Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MOLYBDENUM/BISMUTH/IRON-BASED AMMOXIDATION CATALYST CONTAINING CERIUM AND SAMARIUM
Document Type and Number:
WIPO Patent Application WO/2017/069995
Kind Code:
A1
Abstract:
A catalytic composition useful for the conversion of an olefin selected from the group consisting of propylene, isobutylene or mixtures thereof, to acrylonitrile, methacrylonitrile, and mixtures thereof, or acrolein/arylic acid, methacrolein/methacrylic acid, and mixtures thereof; also useful for the conversion of an alcohol, selected from the group consisting of methanol, ethanol and mixtures thereof, to hydrogen cyanide (HCN), acetonitrile, and mixtures thereof. The catalytic composition comprises a complex of metal oxides comprising bismuth, molybdenum, iron, cerium, and at least one of samarium, praseodymium and neodymium.

Inventors:
BRAZDIL JAMES F (US)
LIN SEAN S -Y (US)
Application Number:
PCT/US2016/056766
Publication Date:
April 27, 2017
Filing Date:
October 13, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INEOS EUROPE AG (CH)
BRAZDIL JAMES F (US)
LIN SEAN S -Y (US)
International Classes:
B01J23/887; B01J23/89; B01J37/03; C07C45/35; C07C51/25; C07C253/24; C07C253/26; C07C255/08; B01J35/00; B01J35/02; B01J37/00; B01J37/08
Foreign References:
CN1810364A2006-08-02
US20140148610A12014-05-29
EP2098288A12009-09-09
Attorney, Agent or Firm:
YUSKO, David (US)
Download PDF:
Claims:
The claimed invention is:

1. A catalytic composition comprising a complex of metal oxides wherein the relative ratios of the listed elements in said catalyst are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, vanadium and tellurium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbium thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5, m is 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

2. The catalytic composition of claim 1, wherein 0.01 < q/(a+h+q).

3. The catalytic composition of claim 1, wherein q/(a+h+q) < 0.05.

4. The catalytic composition of claim 1, wherein 0.3 < (a+h)/d.

5. The catalytic composition of claim 1, wherein (a+h)/d < 1.0.

6. The catalytic composition of claim 1, wherein (a+h)/d < 0.4.

7. The catalytic composition of claim 1, wherein 1.2 < h/b < 5.

8. The catalytic composition of claim 1, wherein 1.5 < h/b < 5.

9. The catalyst composition of claim 1, wherein Q is samarium.

10. The catalyst composition of claim 1, wherein A is at least one element selected from the group consisting of sodium, rubidium, and cesium.

11. A catalytic composition comprising a complex of metal oxides wherein the relative ratios of the listed elements in said catalyst are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and D is at least one element selected from the group consisting of nickel, cobalt,

manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, aluminum, gallium, indium, arsenic, antimony and tellurium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbium thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5,

m is 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d.

12. The catalytic composition of claim 11, wherein 0.01 < q/(a+h+q).

13. The catalytic composition of claim 11, wherein q/(a+h+q) < 0.05.

14. The catalytic composition of claim 11, wherein 0.3 < (a+h)/d.

15. The catalytic composition of claim 11, wherein (a+h)/d < 1.0.

16. The catalytic composition of claim 11, wherein (a+h)/d < 0.4.

17. The catalytic composition of claim 11, wherein 0.8 < h/b < 5.

18. A process for the conversion of an olefin selected from the group consisting of propylene, isobutylene and mixtures thereof, to acrylonitrile, methacrylonitrile, and mixtures thereof, respectively, by reacting in the vapor phase at an elevated temperature and pressure said olefin with a molecular oxygen containing gas and ammonia in the presence of a catalyst wherein the relative ratios of the listed elements in said catalyst are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, vanadium and tellurium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbium thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury; Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is from 0.05 to 7,

b is from 0.1 to 7,

c is from 0.01 to 5,

d is from 0.1 to 12,

e is from 0 to 5,

f is from 0 to 5,

g is from 0 to 0.2,

h is from 0.01 to 5,

m is from 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

19. A process for the conversion of an olefin selected from the group consisting of propylene, isobutylene and mixtures thereof, to acrolein/acrylic acid, methacrolein/methacrylic acid, and mixtures thereof, respectively, by reacting in the vapor phase at an elevated temperature and pressure said olefin with a molecular oxygen containing gas in the presence of a catalyst wherein the relative ratios of the listed elements in said catalyst are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium; E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, vanadium and tellurium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbium thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5,

m is 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

20. A process for the conversion of an alcohol, selected from the group consisting of methanol, ethanol and mixtures thereof, to hydrogen cyanide (HCN), acetonitrile, and mixtures thereof, respectively, by reacting in the vapor phase at an elevated temperature and pressure said alcohol with a molecular oxygen containing gas and ammonia in the presence of a catalyst wherein the relative ratios of the listed elements in said catalyst are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, vanadium and tellurium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbium thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is from 0.05 to 7,

b is from 0.1 to 7,

c is from 0.01 to 5,

d is from 0.1 to 12,

e is from 0 to 5,

f is from 0 to 5,

g is from 0 to 0.2,

h is from 0.01 to 5,

m is from 10 to 15, 0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

AMENDED CLAIMS

received by the International Bureau on 27 MAR 2017 (24.03.2017)

WE CLAIM:

The listing of claims below will replace all prior versions and listings of claims in this

Application.

1. A catalytic composition comprising a complex of metal oxides wherein the relative ratios of the elements in said complex of mixed metal oxides are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, and vanadium; F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbiunii thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5,

m is 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

2. The catalytic composition of claim 1, wherein 0.01 < q/(a+h+q).

3. The catalytic composition of claim 1, wherein q/(a+h+q) < 0.05.

4. The catalytic composition of claim 1, wherein 0.3 < (a+h)/d.

5. The catalytic composition of claim 1, wherein (a+h)/d < 1.0.

6. The catalytic composition of claim 1, wherein (a+h)/d < 0.4.

7. The catalytic composition of claim 1, wherein 1.2 < h/b < 5.

8. The catalytic composition of claim 1, wherein 1.5 < h/b < 5.

9. The catalyst composition of claim 1, wherein Q is samarium.

10. The catalyst composition of claim 1, wherein A is at least one element selected from the group consisting of sodium, rubidium, and cesium.

11. A catalytic composition comprising a complex of metal oxides wherein the relative ratios of the elements in said complex of mixed metal oxides are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, aluminum, gallium, indium, arsenic^ and antimony and tellurium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbiunii thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5,

m is 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d.

12. The catalytic composition of claim 11, wherein 0.01 < q/(a+h+q).

13. The catalytic composition of claim 11, wherein q/(a+h+q) < 0.05.

14. The catalytic composition of claim 11, wherein 0.3 < (a+h)/d.

15. The catalytic composition of claim 11, wherein (a+h)/d < 1.0.

16. The catalytic composition of claim 11, wherein (a+h)/d < 0.4.

17. The catalytic composition of claim 11, wherein 0.8 < h/b < 5.

18. A process for the conversion of an olefin selected from the group consisting of propylene, isobutylene and mixtures thereof, to acrylonitrile, methacrylonitrile, and mixtures thereof, respectively, by reacting in the vapor phase at an elevated temperature and pressure said olefin with a molecular oxygen containing gas and ammonia in the presence of a catalyst wherein the relative ratios of the-elements in said catalyst are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and D is at least one element selected from the group consisting of nickel, cobalt,

manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, and vanadium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbiunii thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is from 0.05 to 7,

b is from 0.1 to 7,

c is from 0.01 to 5,

d is from 0.1 to 12,

e is from 0 to 5,

f is from 0 to 5,

g is from 0 to 0.2,

h is from 0.01 to 5,

m is from 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

19. A process for the conversion of an olefin selected from the group consisting of propylene, isobutylene and mixtures thereof, to acrolein/acrylic acid, methacrolein/methacrylic acid, and mixtures thereof, respectively, by reacting in the vapor phase at an elevated temperature and pressure said olefin with a molecular oxygen containing gas in the presence of a catalyst wherein the relative ratios of the listed elements in said catalyst are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and D is at least one element selected from the group consisting of nickel, cobalt,

manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, and vanadium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbiunii thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5,

m is 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

20. A process for the conversion of an alcohol, selected from the group consisting of methanol, ethanol and mixtures thereof, to hydrogen cyanide (HCN), acetonitrile, and mixtures thereof, respectively, by reacting in the vapor phase at an elevated temperature and pressure said alcohol with a molecular oxygen containing gas and ammonia in the presence of a catalyst wherein the relative ratios of the listed elements in said catalyst are represented by the following formula:

Mom Bia Feb Ac Dd Ee Ff Gg Ceh Qq Ox

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium, and cesium; and D is at least one element selected from the group consisting of nickel, cobalt,

manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, and vanadium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbiunii thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is from 0.05 to 7,

b is from 0.1 to 7,

c is from 0.01 to 5,

d is from 0.1 to 12,

e is from 0 to 5,

f is from 0 to 5,

g is from 0 to 0.2,

h is from 0.01 to 5,

m is from 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

Description:
MOLYBDENUM/BISMUTH/IRON-BASED AMMOXIDATION CATALYST CONTAINING CERIUM AND SAMARIUM

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to an improved catalyst for use in the ammoxidation of an unsaturated hydrocarbon to the corresponding unsaturated nitrile. In particular, the present invention is directed to an improved catalytic composition for the ammoxidation of propylene and/or isobutylene to acrylonitrile and/or methacrylonitrile, respectively, wherein said catalyst comprises a complex of metal oxides comprising bismuth, molybdenum, iron, cerium, and at least one of samarium, praseodymium and neodymium, and wherein said catalyst is characterized by ratio of the amount of samarium, praseodymium and neodymium in the catalyst to the amount of bismuth, cerium, samarium, praseodymium and neodymium contained in the catalyst.

Description of the Prior Art

Catalysts containing oxides of iron, bismuth and molybdenum, promoted with suitable elements, have long been used for the conversion of propylene and/or isobutylene at elevated temperatures in the presence of ammonia and oxygen (usually in the form of air) to manufacture acrylonitrile and/or methacrylonitrile. In particular, Great Britain Patent 1436475; U.S.

Patents 4,766,232; 4,377,534; 4,040,978; 4,168,246; 5,223,469 and 4,863,891 are each directed to bismuth-molybdenum-iron catalysts which may be promoted with the Group II elements to produce acrylonitrile. In addition, U.S. Patents 5,093,299, 5212,137, 5,658,842, 5,834,394, and CN103418400 are directed to bismuth-molybdenum promoted catalysts exhibiting high yields to acrylonitrile.

In part, the instant invention relates to a bismuth-molybdenum-iron catalysts promoted with at least one of samarium, praseodymium and neodymium. US 5,223,469; US 6,642,405,US 6,723,867; CN1736592A; CN103769138A; CN103769129A; CN103769127A; CN103736496A; CN103418400A; CN102372650A; CN103521233A; CN102040543B; CN101992091B;

CN101884929B; CN1018110589B; CN101767013B; CN102371156B;CN1393285A;

CN1810364A; CN10459340 and CN 10459344 are directed to bismuth-molybdenum-iron ammoxidation catalysts promoted with samarium. EP 1 223 162 teaches a bismuth- molybdenum-iron ammoxidation catalyst promoted with praseodymium. U.S. Patent 5,658,842 is directed to bismuth-molybdenum-iron ammoxidation catalysts promoted with samarium, praseodymium and neodymium.

In part, the instant invention relates to a bismuth-molybdenum-iron catalysts promoted with cerium. U.S. Patents 8,153,546; 8,350,075; 8,455,388 teach that the relative ratio of bismuth to cerium in the catalyst composition impacts the performance of the catalyst.

SUMMARY OF THE INVENTION

The present invention is directed to an improved mixed metal oxide catalyst for the ammoxidation of propylene and/or isobutylene. This improved catalyst provides greater overall conversion of the propylene and/or isobutylene to acrylonitrile and/or methacrylonitrile.

In one embodiment, the invention is directed to a catalytic composition comprising a complex of metal oxides wherein the relative ratios of the listed elements in said catalyst are represented by the following formula:

Mo m Bi a Fe b A c D d E e F f G g Ce h Q q O x

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium; E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, vanadium and tellurium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbium thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5,

m is 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16 and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d and 0.8 < h/b < 5.

In another embodiment, the invention is directed to a catalytic composition comprising a complex of metal oxides wherein the relative ratios of the listed elements in said catalyst are represented by the following formula: Mo m Bi a Fe b A c D d E e F f G g Ce h Q q O x

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, aluminum, gallium, indium, arsenic, antimony and tellurium;

F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbium thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5,

m is 10 tol5,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d. In other embodiments, 0.3 < (a+h)/d for the above compositions.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to an improved mixed metal oxide catalyst for the ammoxidation of propylene and/or isobutylene. This improved catalyst provides greater overall conversion of the propylene and/or isobutylene acrylonitrile and/or methacrylonitrile. It has been discovered that for the catalyst composition described below that the addition of at least one of samarium, praseodymium and neodymium improves the performance of bismuth molybdate ammoxidation catalysts containing higher quantities of bismuth and cerium relative to the amount of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium in the catalyst. As used herein, "catalytic composition" and "catalyst" are synonymous and used interchangeably.

The Catalyst:

The present invention is directed to a multi-component mixed metal oxide ammoxidation catalytic composition comprising a complex of catalytic oxides wherein the elements and the relative ratios of the elements in said catalytic composition are represented by the following formula:

Mo m Bi a Fe b A c D d E e F f G g Ce h Q q O x

wherein A is at least one element selected from the group consisting of sodium, potassium, rubidium and cesium; and

D is at least one element selected from the group consisting of nickel, cobalt,

manganese, zinc, magnesium, calcium, strontium, cadmium and barium;

E is at least one element selected from the group consisting of chromium, tungsten, boron, aluminum, gallium, indium, phosphorus, arsenic, antimony, vanadium and tellurium; F is at least one element selected from the group consisting of lanthanum, europium, gadolinium, terbium, dysprosium, holmium, erbium thulium, ytterbium, lutetium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, aluminum, gallium, indium, thallium, silicon lead and germanium;

G is at least one element selected from the group consisting of silver, gold, ruthenium, rhodium, palladium, osmium, iridium, platinum and mercury;

Q is at least one of samarium, praseodymium and neodymium; and

a, b, c, d, e, f, g, h, q, m and x are, respectively, the atomic ratios of bismuth (Bi), iron (Fe), A, D, E, F, G, cerium (Ce), Q and oxygen (O), relative to "m" atoms of molybdenum (Mo), wherein a is 0.05 to 7,

b is 0.1 to 7,

c is 0.01 to 5,

d is 0.1 to 12,

e is 0 to 5,

f is 0 to 5,

g is 0 to 0.2,

h is 0.01 to 5,

m is 10 to 15,

0 < q/(a+h+q) and q/(a+h+q) < 0.16, and

x is the number of oxygen atoms required to satisfy the valence requirements of the other component elements present;

and wherein 0.15 < (a+h)/d.

In one embodiment, the components or element designated by "Q" in the above formula is samarium. In one embodiment, the components or element designated by "Q" in the above formula is praseodymium. In one embodiment, the components or element designated by "Q" in the above formula is neodymium. In one embodiment, A is at least one element selected from the group consisting of lithium, sodium, rubidium and cesium. In one embodiment, the catalytic composition is free of potassium.

In one embodiment the catalyst contains no tellurium, antimony or selenium. In another embodiment, the components or elements designated by "E" in the above formula may also include tellurium and/or antimony. In another embodiment, the components or elements designated by "E" in the above formula are at least one element selected from the group consisting of chromium, aluminum, gallium, indium, arsenic, antimony and tellurium;. In another embodiment, "e" is zero (i.e. the above described composition contains no components or elements designated by "E" in the above formula). In one embodiment, h is from 0.01 to 5. In one embodiment, "F" may additionally include lead (Pb). In another embodiment, "F" does not include lead (Pb). In one embodiment, "m" is 12.

In part, the catalytic composition may be characterized by the relationship of q/(a+h+q), where "q" is the relative amount of samarium, praseodymium and neodymium in the catalyst, where "a" is the relative amount of bismuth in the catalyst, and "h" is the relative amount of cerium in the catalyst. These relative amounts are the elements subscript in the catalyst formula, or in the case of "q" the sum of the subscripts from the catalyst formula for any samarium, praseodymium and neodymium present in the catalyst. In one embodiment, 0 < q/(a+h+q) and q/(a+h+q) < 0.16. In another embodiment, 0 < q/(a+h+q) and q/(a+h+q) < 0.05. In another embodiment, 0.01 < q/(a+h+q) and q/(a+h+q) < 0.12. Other independent embodiments are (each line below being an embodiment):

0 < q/(a+h+q),

0.01 < q/(a+h+q),

0.02 < q/(a+h+q),

0.03 < q/(a+h+q),

0.04 < q/(a+h+q),

q/(a+h+q) < 0.16, q/(a+h+q) < 0.14,

q/(a+h+q) < 0.12,

q/(a+h+q) < 0.10,

q/(a+h+q) < 0.08,

q/(a+h+q) < 0.06, and

q/(a+h+q) < 0.05.

In part, the catalytic composition may be characterized by the relationship of (a+h)/d, where "a" is the relative amount of bismuth in the catalyst, "h" is the relative amount of cerium in the catalyst and "d" is the relative amounts of nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium in the catalyst. These relative amounts are the elements subscript in the catalyst formula, or in the case of "d" the sum of the subscripts from the catalyst formula for any nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium present in the catalyst. In one embodiment, 0.15 < (a+h)/d. In another independent embodiment, 0.3 < (a+h)/d. Other independent embodiments are (each line below being an embodiment):

0.15 < (a+h)/d < 1,

0.3 < (a+h)/d < 1,

0.3 < (a+h)/d < 0.8,

0.3 < (a+h)/d < 0.6,

0.3 < (a+h)/d < 0.4,

0.15 < (a+h)/d,

0.3 < (a+h)/d,

(a+h)/d < 1,

(a+h)/d < 0.8,

(a+h)/d < 0.6,

(a+h)/d < 0.5, and

(a+h)/d < 0.4. In part, the catalytic composition may be characterized by the relationship of h/b, where "h" is the relative amount of cerium in the catalyst, and "b" is the relative amount of iron in the catalyst. These relative amounts are the elements subscript in the catalyst formula. In one embodiment, 0.8 < h/b < 5. Other independent embodiments are (each line below being an embodiment):

1.2 < h/b < 5,

1.5 < h/b < 5,

1.2 < h/b,

1.5 < h/b,

0.8 < h/b, and

h/b < 5

It has been discovered that catalysts described within the range described by 0.8 < h/b < 5 tend to be stronger in that they have a lower attrition loss as determined by a submerged jet attrition test.

In part, the catalytic composition may be characterized by the relationship of (a/h), where "a" is the relative amount of bismuth in the catalyst, "h" is the relative amount of cerium in the catalyst. These relative amounts are the elements subscript in the catalyst formula. In one embodiment, 0 < a/h < 1.5. Other independent embodiments are (each line below being an embodiment):

0.2 < a/h < 1.5,

0.3 < a/h < 1.5,

0.4 < a/h < 1.5,

0.45 < a/h < 1.5,

0.5 < a/h < 1.5,

0.2 < a/h,

0.3 < a/h,

0.4 < a/h,

0.45 < a/h,

0.65 < a/h,

0.5 < a/h,

0.7 < a/h, 0.8 < a/h,

0.90 < a/h,

a/h < 1.2, and

a/h < 1.5

The catalyst of the present invention may be used either supported or unsupported (i.e. the catalyst may comprise a support). Suitable supports are silica, alumina, zirconium, titania, or mixtures thereof. A support typically serves as a binder for the catalyst and results in a stronger (i.e. more attrition resistant) catalyst. However, for commercial applications, an appropriate blend of both the active phase (i.e. the complex of catalytic oxides described above) and the support is crucial to obtain an acceptable activity and hardness (attrition resistance) for the catalyst. Typically, the support comprises between 40 and 60 weight percent of the supported catalyst. In one embodiment of this invention, the support may comprise as little as about 30 weight percent of the supported catalyst. In another embodiment of this invention, the support may comprise as much as about 70 weight percent of the supported catalyst.

In one embodiment the catalyst is supported using a silica sol. Typically, silica sols contain some sodium. In one embodiment, the silica sol contains less than 600 ppm sodium. In another embodiment, the silica sol contains less than 200 ppm sodium. Typically, the average colloidal particle diameter of the silica sol is between about 15 nm and about 50 nm. In one embodiment of this invention, the average colloidal particle diameter of the silica sol is about 10 nm and can be as low as about 4 nm. In another embodiment of this invention, the average colloidal particle diameter of the silica sol is about 100 nm. In another embodiment of this invention, the average colloidal particle diameter of the silica sol is about 20 nm. In another embodiment of this invention, the average colloidal particle diameter of the silica sol is about 40 nm.

Catalyst Preparation:

The catalyst may be prepared by any of the numerous methods of catalyst preparation which are known to those of skill in the art. A typical preparation method will begin with the formation of a mixture of water, a molybdenum source compound and a support material (e.g. silica sol). Separately, source compounds of the remaining elements in the catalyst are combined in water to form a second mixture. These two mixtures are then combined with stirring at a slightly elevated temperature (approximately 65°C) to form a catalyst precursor slurry. The catalyst precursor slurry is then dried and denitrified and then calcined as described below.

In one embodiment, the elements in the above identified catalyst composition are combined together in an aqueous catalyst precursor slurry, the aqueous precursor slurry so obtained is dried to form a catalyst precursor, and the catalyst precursor is calcined to form the catalyst. However, unique to the process of the instant invention is the following:

(i) combining, in an aqueous solution, source compounds of Bi and Ce, and optionally one or more of Na, K, Rb, Cs, Ca, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, yttrium, Pb, and W, to form a mixture (i.e. a first mixture),

(ii) adding a source compound of molybdenum to the mixture (i.e. the first mixture) to react with the mixture and form a precipitate slurry, and

(iii) combining the precipitate slurry with source compounds of the remaining elements and of the remaining molybdenum in the catalyst to form the aqueous catalyst precursor slurry.

As used herein, "source compounds" are compounds which contain and/or provide one or more of the metals for the mixed metal oxide catalyst composition. As used herein, "remaining elements" or "remaining elements in the catalyst" refers to those elements and the quantity of those elements represented by "A", "D", "E", "F" and "G" in the above formula which were not included in the first mixture. In one embodiment, some elements may be a part of both the first and second mixture. Further, as used herein, "remaining molybdenum" or "remaining molybdenum in the catalyst" refers to that quantity of molybdenum required in the finished catalyst which was not present (i.e. not included in the preparation of) in the precipitate slurry. Lastly, the sum of the quantities of molybdenum provided in the source compounds of molybdenum added in (ii) and (iii) is equal to the total quantity of molybdenum present in the catalyst. In the above catalyst preparation, the source compounds of the remaining elements and of the remaining molybdenum which are combined with the precipitate slurry may be combined in any order or combination of such remaining elements and remaining molybdenum. In one embodiment, a mixture of the source compounds of the remaining elements and of the remaining molybdenum is combined with the precipitate slurry to form the aqueous catalyst precursor slurry. In another embodiment, (i) a mixture of the source compounds of the remaining elements is combined with the precipitate slurry, and (ii) source compounds of the remaining molybdenum are separately added to the precipitate slurry to form the aqueous catalyst precursor slurry. In another embodiment, source compounds of the remaining elements and of the remaining molybdenum are added individually (i.e. one at a time) to the precipitate slurry. In another embodiment, multiple (i.e. more than one) mixtures of source compounds of the remaining elements and of the remaining molybdenum, wherein each mixture contains one or more of the source compounds of the remaining elements or of the remaining molybdenum, are separately added (i.e. one mixture at a time or multiple mixtures added simultaneously) to the precipitate slurry to form the aqueous catalyst precursor slurry. In yet another embodiment, a mixture of source compounds of the remaining elements is combined with a source compound of molybdenum and the resulting mixture is then added to the precipitate slurry to form the catalyst precursor slurry. In yet another embodiment, the support is silica (Si0 2 ) and the silica is combined with a source compound for the remaining molybdenum prior to combining the remaining molybdenum with the precipitate slurry (i.e. the silica and a source compound for the remaining molybdenum are combined to form a mixture and then this mixture is added to the precipitate slurry, individually or in combination with one or more source compounds of the remaining elements).

In the above catalyst preparation, molybdenum is added both in the preparation of the precipitate slurry and in the preparation of the aqueous catalyst precursor slurry. On an atomic level, the minimum amount of molybdenum added to form the precipitate slurry is determined by the following relationship

Mo = 1.5(Bi+Ce) + 0.5(Rb+Na+K+Cs) + (Ca) + 1.5(sum of the number of atoms of lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium and yttrium) + (Pb) - (W)

Wherein in the above relationship "Mo" is the number of atoms of molybdenum to be added to the first mixture, and "Bi", "Ce", "Rb", "Na", "K", "Cs", "Ca", "Pb" and "W" are the number of atoms of bismuth, cerium, rubidium, sodium, potassium, cesium, calcium, lead and tungsten respectively, present in the first mixture.

In the above catalyst preparation, typically, the amount of molybdenum added to the first mixture to form the precipitate slurry is about 20 to 35% of the total molybdenum in the final catalyst. In one embodiment, a source compound for the remaining molybdenum present in the catalyst is added to the mixture of the source compounds of the remaining elements (i.e. the second mixture) prior to the combination of the mixture of the remaining elements with the precipitate slurry to form the catalyst precursor slurry. In other embodiments, a source compound of molybdenum containing the remaining molybdenum present in the catalyst is added to the precipitate slurry either prior to, after or simultaneously with, the mixture of the source compounds of the remaining elements (i.e. the second mixture) in order to form the catalyst precursor slurry.

In the above preparation, source compounds of Bi and Ce, and optionally one or more of Na, K, Rb, Cs, Ca, a rare earth element, Pb and W, are combined in an aqueous solution to form a mixture. In one embodiment, bismuth nitrate and optionally other metal nitrates (i.e. nitrates of Na, K, Rb, Cs, Ca, a rare earth element and/or Pb) are dissolved in an aqueous solution of eerie ammonium nitrate. If tungsten is added, the source compound is typically ammonium

paratungstate, (NH 4 )ioH 2 (W 2 07)6. As used herein, a "rare earth element" means at least one of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, scandium and yttrium.

Added to the mixture comprising the bismuth and cerium (and optionally one or more of Na, K, Rb, Cs, Ca, a rare earth element, Pb and/or W) is a source compound of molybdenum. In one embodiment this source compound of molybdenum is ammonium heptamolybdate dissolved in water. Upon the addition of the molybdenum source compound to the mixture comprising the bismuth and cerium, a reaction will occur which will result in a precipitate and the resulting mixture is the precipitate slurry.

The precipitate slurry is then combined with a mixture of source compound of the remaining elements of the catalyst and a source compound of molybdenum, to form the aqueous catalyst precursor slurry. The mixture of source compounds of the remaining elements and a source compound of molybdenum may be prepared by combining source compounds of the remaining elements in an aqueous solution (e.g. source compounds are combined in water) and then adding a source compound of molybdenum. In one embodiment this source compound of molybdenum is ammonium heptamolybdate dissolved in water. When combining the precipitate slurry with the remaining elements/molybdenum mixture, the order of addition is not important, i.e. the precipitate slurry may be added to the remaining elements/molybdenum mixture or the remaining elements/molybdenum mixture may be added to the precipitate slurry. The aqueous catalyst precursor slurry is maintained at an elevated temperature.

The amount of aqueous solvent in each of the above described aqueous mixtures and slurries may vary due to the solubilities of the source compounds combined to form the particular mixed metal oxide. The amount of aqueous solvent should at least be sufficient to yield a slurry or mixture of solids and liquids which is able to be stirred.

In any case, the source compounds are preferably combined and/or reacted by a protocol that comprises mixing the source compounds during the combination and/or reaction step. The particular mixing mechanism is not critical, and can include for example, mixing (e.g., stirring or agitating) the components during the reaction by any effective method. Such methods include, for example, agitating the contents of the vessel, for example by shaking, tumbling or oscillating the component-containing vessel. Such methods also include, for example, stirring by using a stirring member located at least partially within the reaction vessel and a driving force coupled to the stirring member or to the reaction vessel to provide relative motion between the stirring member and the reaction vessel. The stirring member can be a shaft-driven and/or shaft- supported stirring member. The driving force can be directly coupled to the stirring member or can be indirectly coupled to the stirring member (e.g., via magnetic coupling). The mixing is generally preferably sufficient to mix the components to allow for efficient reaction between components of the reaction medium to form a more homogeneous reaction medium (e.g., and resulting in a more homogeneous mixed metal oxide precursor) as compared to an unmixed reaction. This results in more efficient consumption of starting materials and in a more uniform mixed metal oxide product. Mixing the precipitate slurry during the reaction step also causes the precipitate to form in solution rather than on the sides of the reaction vessel. More

advantageously, having the precipitate form in solution allows for particle growth on all faces of the particle rather than the limited exposed faces when the growth occurs out from the reaction vessel wall.

A source compound of molybdenum may include molybdenum (VI) oxide (M0O 3 ), ammonium heptamolybdate or molybdic acid. The source compound of molybdenum may be introduced from any molybdenum oxide such as dioxide, trioxide, pentoxide or heptaoxide. However, it is preferred that a hydrolyzable or decomposable molybdenum salt be utilized as source compound of molybdenum.

Typical source compounds for bismuth, cerium and the remaining elements of the catalyst are nitrate salts of the metals. Such nitrate salts are readily available and easily soluble.

A source compound of bismuth may include an oxide or a salt which upon calcination will yield the oxide. The water soluble salts which are easily dispersed but form stable oxides upon heat treating are preferred. In one embodiment the source compound of bismuth is bismuth nitrate, Bi(N0 3 ) 3 -5H 2 0

A source compound of cerium may include an oxide or a salt which upon calcination will yield the oxide. The water soluble salts which are easily dispersed but form stable oxides upon heat treating are preferred. In one embodiment the source compound of cerium is eerie ammonium nitrate, (NH 4 ) 2 Ce(N0 3 )6.

A source compound of iron may be obtained from any compound of iron which, upon calcination will result in the oxide. As with the other elements, water soluble salts are preferred for the ease with which they may be uniformly dispersed within the catalyst. Most preferred is ferric nitrate.

Source compounds for the remaining elements may be derived from any suitable source. For example, cobalt, nickel and magnesium may be introduced into the catalyst using nitrate salts. Additionally, magnesium may be introduced into the catalyst as an insoluble carbonate or hydroxide which upon heat treating results in an oxide. Phosphorus may be introduced in the catalyst as an alkaline metal salt or alkaline earth metal salt or the ammonium salt but is preferably introduced as phosphoric acid.

Source compounds for the alkali components of the catalyst may be introduced into the catalyst as an oxide or as a salt which upon calcination will yield the oxide.

Solvents, in addition to water, may be used to prepare the mixed metal oxides according to the invention include, but are not limited to, alcohols such as methanol, ethanol, propanol, diols (e.g. ethylene glycol, propylene glycol, etc.), organic acids such as acetic acid, as well as other polar solvents known in the art. The metal source compounds are at least partially soluble in the solvent.

As previously noted, the catalyst of the present invention may be used either supported or unsupported (i.e. the catalyst may comprise a support). Suitable supports are silica, alumina, zirconia, titania, or mixtures thereof. The support may be added anytime prior to the catalyst precursor slurry being dried. The support may be added at any time during or after the preparation of any mixture of elements, the precipitate slurry or the catalyst precursor slurry. Further the support need not be added in a single point or step (i.e. the support may be added at multiple points in the preparation. In one embodiment, the support is combined with the other ingredients during the preparation of the aqueous catalyst precursor slurry. In one embodiment, the support is added to the precipitate slurry (i.e. after the precipitate slurry is prepared). In one embodiment, the support is combined with the source compound of molybdenum prior to combining the source compound of molybdenum with source compounds of the remaining elements in the catalyst to form the "second mixture" referred to above.

The catalyst precursor slurry is dried and denitrified (i.e. the removal of nitrates) to yield the catalyst precursor. In one embodiment, the catalyst precursor slurry is dried to form catalyst particles. In one embodiment, the catalyst precursor slurry is spray-dried into micro spheroidal catalyst particles. In one embodiment the spray dryer outlet temperature of between 110°C and 350°C dryer outlet temperature, preferably between 110°C and 250°C, most preferably between 110°C and 180°C. In one embodiment the spray dryer is a co-current flow spray dryer (i.e. the particles are sprayed co-current to the gas flow). In another embodiment the spray dryer is countercurrent flow (i.e. the particles are sprayed countercurrent to the gas flow). In another embodiment the spray dryer is a pressure nozzle type spray dryer. In such spray-drying processes, water-containing solid phase particles are sprayed into contact with hot gas (usually air) so as to vaporize the water. The drying is controlled by the temperature of the gas and the distance the particles travel in contact with the gas. It is generally undesirable to adjust these parameters to achieve too rapid drying as this results in a tendency to form dried skins on the partially dried particles of the solid phase which are subsequently ruptured as water occluded within the particles vaporizes and attempts to escape. By the same token, it is desirable to provide the catalyst in a form having as little occluded water as possible. Therefore, where a fluidized bed reactor is to be used and microspheroidal particles are desired, it is advisable to choose the conditions of spray-drying with a view to achieving complete drying without particle rupture. The dried catalyst material is then heated to remove any remaining nitrates. The denitrification temperature may range from 100°C to 500°C, preferably 250°C to 450°C.

Finally, the dried and denitrified catalyst precursor is calcined to form the finished catalyst. In one embodiment, the calcination is effected in air. In another embodiment, the calcination is effected in an inert atmosphere. In one embodiment, the catalyst precursor is calcined in nitrogen. Calcination conditions include temperatures ranging from about 300°C to about 700°C, more preferably from about 350°C to about 650°C, and in some embodiments, the calcination may be at about 600°C. In one embodiment, calcination may be completed in multiple stages of increasing temperatures. In one embodiment, a first calcination step is conducted at a temperature in the range of about 300°C to about 450°C, followed by a second calcination step conducted at a temperature in the range of about 500°C to about 650°C.

Ammoxidation Process

The catalysts of the instant invention are useful in ammoxidation processes for the conversion of an olefin selected from the group consisting of propylene, isobutylene or mixtures thereof, to acrylonitrile, methacrylonitrile and mixtures thereof, respectively, by reacting in the vapor phase at an elevated temperature and pressure said olefin with a molecular oxygen containing gas and ammonia in the presence of the catalyst. The catalysts of the instant invention are also useful for the ammoxidation of methanol to hydrogen cyanide and the ammoxidation of ethanol to acetonitrile. In one embodiment employing the catalysts described herein, methanol and/or ethanol can be co-fed to a process for the ammoxidation of propylene, isobutylene or mixtures thereof to acrylonitrile, methacrylonitrile or mixtures thereof, in order to increase the production of hydrogen cyanide and/or acetonitrile co-products resulting from such process.

Preferably, the ammoxidation reaction is performed in a fluid bed reactor although other types of reactors such as transport line reactors are envisioned. Fluid bed reactors, for the manufacture of acrylonitrile are well known in the prior art. For example, the reactor design set forth in U.S. Pat. No. 3,230,246, herein incorporated by reference, is suitable.

Conditions for the ammoxidation reaction to occur are also well known in the prior art as evidenced by U.S. Pat. Nos. 5,093,299; 4,863,891; 4,767,878 and 4,503,001; herein incorporated by reference. Typically, the ammoxidation process is performed by contacting propylene or isobutylene in the presence of ammonia and oxygen with a fluid bed catalyst at an elevated temperature to produce the acrylonitrile or methacrylonitrile. Any source of oxygen may be employed. For economic reasons, however, it is preferred to use air. The typical molar ratio of the oxygen to olefin in the feed should range from 0.5: 1 to 4: 1, preferably from 1: 1 to 3: 1.

The molar ratio of ammonia to olefin in the feed in the reaction may vary from between 0.5: 1 to 2: 1. There is really no upper limit for the ammonia-olefin ratio, but there is generally no reason to exceed a ratio of 2: 1 for economic reasons. Suitable feed ratios for use with the catalyst of the instant invention for the production of acrylonitrile from propylene are an ammonia to propylene ratio in the range of 0.9: 1 to 1.3: 1, and air to propylene ratio of 8.0: 1 to 12.0: 1. The catalyst of the instant invention is able to provide high yields of acrylonitrile at relatively low ammonia to propylene feed ratios of about 1: 1 to about 1.05: 1. These "low ammonia conditions" help to reduce unreacted ammonia in the reactor effluent, a condition known as "ammonia breakthrough", which subsequently helps to reduce process wastes.

Specifically, unreacted ammonia must be removed from the reactor effluent prior to the recovery of the acrylonitrile. Unreacted ammonia is typically removed by contacting the reactor effluent with sulfuric acid to yield ammonium sulfate or by contacting the reactor effluent with acrylic acid to yield ammonium acrylate, which in both cases results in a process waste stream to be treated and/or disposed.

The reaction is carried out at a temperature of between the ranges of about 260° to 600°C, preferred ranges being 310° to 500°C, especially preferred being 350° to 480°C. The contact time, although not critical, is generally in the range of 0.1 to 50 seconds, with preference being to a contact time of 1 to 15 seconds.

The products of reaction may be recovered and purified by any of the methods known to those skilled in the art. One such method involves scrubbing the effluent gases from the reactor with cold water or an appropriate solvent to remove the products of the reaction and then purifying the reaction product by distillation.

The primary utility of the catalyst prepared by the process of the instant invention is for the ammoxidation of propylene to acrylonitrile. Other utilities include any of the ammoxidation of propane to acrylonitrile, the ammoxidation of an alcohol selected from the group consisting of methanol, ethanol or mixtures thereof, to hydrogen cyanide (HCN), acetonitrile, and mixtures thereof, and the ammoxidation of glycerol to acrylonitrile.

The catalyst prepared by the process of the instant invention may also be used for the oxidation of propylene to acrolein and/or acrylic acid. Such processes are typically two stage processes, wherein propylene is converted in the presence of a catalyst to primarily acrolein in the first stage and the acrolein is converted in the presence of a catalyst to primarily acrylic acid in the second stage. The catalyst described herein is suitable for use in the first stage for the oxidation of propylene to acrolein.

SPECIFIC EMBODIMENTS

In order to illustrate the instant invention, catalyst prepared in accordance with the instant invention were evaluated and compared under similar reaction conditions to similar catalysts prepared by prior art methods outside the scope of the instant invention. These examples are provided for illustrative purposes only. Catalyst compositions, for each example, are as shown after the example number. Examples designated with a "C" are comparative examples.

Example 1 - Ni 4 Mg 3 Feo. 9 R o.i 92 Cro.o 5 Bio. 72 Sm 0 .iCei. 76 Moi 3 .o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 153.53 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (139.57 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 26.36 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.50 g), Ni(N0 3 ) 2 - 6H 2 0 (100.77 g), Mg(N0 3 ) 2 -6H 2 0 (66.64 g), and Cr(N0 3 ) 3 9H 2 0 (1.73 g).

Reaction mixture C was prepared by heating 66.73 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (60.66 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 167.19 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.26g) , Sm(N0 3 ) 3 -5H 2 0 (3.85g), and RbN0 3 (2.45 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range. Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 2 - Ni 4 Mg 3 Feo. 9 R o.i 92 Cro.o 5 Bio. 72 Smo.iCei. 66 Moi 3 .o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 156.99 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (142.72 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 16.26 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.69 g), Ni(N0 3 ) 2 - 6H 2 0 (101.37 g), Mg(N0 3 ) 2 -6H 2 0 (67.04 g), and Cr(N0 3 ) 3 9H 2 0 (1.74 g).

Reaction mixture C was prepared by heating 64.59 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (58.72 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 158.63 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.44g) , Sm(N0 3 ) 3 -5H 2 0 (3.87g), and RbN0 3 (2.47 g). Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 3 - Ni 5 .9Mgi.iFeo. 95 R o. 235 Cro.o5Bii.35Sm 0 .iCei.i5Moi 2 .850 x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 147.50 ml of deionized water to 65 °C and then adding with stirring over 30 minutes ammonium heptamolybdate (134.07 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 29.04 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (32.45 g), Ni(N0 3 ) 2 - 6H 2 0 (145.06 g), Mg(N0 3 ) 2 -6H 2 0 (23.85 g), and Cr(N0 3 ) 3 9H 2 0 (1.69 g). Reaction mixture C was prepared by heating 69.85 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (57.73 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 106.61 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (55.36g) , Sm(N0 3 ) 3 -5H 2 0 (3.76g), and RbN0 3 (2.93 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 4 - Ni 6 Mgi. 5 Feo. 7 Rbo.i 92 Cro.o 5 Bii. 24 Sm 0 .iCei. 24 Moi 3 . 29 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2 Reaction mixture A was prepared by heating 149.96 ml of deionized water to 65 °C and then adding with stirring over 30 minutes ammonium heptamolybdate (136.33 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 18.84 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (23.42 g), Ni(N0 3 ) 2 - 6H 2 0 (144.47 g), Mg(N0 3 ) 2 -6H 2 0 (23.42 g), and Cr(N0 3 ) 3 9H 2 0 (1.66 g).

Reaction mixture C was prepared by heating 63.78 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (57.98 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 112.59 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (49.807g) , Sm(N0 3 ) 3 -5H 2 0 (3.68g), and RbN0 3 (2.35 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 5 - Ni 4 Mg 3 Feo. 9 R o.i 92 Cro.o 5 Bio. 72 Smo. 2 Cei. 56 Moi 3 .o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 156.98 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (142.71 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 16.26 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.69 g), Ni(N0 3 ) 2 - 6H 2 0 (101.37 g), Mg(N0 3 ) 2 -6H 2 0 (67.03g), and Cr(N0 3 ) 3 9H 2 0 (1.74 g).

Reaction mixture C was prepared by heating 64.59 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (58.71 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 149.07 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.437g) , Sm(N0 3 ) 3 -5H 2 0 (7.75g), and RbN0 3 (2.47 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 6 - Ni 4 Mg 3 Feo. 9 R o.i 92 Cro.o 5 Bio. 72 Sm 0 .o 5 Cei. 7 iMoi 3 .o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 156.99 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (142.73 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 16.26 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.69 g), Ni(N0 3 ) 2 - 6H 2 0 (101.37 g), Mg(N0 3 ) 2 -6H 2 0 (67.03g), and Cr(N0 3 ) 3 9H 2 0 (1.74 g).

Reaction mixture C was prepared by heating 64.59 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (58.71 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 163.42 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.44g) , Sm(N0 3 ) 3 -5H 2 0 (1.94g), and RbN0 3 (2.47 g). Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 7 - Ni 4 Mg 3 Feo. 9 R o.i 92 Cro.o 5 Bio. 72 Smo. 3 Cei.46Moi3.o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 156.97 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (142.70 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 16.25 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.68 g), Ni(N0 3 ) 2 - 6H 2 0 (101.36 g), Mg(N0 3 ) 2 -6H 2 0 (67.03g), and Cr(N0 3 ) 3 9H 2 0 (1.74 g). Reaction mixture C was prepared by heating 64.58 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (58.71 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 139.50 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.43g) , Sm(N0 3 ) 3 -5H 2 0 (11.62g), and RbN0 3 (2.47 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 8 - Ni 4 Mg 3 Fei. 2 Rbo. 2 Cro.o 5 Bii. 25 Smo.iCei. 25 Moi 2 . 85 0 x

+ 50wt% 1 ppm Na, 38.2 nm Si0 2 Reaction mixture A was prepared by heating 150.60 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (136.91 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 29.42 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (41.77 g), Ni(N0 3 ) 2 - 6H 2 0 (100.23 g), Mg(N0 3 ) 2 -6H 2 0 (66.28 g), and Cr(N0 3 ) 3 9H 2 0 (1.72 g).

Reaction mixture C was prepared by heating 70.87 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (58.57 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 118.09 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (52.24 g) , Sm(N0 3 ) 3 -5H 2 0 (3.83 g), and RbN0 3 (2.54 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 9 - Ni 4 Mg 3 Feo. 9 R o.i 92 Cro.o 5 Bio. 72 Smo. 2 Cei. 76 Moi 3 .39iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 152.85 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (138.95 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 16.66 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (30.85 g), Ni(N0 3 ) 2 - 6H 2 0 (98.70 g), Mg(N0 3 ) 2 -6H 2 0 (65.27 g), and Cr(N0 3 ) 3 9H 2 0 (1.70 g).

Reaction mixture C was prepared by heating 67.83 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (61.66 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 163.75 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (29.64 g) , Sm(N0 3 ) 3 -5H 2 0 (7.54 g), and RbN0 3 (2.40 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 10 - Ni 4 Mg 3 Feo. 9 R o.i 92 Cro.o 5 Bio. 72 Smo. 3 Cei. 76 Moi 3 .54iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 150.85 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (137.13 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 16.86 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (30.45 g), Ni(N0 3 ) 2 - 6H 2 0 (97.41 g), Mg(N0 3 ) 2 -6H 2 0 (64.41 g), and Cr(N0 3 ) 3 9H 2 0 (1.68 g).

Reaction mixture C was prepared by heating 69.38 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (63.07 g) to form a clear colorless solution. Reaction mixture D was prepared by (i) heating 161.61 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (29.25 g) , Sm(N0 3 ) 3 -5H 2 0 (11.17 g), and RbN0 3 (2.37 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Example 11 - Ni 4 Mg 3 Feo. 9 o.i 92 Pro.iCro.o 5 Bio. 72 Cei. 76 Moi 3 .o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 153.58 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (139.62 g) to form a clear colorless solution. Reaction mixture B was prepared by heating 16.58 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.51 g), Ni(N0 3 ) 2 - 6H 2 0 (100.80 g), Mg(N0 3 ) 2 -6H 2 0 (66.66 g), and Cr(N0 3 ) 3 9H 2 0 (1.73 g).

Reaction mixture C was prepared by heating 66.75 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (60.68 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 167.24 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.27 g) , Pr(N0 3 ) 3 -6H 2 0 (3.77 g), and RbN0 3 (2.45 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C. Example 12 - Ni 4 Mg 3 Feo. 9 R o.i 92 do.iCro.o 5 Bio. 72 Cei. 76 Moi 3 .o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 153.56 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (139.60 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 16.58 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.51 g), Ni(N0 3 ) 2 - 6H 2 0 (100.80 g), Mg(N0 3 ) 2 -6H 2 0 (66.65 g), and Cr(N0 3 ) 3 9H 2 0 (1.73 g).

Reaction mixture C was prepared by heating 66.74 ml of deionized water to 65 °C and then adding with stirring over 30 minutes ammonium heptamolybdate (60.68 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 167.22 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.26 g) , Nd(N0 3 ) 3 -6H 2 0 (3.80 g), and RbN0 3 (2.45 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry. The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example CI - Ni 4 Mg3Feo. 9 R o.i 92 Cro.osBio. 72 Cei. 76 Moi 2 . 502 0 x

+ 50wt% 51.3 ppm Na, 38.1 nm Si0 2 - no Sm

Reaction mixture A was prepared by heating 10308.6 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (9371.5 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 1828.9 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (2221.9 g), Ni(N0 3 ) 2 - 6H 2 0 (7107.9 g), Mg(N0 3 ) 2 -6H 2 0 (4700.5 g), and Cr(N0 3 ) 3 9H 2 0 (122.3 g).

Reaction mixture C was prepared by heating 2264.4 ml of deionized water to 65 °C and then adding with stirring over 30 minutes ammonium heptamolybdate (2058.6 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 5896.4 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (1067.1 g) and RbN0 3 (86.5 g).

Reaction mixture E was prepared by adding with stirring , silica sol (40908.2 g, 41.58 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B. Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 14 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/145°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example C2 - Ni 4 Mg 3 Feo. 9 bo.i 92 Cro.o 5 Bio. 72 Cei. 76 oi 3 .o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si02 - no Sm

Reaction mixture A was prepared by heating 157.80 ml of deionized water to 65 °C and then adding with stirring over 30 minutes ammonium heptamolybdate (143.43 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 26.21 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.85 g), Ni(N0 3 ) 2 - 6H 2 0 (101.89 g), Mg(N0 3 ) 2 -6H 2 0 (67.38 g), and Cr(N0 3 ) 3 9H 2 0 (1.75 g).

Reaction mixture C was prepared by heating 71.40 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (59.01 g) to form a clear colorless solution. Reaction mixture D was prepared by (i) heating 169.03 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.59 g) and RbN0 3 (2.48 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example C3 - Ni 4 Mg 3 Feo. 9 Rbo.i 92 Cro.osBi 2 . 48 Smo.iMoi 3 .o 9 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2 - no Ce

Reaction mixture A was prepared by heating 150.50 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (136.78 g) to form a clear colorless solution. Reaction mixture B was prepared by heating 32.92 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (30.37 g), Ni(N0 3 ) 2 - 6H 2 0 (97.17 g), Mg(N0 3 ) 2 -6H 2 0 (64.25 g), and Cr(N0 3 ) 3 9H 2 0 (1.67 g).

Reaction mixture C was prepared by heating 68.10 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (56.28 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 100.50 g of 13 wt % aqueous HN0 3 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding Bi(N0 3 ) 3 -5H 2 0 (100.49 g), Sm(N0 3 ) 3 -6H 2 0 (3.71 g) and RbN0 3 (2.37 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C. Comparative Example C4 - Ni 4 Mg 3 Feo. 9 bo.i 92 Cro.o 5 Bi 2 .4 8 Smo.iMoi3. 2 4iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2 - no Ce

Reaction mixture A was prepared by heating 151.80 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (138.00 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 32.69 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (30.15 g), Ni(N0 3 ) 2 - 6H 2 0 (96.47 g), Mg(N0 3 ) 2 -6H 2 0 (63.79 g), and Cr(N0 3 ) 3 9H 2 0 (1.66 g).

Reaction mixture C was prepared by heating 67.61 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (55.87 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 100.00 g of 13 wt % aqueous HN0 3 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding Bi(N0 3 ) 3 -5H 2 0 (99.77 g), Sm(N0 3 ) 3 -6H 2 0 (3.69 g) and RbN0 3 (2.35 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry. The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example C5 - Ni 4 Mg 3 Feo. 9 bo.i 92 Cro.o 5 Bio. 2 Smo.iCeo. 5 Moio.5 7 iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 209.80 ml of deionized water to 65 °C and then adding with stirring over 30 minutes ammonium heptamolybdate (190.74 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 31.09 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (41.68 g), Ni(N0 3 ) 2 - 6H 2 0 (133.34 g), Mg(N0 3 ) 2 -6H 2 0 (88.17 g), and Cr(N0 3 ) 3 9H 2 0 (2.29 g).

Reaction mixture C was prepared by heating 28.06 ml of deionized water to 65 °C and then adding with stirring over 30 minutes ammonium heptamolybdate (23.19 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 62.84 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (11.12 g), Sm(N0 3 ) 3 -6H 2 0 (5.10 g) and RbN0 3 (3.25 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example C6 - Ni 4 Mg 3 Fe 3 Rbo.i9 2 Cro.o5Bio. 72 Smo.iCei. 7 6 oi5.34iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 166.40 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (151.25 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 29.25 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (90.09 g), Ni(N0 3 ) 2 - 6H 2 0 (86.47 g), Mg(N0 3 ) 2 -6H 2 0 (57.18 g), and Cr(N0 3 ) 3 9H 2 0 (1.49 g).

Reaction mixture C was prepared by heating 60.60 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (50.08 g) to form a clear colorless solution. Reaction mixture D was prepared by (i) heating 143.45 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (25.96 g), Sm(N0 3 ) 3 -6H 2 0 (3.30 g) and RbN0 3 (2.10 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example C7 - Ni 4 Mg 3 Feo. 9 bo.i9 2 Cro.o5Bio. 72 Cei.56Lao. 2 Moi 2 .5o 2 O x

+ 50wt% 27 ppm Na, 39 nm Si0 2 - no Sm

Reaction mixture A was prepared by heating 157.50 ml of deionized water to 65 °C and then adding with stirring over 30 minutes ammonium heptamolybdate (143.23 g) to form a clear colorless solution. Reaction mixture B was prepared by heating 27.02 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (32.83 g), Ni(N0 3 ) 2 - 6H 2 0 (105.02 g), Mg(N0 3 ) 2 -6H 2 0 (69.44 g), and Cr(N0 3 ) 3 9H 2 0 (1.81 g).

Reaction mixture C was prepared by heating 66.90 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (60.82 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 154.42 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (31.53 g), La(N0 3 ) 3 -6H 2 0 (7.82 g) and RbN0 3 (2.56 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example C8 - Ni 4 Mg 3 Feo. 9 Rbo.i9 2 Cr 0 .o5Bio. 72 Cei. 76 La0.2Moi 2 .8o 2 O x + 50wt% 27 ppm Na, 39 nm Si0 2 - no Sm

Reaction mixture A was prepared by heating 153.30 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (139.40 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 26.30 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.95 g), Ni(N0 3 ) 2 - 6H 2 0 (102.21 g), Mg(N0 3 ) 2 -6H 2 0 (67.59 g), and Cr(N0 3 ) 3 9H 2 0 (1.76 g).

Reaction mixture C was prepared by heating 70.24 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (63.85 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 169.56 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.69 g), La(N0 3 ) 3 -6H 2 0 (7.61 g) and RbN0 3 (2.49 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.76 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry. The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example C9 - Ni 4 Mg 3 Lao. i Feo. 9 Rbo. i92 Cr 0 .o 5 Bio. 72 Ce i . 76 o i3 .o 9i O x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2 - no Sm

Reaction mixture A was prepared by heating 153.59 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (139.63 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 16.58 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (31.51 g), Ni(N0 3 ) 2 - 6H 2 0 (100.81 g), Mg(N0 3 ) 2 -6H 2 0 (66.66 g), and Cr(N0 3 ) 3 9H 2 0 (1.73 g).

Reaction mixture C was prepared by heating 66.76 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (60.69 g) to form a clear colorless solution.

Reaction mixture D was prepared by (i) heating 167.25 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (30.27 g), La(N0 3 ) 3 -6H 2 0 (3.75 g) and RbN0 3 (2.45 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B. Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Comparative Example CIO - Ni 4 Mg 3 Feo. 9 bo.i9 2 Cro.o5Bio. 72 Smo.5Cei. 7 6Moi3.84iO x

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Reaction mixture A was prepared by heating 147.00 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (133.64 g) to form a clear colorless solution.

Reaction mixture B was prepared by heating 17.24 ml of deionized water to 55°C and then adding with stirring Fe(N0 3 ) 3 -9H 2 0 (29.67 g), Ni(N0 3 ) 2 - 6H 2 0 (94.92 g), Mg(N0 3 ) 2 -6H 2 0 (62.77 g), and Cr(N0 3 ) 3 9H 2 0 (1.63 g).

Reaction mixture C was prepared by heating 72.37 ml of deionized water to 65°C and then adding with stirring over 30 minutes ammonium heptamolybdate (65.79 g) to form a clear colorless solution. Reaction mixture D was prepared by (i) heating 157.49 g of 50 wt % aqueous (NH 4 ) 2 Ce(N0 3 )6 solution to 55°C, (ii) while the solution was stirring and heating, sequentially adding

Bi(N0 3 ) 3 -5H 2 0 (28.50 g), Sm(N0 3 ) 3 -6H 2 0 (18.14 g) and RbN0 3 (2.31 g).

Reaction mixture E was prepared by adding with stirring , silica sol (609.80 g, 41 wt% silica) to Reaction mixture A, followed by the addition of Reaction mixture B.

Reaction mixture F was prepared by adding reaction mixture C to reaction mixture D, which resulted in precipitation of an orange solid (this resulting mixture was the precipitate slurry). The stirring of the precipitate slurry was continued for 15 minutes while the temperature was maintained in the 50-55°C range.

Reaction mixture E was then added to reaction mixture F to form the final catalyst precursor slurry.

The catalyst precursor slurry was allowed to stir for one hour while it cooled to approximately 40°C. It was then homogenized in a blender for 3 minutes at 5000 rpm. The slurry was then spray dried in a spray dryer at an inlet/outlet temperature of 325/140°C. The resulting powder was denitrified by heat treating for 3 hours in air at 290°C, followed by an additional 3 hours at 425°C. The powder was then calcined in air for 3 hours at 560°C.

Catalyst Testing

All catalyst were tested in a bench scale reactor for the ammoxidation of propylene to acrylonitrile. All testing was conducted in a 40cc fluid bed reactor. Propylene was feed into the reactor at the rates shown in Table land Table 3, between 0.06 and 0.09 WWH (i.e. weight of propylene/weight of catalyst/hour). Pressure inside the reactor was maintained at 10 psig.

Reaction temperature was 430°C. Samples of reaction products were collected after several days of testing (between about 140 to about 190 hours on stream). Reactor effluent was collected in bubble-type scrubbers containing cold HC1 solution. Off-gas rate was measured with soap film meter, and the off-gas composition was determined at the end of the run with the aid of gas chromatograph fitted with a split column gas analyzer. At the end of the recovery run, the entire scrubber liquid was diluted to approximately 200 grams with distilled water. A weighted amount of 2-butanone was used as internal standard in a -50 gram aliquot of the dilute solution. A 2 μΐ sample was analyzed in a GC fitted with a flame ionization detector and a Carbowax™ column. The amount of NH 3 was determined by titrating the free HC1 excess with NaOH solution.

Propylene conversions and acrylonitrile yields for the tested catalysts are as shown in Tables 1 and 3.

Table 1

Examples of the Invention

Table 2

Table 3

Comparative Examples + 50wt% 31 ppm Na, 38.2 nm Si0 2 - no Sm

Ni 4 Mg 3 Feo )Rbo. !)2Cro.o5Bi2.48Smo. O x

C3 0.06 430.0 98.2 81.7

+ 50wt% 31 ppm Na, 38.2 nm Si0 2 - no Ce

Ni 4 Mg 3 Feo )Rbo. i92Cro.o5Bi2.48Smo. O x

C4 0.07 430.0 95.9 82.3

+ 50wt% 31 ppm Na, 38.2 nm Si0 2 - no Ce

Ni4Mg3Feo.9Rbo.192Cro.05Bio.2Smo. Ceo.sMoj O x

C5 0.06 431.0 84.7 70.9

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Ni 4 Mg3Fe 3 Rbo )2Cro.o5Bio.72Smo.iCei .76Moi5.34iO !1

C6 0.10 433.8 99.8 80.9

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Ni 4 Mg 3 Feo )Rbo )2Cro.o5Bio.72Cei .56Lao.2Moi2.5020 !1

C7 0.06 440.0 98.3 82.3

+ 50wt% 27 ppm Na, 39 nm Si0 2 - no Sm

Ni 4 Mg 3 Feo )Rbo )2Cro.o5Bio.72Cei .76 La0.2Moi2.8020 !1

C8 0.06 431.0 98.1 79.2

+ 50wt% 27 ppm Na, 39 nm Si0 2 - no Sm

Ni 4 Mg 3 Lao.iFeo.9Rbo ¾Cro.o5Bio.72Cei. 76 Moi 3 .o<>iO !1

C9 0.09 430 98.9 84.7

+ 50wt% 31 ppm Na, 38.2 nm Si0 2 - no Sm

Ni 4 Mg 3 Feo )Rbo )2Cro.o5Bio.72Smo.5Cei.76Moi 3 .84iO !1

CIO 0.06 431.0 98.2 83.3

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Table 4

+ 50wt% 31 ppm Na, 38.2 nm Si0 2 - no Sm

NL(Mg3Feo.9Rbo.i92Cro.o5Bio.72Smo.5Cei

CIO 0.35 1.96 0.1678

+ 50wt% 31 ppm Na, 38.2 nm Si0 2

Notes for Table 1 (where applicable):

1. "WWH" is weight of propylene per weight of catalyst per hour in the feed

2. "% C 3 ~ Conv" is mole percent per pass conversion of propylene to all products.

3. "% AN Yield" is percent acrylonitrile yield.

4. "(a+h)/d" is ratio in the composition of atoms of bismuth plus atoms of cerium to atoms of the D elements (i.e. nickel, cobalt, manganese, zinc, magnesium, calcium, strontium, cadmium and barium).

5. "h/b" is the atomic ratio in the composition of cerium to iron.

6. "q/(a+h+q)" is the ratio in the composition of atoms of the Q elements (i.e. samarium, praseodymium and neodymium) to the atoms of bismuth plus atoms of cerium plus atoms of the Q elements.

The data in Tables 1 and 2 (examples of the invention) compared to the data in Table 3 and 4 (comparative examples) clearly shows the benefit of the present invention. Examples 1 through 12 which contain cerium and one of samarium, praseodymium or neodymium and with "(a+h)/d", "h/b" and "q/(a+h+q)" values within the scope of the claimed invention (i.e. 0.15 < (a+h)/d, 0.8 < h/b < 5 and 0 < q/(a+h+q) < 0.16, ) exhibit greater acrylonitrile yield (roughly 84 to 86% acylonitrile yields compared to roughly 79 to 83% acylonitrile yields) than those catalysts of CI through CIO which are outside the claimed composition (i.e. no cerium or no samarium, praseodymium or neodymium) or outside one or more of the claimed "(a+h)/d", "h/b" or "q/(a+h+q)" ranges.

While the foregoing description and the above embodiments are typical for the practice of the instant invention, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of this description. Accordingly, it is intended that all such alternatives, modifications and variations are embraced by and fall within the spirit and broad scope of the appended claims.