Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BEAM SHAPING SPECTRALLY FILTERING OPTICS AND LIGHTING DEVICES THEREFOR
Document Type and Number:
WIPO Patent Application WO/2015/134630
Kind Code:
A1
Abstract:
Related to most light-emitting devices, such as LED luminaires, a filtering, beam-shaping optic is disclosed that controls the spectral content of the emitted light and the shape of the emitted beam. One or more filtering agents is mixed with a non-filtering material used for making an optic and the optic is then formed into a desired shape or configuration to control the beam shape. Light waves in a subrange of the overall wavelength range emitted from the light source are shifted to control the spectral content of the emitted light. Spectral density of the emitted light for various wavelengths is controlled to achieve a desired result, such as minimizing the amount of blue light emitted from outdoor lighting devices, particularly at night. Further, the color content of light emitted is controlled, for example, to minimize damaging effects to light-sensitive objects such as food products, certain art materials, etc.

More Like This:
Inventors:
BAILEY, Christopher (21 Canso Street, Greenville, South Carolina, 29607, US)
Application Number:
US2015/018766
Publication Date:
September 11, 2015
Filing Date:
March 04, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HUBBELL INCORPORATED (40 Waterview Drive, P.O. Box 1000Shelton, Connecticut, 06484-1000, US)
International Classes:
G02B19/00; A61B19/00; F21K99/00
Foreign References:
US20100237361A12010-09-23
EP2701213A12014-02-26
JP2013229593A2013-11-07
US20060102914A12006-05-18
US20120136485A12012-05-31
Attorney, Agent or Firm:
BARNER, Kevin M. (Michael Best & Friedrich LLP, 601 Pennsylvania Avenue NW,Suite 700 Sout, Washington District of Columbia, 20004, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A lighting device comprising:

a light source emitting light having a first bandwidth; and

a single optic device coupled to said light source, wherein said single optic device filters light having a preselected subrange of wavelengths within said first bandwidth to generate a first filtered light and controls a shape of a beam of said filtered light.

2. The lighting device recited in claim 1 , wherein said subrange of wavelengths comprises light having wavelengths in the range from 435nrn to 500nm.

3. The lighting device recited in claim 1 , wherein said single optic device shifts light from within a first predetermined wavelength range to liglit within a second

predetermined wavelength range and said first predetermined wavelength range includes light having wavelengths within said preselected subrange of wavelengths.

4. The lighting device recited in claim 1, wherein said single optic device is a free- form optic made of a material into winch a filtering agent is disposed prior to forming the single optic device and said filterin agent filters said light having a preselected subrange of wavelengths.

5. A lighting device comprising:

a first light source emitting light having a first bandwidth:

a second light source emitting light having a second bandwidth;

a first optic device coupled to said first light source, wherein said first optic device filters light having a preselected subrange of wavelengths within said first bandwidth and generates a first filtered light;

a second optic device coupled to said second light sour ce, wherein said second optic device permits said second bandwidth of light to pass through it imfiltered: and

a control device operably connected to said first and second light sources and operable to control whether light is emitted from one, both or neither of said first and second light sources.

6. The lighting device recited in claim 5, wherein said control device is a wireless control device operable to control each of said first and second light sources via wireless control signals.

7. The lighting device recited in claim 1. wherein said preselected subrange of wavelengths coiTesponds to a range of wavelengths that damage or otherwise deteriorate one or properties of a food product when absorbed by said food product.

8. A light-filtering material used for packaging a food product, wherein said light- filtering material includes a substance thai receives illumination light from a light source and filters light having a preselected subrange of wavelengths from said illumination light to generate a first filtered light that causes less photodegradation on said food product than said illumination light.

9. A method of making a lighting device comprising:

mixing a filtering agent with an optical material;

shaping the result of said mixing to form a filtering optic device:

coupling said filtering optic device to at least one LED that emits light waves in a first range of wa velengths, wherein said filtering agent absorbs light waves having a wavelength within a subrange of said first range of wavelengths and said filtering optic device controls a beam shape of said lighting device.

10. The method recited in claim 9 wherein said filtering optic device is a TT optic.

11. The methods of claim 9 wherein said subrange of said first range of wavelengths includes light havin wavelengths in the range of 400 to 500 nanometers.

12. The method recited in claim 9 further comprisin combining said filtering optic device with a non-filterin optic device within a luminaire device, wherein said non-filtering optic device does not include said filtering agent.

13. The method recited in claim 9 wherein said filtering agent includes one or more of a dye, phosphors, fluorescing material and quantum dots.

14. The method recited in claim 9 wherein said optical material includes one or more of a resin, glass, polymer and silicone.

15. A luminaire comprising:

at least one LED that emits light in a first range of wavelengths;

at least one filtering optic coupled to said at least one LED, wherein said filtering optic shifts light in a first subrange of said first range of wavelengths to light having wavelengths in a second subrange of wavelengths diiierent than said first subrange and said filtering optic further controls a shape of a beam of said light emitted from said LED.

16. The luminaire recited in claim 15 wherein an amount of luminous flux in said second subrange is gr eater after said ligiit in siad first subrange is shifted to said second subrange.

17. The luminaire recited i claim 15 wherein said first subrange of wavelengths is between 400 and 500 nanaomenters and each wavelength is said second subrange is greater than or equal to 500 nanometers.

18. The himmaire recited in claim 15 wherein said hmiinaire is installed to illuminate food products.

19. The hmiinaire recited in claim 15 further comprising:

at least one non- filtering optic coupled to said at least one LED, wherein said non- filtering optic emits light in said first range of wavelengtlis; and

a controller configured to control which LEDs corresponding to each respective filtering and non- filtering optics is energized to emit light

20. The himmaire recited in claim 19 wherein said hmiinaire is installed to illuminate one or more objects that are sensitive to specific wavelengths of light and said controller is configured to minimize an amount of light emitted by said filtering and non-filtering optics in said specific wavelengths.

Description:
BEAM SHAPING SPECTRALLY FILTERING OPTIC ' S

AND LIGHTING DEVICES THEREFOR

CROSS-REFERENCE TO PROVISIONAL APPLICATIONS

[000 lj Tliis application claims the benefit of priority from provisional Application No. 61/947,890, filed March 4, 2014, entitled BEAM-SHAPING SPECTRALLY FILTERING OPTIC, provisional Application No. 62/002,645, filed May 23, 2014, entitled BEAM-SHAPING SPECTRALLY FILTERING OPTIC FOR

ILLUMINATION AND PACKAGING OF FOOD PRODUCTS and provisional Application No. 62/006,507, filed June 2, 2014, entitled LIGHTING DEVICE HAVING SPECTRALLY FILTERING OPTICS AND NON-FILTERING OPTICS, the entiie contents of each of which is iiicoiporated herein by reference for all that is taught.

BACKGROUND

Field of the Disclosure

[0002] The present disclosure relates generally to lighting devices. More particularly, embodiments of the present disclosure are directed to methods and devices used in connection with the lighting device that alter the photometric

distribution of a light-emitting diode (LED), including laser-diodes and quantum LEDs (QLEDS), while simultaneously altering the spectral power distribution (SPD) of the emitted light. Further embodiments include a lighting device that uses both filtering optics and non-filtering optics in a controlled manner to provide a desired lighting environment. Certain other embodiments consistent with the disclosure are used t o filter hamiful wa velengths of light tha t a dversely affect various food and beverages. Description of Related Art

[0003] Lumiaaires, or more specifically, hiininaires utilizing poorly designed optical systems and/or fliose utilizing inefficient legacy light sources, are a well- known example of energy waste within commercial , industrial, municipal and residential applications. In an attempt to a ddress this known source of energy waste many federal, state and local governments have enacted legislation requiring, or at least hicentivizing, the replacement of older, energy-inefficient lighting systems, such as incandescent, compact fluorescent (CFL) and High Intensity Discharge (HID) lighting systems, with newer, more energy-efficient systems, such as those utilizing LEDs.

[0004] The United States government has even encouraged the use and adoption of energy-efficient lighting systems by providing federal economic stimulus funding to local and state governments that enact such la ws. Additionally, as a means to increase the reliability of the nation's aging electric utility infrastructure and to cooperate with federally mandated conservation efforts, public and investor-owned utilities have aggressively iiieentivized the replacement of legacy light source

technology by providing prescriptive and custom rebates. As a consequence, industry has expeditiously pursued the development and deployment LED lighting technology, a tecimology largely economically out of reach just a few year s ago and, as a result, a number of viable energy-saving LED lighting options has emerged. Of the new and emerging alternative light sources available, high brightness LED tecimology has become recognized as the undisputed industry light source of choice.

[0005] LED technology, however, has not yet been fully adopted oa a broad scale due to several remaining economic factors, such as the initial purchase cost of new luminaires and the cost of installation. Additionally, LED luminaires have brought unexpected consequences when widely used for outdoor or indoor lighting

applications. For example, contemporary LEDs produce white light through the conversion of blue light emitted from the die within the LED package, i.e., light emitted within a narrow wavelength (typically within lOrmi), occurring approximately between 450-495nm. This blue light is then converted to wliite light though the use of local or remotely applied phosphors, which absorb some of the blue light emitted from the LED die. These phosphors are responsible for converting the absorbed blue light into light having longer wavelengths, specifically wavelengths in the green and red regions of the visibl spectrum. The combination of the unabsorbed, unconverted, bine light with the light of red and green wavelengths is what provides the appearance of white light.

[0006] Unfortunately, the bine emission produced by high brightness LEDs has been found to have increased negative effects, for example, in regard to fields such as astronomy, and more specifically the observation of the "night sky ." Legacy light sources, such as High Pressure Sodium (HPS) lamps and Low Pressure Sodium (LPS) lamps, are more compatible with astronomy since they emit limited, to virtually no, wavelength of light in the blue range. Additionally, relatively recent studies have correlated the impact of blue-rich light emitted by LEDs to the disruption of the cireadian rhythm of humans, as well as other living organisms. As a result, the widespread installation of white light sources rich in blue emission is among the largest concerns of the International Dark Sky organization (IDA).

[0007] There is little debate that recent technological advances has made outdoor lighting more efficient, but at the same time, as previously mentioned; these newer lighting solutions are far richer in blue light wavelengths than legacy sources.

Specifically, the energy-efficient white lights being implemented today emit more blue light than the most widely used high intensity discharge (HID) sources, such as Metal Halide (MH), High Pressure Sodium (HPS) and Low Pressure Sodium (LPS). Also, recent medical research lias shown that exposure to blue-rich light sources; such as emitted from LEDs, can cause a reduction in naturally occurring human melatonin ( LT) levels.

[0008] Given the connection between blue-rich light and human physiology, attempts should be made to significantly reduce, if not eliminate, prolonged exposure to such sources. This is especially true for humans who are regularly exposed to extended periods of artificial lighting during nighttime hours and/or nocturnal animals which rely on the absence of blue-rich light, e.g., sunlight. While attempts have been made to limit the amount of blue light emitted from LED sources, these efforts have been undertaken as a means to increase the "warmth" of emitted light, or more specifically, to lower the correlated color temperature (CCT) of the light. That is, by converting a greater amount of emitted blue light to the green and red portions of the visible spectrum, it is possible to change the appearance of the color of light emitted from the source (e.g., its CCT) from "cool white" to "warm white."

|00O9] One known device, depicted hi FIG. 1 , includes a typical packaged LED light source, which is comprised of a blue light LED chip 12 that emits light 11 with an emission peak in the blue wavelength range. The blue light LED chip is protected by a resin mold 13 which encapsulates a phosphor material 14 that is excited by the blue light 11 emitted from the blue light LED chip. The encapsulated phosphors 14 absorb some of the blue light 11 from the LED and emit green and red light 5, as detemimed by the phosphor chemistry, which is combined with the non-absorbed blue light Ϊ 1 emitted from the blue light LED chip. This results in white light 16 being emitted with an emission peak in the blue wavelength range.

[0010] An independent optical filter 17 is then placed in the path of the emitted white light 6, which has a blue emission peak, in an attempt to filter some of the blue light. Tliis results in filtered white light 18, which is claimed to have a "wanner" CCT than imilltered white light 16. Such wanner white light is necessary for

residential or liospitalit}' indoor applications. However, illumination devices that use secondary filter media in an attempt to control the spectral components of the emitted light, such as the one depicted in FIG. 1 , are problematic for commercial applications, specifically those applications where a greater level of photometric control is required. Such proposed solutions result in increased optical losses, which leads to lower system efficacy and can potentially cause a shift in the photometric pattern of the emitted light because the light is transmitted through a second surface whose geometry and or refractive inde can prevent light from transmitting through it without alterations and losses.

[0011] Additionally, it is known that light causes photodegradation. or spoilage, of food. This photodegradation usually occurs in the constituents of foodstuffs, such as, pigments, fats, proteins and vitamins. Such spoilage manifests itself in several forms, such as, discoloration of the food, inducement of one or more off- flavors and the loss of vitamins. For example, light used to illuininate the food in display cases or within one's refrigerator is absorbed by the food and causes deterioration of one or more of the mentioned food constituents. This results in discolora tion of the surface of the food and can negatively affect consumer acceptance of the goods.

[0012] Further, in liquid food products light is able to penetrate even deepe into the product, i.e., beyond the outer layer, and the affected portions of the liquid are mixed throughout the product as the liquid is agitated through transport, handling , etc. This causes an even larger portion of the food product to be negatively affected by light. The type and extent of the deterioration of the food product depends on several factors. These factors include, the specific type of light source including the particular wavelengths of light that are absorbed by the food, the distance of the light source from the food and flie duration of time that the food is exposed to the light, the packaging of the food, the amount of oxygen within the food and the temperature at which flie food is stored while exposed to the light.

[0013] It is, thus, desired to provide an energy-efficient lighting solution that effectively illuminates desired targets while at the same time modifies the spectral power distribution of the light sour ce to a level at or below a desired threshold. It is also desired to control one or more particular spectral components, e.g.. by absorbing visible or non-visible wavelengths, such as blue light emitted from the device. Each of these desir ed affects should be accomplished without significant losses in the luminous flu delivered to the target and while controlling the desired beam shape. It is further desired to provide a lighting solution for various solid and liquid food products that will reduce or eliminate the negative effects of light waves on the food.

SUMMARY OF EXEMPLARY EMBODIMENTS

[0014] In consideration of problematic issues associated with conventional lighting devices, including but not limited to the issues discussed above, a lighting device in accordance with one or more exemplary embodiments of the present application generally relates to an LED device having a single beam-shaping optic coupled thereto. The coupled optic, such as a free-form total internal reflection (TIR) optic, transforms the photometric distribution of the light emitted from the LED to the desired pattern and also provides band-pass filtering to control the spectr al power distribution of the light emitted from the LED. FIGS. 2A-2C illustrate one type of

LED optic that can be used in connection with embodiments of the present application. One or more of the LED optical devices consistent with the present application can be utilized within a luminaire assembly to illuminate a desired target area with the desired wavelengths of light.

[0015] More particularly, one or more embodiment includes a beam-shaping TIR optic of engineered resin material referred to herein simply as resin but including other suitable materials such as glass and silicone. The optic is formed by mixing a filtering agent with a material suitable for an optic, such as acrylic (poly(mefhyl rnethacrylate), or simply PMMA)), plastic, silicone, glass, polymer, resin and others. The optic is optically coupled with an LED to transform the photometiic distribution of the emitted light to a desired pattern, while at the same time providing some level of band-pass filtering. As a result, the overall spectral power distribution of the luininaire is controlled. While the basic use of TIR optics is known, utilizing a resin that filters and/or performs a Stokes shift on the light by use of a particular material within a TIR optic, such as a dye, phosphors, fluorescing materials and quantum dots, is not. As discussed above, current methods involve filtering the emitted light using a secondary filter media, which causes increased optical losses and potentially shifts the photometric pattern due to the specific geometry and/or refractive index of the lens.

[0016] Light filtering and beam shaping by a single optic in accordance with various embodiments consistent with the disclosure can be used in a variety of applications including, but not limited to. general interior lighting; general exterior lighting; flood-lighting, inchiding lighting for food processing and display; portable lighting; automotive lighting; mobile equipment lighting; art ilhiminaiion; retail and general display lighting: aircraft and aerospace lighting; lighting for light-sensitive biological and pharmaceutical processes, semiconductor processing and othe light sensitive applications.

[0017] Filtering specific wavelengths of light to emit a controlled spectral density and influencing the spectrum in accordance with present application can be used, for example, to limit or prevent specific frequencies of visible or non-visible light from being projected into an environment, for preferential reasons or in an effort to prevent adverse or undesirable environmental, physiological and/or technical consequences.

Improvement of color quality in various lighting applications is another result of carrying out techniques disclosed herein, such as, in regard to the hospitality and retail lighting space.

[0018] In addition to providing a lighting solution that includes spectrally filtering optics further aspects of a lighting device disclosed herein include both filtered and non- filtered optics. According to exemplary embodiments light modules that include one or more filtered optics are provided in a single luminaire along with light modules that have non-filtering optics. Depending on the light output desired, for example, color temperature and other spectral components, the light modules are activated in a controlled manner to achieve the desired effect.

[0019] accordance with further exemplary embodiments a dynamic system is provided. The dynamic system consists of LED aixays configured with a combination of filtering optics and standard clear, non-filtering, optics, e.g., made of PMMA. According to further exemplary embodiments the dynamic system is combined with a controller, such as either a wireless or wireline controller, that controls which LED, or combinations ofLEDs, is activated. According to these exemplary embodiments any combmation of filtered and non-filtered optics within a single lighting device, e.g., luminaire. can be achieved.

[0020] According to one or more exemplary embodiments, a self-contained intelligent wireless control module, or PCB integrated design, is provided which contains one or more independently controlled switching outputs and one or more digital and/or analog 0-10V outputs, which can be used to switch power and make operating current adjustments to connected LED power supplies and provide full- range dimming.

[0021] Each intelligent wireless, or wireline, control module is capable of

controiling one or more fixtures and can be individually controlled or grouped with other lighting devices. The wireless control module communicates, for example, via 900MHz radio frequency to other devices within a wireles self-organizing and self- healing mesh network. [0022] Both wireless and non-wireless standalone controller and integrated designs utilize no - volatile memory where time-based adaption or control can be programed, stored and autonomously activated.

[0023] According to one aspect of the invention a lighting device is provided that includes a light source emitting light having a first bandwidth, and a single optic device coupled to the light source, wherein the single optic device filters light having a preselected subrange of wavelengths within the first bandwid th to generate a first filtered light and controls a shape of a beam of said filtered light.

[0024] According to another aspect of the invention a lighting device is provided that includes a first light source emitting light having a first bandwidth, a second light source emitting light having a second bandwidth, a first optic device coupled to the first light source, wherein the first optic device filters light having a preselected subrange of wavelengths within the first bandwidth and generates a first filtered light. The luminaire further includes a second optic device coupled to the second light source, wherein the second optic device permits the second bandwidth of light to pass through it unfiltered. A control device is fuither provided that is operably connected to the first and second light sources and is operable to control whether light is emitted from one, both or neither of the first and second light sources,

[0025] According to yet another aspect of the invention, a method of making a lighting device is provided that includes mixing a filtering agent with an optical material, shaping the result of the mixing operation to form a filtering optic device and coupling the filtering optic device to at least one LED thai emits light waves in a first range of wavelengths. According to this aspect the filtering agent absorbs light waves having a wavelength within a subrange of the first range of wavelengths and the filtering optic device controls a beam shape of the lighting device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] Exemplary embodiments of the disclosed device and method are described in detail below by way of example, with reference to the accompanying drawings, in which:

[0027] FIG. 1 illustrates a known method of filtering blue light hi accordance with a conventional LED lighting device; [0028] FIG. 2 A is a perspective view of a TIR optic for an LED lighting device consistent with an exemplary embodiment of the present disclosure;

[0029] FIG. 2B is a side elevation view of the optic shown in FIG. 2A;

[0030] FIG. 2C is a front elevation view of the optic shown in FIG. 2A;

|0031] FIG. 2D is a sectional view of the optic shown hi FIG. 2A;

[0032] FIG. 3 is a candela plot of a bare LED without a coupled optic;

[0033] FIG. 4 is a candela plot of an LED with the optic shown in FIGs. 2A-2D coupled to it;

[0034] FIG. 5 is a spectral chart showing the respective wavelengths for radiation in the visible and near visible spectrum.

[0035] FIG. 6 is a chromaticity diagram illustrating the relative intensities of different color light waves as observed by the human eye during typical daylight conditions;

[0036] FIG. 7 is a chart showing the different luminous efficacies of different color light waves under photopic, mesopic and scotopic conditions;

[0037] FIG. S is a graph showing the respective transmission curves of exemplary long pass filters for various color light waves in accordance with the present disclosure;

[0038] FIG. 9 A is a graph showing the luminous flux output, as a function of the wavelength, of the emitted light for a hmiinaire with one or LEDs having respective beam- shaping TIR optics without a wavelength-shifting dye;

[0039] FIG. 9B is a graph showing the luminous flux output, as a function of the wavelength, of the emitted light for a hmiinaire with one or LEDs having respective beam-shaping TIR optics that have a wavelength-s fting dye, in accordance with one or more embodiments of the disclosure;

[0040] FIG. 10 is a perspective view of a single outdoor huninaire device having a plurality of both fil tered and non- filters optics in accordance with one or more embodiments;

[0041] FIG. 11 is a drawing showing a close-up view of a collection of filtered and non- filtered optics in the single huninaire of FIG. 10 in accordance with one or more embodiments; [0042] FIG. 12 is a table showing a list of twelve different preset values and their corresponding lighting parameter values for controlling the LEDs corresponding to the filtered and non-filtered optics in the Iraninaire of FIG. 10;

[0043] FIG. 13 is a graph showing the rel ative intensities of light of different wavelengths coirespoiiding to the preset control values listed in the table of FIG. 12.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0044] Exemplary embodiments of devices consistent with the present disclosure include one or more of the novel features described in detail below. For example; one or more of the exemplary embodiments disclosed include a TIR optic coupled to an LED device, the optic being formed with one or more materials for absorbing a band of visible light waves and shifting the wavelength of at least a portion of the absorbed light bandwidth to one or more wavelengths outside the absorbed bandwidth.

[0045] FIG. 2 A is a perspective view of a TIR optical lens 200, or optic, for an LED lighting device in accordance with an exemplary embodiment. FIGs, 2B and 2C are side and front elevation views, respectively , of optic 200. Optic 200 is a free-form optic made of acrylic, or some other appropriate material such as plastic, silicone, glass, polymer, resin and others. According to the embodiment shown, free-form optic 200 includes one or more reflective or refractive surfaces 210, 220, 230, 240, 250, 260, 270, the shapes of which are uniquely designed to control and shape the emitted light to a desired pattern. FIG. 2D is a cut-away, or sectional, view of optic 200 cut along the center line. The external refractive surfaces are shown in FIG. 2D as well as internal cavity 225, which houses an LED chi (not shown).

[0046] FIG. 3 is a eandela plot of a bare board LED in accordance with the present application. More particularly, as illustrated by the dashed line 305 on plot 300 on the left-hand side of FIG. 3, a bare LED (not shown), that is, and LED without a beam shaping TIR optic coupled to it, provides light intensity that is a maximum, about 4,055 candelas in the example shown in FIG. 3, at a point directly below the LED, i.e., 0 degrees vertical angle. The light intensity steadily decreases as the vertical angle increases to about 0.0 candelas at a vertical angle of 90 degrees and remains at 0.0 candelas at vertical angles greater than 90 degrees, i.e., above the plane of the LED .

[0047] By way of example and by no means limiting, the right-hand side 350 of FIG. 3 is a can ela plot that shows the relative intensity of light for the bare LED as measured from, a horizontal plane. As shown by the semi-circular plot 355, a bare LED positioned to illuminate in a veitical directio and without any optic coupled to it provides an even maximum intensity at all horizontal angles. Fo example, the LED in FIG. 3 is positioned at the spot labeled "X", and at a given height, e.g., 20 feet, above the horizontal plane, e.g., the ground. Plot 355 shows that the maximum intensity, i.e., approximately 4,055 candelas, is illuminated in a consistent circular pattern. That is, the same maximum luminous intensity value, i.e., 4055 candelas, is measured at each lateral angle.

[0048] FIG. 4 is a candela plot similar to the plot shown in FIG. 3, but with one major difference. Instead of measuring the bare LED, as in FIG. 3, FIG. 4 is the candela plot when the TIR optic shown in FIGs. 2A-2D is coupled to the LED. The left-hand side 400 of FIG. 4 includes dotted line plot 405 which has a much more narrow distribution than the corresponding plot in FIG. 3 for the bare LED.

Specifically, as shown, the maximum luminous intensity of the LED with optic is shown to be approximately ,719 candelas and mis maximum intensity occurs at a veitical angle of approximately 67.5 degrees, i.e., at the point labeled 410.

[0049] The right-hand side, 450, of FIG. 4 shows the luminous intensity distribution through a plane that includes the maximum candela value, i.e., approximately 15,719 candelas. As shown, an elongated distribution is achieved along the maximum intensity plane at a lateral angle of about 72.5 degrees, i.e., at point 460.

[0050] Thus, as shown in FIGs. 3 and 4, in accordance with one aspect of the present application, by coupling a specifically designed optic, such as the one shown in FIG. 2A-2D, to an LED, it is possible to shape the light from the LED to a desired pattern. The light pattern shown in FIG. 4, for example, would be useful for illuminating an object or objects hi an open area, such as in a parking lot or a street. [0051] Shaping the light beam such that the light intensity is directed in the precise directions desired for a particular purpose is only one aspect of the present application. Controlling the spectral content of the emitted light is another important aspect. For example, in accordance with one exemplary embodiment the spectral content of the emitted light is controlled such that the amount of blue light emitted from the lummaire is vastly reduced or eliminated.

[0052] FIG. 5 is a spectral chart showing the respective wavelengths for radiation in the visible and near visible spectrum. The human eye recognizes, or ''sees," light in the visible spectrum, which includes light waves with wavelengths ranging from about 380nm to about 780nm. The portion of the spectrum with wavelengths below 3S0mn is known as near-ultra-violet to ultra-violet radiation and wavelengths above 740mn are known as infra-red radiation. Moreover, within the overall range of visible light, each wavelength represents a different color, as seen by the human eye. For example, blue light has a wavelength that ranges from about 435nm to about 500mn, and green light is in the range from about 520nm to about 565nm.

[0053] FIG. 6 illustrates the luminosity function or luminous efficiency function which describes the average spectral sensitivity of human visual perception of brightness. It is based on subjective judgments of which of a pair of different-colored lights is brighter, to describe relative sensitivity to light of different wavelengths. It should not be considered perfectly accurate in every case, but it is a very good representation of visual sensitivity of the human eye and it is valuable as a baseline for experimental purposes. These are referred to as "photopic" conditions. Thus, as illustrated, during photopic conditions the human eye is most sensitive to green light, that is. light with a wavelength of approximately 555nm. As shown hi the figure, yellow and cyan are the next most recognizable colors, e.g., from an intensity standpoint, followed by blue and orange and then violet and red.

[0054] FIG. 7 shows the relative difference in the way in which the human eye responds to light of different frequencies, or wavelengths, i.e., luminous efficacy, during daylight (photopic), twilight (mesopic) and extremely low-light (scotopic) conditions, respectively. As shown, when the viewing environment is dark, such as, during night time hours when no moon is shilling, the luminous efficacy curve shifts downward, i.e., to the left in FIG. 7, as compared to the photopic response. Under these conditions the human eye is most sensitive to blue light, e.g., light having a wavelength of about 507mii or so.

[0055] Accordingly, when lighting having a significant amount of blue light, such as the white light LEDs discussed above, is used to illimmiate targets outdoors at night, light in the blue wavelength range that is scattered into the environment, e.g. Rayleigh scattering, will have the most impact on the night sky. In other words, humans will recognize the scattered blue light portion of any scattered white light more than colors of other wavelengths. Thus, street lights and flood lights thai use bright white LEDs contribute a significant amount of blue light into the sky when the light is either reflected off an object or when the light beam is not sufficiently controlled and some of the light is directly emitted into the sky. Such conditions are a significant cause of light pollution as discussed above.

[0056] In accordance with an exemplary embodiment of the applica tion, tar geted blue light wavelengths are absorbed by the physical components of a TIR optic, such as the one depicted in FIGS . 2A-2D, and the emitted spectr al content is shifted. For example, a dye that is able to absorb light in blue wavelength range is mixed with an acrylic material used to make the optic. As a result, a band of wavelengths comprising blue light, from the overall white light spectrum outputted from a white light LED, is absorbed by the dye, while light of other wa velengths outside the absorbed band are permitted to pass tlirough the optic. Any scattered light from, for example, a street light employing one or more LED devices in accordance with the present embodiment, that would otherwise contribute to light pollution as discussed above would not be emitted into the night sky.

[0057] According to a fuither exemplary embodiment, filtered optics in accordance with the invention are used to filter harmful light wavelengths before light of these wavelengths ar e permitted to come into contact and/or be absorbed by various food products. According to these and other embodiments, specific wavelengths of fight, e.g., blue light in the 400-500 nanometer range, is filtered from the emitted light of one or more LEDs. Such LEDs provide illumination of the food or beverage, such as meat, cheese, milk, and other daily products, a.s well as soft drinks, fruit juices and even beer, just to name a few.

[0058] The method by which the specific light waves are filtered from the emitted light include a filtering optic at the light source, such as one or more of the optics described above and illustrated in the drawings. Another method for filtering the appropriate wavelengths of light prior to it being absorbed by solid or liquid food, includes providing packaging for the food that filters the appropriate wavelengths. For example, a bottle for packaging milk, beer or some other beverage that is readily affected by light waves, is produced having a light filtering property.

|0059] The present embodiment would be appealing, for example, to

owners/operators of milk dairy farms and processing facilities which, like others, are very interested, compelled even, to reduce the energy consumption at their facilities as a means to offset electrical lighting and related HVAC costs.

[0060] Unfortunately, as mentioned above, milk is susceptible to "light activated" flavors and nutrient reduction, specifically to wavelengths of light below 500nm, which some producers have attempted to somewhat mitigate through the use of colored packaging (e.g., yellow and/or UV coated). The costs associated with opaque and light-blocking packaging, however, are difficult to recover from the consumer. Additionally, the production, processing, refrigeration and related transportation facilities utilize light sources, such as inefficient Metal Halide & Fluorescent lights, which are targets for more energy-efficient LED lighting technology. While these legacy sources produce LTV which has also been shown to affect the quality of the food product, they produce substantially much less blue light in the 400-500nm range, in comparison to LEDs.

[0061] LED light sources were not available when the bulk of the research was conducted for the development of the packing and coating systems used on dairy products. In view of the advancement to LED illumination, therefore, a resin consistent with embodiments disclosed herein offer a suitable improvement over current packaging. Specifically, the current resin used by the dairy and other beverage industries in their bottling processes do not filter or np-shift unwanted wavelengths of light, such as damaging blue light. Resins and other materials made in accordance with embodiments disclosed herein, however, perform such filtering and shifting, as described above.

[0062] Tims, as the grocery industry shifts towards the use of LED refrigeration case lighting, mat is, lighting that contains more blue content than traditional light sources, dairy products packaged in white and or clear packing will experience far greater spoilage rates. To reduce or eliminate such increased spoilage, filtering optics at the light source and/or packaging made from a resin or other material that absorbs and or shifts the blue light wavelengths in accordance with one or more embodiments of the invention will overcome the problem.

[0063] Other exemplary embodiments of the present invention that utilize the filtered optics include, but are not limited to, (1) general ambient or task illumination used in food production, processing, refrigerated storage and related transportation (e.g., source to shelf), (2) refrigeration lights used in consumer and professional appliances, (3) refrigeration lights used in professional retail case appliances, (4) interior cargo lights used by dairy, meat, and agricultural transportation industry, and (5) industrial/commercial himmaires utilized in related

productioii processmg refhgeration¾arM^rtation of dairy/me-at produce (i.e., food). Moreover, potential new uses for filtered optics materials that are unrelated to iUummation include, (1) product packaging and (2) display case windows.

[0064} Beer, for example, is typically bottled and packaged in areas illuminated with High Pressure Sodium (HPS) lights. This is because HPS lights do not emit a significant amount of light having wavelengths in the critical range of around 350- 50Gnm. If during the bottling process, and through to the case packing operation where the bottles are no longer exposed to the light, the bottles are exposed to light for an inordinate amount of time, such as when a machine breaks down, etc., the content of all of the exposed bottles must be disposed of.

[0065] An exemplary LED that can be used in accordance with one or more embodiments is a bright white light LED such as the Nichia 21 B LED by Nichia Corporation. As mentioned above, such white light LEDs tend to emit a significant amount of blue light which ideally should be filtered or Stokes- hifted, to provide a more acceptable spectral content. In accordance with an exemplary embodiment of the disclosure, a dye for absorbing blue light is mixed into the plastic or acrylic material used to form the TI optic.

[0066] One known dye that can be incorporated into the plastic optic in accordance with the present embodiment is DYE 500muLP by Adam Gates &

Company, LLC of Hillsborough, New Jersey. This particular dye is a yellow free flowing powder material that can be melted and mixed evenly with the plastic or acrylic material used for forming the main optic structure. One suitable material is an acrylic polymer resin material, such as Plexiglas® V825 by Altuglas International.

[0067] FIG. 8 illustrates the transmission curve for the SOOnmLP dye. More particularly, curve 810 shows the relative transmission levels for radiation that impinges on the dye. As shown, 100% of radiation having a wavelength above

500mn is transmitted and 0% of radiation having wavelength below about 80nm is transmitted. Radiation with wavelengths between 480nm and 500nm is substantially absorbed by the dye. In other words, virtually blue light, including violet and ultraviolet light, is absorbed by the dye and all green, yellow, orange and red light, including magenta and infra-red light, is permitted to pass through the dye. Also, optics in a ccordance with embodiments of the present invention, including

embodiments of direct LED optics and embodiments where various packaging is made of the spectrally filtering resin or other material, are made from one or more different processes, including various forms of blow-molding, such as, extrusion blow molding, injection blow molding, stretch blow molding and reheat and blow molding.

[0068] In accordance with an embodiment of the disclosure, a t least some of the light waves emitted from the LED and entering the optic is Siokes-shifted to a higher wavelength. That is, due to the properties of fluorescent material, the light that is absorbed in the dye, i.e., in the present example, blue light, is re-emitted at

wavelengths higher than the absorbed blue light. Thus, not only is the amount of blue light ultimately emitted from the optic virtually removed, but the luminous flux, i.e., the perceived power of the light emitted from the optic, is not reduced by a value near as high as the amount of light absorbed. In other words, in addition to light having a wavelength of about 455mn, or so, i.e., blue light, being removed from the emitted spectrum, additional light having wavelengths above 455mn is also emitted. |0069] FIG. 9 A is a graph showing the himmous flux output as a function of the wa velength of the emitted light for a Imiiinaire in accordance with one or more embodiments of the disclosure. In this exemplary embodiment, TIR optics similar to the optic of FIGS. 2A-2D were coupled to each LEI) but no dye was mixed into the acrylic material used to form the TIR optic. Specifically, a flood light lumiuaire having 72 individual broad-specirmn white light LEDs coupled to respective optic devices was configured and various test measurements were observed. As shown in FIG. 9A, the light emitted from the luminaire has a first maxima 910 at wavelengths of about 450nm and a second maxima 920 at about 560mn.

[0070] FIG. 9B is a graph that shows the luminous flux for the same himinaire as the one used in connection with FIG . 9A, but with one major difference. The fluorescent dye discussed above is mixed in with the acrylic material when fomiing the TIR optic. As shown in FIG. 9B, the spectral content of the light emitted from the luininaire is devoid of radiation wavelengths less than about 455nm, e.g.,

corresponding to the first maxima 910 in FIG. 9A. Moreover, the spectrum of the emitted light has shifted towards higher wavelengths. For example, the peak wavelength in FIG. 9B is about 560nm, i.e., which corresponds to the second maxima in FIG. 9A. However, the peak luminous flux in FIG. 9B, i.e., at 560nm, is g eater in magnitude than the value corresponding to the second maxima in 9A. This indicates that at least some of the absorbed blue light, e.g., around 455nm, has bee shifted to green light e.g., 560nm.

[0071] While various embodiments have been chosen to illustrate the disclosed method and device, it will be understood by those skilled in the ait that other modifications maybe made without departing from the scope of the disclosure as defined by the appended claims. For example, the exemplary embodiment described above for removing blue light from the spectrum of emitted light and controlling the beam shape for illuminating an outdoor object, such as a road, etc., is merely one practical application of the present disclosure. Specifically, it is contemplated that other wavelengths of radiation can be absorbed and used to shift the spectral content, and other beam shapes as defined by the configuration of the optic and are within the spirit and scope of the disclosure. [0072] For example, it has been found thai at night artificial light disrupts the human body's biological clock, i.e., the circadian rhythm and, thus, humans exposed to inordinate amounts of light experience higher ra tes of sleep dysfunction.

Moreover, research has shown that excess light, particularly at night, may contribute to the causation of cancer, diabetes, heart disease, and obesity. Blue light tends to be the most disruptive on the human body, especially at night.

[0073] Independent experiments have found that blue light suppressed melatonin for about twice as long as green light and shifted circadian rhythms by twice as much. Thus, various lighting applications would benefit from reducing the amount of emitted blue light and possibly shifting some of the blue light to green or red light and such applications are intended to be within the scope of this disclosure.

[0074] It should be understood that the method and device disclosed herein is not limited to any one or limited range of wavelengths of radiated beam shapes. More particularly, another application, by way of example, for the beam-shaping and spectral content controlling nature of the disclosure related to illmnination of artwork. That is, all light causes irreversible damage to artworks. The extent of the

deterioration depends on the type of light source, its intensity and the length of exposure the artwork is subjected to. Because light damage to artwork is

accumulative, the longer the artwork is exposed, the more extensive the damage.

[0075] Natural light is an intense source of energy and contains ultra-violet (LTV 7 ) radiation. Because most artworks are composed of organic materials, for example, as found in various paint, artworks are particularly vulnerable to UV wavelengths. This causes different forms of damage, including discoloration. Radiation in the visible spectrum also causes a large amount of damage and discoloration to artworks. Thus, controlling the spectral content of the emitted radia tion when illuminating artwork and also controlling the beam shape to provide an efficient illumination pattern can be a useful tool for effectively displaying artwork and simultaneously protecting the artwork from undue radiation damage.

[0076] FIGS. 10 and 11 illustrate a luminarre in accordance with a further exemplary embodiment where both filtered and non-filtered optics, each

corresponding to one or more LEDs, are utilized to achieve a customized lighting solution. According to this embodiment, a controller unit (not shown) is used to activate the LEDs corresponding to the filtered and non-filtered optics in a controlled manner. For example, a. number of preset control values are used to alter which particular LEDs are activated at a particular time of day, thus achieving a desired lighting effect depending on the particular preset values used. An exemplary wireless controller consistent with the embodiments disclosed herein is disclosed in U.S. published patent application number 2012-0136485, the entire contents of which are incorporated herein by reference. Although the controller disclosed in this U.S.

published application can be used, other controllers, either wireless or wireline, can also be used consistent with tfaes and other embodiments,

[0077] According to one aspect of these exemplary embodiments, the wireless controls provide programmable LED lighting which reduces and filters the wavelengths in traditional light sources that emulate daylight. A lummaire with filtered and non-filtered optics according to this embodiment is programmed with presets to provide varying degrees of light "adaption" from, for example, dusk-to- dawn or customized for the particular application. Preset modes allow desired reduction of the "blue light" wavelengths of light during the night time operation of the luminaire.

[0078] FIG. 12 is a chart providing twelve (12) exemplary "presets," 1-12, listed in the left-hand column. Corresponding to each preset value are respective power, OCT. illuminance and CRI values. According to a time-of-day timer or some other pre-programmed set of controls, varying amounts of "blue light" is filtered from the overall emitted light from the luminaire. As illustrated, different control values can be used depending on whether the lighting device, e.g., luminaire, is located in an urban or mixed use setting, a low population density area, or an area such as a national park or other protected environment

[0079] FIG. 13 shows a series of spectral distributions emitted from a given luminaire equipped with both filtered and non- filtered optics in accordance with the present embodiment. According to this embodiment the individual LEDs

corresponding to the optics are controlled in accordance with the presets, 1-12, listed in the table of FIG. 12. As shown, as different combinations of LEDs corresponding to filtered and non- filtered optics are operated in accordaiice with the preset values, the amount of "blue light" in the wavelength band near 450 nni is altered. More particular, in the embodiment of FIG. 13 the relative intensity of the 14 bhie light" emitted from the lummaire is reduced from about 23.0 when preset value 1 is used down to about 1.0 when the preset value Ϊ2 is used. This enables a desired spectral content to be achieved in a confrollable manner using the same iuminaire populated with both filtered and non-filtered optics.