Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BEARING ARRANGEMENT FOR MOUNTING A TURBINE ROTOR OF A TURBOMACHINE
Document Type and Number:
WIPO Patent Application WO/2018/206157
Kind Code:
A1
Abstract:
The invention relates to a bearing arrangement (1) for mounting a turbine rotor (2) of a turbo machine (3). The bearing arrangement comprises at least one axial bearing (4) and at least one radial bearing (5). The axial bearing is designed as an electromagnetic bearing and the radial bearing is designed as a rolling bearing or a sliding bearing.

Inventors:
HAJE DETLEF (DE)
SOMMER RICHARD (DE)
Application Number:
PCT/EP2018/050414
Publication Date:
November 15, 2018
Filing Date:
January 09, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
International Classes:
F16C37/00; F01D25/12; F01D25/16; F02C7/06; F16C35/02; F16C35/04
Domestic Patent References:
WO2008015777A12008-02-07
Foreign References:
DE102008035086A12010-02-25
DE112006003333T52008-10-09
US20160312826A12016-10-27
GB2357321A2001-06-20
DE102015218492A12017-03-30
DE102011005347A12012-09-13
Other References:
None
Download PDF:
Claims:
Patentansprüche

1. Lageranordnung (1) zur Lagerung eines Turbinenrotors (2) einer Turbomaschine, umfassend wenigstens ein Axiallager (4) und wenigstens ein Radiallager (5),

dadurch gekennzeichnet, dass

das Axiallager (4) als elektromagnetisches Lager und das Radiallager (5) als Wälz- oder Gleitlager ausgebildet ist .

2. Lageranordnung (1) nach Anspruch 1,

dadurch gekennzeichnet, dass

das Axiallager (4) und das Radiallager (5) in einem gemeinsamen Lagergehäuse (6) angeordnet sind, in den der Turbinenrotor (2) hinein oder durch den er hindurch ragt .

3. Lageranordnung (1) nach Anspruch 2,

dadurch gekennzeichnet, dass

das Lagergehäuse (6) einen ersten Raum (7) zur Aufnahme des Axiallagers (4) und einen zweiten Raum (8) zur Aufnahme des Radiallagers (5) umfasst.

4. Lageranordnung (1) nach Anspruch 3,

dadurch gekennzeichnet, dass

der Druck (pl) im ersten Raum (7) größer ist als der Druck (p2) im zweiten Raum (8) .

5. Lageranordnung (1) nach Anspruch 3 oder 4,

dadurch gekennzeichnet, dass

die Räume (7,8) mittels einer Dichtung (9) im Bereich des Turbinenrotors (2) gegeneinander abgedichtet sind.

6. Lageranordnung (1) nach einem der Anspruch 3 bis 5,

dadurch gekennzeichnet, dass

der erste Raum (7) zur Aufnahme des Axiallagers (4) kühlbar ist.

7. Lageranordnung (1) nach Anspruch 6, dadurch gekennzeichnet, dass

die Kühlung mittels Kühlluft erfolgt.

Description:
Beschreibung

Lageranordnung zur Lagerung eines Turbinenrotors einer Turbomaschine

Die Erfindung betrifft eine Lageranordnung zur Lagerung eines Turbinenrotors einer Turbomaschine nach dem Oberbegriff des unabhängigen Patentanspruch 1. Der Turbinenrotor einer Turbomaschine umfasst eine Turbinenwelle mit einer Vielzahl von über den Umfang der Turbinenwelle verteilten Turbinenschaufeln. Der Turbinenrotor ist drehbar in einem Turbinengehäuse gelagert . Für die Lagerung des Turbinenrotors sind wenigstens ein Axiallager und zwei Radi- allager erforderlich. Die Radiallager dienen im Wesentlichen dazu, die Gewichtskraft des Turbinenrotors aufzunehmen und ihn in einer radialen Position zu halten. Das Axiallager dient im Wesentlichen zur Aufnahme des Axialschubs. Der Axialschub entsteht dadurch, dass die Turbinenschaufeln von ei- nem Strömungsmedium angeströmt werden und hierbei in axialer Richtung belastet werden. Die Resultierende aller auf den Rotor einwirkenden Axialkräfte bezeichnet man als Axialschub. Dieser Axialschub führt dazu, dass der Rotor gegenüber dem umgebenden Gehäuse verschoben wird. Um ein Anlaufen der Tur- binenschaufel an dem Turbinengehäuse und damit eine mögliche Zerstörung wesentlicher Turbinenteile zu vermeiden, muss dem Axialschub bzw. einer durch diese verursachte größere Auslenkung des Rotors entgegengewirkt werden. Hierzu dient das Axiallager .

Sowohl das Axiallager als auch die Radiallager sind üblicherweise als hydrodynamische Gleitlager ausgebildet. Hydrodynamische Lager benötigen jedoch eine aufwändige und damit teure Ölversorgung und weisen darüber hinaus eine hohe Verlustleis- tung aufgrund von Reibungsverlusten auf. Um diese Nachteile zu vermeiden, werden bei kleineren Turbomaschinen Magnetlagerungen zur Radiallagerung des Turbinenrotors eingesetzt.

Nachteilig bei den magnetischen Radiallagern ist jedoch der hohe apparative Aufwand für die Steuerung und Reglung sowie die Kühlung der Magnetlager. Zudem ist die Tragfähigkeit des Radiallagers begrenzt, so dass eine solche Anwendung nur bei kleinen Turbomaschinen möglich ist.

Aufgabe der vorliegenden Erfindung ist es daher, eine Lageranordnung zur Lagerung eines Turbinenrotors einer Turbomaschine bereitzustellen, welcher eine hohe Traglast bei gleichzeitig verringerter Verlustleistung ermöglicht.

Die Aufgabe wird durch die Merkmale des unabhängigen Patentanspruch 1 gelöst.

Weitere Ausgestaltungen der Erfindung, die einzeln oder in Kombination miteinander einsetzbar sind, sind Gegenstand der Unteransprüche .

Die erfindungsgemäße Lageranordnung zur Lagerung eines Turbinenrotors einer Turbomaschine, umfassend wenigstens ein Axi- allager und wenigstens ein Radiallager, zeichnet sich dadurch aus, dass das Axiallager als elektromagnetisches Lager und das Radiallager als Wälz- oder Gleitlager ausgebildet ist. Das elektromagnetische Axiallager weist bauartbedingt eine hohe axiale Traglast auf und zeichnet sich durch kleine Ver- lustleistungen aus. Da elektromagnetische Radiallager bauartbedingt eine kleinere Traglast aufweisen, ist das Radiallager der erfindungsgemäßen Lageranordnung als konventionelles Wälz- oder Gleitlager ausgebildet. Durch die erfindungsgemäße Lageranordnung werden somit die Vorteile des elektromagneti- sehen Axiallagers und des konventionellen Radiallagers vereint. Die erfindungsgemäße Lageranordnung zeichnet sich somit durch eine hohe axiale Traglast und geringe Verlustleistung in Folge der reduzierten Reibungsverluste durch das radiale Magnetlager aus.

Eine Ausgestaltung der Erfindung sieht vor, dass das Axiallager und das Radiallager in einem gemeinsamen Lagergehäuse angeordnet sind, in dem der Turbinenrotor hinein oder durch den er hindurch ragt. Durch das gemeinsame Lagergehäuse lässt sich eine sehr kompakte Bauweise der Lageranordnung erzielen. Hierdurch kann das gesamte Turbinengehäuse kürzer ausgeführt werden und der Raumbedarf der Turbomaschine deutlich verrin- gert werden, wodurch sich zusätzlich Materialkosten einsparen lassen .

Eine weitere Ausgestaltung der Erfindung sieht vor, dass das Lagergehäuse einen ersten Raum zur Aufnahme des Axiallagers und einen zweiten Raum zur Aufnahme des Radiallagers umfasst. Durch die Aufteilung des Lagergehäuses in einen ersten und einen zweiten Raum kann die Ölversorgung des Wälz- oder

Gleitlagers vollkommen getrennt vom elektromagnetischen Axiallager erfolgen. Eine spezielle Abdichtung des elektromagne- tischen Axiallagers kann somit unterbleiben. Durch die zwei getrennten Räume wird die Betriebssicherheit der Lageranordnung erhöht .

Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Druck (PI) im ersten Raum größer ist, als der Druck (P2) im zweiten Raum. Dabei ist das elektromagnetische Axiallager im ersten Raum und das konventionelle Radiallager im zweiten Raum angeordnet. Durch den höheren Druck im ersten Raum wird eine zusätzliche Sicherheit dafür geschaffen, dass kein Öl vom zweiten Raum in den ersten Raum eintritt, welches zu einem Schaden am elektromagnetischen Axiallager führen könnte.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Räume mittels einer Dichtung im Bereich des Turbinenrotors gegeneinander abgedichtet sind. Die Dichtung sorgt ebenfalls dafür, dass kein Öl vom zweiten Raum in den ersten Raum eintreten kann und erhöht somit die Betriebssicherheit der Lageranordnung weiter. Als Dichtung kommen beispielsweise Bürsten- oder Labyrinthdichtungen zum Einsatz . Auch die Verwen- dung eines Öldichtrings oder eine Kombination aus diesen Dichtungsarten ist denkbar. Eine weitere Ausgestaltung der Erfindung sieht vor, dass der erste Raum zur Aufnahme des elektromagnetischen Axiallagers kühlbar ausgebildet ist. Durch die Kühlung des Raums, in dem das elektromagnetische Axiallager angeordnet ist, lässt sich das Lager auf einfache und effektive Weise kühlen, so dass es zu keiner Überhitzung des Lagers im Lagerbetrieb kommen kann.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Kühlung mittels Kühlluft erfolgt. Die Kühlung mittels

Kühlluft lässt sich auf einfache Weise realisieren. Die Kühlung von elektromagnetischen Lagern ist bereits zuverlässig in der Praxis erprobt. Die Kühlluft lässt sich auf einfache Weise ohne großen anlagentechnischen Aufwand aufbereiten. Anhand der nachfolgenden Ausführungsbeispiele soll das Wesen der Erfindung näher erläutert werden und weitere Vorteile der Erfindung gegenüber dem Stand der Technik dargestellt werden.

Es zeigt:

Figur 1 einen schematischen Aufbau einer Turbinenmaschine mit einer erfindungsgemäßen Lageranordnung zur Lagerung eines Turbinenrotors; Figur 2 eine Detailansicht der in Figur 1 gezeigten erfindungsgemäßen Lageranordnung .

Die Figuren zeigen dabei jeweils nur eine stark vereinfachte und schematische Darstellung der Erfindung. Dabei sind nur die für die Erfindung wesentlichen Bauteile dargestellt.

Gleiche bzw. funktionsgleiche Bauteile sind figurübergreifend mit denselben Bezugszeichen versehen.

Figur 1 zeigt den prinzipiellen Aufbau einer Turbomaschine 3 beispielsweise einer Dampfturbine. Die Turbomaschine 3 um- fasst einen Turbinenrotor 2, auf dem mehrere Turbinenstufen, beispielsweise eine Hochdruckstufe 10 und zwei Niederdruckstufen 11 angeordnet sind. Der Turbinenrotor 2 ist mittels mehrerer Radiallager 5 und wenigstens einem Axiallager 4 drehbar gelagert. Die Radiallager 5 sind dabei als Wälz- oder Gleitlager ausgebildet. Das Axiallager 4 ist als elektromagnetisches Lager ausgebildet. Das Axiallager 4 und wenigstens ein Radiallager 5 bilden zusammen die erfindungsgemäße Lageranordnung 1. Des Weiteren kann der Turbinenrotor 2 mit einem Generator 12 gekoppelt sein. Anstelle des Generators 12 können aber auch andere Aggregate, beispielsweise eine Pumpe oder ein Verdichter mit dem Turbinenrotor 2 gekoppelt sein.

Figur 2 zeigt die in Figur 1 dargestellte erfindungsgemäße Lageranordnung 1 in einer Detailansicht. Die erfindungsgemäße Lageranordnung 1 umfasst wie bereits beschrieben, zumindest ein Axiallager 4, welches als elektromagnetisches Lager aus- gebildet ist und ein Radiallager 5, welches als konventionelles Wälz- oder Gleitlager ausgebildet ist. Das Axiallager 4 und das Radiallager 5 sind dabei in einem gemeinsamen Lagergehäuse 6 angeordnet, in den der Turbinenrotor 2 hinein ragt. Das Lagergehäuse 6 ist dabei in einen ersten Raum 7 zur Auf- nähme des Axiallagers 4 und einen zweiten Raum 8 zur Aufnahme des Radiallagers 5 unterteilt. Im Bereich des Durchtritts des Turbinenrotors 2 vom ersten Raum 7 zum zweiten Raum 8 ist eine Dichtung 9 vorgesehen, die den ersten Raum 7 gegenüber dem zweiten Raum 8 abdichtet. Über einen Einlass 13 kann Kühlluft in den ersten Raum 7 zur Kühlung des Axiallagers 4 eingeleitet werden. Die Kühlluft sorgt dabei dafür, dass das elektromagnetische Axiallager 4 nicht überhitzt und es dadurch zu thermischen Problemen kommen kann. Durch die Beaufschlagung des ersten Raums 7 mit Kühlluft kann dafür gesorgt werden, dass der Druck PI im ersten Raum 7 höher ist als der Druck P2 im zweiten Raum 8. Im zweiten Raum 8 ist das konventionelle Lager 5 angeordnet, welches mit Schmieröl zur Verringerung der Lagerreibung versorgt werden muss. Um Schäden am elektromagnetischen Axiallager 4 zu vermeiden, muss sichergestellt werden, dass kein Öl vom zweiten Raum 8 in den ersten Raum 7 gelangt. Durch den höheren Druck PI im ersten Raum 7 wird in Kombination mit der Abdichtung 9 im Bereich des Durchtritts des Turbinenrotors 2 wirkungsvoll der Eintritt von Öl in den ersten Raum 7 verhindert .

Durch die Kombination eines elektromagnetischen Axiallagers 4 und eines konventionellen Radiallagers 5, welches als Wälzoder Gleitlager ausgebildet ist, kann auf einfache Weise eine hohe axiale Traglast erzielt werden. Gleichzeitig können die Verlustleistungen aufgrund von Reibungsverlusten deutlich reduziert werden. Die Anordnung der beiden Lager in einem ge- meinsamen Lagergehäuse ermöglicht dabei eine besonders kompakte Bauform. Hierdurch kann der Raumbedarf für die gesamte Turbomaschine reduziert werden und es können hohe Material - kosten eingespart werden.