Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A BAG WITH A SAFETY NET
Document Type and Number:
WIPO Patent Application WO/2006/062649
Kind Code:
A2
Abstract:
Ordinary bags are made of either paper or plastic material. Due to a puncture of the bag, the point of puncture quickly becomes a ripping point to further enlarge an originally small opening. The present invention overcomes this shortcoming of ordinary bags by using a new material that is produced by adhering a web material with a base material. The web material would effectively serve as a safety net to prevent further ripping of the bag once the base material of the bag is punctured.

Inventors:
TIGHE PATRICK J (US)
TUCCIARONE JOEL (US)
PERELMAN JORGE (MX)
PUJOL GABRIEL (US)
CARBONELL PEDRO GUDE (MX)
Application Number:
PCT/US2005/040270
Publication Date:
June 15, 2006
Filing Date:
November 07, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TIGHE PATRICK J (US)
TUCCIARONE JOEL (US)
PERELMAN JORGE (MX)
PUJOL GABRIEL (US)
CARBONELL PEDRO GUDE (MX)
International Classes:
B65D30/08; B65D30/04; B65D30/10; B65D30/12; B65D30/20; B65D33/02; B65D33/06
Foreign References:
US6890102B2
US5044773A
US2650016A
Attorney, Agent or Firm:
LAU, Michael, N. (Springfield, VA, US)
Download PDF:
Claims:

We claim:

1. A method of making a bag using a material made of a web material adhered with a base material, comprising a plurality of steps of: a. forming the material into a rectangular shape; b. dividing the rectangular piece of material into a header zone, a body zone, a footer zone, a first flat-side zone, a first folding zone, a second flat-side zone, a second folding zone, and a tab zone; c. forming an endless closure by adhering the tab zone to a surface of the first flat- side zone wherein the web material residing on one of the tab zone and the first flat-side zone serves as a retaining wall to retain a pool of adhesives therein when the tab zone is adhered to the first flat-side zone.

2. The method of making a bag of claim 1, further comprising a step of: d. folding the header zone into the body zone.

3. The method of making a bag of claim 2, further comprising a step of: e. adhering a reinforcement member in-between the header zone and the body zone.

4. The method of making a bag of claim 3, further comprising a step of: f. creating a plurality of holes through the reinforcement member, the header zone and the body zone on both the first flat-side zone and the second flat-side zone.

5. The method of making a bag of claim 1 , further comprising a step of:

g. configuring the endless closure into a substantially rectangular shape along a plurality of boundaries defining the first flat-side zone, the first folding zone, the second flat-side zone, the second folding zone and the tab zone.

6. The method of making a bag of claim 5, further comprising a step of: h. folding a first bottom edge of the first folding zone and a second bottom edge of the second folding zone toward each other so that the first and second bottom edges are substantially parallel.

7. The method of making a bag of claim 6, further comprising a step of: i. folding a third bottom edge on the first flat-side zone and a fourth bottom edge on the second flat-side zone toward each other to form a first closure tab and a second closure tab in a way that the third and fourth edges are substantially parallel and the first closure tab and the second closure tab overlap each other.

8. The method of making a bag of claim 7, further comprising a step of: j. forming a closure end by adhering the first closure tab to the second closure tab wherein the web material on one of the first closure tab and the second closure tab forms a retaining wall to retain a pool of adhesives when the first closure tab is adhered to the second closure tab.

9. The method of making a bag of claim 8, further comprising a step of:

k. inserting each of two ends of an elongated flexible material into each of the plurality of holes and form a tying knot therein wherein the tying knot is larger than each of the plurality of holes so that the string becomes a bag handle.

10. The method of making a bag of claim 1 , wherein the web material is one of a material formed by weaving, knitting, pressing, or felting natural or synthetic fibers, a net, a lace, a tulle, an allover lace made of one of polyester, nylon, rayon, lurex and cotton.

11. The method of making a bag of claim 1 , wherein the base material is one of a paper material, a foil material, a cardboard material, a plastic material and a material formed by weaving, knitting, pressing, or felting natural or synthetic fibers.

12. A bag made of a material having a web material adhered with a base material giving the material a web surface side and a flat surface side, the material comprises: a header zone; a body zone; a footer zone; a first flat-side zone; a first folding zone; a second flat-side zone; a second folding zone; and

a tab zone; wherein when the tab zone is adhered to the first flat-side zone, the web material residing on one of the tab zone and the first flat-side zone serves as a retaining wall to retain a pool of adhesives in-between the tab zone and the first flat-side zone when they are adhered together.

13. The bag of claim 12, wherein when the footer zone of the first flat-side zone, the first folding zone, the second flat-side zone and the second folding zone are foldably formed into a closure end, the web material residing on the footer zone serves as a retaining wall to retain a pool of adhesives between a plurality of surfaces of the footer zone to adhere them together.

14. The bag of claim 12, wherein the web material shares a load placed on the base material.

15. The bag of claim 12, wherein when an object penetrates and punctures the base material, the web material adhered with the base material limits a size of penetration on the base material.

16. The bag of claim 12, wherein when an object penetrates and punctures the base material, the web material adhered with the base material prevents further tearing of the base material.

17. The bag of claim 12, wherein when an object penetrates and punctures the base material, the web material adhered with the base material retains any object stored in the bag.

18. The bag of claim 12, wherein a reinforcement member is adhered in-between the header zone and the body zone to evenly distribute a load to other zones of the bag.

19. The bag of claim 18, wherein a plurality of holes are created through the header zone, the body zone and the reinforcement member.

20. The bag of claim 19, wherein both ends of a string each being inserted into each of the plurality of holes and to create a tying knot having a size larger than a size of each of the plurality of holes to become a handle.

21. The bag of claim 13, wherein a support member is adhered inside the bag on the closure end to provide rigidity support to the closure end.

22. The bag of claim 13, wherein the first folding zone and the second folding zone are foldably collapsible so that an inner surface of the first flat- side zone and an inner surface of the second flat-side zone may come in contact with each other.

23. The bag of claim 22, wherein the closure end of the bag are foldable as the first folding zone and the second folding zone are foldably collapsed so the bag occupies less volume of space.

24. The method of making a bag of claim 12, wherein the web material is one of a material formed by weaving, knitting, pressing, or felting natural or synthetic fibers, a net, a lace, a tulle, an allover lace made of one of polyester, nylon, rayon, lurex and cotton.

25. The method of making a bag of claim 12, wherein the base material is one of a paper material, a foil material, a cardboard material, a plastic material and a material formed by weaving, knitting, pressing, or felting natural or synthetic fibers.

Description:

A Bag With A Safety Net

Field of the Invention

The present invention is related to the field of bags. More specifically, the bag of the present invention is made of a textural material that enhances both the durability and the ornamental appeal of the bag.

Description of the Related Art

Conventional foldable bags have been in the marketplace for many years. They are typically shaped as shown in various figures of U.S. Patent Numbers, 6,000,849 issued to Keller; 6,146,618 issued to Keller; 6,345,912 issued to Ho; 6,737,959 issued to Ho; 6,749,064 issued to Alrey; 5,836,095 issued to Crowell; 6,045,263 issued to Keller; 5,613,312 issued to Crowell; 6,045,263 issued to Keller; 5,613,312 issued to Crowell; and 5,441,348 issued to Valentino. These foldable bags are generally made of paper or plastic.

While thick paper sheets are able to withstand acceptable amount of load and stress, the material strength of paper deteriorates substantially when used repeatedly, when it becomes wet, or when it is punctured. As individual fibers making up a paper sheet becomes wet, they tend to absorb the water in their surrounding until the amount of absorption reaches a saturation point. Moisturized or soaked fibers swell up and expand in size. Due to this fiber expansion, the frictional force holding numerous fibers together would become weaken as contact surfaces of the fibers decreased. In addition, each of

the individual swelled fibers also disintegrates and allows the paper sheet to become more susceptible to tears. Consequently, the durability of a bag made of paper material greatly deteriorates once it is soaked with liquid or when it is used in a humid environment.

Generally, an un-punctured paper bag is highly resistant to tears due to various types of tear resistant barriers designed into the bag. However, once a puncture or cut exist on the paper bag, the paper bag is highly susceptible to tears, hence enlargement of the puncture or cut. It is often the case that once a layer of a paper bag is punctured by a foreign object, such as by an object stored in the bag, the weight of the foreign object tends to travel downward due to gravitational pull. As the foreign object travels downward beginning from the point of penetration of the paper bag, the initially small opening is enlarged because the amount of gravitational pull is greater than the tear tolerate point of the paper. As the opening is enlarged, other objects stored therein the bag would also fall out of the paper bag due to gravitational pull. Therefore, the paper bag is rendered useless.

Foldable bags made of plastic materials tend to be very resistant to deterioration when exposed to liquid or moisture. However, plastic provides a less rigidity characteristic than paper. A paper bag can maintain its form and rigidity even used under higher load than it is designed to withstand. Upon removal of the load, it is better able to return to its original shape and condition. Overall, a paper bag when used in dry conditions and used under loads slightly higher than it is designed to withstand would not be permanently damaged.

On the other hand, a plastic bag demonstrates very little rigidity and when used under a load slightly more than it is designed to withstand, it would begin to deform. Once any deformation occurs in a plastic bag material, the deformation becomes permanent. Upon removal of an object asserting the load, deformed plastic materials do not return to their pre-deformed shapes and conditions.

Furthermore, since plastic has a more uniformed molecular structure than paper, once there is a small puncture or a cut in the plastic bag, it requires very little amount of force to rip a plastic sheet wide open.

Therefore, both paper bags and plastics bags have serious shortcomings in that they are incapable to resist tears once they are punctured or cut.

Object of the Invention

An objective of the present invention is to overcome the above-discussed shortcomings of bags that are conventionally made of paper material and plastic material.

Another object of the present invention is to manufacture a new material by adding a web material to a plastic material, a paper material and a foil material, etc.

A third object of the present invention is to manufacture bags that are able to withstand higher loads and higher stresses than conventional bags.

A fourth object of the present invention is to make bags that are more resistant to tears once they are penetrated or cut by an object.

A fifth object of the present invention is to manufacture bags using a new material unknown among conventional bag making materials.

A sixth object of the present invention is to provide a safety net on the bag so as to prevent objects from falling out of the bag even if the bag is torn or punctured.

A seventh object of the present invention is to use the new material as a communication medium to convey seasons of the year, occasions the bag is suited for and sentiments associated with the use of the bag.

Other objects of the present invention will become more apparent upon review of the explanations given hereinunder.

Drawings of the Present Invention Figure 1 illustrates a plan view of a general layout of a new material to be configured into a bag.

Figure 2 illustrates a top view of the new material upon being partially configured.

Figure 3 illustrates a bottom view of the new material upon being partially configured into a closure on one end.

Figure 4 illustrates a side view of the new material being partially configured into a bag and adding thereto a top rim reinforcement member so as to more evenly distribute the load throughout the bag.

Figure 5 illustrates a perspective view of the new material being fully configured into a bag.

Figure 6 illustrates a diagram view of an apparatus that adheres a web material onto a base material to become a new material.

Figure 7 illustrates a side view of a web material being adhered to a base material by an adhesive.

Figures 8-11 illustrate several plan views of a number of new materials each having a web material adhered onto a base material.

Figures 12-14 illustrate several perspective views of a number of bags made with the new material where the web material serves as a safety net of the base material.

Detailed Description

A new material is manufactured by adhering a web material onto a base material. The web material may be material formed by weaving, knitting, pressing, or felting natural or synthetic fibers; a net, a lace, an allover lace or tulle knitted of either polyester, nylon, rayon, lurex, metallic wire, yarn or a combination thereof. The manner in which the adhering of the web material and the base material, and post processing thereof is performed as shown by way of an example in Figure 6. As shown, there are 11 manufacturing stages divided into stations 1-11.

In station 1, a roll of a web material 601 is suitably installed onto a holding roller 600. The roll of web material is biased between a stabilizing roller 602 and the holding roller 600 to minimize any other motions so as to ensure and isolate a rotating motion about the holding roller 600. The roll of web material 601 is also biased between the holding roller 600 and a driving roller 608 driven by a motor 604 via a driving shaft 606 and a driving belt 607. As the driving roller 608 frictionally rotates the roll of web

material 601 , the roll of web material is unwrapped and the unwrapped material travels toward a directing roller 610 in bonding station 4.

In station 2, a roll of base material 611 is suitably installed onto a second holding roller 612. Any unwrapped based material 611 is guided by assisting rollers 614 and 616 to travel over an adhesive application roller 618 in an adhesive application station 3. Both the web material 601 and the base material 611 are fed between a second biasing roller 622, a second stabilizing roller 620 and a second driving roller 624. The second driving roller 624 is driven by a second motor 626 via a belt 628, in slitter station 5. As the web material 601 and the base material 611 traveled through the second biasing roller 622, the second stabilization roller 620 and the second driving roller 624, they are pressed by the rollers and held together by adhesives applied by the application roller 618. A new material is thus formed.

Depending upon specific applications the new material is being prepared for, peel and stick materials such as for lace or ribbon may be added onto the new material by installation rollers 630 in slitter station 5. Even though four rollers are shown to make up installation rollers 630. The number of actual rollers and the width of a roller may be altered depending upon specific needs.

Stations 6-11 are post processing stations to cut and prepared the new material for specific applications. Station 6 is a sheeting cutting station. Station 7 is a BOPP sheets accumulating station. Station 8 is another bag cutting station. Station 9 is a cut sheet accumulating station. Station 10 is a new material based packaging station. Station 11 is a bag forming station.

Either of the roll of web material 601 or the base material 611 can be installed onto holding rollers 600 or 612, and vice versa. It all depends on whether adhesives are to be applied to the web material 601 or base material 611. IQ the illustrated example, the based material 611 is applied with adhesives. As the base material 611 is a long planar sheet of paper material, plastic material, foil material, etc., adhesives are applied onto the entire surface of the base material when coming in contact with the adhesive application roller 618. This would provide an advantageous effect in that a coding is being uniformly applied to the entire surface of the base material. This coding may produce a shade of sheen, a color scheme, an insulating layer, a reinforcement layer, a combination thereof, or other characteristics desirable for the application of the new material.

Alternatively, if the roll of web material 601 is installed onto the holding roller 612, adhesives will be applied only to the surface contact side of the web material formed by weaving, knitting, pressing, or felting natural or synthetic fibers, lace, tulle, allover lace, net, etc. This would provide an advantageous effect in that since a web material contains many devoids thus it would have much less contact surface area than a planar sheet of base material. Consequently, less adhesive is being used. Therefore, applying adhesives to the web material is an economical alternative of applying adhesives to the base material.

Figure 7 illustrates a representative cross-sectional view of an adhesive 702 being sandwiched in-between web material 700 and base material 704. It should be noted that the thickness of the adhesive 702, web material 700 and base material 704 may not be the same. How much difference in thickness between these materials depend upon specific web material, base material and adhesive that are being used.

New materials successfully made by adhering web materials with base materials are shown by way of examples in Figures 8, 9, 10 and 11. As shown in Figure 8, a green, white and red web material is adhered to a white base material. This overall color scheme and pattern configuration is communicative of the Christmas season. Thus a bag made of this new material can be fashionably used during the Christmas season.

Figure 9 is shown a brown and rice color web material being adhered to a pink base material. As pink is typically associated as a feminine color, this new material is communicative that the user of a bag made of this new material is either a female or the content stored therein the bag is designated for a female recipient.

Figure 10 is shown a blue web-material with leave and web patterns being adhered onto a white base material. Given that web material with leaves are preferred by females yet blue is a generally a masculine associated color, this color scheme and web pattern communicates that this new material may be used by either gender.

Figure 11 is shown a white floral web material being adhered onto a deep maroon base material. As both the floral arrangement and the deep maroon color are more preferred by females. The use of this material would be communicative that any contents encompassed therein would be designated for a female recipient.

To make a foldablebag 500 as that shown in Figure 5, the process starts from establishing a pattern on a piece of material as shown by way of an example in Figure 1. As clearly shown, there are three different types of dash-lines, one type is composed of only a series of dots 114, another type is composed of a series of dashes and dots 112 and yet another type is composed of a series of long dashes 113. These three types of dash- lines signify a difference in folding directions. If a series of dots of dash lines signifies

that portions parallel to the dash lines are to be folded into the paper of Figure 1, then the series of dash lines and dots signifies that portions parallel to the dash lines and dots are to be folded out of the paper of Figure 1. For our example, dash line 114 signifies folding both portions parallel to the dash line into the paper Figure 1 and dash line 112 signifies folding both portions parallel to the dash line out of the paper of Figure 1.

The series of long dash lines signifies that due to multiple layers of folding, portions parallel to this series of long dash lines may fold either into or out of the paper Figure 1.

The numerous dash lines nicely divide the rectangular shape new material 100 into different zones. As shown, there are a header zone 102, a body zone 104, a footer zone 106, a first flat-side zone 118, a second flat-side zone 120, a first folding zone 108, a second folding zone 110, and a tap zone 122.

Located on each of the first flat-side zone 118 and the second flat-side zone 120 are four string holes 116, 124, 126 and 128. String holes 116 and 124 are complementary pairs of string holes 126 and 128, whereupon the folding of the header zone 102 to be flush with the body zone 104, holes 116 and 124 on the header zone 102 would correspondingly meet holes 126 and 128 on the body zone 104.

Exact and predetermined placement of string-holes 116, 124, 126 and 128 contributes to the overall durability of the bag under different usage conditions. For the horizontal placement of these holes, in a situation where the load is of the same foot print as that of the bag, thus the load placed on the bag 500 can be uniformly shared across the full width of the bag, then placement of these holes should observe the characteristics of d3=d4=dl.

In a situation where the load is not of the same foot print as that of the bag and the load tends to concentrate in the mid-width portion of the bag, then placement of these holes should observe the characteristics d3<dl, d4<dl and d3=d4.

In a situation where the load is not of the same foot print as that of the bag and the load tends to concentrate on one side of the bag, then placement of these holes should observe the characteristics dl<d3, dl<d4 and d3=d4.

These string-holes may be individually created on the header zone and the body zone. They can also be created after the header zone is folded into the body zone. They can further be created after a reinforcement member 400 is adhered in-between the header zone and the body zone.

As bags are manufactured in different sizes; generally, the larger is the size of the bag, the more important it is to correctly choose the placement of the string-holes. However, depending on the size and weight of the load, these horizontal string-hole placement considerations are also applicable to smaller size bags.

Vertical placement of string-holes 116, 124, 126 and 128 should observe characteristics that d2=d6 and d2>d5. This is to compensate for the fact that while the material at the rim of these holes experience the most amount of compressive force, the edge of the material above these holes experience the most amount of tensile force, due to the load. In addition to the concerns over the placement of the ring-holes, a reinforcement member 400 should also be added in-between the header zone 102 and the body zone 104. This reinforcement member helps regions surrounding string-holes 116, 124, 126 and 128 to withstand the compressive force and tensile force so as to prevent material 100 from breaking down and cause a tear to occur beginning from around the

rims of the string-holes. An eyelet may also be added to each string-hole as a further tear prevention device. This reinforcement member 400 also helps to redistribute the load evenly across the width of the bag. To redistribute the load across the full width of the bag, the width of the reinforcement member 400 should be the full width of the bag. However, as shown in Figure 4, the reinforcement member 400 is shown by way of an example to be shorter than the full width of the bag. The bag shown in Figure 4 thus has a lighter load capacity than a bag where the reinforcement member is the full width of the bag.

It is preferred that the reinforcement member 400 be adhered in-between the header zone 102 and the body zone 104, this would further ensure that all surfaces coming into contact with the reinforcement member 400 evenly share the load and evenly distribute sharing of the load to other zones of the bag.

Figure 2 illustrates a bottom view of material 100 that is being folded along various fold lines. Points 202, 204, 206, 208, 210 and 212 respectively correspond to fold lines 112, 114, 144, 146, 148 and 150. An outer surface of the tap 122 is adhered to an inner surface of the first flat-side zone 118. The larger is the size of the tap 122, the more surface contact will there be between the tap 122 and the first flat-side zone 118. The stronger will also be the integrity of the bag. Given that the new material 100 has a web side, the devoid spaces formed by the web patterns effectively create an adhesive retaining pool, so that greater amount of adhesives may be used to provide a stronger hold of two contacting surfaces. This retaining pool feature also contributes to the making of a stronger bag.

Figure 3 provides another bottom view showing the footer zone being folded along various long dash lines to form a closure end. Specifically, the closure end is made by folding a first bottom edge of the first folding zone 110 and a second bottom edge of the second folding zone 108 toward each other so that the first and second bottom edges are substantially parallel. Then there is further folding of a third bottom edge of the first flat-side zone 118 and a fourth bottom edge of the second flat-side zone 120 toward each other to form a first closure tab and a second closure tab in a way that the third and fourth bottom edges are substantially parallel and overlapping each other. The closure end is finalized by adhering the first closure tab to the second closure tab wherein the web material on one of the first closure tab and the second closure tab form a retaining wall to retain a pool of adhesives when the first closure tab is adhered to the second closure tab at the overlapping surfaces.

Again, due to the presence of web patterns to retain a greater amount of adhesive material, the closure end of the present invention is much stronger than conventional closure ends without the benefit of the retaining wall to retain a pool of adhesives.

There is a supporting plate member (not shown) placed on the bottom of the bag yet residing above the closure end. This supporting plate member is of substantially the same size as the bottom of the bag. It provides further rigidity and load bearing capacity to the bottom of the bag. From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention that come within the province of those persons having ordinary skill in the art to which the aforementioned invention pertains. However, it is intended that all such variations not departing from the

spirit of the invention be considered as within the scope thereof as limited solely by the appended claims.