Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIDENTATE LIGAND BASED CATALYST FOR THE POLYMERIZATION OF OLEFINS
Document Type and Number:
WIPO Patent Application WO/2003/051936
Kind Code:
A1
Abstract:
The present invention provides a catalyst precursor compound and catalyst composition form making polyolefins, an embodiment of the precursor is selected from the following structures: wherein T is a bridging group; M is selected from Groups 3 to 7 and the Lanthanide series of the Periodic Table of the Elements; Z is a coordination ligand; each L is a monovalent, bivalent, or trivalent anionic ligand; X is oxygen or sulfur; X and Y are each independently selected from nitrogen, phosphorus, oxygen or sulfur; R is a non-bulky substituent that has relatively low steric hindrance with respect to the X substituent; and R' is a bulky substituent with respect to Y and is selected from alkyl, alkenyl, cycloalkyl, heterocyclic (both heteroalkyl and heteroaryl), alkylaryl, arylalkyl, and polymeric groups. Other groups are as defined in the specification and claims.

Inventors:
MURRAY REX EUGENE
Application Number:
PCT/US2002/036767
Publication Date:
June 26, 2003
Filing Date:
November 14, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIVATION TECH LLC (US)
International Classes:
B01J31/22; C07C211/53; C07C211/54; C07C211/65; C07C217/08; C07C217/92; C07F7/00; C07F7/08; C07F7/10; C08F4/64; C08F4/659; C08F10/00; C08F10/02; C08F110/02; C08F210/16; (IPC1-7): C08F10/00; C08F4/64
Domestic Patent References:
WO2002046246A22002-06-13
WO1995033497A11995-12-14
Foreign References:
EP0950667A21999-10-20
Attorney, Agent or Firm:
Faulkner, Kevin M. (5555 San Felipe Houston, TX, US)
Download PDF:
Claims:
CLAIMS:
1. A catalyst precursor compound selected from the group consisting of those represented by: wherein T is a bridging group containing 2 or more bridging atoms; M is selected from Groups 3 to 7 atoms and the Lanthanide series atoms of the Periodic Table of the Elements; Z is a coordination ligand; each L is a monovalent, bivalent, or trivalent anionic ligand; n is an integer from 1 to 6; m is an integer from 1 to 3; k has the value of 2 when X is nitrogen or phosphorus, and k has the value of 1 when X is oxygen or sulfur; X and Y are each independently selected from nitrogen, phosphorus, oxygen or sulfur; R is a nonbulky substituent that has relatively low steric hindrance with respect to the X substituent and is a straight or branched chain alkyl group; and R'is a bulky substituent with respect to Y and is selected from alkyl, alkenyl, cycloalkyl, heterocyclic, alkylaryl, arylalkyl, and polymeric groups.
2. The catalyst precursor composition of Claim 1, wherein at least one of the bridging atoms of T is a carbon atom and wherein T contains from 1 to 50 nonhydrogen atoms.
3. The catalyst precursor composition of Claim 1, wherein T contains a dimethyl group adjacent to Y.
4. The catalyst precursor composition of Claim 1, wherein T is selected from the group consisting of : wherein X and Y are provided for convenience and are not part of the bridging group.
5. The catalyst precursor composition of Claim 1, wherein Z is selected from at least one of triphenylphosphine, tris (ClC6 alkyl) phosphine, tricycloalkyl phosphine, diphenyl alkyl phosphine, dialkyl phenyl phosphine, trialkylamine, arylamine, a substituted or unsubstituted C2 to 20 alkene, an ester group, a Cl to C4 alkoxy group, an amine group, carboxylic acid, a di (Cl to C3) alkyl ether, an rl4diene, tetrahydrofuran, and a nitrile.
6. The catalyst precursor composition of Claim 1, wherein each L is an anionic ligand independently selected from those containing from 1 to 50 nonhydrogen atoms and selected from the group consisting of halogen containing groups; hydrogen; alkyl ; aryl; alkenyl; alkylaryl ; arylalkyl ; hydrocarboxy; amides, phosphides ; sulfides ; silylalkyls; diketones ; borohydrides ; and carboxylantes. The catalyst precursor composition of Claim 1, wherein each L is an anionic ligand independently selected from those containing from 1 to 20 nonhydrogen atoms and selected from the group consisting of alkyl, arylalkyl, and halogen containing groups. The catalyst precursor composition of Claim 1, wherein n is an integer from 1 to 4. The catalyst precursor composition of Claim 1, wherein both X and Y are nitrogen. The catalyst precursor composition of Claim 1, wherein R is a nonbulky substituent selected from straight and branched chain alkyl groups. The catalyst precursor composition of Claim 10, wherein R is a nonbulky Cl to C20 alkyl group. The catalyst precursor composition of Claim 11, wherein R is a Cl to Clo straight chain alkyl group. The catalyst precursor composition of Claim 1, wherein R'is selected from alkyl, alkenyl, cycloalkyl, heterocyclic, alkylaryl, arylalkyl, and polymeric. The catalyst precursor composition of Claim 13, wherein the R'substituent contains from 3 to 50 nonhydrogen atoms. The catalyst precursor composition of Claim 14, wherein the R'substituent has one or more of its carbon or hydrogen positions are substituted with an element selected from Groups 14 to 17 of the Periodic Table of the Elements. The catalyst precursor composition of Claim 1, having a formula selected from: 17. The catalyst precursor composition of Claim 1, which is represented by a formula selected from : 18. A catalyst composition comprising the catalyst precursor of Claim 1 and an activator.
7. 19 A polyolefin made by the catalyst composition of Claim 18.
8. 20 The polyolefin of Claim 19, wherein the monomer derived units are selected from C2 to C12 olefins.
Description:
BIDENTATE LIGAND BASED CATALYST FOR THE POLYMERIZATION OF OLEFINS

FIELD OF THE INVENTION [0001] The present invention relates to novel monoamide based catalyst precursor and catalyst compositions useful for the polymerization of olefins and other monomers.

BACKGROUND OF THE INVENTION [0002] A variety of metallocenes and other single site-like catalysts have been developed to produce olefin polymers. Metallocenes are organometallic coordination complexes containing one or more g-bonded moieties (i. e. , cyclopentadienyl groups) in association with a metal atom. Catalyst compositions containing metallocenes and other single site-like catalysts are highly useful in the preparation of polyolefins, producing relatively homogeneous copolymers at excellent polymerization rates while allowing one to tailor closely the final properties of the polymer as desired.

[0003] Recently, work relating to certain nitrogen-containing, single site-like catalyst precursors has been published. WO 96/23101 relates to di (imine) metal complexes that are transition metal complexes of bidentate ligands selected from the group consisting of :

wherein said transition metal is selected from the group consisting of Ti, Zr, Sc, V, Cr, a rare earth metal, Fe, Co, Ni, and Pd; R2 and R are each independently hydrocarbyl or substituted hydrocarbyl, provided that the carbon atom bound to the imino nitrogen atom has at least two carbon atoms bound to it; R3 and R4 are each independently, hydrogen, hydrocarbyl, substituted hydrocarbyl, or R3 and R4 taken together are hydrocarbylene or substituted hydrocarbylene to form a carbocyclic ring; R44 is a hydrocarbyl or substituted hydrocarbyl, and R28 is hydrogen, hydrocarbyl or substituted hydrocarbyl or R44 and W8 taken together form a ring; R45 is a hydrocarbyl or substituted hydrocarbyl, and R29 is hydrogen, hydrocarbyl or substituted hydrocarbyl or R45 and R29 taken together form a ring; each Wo is independently hydrogen, hydrocarbyl or substituted hydrocarbyl, or two of R3o taken together form a ring; each R31 is independently hydrogen, hydrocarbyl or substituted hydrocarbyl ; R46 and R47 are each independently hydrocarbyl or substituted hydrocarbyl, provided that the carbon atom bound to the imino nitrogen atom has at least two carbon atoms bound to it; R48 and R49 are each independently hydrogen, hydrocarbyl, or substituted hydrocarbyl ; Wo and R23 are each independently hydrocarbyl, or substituted hydrocarbyl; R21 and R22 are independently hydrogen, hydrocarbyl, or substituted hydrocarbyl; and n is 2 or 3 ; and provided that: the transition metal also has bonded to it a ligand that may be displaced by or added to the olefin monomer being polymerized; and when the transition metal is Pd, said bidentate ligand is (V), (VII) or (VIII).

[0004] Also, US 6,096, 676 teaches a catalyst precursor having the formula: wherein M is a Group IVB metal; each L is a monovalent, bivalent, or trivalent anion;

X and Y are each heteroatoms, such as nitrogen; each Cyclo is a cyclic moiety; each Ru ils a group containing 1 to 50 atoms selected from the group consisting of hydrogen and Group IIIA to Group VIIA elements, and two or more adjacent Ri groups may be joined to form a cyclic moiety; each R2 is a group containing 1 to 50 atoms selected from the group consisting of hydrogen and Group IIIA to Group VIIA elements and two or more adjacent R2 groups may be joined to form a cyclic moiety; W is a bridging group; and each m is independently an integer from 0 to 5; Also taught is a catalyst composition comprising this catalyst precursor and an activating co- catalyst, as well as a process for the polymerization of olefins using this catalyst composition.

[0005] Although there are a variety of single site catalysts taught in the prior art, some of which are commercially available, there still exist a need in the art for improved catalysts and catalyst precursors that are capable of producing polyolefins having predetermined properties.

SUMMARY OF THE INVENTION [0006] In accordance with the present invention there is provided catalyst precursors selected from the formulae: wherein T is a bridging group containing 2 or more linking atoms; M is a metallic element selected from Groups 1 to 15, and the Lanthanide series of the Periodic Table of the Elements; Z is a coordination ligand;

each L is a monovalent, bivalent, or trivalent anionic ligand; n is an integer from 1 to 6; m is an integer from 1 to 3; k has the value of 2 when X is nitrogen, and k has the value of 1 when X is oxygen or sulfur; X and Y are heteroatoms each independently selected from nitrogen, phosphorus, oxygen and sulfur ; R is a non-bulky substituent that has relatively low steric hindrance with respect to the X substituent and is a straight or branched chain alkyl group; and R'is a bulky substituent with respect to Y and is selected from alkyl, alkenyl, cycloalkyl, heterocyclic (both heteroalkyl and heteroaryl), alkylaryl, arylalkyl, and polymeric groups.

DETAILED DESCRIPTION OF THE INVENTION [0007] The catalyst precursors of the present invention will be represented by one of the formulae: wherein T is a bridging group containing 2 or more bridging atoms, wherein at least one of the bridging atoms is at least one Group 14 element, preferably a carbon atom, and wherein T can also contain one or more elements selected from Groups 13 to 16 of the Periodic Table of the Elements. It is preferred that all of the bridging atoms be carbon atoms. The total number of non-hydrogen atoms can be from 1 to 50, preferably from 1-20, and more preferably less than 10. The most preferred T groups are those where there is a dimethyl grouping adjacent to Y.

[0008] Non-limiting examples of preferred bridging groups include:

The X and Y substituents are included for convenience.

[0009] M is a metallic element selected from Groups 1 to 15, preferably from Groups 3 to 13, more preferably from the transition metals of Groups 3 to 7, and the Lanthanide series of the Periodic Table of the Elements. The Periodic Table of the Elements referred to herein is that disclosed in LANGE's HANDBOOK OF CHEMISTRY (McGraw Hill Handbooks 15th ed. 1999).

[0010] Z is a coordination ligand. Preferred coordination ligands include triphenylphosphine, tris (Cl-C6 alkyl) phosphine, tricycloalkyl phosphine, diphenyl alkyl phosphine, dialkyl phenyl phosphine, trialkylamine, arylamine such as pyridine, substituted or unsubstituted C2 to 20 alkenes (e. g. ethylene, propylene, butene, hexene, octane, decene,

dodecene, allyl, and the like) in which the substituent is a halogen atom (preferably chloro), an ester group, a Cl to C4 alkoxy group, an amine group (-NR2 where each R individually is a Cl to C3 alkyl), carboxylic acid, di (Cl to C4) alkyl ether, tetrahydrofuran (THF), a nitrile such a acetonitrile, an 4-diene, and the like.

[0011] Each L is a monovalent, bivalent, or trivalent anionic ligand, preferably containing from 1 to 50 non-hydrogen atoms, more preferably from 1 to 20 non-hydrogen atoms and is independently selected from the group consisting of halogen containing groups; hydrogen; alkyl ; aryl; alkenyl; alkylaryl; arylalkyl ; hydrocarboxy; amides, phosphides ; sulfides ; silylalkyls; diketones ; borohydrides; and carboxylates. More preferred are alkyl, arylalkyl, and halogen containing groups.

[0012] n is an integer from 1 to 6, preferably from 1 to 4, more preferably from 1 to 3.

[0013] X and Y are each independently selected from nitrogen, sulfur, oxygen, and phosphorus; more preferably both X and Y are nitrogen.

[0014] R is a non-bulky substituent that has relatively low steric hindrance with respect to the X substituent. By low steric hindrance we mean that there will be no branching within 3 atoms of X. Non-limiting examples of non-bulky substituents include CI to C30 straight and branched chain alkyl groups, preferably a C1 to C20 straight chain group; and more preferably an n-octyl group. If the non-bulky group is branched, the branch point must be at least 3 atoms removed from X.

[0015] R'is a bulky substituent. That is, a sterically hindering group with respect to the Y substituent and thus there can be branching within 3 atoms of Y. R'can be selected from allcyl, alkenyl, cycloalkyl, heterocyclic (both heteroalkyl and heteroaryl), alkylaryl, arylalkyl, and polymeric, including inorganics such as the P-N ring structures set forth below and inorganic-organic hybrid structures, such as those set forth below. It is preferred that the R' substituent contain from 3 to 50, more preferably from 3 to 30 non-hydrogen atoms, and most preferably from 4 to 20 atoms. Also, one or more of the carbon or hydrogen positions can be substituted with an element other than carbon and hydrogen, preferably an element selected

from Groups 14 to 17, more preferably a Group 14 element such as silicon, a Group 15 element such as nitrogen, a Group 16 element such as oxygen, or a Group 17 halogen.

[0016] In a preferred embodiment two or three of W, R and R'are co-joined to form a ring structure.

[0017] Non-limiting examples of R'include :

[0018] It is preferred that the total number of non-hydrogen atoms for the sum of all R" groups be up to 40 atoms. It is also preferred that the R"be selected from hydrogen, halogen, halogen-containing groups, and Cl to C30 alkyl, aryl, alkylaryl, arylalkyl, cycloalkyl, and heterocyclic groups as defined above; more preferably R"is selected from C2 to C20 alkyl, aryl, alkylaryl, cycloalkyl, or heterocyclic ; and most preferably R"is a C5 to Czo arylalkyl group.

[0019] The catalyst precursors may be prepared by any suitable synthesis method and the method of synthesis is not critical to the present invention. One useful method of preparing the catalyst precursors of the present invention is by reacting a suitable metal compound, preferably one having a displaceable anionic ligand, with a heteroatom-containing ligand of this invention. Non-limiting examples of suitable metal compounds include organometallics, metal halides, sulfonates, carboxylates, phosphates, organoborates (including fluoro-containing and other subclasses), acetonacetonates, sulfides, sulfates, tetrafluoroborates, nitrates, perchlorates, phenoxides, alkoxide, silicates, arsenates, borohydrides, naphthenates, cyclooctadienes, diene conjugated complexes, thiocynates, cyanates, and the metal cyanides.

Preferred are the organometallics and the metal halides. More preferred are the organometallics.

[0020] As previously mentioned, the metal of the organometal compound may be selected from Groups 1 to 16, preferably it is a transition metal selected from Groups 3 to 13 elements and Lanthanide series elements. It is also preferred that the metal be selected from Groups 3 to 7 elements. It is particularly preferred that the metal be a Group 4 metal, more particularly preferred is zirconium and hafnium, and most particularly preferred is zirconium.

[0021] The transition metal compound can, for example, be a metal hydrocarbyl such as: a metal alkyl, a metal aryl, a metal arylalkyl ; a metal silylalkyl ; a metal diene, a metal amide; or a metal phosphide. Preferably, the transition metal compound is a zirconium or hafnium hydrocarbyl. More preferably, the transition metal compound is a zirconium arylalkyl. Most preferably, the transition metal compound is tetrabenzylzirconium.

[0022] Examples of useful and preferred transition metal compounds include: (i) tetramethylzirconium, tetraethylzirconium, zirconiumdichloride (n4-1, 4-diphenyl- 1,3-butadiene), bis (triethylphosphine) and zirconiumdichloride (rl4-1, 4-diphenyl-1, 3- butadiene) bis (tri-n-propylphosphine), tetrakis [trimethylsilylmethyl] zirconium, tetrakis [dimethylamino] zirconium, dichlorodibenzylzirconium, chlorotribenzylzirconium, trichlorobenzylzirconium, bis [dimethylamino] bis [benzyl] zirconium, and tetrabenzylzirconium; (ii) tetramethyltitanium, tetraethyltitanium, titaniumdichloride (rl4-1, 4-diphenyl-1, 3- butadiene), bis (triethylphosphine) and titaniumdichloride (ll4-1, 4-diphenyl-1, 3-butadiene) bis (tri-n-propylphosphine), tetrakis [trimethylsilylmethyl]-titanium, tetrakis [dimethylamino] titanium, dichlorodibenzyltitanium, chlorotribenzyltitanium, trichlorobenzyltitanium, bis [dimethylamino] bis [benzyl] titanium, and tetrabenzyltitanium; and (iii) tetramethylhafnium, tetraethylhafnium, hafniumdichloride (rl4-1, 4-diphenyl-1, 3- butadiene), bis (triethylphosphine) and hafiiiumdichloride (Tl4-1, 4-diphenyl-1, 3-butadiene) bis (tri-n-propylphosphine), tetrakis [trimethylsilyhnethyl] hafnium, tetrakis [dimethylamino] hafnium, dichlorodibenzylhafnium, chlorotribenzylhafnium, trichlorobenzylhainium, bis [dimethylamino] bis [benzyl] hafnium, and tetrabenzylhamium.

[0023] Non-limiting examples of preferred catalyst precursors of the present invention when both X and Y are nitrogen are:

[0024] Non-limiting examples of catalyst precursors of the present invention when X is oxygen and Y is nitrogen are:

[0025] This invention further relates to a polymer produced therefrom, particularly to unique polyethylene resins.

[0026] The catalyst precursors can be prepared by any suitable synthesis method and the method of synthesis is not critical to the present invention. One useful method of preparing the catalyst precursors of the present invention is represented by the following reaction scheme: [0027] Single site-like catalysts can be prepared from the catalyst precursors of the present invention by reacting them, under suitable conditions, with a transition metal compound.

[0028] The metal of the transition metal compound may be selected from Group 3 to 13 elements and Lanthanide series elements. Preferably, the metal is a Group 4 element. More preferably the metal is zirconium.

[0029] The transition metal compound for example may be a metal hydrocarbyl such as a metal alkyl, metal aryl, or metal arylalkyl. Metal silylalkyls, metal amides, or metal phosphides may also be used. Preferably, the transition metal compound is a zirconium hydrocarbyl. More preferably, the transition metal compound is a zirconium arylalkyl. Most preferably, the transition metal compound is tetrabenzylzirconium.

[0030] Examples of useful transition metal compounds are tetramethylzirconium, tetraethylzirconium, tetrakis [trimethylsilylmethyl] zirconium, tetrakis [dimethylamino] zirconium, dichlorodibenzylzirconium, chlorotribenzylzirconium, trichlorobenzylzirconium, bis [dimethylamino] bis [benzyl] zirconium, and tetrabenzylzirconium.

[0031] Examples of useful transition metal compounds are tetramethyltitanium, tetraethyltitanium, tetrakis [trimethylsilylmethyl]-titanium, tetrakis [dimethylamino] titanium, dichlorodibenzyltitanium, chlorotribenzyltitanium, trichlorobenzyltitanium, bis [dimethylamino] bis [benzyl] titanium, and tetrabenzyltitanium.

[0032] Examples of useful transition metal compounds are tetramethylhafhium, tetraethylhafnium, tetrakis [trimethylsilylmethyl] hafnium, tetrakis [dimethylamino] hafnium, diclilorodibenzylhafnium, chlorotribenzylhafnium, trichlorobenzylhafnium, bis [dimethylamino] bis [benzyl] hafnium, and tetrabenzylhafnium.

[0033] For example, when the transition metal compound is tetrabenzylzirconium, the corresponding catalyst precursor can be represented by: [0034] Specific examples produce toluene as HL:

Activators and Activation Methods for Catalyst Compounds [0035] The polymerization catalyst compounds of the invention are typically activated in various ways to yield compounds having a vacant coordination site that will coordinate, insert, and polymerize olefin (s). For the purposes of this patent specification and appended claims, the term"activator"is defined to be any compound which can activate any one of the catalyst compounds described above by converting the neutral catalyst compound to a catalytically active catalyst compound cation. Non-limiting activators, for example, include alumoxanes, aluminum alkyls, ionizing activators, which may be neutral or ionic, and conventional-type cocatalysts.

A. Alumoxane and Aluminum Alkyl Activators [0036] In one embodiment, alumoxanes activators are utilized as an activator in the catalyst composition of the invention. Alumoxanes are generally oligomeric compounds containing- A1 (R)-O- subunits, where R is an alkyl group. Examples of alumoxanes include methylalumoxane (MAO), modified methylalumoxane (MMAO), ethylalumoxane and isobutylalumoxane. Alumoxanes may be produced by the hydrolysis of the respective trialkylaluminum compound. MMAO may be produced by the hydrolysis of trimethylaluminum and a higher trialkylaluminum such as triisobutylaluminum. MMAO's are generally more soluble in aliphatic solvents and more stable during storage. There are a variety of methods for preparing alumoxane and modified alumoxanes, non-limiting examples of which are described in US 4,665, 208,4, 952,540, 5,091, 352,5, 206,199, 5,204, 419, 4,874, 734,4, 924,018, 4,908, 463,4, 968,827, 5,308, 815,5, 329,032, 5, 248, 801,5, 235,081, 5,157, 137,5, 103,031, 5,391, 793,5, 391,529, 5,693, 838,5, 731,253, 5,731, 451,5, 744,656, 5,847, 177,5, 854,166, 5,856, 256 and 5,939, 346; and EP-A-0 561 476, EP-B1-0 279 586, EP-A- 0 594-218 and EP-B1-0 586 665; and WO 94/10180 and WO 99/15534. A another alumoxane is a modified methyl alumoxane (MMAO) cocatalyst type 3A (commercially available from

Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A, disclosed in US 5,041, 584).

[0037] Aluminum Alkyl or organoaluminum compounds which may be utilized as activators include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n- hexylaluminum, tri-n-octylaluminum and the like.

B. Ionizing Activators [0038] It is within the scope of this invention to use an ionizing or stoichiometric activator, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron, a trisperfluorophenyl boron metalloid precursor or a trisperfluoronaphtyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983), boric acid (US 5,942, 459) or combination thereof. It is also within the scope of this invention to use neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators.

[0039] Examples of neutral stoichiometric activators include tri-substituted boron, tellurium, aluminum, gallium and indium or mixtures thereof. The three substituent groups are each independently selected from alkyls, alkenyls, halogen, substituted alkyls, aryls, arylhalides, alkoxy and halides. Preferably, the three groups are independently selected from halogen, mono or multicyclic (including halosubstituted) aryls, alkyls, and alkenyl compounds and mixtures thereof, preferred are alkenyl groups having 1 to 20 carbon atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms and aryl groups having 3 to 20 carbon atoms (including substituted aryls). More preferably, the three groups are alkyls having 1 to 4 carbon groups, phenyl, naphthyl or mixtures thereof. Even more preferably, the three groups are halogenated, preferably fluorinated, aryl groups. Most preferably, the neutral stoichiometric activator is trisperfluorophenyl boron or trisperfluoronaphthyl boron.

[0040] Ionic stoichiometric activator compounds may contain an active proton, or some other cation associated with, but not coordinated to, or only loosely coordinated to, the remaining ion of the ionizing compound. Such compounds and the like are described in EP-A- 0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-B1-0 500 944, EP-A-0 277 003 and EP-A-0

277 004; and US 5,153, 157,5, 198,401, 5,066, 741,5, 206,197, 5,241, 025,5, 384,299 and 5,502, 124.

[0041] In a preferred embodiment, the stoichiometric activators include a cation and an anion component, and may be represented by the following formula: (L-H) d (A) (X) wherein L is an neutral Lewis base; H is hydrogen ; (L-H) + is a Bronsted acid; Ad-is a non-coordinating anion having the charge d- ; d is an integer from 1 to 3.

[0042] The cation component, (L-H) d+ may include Bronsted acids such as protons or protonated Lewis bases or reducible Lewis acids capable of protonating or abstracting a moiety, such as an alkyl or aryl, from the bulky ligand metallocene or Group 15 containing transition metal catalyst precursor, resulting in a cationic transition metal species.

[0043] The activating cation (L-H) d+ may be a Bronsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transition metal cation, including ammoniums, oxoniums, phosphoniums, silyliums and mixtures thereof, preferably ammoniums of methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, N, N-dimethylaniline, methyldiphenylamine, pyridine, p-bromo N, N-dimethylaniline, p-utro-N, N-dimethylaniline, phosphoniums from triethylphosphine, triphenylphosphine, and diphenylphosphine, oxomiuns from ethers such as dimethyl ether diethyl ether, tetrahydrofuran and dioxane, sulfonium from thioethers, such as diethyl thioethers and tetrahydrothiophene and mixtures thereof. The activating cation (L-H) d may also be an abstracting moiety such as silver, carboniums, tropylium, carbeniums, ferroceniums and mixtures, preferably carboniums and ferroceniums. Most preferably (L-H) d+ is triphenyl carbonium.

[0044] The anion component Ad-include those having the formula [Mk+Qn] d-wherein k is an integer from 1 to 3; n is an integer from 2-6; n-k = d; M is an element selected from Group 13 of the Periodic Table of the Elements, preferably boron or aluminum, and Q is independently a hydride, bridged or unbridged dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, and halosubstituted-hydrocarbyl radicals, said Q having up to 20 carbon atoms with the proviso that in not more than 1 occurrence is Q a halide. Preferably, each Q is a fluorinated hydrocarbyl group having 1 to 20 carbon atoms, more preferably each Q is a fluorinated aryl group, and most preferably each Q is a pentafluoryl aryl group. Examples of suitable Ad-also include diboron compounds as disclosed in U. S. Pat. No. 5,447, 895.

[0045] Most preferably, the ionic stoichiometric activator (L-H) d+ (Ad-) is N, N- dimethylanilinium tetra (perfluorophenyl) borate or triphenylcarbenium tetra (perfluorophenyl) borate.

[0046] In one embodiment, an activation method using ionizing ionic compounds not containing an active proton but capable of producing a bulky ligand metallocene catalyst cation and their non-coordinating anion are also contemplated, and are described in EP-A-0 426 637, EP-A-0 573 403 and US 5,387, 568.

Supports, Carriers and General Supporting Techniques [0047] The catalyst system of the invention preferably includes a support material or carrier, or a supported activator. For example, the catalyst compound of the invention is deposited on, contacted with, vaporized with, bonded to, or incorporated within, adsorbed or absorbed in, or on, a support or carrier.

A. Support Material [0048] The support material is any of the conventional support materials. Preferably the supported material is a porous support material, for example, talc, inorganic oxides and inorganic chlorides. Other support materials include resinous support materials such as polystyrene, functionalized or crosslinked organic supports, such as polystyrene divinyl benzene polyolefins or polymeric compounds, zeolites, clays, or any other organic or inorganic support material and the like, or mixtures thereof.

[0049] The preferred support materials are inorganic oxides that include those Group 2,3, 4, 5,13 or 14 metal oxides. The preferred supports include silica, fumed silica, alumina (WO 99/60033), silica-alumina and mixtures thereof. Other useful supports include magnesia, titania, zirconia, magnesium chloride (US 5,965, 477), montmorillonite (European Patent EP- . B1 0 511 665), phyllosilicate, zeolites, talc, clays (US 6,034, 187) and the like. Also, combinations of these support materials may be used, for example, silica-chromium, silica- alumina, silica-titania and the like. Additional support materials may include those porous acrylic polymers described in EP 0 767 184 Bl. Other support materials include nanocomposites as described in WO 99/47598, aerogels as described in WO 99/48605, spherulites as described in US 5,972, 510 and polymeric beads as described in WO 99/50311.

A preferred support is fumed silica available under the trade name Cabosil TS-610, available from Cabot Corporation. Fumed silica is typically a silica with particles 7 to 30 nanometers in size that has been treated with dimethylsilyldichloride such that a majority of the surface hydroxyl groups are capped.

[0050] It is preferred that the support material, most preferably an inorganic oxide, has a surface area in the range of from 10 to 700 m2/g, pore volume in the range of from 0.1 to 4.0 cc/g and average particle size in the range of from 5 to 500 u. m. More preferably, the surface area of the support material is in the range of from 50 to 500 m2/g, pore volume of from 0.5 to 3.5 cc/g and average particle size of from 10 to 200 gm. Most preferably the surface area of the support material is in the range is from 100 to 400 m2/g, pore volume from 0. 8 to 3.0 cc/g and average particle size is from 5 to 100 um. The average pore size of the carrier of the invention typically has pore size in the range of from 10 to 1000A, preferably 50 to 500A, and most preferably 75 to 350A.

[0051] The support materials may be treated chemically, for example with a fluoride compound as described in WO 00/12565. Other supported activators are described in for example WO 00/13792 that refers to supported boron containing solid acid complex.

[0052] In a preferred method of forming a supported catalyst composition component, the amount of liquid in which the activator is present is in an amount that is less than four times the

pore volume of the support material, more preferably less than three times, even more preferably less than two times; preferred ranges being from 1.1 times to 3.5 times range and most preferably in the 1.2 to 3 times range. In an alternative embodiment, the amount of liquid in which the activator is present is from one to less than one times the pore volume of the support material utilized in forming the supported activator.

[0053] Procedures for measuring the total pore volume of a porous support are well known in the art. Details of one of these procedures is discussed in Volume 1, Experinaeratal Methods in Catalytic Research (Academic Press, 1968) (specifically see pages 67-96). This preferred procedure involves the use of a classical BET apparatus for nitrogen absorption. Another method well known in the art is described in ines, Total Porosity and Particle Density of Fluid Catalysts By Liquid Nitration, Vol. 28, No. 3, Analytical Chemistry 332-334 (March, 1956).

B. Supported Activators [0054] In one embodiment, the catalyst composition includes a supported activator. Many supported activators are described in various patents and publications which include: US 5,728, 855 directed to the forming a supported oligomeric alkylaluminoxane formed by treating a trialkylaluminum with carbon dioxide prior to hydrolysis; US 5,831, 109 and 5,777, 143 discusses a supported methylalumoxane made using a non-hydrolytic process; US 5,731, 451 relates to a process for making a supported alumoxane by oxygenation with a trialkylsiloxy moiety; US 5,856, 255 discusses forming a supported auxiliary catalyst (alumoxane or organoboron compound) at elevated temperatures and pressures; US 5,739, 368 discusses a process of heat treating alumoxane and placing it on a support; EP-A-0 545 152 relates to adding a metallocene to a supported alumoxane and adding more methylalumoxane ; US 5,756, 416 and 6, 028, 151 discuss a catalyst composition of a alumoxane impregnated support and a metallocene and a bulky aluminum alkyl and methylalumoxane; EP-B1-0 662 979 discusses the use of a metallocene with a catalyst support of silica reacted with alumoxane; PCT WO 96/16092 relates to a heated support treated with alumoxane and washing to remove unfixed alumoxane; US 4,912, 075,4, 937,301, 5,008, 228,5, 086,025, 5,147, 949,4, 871,705, 5,229, 478,4, 935,397, 4,937, 217 and 5,057, 475; and WO 94/26793 all directed to adding a metallocene to a supported activator; US 5,902, 766 relates to a supported activator having a specified distribution of alumoxane on the silica particles; US 5, 468, 702 relates to aging a

supported activator and adding a metallocene; US 5,968, 864 discusses treating a solid with alumoxane and introducing a metallocene; EP 0 747 430 Al relates to a process using a metallocene on a supported methylalumoxane and trimethylaluminum ; EP 0 969 019 Al discusses the use of a metallocene and a supported activator; EP-B2-0 170 059 relates to a polymerization process using a metallocene and a organo-aluminuim compound, which is formed by reacting aluminum dialkyl with a water containing support; US 5,212, 232 discusses the use of a supported alumoxane and a metallocene for producing styrene based polymers; US 5,026, 797 discusses a polymerization process using a solid component of a zirconium compound and a water-insoluble porous inorganic oxide preliminarily treated with alumoxane; US 5,910, 463 relates to a process for preparing a catalyst support by combining a dehydrated support material, an alumoxane and a polyfunctional organic crosslinker; US 5,332, 706, 5,473, 028,5, 602,067 and 5,420, 220 discusses a process for making a supported activator where the volume of alumoxane solution is less than the pore volume of the support material; WO 98/02246 discusses silica treated with a solution containing a source of aluminum and a metallocene; WO 99/03580 relates to the use of a supported alumoxane and a metallocene; EP- Al-0 953 581 discloses a heterogeneous catalytic system of a supported alumoxane and a metallocene; US 5,015, 749 discusses a process for preparing a polyhydrocarbyl-alumoxane using a porous organic or inorganic imbiber material; US 5,446, 001 and 5,534, 474 relates to a process for preparing one or more alkylaluminoxanes immobilized on a solid, particulate inert support; and EP-A1-0 819 706 relates to a process for preparing a solid silica treated with alumoxane. Also, the following articles include: W. Kaminsky, et al., Polymerization of Styrene with Supported Half-Sandwich Complexes, 37 JOURNAL OF POLYMER SCIENCE 2959- 2968 (1999) describes a process of adsorbing a methylalumoxane to a support followed by the adsorption of a metallocene; Junting Xu, et al. Characterization of isotactic polypropylene prepared with dimethylsilyl bis (l-indenyl) zirconium dichloride supported 071 methylalumiyaoxafae pretreated silica, 35 EUROPEAN POLYMER JOURNAL 1289-1294 (1999), discusses the use of silica treated with methylalumoxane and a metallocene; Stephen O'Brien, et al., EXAFS analysis of a chiral alkene polymerization catalyst incorporated in the mesoporous silicate MCM-41, CHEM. Co. 1905-1906 (1997) discloses an immobilized alumoxane on a modified mesoporous silica; and F. Bonini, et al., Propylene Polymerization thYOUgh Supported MetallocenelMAO Catalysts : Kinetic Analysis and Modeling, 33 JOURNAL OF POLYMER SCIENCE 2393-2402 (1995) discusses using a methylalumoxane supported silica

with a metallocene. Any of the methods discussed in these references are useful for producing the supported activator component utilized in the catalyst composition of the invention.

[0055] In another embodiment, the supported activator, such as supported alumoxane, is aged for a period of time prior to use herein. For reference please refer to US 5,468, 702 and 5,602, 217.

[0056] In an embodiment, the supported activator is in a dried state or a solid. In another embodiment, the supported activator is in a substantially dry state or a slurry, preferably in a mineral oil slurry.

[0057] In another embodiment, two or more separately supported activators are used, or alternatively, two or more different activators on a single support are used.

[0058] In another embodiment, the support material, preferably partially or totally dehydrated support material, preferably 200°C to 600°C dehydrated silica, is then contacted with an organoaluminum or alumoxane compound. Preferably in an embodiment where an organoaluminum compound is used, the activator is formed in situ on and in the support material as a result of the reaction of, for example, trimethylaluminum and water.

[0059] In another embodiment, Lewis base-containing supports are reacted with a Lewis acidic activator to form a support bonded Lewis acid compound. The Lewis base hydroxyl groups of silica are exemplary of metal/metalloid oxides where this method of bonding to a support occurs.

[0060] Other embodiments of supporting an activator are described in US 5,427, 991, where supported non-coordinating anions derived from trisperfluorophenyl boron are described; US 5,643, 847 discusses the reaction of Group 13 Lewis acid compounds with metal oxides such as silica and illustrates the reaction of trisperfluorophenyl boron with silanol groups (the hydroxyl groups of silicon) resulting in bound anions capable of protonating transition metal organometallic catalyst compounds to form catalytically active cations counter-balanced by the bound anions; immobilized Group IIIA Lewis acid catalysts suitable for carbocationic polymerizations are described in US 5, 288, 677; and James C. W. Chien, 29 J. POLY. SCI. : PT A :

POLY. CHEM. 1603-1607 (1991), describes the olefin polymerization utility of methylalumoxane (MAO) reacted with silica (Si02) and metallocenes and describes a covalent bonding of the aluminum atom to the silica through an oxygen atom in the surface hydroxyl groups of the silica.

[0061] In a preferred embodiment, a supported activator is formed by preparing in an agitated, and temperature and pressure controlled vessel a solution of the activator and a suitable solvent, then adding the support material at temperatures from 0°C to 100°C, contacting the support with the activator solution for up to 24 hours, then using a combination of heat and pressure to remove the solvent to produce a free flowing powder. Temperatures can range from 40 to 120°C and pressures from 5 psia to 20 psia (34.5 to 138kPa). An inert gas sweep can also be used in assist in removing solvent. Alternate orders of addition, such as slurrying the support material in an appropriate solvent then adding the activator, can be used.

Polymerization Process [0062] The catalyst systems prepared and the method of catalyst system addition described above are suitable for use in any prepolymerization and/or polymerization process over a wide range of temperatures and pressures. The temperatures may be in the range of from-60 °C to 280°C, preferably from 50°C to 200°C, and the pressures employed may be in the range from 1 atmosphere to 500 atmospheres or higher.

[0063] Polymerization processes include solution, gas phase, slurry phase and a high pressure process or a combination thereof. Particularly preferred is a gas phase or slurry phase polymerization of one or more olefins at least one of which is ethylene or propylene.

[0064] In one embodiment, the process of this invention is directed toward a solution, high pressure, slurry or gas phase polymerization process of one or more olefin monomers having from 2 to 30 carbon atoms, preferably 2 to 12 carbon atoms, and more preferably 2 to 8 carbon atoms. The invention is particularly well suited to the polymerization of two or more olefin monomers of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, hexene-1, octene- 1 and decene-l.

[0065] Other monomers useful in the process of the invention include ethylenically unsaturated monomers, diolefins having 4 to 18 carbon atoms, conjugated or nonconjugated dienes, polyenes, vinyl monomers and cyclic olefins. Non-limiting monomers useful in the invention may include norbomene, norbornadiene, isobutylene, isoprene, vinylbenzocyclobutane, styrenes, alkyl substituted styrene, ethylidene norbornene, dicyclopentadiene and cyclopentene.

[0066] In the most preferred embodiment of the process of the invention, a copolymer of ethylene is produced, where with ethylene, a comonomer having at least one alpha-olefin having from 3 to 15 carbon atoms, preferably from 4 to 12 carbon atoms, and most preferably from 4 to 8 carbon atoms, is polymerized in a gas phase process.

[0067] In another embodiment of the process of the invention, ethylene or propylene is polymerized with at least two different comonomers, optionally one of which may be a diene, to form a terpolymer.

[0068] In an embodiment, the mole ratio of comonomer to ethylene, Cx/C2, where Cx is the amount of comonomer and C2 is the amount of ethylene is between 0.001 to 0.200 and more preferably between 0.002 to 0.008.

[0069] In one embodiment, the invention is directed to a polymerization process, particularly a gas phase or slurry phase process, for polymerizing propylene alone or with one or more other monomers including ethylene, and/or other olefins having from 4 to 12 carbon atoms. Polypropylene polymers may be produced using the particularly bridged bulky ligand metallocene catalysts as described in US 5,296, 434 and 5,278, 264.

[0070] Typically in a gas phase polymerization process a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization.

This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor. Generally, in a gas fluidized bed process for producing polymers, a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is

withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer. (See for example US 4,543, 399,4, 588,790, 5,028, 670,5, 317,036, 5,352, 749, 5,405, 922,5, 436,304, 5,453, 471,5, 462,999, 5,616, 661 and 5,668, 228) [0071] The reactor pressure in a gas phase process may vary from 100 psig (690 kPa) to 600 psig (4138 kPa), preferably in the range of from 200 psig (1379 kPa) to 400 psig (2759 kPa), more preferably in the range of from 250 psig (1724 kPa) to 350 psig (2414 kPa).

[0072] The reactor temperature in a gas phase process may vary from 30°C to 120°C, preferably from 60°C to 115°C, more preferably in the range of from 70°C to 110°C, and most preferably in the range of from 70°C to 95°C.

[0073] Other gas phase processes contemplated by the process of the invention include series or multistage polymerization processes. Also gas phase processes contemplated by the invention include those described in US 5,627, 242,5, 665,818 and 5,677, 375, and European publications EP-A-0 794 200 EP-B1-0 649 992, EP-A-0 802 202 and EP-B-634 421.

[0074] In a preferred embodiment, the reactor utilized in the present invention is capable of and the process of the invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr).

[0075] A slurry polymerization process generally uses pressures in the range of from 1 to 50 atmospheres and even greater and temperatures in the range of 0°C to 120°C. In a slurry polymerization, a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers and often hydrogen along with catalyst are added. The suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally

after a distillation, to the reactor. The liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane. The medium employed should be liquid under the conditions of polymerization and relatively inert.

When a propane medium is used the process must be operated above the reaction diluent critical temperature and pressure. Preferably, a hexane or an isobutane medium is employed.

[0076] A preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution. Such technique is well known in the art, and described in for instance US 3,248, 179. Other slurry processes include those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof. Non-limiting examples of slurry processes include continuous loop or stirred tank processes. Also, other examples of slurry processes are described in US 4,613, 484 and 5,986, 021.

[0077] In an embodiment the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr). In another embodiment the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11,340 Kg/hr) to 100,000 lbs/hr (45,500 Kg/hr).

[0078] Examples of solution processes are described in US 4,271, 060,5, 001,205, 5,236, 998,5, 589,555 and 5,977, 251; and WO 99/32525 and WO 99/40130.

[0079] A preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the presence of a bulky ligand metallocene catalyst system of the invention and in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like. This preferred process is described in WO 96/08520 and US 5,712, 352 and 5,763, 543.

[0080] In one embodiment of the invention, olefin (s), preferably C2 to C30 olefin (s) or alpha-olefin (s), preferably ethylene or propylene or combinations thereof are prepolymerized in the presence of the metallocene catalyst systems of the invention described above prior to the main polymerization. The prepolymerization can be carried out batchwise or continuously in gas, solution or slurry phase including at elevated pressures. The prepolymerization can take place with any olefin monomer or combination and/or in the presence of any molecular weight controlling agent such as hydrogen. For examples of prepolymerization procedures, see US 4,748, 221,4, 789,359, 4,923, 833,4, 921,825, 5,283, 278 and 5,705, 578 ; EP-B-0279 863; and WO 97/44371.

[0081] In one embodiment, toluene is not used in the preparation or polymerization process of this invention.

Polymer Products [0082] The polymers produced by the process of the invention can be used in a wide variety of products and end-use applications. The polymers produced by the process of the invention include linear low density polyethylene, elastomers, plastomers, high density polyethylenes, medium density polyethylenes, low density polyethylenes, polypropylene and polypropylene copolymers.

[0083] The polymers, typically ethylene based polymers, have a density in the range of from 0.86g/cc to 0.97 g/cc, preferably in the range of from 0.88 g/cc to 0.965 g/cc, more preferably in the range of from 0.900 g/cc to 0.96 g/cc, even more preferably in the range of from 0.905 g/cc to 0.95 g/cc, yet even more preferably in the range from 0.910 g/cc to 0.940 g/cc, and most preferably greater than 0.915 g/cc, preferably greater than 0.920 g/cc, and most preferably greater than 0.925 g/cc. Density is measured in accordance with ASTM-D-1238.

[0084] The polymers produced by the process of the invention typically have a molecular weight distribution, a weight average molecular weight to number average molecular weight (MW/Mn) of greater than 1.5 to 15, particularly greater than 2 to 10, more preferably greater than 2.2 to less than 8, and most preferably from 2.5 to 8.

[0085] Also, the polymers of the invention typically have a narrow composition distribution as measured by Composition Distribution Breadth Index (CDBI). Further details of determining the CDBI of a copolymer are known to those skilled in the art. See, for example, PCT Patent Application WO 93/03093.

[0086] The polymers of the invention in one embodiment have CDBI's generally in the range of greater than 50% to 100%, preferably 99%, preferably in the range of 55% to 85%, and more preferably 60% to 80%, even more preferably greater than 60%, still even more preferably greater than 65%.

[0087] In another embodiment, polymers produced using a catalyst system of the invention have a CDBI less than 50%, more preferably less than 40%, and most preferably less than 30%.

[0088] The polymers of the present invention in one embodiment have a melt index (MI) or (I2) as measured by ASTM-D-1238-E in the range from no measurable flow to 1000 dg/min, more preferably from 0.01 dg/min to 100 dg/min, even more preferably from 0.1 dg/min to 50 dg/min, and most preferably from 0.1 dg/min to 10 dg/min.

[0089] The polymers of the invention in an embodiment have a melt index ratio (I21/I2) (I21 is measured by ASTM-D-1238-F) of from 10 to less than 25, more preferably from 15 to less than 25.

[0090] The polymers of the invention in a preferred embodiment have a melt index ratio (121/12) of from preferably greater than 25, more preferably greater than 30, even more preferably greater that 40, still even more preferably greater than 50 and most preferably greater than 65. In an embodiment, the polymer of the invention may have a narrow molecular weight distribution and a broad composition distribution or vice-versa, and may be those polymers described in US 5,798, 427.

[0091] In yet another embodiment, propylene based polymers are produced in the process of the invention. These polymers include atactic polypropylene, isotactic polypropylene, hemi- isotactic and syndiotactic polypropylene. Other propylene polymers include propylene block

or impact copolymers. Propylene polymers of these types are well known in the art see for example US 4,794, 096,3, 248, 455,4, 376,851, 5,036, 034 and 5,459, 117.

[0092] The polymers of the invention may be blended and/or coextruded with any other polymer. Non-limiting examples of other polymers include linear low density polyethylenes, elastomers, plastomers, high pressure low density polyethylene, high density polyethylenes, polypropylenes and the like.

[0093] Polymers produced by the process of the invention and blends thereof are useful in such forming operations as film, sheet, and fiber extrusion and co-extrusion as well as blow molding, injection molding and rotary molding. Films include blown or cast films formed by coextrusion or by lamination useful as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, baked and frozen food packaging, medical packaging, industrial liners, membranes, etc. in food-contact and non-food contact applications. Fibers include melt spinning, solution spinning and melt blown fiber operations for use in woven or non-woven form to make filters, diaper fabrics, medical garments, geotextiles, etc. Extruded articles include medical tubing, wire and cable coatings, pipe, geomembranes, and pond liners. Molded articles include single and multi-layered constructions in the form of bottles, tanks, large hollow articles, rigid food containers and toys, etc.

[0094] The present invention is illustrated in more detail with reference to the following examples which should not be construed to be limiting in scope.

Glossary [0095] Activity is measured in g of polyethylene/mmol of metal per hr at 100 psig ethylene.

[0096] I2 is the flow index (dg/min) as measured by ASTM D-123 8-Condition E at 190°C.

[0097] I21 is the flow index (dg/min) as measured by ASTM D-1238-Condition F.

[0098] MFR is the Melt Flow Ratio, 121/12.

[0099] MMAO is a solution of modified methylalumoxane in heptane, approximately 1.9 molar in aluminum, commercially available from Akzo Chemicals, Inc. (type 3).

[00100] BBF is Butyl Branching Frequency, number of butyl branches per 1000 main chain carbon atoms, as determined by infrared measurement techniques.

[00101] Mw is Weight Average Molecular Weight, as determined by gel permeation chromatography using crosslinked polystyrene columns; pore size sequence: 1 column less than 1000 A, 3 columns of mixed 5 x 107 A ; 1,2, 4-trichlorobenzene solvent at 140°C, with refractive index detection. Mn is number average molecular weight.

[00102] PDI is the Polydispersity Index, equivalent to Molecular Weight Distribution (Mw/Mn).

EXAMPLES [00103] The following ligand types were synthesized via Hartwig's palladium-catalyzed amine aryllation reactions (R = Aromatic).

Type A Type B Type C

Type D Type E [00104] The steric bulk of the R'and R groups were varied in an effort to optimize catalyst activity. Method for binding these ligands to zirconium are disclosed.

Reference: Driver, Michael S. and Hartwig, John F., A Second-generation catalyst for aryl halide amination : Mixed secondary amines fi°om aryl halides and primary catalyzed by (DPPF) PdCI2 118 J. AM. CHEM. Soc. 7217-7218 (1996).

[00105] General procedure: Bis (dibenzylidineacetone) palladium (0.9 mmol, 0. 5g), 1,1'- Bis (diphenylphospliino) ferrocen (1.8 mmol, l. Og), Sodium t-butoxide (18 mmol, 1.7g), 2- Bromomesitylene or 1,3, 5-Triisopropylbenzene (18 mmol) and the amine compound (18 mmol) were charged to a Fischer-Porter tube equipped with a stir bar. The tube was attached to the manifold and removed from the dry box. Tetrahydrofuran (5 mL) was added to the vessel.

The vessel was placed under 10 psi N2 and heated to 150°C in an oil bath. The pressure was increased to 80 psi. The reaction was allowed to heated for up to 18 hours, cooled, filtered and the filtrate distilled.

[00106] A partial list of the representative ligand precursors are listed below.

REACTON OF N, N-DIMETHYLENEDIAMINE WITH 2-BROMOMESITYLENE REACTON OF N, N-DIMETHYLENEDIAMINE WITH 1,3, 5- TRIISOPROPYLBENZENE

REACTION OF 2,6-DIMETHYLANILINE WITH 2-BROMO-N, N'- DIMETHYLANILINE REACTION OF o-ANISIDINE WITH 2-BROMOMESITYLENE REACTION OF 3-DIMETHYLAMINOPROPYLAMINE WITH 1,3, 5- TRIISOPROPYLBENZENE Catalyst Precursor Complex Synthesis: [00107] Tribenzyl Zirconium Complex Synthesis: Procedure: In the dry box Tetrabenzyl zirconium (0. 200mmol) was charged to a 7 mL amber bottle equipped with a stir bar and cap. Benzene-d6 (1.5 mL) was added and stirred to dissolve.

The ligand (0.200 mmol) and 1. 5mL Benzene-d6 were charged to a vial and stirred to dissolve.

The ligand solution was transferred into the (PhCH2) 4Zr solution. The reaction was allowed to stir at room temperature for 4 weeks then analyzed by 1H-NMR.

[00108] Polymerization Example: The solution of the complex prepared above was activated with modified methylaluminoxane (MMAO) and evaluated as an ethylene polymerization catalyst.

R'1t Activitv I2 I21 MFR BBF Me Me 8541 1.17 341 291 7.41 Reaction Conditions: 10 micromoles Zr, MMAO/Zr = 1,000, 85°C, 85 psi ethylene, 43 mL of 1-hexene.

[00109] Trimethylsilylmethyl Zirconium Complex Synthesis: General procedure: In the dry box Tetrakis (trimethylsilylmethyl) zirconium (0. 200mmol) was charged to a 7 mL amber bottle equipped with a stir bar and cap. Benzene-d6 (1.5 mL) was added and stirred to dissolve. The ligand (0.200 mmol) and 1.5 mL Benzene-d6 (C6D6) were charged to a vial and stirred to dissolve. The ligand solution was transferred into the (TMSCH2) 4Zr solution and stirred overnight.

[00110] A partial list of the representative catalyst precursors are listed below: REACTION OF WITH (TMS-CH2) 4Zr

REACTION WITH (TMS-CH2) 4Zr REACTION WITH (TMS-CH2) 4Zr REACTION WITH (TMS-CH2) 4Zr REACTION WITH (TMS-CH2) 4Zr [00111] Polymerization Examples: The Tetrakis (trimethylsilylmethyl) zirconium derivatives of ligand type C were evaluated in MMAO cocatalyzed ethylene polymerizations.

A summary of the results are presented in the table below.

Type C Ligands with Tetrakis (trimethylsilylmethyl) zirconium R R"Activity I2 I21 MFR BBF Me Me 8259.434 79.92 184 7.72 Me i-Pr 8212. 605 176 291 8.22 Et Me 847 NF. 532 NF 4.57 i-Pr Me 941 NF 1.63 NF i-Pr i-Pr 729 NF. 787 NF - (CH2) 5- Me 1506 NF 1.21 NF 4.13 - (CH2) 5- i-Pr 2306.012 7.73 638 6.64 - (CH2) 4- i-Pr 965.141 1.96 13.93 Reaction Conditions: 10 micromoles Zr, MMAO/Zr = 1,000, 85°C, 85 psi ethylene, 43 mL of 1-hexene.

[00112] Catalysts in which R'= Me exhibited were the most active. Surprisingly, catalysts with more bulky R'substituents consistently exhibited lower activities. There was only a slight difference in activity between R being methyl or isopropyl.

[00113] R = Methyl Substituents Type 1 Type 2 Type 3

[00114] The Tetrakis (trimethylsilylmethyl) zirconium derivatives of ligand types 1-5 containing dimethylamino and methyl ether neutral donor atoms (R'= Me) were evaluated in MMAO cocatalyzed ethylene polymerizations. A summary of the results are presented in the table below.

Ligand type R"Activity 12 121 MFR BBF 1 Me 8259 0.434 79.92 184 7.72 1 i-Pr 8212 0.605 176 291 8.22 2 Me 1576 NF 0.418 NF 4.16 2 i-Pr 1012 NF 0.33 NF 3.11 3 Me 1647 0.183 22.5 123 10.35 3 i-Pr 6,918 35.24 197 5.58 20.65 4 Me 988 NF 1.88 NF 3. 83 4 i-Pr 800 NF 0.841 NF 5.78 5 Me 4,847 0.015 4.56 303 5.56 5 i-Pr 3,765 0.051 33.16 653 3.19 Reaction Conditions: 10 micromoles Zr, MMAO/Zr = 1,000, 85°C, 85 psi ethylene, 43 mL of 1-hexene.

[00115] Catalysts derived from Ligand type 1 were the most active in our study. This suggests that flexible 2-carbon alkyl tether is preferred over the rigid ortho-phenyl tether of Ligand type 2 and the flexible 3-carbon alkyl tether of Ligand type 4. Ligand type 3 (the methyl ether) had the highest comonomer response.

Activation Of Donor-Amide Complexes With TRI-FABA : [00116] A series of donor-amide ligands of types 1 through 5 (as the trimethylsilylmethyl derivatives) were tested in TRI-FABA (trityl tetraperfluorophenylborate) cocatalyzed ethylene polymerizations.

The results are summarized below.

TRI-FABA Cocatalyst Ligand type R"Activity I2 I21 MFR BBF Me 7,247 NF 0.395 NF 14.96 1 i-Pr 7,718 NF 12.15 NF 17.46 2 Me 2,824 NF 0.193 NF 13.42 2 i-Pr 3,200 NF 1.99 NF 19.67 3 Me 11,624 <0.012 1.35 >108 32.17 3 i-Pr 16,024 0.073 6.03 82.11 37. 89 4 Me 71 4 i-Pr 2,165 NF NF NF 6.73 5 Me 5,435 NF NF NF 8. 60 5 i-Pr 7,294 NF NF NF 17.55 Reaction Conditions: 10 micromoles Zr, TRIFABA/Zr = 1, 85°C, 85 psi ethylene, 43 mL of 1-hexene.

[00117] The TRI-FABA results were compared to the results with MMAO cocatalyst.

Activity was typically higher for TRIFABA-based catalysts. The most active TRI-FABA catalysts were with ligand type 3, while ligand type 1 was best for MMAO. The activity of the type 4 ligands were are somewhat underestimated due to the low solubility of the activated cationic complex. Comonomer response and molecular weights were both higher for the TRI- FABA cocatalysts.

Ether Amides Zirconium Complexes With Varied Substitution On Oxygen: [00118] Ether amides were evaluated for the effect of substituents on the oxygen donor atom upon catalyst performance. Complexes of the type shown below were synthesized in which R' was varied from methyl to iso-propyl, to phenyl while R was varied from methyl to iso-propyl.

MMAO Cocatalyst, Run Catalyst R R"Activity I2 I21 MFR BBF Me Me 4,847 0.015 4.56 303 5.56 Me i-Pr 3,765 0.051 33.16 653 3.19 i-Pr Me 2,776 NF 0.455 NF 4.23 i-Pr i-Pr 1,012 NF 0.754 NF 5.40

Ph Me 8,965 NF 0.249 NF 4.11 Ph i-Pr 3,082 <0.055 4.98 >90.07 6.64 Reaction Conditions: 10 micromoles Zr, MMAO/Zr = 1,000, 85°C, 85 psi ethylene, 43 mL of 1-hexene.

[00119] As the results indicate, the phenoxy based catalyst (R = Ph, R"=Me) exhibited the highest activity in the study. This activity is slightly higher than for the most active tertiary amine-amide ligand, Me2NCH2CH2NR', (R'= 2,4, 6-trimethylphenyl).

[00120] For another ether-amide ligand system, the corresponding phenoxy-substituted ligands shown below were tested.

MMAO Cocatalyst R Activity 12 I21 MFR BBF Me Me 1,647. 183 22.5 123 10.35 Me i-Pr 6, 918 35.24 197 5.58 20.65 Ph Me 3,676. 447 175 392 14.86 Reaction Conditions: 10 micromoles Zr, MMAO/Zr = 1,000, 85°C, 85 psi ethylene, 43 mL of 1-hexene.