Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AUTOMATIC MOORING APPARATUS FOR WATERCRAFT
Document Type and Number:
WIPO Patent Application WO/2020/058734
Kind Code:
A1
Abstract:
A mooring apparatus (10) for automatic mooring and parking a 10-70 feet long watercraft that is built from two dock-finger units (20) fixed to the dock (2). The dock-finger units (20) are equipped with flexible tentacle elements (80) for positioning the watercraft (4) by keeping continuous contact with the hull (6). and they are also equipped with automatic-operated locking mechanisms (40) for catching and locking the watercraft (4), The mooring apparatus (10) has a control panel (90) with a built-in programmable processor (98) and a communication unit (98) that can be accessed from anywhere by communication means, and connected to the harbour IT system.

Inventors:
VIRAGH ATTILA (HU)
Application Number:
PCT/HU2019/000026
Publication Date:
March 26, 2020
Filing Date:
August 22, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DOCKSTAR EUROPE KFT (HU)
International Classes:
B63B21/00; B63B22/02; B63B35/34; E02B3/06; E02B3/20; E02B3/24; E02B3/26
Domestic Patent References:
WO2017144927A12017-08-31
WO2017144927A12017-08-31
Foreign References:
KR20130001775A2013-01-07
US6551010B12003-04-22
US6161494A2000-12-19
US7730844B22010-06-08
US5184562A1993-02-09
US5762016A1998-06-09
US7481174B22009-01-27
GB2415942A2006-01-11
US20050066869A12005-03-31
CA2672456A12010-01-16
Attorney, Agent or Firm:
HARANGOZÓ, Gábor (HU)
Download PDF:
Claims:
Claims

1. A mooring apparatus (10) for mooring a watercraft (4), equipped with dock-finger units (20) fixed to the dock (2) and floating on the water mounted with automatic locking mechanisms (40) catching and securing the watercraft (4) during mooring and then parking, characterized In that said automatic locking mechanisms (40) connected to catching units (70) fixed to the hull (6) and flexible tentacles (80) fixed to the dock- finger units (20) touching the hull (6) for guiding the watercraft (4) between the dock- finger units during mooring (20) and reducing its movement at the parking spot while parking.

2. The mooring apparatus (10) of claim 1 , characterized in that said automatic locking mechanisms (40) fixed to the beam structure (22) of the dock-finger units (20) and having pivoting holding arms (42) with fixing units (50) at their ends; for rotating the holding arms (42) in the direction of the hull (6), the locking mechanisms (40) equipped with a mechanical element providing constant force, preferably a spring (44) or a gas spring (64), and a motor (46) ensuring the rotation in the opposite direction, preferably an electric motor, and its motor control (48) being connected to the control panel (90).

3. The mooring apparatus (TO) of claim 2, characterized in that said fixing unit (50) fixed to the end of the holding arm (42) by pivoting around a horizontal axis and the fixing rod (62) clamped between the head element (56) and the botto element (58), and the outer surface of the head element (56) and the bottom element (58) covered with soft coverage (34) collar elements (60) being able to freely rotate around the axis of the fixing unit (50).

4. The mooring apparatus (10) of claim 3, characterized in that said fixing rod (62) being made of steel, G.5 - 2.0 meter in length, the actual length always being determined by the type of the watercraft (4) in question, its cross-sectional diameter being in the range of 10 - 50 millimetre, its actual diameter fitting into the catching units (70) fixed to the hull (6).

5. The mooring apparatus (10) of claim 3, characterized in that said catching unit (70) having at least one wedge-type hook (74) for fastening the fixing rod (82) on a pedestal (72).

8. The mooring apparatus (10) of claim 5, characterized in that said catching unit (70) made of silicone

7. The mooring apparatus (10) of claim 8, characterized in that said catching unit (70) fixed to the hull (6) by gluing.

8. The mooring apparatus (10) of claim 2, characterized in that said control panel (90) fixed to the dock (2) and equipped with laser rangefinder (92), camera (94), programmable processor (98) and communication module (98).

9. The mooring apparatus (10) of claim 1 , characterized in that said flexible tentacles (80) fixed to the dock-finge unit’s (20) beam structure (22) being 20 - 90 cm long consoles made of flexible material.

10. The mooring apparatus (10) of claim 9, characterized in that said flexible tentacles (80) made of material resistant to environmental influences, preferably silicone,

Description:
Automatic mooring apparatus for watercraft inventor’s data

Name; ATTiLA ViRAGH

Address: 35/A Varkonyi Z sir.

Szentendre, Hungary

Postal code: 2000

Field and objectives of the Invention

The Invention is such a mooring apparatus that allows rope-free, automatic mooring and parking for 10 - 70 feet long watercrafts.

Background of the Invention

Watercrafts are traditionally moored with ropes to the dock or anchors, This is also the case with expensive watercrafts / yachts equipped with state-of-the-art technology. To moor with ropes, the operator also usually needs an assisting person to moor.

Mooring watercrafts is a dangerous manoeuvre, especially in windy weather, in high waves or in case of changes in water levei. Under such circumstances, when approaching the mooring spot and during mooring the watercraft may hit the dock with such force that It and/or the dock can be damaged. Repairing the damage of high- value watercrafts involves professional work and therefore significant costs and time. The use of a damaged dock Is not safe and requires repair as well.

Various technical solutions have been developed and applied to avoid Injury and damages caused by the collision of the watercraft and the dock.

The simplest and most common solution is to use bumpers that are hanging on the ship and the crew on board hang them out by the side of the ship at an appropriate height during mooring . The force of collision with the dock is dampened by the bumpers as they are made of flexible material to absorb collision energy. The problem with the use of bumpers is that they have to be hung out at the right height and points, which is not always successful. A further problem Is that besides the watercraft operator, there is a need for at least one assisting person, who is most often not available.

For the protection of watercrafts against damages, materials glued or mounted on its side are also used. Such a simple solution is to attach plastic or rubber strips to the most vulnerable parts of the hull. Their role is to prevent friction damage.

U.S. Patent No. 8.161.494 discloses the use Of inflatable bumpers on the hull. According to the invention, an appropriate opening must be provided on the huff and an inflatable bumper must be installed there. Its function is ensured by an appropriate mechanical unit. This solution is not applicable to watercrafts already in use, and their incorporation info newly-built watercrafts has not spread either. The drawback of the invention is that bumpers must be mounted at fixed heights, which is not always appropriate. Further problem is that the inflatable bumpers are easily damaged and then do not fulfil their rotes.

U.S. Patent No. 7.730,84 discloses a technical solution in which there are rotatable bumping elements fixed at the top of the hull. The bumping elements reduce the collision energy at the physically encountered points of the ship and the dock and can absorb it using an appropriate machine mechanism. The use of the invention in watercrafts is complicated. Factory or post-fitting is expensive. Because of the abovementioned, the solution has not spread in practice.

Equipping docks with various elements Is also a common way to protect ships and the dock from damage. One of the conventional solutions of collision-reducing elements is when used tires are fixed to the side of the docks. As these bumpers are fixed at a given height and location , they cannot follow the change in water level and the bumping points regarding the side of the watercraft are not optimized.

In modern harbours, using used tires is not a popular option.

A known solution is the use of bumpers atached to the vertical columns of docks. Such solutions are disclosed in U.S. Patent Nos. 5.184.562, 5.782.016 and 7.481.174. The bumpers are made of flexible material and are therefore suitable for absorbing some of the collision energy, Bumpers that rotate around the axis also reduce or prevent bumping and friction damage. They have the advantage of allowing to track the changes in water level by freely rising or sinking a moored watercraft. The disadvantage is that they can only be used where the dock is equipped with vertical columns. However, most docks are not like that.

A special solution Is disclose in Patent No. GB 2.415.942. The object of the invention is a V-shaped mooring unit which includes inclined bumper columns adapted to the shape of the front of the 'watercraft, on which there are rotating bumping elements. The ship’s side-to-side collision is reduced by the ship’s own mobile bumpers.

The US 2005/0068869 patent discloses a longitudinal bumping element mounted on a dock. The essence of the solution is that an element is attached to the inside of the dock to accommodate the mooring ropes of the watercraft, and also serves as a bumper. In case of proper water level, bumping and friction are indeed reduced. However, the problem is that the water level changes. Another problem is that the size of the watercrafts and the shapes of the hulls are different, which cannot be adapted by fixed installation or design.

For the protection of docks and watercrafts, an inflatable device is disclosed in patent o, CA 2,672 458 According to the invention, inflatable tubes are fixed on the side of the dock, which significantly reduces the risk of damage from the collision of a watercraft and a dock. However, the disadvantage of the solution is the mechanical demand, the vulnerability of the air inflated tubes and the need for operational tasks.

Apparently, avoiding collisions and friction between watercrafts and the dock is an important requirement for manoeuvring and already moored watercrafts. Some of the technical solutions for this requirement have been describe above.

Another important requirement for a modern mooring apparatus is to make navigation to the mooring easier and ultimately to get to an optimal parking position for the watercraft. After it is reached, there is an additional need for the watercraft to be automatically fixed.

These extra requirements are particularly important when someone is sailing out alone and there is no assisting staff at the time of return. It is well known that the owners of pleasure watercrafts rarely have great experience in manoeuvring; therefore, it is important for them to have an opportunity for an easy sailing in and a modern rope- free mooring.

For the Skilled in the Art of the invention, such technical solutions are known when a watercraft navigates into diverter arms and a fixing element catches it there.

Such a solution is described, for example, in WO 2017/144927 A1 , which has the disadvantage that the diverter arm does not allow a watercraft to he secured near a statically optimum waterline. A further disadvantage is that designing the columnshaped fixing means with the pivoting cylindrical element is complicated, The installation and constant presence of hook-like catching elements on a watercraft during navigation is disturbing. Their possible removal and dismantling before and after mooring reduce the benefit of the automatic mooring operation.

Thus, there is a need for a harbour equipment and method to overcome the abovemenfioned problems.

The objective of the present invention is to produce such a mooring apparatus that provides rope-free, automatic mooring and simple sailing out. With such technical solutions, a non-experienced watercraft operator can safely moor watercrafts and there is no need for assisting staff.

A further objective is to connect the mooring apparatus to the harbour IT system, thereby support the work of the harbour management For example, in the event of an outbreak of a storm or at the request of an authority sailing out has to be prohibited, the registration and online rental of watercrafts are required, or harbour data and Information have to be sorted and used in a database.

Summary of the invention

The disclosed invention is an automatic mooring apparatus that is built from two dock- finger units fixed to the dock. The dock-finger units are equipped with flexible tentacle elements for positioning the watercraft by keeping continuous contact with the hull, and they are also equipped with automatic-operated locking mechanisms for mooring of the watercraft. The mooring apparatus has a contro! panel with a built-in programmable processor and a communication unit that is available for the operator via the watercraft’s onboard communication unit or from a smart device from anywhere.

Harbour management has access to the control panel via wired or wireless connection, so they are able to take actions when it is required. The central server continuously registers ail data and information related to the registered mooring apparatus.

Advantages of the Invention

By using the invented mooring apparatus, the mooring process is automatic and it ca be managed alone by the watercraft operator, without any assistance. The progress of mooring can be controlled from the cabin, so it can be easily done even under unfavourable weather conditions.

The positioning of the watercraft and reducing Its oscillatory movements are provided by the flexible tentacle elements by acting on the hull; there is no need for bumpers or other anil-collision solutions for the mooring process.

Due to the built-in lights of the mooring apparatus, the mooring process can be carried out in low visibility as well.

As there is no human intervention during the mooring, accidents related to mooring will cease.

Since there is no rope fixing the position of the prow, the navigable surface and the receptive capacity in harbours are increased, which is a significant operating and area utilization advantage of the present solution.

Control and communication equipment for the mooring apparatus is connected to the harbour IT system. The harbour master is able to prohibit sailing from a harbour with a single instruction which can be required due to bad weather, official orders or any other reason. He/she is able to view the details of the parking or sailing watercrafts, the status and dates of the sailings, and the data of the users. Another advantage is that an online rental system can be implemented for each mooring or watercraft, which can be seif-managed by the owner of the watercraft or the harbour management.

Brief description of the drawings

FIG 1 ~ Perspective view of the mooring apparatus

FIG 2 ~ Schema of the dock-finger unit

FIG 3 - Harbour arrangement with dock-finger units

FIG 4 - A detaii of moored watercraft in the mooring apparatus

FIG 5/A - The locking mechanism with spring

FIG 5/B Design of the catching unit

FIG 6 - The principle of operation of the locking mechanism

FIG ? - The locking mechanism with gas spring

FIG 8 - Front view of the moored watercraft

FIG 9 - A watercraft with double catching units

FIG 10 - Designs of flexible tentacles

FIG 11— The watercraft’s entry into the mooring apparatus - Phase 1

FIG 12 ~~ The watercraft’s entry into the mooring apparatus - Phase 2

FIG 13 - The watercraft’s entry Into the mooring apparatus - Phase 3

FIG 14 - The watercraft in the mooring apparatus between locked mechanisms -

Phase 4

FIG 15 - The watercraft in the mooring apparatus between opened mechanisms - Phase 5

FIG 18 - A perspective view of the moored watercraft in mooring apparatus

FIG 17 - A watercraft in the mooring apparatus with double catching units

FIG 18 - Outline of the mooring apparatus' ITC system and sis connection to the harbour IT system

Detailed description of the invention

The detailed description of the invention is provided by means of drawings.

A taia!many reszfetes bemutatesa rajzok segstsegevef tortenik. FIG 1 is a perspective view of the invention's mooring apparatus (10), consisting of two dock-finger units (20) that are placed parallel to each-other on the water surface and fixed to the dock (2). The dock (2) can be a fixed or a floating dock. The dock-finger units (20) are fixed to the dock (2) by mounting (28) matching the type of dock (2), The dock-finger units (20) are held above the water surface by air reservoirs (24). The air reservoirs (24) are, in one embodiment, height adjustable, which allows the dock-finger units (20) to be adjusted to the level of the dock (2) during installation. Alternatively, floating dock-finger units (20) of closed cross-section, for example made of tubes, may be used.

When installing the dock-finger units (20), the control panel (90) is placed on the dock (2) and activated. A programmable processor (96) and communication module (98) are incorporated into the control panel (90) that is accessible by authorize persons from anywhere by communication means.

The mooring apparatus (10), in the event that the dock (2) is not capable of securing dock-finger units (20) or if the customer needs an Independent mooring spot, is to connect 2 Individual dock-finger units (20). In this case, a U~shape mooring apparatus (10) is formed, which is secured with ropes at the harbour, private bay or other location.

A dock-finger unit (20) Is shown in detail in FIG 2. It main components are beam structure (22) and the locking mechanism fixed to it (40), as 'well as the flexible tentacles (80). These key elements are described in detail below,

The beam structure (22) is a dimensioned structure designed to absorb the generated forces of mooring and to hold the watercraft (4), The cross-section may be of any cross- section, for example, rectangular or tubular. It can be made of, for example, stainless steel, fibreglass reinforced plastic or carbon fibre composite. Requirements to be met are ensuring longevity and resistance to the effects of seawater.

Locking mechanisms (40) are attached to the beam structure (22) according to the type of the watercraft (4) and the location of the catching units (70) fixed to the hull (8). As an example, the drawing shows that the longitudinal position of the locking mechanisms (40) mounted on the left and right sides of the dock-finger unit (20) are different, therefore the positions of the fixing units (50) are also different. The beam structure (22) is equipped with flexible tentacles (80) for guiding the watercraft (4) into the mooring apparatus (10) and for reducing its oscillatory movements during parking. In the figure, the flexible tentacles (80) are evenly spaced along the length of the beam structure (22), but may be fixed at different distances depending on the type of the watercraft (4) and the design of the hull (8) By appropriately allocating the flexible tentacles (80), the desired motion limitation of the given watercraft (4) is achieved.

The end of the dock-finger unit (20) facing the open water is a cylindrical end (32) which aids in turning the watercraft (4) while it is moving into and out of the mooring apparatus (10). Bumpers (30) are installed to catch any collision. Stepping (28) is provided for entering or exiting the watercraft (4). The surface of the dock-finger unit (20) is walkab!e and the edges are covered with soft-coverage (34). Alternatively, the entire walking surface is covered.

With the series of dock-finger units (20) shown, a complete harbour system can be implemented, which is schematically illustrated in FIG 3. Parking lots P1-P4 are a series of mooring apparatuses (10). Different watercrafts (4) can be moored by choosing the distance between the dock-finger units (20). In the figure, for example, when installing parking lot P2, the dock-finger units (20) are spaced”a" apart, while parking lot F3 is spaced "b" apart.

The locking mechanisms (40) are also flexibly mounted on the dock-finger units (20) depending on the size of the watercraft (4) and the position of the catching unit (70) fixed on the hull (6). The advantageous alternative is the possibility of mooring and parking watercrafts (4) with the stern or bow.

FIG 4 is a detailed description of the moored watercraft (4) in the mooring apparatus (10). The fixing unit (50) secures the position of the watercraft (4) and the flexible tentacles (80) by touching the hull (8) reduce the oscillation movements of the watercraft (4).

FIG 5/A shows an embodiment of the locking mechanism (40), The locking mechanism (40) is mounted on the beam structure (22) of the dock-finger unit (20). There Is a holding arm (42) rotating around "Axis A", at the end of which fixing units (50) are mounted, A spring 1 (44) providing constant force is integrated into the locking mechanisms (40) for turning the holding arm (42) towards the hull (6). In order to counteract the tension of spring 1 (44) and for providing reverse rotation, a motor unit, preferably an electric motor (48) is mounted, and the motor control (48) of which is connected to the control panel (90).

The fixing unit (50) is mounted to the end of the holding arm (42) rotating around the horizontal "Axis BT The fixing unit (50) has a vertical standby position, which is supported by a spring 2 (52). Using the spring 2 (52) is not mandatory in some cases.

The fixing rod (62) is clamped between the head element (58) and the bottom element (58). The outer surfaces of the head element (56) and the bottom element (58) are provided with collar elements (60) covered with soft coverage (34). The collar elements (60) can rotate freely around the Axis C of the fixing unit (50).

The materia! of the fixing rod (62) is preferably steel of suitable strength, its length is in the range of 0.5 to 2.0 meters, but its actual length is always determined by the type of the watercraft (4). The cross-sectional diameter is in the range of 10-50 mm, the actual diameter fits into the catching units (70) mounted on the hull (8).

The design of the catching unit (70) is shown in FIG SIB. The catching unit (70) is such a pedestal (72) that has at least one wedge-type hook (74) that is suitable for catching the fixing rod (82). When using a cover element (78), the cover (78) flexibly turns outwards when the fixing rod (62) Is removed from the hull (6), and the fixing rod (62) is free to leave the catching unit (70).

The catching unit (70) is preferably made of silicone and is preferably secured to the hull (8) by gluing. The exact location of the anchorage depends on the type, dimensions, structure and geometry of the watercraft (4) and other factors. Due to this, the place of gluing to the hull (6) is always preceded by careful planning.

FSG 6 Illustrates the operation of the locking mechanism (40) on schematic drawings, on which only the watercraft (4), the hull (6), the beam structure (22), the holding arm (42), the spring 1 (44), the fixing rod (82) and the catching unit (70) are shown.

In Schema A, the watercraft (4) enters into the mooring apparatus (10). At a certain distance from the dock (2), the motor (46) built into the locking mechanism (40) automatically turns the holding arm (42) from the "resting” state maintained by spring 1 (44) to the "opened” state. Thus, the fixing unit (50) and its fixing rod (82) get out of the way of the watercraft (4) and collision with it or any projecting objects placed on it is avoided . It is common to suspend a boat, bicycle, or other equipment on a watercraft (4) that may extend beyond its normal width.

In Schema B, the watercraft (4) moves forward an when a predetermined position is reached, the engine (48) automatically shuts off and the force of spring 1 (44) is reapplied. Spring 1 (44) pushes the holding arm (42) towards the hull (6), causing the upper collar element (60) of the fixing unit (50) to touch the hull (8). Then, due to the additional force exerted by spring 1 (44), the fixing unit (50) is rotated from its vertical position around the horizontal axis and the other collar element (SO) also reaches the hull (6). The collar elements (60) , as the watercraft (4) moves, are forced to rotate due to the tension on the hull and to hold the fixing unit (50) adjacent to the hull (6), The fixing rod (62) clamped between the head element (56) and the bottom element (58) is in a "forced" position and is approached by a catching unit (70) fixed to the hull (6)

Schema C illustrates when the catching unit (70) reaches the fixing rod (82) and after passing the «/edge-type hook (74), it is fixed. This is the "locked" state of the locking mechanism. The closed state remains until the opening command is sent to the motor control (48). When closed , the watercraft (4) has only limited mobility in both directions: in the horizontal direction, the fixing rod (82) has limite movement in the horizontal gap formed in the catching unit (70), and In the vertical direction, movement is limited in the direction of the axis of the fixing rod (62). The relative movements of the watercraft (4) towards the dock-finger units (20) when moored are minimized by the locking mechanism (40) and the flexible tentacle (80) together.

Schema D shows the case of sailing out. When the opening command is sent to the motor control (48), the holding arm (42) rotates away from the hull, causing the fixing rod (62) to move away from the hull (6). During moving away, the catching unit (70) also opens the cover (76). This is the "released” state, in which the fixing rod (62) moves away from the hull to release the watercraft (4)

FIG 7 illustrates an alternative solution of the present invention where a gas spring (84) is mounted in the locking mechanism (40) for rotating the holding arm (42) towards the hull. The operation of the locking mechanism (40) is essentially the same as that described above.

FIG S is a front view of the watercraft (4) moored in the mooring apparatus (10). It can he seen that the fixing unit (50) is rotated in accordance with the tilt angle of the hull (6) and thereby connects the fixing rod (82) to the catching unit (70) according to the tilt angle.

The mooring apparatus (10) of the present invention allows the watercraft (4) to be moored forward or in reverse in this case, two catching units (70) fixed in opposite directions are placed on the hull (6), as shown in FIG 9. Another solution is when one catching unit (70) is designed for both mooring options.

The flexible tentacles (80) are made in a variety of geometries and sizes, with a thicker / stronger cross-section at the attachment point and a thinner / weaker cross-section at the other end. FIG 10 illustrates two possible solutions.

Type A is a flexible tentacle (80) with a simpler cross-section and designed for less stress. It is fixed to the beam structure (22) by screwing so that it can be easily replaced if necessary. Type B is capable of absorbing and dampening larger and more dynamic forces. As it can be seen, both solutions are statically damped, flexible consoles.

The flexible tentacles (80) are generally distributed evenl along the length of the beam structure (22). The frequency of the distribution depends on the size of the watercraft (4), the shape and structure of the hull (8), the weather conditions and the security conditions of the harbour. The role of the flexible tentacles (80) is to secure the position of the watercraft (4) by providing pressure on the hull by touching it and maintaining it in the central axis of the mooring apparatus (10) during mooring and parking, The flexible tentacles (80), due to their flexibility, balance most of the force effects and transmit the unbalanced forces to the statically dimensioned beam structure (22). Their other general role is to dampen the oscillatory movements of the watercraft (4).

The flexible tentacles (80) are made of seawater and weather resistant material, preferably silicone. FIG 11 to FIG 15 show the phases of the automatic mooring of the watercraft (4) into the mooring apparatus {10} and its sailing out

FIG 11 is Phase 1 , when the watercraft (4) approaches the dock (2) for mooring purposes, but the distance D1 measured by the laser rangefinder (92) built into the control pane! (90) is such that the locking mechanism { 40) is not activated and the fixing unit (50) is in "resting" state.

FIG 12 is Phase 2, when the watercraft (4) reaches distance D2 and the motor (48) of the locking mechanism (40) turns on and by rotating the holding arm (42), the fixing unit (50) is in“opened” state. The distance D2 is pre-programmed in the control panel (90) during installation the mooring apparatus (10) by adapting it to the particular watercraft (4).

FIG 13 is Phase 3, when the watercraft (4) reache a predetermined and programmed distance D3, the motor (48) shuts down and the fixing unit (50) enters a "forced" state. The collar elements (80) mounted on the fixing unit (50) then touch the hull (6) and rotate there as the watercraft (4) moves further backward.

FIG 14 is Phase 4, when the watercraft (4) is fixed; the fixing unit is in the "locked" state. This is done by the fixing rod (62) mounted in the fixing unit (50) passing the wedge-type hook (74) found in the catching unit (70) mounted on the rearward moving watercraft (4) s then it gets stuck there and thus stops the watercraft (4).

FIG 15 is Phase 5, when the watercraft (4) sails out of the mooring apparatus (10), In this case the fixing unit is in the“opened” state. It is not the result of an automatic operation but the result of direct action of the operator in the event of the operator's intention to disembark, the motor control (48) is commanded via the communication pane! (98) to start the motor (48). The holding arm (42) is rotated and the fixing unit (50) is rotated to the "opened" position as described.

The watercraft (4) sails out freely and when the distance from the dock (6) is 02, the fixing unit automatically returns to the "resting" position. This operation is preprogrammed in the control panel (90), FIG 18 is a perspective view of a watercraft (4) set at stem and moored in the mooring apparatus (10). FIG 17 shows a watercraft (4) intended to be moored with a bow on which the two mounted catching units (70) are marked,

FIG 18 is an outline of the information and communication system of the mooring apparatus (10).

The mooring apparatus (10) is equipped with state-of-the-art information and communication tools that are connected to the harbour IT system (100).

The programmable processor (98) built into the control panel (90) is in direct contact with the motor control (48), the laser rangefinder (92) and the camera (94). It also has a connection with the communication module (98).

The communication module (98) is wired or wirelessly connected to the central server (110) of the harbour IT system (100). Thus, the actual position of the locking mechanism (40), the resting, opening, locking and forcing events are visible in the IT system (100) and continuously recorded in its database (112).

In addition, ail related data and information, such as the data of the renter of the mooring apparatus (10), the identity of the owner of the watercraft (4), etc., are provided and stored in the database (112) of the central server (110), The stored data provides harbour management records and greatly facilitate harbour operations. Eligible users have access to the data from external smart devices such as a notebook (118), PC (114) or a cell phone (108) via the internet

Harbour management has the opportunity to prohibit the opening of mooring apparatuses (10) connected to the harbour IT system (100). Such cases include the approach of a storm, an order by the authorities, or the protection of harbour traffic. The communication module (98) can be accessed online by the owner or the renter of the watercraft (4) or another authorized person who can directly act on the operation of the mooring apparatus (10). Access can be done directly from the onboard control (102) of the watercraft (4), using a remote control (104), a tablet (108), or a cell phone (108).

The technical solution described in this specification is a possible embodiment of the invention, which in no way restricts the claims to this solution atone.