung aus einem Wirkstoffs und einer

Trägersubstanz wie Laktose eingesetzt. Die Laktose und/oder der Wirkstoff bzw. die Wirkstoffe neigen zur Absorption von Flüssigkeit aus der Umgebungsluft, wodurch es zur Verklumpung des Pulvers und zu Schwierigkeiten bei der DeAgglomeration bzw. der Zerstäubung und beim Transport des Pulvers in die Lunge kommt.

Die Schrift DE4106379A1 zeigt ein passives Inhalationsgerät, in dem sich das Pulver in vordosierten inhalierbaren Pulvermengen in Taschen eines biegsamen streifenförmigen Trägers befindet. Dieser Träger besteht aus einer die Taschen bildenden Trägerbahn und einer die Taschen verschließenden Abdeckbahn. Das Inhalationsgerät weist neben einer Aufnahme für den Pulverträger eine

Öffnungsstation mit einer Abziehvorrichtung auf, die zum Öffnen der Taschen die Abdeckbahn und die Trägerbahn voneinander abziehen. Durch einen

Pulverauslass kann Pulver aus der geöffneten Tasche angesaugt werden.

Die vorliegende Erfindung bezieht sich insbesondere auf ein so genanntes aktives Mehrdosis-Gerät zur Abgabe eines Wirkstoffs oder einer Wirkstoff beinhaltenden Formulierung zur Inhalation.

Insbesondere bezieht sich die Erfindung auf solche pmDPIs, in denen Druckgas, vorzugsweise in Form von Druckluft, und/oder Treibmittel, wie vorzugsweise HFA- Gas wie Typ R134a, bei der Zerstäubung des Pulvers eingesetzt werden.

Die Schrift EP1992381 A1 offenbart einen aktiven pmDPI mit einer ringförmigen schrittweise drehbaren Vorratsvorrichtung mit mehrfachen Einschüben, wobei jeder Einschub eine einzelne Dosis einer medizinischen Formulierung in einer Vorratskammer und eine Düse beinhaltet. Die Einschübe befinden sich in getrennten und versiegelten Kavitäten, die individuell für die Ausbringung der einzelnen Dosis geöffnet werden. Zur Ausbringung der Dosis wird der jeweilige Einschub über ein Verbindungselement mit einer Luftpumpe mit Faltenbalg verbunden.

Einen ähnlichen aktiven pmDPI offenbart die Schrift WO2009040044. Hierin wird zusätzlich gezeigt, dass das Verbindungselement zwischen Pumpe und Einschub eine Drossel darstellt, die zusammen mit der Luftpumpe ein Resonanzsystem darstellt. Dieses Resonanzsystem wirkt sich derart aus, dass der Druckaufbau der mittels Luftpumpe erzeugten Druckluft während der Ausbringung der Dosis nicht streng monoton steigend verläuft, sondern pulsartig moduliert ist.

Die Schrift WO2009083244A2 zeigt einen aktiven pmDPI, in dem sich die einzelnen Dosen der medizinischen Formulierung in Vorratseinheiten in einem länglichen Träger befinden. Außer einer Vorratskammer mit Formulierung umfasst jede Vorratseinheit eine Düse zur individuellen Abgabe der jeweiligen Dosis. In einer Ausführungsform werden die Düsen über das Abziehen eines Deckstreifens nach einander freigelegt. Zum Ausbringen der Formulierung aus den einzelnen Vorratseinheiten wird darüber hinaus die jeweilige zugehörige Vorratskammer mit einem Anstechelement angestochen, durch das Druckgas in die Vorratskammer geleitet wird, wodurch die Formulierung mitgerissen wird. Das Druckgas wird durch eine Luftpumpe oder alternativ aus einem Behälter mit verflüssigtem Gas bereitgestellt. In einer Ausführungsform wird die Ausbringung der jeweiligen Dosis mittels Druckluft über eine Atemzugserkennung ausgelöst.

Die Schrift GB2233236A zeigt ein MDI mit einer so genannten

Atemzugstriggerung. Bei diesem Gerät wird eine abgemessene Dosis aus einem Druckbehälter mit in flüssigem Treibmittel suspendierten oder gelösten

Medikament in eine Vorratskammer geleitet, in der ein Ventil in einer

geschlossenen Stellung den Auslass verschließt. Das Ventil, beispielsweise ein magnetisches Tellerventil oder ein mit einer Rückstellfeder versehenes

Kolbenventil, gehört zu einer über die Inhalation des Patienten gesteuerten Abgabevorrichtung.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein gegenüber dem Stand der Technik verbessertes Gerät zur Zerstäubung von vorzugsweise

pulverförmigen medizinischen Formulierungen zur Inhalation anzugeben.

Insbesondere sollte ein Gerät angegeben werden, bei dem vergleichsweise große abgemessene Substanzmengen, insbesondere größer 1 Milligramm Wirkstoff, zur Inhalation ausgebracht werden können bzw. mit dem große inhalierbare

Dosismengen der medizinischen Formulierung bereitgestellt werden können. Besonders bevorzugt sollte bei der Ausgestaltung des Geräts als Inhalator der lungengängige Anteil einer als Aerosol mit diesem Gerät ausgebrachten

Formulierungsmenge nur in einem geringen Maß oder gar nicht vom

Einatemverhalten des Anwenders, d.h. des Patienten sein. Darüber hinaus sollte das Gerät insbesondere hinsichtlich des Aspekts der fehlerfreien Anwendung durch einen Anwender, insbesondere bzgl. der Koordination des

Einatemverhaltens mit der Zerstäubung vorteilhaft gestaltet sein.

Die genannte Aufgabe wird erfindungsgemäß gelöst durch ein Gerät zur

Zerstäubung von medizinischen Formulierungen, wobei im Gerät die Zerstäubung durch ein Treibmittel unterstützt wird, das einer Kavität zugeführt wird, in der sich eine abgemessene Menge der Formulierung befindet, wobei das Treibmittel der Kavität in Form von mehreren aufeinander folgenden, von einander abgegrenzten Pulsen oder Schüben zugeführt wird.

Insbesondere weist das Gerät im Bereich der Treibmittelzuführung eine

Vorrichtung auf, an derem Einlass Treibmittel anliegt und durch welche das Treibmittel durchgeleitet wird, wobei die Vorrichtung imTreibmittel ein derartiges Strömungsverhalten bewirkt, dass es aus der Vorrichtung in Form von mehreren aufeinander folgenden Pulsen oder Schüben austritt. Bevorzugt sind diese Pulse dabei derart von einander abgegrenzt, dass die Strömung des Treibmittels zwischen den Pulsen abreißt bzw. zum Erliegen kommt (d.h. der Druck des aus der Vorrichtung austretenden Treibmittels quasi auf Null, jedenfalls aber auf eine gegebenenfalls je nach technischer Ausstattung nicht vermeidbare minimale Restströmung absinkt).

Vorteilhafte Weiterbildungen werden im Folgenden und im Detail anhand der Figuren beschrieben.

Ein Merkmal der vorliegenden Erfindung ist, dass das Treibmittel über ein Ventil zugeführt wird, das durch mehrere Öffnungs- und Schließvorgänge das anliegende Treibmittel in mehrere Pulse aufteilt. Bevorzugt wird als Treibmittel verflüssigtes Treibgas verwendet. Insbesondere wird das Treibmittel dabei aus einer Kartusche, in der es verflüssigt vorliegt, über ein zur Kartusche gehörendes Dosierventil dem pulserzeugenden Ventil zugeführt. (Alternativ kann auch ein konstanter Treibgasstrom, d.h. gasförmiges Treibmittel, am pulserzeugenden Ventil anliegen.) Durch die Aufteilung des Treibmittelstoßes aus dem Dosierventil in eine Sequenz aus mehreren kurzen, zeitlich nacheinander versetzt aufeinander folgenden Treibmittelpulsen erhöht sich die Ausbringungszeit für die medizinische, vorzugsweise pulverförmige Formulierung aus dem Zerstäuber. Durch die

Verlängerung der Ausbringungszeit kann ein Anwender sein Einatemverhalten leichter an die Aerosolerzeugung anpassen bzw. mit dieser koordinieren als bei der Aerosolerzeugung mittels eines einzigen Treibmittelstoßes wie beispielsweise bei einem konventionellen MDI. Die Aerosolerzeugung wird insgesamt durch die Pulsung des Treibmittels zeitlich gestreckt.

Des Weiteren hat es sich gezeigt, dass sich die Pulsung des Treibmittels mit einem Strömungsabriss des Treibmittels zwischen den Pulsen vorteilhaft auf die Ausbringung von pul verförmigen Formulierungen aus Pulverkavitäten im

Zerstäuber auswirkt: Durch die Ausbringung des Pulvers mittels mehrerer

Treibmittelschübe oder Treibmittelpulse werden bessere Entleerungsgrade der Pulverkavitäten erzielt. Dieser Effekt ist insbesondere bei der Ausbringung von großen Pulvermengen wie beispielsweise ab 20 Milligramm auffällig.

Vorzugsweise ist das Ventil insofern ansteuerbar, als dass Öffnungs- und

Verschlusszeiten vorgegeben werden können. Gut geeignet ist beispielsweise ein ansteuerbares Magnetventil. Insbesondere werden am Ventil während des

Betriebs des Geräts Öffnungszeiten im Bereich von 3 bis 30, besonders bevorzugt im Bereich von 5 bis 10 Millisekunden und Verschlusszeiten im Bereich von 50 bis 500 Millisekunden, besonders bevorzugt im Bereich von 100 bis 200 Millisekunden eingestellt. Es hat sich gezeigt, dass die Treibmittelpulse, die durch

Ventilöffnungszeiten von 5 bis 10 Millisekunden mit zwischenzeitlichen

Verschlusszeiten von mindestens 50, bevorzugt mindestens 100 Millisekunden erzeugt werden, in Geräten zur Zerstäubung von pulverformigen Formulierungen eine effiziente Entleerung der die Formulierung aufnehmenden Pulverkavitäten bewirken. Dieser Effekt einer besseren Entleerung durch Pulsung des Treibmittels ist umso ausgeprägter, je größer die Pulverkavität ist. Mit gepulster

Treibmittelzuführung ist so auch die Ausbringung großer Pulvermengen in nur einer Anwendung des Geräts möglich (beispielsweise wurden erfolgreich

Versuche mit 50 und 75 Milligramm durchgeführt, aber auch Mengen von bis zu 100 Milligramm und mehr sind möglich). Zusammengefasst wird durch die geeignete Wahl von Länge und zeitlichem Abstand der Treibmittelpulse die Entleerung der Pulverkavität verbessert und die Zerstäubung vergleichsweise großer Pulvermengen in nur einer Anwendung des Zerstäubers ermöglicht.

Insbesondere alternativ zur Aufnahme eines ansteuerbaren Ventils in das erfindungsgemäße Gerät ist ein weiteres Merkmal der vorliegenden Erfindung, dass die Pulsung des Treibmittels durch eine Vorrichtung zur Erzeugung von Oszillationen in Fluiden, insbesondere durch einen mikrofluidischen Oszillator erzeugt wird. Die Bezeichnung„Fluid" bezieht sich hierbei sowohl auf

Flüssigkeiten als auch auf Gase, insbesondere bezieht sie sich bei der

vorliegenden Erfindung auf den Spezialfall, dass das Fluid ein verflüssigtes Gas ist. Bei dem mikrofluidischen Oszillator handelt es sich um eine mikrofluidische Kanalstruktur mit mindestens einer Gabelung. Je nach Auslegung des Oszillators kann die Oszillation beispielsweise entweder durch mindestens einen Steuerzulauf im Bereich der Gabelung hervorgerufen werden, so dass das Fluid abwechselnd mal in den einen oder anderen durch die Gabelung beginnenden Kanal geleitet wird, oder die Oszillation kann durch das Auftreffen zweier Strömungen aus den sich an die Gabelung anschließenden Kanälen in einem geeigneten Mischbereich bzw. in einer Oszillationskammer gebildet werden. In beiden Fällen wird der sogenannte Coanda-Effekt ausgenutzt: Ein Fluidstrahl, der aus einem Kanal in einen Erweiterungsbereich austritt, schmiegt sich an diejenige Wand an, die in Bezug auf die Achse des Strahls weniger geneigt ist. Dies ist beim Coanda-Effekt die stabile Orientierung des Strahls. Wenn jedoch die Geometrie des

entsprechenden Geräts bzw. der entsprechenden Kanalstruktur (beispielsweise bezogen auf eine an einen Erweiterungsbereich anschließende Gabelung) symmetrisch ist, kann sich der Strahl an die eine oder andere Wand anschmiegen und bleibt in dieser Orientierung bis andere Faktoren wie z.B. Druckvariationen, Wirbel oder Querströmungen einen Orientierungswechsel zum Anschmiegen an die andere Wand hin veranlassen.

Insbesondere bei der Verwendung von Flüssiggas als Treibmittel kann hierbei zusätzlich der Effekt ausgenutzt werden, das die Flüssigkeit beim Durchströmen der Kanalstruktur aufgrund ihres geringen Siedepunktes bereits teilweise in die Gasphase übergeht. Durch die entstehenden Siedeverzüge bilden sich somit immer wieder Gasblasen, insbesondere an Stellen wie beispielsweise in

Oszillationskammern oder Mischbereichen, wo sich bei Verwirbelungen Dichte- Unterschiede im Fluid und somit Stellen mit unterschiedlichem

Verdampfungsverhalten ergeben. Solche Gasblasen führen dann ihrerseits zu einer puls- oder schubartigen Ausbringung des Treibmittels aus einem Auslass eines solchen Mischbereichs.

Die Verwendung eines solchen mikrofluidischen Oszillators in einem Treibmittelbetriebenen Gerät zur Zerstäubung hat den Vorteil, dass aufgrund der kleinen Baugröße eines mikrofluidischen Oszillators die Baugröße des Geräts zum

Zerstäuben der medizinischen Formulierung nur vergleichsweise wenig vergrößert wird. Auf diese Weise kann eine Vorrichtung zum Pulsen des Treibmittels in Handgeräten eingebaut werden, die bei ihrer Verwendung ohne externe

Vorrichtungen zur Ansteuerung auskommen.

Ein weiteres Merkmal der vorliegenden Erfindung ist, dass das Treibmittel zur Ausbringung der medizinischen, vorzugsweise pulverförmigen Formulierung aus einer Kavität vor der Zuführung zu dieser Kavität durch einen Verdampfer oder Wärmetauscher geleitet wird. Der vorzugsweise aus Metall gefertigte Verdampfer weist einen Hohlraum mit einem Einlass und einen Auslass für das Treibmittel auf. Der Einlass des Verdampfers ist vorzugsweise einstückig mit einem Bauteil ausgebildet, das den Anschluss eines für die Pulserzeugung benutzten Ventils oder Oszillators bildet.

Der Verdampfer bewirkt, dass das Treibmittel, das z.B. in einer Vorratskartusche flüssig vorliegt, vollständig oder nahezu vollständig in den gasförmigen Zustand überführt wird, bevor es der Kavität mit der Formulierung zugeführt wird. Das in einer konventionellen Kartusche unter Druck flüssig gehaltene Treibmittel verdampft unter Normaldruck in der Regel bei negativen Temperaturen auf der Celsius-Temperatur-Skala. Wird es in den Hohlraum des Verdampfers eingeleitet, kann es dort expandieren und wechselt vom flüssigen in den gasförmigen

Zustand. Insbesondere bei der Verwendung pulverförmiger Formulierungen wird dadurch verhindert, dass flüssiges Treibmittel das Pulver verklumpt und die Zerstäubung des Pulvers dadurch beeinträchtigt wird. Unter Verwendung des Verdampfers erhöht sich somit der lungengängige Anteil der mittels

Treibmittelausbringung erzeugten Aerosolpartikel.

Ein weiteres Merkmal der vorliegenden Erfindung ist, dass der Verdampfer in seinem Innern Wärmetausch-Elemente beinhaltet. Die Wärmetausch-Elemente unterstützen bzw. beschleunigen die Verdampfung des flüssigen Treibmittels im Verdampfer, in dem sie Wärme an das an ihnen entlang strömende Treibmittel abgeben. Diese Wärmetausch-Elemente sind vorzugsweise aus Metall und weisen eine relativ große Oberfläche auf, was ebenfalls den Verdampfungseffekt begünstigt. Vorzugsweise haben die Wärmetausch-Elemente hierzu die Form von Kugeln und/oder Drähten.

Ein weiteres Merkmal der vorliegenden Erfindung ist, dass im Innern des

Verdampfers die Bauteile des Verdampfers derart gestaltet sind, das sie für das durch den Verdampfer strömende Treibmittel einen möglichst geringen

Strömungswiderstand darstellen. Dadurch kann nahezu die volle Geschwindigkeit der Treibgasströmung für die Pulverzerstäubung genutzt werden. Zur Reduzierung des Strömungswiderstandes tragen bei:

- die rotationssymmetrische Gestalt des Verdampfers,

- konusförmige Übergänge im Einlass- und Auslassbereich des Hohlraums des Verdampfers,

- Kugelstruktur der Wärmetausch-Elemente im Verdampfer und/oder

- eine derartige Bemessung der Wärmetausch-Elemente, dass es durch sie zu keiner Verlegung von Einlass oder Auslass des Verdampfers kommt und dass ihre Zwischenräume gut durchströmbar sind.

Ein weiteres Merkmal der vorliegenden Erfindung ist, dass die Zuleitung von Treibmittel in die Kavität mit der Formulierung und die Achse eines vorzugsweise geradlinigen Düsenkanals an der gleichen Stelle, bevorzugt mittig, und unter dem gleichen Winkel relativ zum Boden der Kavität eintreffen. Bei dieser Anordnung erstreckt sich die Achse des Düsenkanals, durch den die Formulierung mittels Treibmittel aus der Düse des Geräts bzw. des Zerstäubers ausgebracht wird, gerade in der Richtung, in welche der Treibmittelstrom von der Pulverkavität aus zum größten Teil reflektiert wird. Auf diese Weise stößt der mit Formulierung behaftete Treibmittelstrom auf seinem Weg nach draußen nicht unnötig an die Wände der Kavität. Die Kavität wird besser entleert bzw. es kommt nicht oder kaum zu Ablagerungen von Formulierung neben dem Einlass des Düsenkanals. Ein Winkel von 45° ist hierbei für den Aufbau eines kompakten Zerstäubers vorteilhaft, beispielsweise wenn mehrere Kavitäten entlang eines kreisförmigen Radius nacheinander in die Position zur Ausbringung der Formulierung gebracht werden. Aber auch etwas geringere Winkel wie z.B. 30° können insbesondere bei länglichen Kavitäten vorteilhaft sein, da dann mehr Formulierung vom Treibmittel sozusagen durchstoßen werden muss, bevor der Treibmittelstrom reflektiert wird. Dieser Reflexionswinkel sollte an die optimale Gestaltung von Kavität und gegebenenfalls an einen Austauschmechanismus für mit Formulierung gefüllte Kavitäten angepasst werden.

Ein weiteres Merkmal der Erfindung ist, dass die Pulverkavität stromlinienförmig gestaltet ist. Vorzugsweise weist sie eine Tropfenform auf (ähnlich einem längs aufgeschnittenen Tropfen) und/ oder weist einen Napf mit einer tropfenförmigen Öffnung auf. Hierbei ist die Pulverkavität bevorzugt so in dem Zerstäuber angeordnet, dass die Treibmittelzuführung oder ein Lufteinlass in der Nähe des breiten Bauchs der Tropfenform oder in Strömungsrichtung gesehen am unteren Rand des Bauchs befindet und der engere Teil der Tropfenform auf den

Düsenkanal zuläuft oder das enger werdende Ende der Tropfenform direkt in den Düsenkanal mündet. Besonders bevorzugt weist der Boden des Napfs eine Schräge auf, welche die in die Pulverkavität eingeleitete Strömung direkt in Richtung Düsenkanal leitet. Eine derartige Gestaltung der Pulverkavität führt zu einer quasi vollständigen Entleerung bei Anwendung. Dadurch kann der

Zerstäuber außerdem bezogen auf die verwendete medizinische Formulierung im Vergleich zur Verwendung anderer Pulverkavitäten mit niedrigeren Füllvolumina verwendet werden. Ein weiteres Merkmal der vorliegenden Erfindung ist, dass das Gerät im Falle einer Ausführungsform als Inhalator zur Ausbringung mehrerer einzeln abgemessenen Mengen der Formulierung dient. Hierzu befinden sich die einzelnen Mengen der Formulierung, z.B. einzelne Pulvereinheiten, bevorzugt in den Kavitäten eines Blisterbands. Die Kavitäten werden dann nacheinander z.B. durch eine Weiterbewegung des Blisterbands in eine Entnahmeposition im

Treibgasstrom gebracht. Zuvor sind sie z.B. über einen Mechanismus, durch den die jeweilige Kavität beispielsweise angestochen wird oder durch den

vorzugsweise eine die Kavität verschließenden Deckfolie abgezogen wird, geöffnet worden. Die Bevorratung der Kavitäten entlang eines Blisterbands hat den Vorteil, dass durch Rollen bzw. Wickeln des Bandes viele Kavitäten auf kleinem Raum bevorratet werden können. Besonders bevorzugt wird der

Transport des Blisterbandes im Inneren des Geräts durch eine Bewegung außen am Gerät gesteuert, wie insbesondere das Öffnen oder Schließen einer

Mundstückabdeckung.

Ein weiteres Merkmal der vorliegenden Erfindung ist, dass die Ausbringung der Formulierung aus der Kavität durch eine Düse erfolgt, deren Auslassöffnung in ein in Strömungsrichtung verlängertes Mundstück einmündet. Bevorzugt ist dabei der Überstand des Mundstücks im Vergleich zum Düsenauslass länger als der Düsenkanal in der Düse. Bevorzugt ragt das Mundstück 40 bis 120 Millimeter, besonders bevorzugt 40 bis 70 Millimeter über das Ende der Düse hinaus. Bei einem derart bemessenen Überstandsbereich ist einerseits der Anteil des lungengängigen Feinanteils des ausgebrachten Aerosols gegenüber Geräten mit kleineren Überständen erhöht und andererseits ist der Überstand noch nicht so groß, als das es zu einer übermäßigen Bildung von Ablagerungen innen im Mundstück kommt. Bei den größeren Überstandsbereichen, insbesondere bei Überständen von 70 bis 120 Millimeter, nimmt der Anteil der inhalierbaren Dosis weiter zu, es muss lediglich gegebenenfalls eine regelmäßige Reinigung des Mundstücks vorgesehen werden.

Zur Ausbildung einer für die Inhalation des gebildeten Aerosols günstigen

Aerodynamik im Mundrohr weist das Mundstück des Weiteren geräteseitig (d.h. auf der Seite, die der Stelle entgegengesetzt liegt, an der im Falle eines Geräts zur Inhalation an Anwender seine Lippen ansetzen würde) mindestens eine, bevorzugt 1 bis 4 Einlassöffnung auf. Bevorzugt ist die Einlassöffnung am

Mundstück so gestaltet, dass es zu einer Bypass-Luftströmung nahe dem Auslass der Düse kommt, die besonders bevorzugt den aus der Düse austretenden mit Formulierung beladenen Treibmittelstrom umhüllt. Es zeigt sich, dass die

Aerodynamik weiterhin günstig beeinflusst wird, wenn der innere Durchmesser des Mundstücks an der Stelle des Düsenauslasses deutlich größer, insbesondere fünfmal, so groß wie der Duchmesser der Öffnung des Düsenauslasses ist.

Ein weiteres Merkmal der vorliegenden Erfindung ist, dass das Gerät im Falle einer Ausführungsform als Inhalator eine Atemzugstriggerung aufweist, welche die Zuführung von Treibmittel in den Verdampfer auslöst. Bevorzugt befindet sich ein Schaltelement der Atemzugstriggerung z.B. in Form eines Strömungssensors im Bereich der Einlassöffnungen des Mundstücks und/oder in einem an die

Einlassöffnungen angeschlossenen Kanal. Die einzelnen Merkmale der vorliegenden Erfindung können unabhängig voneinander genutzt oder miteinander kombiniert werden.

Weitere Vorteile, Merkmale, Eigenschaften und Aspekte der vorliegenden

Erfindung ergeben sich aus den Ansprüchen und der folgenden Beschreibung bevorzugter Ausführungsformen anhand der Zeichnungen. Die Zeichnungen zeigen in:

Fig. 1 einen schematischen Schnitt durch die Zerstäubungseinheit eines

Zerstäubers mit Treibmittelzuführung,

Fig. 2 einen als Testvorrichtung gestalteten Zerstäuber mit Treibmittelzuführung, Fig. 3a einen schematischen Schnitt durch einen Teil der

Treibmittelzuführungsvorrichtung zu Fig. 2 und Fig. 3b einen schematischen Schnitt durch zwei Einzelbauteile aus der Treibmittelzuführung,

Fig. 4a einen als Testvorrichtung gestalteten, erfindungsgemäßen Zerstäuber mit gesteuertem Ventil in der Treibmittelzuführung, Fig. 4b ein Flussbild bezogen auf die Abläufe im Zerstäuber aus Fig. 4a, und Fig. 4c ein Flussbild bezogen auf die Anbindungen eines alternativen Treibgas-betriebenen Zerstäubers und Fig. 4d zeigt ein Diagramm mit extrapolierten Messergebnissen zur

Pulverkavitätentleerung in Abhängigkeit von am Ventil eingestellten Öffnungs- und Verschlusszeiten ti und t 2 für eine Anordnung entsprechend Fig. 4a,

Fig. 5a, b, c und d verschiedene mikrostrukturierte Kanalstrukturen zur

Pulserzeugung in Strömungen, Fig. 6a einen schematischen Schnitt durch die Zerstäubungseinheit eines Geräts, wobei in Fig. 6b und ebenfalls in Schnittansicht in Fig. 6c eine in diesem Gerät eingesetzte Düse dargestellt ist,

Fig. 7 verschiedene Pulverkavitäten zur Verwendung mit einem Zerstäuber gemäß Fig. 1 und Fig. 2: Fig. 7a einen Träger mit einer wannenförmigen Pulverkavität, Fig. 7b einen Träger mit tropfenförmiger Pulverkavität in Aufsicht und Fig. 7c die tropfenförmige Pulverkavität in schematischer Schnittansicht, und

Fig. 8 einen erfindungsgemäßen Inhalator als Handgerät, wobei Fig. 8a den Inhalator von außen mit geschlossener Mundstückabdeckung, Fig. 8b in schematischer Schnittansicht und Fig. 8c von außen mit geöffnetem Mundstück zeigt.

In den Figuren werden für gleiche oder ähnliche Teile dieselben Bezugszeichen verwendet, wobei entsprechende oder vergleichbare Eigenschaften und Vorteile erreicht werden, auch wenn eine wiederholte Beschreibung weggelassen ist.

Fig. 1 zeigt in schematischer Schnittdarstellung die Funktionsweise eines Geräts, das insbesondere für die Zerstäubung von Pulvern geeignet ist. Der Aufbau des dargestellten Geräts bzw. Zerstäubers eignet sich sowohl für einen Inhalator als auch vor allem für eine Testvorrichtung zur Überprüfung der Funktionsweise einzelner jeweils austauschbar gehaltenen Komponenten des Inhalators. Ein solcher als Testvorrichtung gestalteter Zerstäuber ist in Fig. 2 abgebildet. Bei der Zerstäubung von Pulvern wird hierbei Treibmittel aus einer Kartusche (5) direkt oder vorzugsweise nach vollständiger Durchführung durch einen

Verdampfer (6) oder Wärmetauscher in eine Pulverkavität (1 ) geleitet, auf die eine Düse (3) aufgesetzt ist, die wiederum in ein Mundstück (2) einmündet. Bei der hier bevorzugten Verwendung eines Verdampfers (6), sollte dieser so im System eingebaut sein, dass ausgeschlossen ist, dass ein Teil des aus dem Ventil an der Kartusche (5) abgegebenen Treibmittels über einen Bypass am Verdampfer (6) vorbei in die Pulverkavität (1 ) gelangen kann. Das Treibmittel treibt das Pulver aus der Pulverkavität (1 ) durch die Düse (3) aus. Saugt gleichzeitig ein Anwender bzw. Patient am Mundstück (2) Luft an, so wird das Pulver beim Austritt aus der Düse (2) von der Einatemluft mitgerissen, die an der Düse vorbei durch das Mundstück (2) in die Lunge strömt. Das Pulver gelangt so durch den Atemsog des Patienten in dessen Lunge.

Sowohl die Testvorrichtung als auch ein gemäß gleicher Funktionsweise aufgebauter Inhalator wird vorzugsweise so bedient, dass der Boden der

Kartusche (1 ) nach oben zeigt, d.h. dass der Ventilstamm (7) der Kartusche (1 ) nach unten gerichtet ist. Eine solche Bedienung ist analog zur Bedienung eines konventionellen Dosieraerosols (im Folgenden wird häufig mit der aus dem

Englischen üblichen Abkürzung MDI bezeichnet). Das Treibmittel wird mittels eines zur Kartusche gehörenden Ventils (ebenfalls in Analogie zum

konventionellen MDI) dosiert, wobei die Abgabe einer Einheit des Treibmittels beispielsweise über Druck auf den Boden der Kartusche (5) ausgelöst wird. Bei der in Fig. 2 gezeigten Testvorrichtung besteht der Zerstäuber aus einzelnen Modulen. Die funktionsrelevanten Module sind hierbei insbesondere die Kartusche (5), der Verdampfer (6), die Düse (3), das Mundstück (2) und eines, das die Pulverkavität (1 ) bildet. Zusätzlich kann im Fall der Testvorrichtung noch ein Anschlusstück (4) hinzukommen, an dem andere Module insbesondere die Düse (3), die Pulverkavität (1 ) und der Verdampfer (6) oder die Kartusche (5)

austauschbar befestigt und in fluidische Beziehung zueinander gebracht werden können.

Die Testvorrichtung bietet den Vorteil, dass die in die Testvorrichtung eingesetzten Module variiert werden können und die Auswirkung der jeweiligen Variation auf das Zerstäubungsverhalten bestimmt werden kann. Bevorzugt wird außerdem ein System zur Strömungserzeugung, z.B. eine laborübliche Steuerwand mit konventioneller Pumpe, an die Testvorrichtung angeschlossen, so dass

verschiedene Saugstärken am Mundstück (2) nachgestellt werden können. Die Zerstäubung des jeweils in der Testvorrichtung eingesetzten Pulvers kann mit den gleichen Methoden wie die Zerstäubung aus Inhalatoren untersucht werden, insbesondere mittels Laserbeugungsmethoden, Hochgeschwindigkeitskameras und Kaskadenimpaktoren. Die in dieser Schrift zugrunde liegenden

Messergebnisse wurden mit einem gemäß den Vorgaben des Europäischen Arzneibuchs (Version 7.0) gestalteten Kaskadenimpaktor („Apparatus E" gemäß Kapitel 2.9.18 im Europäischen Arzneibuch) zur Bestimmung des Feinanteils der ausgebrachten Dosis ermittelt (wobei zusätzlich bei verschiedenen Flussraten gemessen wurde). Dieser Feinanteil wird bezogen auf Partikelgrößen mit Durchmessern kleiner als 5 Mikrometern und wird im Folgenden zuweilen auch mit der Abkürzung FPD bezeichnet (hergeleitet aus der oft angewandten englischen Bezeichnung„Fine Particle Dose"). Bei den Messungen mit dem hierzu

eingesetzten Kaskadenimpaktor wurden die Wirkstoff-Ablagerungen auf den einzelnen, die Kaskadenstufen bildenden Schalen und der Anschluss des

Kaskadenimpaktors jeweils pro Messung individuell gewaschen und die sich ergebenden Lösungen wurden mittels Hochdruck-Flüssigkeits-Chromatographie untersucht. In den einzelnen Kaskadenstufen werden während der Messung unterschiedliche Größenklassen der zerstäubten Partikel gesammelt, so dass mittels der Chromatographie der Lösung aus der jeweiligen Kaskadenstufe die jeweiligen Anteile der Dosis pro Größenklasse bestimmt werden können.

Die Testvorrichtung wird bevorzugt für die Überprüfung der Zerstäubung von pulverförmigen medizinischen Formulierungen eingesetzt. Bevorzugte

Formulierungen bestehen aus strahlgemahlenem und gesiebtem Wirkstoff, der mit Laktose gemischt wird. Beliebige Mischungsverhältnisse bis hin zu reinem

Wirkstoff können mit der Testvorrichtung überprüft werden.

Für die meisten Messungen wurde in der Testvorrichtung eine Pulverkavität (1 ) mit einem Fassungsvermögen von etwa 0,2 Millilitern verwendet, in die meist 50 Milligramm einer auf Laktose basierten Formulierung mit 32,5% einer aktiven pharmazeutischen Substanz (ein in der Entwicklung befindlicher Wirkstoff) eingefüllt wurden. Für das hier beschriebenen Zerstäubungskonzept können jedoch auch Pulverkavitäten (1 ) mit Pulvermengen von bis zu 100 Milligramm befüllt werden; getestet wurden beispielsweise 21 Milligramm, 60 Milligramm, 70 Milligramm und 75 Milligramm (einige davon mit einer Formulierung, die 98% Fenoterol-HBr beinhaltet, da sich dieser Wirkstoff gut für Extremalprüfungen der Zerstäubung von Inhalatoren eignet). Die Größe der Pulverkavität (1 ) kann an die Menge des aufzunehmenden Pulvers angepasst werden. Auch Pulvermengen bis hin zu 250 Milligramm sind möglich bei entsprechenden Anpassungen der

Pulverkavität (1 ) und der Treibmittelzufuhr (hin zu größeren Drücken und umfangreicheren Treibmittelstößen) möglich. Die Form der Pulverkavität ist vorzugsweise an das angeschlossene Düsenkonzept angepasst.

Die Ausbringung solch im Vergleich zu handelsüblichen Pulverinhalatoren hoher Pulvermengen wird in diesem Fall durch die Verwendung von Treibmitteln ermöglicht. Bevorzugt werden hierbei Hydrofluoralkane (so genannte HFAs) verwendet. Besonders bevorzugt wird hier als Treibmittel HFA R134a (Norfluran oder 1 ,1 ,1 -Trifluorethan bzw. 1 ,1 ,1 ,2-Tetrafluorethan) in der Kartusche (1 ) eingesetzt, wobei hier bevorzugt Kartuschen mit Dosierventilen verwendet werden, die 100 Mikroliter pro Aktivierung abgeben. Je nach Größe der

eingesetzten Formulierungsmenge kann die Größe des Ventils angepasst werden, wobei, handelsübliche Größen wie beispielsweise 25, 50, 100, 180 bis hin zu 500 Mikrolitern verwendet werden können. So wurden im Rahmen der hier

vorgestellten Ergebnisse bei kleineren Formulierungsmengen ebenfalls kleinere Treibmitteleinheiten verwendet, wie beispielsweise 50 Mikroliter Treibmittel bei 21 Milligramm Pulvermenge. Bevorzugt wurden die handelsüblichen Ventile mit metallischen Behältern verbunden, insbesondere wurden hier bei der

Kartuschenherstellung die Ventile mit 10 Milliliter fassenden Aluminiumcontainern vercrimpt. Die Kartuschen wurden mit dem Treibgas R134a gefüllt. In der

Kartusche (5) liegt das Treibmittel - wie auch in handelüblichen Dosieraerosolen (MDIs) - in verflüssigter Form vor. Es verdampft unter Normaldruck bei -26,3° C und entwickelt bei 20° C einen Dampfdruck von 5,7 bar. Aber auch andere

Treibmittel wie andere Hydrofluoralkane wie beispielsweise HFA 227ea (Apafluran oder 1 ,1 ,1 ,2,3,3,3-Heptafluoropropan), flüssiger Stickstoff oder konventionelle Treibmittel wie Halogenkohlenwasserstoffe können bei diesem Prinzip eingesetzt werden.

Die in Fig. 2 gezeigte Testvorrichtung wird bei einer Ausrichtung der Kartusche (5) senkrecht nach oben, mit nach unten gerichteten Ventilstamm (7) verwendet. Wenn beispielsweise durch Drücken auf den nach oben gerichteten Boden der Kartusche Treibmittel freigesetzt wird, fließt das Treibmittel zunächst in den Verdampfer (6) und von da aus als Treibgas über eine Zuleitung im

Anschlussstück (4) in die Pulverkavität (1 ). Das Treibgas treibt dann das Pulver der Pulverkavität (1 ) durch die Düse (3) aus. Durch die Verwendung des

Treibmittels HFA R 134A mit einem Druck von etwa 6 bar bei Raumtemperatur werden vorteilhafterweise im System größere Flussgeschwindigkeiten als mit konventionellen Fluorkohlenwasserstoffen erzielt, die abgefüllt lediglich Drücke im Bereich von 2 bis 4 bar aufweisen.

Der Verdampfer (6) bewirkt, dass das mit dem Dosierventil abgegebene, abgemessene Treibmittel, das in der Kartusche (5) flüssig vorlag, komplett in den gasförmigen Zustand überführt wird, bevor es der Pulverkavität (1 ) zugeführt wird. Das Treibmittel wird dabei gewissermaßen getrocknet. Dadurch wird verhindert, dass flüssiges Treibmittel das Pulver verklumpt. Verklumptes Pulver lässt sich wesentlich schlechter dispergieren und die Lungengängigkeit der bei der

Zerstäubung erzeugten Aerosol-Partikel verschlechtert sich. Videoaufnahmen mit einer Hochgeschwindigkeitskamera, mit der durch einen transparenten Boden der Pulverkavität (1 ) das Innere der Pulverkavität (1 ) während der Zuleitung von Treibmittel beobachtet wurde, belegen, dass es ohne die Verwendung eines Verdampfers (6) zu besagter Verklumpung kommt, während bei Verwendung des im Folgenden im Detail beschriebenen Verdampfers keine Agglomerate oder Verklumpungen mehr zu erkennen waren.

Fig. 3 zeigt einen möglichen Aufbau eines solchen Verdampfers (6). In der gezeigten Ausführungsform für den Einsatz in einer Testvorrichtung ist der Einlass des Verdampfers (6) so gestaltet, dass er einerseits eine Aufnahme (8a) für einen handelsüblichen Ventilstamm (7) einer Kartusche (5) aufweist und andererseits der Auslass (9c) so gestaltet ist, dass das Äußere des Verdampfers (6) an dieser Stelle gerade die Form eines Stammes (9d) mit den gleichen Abmessungen wie bei einem handelsüblichen Ventilstamm aufweist, beispielsweise einen

Durchmesser von 2 Millimetern. Dementsprechend weist auch das Anschlussstück (4) eine Ventilstammaufnahme auf, an der für Versuchszwecke wie hier gezeigt der Verdampfer (6) oder wahlweise direkt die Kartusche (5) angeschlossen werden kann.

Der dargestellte, vorzugsweise rotationssymmetrisch gestaltete Verdampfer (6) beinhaltet einen Körper (9) mit einem vorzugsweise zylinderförmigen Hohlraum (9a). Der Boden des Hohlraums ist vorzugsweise als Trichter (9b) gestaltet, von dessen Mitte der Auslass (9c) als Kanal abgeht. Verschlossen wird der Hohlraum (9a) des Verdampfers durch einen Deckel (8), dessen Flansch (8b) in den oberen Bereich des Hohlraums (9a) eingetaucht wird. Vorzugsweise werden der Körper (9) und der Deckel (8) des Verdampfers (6) mittels einer Dichtung (10)

gegeneinander abgedichtet. Diese Dichtung (10) ist beispielsweise bei einem rotationssymmetrischen Verdampfer (6) ein ringförmiges Bauteil aus einem elastomeren Material. Die Dichtung wird beispielsweise in eine Sicke (8c) am Flansch (8b) des Deckels (8) eingelegt. Der Deckel weist eine

Ventilstammaufnahme (8a) passend zur Aufnahme eines Ventilstamms einer handelsüblichen Kartusche (5) und eine Durchführung auf, die sich bevorzugt über einen Innenkonus (8d) zum Hohlraum (9a) hin öffnet. Bevorzugt wird am den oberen Bereich des Ventilstamms (7) eine zusätzliche Dichtung, beispielsweise in Form eines O-Rings, angebracht, so dass keine Umgebungsluft entlang des Ventilsstamms (7) über die Ventilstammaufnahme (8a) ins System gelangt.

Die Wirkung des Verdampfers (6) basiert auf Wärmetausch-Mechanismen. Der Verdampfer (6) selbst besteht vorzugsweise aus Metall und der Hohlraum ist bevorzugt ebenfalls mit vorzugsweise metallenen Bauteilen gefüllt, die im

Folgenden als Wärmetausch-Elemente bezeichnet werden. Das in der Kartusche (5) unter Druck flüssig gehaltene Treibmittel verdampft unter Normaldruck, im Ausführungsbeispiel bereits ab etwa -25°Celsius. Kann es also im Hohlraum des Verdampfers (6) expandieren, so wechselt es vom flüssigen in den gasförmigen Zustand. Die Wärmetausch-Elemente unterstützen bzw. beschleunigen diese Verdampfung, in dem sie Wärme an das an ihnen entlang strömende Treibmittel abgeben. Die Wärmetausch-Elemente haben hierzu bevorzugt eine möglichst große Oberfläche. Hierdurch wird die gesamte innere Oberfläche des

Verdampfers, d.h. die Kontaktfläche für den Wärmetausch-Mechanismus, erhöht und das Totvolumen, d.h. der freie Raum innerhalb des Verdampfers, verkleinert. Als Material werden für alle Bauteile des Verdampfers Metalle bevorzugt, da sie eine hohe Wärmeleitfähigkeit aufweisen und dadurch die Verdampfung des auf sie auftreffenden Treibmittels begünstigen. Möglich ist die Verwendung der meisten bei Raumtemperatur fester Metalle, wobei Edelstähle besonders bevorzugt sind, da sie zu den meisten Treibmitteln insofern eine gute Kompatibilität aufweisen, als dass keine Bestandteile des Metalls vom Treibmittel aufgenommen und der Zerstäubung zugeführt werden. Edelmetalle wie Silber und Gold wären ebenfalls gut geeignet, scheiden aber aus Kostengründen meistens aus. Sowohl für den Körper (9) des Verdampfers (6) als auch für Wärmetausch-Elemente in seinem Hohlraum (9a) werden hier konkret Aluminium, Edelstahl oder Kupfer als

Materialien bevorzugt. In einer bei Versuchen verwendeten Ausführungsform ist der Körper (9) des Verdampfers (6) aus Aluminium, und der Hohlraum (9a) ist mit Kugeln (1 1 ) aus Edelstahl gefüllt. Je nach Verdampfungsverhalten des gewählten Treibmittels kann es gegebenenfalls ausreichen, wenn lediglich die Wärmetausch- Elemente aus Metall sind und der Körper (9) selbst aus Kunststoff ist. Dies bietet Kostenvorteile bei der Produktion. Der Verdampfer kann hinsichtlich seiner Länge und damit auch der Anzahl an Wärmetausch-Elementen variiert werden, um an die verwendete Menge Treibmittel angepasst zu werden. So kann bei der Verwendung von kleinen Treibmittelmengen ein kleinerer bzw. kürzerer

Verdampfern verwendet werden. Im Rahmen von Untersuchungen wurden beispielsweise in Verbindung mit Dosierventilen, die 50 Mikroliter Treibmittel abgeben, ein Verdampfer (6) mit 6 Millimeter langem Innenraum und gefüllt mit 27 Stahlkugeln von 2 Millimeter Durchmesser eingesetzt. In Verbindung mit 100 Mikroliter-Ventilen wurde ein 12 Millimeter langer Verdampfer (6) mit 48 Kugeln (1 1 ) eingesetzt. Dieses Verhältnis von Verdampferlänge bzw. Anzahl von Kugeln

(1 1 ) zum Volumen des eingesetzten Dosierventils ist beliebig skalierbar - auch für größere Dosierventile.

Damit keine der Kugeln (1 1 ) den Auslass (9c) im Boden des Trichters (9b) verlegt, liegt beim konkreten Ausführungsbeispiel im Trichter (9b) ein gewundener Draht

(12) beispielsweise aus Kupfer, der die Kugeln (1 1 ) vom Auslass (9c) fernhält. Wahlweise können die Metallkugeln auch ganz durch einen langen, dünnen gewickelten Metalldraht im Hohlraum (9a) ausgetauscht werden. Im

Ausführungsbeispiel haben die Kugeln (1 1 ) einen Durchmesser von 2 Millimetern, und dem steht ein Auslass (9c) mit einem Durchmesser von 1 Millimeter gegenüber.

Insgesamt ist die Gestalt bzw. die Anordnung der Bauteile so gewählt, dass der Verdampfer (6) einerseits zwar eine möglichst große innere Oberfläche für eine effiziente Verdampfung des Treibmittels aufweist, andererseits die Füllung mit Wärmetausch-Elementen hinreichend viele kleine freien Querschnitte aufweist, so dass sein Strömungswiderstand nicht so hoch wird, d.h. dass er das durch ihn durch geleitete Treibmittel nicht zu sehr verlangsamt. In diesem Zusammenhang wird hier bezogen auf Luft ein Strömungswiderstand von um die 465000 VN * s/m 4 ± 10% bevorzugt (für Treibmittel sind noch geringere Strömungswiderstände als Luft zu erwarten). Dies entspricht einem zustande kommenden Fluss von 10 Liter pro Minute bei einem Druckabfall von 6 Kilopascal (ein geringerer Fluss als 5 Liter pro Minute bei einem Druckabfall von 6 Kilopascal würde beispielsweise einen ungünstigeren Strömungswiderstand darstellen, das Treibgas würde auf seinem Weg durch den Verdampfer dann deutlich abgebremst). Der Strömungswiderstand des Verdampfers wird durch seine Geometrie und durch die Größe und Form der in ihm enthaltenen Wämetausch-Elemente beeinflusst. Bei der hier bevorzugten Auslegung ermöglichen die Zwischenräume zwischen den Kugeln eine gute Durchströmbarkeit des Verdampfers, die Konturen in Übergangsbereichen sind durch die Verwendung von Konus-Strukturen strömungstechnisch günstig und die Kugelform der Wärmetausch-Elemente trägt ebenfalls dazu bei, dass sich keine oder nur geringe Turbulenzen in der Strömung bilden. Dadurch kommt es im Verdampfer nur zu einer geringen Druckabsenkung des Treibmittels, der

Gasstrom wird also nur wenig verlangsamt. Dies ist in sofern von Vorteil, als dass eine hohe Geschwindigkeit des Treibmittels wesentlich für eine gute Dispersion des Pulvers ist.

Die Geschwindigkeit des Treibmittels bei Eintritt in die Pulverkavität (1 ) kann durch die Größe der Durchmesser der Zuführungskanäle beeinflusst, insbesondere gedrosselt werden. Im Fall der Testvorrichtung können verschiedene

Anschlussstücke (4) mit unterschiedlich breiten Zuführkanälen getestet werden. Bei den hier zugrunde liegenden Messergebnissen wurden Kanaldurchmesser im Bereich von 0,2 bis 2 Millimeter zwischen Verdampfer (6) und Pulverkavitat (1 ) getestet, wobei sich Durchmesser im Bereich von 1 bis 2 Millimeter als besonders geeignet erwiesen. Im Falle eines für Massenproduktion geeigneten Inhalators ist aus Kostengründen anzuraten, den Verdampfer (6) mit geeignet bemessenem Auslass (9c) direkt an die Pulverkavitat (1 ) anzuschließen.

Einerseits ist eine hohe Geschwindigkeit des Treibmittels bei Eintritt in die

Pulverkavitat (1 ) vorteilhaft in Bezug auf die Dispersion des Pulvers und somit für die Inhalierbarkeit der vom Zerstäuber ausgegebenen Aerosol partikel ist, andererseits ist es aber nicht wünschenswert, wenn der ganze

Zerstäubungsvorgang innerhalb eines kleinen Bruchteils einer Sekunde abgeschlossen ist. (gemäß Beobachtungen mit einer

Hochgeschwindigkeitskamera sprüht eine Treibgaskartusche mit einem 100 Mikroliter-Ventil ca. 50 bis 60 Millisekunden.) Dies würde es einem Patienten erschweren, sein Einatemverhalten mit der Erzeugung des einzuatmenden Aerosols zu koordinieren. Daher wurde hier ein Verfahren entwickelt, den

Zerstäubungsvorgang in mehrere kurze Zerstäubungsvorgänge aufzuteilen und diese in einem Zeitintervall zusammenzufassen, das in seiner Dauer einem Einatemzug eines Patienten entspricht. Ein Zeitintervall, das sich gut für eine solche Koordination eignet, hat die Größenordnung von 1 Sekunde. Durch die Zerlegung der Zerstäubung in mehrere gestaffelte Vorgänge kann die Aerosol- Ausgabe insgesamt verlangsamt werden, während das Treibmittel selbst mit der für die Dispersion des Pulvers so geeigneten hohen Geschwindigkeit in der Pulverkavität (1 ) eintrifft.

Im Folgenden werden hierzu verschiedene Aufbauten vorgestellt, die dazu geeignet sind, mehrere aufeinanderfolgende Treibmittel-Druckstöße (Pulse) abzugeben.

Das Flussbild in Fig. 4a zeigt eine Anordnung, in der Treibmittel aus einer Kartusche K gepulst einem Zerstäuber I zur Erzeugung des Aerosols A zugeführt wird. Das flüssige Treibmittel aus dem Dosierventil der Kartusche K wird zu einem hydraulischen Magnetventil V geleitet (beispielsweise ein handelsübliches 2/2- Wege-Flipper-Magnetventil). Das Magnetventil V öffnet und schließt sich im Bereich von Millisekunden und entlässt dabei eine über die Öffnungszeit definierte Menge Treibmittel in den am Zerstäuber I angeschlossenen Verdampfer oder Wärmetauscher WT. Mittels eines handelsüblichen Pulsgenerators G, der zur Steuerung des Magnetventils V verwendet wird, werden die Dauer der

Öffnungszeit, Anzahl und zeitlicher Abstand der Pulse eingestellt. In diesem Aufbau werden die Treibmittelstöße flüssig abgemessen. Ein Abmessen des bereits verdampften Treibmittels wäre theoretisch auch möglich, hat aber den Nachteil, dass bei jedem Puls das Restvolumen Gas und der daraus resultierende Druck kleiner werden.

Ein Volumen Vi von 100 Mikroliter flüssiges Treibmittel R134a besitzt bei

Raumtemperatur eine Dichte D von 1210 [kg/m 3 ]. Anhand der molare Masse M von 0,1024 [kg/mol] ergibt sich mit der Umformung gemäß eine

Stoffmenge n von 0,001 18 mol. Aus dem idealen Gasgesetz p=n * R * T/V 2 ergibt sich bei Raumtemperatur T, dem Normaldruck p und der idealen Gaskonstante R näherungsweise ein Volumen V 2 von ca. 28 Milliliter für die in den gasförmigen Zustand überführte Treibmitteldosis.

Für eine besonders gute Dispersion des Pulvers, auf das die Treibmittelpulse im Zerstäuber geleitet werden, ist es vorteilhaft, möglichst scharf begrenzte Pulse ohne große Geschwindigkeitsvariation im Treibmittel zu haben. Der Wechsel aus Abreißen der Strömung gefolgt von sehr schnellen Strömungsbeschleunigungen begünstigt die Dispersion, führt also zu einer besseren Lungengängigkeit der Aerosolpartikel bzw. zu einem höheren Feinanteil (FPD). Das Ventil zur

Erzeugung der Treibmittelpulse lässt sich also bevorzugt quasi sprungartig öffnen und schließen. Insbesondere ist das Ventil so gewählt, dass die Öffnungs- oder Schließbewegung wesentlich weniger Zeit in Anspruch nehmen als für die Verzögerung zwischen zwei Pulsen. Das hydrauliche Magnetventil mit

Ansteuerung durch einen Pulsgeber erwies sich hierfür als gut geeignet.

Vergleichsweise deutlich weniger geeignet war eine völlig andere Anordnung (nicht dargestellt), bei der versucht wurde, die Pulsung des Treibmittels in Form von verflüssigtem Gas aus einer Kartusche (5) durch Einleitung in rotierende Kavitäten von 7 bis 23 Mikroliter Volumen (nach Kartuschen- Dosierventil mit Volumen von 100 Mikroliter) und anschließende Abgabe des Treibmittels aus den Kavitäten in das Zerstäubersystem herzustellen. Durch die Verwendung von solchen rotierenden Kavitäten (vorgesehen zwischen Kartusche (5) und

Verdampfer (6), Drehung beispielsweise unterstützt durch einen Elektromotor) konnten bei Messungen zwar die Entleerung von Pulverkavitäten (1 ) ein wenig verbessert werden (Werteverbeserung um bis zu 10% hin zu größeren Drehzahlen im Messbereich zwischen 700 und 2000 Umdrehungen pro Minute und zu kleineren Volumina der Kavität); diese kleine Verbesserung bzgl. der

Pulverausbringung ging jedoch einher mit einer deutlichen Verschlechterung der Dispersion der auszubringenden Formulierung (um 30% geringerer inhalierbarer Wirkstoffanteil). Gründe für die schlechtere Dispergierung waren dabei vermutlich zum einen, dass durch die Anordnung die sich auf die Güte der Zerstäubung auswirkende Geschwindigkeit des Treibmittels abgebremst wurde, und zum anderen, dass die Vorrichtung zur Pulserzeugung wegen der Anforderung der Drehbarkeit nicht komplett gasdicht war und somit der Treibmittelstrom zwischen den Pulsen nie ganz abbrach (die mit dieser rotierenden Anordnung erzeugten Pulse stellten also lediglich eine Oszillation eines anhaltenden Treibmittelstromes da).

Bei Verwendung einer Magnetventil-Anordnung (gemäß Fig. 4a und Fig. 4b) können die Pulse jedoch bemessen werden, ohne dass es zu permanenten Restströmungen von Treibgas oder zu einer maßgeblichen Abbremsung des Treibgases selbst kommt. Für die im Rahmen dieser Entwicklung mit der

Magnetventil-Anordnung durchgeführten Messungen wurden zwischen zwei Pulsen bedingt durch die technischen Gegebenheiten des Magnetventils und seiner Ansteuerung mindestens 100 Millisekunden Verzögerung zwischen zwei Pulszeiten angesetzt. Unter der Maßgabe, die Zeit der Treibmittelausgabe auf nahezu eine ganze Sekunde zu strecken, wurde Treibmittel aus 100 Mikroliter- Dosierventilen bei Ventil-Öffnungszeiten von 7 bis 30 Millisekunden in 12 bis 5 Pulse zerlegt, Treibmittel aus 50-Mikroliter-Dosierventilen wurde bei 7

Millisekunden Ventil-Öffnungszeit in 5 Pulse zerlegt.

Fig. 4a zeigt einen analog zu Fig. 2 als Testvorrichtung ausgebildeten Zerstäuber mit einer Ansteuerung gemäß Fig. 4b. Die Kartusche (5) ist mit ihrem Ventilstamm (7) an einer entsprechenden Anschlussstelle einer Flanschplatte (14)

angeschlossen. Über einen Kanal in dieser Flanschplatte (14) wird das Treibmittel aus der Kartusche einem handelsüblichen Magnetventil (13) bzw. Magnetventil- Einheit zugeleitet. Der Übergang zwischen Flanschplatte und die Magnetventil- Einheit um die Zu- und Abflüsse kann bei geeigneter Materialwahl (z.B. zweier Kunststoffe) durch festes Anpressen von Flanschplatte (14) und Magnetventil- Einheit gegeneinander oder durch zusätzliches Einfügen von Dichtelemente zwischen Flanschplatte (14) und Magnetventil-Einheit abgedichtet werden.

Anschlusstelle und Kanal bis zum Magnetventil (13) sind so ausgelegt, dass ihr inneres Volumen die bei Betätigung des Ventils der Kartusche (5) abgegebene Menge Treibmittel aufnehmen kann, d.h. z.B. beträgt dieses innere Volumen mindestens 100 Mikroliter bei Verwendung eines 100-Mikroliter-Dosierventils in der Kartusche (5). Somit liegt dann nach Auslösung des Dosierventils die gesamte, für eine Dosisausbringung vorgesehene Treibmittelmenge direkt am Magnetventil (13) an. Darüber hinaus sind die Kanäle in der Flanschplatte (14) insgesamt jedoch so klein und kurz bemessen, dass das Totvolumen darin möglichst gering gehalten wird. Durch geeignete Einstellungen am angeschlossenen Pulsgenerator wird die in der Flanschplatte (14) eingebrachte Treibmittelmenge dann portionsweise durch das Magnetventil (13) durchgelassen, so dass die erfindungsgemäßen

Treibmittelpulse entstehen. Je kürzer die Öffnungszeiten des Magnetventils (13) sind, umso kleinere Volumina des Treibmittels werden abgetrennt bzw. portioniert und umso mehr Treibmittelpulse werden erzeugt. Bei den hier zugrunde liegenden Messungen wurde beispielsweise mit Öffnungszeiten ti im Bereich von 7 bis 40 Millisekunden und Verschlusszeiten t 2 im Bereich von 100 bis 200 Millisekunden gearbeitet. Das beigefügte Diagramm in Fig. 4d zeigt die Abhängigkeit der

Ausbringung aus einer mit 50mg der Formulierung mit 32,5% Wirkstoff befüllten Pulverkavität als Extrapolation aus den entsprechenden Messergebnissen.

Hiernach ergäbe sich eine besonders gute Ausbringung des Pulvers bei

Öffnungszeiten ti im Bereich zwischen 13 und 24 Millisekunden, insbesondere bei höheren Verschlusszeiten t 2 , insbesondere bei Verschlusszeiten t 2 oberhalb von 160 Millisekunden. Insgesamt nimmt jedoch der Einfluss der Verschlusszeit t 2 tendenziell zu kleineren Öffnungszeiten ti hin zu (gerade kurzen Pulsen wirken also bzgl. der Ausbringung der des Pulvers aus der Kavität vermutlich am effektivsten, wenn alle durch die einzelnen Pulse in der Kavität erzeugten

Strömungen zwischen den Pulsen komplett zum Erliegen gekommen sind). An diesem Diagramm ist auch zu sehen, wie stark die Pulsung des Treibmittels die Ausbringung des Pulvers aus der Pulverkavität (1 ) verbessern kann:

Vergleichsmessung ergaben für die gleiche Kavität (wannenförmige Kavität gemäß Fig. 7a von 3 Millimeter Tiefe), bei gleicher Befüllung und gleicher verwendeter Düse (0,5 Millimeter Durchmesser des Düsenkanals (3a)), dass die Verwendung der Treibmittelpulsung die Entleerung der Kavität von etwa 66% (ohne Pulsung) auf 86% erhöhen kann.

Die vergleichsweise höchsten Feinanteilswerte für die ausgebrachte Dosis wurden allerdings mit den kleinsten Öffnungszeiten ti von 7 oder 10 Millisekunden, wobei der Feinanteil zudem anscheinend kaum von der Verschlusszeit t 2 abhängt. Aus diesem Grund und weil es wegen der besseren Koordination eines

Einatemvorgangs mit der Pulssequenz wünschenswert ist, die gesamte Sequenz nicht länger als 1 Sekunde werden zu lassen ist die Verwendung von

Öffnungszeiten ti im Bereich von lediglich 7 Millisekunden und Verschlusszeiten t 2 von etwa lediglich 100 Millisekunden gut für die Anwendung des Zerstäubers als Inhalator geeignet.

Der Auslass der Magnetventil-Einheit ist wiederum mit einem anderen Kanal in der Flanschplatte (14) verbunden und dieser weitere Kanal führt zu einem Auslass, der so gestaltet ist, dass geradewegs der Verdampfer (6) an ihn angeschlossen werden kann. Bevorzugt ist der Auslass an der Flanschplatte (14) hierzu als Deckel (8) zum Verdampfer (6) gestaltet, so dass der Körper (9) des Verdampfers (6) direkt an die Flanschplatte (14) angeschlossen werden kann. Dies trägt zu einer kurzen Auslegung der Kanalwege zwischen Magnetventil (13) und

Verdampfer (6) und somit zu einer Reduzierung möglicher Totvolumina bei. In seiner Ausgestaltung als Deckel (8) des Verdampfers (6) weist der Auslass an der Flanschplatte (14) einen Vorsprung mit zentraler Kanal-Öffnung auf, wobei dieser Vorsprung geradewegs oben in den Körper (8) des Verdampfers (6) passt. Für das Ausführungsbeispiel eines radial symmetrischen Verdampfers (6) gemäß Fig. 3a und 3b bedeutet dies, dass der Auslass an der Flanschplatte (14) als außen zylindrischer Vorsprung gestaltet ist. Im Innern weist dieser Auslass vorzugsweise einen Innenkonus (8d) auf, durch den das zum Verdampfer (6) geleitete

Treibmittel möglichst weit über die Wärmetauschelemnete bzw. die Kugeln (1 1 ) des Verdampfers (6) verteilt wird. Im Falle des Aufbaus als Testvorrichtung, kann der Auslass der Flanschplatte (14) alternativ auch die Form eines Ventilstammes (7) haben, der zu Vergleichszwecken an beliebige Module der Testvorrichtung angeschlossen werden kann. Bei so einer Gestaltung könnte die Verwendung des ursprünglichen Deckels (8) des Verdampfers (9) natürlich nicht entfallen, sondern der Deckel (8) würde als Verbindungselement gebraucht.

Bevorzugt ist die Flanschplatte (14) aus einem gegenüber dem Treibmittel resistenten Kunststoff gefertigt, beispielsweise aus PEEK (Polyetheretherketon). Insbesondere sollte die Anschlussplatte (14) nicht aus Metall sein, damit das Treibmittel so wenig wie möglich vor Eintritt in den Verdampfer (6) verdampft bzw. in flüssiger Phase das Magnetventil (13) durchläuft.

Fig. 4c zeigt ein Flussbild zu den Abläufen eines mit Treibgas unterstützten Zerstäubers. Alternativ zur Anbringung einer mit Treibmittel in flüssiger Form gefüllten Kartusche (5) wird in dieser Ausführungsform ein Zerstäuber mit gasförmigem Treibmittel betrieben. Prinzipiell kann gasförmiges Treibmittel wie Druckluft oder Stickstoff direkt in eine Pulverkavität geleitet werden, da es keine flüssigen Bestandteile enthält. Das Einsetzen eines Verdampfers ist dann nicht nötig. In der Regel sind Anordnungen mit angeschlossenen Druckgasleitungen und/oder angeschlossenen Gasflaschen allerdings so umfangreich, dass sie sich nur für den Einsatz als Standgerät z.B. in einem Labor nicht aber für portable Handgeräte eignen. Dieses System ist beispielsweise insbesondere für die Durchführung von Versuchen zum Einfluss der Variation von Faktoren wie

Pulsanzahl, Verschlusszeit und Druck geeignet.

In Fig. 4c ist schematisch skizziert, wie ein Treibgas aus einer Quelle Q

(beispielsweise eine laborübliche Stickstoff- oder Druckluftleitung oder eine Gasflasche) über einen Druckregler R(p) und einen Strömungsregler R(F) zu einem pneumatischen Magnetventil V geleitet werden. Mit dem Strömungsregler R(F) wird auch bei unterschiedlichen vorgegebenen Drücken eine Strömung konstanter Stärke eingestellt. Der Luftstrom wird dabei mit einem handelsüblichen Flussmessgerät gemessen. Das darauf folgende Magnetventil V öffnet und schließt sich im Bereich von Millisekunden und entlässt dabei eine über die Öffnungszeit definierte Menge Stickstoff in den Zerstäuber I, aus dem folglich das Aerosol A abgegeben wird. Mittels eines Pulsgenerators G, der zur Steuerung des Magnetventils V verwendet wird, werden die Dauer der Öffnungszeit, Anzahl und zeitlicher Abstand der Pulse eingestellt.

Bei geöffnetem Magnetventil V der Anordnung gemäß Fig. 4a treten 100 Mikroliter flüssiges Treibmittel aus einer Kartusche in ca. 50-60 Millisekunden aus (belegt durch Aufnahmen mit einer Hochgeschwindigkeitskamera). Zur besseren

Vergleichbarkeit von Messergebnissen kann man auch bei Verwendung einer Quelle Q das gleiche Gasvolumen wie bei einem Kartuschen-Treibgasstoß mit 100 Mikrolitern pro Auslösung und mittels Pulsen eine auf bis zu 1 Sekunde verlängerte Sprühzeit nachstellen und hat dabei z.B. folgende Möglichkeiten, die Pulsstöße für das zuvor berechnete Treibmittelvolumen von 28 Millilitern einzustellen:

Für die im Rahmen dieser Entwicklung durchgeführten Messungen wurden zwischen zwei Pulsen bevorzugt mindestens 50 Millisekunden Verzögerung angesetzt, d.h. eine Verschlusszeit t 2 von 50 Millisekunden zwischen zwei Öffnungszeiten ti des Ventils. Bei den Messungen wurde die Zahl der Pulse im Bereich von 1 bis 16 und die Verschlusszeit t 2 im Bereich von 50 bis 400

Millisekunden variiert. Dabei zeigte sich ein Trend zur besseren Entleerung der Pulverkavitat (1 ) mit steigender Anzahl der Pulse (hier verbunden mit kürzeren Öffnungszeiten) und wachsender Verschlusszeit zwischen den Pulsen. Gute Ergebnisse hinsichtlich der Ausbringung von Pulver aus der Pulverkavitat ergaben sich entsprechend bei jeweils mittlerer Einstellung - extrapoliert insbesondere für den Bereich von 7-10 Pulsen bei 200 bis 100 Millisekunden Verzögerung. Diese Pulszahl entspricht bezogen auf die anhand von Fig. 4a vorgestellte Anordnung Öffnungszeiten ti von 5 bis 7 Millisekunden. Versuche mit Druckvariationen des Treibgases im Bereich zwischen 2 und 6 bar und Variationen der Pulszahlen im Bereich von 1 bis 16 zeigten anhand einer Pulverkavitat (1 ) mit 0,19 Milliliter Innenvolumen (entsprechend 45 Milligramm Laktose oder 50 Milligramm der Laktose-basierten Formulierung mit 32,5%

Wirkstoff), dass sich sowohl die Ausbringung des Pulvers aus der Pulverkavitat (1 ) als auch der Feinanteil der ausgebrachten Partikel mit steigendem Druck erhöht. Der Effekt des Drucks insbesondere auf den Feinanteil nimmt dabei zunächst bei steigender Anzahl der Pulse zu. Für den Bereich einer Pulszahl von 7-14

(entsprechen Öffnungszeiten von 7 bis 4 Millisekunden) zeigten die

Versuchsergebnisse bei höheren Drücken die höchsten Werte. In diesem

Pulsbereich konnten vermutlich in der Pulverkavitat Druckspitzen ankommenden, die besonders günstig für die Deagglomeration der Partikel sind. Bei größeren Pulszahlen scheint der Einfluss des Drucks wieder abzunehmen (vermutlich sind dann die Ventilöffnungszeiten zu kurz, als dass die volle Druckhöhe von vor dem Ventil sich hinter dem Ventil wieder aufbauen kann).

Insgesamt zeigten die Aerosolmessergebnisse, die unter Verwendung der vorgestellten Zerstäuber-Vorrichtungen mit gepulster Treibmittelzuführung erzielt wurden, dass durch die Verwendung einer hohen Anzahl von Pulsen und lange Verzögerungszeiten zwischen den Pulsen die Wirkstoffausbringung und der Feinanteil der ausgebrachten Dosis erhöht werden kann. Vergleichsmessungen zeigten eine Erhöhung des Feinanteils auf einen Wert entsprechend etwa 130% des mit einer entsprechenden Vorrichtung ohne Magnetventil erzeugten Wertes. Insgesamt konnten bei den dieser Schrift zugrunde liegenden Messungen bei Verwendung von sowohl Magnetventil (13) zur Treibmittelpulsung als auch

Verdampfer (6) sehr hohe Mengen an pulverförmigen Formulierungen aus

Pulverkavitäten (1 ) ausgebracht werden: So war es beispielsweise möglich, von 75 Milligramm einer Pulvermischung mit 98% Fenoterol 16,5 Milligramm Fenotorol tatsächlich als Feinanteil zu gewinnen (bei einer Entleerung der Pulverkavität (1 ) von 92,5%, bei einer angelegten Flussrate von 30 Litern pro Minute). Bei

Verwendung einer solchen Treibmittel-getriebenen Vorrichtung mit Verdampfer und Magnetventil schien im Rahmen der hier durchgeführten Messungen die Stärke der am Mundstück des Zerstäubers angelegten Flussrate keinen

signifikanten Einfluss auf den Feinanteil des ausgebrachten Dosis mehr zu haben (geteste Flussraten variierten im Bereich von 30 bis 90 Litern pro Minute).

In Fig. 5a, b und c sind verschiedene Kanalstrukturen zu sehen, die jeweils einen mikrofluidischen Oszillator (15) bilden, wie er insbesondere alternativ zum anhand von Fig. 4 beschriebenen Magnetventil (13) in die Treibmittelzuführung eines Geräts zur Zerstäubung eingefügt werden kann. Vorzugsweise befindet sich dieser mikrofluidische Oszillator (15) im Strömungsverlauf ebenfalls zwischen der mit Treibmittel bzw. flüssigem Treibgas befüllten Kartusche (5) mit Dosierventil und dem der Einleitung in die Pulverkavität (1 ) vorgeschalteten Verdampfer (6).

Der Strömungsverlauf in Fig. 5 a-d ist von oben nach unten abgebildet. In einer Einbausituation wird der Ausgang des Dosierventils der Kartusche (5) an den Einlasskanal (15a) der Kanalstruktur angeschlossen. In den Ausführungsformen des mikrofluidischen Oszillators (15) nach Fig. 5a, 5b und 5c gabelt sich der Einlasskanal (15a) an einer Gabelung in zwei Teilkanäle (15b) auf. Die Gabelung ist dabei bevorzugt so gestaltet, dass sich die Flüssigkeit möglichst reibungsarm an die (auf die Kanalstruktur insgesamt bezogen) jeweils inneren Wände (15c) der Teilkanäle (15b) anschmiegen kann. Der Beginn der Gabelung kann hierzu beispielsweise V-Förmig (wie in Fig. 5a, 5b und 5c zu sehen) oder

kreisbogenförmig ausgelegt sein, insbesondere ist die Gabelung dabei

symmetrisch zu der durch den Einlasskanal (15a) gebildeten Achse ausgebildet. Die gesamte Kanalstruktur weist bevorzugt eine Spiegelsymmetrie um die durch den Einlasskanal (15a) gebildete Achse auf. Im weiteren Verlauf krümmen sich die Teilkanäle (15b) nach innen und münden in einen Mischbereich (15d) ein. Dabei werden sie entsprechend des Coanda-Effekts bevorzugt immer an der jeweils inneren Wand entlang geführt. Bevorzugt wird die Strömung zusätzlich nach Eintritt in den Mischbereich (15d) von den entsprechenden Innenwänden (durch geeignet gewählte Krümmungen der Wände) zumindest ein Stückchen entgegen der insgesamt durch Ein- und Auslass der Kanalstruktur vorgegebenen

Hauptströmungsrichtung umgelenkt. In der in Fig. 5a gezeigten Ausführungsform werden die Flüssigkeitsströmungen unter Umständen bis zum oberen Rand des Mischbereichs (15d) zurückgeführt, wo die Strömungen aus den beiden

Teilkanälen (15b) dann spätestens wieder aufeinander treffen. In der

Ausführungsform nach Fig. 5b und 5c werden die Fluidstrahlen aus den beiden Teilkanälen (15b) durch Vorsprünge (15e), die sich an die jeweiligen Strömungsführungsabschnitte der Wand des Mischbereichs anschließen, mitten in den Mischbereich (15d) aufeinander zu geleitet. Ziel dieser Umlenkungen ist es, möglichst viele Wirbel im Mischbereich (15d) zu erzeugen. Durch diese Wirbel kommt der Abfluss des Fluids durch die Öffnung des Auslasses (15f) aus dem Mischbereich (15d), der hier auch als Oszillationskammer bezeichnet werden kann, immer ins Stocken, wobei abwechselnd den jeweiligen Strömungen aus den beiden Teilkanälen (15b) der Vorrang gegeben wird, worauf es dazwischen auch zum Abbrechen der Strömung kommt. Dieses Verhalten war in

Strömungssimulationen gut zu erkennen. Durch den Betrieb mit verflüssigtem Treibgas wird das„Stocken" durch Gasblasenbildung im Mischbereich (15d) verstärkt. Bei den Verwirbelungen entstehen im Mischbereich (15d) Stellen mit unterschiedlichen Dichten im Fluid, so dass es zu Siedeverzügen und

Gasblasenbildung kommt. Diese Gasblasen tragen dann ihrerseits noch zu einem schubartigen Austrieb des Fluids aus dem Mischbereich (15d) bei.

Optional (aber nicht notwendigerweise) kann anfangs in dem an den Auslass (15f) angeschlossenen Kanal noch ein Strömungsteiler vorgesehen sein, der gemäß dem Coanda-Effekt abwechselnd mal eine Strömung nach links für die Strömung aus dem ursprünglich rechten Teilkanal (15b) und mal eine Strömung nach rechts für die Strömung aus dem ursprünglich linken teilkanal (15b) begünstigt.

Fig. 5d zeigt einen alternativen mikrofluidischen Oszillator (15). In diesem

Ausführungsbeispiel führt der Einlasskanal (15a) auf eine Erweiterung, in die von den Seiten ein Steuerungs- oder Lüftungskanal (15v) einmünden kann. An den Erweiterungsbereich schließt sich eine Kanalgabelung an, wobei diese Gabelung in einen Teilkanal (15b) und einen Auslass (15f) aufgeht. Der Teilkanal (15b) ist dabei so gestaltet, dass er das durch ihn gelangende Fluid wieder seitlich in den Erweiterungsbereich (sozusagen als Zuführungskanal) zurückführt. Der

Erweiterungsbereich kann somit auch als Mischbereich (15d) bezeichnet werden. Die Symmetrie von Einlasskanal (15a) und Gabelung ist wie in den beiden vorherigen Ausführungsbeispielen wiederum so, dass gemäß dem Coanda-Effekt eine Strömung in beide Zweige der Gabel gleichermaßen begünstigt sind. Durch ein Druckgefälle, das beispielsweise seitlich über einen Lüftungskanal (15v) anliegt, kann die Strömung beeinflusst werden beispielsweise zunächst in den Teilkanal (15b) zu strömen. Das erneute Austreten dieses Fluidstrahls als

Zuführung in den Erweiterungsbereich kann dann die Vorzugsrichtung des Strahls in Richtung Auslass (15f) lenken, so dass kurzzeitig Fluid das Bauteil verlässt, aber verursacht durch den Lüftungskanal kann die Vorzugsrichtung wieder in Richtung Teilkanal (15b) umschlagen, so dass sich ein oszillierendes System ergibt.

Über die Darstellungen von mikrofluidischen Bauteilen in Fig. 5a-d hinaus ist es auch möglich, Kanalstrukturen mit mikrofluidischem Oszillator vorzusehen, die beispielsweise am Auslass des Mischbereichs so ausgelegt sind, dass es zur Verdampfung des bis dahin noch nicht gasförmigen Anteil des Treibmittels kommt, so dass ein sich als zusätzliches Bauteil im Strömungsverlauf anschließender Verdampfer (6) entfallen kann, oder direkt in der die Kanalstruktur bildenden Einheit mit ausgebildet ist.

Möglichkeiten, die geschilderten Kanalstrukturen zu fertigen, bieten sich

beispeilsweise durch Silizium-Ätztechniken, LIGA-Verfahren oder durch sonstige Verfahren zur Erzeugung von Mikrostrukturen, insbesondere mikrofluidischen Systemen. Abgestimmt auf solche Herstellungsverfahren ist die hier dargestellte Kanalstruktur vorzugsweise zweidimensional, d.h. sie besteht bevorzugt aus einer Platte, in der die Kanäle beispielsweise mit rechteckigem Querschnitt ausgebildet sind, wobei ein Deckel auf der Platte fixiert ist und so die Kanäle längsseitig verschließt.

In Fig. 1 a ist zu sehen, wie ein Zuführkanal im Anschlussstück (4) geradewegs zur die Pulverkavität (1 ) führt und wie der Düsenkanal der Düse (3), die anhand von Fig. 6 a-c später genauer beschrieben wird, direkt von der Pulverkavität (1 ) abgeht. Für diese Anordnung bevorzugte Pulverkavitäts-Formen werden in Fig. 7a und in Fig. 7b und Fig. 7c gezeigt. Fig. 7a zeigt einen speziell für die Verwendung in einer Testvorrichtung entsprechend Fig. 2 aufgebauten Träger (1 t), der die Pulverkavität (1 ) beinhaltet. Insbesondere für die Verwendung in einer in einer Testvorrichtung besteht der Träger (1 t) oder zumindest der Bereich, der die Pulverkavität (1 ) bildet, vorzugsweise aus einem durchsichtigen Material wie beispielsweise PMMA, so dass die Entleerung der Pulverkavität (1 ) während der Zerstäubung bzw. während der Zuleitung von Treibmittel beispielsweise mit einer Kamera beobachtet werden kann. Die Pulverkavität (1 ) weist einen - hier in der Abbildung - wannenförmigen Napf (1 a) für die Aufnahme der medizinischen Formulierung bzw. des Pulvers auf. Die Öffnung des Napfs (1 a) ist an der

Oberseite des Trägers (1 t) von einer Dichtungsnut (1 b) umgeben, in die ein Dichtungsmaterial wie beispielsweise ein vorzugsweiser elastomerer O-Ring eingelegt wird, der beim Zusammenbau von Träger (1 t) und Anaschlussstück (4) das Innere der Pulverkavität (1 ) im Bereich zwischen Träger (1 t) und

Anschlussstück (4) umlaufend abdichtet. Die Öffnung des Napf s (1 a) in Fig. 7a weist einen nahezu rechteckigen Querschnitt mit abgerundeten Ecken oder einen ovalen Querschnitt (nicht dargestellt) auf. Seine Länge ist in Strömungsrichtung größer als seine Breite, vorzugsweise ist er etwa doppelt so lang wie breit. Der Boden ist vorzugsweise abgerundet und/oder in den Wandbereichen zylindrisch gewölbt, so dass die Pulverkavität (1 ) im Napf (1 a) keine Ecken aufweist, in denen sich Pulver festsetzen könnte. Bei Messungen mit der zuvor beschriebenen Testvorrichtung wurden hinsichtlich ihrer Tiefe verschieden große Näpfe (1 a) verwendet: Bei gleichen Öffnungsquerschnitten wurden angepasst auf die jeweils für die Zerstäubung bereitgestellten Pulvermengen pro Pulverkavität (1 ),

Napftiefen von 1 , 2, 3 und 4 Millimetern getestet. In die entsprechenden Näpfe (1 a) passten jeweils 15, 30, 45 und 70 Milligramm Laktose (bei beispielsweise 190 Mikroliter Volumen für den 3 Millimeter tiefen Napf (1 a)). Bei den Testmessungen ergab sich ein besseres Entleerungsverhalten zu flacheren Näpfen (1 a) hin: Bei Befüllung mit Laktose konnten für die Tiefen von 1 , 2, 3 Millimeter ohne Pulsung des Treibmittels Entleerungsgrade von bis zu 85%, 80% und 70% erzielt werden. Im zusammengebauten Zustand mündet ein Zuführkanal aus dem Anschlussstück (4) in der Nähe eines Endes des wannenförmigen Napfes (1 a) und der

Düsenkanal (3a) schließt sich in der Nähe des anderen Endes des Napfes (1 a) an. Fig. 7b und Fig. 7c zeigen eine alternative, bevorzugte Ausführungsform der Pulverkavität (1 ). Diese Ausführungsform weist in vielen Dingen die gleichen Merkmale (inklusive ihrer Anschlüsse) wie die anhand von Fig. 7a beschriebene Ausführungsform auf, doch weicht sie insofern davon ab, als dass der Napf (1 a) nur noch in Querrichtung und nicht mehr in Längsrichtung symmetrisch ist. Die Pulverkavität (1 ) weist eine so genannte Tropfenform auf. Der„Bauch" des

Tropfens befindet sich dabei in der Nähe des Zuführungskanals und das schmale Ende auf der Seite, wo sich der Düsenkanal (3a) anschließt. Vorzugsweise weist nicht nur die Öffnung des Napfs (1 a), sondern auch sein Boden die Tropfenform auf. Besonders bevorzugt weist der Boden des Napfes (1 a) einen ein wenig aus der Längsmitte in Strömungsrichtung verschobenen Tiefpunkt auf, der optional als kleine Abflachung (1 d) gestaltet ist, und an diesen Tiefpunkt schließt sich in Strömungsrichtung eine Schräge (1 c) an. Diese Schräge (1 c) verläuft dabei steiler als der Bodenverlauf des Napfes (1 a) in Strömungsrichtung gesehen vor dem Tiefpunkt war. Auf diese Weise wird die Strömung bereits im Napf (1 a) auf den sich anschließenden Düsenkanal (3a) ausgerichtet: Durch das spitze Zulaufen der Tropfenform wird die Pulverbeladene Strömung einerseits in ihrem Querschnitt dem Eingangsquerschnitt am Düsenkanal (3a) angenähert und andererseits durch die Schräge gezielter in die Richtung des Düsenkanals (3a) geschickt.

Vorzugsweise bildet die Schräge (1 c) hierbei in Relation zur Oberfläche des Trägers (1t) den gleichen Winkel wie die Achse des angeschlossenen Düsenkanal (3a), bzw. vorzugsweise setzt sich die Richtung der Schräge (1 c) in der des Düsenkanals (3a) fort. Bei Testmessungen mit Laktose zeigten solche

tropfenförmigen Pulverkavitäten (1 ) höhere Entleerungsgrade als die

vergleichsweise linearen, wannenförmigen Pulverkavitäten (1 ) (wie sie anhand von Fig. 7a beschrieben wurden). Für bis zu 3 mm tiefe, tropfenförmige

Pulverkavitäten (1 ) wurden bereits selbst ohne Pulsung der Treibmittelstöße Entleerungsgrade zwischen 95% und 100% erzielt (beispielsweise 99,4% gemessen mit Düsenquerschnitten von 50 Millimetern). Dabei wurden in der Regel Näpfe (1 a) mit einer Tiefe von 3 Millimetern an der Abflachung (1 d) und einem inneren Volumen von 50 Mikrolitern (entsprechen der Aufnahme von 21

Milligramm Laktose) verwendet. Angepasst an die jeweils für die Zerstäubung vorgesehene Pulvermenge, können die Tiefen der tropfenförmigen Näpfe (1 a) analog zu denen der wannenförmigen Näpfe (1 a) beispielsweise im Bereich zwischen 1 und 5 Millimeter Tiefe oder mehr verändert werden, nehmen aufgrund ihrer speziellen Geometrie jedoch bei gleicher maximaler Tiefe weniger Pulver als die wannenförmigen Näpfe (1 a) auf.

Fig. 6b und Fig. 6c zeigen die Düse (3) im Detail. Sie weist einen zentralen

Düsenkanal (3a) auf, der sich zu Beginn in einen Einlasskonus (3b) mit einem Einlasswinkel α und zum Ende hin in einen Auslasskonus (3c) mit Auslasswinkel ß öffnet, α und ß betragen bevorzugt beide 5°, aber auch andere, von einander abweichende Winkelgrößen sind möglich. Zwischen diesen beiden Konussen weist der Düsenkanal (3a) einen so genannten zylindrischen Bereich auf, in dem der Querschnitt über eine definierte Länge (31) konstant ist.

Die Anschlussseite (3g) mit der die Düse (3) in der dargestellten Ausführungsform der Testvorrichtung an die Pulverkavitat (1 ) angelegt wird, ist entsprechend der Geometrien des Anschlussstücks (4) gegenüber der durch den Düsenkanal (3a) gebildeten Achse abgewinkelt, hier vorzugsweise um 45°. Bei diesem Winkel trifft zuvor auch das Treibmittel in einem 45° Winkel auf die Pulverkavitat (1 ) aber auch andere insbesondere flachere Winkel sind möglich. Vorteilhaft ist es, hierbei den Abgang des Düsenkanals (3a) von der Pulverkavitat (1 ) spiegelbildlich im gleichen Winkel wie die Zuleitung des Treibmittels auszulegen. Diese spiegelbildliche Auslegung ist hier abgestimmt auf die an die Pulverkavitat (1 ) angeschlossene Düse (3) und ihren speziellen geradlinigen Aufbau. Bei der Wahl einer anderen Düse (3) wie beispielsweise einer Wirbeldüse oder einer Düse, deren Funktion eine vorangegangene Wirbelkammer bedingt, liegt diese geradlinige Anordnung unter Umständen nicht vor. Bei Verwendung einer Düse mit Wirbelkammer (nicht in den Abbildungen dargestellt) ist es abweichend von dem oben Gesagten zweckdienlich, wenn die Pulverkavität (1 ) selbst eine Wirbelkammer bildet, also z.B. einen kreisförmigen Durchmesser, vorzugsweise mit flachem Boden hat und der Treibmittelstrom nahe des Randes der Pulverkavität (1 ) eintrifft. Der Auslass der Düse liegt dann mittig über der Pulverkavität (1 ). Versuche mit solchen Wirbelkammern wurden auf diese Weise ebenfalls mit der hier geschilderten Testvorrichtung durchgeführt, lieferten aber bei den hier gemessenen

vergleichweise großen Pulvermengen aufgrund von hohen Rückständen in den Pulverkavitäten schlechtere Zerstäubungsergebnisse (lediglich Entleerungsgrade von 60%) als die anhand von Fig. 6 detaillierter beschriebenen

Düsenanordnungen in Verbindung mit den anhand von Fig. 7 beschriebenen Pulverkavitäten (1 ).

Nach Austritt aus der Düse (3) wird das Pulver von Luftströmung im Mundstück (2) mitgerissen. Bei Labormessungen mit der Testvorrichtung wird dieser Luftstrom, der beim Inhalator durch Einatmung des Patienten erzeugt wird, durch ein System zur Strömungserzeugung nachgestellt. In beiden Fällen kommt eine Luftströmung im Mundstück (2) durch einen Luftsog am Ende des Mundstück (2) dadurch zustande, dass Luft an einer entgegen gesetzten Stelle in das Mundstück (2) oder in das Gerät durch mindestens eine Einlassöffnung (2b) eintreten kann. Bevorzugt weist der Inhalator bzw. die Testvorrichtung im Bereich von Düse (3) und

Mundstück (2) ein oder mehrere mit Einlassöffnungen (2b) verbundene Kanäle auf, die so im Mundstück (2) einmünden, dass die durch die Kanäle strömende Luft den aus der Düse (3) austretenden Treibmittelstrom einhüllt und so die Bestandteile in besonders geeigneter weise mitnimmt. Insbesondere bilden diese Kanäle einen Bypass zur Düse. Der aerodynamische Durchmesser dieses

Bypasses - insbesondere an dessen engster Stelle - bestimmt hierbei den Einatemwiderstand, den ein Patienten beim Inhalieren aus einem analog aufgebauten Inhalator verspürt.

Mit der Testvorrichtung wurden Messungen durchgeführt, in denen ein Luftsog mit Flussraten von 30, 60 und 90 Liter pro Minute am Mundstück (2) angelegt und somit ein unterschiedliches Einatemverhalten von Patienten nachgestellt wurde. (30 Liter pro Minute gelten hierbei gemäß der Anweisungen im Europäischen Arzneibuch für die aerodynamische Beurteilung von Dosieraerosolen, 90 Liter pro Minute entsprechen einem Unterdruck von 4 Kilopascal bei einem passiven Pulverinhalator.) Die FPD-Ergebnisse belegten, dass für dieses

Zerstäubungskonzept (Ausbringung von trockenem Pulver durch einen länglichen, geradlinigen Düsenkanal mittels in einem Verdampfer getrocknetem Treibmittel) keine nennenswerte Abhängigkeit der Zerstäubung vom Einatemverhalten besteht (auch bereits ohne Pulsung des Treibmittels). Bezogen auf die insgesamt aus dem Zerstäuber ausgebrachte Wirkstoffmenge wurden bei der Flussrate von 30 Litern pro Minute etwas stärkere Ablagerungen im Eingangsbereich des

angeschlossenen Messgeräts festgestellt (dieser Eingangsbereich korrespondiert unter Einschränkungen mit dem Mund- und Rachenraum eines Patienten, wenn man diese Messergebnisse auf die Anwendung eines Inhalators überträgt). Bei den Flussraten von 60 und 90 Litern pro Minute zeigte das Zerstäubungsverhalten hinsichtlich der insgesamt ausgebrachten Wirkstoffmenge keinen signifikanten Unterschied. Diese höheren Flussraten sind offensichtlich besser geeignet, auch die größeren Partikel des Aerosols mitzureißen. Insgesamt zeigen die

Zerstäubungsdaten für das hier vorgestellte Konzept eine deutlich geringere Flussraten-Abhängigkeit als die meisten kommerziell erhältlichen

Pulverinhalatoren. Bevorzugt ist, wie auch in Fig. 6a zu sehen, die Düse (3) bzw. das sie bildende Modul in eine Durchführung (2a) am Mundstück (2) eingeschoben und die Kanäle befinden sich zwischen dem Modul, das die Düse (3) bildet, und einer inneren Wand des Mundstücks (2). Besonders bevorzugt sind Düse und Mundstück im Wesentlichen radialsymmetrisch gestaltet und so zueinander angeordnet, dass ein im Wesentlichen ringförmiger Kanal (der allenfalls durch Halterungselemente zwischen Düse (3) und Mundstück (2) unterbrochen ist) zwischen Düse (3) und Mundstück (2) vorliegt. Optional verjüngt sich die Ringstärke des Kanals zur Einlassöffnung (2b) hin. Dies wird bei einer nicht dargestellten Ausführungsform noch verstärkt, in der die Düse ebenfalls außen eine Konusform aufweist, wobei die Konusneigung der Düse (3) entgegengesetzt zur Konusneigung der

Durchführung (2a) am Mundstück (2) ausgebildet ist (d.h. die breiteste Stelle des die Düse (3) bildenden Bauteils sitzt an der schmälsten Stelle der Durchführung (2a)). Bevorzugt hat die Durchführung (2a) am Mundstück (2) eine Konusform, wobei sie sich insbesondere mit einem Winkel von 0° bis 35° und besonders bevorzugt mit einem Winkel von 0° bis 15° wie beispielsweise 5° zu dem Ende des Mundstücks (2) hin öffnet, an dem bei Verwendung bzw. im Betrieb der Sog angelegt wird. Messungen des Feinanteils (FPD) ergaben, dass sich der

Feinanteil bei Verwendung der kleineren Konuswinkeln im Mundstück (im

Vergleich zur Verwendung der größeren) erhöht, d.h. das die Lungengängigkeit der zerstäubten Partikel besser wird.

Bevorzugt ist die Öffnung des Mundrohrs (2) an der Stelle des Auslass der Düse deutlich größer als die Öffnung des Düsen-Auslasses, bevorzugt mindestens 5 mal so groß bezogen auf die Durchmesser. Dies begünstigt die Aerodynamik im Mundrohr.

Bevorzugt ist das Mundstück (2) an besagtem Ende länger als die eingeschobene Düse (3). Bei variierenden Längen (21) des Mundstücks (2) von insgesamt 15 bis 120 Millimetern wurde (bei festgehaltener kürzerer Länge der Düse (3) von vorzugsweise maximal 15 Millimetern) festgestellt, dass bei den kürzeren

Mundstücken zwar geringere Formulierungs-Ablagerungen an der Wand der Durchführung (2a) auftraten, dafür jedoch bei den längeren Mundstücken die Zerstäubungswolke eine bessere Aerodynamik aufwies. Bei den längeren

Mundstücken (2) (insbesondere bei denen mit einer Länge (21) von 120

Millimetern) zeigten Messungen eine Erhöhung des Feinanteils (FPD). Vermutlich kommt es durch die Strömung im Mundrohr zu einem günstigen Abbremsen der durch das Treibgas beschleunigten Partikel, so dass sich bei Anwendung eines solchen Zerstäubers die mögliche Deposition dieser Partikel in der Lunge des Patienten erhöht.

Bei diesen beiden gegenläufigen Effekten (Bildung von Ablagerungen innen im Mundstück (2) und Erhöhung des Feinanteils im Aerosol) ergibt sich ein bevorzugter Längenbereich für das Mundstück (2), nämlich 30 bis 90 Millimeter, besonders bevorzugt 60 bis 90 Millimeter, oder einen Überstand des Mundstücks (2) gegenüber dem Ende der Düse (3) von 20 bis 70 Millimeter, besonders bevorzugt von 40 Millimeter. Die Düse (3) wird im Ausführungsbeispiel der Testvorrichtung so ins

Anschlussstück (4) eingesetzt, dass sie mittels einer in die Sicke (3f) eingesetzten Dichtung derart abgedichtet wird, dass es nicht zu Bypass-Strömungen außen an der Düse (3) in die Pulverkavität (1 ) kommt.

Die Länge des Düsenkanals und die Länge (31) des zentralen zylindrischen Teils des Düsenkanals (3a) sind wichtige Funktionsparameter der Düse (3) wie sie in Fig. 1 a und Fig. 6a-c gezeigt wird. Ebenso wie die Länge (21) des Mundstücks (2) wurde die Länge des Düsenkanals (3a) im Rahmen von Messungen mit der Testvorrichtung von 3 Millimetern bis 15 Millimetern variiert. Auch hier ergab es sich bei Messungen des Feinanteils (FPD), dass sich der Feinanteil bei

Verwendung der größeren Längen (insbesondere bei 15 Millimetern) erhöht, d.h. das die Lungengängigkeit der zerstäubten Partikel bei der Verwendung längerer Düsen (3) besser wird. Dies erklärt sich durch die längere Einwirkzeit von

Scherkräften auf den Gasstrom bzw. das Aerosol in den längeren Düsenkanälen (3a). Die Einwirkzeit ist insgesamt wegen der hohen Geschwindigkeit des

Gasstroms sehr kurz. Fluss-Simulationen zeigten, dass die Geschwindigkeit des Gasstroms in der Düse (3) Werte von bis zu 1 Mach annehmen kann.

Die Geschwindigkeit in der Düse ist abhängig vom aerodynamischen Querschnitt der Düse (3). Bei kleinerem Querschnitt der Düsenkanals (3a) erhöht sich der Strömungswiderstand der Düse, die Deagglomeration der Formulierungspartikel nimmt zu. Dies wurde anhand der Ergebnisse von Messungen (ohne

Treibmittelpulsung) mit unterschiedlichen Querschnitten von Düsenkanälen (3a) belegt. Getestet wurden Querschnitte im Bereich von 0,2 bis 0,8 Quadratmillinnetern (z.B. Variation eines kreisförmiger Durchmessers im Bereich von 0,5 bis 1 Millimeter) - bevorzugt werden hier als Resultat aus den Messungen Querschnitte im Bereich von 0,4 bis 0,7 Quadratmillimetern für den Düsenkanal (3a). Ausgewertet wurde für diese Messungen insbesondere das Verhältnis von Feinanteil (FPD) zu insgesamt aus dem Zerstäuber ausgebrachter

Wirkstoffmenge. Dieses Verhältnis erhöhte sich bei kleiner werdendem

Querschnitt. Durch die Verwendung kleinerer Durchmesser für den Düsenkanal (3a) und somit kleinerer Querschnittsflächen kann ein höheres Scheergefälle erzielt werden. Dieses wirkt mit höherer Kraft auf die zu zerstäubenden Partikel ein, so dass sich der Feinanteil des Aerosols erhöht.

Exemplarisch wurde eine solche Messung auch mit einem Düsenkanal (3a) mit ovalem statt rundem Querschnitt durchgeführt.

Bei gleicher Querschnittsfläche ergab sich bei Messungen mit dem ovalen

Düsenkanal ein vergleichbarer FPD-Wert wie beim runden Düsenkanal, die Entleerung der Pulverkavität war bei Verwendung des ovalen Kanals erhöht.

Weitere Messungen (ohne Treibmittelpulsung) mit unterschiedlichen

Düsenkanälen (3a) zeigen neben der besseren Deagglomeration von Partikeln bei kleinen Querschnitten der Düsenkanäle (3a) jedoch einen weiteren Effekt auf: Die insgesamt aus dem Zerstäuber ausgebrachte Formulierungsmenge zeigt eine eigene Abhängigkeit vom Querschnitt des Düsenkanals (3a). Bei einer

Querschnittsfläche von 0,2 Quadratmillimeter zeigt sie den im Vergleich

niedrigsten Wert (in der konkreten Messreihe 62% bezogen auf die in der

Pulverkavität (1 ) eingefüllte Formulierungsmenge), bereits bei 0,4 Quadratmillimeter wird ein deutlich höherer Wert (73%) erreicht, der zu wiederum höheren Querschnitten zunächst noch leicht zunimmt (76% bei 0,5

Quadratmillimetern) und anschließend tendenziell wieder leicht abnimmt (73% bei 0,8 Quadratmillimetern). Bei der Verwendung von Düsen (3) mit sehr engen Düsenkanälen (3a) wird weniger Pulver aus dem System ausgebracht, und stattdessen bleibt mehr Pulver in der Pulverkavität (1 ) zurück.

Um auch bei kleinen Durchmessern für den Düsenkanal (3a) dennoch die

Entleerung zu begünstigen, ist dem Düsenkanal (3a) ein Einlasskonus (3b) vorgeschaltet, um den Eintritt für das Pulver zu erleichtern. Da in dem Düsenkanal (3a) das Aerosol eine vielfach höhere Geschwindigkeit als die angelegte Flussrate im Mundstück (2) erreicht, befindet sich zusätzlich noch ein Auslasskonus (3c) am Ende der Düse (3), um auftretende Turbulenzen beim Austritt zu reduzieren.

Exemplarische Messungen deuten des Weiteren darauf hin, dass sich die insgesamt aus dem Zerstäuber ausgebrachte Formulierungsmenge durch die Verwendung von ovalen Querschnitten erhöht. Umso mehr konnte dem Effekt, dass die Entleerung aus der Pulverkavität (1 ) beim Übergang zu den kleineren Düsenkanälen (3a) schlechter wird, jedoch durch die Pulsung des Treibmittels entgegengewirkt werden. Insbesondere bei Durchmessern des Düsenkanals (3a) von lediglich 0,5 Millimetern konnten bei Verwendung von gepulsten

Treibmittelstößen gute Ausbringungen erzielt werden (Beispiel 92,5% Ausbringung von 75 Milligramm einer Pulvermischung mit 98% Fenoterol aus wannenförmiger Pulverkavität (1 ) unter Erlangung von 16,5 Milligramm Fenotorol als tatsächlichen Feinanteil). Durch die Aufteilung eines Treibmittelstoßes in mehrere kleine Schübe oder Pulse, kann man so einerseits mit jedem Puls einen hohen inhalierbaren Feinanteil erhalten (unter Ausnutzung kleiner Querschnitte für den Düsenkanal (3a)) als auch andererseits durch die summierte Einwirkung der Pulse eine effiziente Entleerung der Pulverkavität erreichen. Dies gilt bereits für

Pulverkavitäten (1 ) mit wannenförmigem Napf (1 a) wie sie in Fig. 7a zu sehen sind, ist aber auch auf tropfenförmige Pulverkavitäten (1 ) wie sie in Fig. 7b zu sehen sind, und auf andere Kavitätenformen anwendbar, insbesondere wenn diese für die Aufnahme großer Pulvermengen im Bereich größer 21 Milligramm ausgelegt sind und die große Pulvermenge nicht direkt mit einem Treibgasstoß durch eine Düse kleinen Durchmessers ausgetrieben werden kann.

Fig. 8 zeigt einen erfindungsgemäßen Zerstäuber, der als Inhalator von einem Patienten angewendet werden kann und als kompaktes Handgerät ausgelegt ist. Die Funktionsweise dieses Inhalators ist die gleiche wie die anhand der

Testvorrichtung aus Fig. 2 beschriebene. Insbesondere sind alle

vorangegangenen Schilderungen, die das Mundstück (2). die Düse (3), die Kartusche (5) und den Verdampfer (6) betreffen, ebenfalls auf den in Fig. 8 gezeigten Inhalator anzuwenden. Wie Fig. 8 zu entnehmen ist sind diese

Komponenten ganz analog wie im Ausführungsbeispiel gemäß Fig. 2 angeordnet. Fig. 8a zeigt das Äußere des hier ausgeführten Inhalators mit einer geschlossenen Mundstückabdeckung, Fig. 8c das Äußere mit einer geöffneten

Mundstückabdeckung. Der Inhalator weist als besagte Mundstückabdeckung eine Abdeckung (20) auf, die über eine Drehachse (21 ) mit einem Gehäuse (19) verbunden ist. Wenn der Inhalator nicht benutzt wird, kann die Abdeckung (20) geschlossen werden und verdeckt das Mundstück (2) des Inhalators. In diesem Transportzustand mit geschlossener Abdeckung (20) sind nur Gehäuse (19) und Abdeckung (20) von außen zugänglich, und alle für die Zerstäubung

funktionsrelevanten Bauteile sind gegen Verschmutzungen geschützt. Die

Anbindung der Abdeckung (19) über eine hier pivotal ausgeführte Drehachse (21 ) ermöglicht ein einfaches Öffnen des Inhalators und stellt sicher, dass die

Abdeckung (20) am Inhalator verbleibt und nicht verloren gehen kann.

Fig. 8b zeigt einen schematischen Schnitt des Inhalators, der in diesem

Ausführungsbeispiel als pmDPI ausgelegt ist, d.h. als Mehrdosis-Gerät mit einzelnen vorabgemessenen und einzeln bevorrateten Dosiseinheiten einer pulverformigen Formulierung. Die einzelnen Dosiseinheiten sind hier bevorzugt auf streifenförmigen Trägern angeordnet, insbesondere einem sogenannten Blisterband (100), das hintereinander gereihte Blisterkavitäten (101 ) aufweist, die zwischen einer Trägerbahn (102) und einer Deckfolie (103) gebildet werden.

Insbesondere weist die bevorzugt aus einem Kunststoff und/oder Aluminium gefertigte Trägerbahn hierzu Vertiefungen auf, die z.B. in einem Tiefziehprozess gefertigt wurden. Vorzugsweise weisen die Blisterkavitäten (101 ) wannenförmige oder tropfenförmige Näpfe (1 a) auf, wie sie anhand von Fig. 7 a-c beschrieben wurden. Die Blisterkavitäten (101 ) sind mit der pulverformigen Formulierung gefüllt und können schrittweise mittels eines Rads (1 1 1 ) an eine Position gebracht werden, in der sie jeweils die Funktion der Pulverkavität (1 ) in einer funktionalen Anordnung analog zu der Testvorrichtung in den vorangegangenen Figuren übernehmen. Das Rad (1 1 1 ) weist hierzu entlang seines äußeren Umfangs äquidistant verteilt napf- oder taschenförmige Aufnahmen (1 1 1 b) auf, welche die Blisterkavitaten (101 ) auf der Seite ihrer Trägerbahn (102) aufnehmen können und jeweils in die Pulverentnahmeposition mit Anschluss an die Treibmittelzuleitung aus dem Verdampfer (6) und an die Düse (3) drehen. An der

Pulverentnahmeposition weist das Gerät eine Abdichtung auf, die verhindert, das Treibgas an der Blisterkavität (101 ) vorbei ausweichen kann und nur durch die Düse wieder austritt. Bevorzugt wird vor Erreichen der Pulverentnahmeposition die Deckfolie (103) von der Trägerbahn abgezogen und so geöffnet. Die Deckfolie wird vorzugsweise auf einer Spule (1 13) aufgewickelt. Bezogen auf den Vortrieb des Blisterbands (100) wird die Deckfolie (103) erst so spät von der Trägerbahn (102) separiert, dass immer nur die Blisterkavität (101 ), die zur gerade

Pulverentnahmeposition gebracht wird, geöffnet ist und keine weiteren

Blisterkavitäten (101 ), die noch Pulver enthalten, geöffnet werden. Die Trägerbahn (102) mit den entleerten Vertiefungen der Blisterkavitäten (101 ) wird auf einer weiteren Spule (1 12) aufgewickelt. Hierzu wird sie bevorzugt zwischen

Pulverentnahmeposition und Spule (1 12) durch eine, nicht in der Abbildung gezeigte, Vorrichtung geführt, in der die Trägerbahn (102) geglättet und/oder die in ihr enthaltenen Vertiefungen platt gedrückt werden. Eine solche Vorrichtung ist z.B. der Schrift WO20070961 1 1A2 (Seite 5 und den Ausführungen zu den dortigen Figuren 2 und 4) zu entnehmen und auf die dies bezügliche Offenbarung sei an dieser Stelle hiermit vollumfänglich mit aufgenommen. An der Pulverentnahmeposition wird die geöffnete Blisterkavitat (101 ) dicht an das Anschlussstück, das die Treibmittelzuführung und den Einlass des Düsenkanals (3a) aufweist, herangeführt oder angedrückt. Beispielsweise ist das Rad (1 1 1 ), das Blisterband (100) an dieser Stelle so orientiert, dass die Blisterkavitat (101 ) gegen das Anschlussstück gedrückt oder gezwängt wird. Die Aufnahmen (1 1 1 b) am Rad (1 1 1 ) sind dabei derart gestaltet, dass die Oberseite der Blisterkavitat (101 ) die gleiche Wölbung wie die zugehörige Unterseite des Anschlussstücks aufweist - bevorzugt liegt die Blisterkavitat (101 ) komplett flach auf dem Rad (1 1 1 ) auf und ist nicht gewölbt. Bevorzugt beinhaltet das Anschlussstück Materialien, die insbesondere den oberen äußeren Rand der geöffneten Blisterkavität (101 ) gegen das Anschlussstück abdichten, wie eine Teflonbeschichtung oder einen in die Kontaktoberfläche eingelassenen Dichtungsring.

Zusätzlich ist die Drehachse (1 1 1 a) des Rads (1 1 1 ) bevorzugt derart durch eine Feder oder ähnliches mit Druck beaufschlagt, so dass das Rad (1 1 1 ) in Richtung des Anschlussstücks gedrückt und auf diese Weise die Dichtigkeit gewährleistet wird.

Alternativ zum Rad (1 1 1 ) kann eine vorzugsweise federvorgespannte

Führungsschiene verwendet werden. Über eine Zugkraft an der Spule (1 12) wird dann zunächst die Blisterkavität (101 ) in ihre Position am Anschlussstück gebracht und anschließend durch diese Führungsschiene angedrückt. Je nach Gestaltung des Blistersbandes (100) kann die Führungsschiene dabei eine glatte Oberfläche haben (dann eignet sie sich auch zur Führung des Blisterbandes beim

Weitertransport im Gerät) oder eine bewegliche Druckplatte mit Aufnahme sein, wobei diese Platte während des Transport des Blisterbandes (100) dieses nicht berührt.

In einer Ausführungsform des erfindungsgemäßen Zerstäubers entspricht der Mechanismus zum Abziehen der Deckfolie (103) vorzugsweise dem

entsprechenden Mechanismus, der in der Schrift DE4106379A1 offenbart wird. Der entsprechende Inhalt sei hiermit vollumfänglich in die vorliegende Anmeldung mit aufgenommen. Eine Weiterentwicklung dieses Transportmechanismus findet sich in der EP1436216B1 .

Bevorzugt wird der Vortrieb des Blisterbandes (100) durch eine Bewegung der Abdeckung (20), vorzugsweise durch die Öffnungsbewegung, bewirkt. Hierzu ist die Drehachse (21 ) vorzugsweise an die Spule (1 12) gekoppelt, so dass beim Öffnen des Geräts das Blisterband (100) in Vortriebsrichtung gezogen wird und sich das Rad (1 1 1 ) dabei mit dreht. Bei dieser Kopplung wird dann eine

Rücklaufsperre beispielsweise in Form einer Rutschkupplung in der Art

vorgesehen, dass die Drehbewegung der Achse (21 ) nur in einer Richtung

(vorzugsweise der Öffnungsrichtung) auf die Spule (1 12) übertragen wird.

Zusätzlich wird optional die Drehachse (21 ) und /oder Spule (1 12) über ein, in Fig. 8 nicht dargestelltes, Getriebe mit der Achse (1 1 1 a) des Rads (1 1 1 ) und/oder der Spule (1 13) zum Aufwickeln der Deckfolie (103) gekoppelt. Hierbei besteht auch die Möglichkeit, dass die Drehachse (21 ) direkt auf die Achse (1 1 1 a) des Rads (1 1 1 ) wirkt und dies über ein Getriebe seinerseits mit den beiden Spulen (1 12, 1 13) verbunden ist. Bezüglich des möglichen Aufbaus eines solchen Getriebes und der Rücklaufsperre sei hier auf die Schrift WO2007134792A1 (Seite 4 Zeile 30-34, Seite 6 Zeile 30 bis Seite 7 Zeile 13, Seite 8 Zeile 7 bis 29, Seite 9 Zeile 21 bis 29 und Seite 10 Zeile 25 bis Seite 14 Zeile 13) verwiesen. Der Inhalt der entsprechenden Zeilen jener Schrift wird hiermit vollumfänglich, auch zur

Aufnahme von Merkmalen, in die vorliegende Anmeldung mit aufgenommen. Die Rücklaufsperre bezüglich der Übertragung der Drehbewegung der Drehachse (21 ) und der Achse (1 1 1 a) des Rads (1 1 1 ) und/oder der Spulen (1 12, 1 13) kann des Weiteren entsprechend der Rücklaufsperre gestaltet werden, die in der Schrift WO07068896 offenbart wird. Die dies bezügliche Offenbarung sei hiermit vollumfänglich mit aufgenommen.

Alternative elektrische Ansteuerung Vortrieb

Alternativ zum Abziehen der Deckfolie (103) und der Verwendung einer

zugehörige Spule (1 13) können die Blisterkavitäten (01 ) auch vor Erreichen der Pulverentnahmeposition an einer anders gearteten Öffnungsvorrichtung vorbei geführt werden, an der die Deckfolie (103) an der Stelle der Blisterkavität (101 ) beispielsweise angestochen oder aufgeschnitten oder anderweitig geöffnet wird.

Bevorzugt ist der Inhalator so gestaltet, dass sich Blisterband (100), Rad (1 1 1 ) und die Spulen (1 12, 1 13) und gegebenenfalls zwischen diesen wirkende

Getriebe-Elemente in einem austauschbaren Gehäuseteil (19a) befinden. Auf diese Weise wird die Größe des Inhalators nicht durch die Länge des Blisterbandes (100), d.h. nicht durch die maximal mögliche Anzahl von

Dosierungen bestimmt.

Zur Ausbringung des Pulvers aus der in die Pulverentnahmeposition gebrachten Blisterkavität (101 ) wird Treibmittel aus der Kartusche (5) abgegeben. Dies kann entweder dadurch geschehen, dass der Anwender bzw. Patient direkt auf die Kartusche (5) in Richtung ihres in dem Fall bevorzugt gefedert

gelagertenVentilstammes (7) drückt (Druckausübung auf Kartuschen-Boden auf der dem Ventilstamm (7) entgegengesetzten Seite) oder dadurch, dass der Patient durch Einatmen am Mundstück (2) eine entsprechende Bewegung der Kartusche (5) und/oder die Pulssequenz an einem eingebauten Magnetventil auslöst.

Eine solche so genannte Atemzugstriggerung ist in dem in Fig. 5a skizzierten Gerät vorgesehen.

Fig. 5 zeigt eine verkippbare Fahne (22), welche die Kartusche (5) in einer

Ruheposition leicht von der Ventilstammaufnahme (8a) beabstandet, so dass das Ventil der Kartusche (5) geschlossen ist. Atmet der Patient nun am Mundstück (2) ein, so erzeugt er insbesondere an der Einlassöffnung (2b) der Mundstücks einen Sog, der sich ebenfalls auf den daran angeschlossenen Hohlraum erstreckt, der im Ausführungsbeispiel einen Bypass (23) darstellt, in dem Luft neben dem

Verdampfer vorbei strömen kann. Die mit der Umgebungsluft verbundene

Einlassöffnung dieses Bypasses ist in Ruheposition durch einen Teil der Fahne (22) verschlossen. Durch den Sog beim Einatemnvorgang kippt die Fahne (22) derart, dass an ihrem einen Ende die Einlassöffnung am Bypass (23) freigegeben wird. Dadurch wird eine Blockierung der Kartusche (5) gelöst und der

Bewegungsweg für die Kartusche (5) am anderen Ende der Fahne (22) wird nach unten bzw. in Richtung der Ventilstammaufnahme (8a) freigegeben. Bevorzugt ist die Kartusche (5) derart federvorgespannt gelagert, dass sie sich selbst bei Auslenkung der Fahne (22) beim Einatemvorgang in Richtung der

Ventilstammaufnahme (8a) bewegt. Lässt der durch das Einatmen am Mundstück (2) erzeugte Sog im Bypass (23) nach, stellt sich die Fahne (22) in ihre

ursprüngliche Position zurück und die Kartusche (5) wird wieder von der

Ventilstammaufnahme (8a) beabstandet. Je nach Stärke der Atemzugstriggerung kann die Fahne (22) hierzu auch mit einem Rückstellmechanismus verbunden sein. Nach der Atemzugsauslösung der Bewegung der Kartusche (5) wird die Kartusche vorzugsweise beim Schließen oder Öffnen der Abdeckung (20) - vorzugsweise über eine Kulissenführung - wieder in die vorgespannte

Ausgangssituation gebracht.

Eine solche Kombination aus Vorspannung einer Treibmittel-Kartusche und einer Atemzugstriggerung wird in der US5031610 offenbart. Der entsprechende Inhalt sei hiermit vollumfänglich in die vorliegende Anmeldung mit aufgenommen. In der US5031610 wird die Vorspannung der Kartusche und die Vorbereitung der Atemzugstriggerung durch Absetzen und erneutes Aufstecken einer Kappe auf dem Mundstück verursacht. In einer hier bevorzugten Ausführungsform würde der Mechanismus aus der US5031610 statt dessen an die Schwenkbewegung der Abdeckung (20) oder an einen zusätzlichen, nicht gezeigten Hebel gekoppelt werden.

Alternativ zu so einer mechanischen Atemzugstriggerung kann auch eine elektromechanische Steuerung verwendet werden. In solchen (nicht gezeigten) Ausführungsformen mit elektromagnetischer Steuerung weist der Zerstäuber vorzugsweise eine Batterie auf, welche die für solche Steuerungen benötigten elektrischen Spannungen zur Verfügung stellt. Bei einer solchen elektrischen oder elektromechanischen Atemzugstriggerung weist der Zerstäuber innen am

Mundstück (2) einen elektrischen Flusssensor auf, der in Abhängigkeit von der detektierten Strömung ein mit der Flussrate variierendes elektrisches Signal abgibt. Dieses Signal wird dann verwendet um einen elektromechanischen Vorgang zu starten, durch den z.B. die Kartusche (5) in Richtung der

Ventilstammaufnahme (8a) bewegt wird, das Ventil der Kartusche (5) geöffnet und somit Treibmittel in den Verdampfer (6) bzw. die Kanäle des Zerstäubers freigesetzt wird. Damit diese Ventilbetätigung erst bei einer vordefinierten

Luftströmung, d.h. einem bestimmten Sog am Mundstück (2), stattfindet wird das Sensor-Signal zuvor durch eine Kontrollvorrichtung beispielsweise eine analoge Vergleichsschaltung oder eine digitale Elektronik geleitet. Das Sensor-Signal löst gewissermaßen bei Erreichen eines bestimmten Sogs am Mundstück (2) einen elektrischen Schalter aus. Bei Betätigung dieses elektrischen Schalters wird ein elektromechanischer Vorgang gestartet, beispielsweise ein Schrittmotor in Gang gesetzt, der die Kartusche verschiebt. Solche elektromechanischen Atemzugstriggerungen von Zerstäubern mit Treibmittel-Kartuschen sind in der Schrift WO9207599A1 offenbart. Der entsprechende auf solche Ansteuerugen bezogene Inhalt sei hiermit vollumfänglich in die vorliegende Anmeldung mit aufgenommen.

Eine von der Bewegung der Kartusche unabhängige Möglichkeit eine

Atemzugstriggerung im Zerstäuber einzubringen besteht darin (bevorzugt für den Fall, dass kein durch einen elektronischen Pulsgeber angesteuertes Magnetventil wie in Fig. 4 verwendet werden soll), dass zusätzlich zu dem zur Kartusche (5) gehörenden Ventil ein zweites Ventil vorgesehen wird. Das zweite Ventil befindet sich bei einer solchen Ausführungsform strömungstechnisch gesehen vor dem Einlass des Verdampfers (6). Der Zerstäuber wird für die Inhalation derart vorbereitet, dass das 1 . Ventil betätigt wird - z.B. durch eine Verschiebung der Kartusche (5), wobei die Verschiebung an das Öffnen der Abdeckung (20) gekoppelt ist - und das abgegebene Treibmittel fließt in eine Vorkammer vor dem zweiten Ventil. Bei Auslösung der Atemzugstriggerung wird dann lediglich das 2. Ventil geöffnet, was eine geringere Kraftein leitung benötigt als die für die

Auslösung des ersten Ventils benötigte Verschiebung der Kartusche (5). Eine solche Ausführungsform mit einem zweiten Ventil zusätzlich zu dem Dosierventil einer Kartusche (5) kann eine Ventilanordnung und deren Kopplung mit einer Atemzugssteuerung aufweisen, wie sie in der Schrift GB2233236A offenbart wird, die auf die Atemzugstriggerung eines MDI gerichtet ist. Der entsprechende auf solche Anordnungen bezogene Inhalt sei hiermit vollumfänglich in die vorliegende Anmeldung mit aufgenommen. Das zweite Ventil wird direkt durch den Sog des Patienten geöffnet, z.B. durch das Ansaugen eines Tellers oder Stempels, der mit der Öffnung des zweiten Ventils verbunden ist oder durch das indirekten

Ansaugen einer Komponente, die zu einem ansonsten durch magnetische Kräfte verschlossenen zweiten Ventil gehört. Ein solcher Teller oder Stempel wird in der hier betrachteten Ausführungsform des Zerstäubers bevorzugt im Bypass (23) vorgesehen. Bevorzugt ist das zweite Ventil dabei zusätzlich z.B. durch einen federnden Anschlag bei Auslenkung so beschaffen und/oder mittels zusätzlicher Vorspannung so eingestellt, dass es bei Auslösung durch den Atemzug pulsartig öffnet, d.h. nach Öffnung in die Schließstellung zurückfedert, im anhaltenden Atemzug wieder öffnet, wieder schließt und so weiter.

Bevorzugt werden die hier beschriebenen Zerstäuber mit einer medizinischen Formulierungen betrieben, die ein Bestandteil aus der Offenbarung der

europäischen Patentanmeldung mit der Anmeldenummer 12151 105.9 auf Seite 26 Zeile 12 bis Seite 63 Zeile 2 aufweist oder einer der dort genannten

Formulierungen entspricht. Der Inhalt jener Zeilen wird hiermit vollumfänglich, auch zur Aufnahme von Merkmalen, in die vorliegende Anmeldung mit

aufgenommen. Bezugszeichenliste

Pulverkavität

a Napf (in Pulverkavität)

b Dichtungsnut

c Schräge (in Pulverkavität)

d Abflachung (in Pulverkavität)

t Träger (von Pulverkavität)

Mundstück

a Durchführung (am Mundstück)

b Einlassöffnung (am Mundstück)

1 Länge (des Mundstücks)

Düse

a Düsenkanal

b Einlasskonus (der Düse)

c Auslasskonus (der Düse)

d Endfläche (der Düse)

g Anschlussseite (der Düse)

f Sicke

1 Länge (des zylindrischen Teils des Düsenkanals)

Anschlussstück

Kartusche

Verdampfer

Ventilstamm

Deckel (am Verdampfer)

a Ventilstammaufnahme (im Deckel)

b Flansch (am Deckel)

c Sicke (im Flansch)

d Innenkonus (am Deckel)

Körper (des Verdampfers) a Hohlraum (des Verdampfers)

b Trichter

c Auslass (des Verdampfers)

d Stamm (am Verdampfer)

0 Dichtung

1 Kugel

2 Draht

3 Magnetventil

4 Flanschplatte

5 mikrofluidischer Oszillator

5a Einlasskanal (am mikrofluidischen Oszillator)

5b Teilkanäle

5c Innere Wände (der Teilkanäle)

5d Mischbereich

5e Vorsprünge im Mischbereich

5f Auslass (aus Mischbereich des mikrofluidischen Oszillators)5t Strömungsteiler

5v Lüftungskanal

9 Gehäuse

9a austauschbares Gehäuseteil

0 Abdeckung (für Mundstück)

1 Drehachse (für Abdeckung)

2 Fahne

3 Bypass

00 Blisterband

01 Blisterkavität

02 Trägerbahn

03 Deckfolie

1 1 Rad

1 1 a Drechachse (an Rad)

1 1 b Aufnahme (an Rad) 1 12 Spule (für Trägerbahn)

1 13 Spule (für Deckfolie) α Einlasswinkel (an Düse) ß Auslasswinkel (an Düse)

A Aerosol

G Pulsgenerator

I Zerstäuber

K Treibgaskartusche

Q Quelle (Gas)

R(p) Druckregler

R(F) Flussregler

V Magnetventil

WT Wärmetauscher