Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIFUNCTIONAL PRODRUGS AND DRUGS
Document Type and Number:
WIPO Patent Application WO/2011/054837
Kind Code:
A2
Abstract:
The present invention relates to novel compounds, more precisely to novel bifunctional prodrugs and drugs. In a further aspect, the invention relates to pharmaceutical compositions comprising said prodrugs and drugs, and to the use thereof as cytostatic agents in tumor therapy. The compounds according to the invention thereby are based on CC- 1065 analogously.

Inventors:
TIETZE LUTZ (DE)
VON HOF JAN MARIAN (DE)
Application Number:
PCT/EP2010/066688
Publication Date:
May 12, 2011
Filing Date:
November 03, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GEORG AUGUST UNI GOETTINGEN STIFTUNG OEFFENLICHEN RECHTS (DE)
TIETZE LUTZ (DE)
VON HOF JAN MARIAN (DE)
International Classes:
A61K47/48; A61P35/00; C07D209/60; C07H17/02
Domestic Patent References:
WO2007089149A22007-08-09
WO2001083448A22001-11-08
Other References:
MITCHELL ET AL., J. AM. CHEM. SOC., vol. 111, 1989, pages 6428 - 6429
JIA, G.; LOWN, W., BIOORG. MED. CHEM., vol. 8, 2000, pages 1607 - 1617
Attorney, Agent or Firm:
GRAMM, LINS PARTNER, GBR (DE)
Download PDF:
Claims:
Patentansprüche:

1 . Verbindungen der allgemeinen Stru ktur A - L - B wobei A und B unabhängig voneinander ausgewählt sind aus den Strukturen I oder I I

m it R1 ausgewählt aus einem Halogen und OSO2Ru, wobei Ru ausgewählt ist aus gegebenenfalls substituierten C1-C6 alkyl, C-i-6 Perhaloalkyl, Benzyl und Phenyl ;

R2 ist ausgewählt aus Wasserstoff und gegebenenfalls substituierten C-i-s Alkyl; R3, R3 , R4 und R4 sind unabhängig voneinander ausgewählt aus Wasserstoff und gegebenenfalls substituierten C-i-s Alkyl, wobei zwei oder mehrere von R2, R3, R3 , R4 und R4 gegebenenfalls miteinander verbun- den sind, um ein oder mehrere gegebenenfalls substituierte Kohlenstoffzyklen oder Heterozyklen auszubilden;

X2 ist ausgewählt aus O, C(R14)(R14') und N R14', wobei R14 ausgewählt ist aus Wasserstoff und gegebenenfalls substitu ierten C-i-8 Alkyl oder C-i-8

14'

Acyl und wobei R nicht vorhanden ist oder ausgewählt ist aus Wasserstoff und gegebenenfalls substitu ierten C-i-8 Alkyl oder C-i-8 Acyl;

R5, R5 , R6, R6 , R7 und R7 sind unabhängig voneinander ausgewählt aus H, OH, SH , CF3, CN, C(O)NH2, C(O)H, C(O)OH, Halogen, Rk, SRk, S(O)Rk, S(O)2Rk, S(O)ORk, S(O)2ORk, OS(O)Rk, OS(O)2Rk, OS(O)ORk, OS(O)2Rk, ORk, P(O)(ORk)(ORL), OP(O)(ORk)(ORL), SiRkRLRm, C(O)Rk,

C(O)ORk, C(O)N(RL)Rk, OC(O)Rk, OC(O)Rk, OC(O)ORk, OC(O)N(Rk)RL wobei Rk, RL und Rm unabhängig voneinander ausgewählt sind aus H und gegebenenfalls substituierte C-i-4 Alkyl , C-i-4 Heteroal kyl , C3-7 Cycloalkyl, C3-7 Heterocycloal kyl , C4-i2 Aryl oder C4-i2 Heteroaryl Gruppen , zwei oder mehr von Rk, RL und Rm bilden gegebenenfalls miteinander ein oder mehrere gegebenenfalls substituierte aliphatische oder aromatische Kohlenstoffzyklen oder Heterozyklen aus;

und/oder R5' und R6' und/oder R6' und R7' und/oder R7' und R14' sind n icht vorhanden, d .h . , sie bilden eine im Ring vorhandene Doppelbildung zwi- sehen den mit den entsprechenden substitu ierten Atomen aus, nämlich R5 und R6', und/oder R6' und R7 , und/oder R7' und R14';

zwei oder mehrere von R5, R5 , R6 , R7 , R14, und R14 können gegebenenfalls miteinander verbunden sein, um ein oder mehrere gegebenenfalls substitu ierte aliphatische oder aromatische Kohlenstoffzyklen oder Hete- rozyklen auszubilden ;

und/oder R5 + R5 , und/oder R6 + R6 und/oder R7 + R7 sind unabhängig voneinander =O, =S oder =N R12, wobei R12 ausgewählt ist aus H und gegebenenfalls substituierten C-i-6 Alkyl;

Χβ ist ausgewählt aus C oder N ;

RDB ist ausgewählt aus Wasserstoff und gegebenenfalls substitu ierten C-i-8

Alkyl oder gegebenenfalls substitu ierten C-i-8 Acyl;

Xi ist ausgewählt aus O, S, und NR13, wobei R13 ausgewählt ist aus H und gegebenenfalls substitu ierten C-i-8 Alkyl ; R ist ausgewählt aus Wasserstoff oder ein enzymatisch abspaltbares Substrat;

a und b sind unabhängig voneinander ausgewählt aus 0 und 1 ;

c ist ausgewählt aus 0, 1 und 2;

d ist ausgewählt aus 0 oder 1 ;

und L ist eine Verbindungsgruppe zur kovalenten Verbindung von A und B; und pharmazeutisch annehmbare Salze oder pharmazeutisch annehmbare Solvate hiervon. 2. Verbindung nach Anspruch 1 , wobei L ausgewählt ist aus i) Z - (C(RCH )2)n - Z', wobei n eine ganze Zahl von 1 bis 20 ist, Z und Z' sind unabhängig voneinander ausgewählt aus C=O, OC=O, SO2, NRZ, NRzC=O, C=ONRz wobei jedes RCH und Rz unabhängig voneinander ausgewählt sind aus Wasserstoff oder gegebenenfalls substituierten Alkyl oder gegebenenfalls substituierten Acyl, bevorzugt aus gegebenenfalls substituierten d-Cs Alkyl oder gegebenenfalls substituierten C-i-C8 Acyl, oder ii) L ist ein Oligopeptid mit 1 bis 10 Aminosäuren; oder pharmazeutisch annehmbare Salze oder Substrate hiervon. 3. Verbindung gemäß Anspruch 1 oder 2, wobei R ausgewählt ist aus einem Substrat, das durch proteolytische Enzyme, Plasmin, Cathepsin, Cathepsin B, beta-Glucuronidase, Galactosidase, Mannosidase, Glucosidase, Neuramidase, Saccharosidase, Maltase, Fructosidase, Glycosylasen, Prostate-specific Antigen (PSA), urokinase-Typ Plasminogen-Aktivator (u-PA), Metalloproteinase, oder ein Enzym, das gezielt mit Hilfe von gerichteter Enzym Prodrug Therapie, wie ADEPT, VDEPT, MDEPT, GDEPT, oder PDEPT gespalten werden kann; oder ein Substituent, der unter hypoxischen Bedingungen oder durch Reduktion durch Nitroreduktase abgespalten oder transformiert werden kann, insbe- sondere ist R ausgewählt aus einem Monosaccharid, Disaccharid oder

Oligosaccharid, insbesondere Hexosen, Pentosen oder Heptosen gegebenenfalls als Desoxy-Derivat oder Amino-Derivat und gegebenenfalls substituiert mit Halogen, d-e Alkyl, d-e Acyl, d-β Heteroalkyl, d-7 Cycloalkyl, C3-7 Heterocycloalkyl, C4-12 Aryl oder C4-12 Heteroaryl, Amino- oder Amidgruppen, oder mit Amino-, Amido- oder Carboxyleinheiten, die gegebenenfalls substituiert sein können mit Halogen, C-i-s Alkyl, C-i-s Acyl, C-i-8 Heteroalkyl, C3-7 Cycloalkyl, C3-7 Heterocycloalkyl, C4-12 Aryl oder C4- 12 Heteroaryl, Amino- oder Amidresten; Dextran, Dipeptid, Tripeptid, Tetrapeptid, Oligopeptid, Peptidomimetika, oder einem Antikörper, oder Kombinationen hiervon .

Verbindung nach einem der vorherigen Ansprüche, wobei x6 Stickstoff ist und/oder L ist Z - (C(RCH )2)n - Z' mit n einer ganzen Zahl von 1 bis 20, Z und Z' sind C=O und jedes RCH ist unabhängig voneinander Wasserstoff oder CH3.

Verbindung nach einem der vorherigen Ansprüche, wobei a null ist und/oder n ist eine ganze Zahl aus 3, 4 oder 5.

Verbindung nach einem der vorherigen Ansprüche, wobei R6, R6 , R7, R7 und R2 unabhängig voneinander ein Wasserstoff oder CH3 ist.

Verbindung nach einem der vorherigen Ansprüche, wobei diese sind:

(1 'S)-53a-c R = H (n = 3-5)

(1 'S, 10'R)-54a-c R = CH3 (n = 3-5)

(1 'S)-55a-c R = H (n = 3-5)

(1 'S,10'R)-56a-c R = CH3 (n = 3-5)

IV

wobei R unabhängig voneinander Wasserstoff oder CH3 ist und n ist eine ganze Zahl aus 3, 4 oder 5.

Verbindung nach einem der vorherigen Ansprüche, wobei A und B identisch sind .

9. Pharmazeutische Zusammensetzung enthaltend eine Verbindung nach einem der Ansprüche 1 bis 8.

10 Verwendung einer Verbindung nach einem der Ansprüche 1 bis 8 zur Behandlung von Tumorerkrankungen, insbesondere in Säugetieren.

Verfahren zur Behandlung Tumorerkrankungen in Individuen, insbesondere Säugetiere, umfassend den Schritt des Verabreichens einer wirksamen Menge einer Verbindung nach einem der Ansprüche 1 bis 8 zu diesem Individuum.

Description:
BIFUNKTIONALE PRODRUGS UND DRUGS

Die vorliegende Erfindung richtet sich auf neue Verbindungen, genauer neue bifunktionale Prodrugs und Drugs. In einem weiteren Aspekt richtet sich die vorliegende Erfindung auf pharmazeutische Zusammensetzungen enthal- tend diese Prodrugs und Drugs sowie deren Verwendung als Zytostatika in der Tumortherapie. Die erfindungsgemäßen Verbindungen beruhen dabei auf CC- 1065 Analoga.

Stand der Technik

Die vielfältigen Erscheinungsformen der Krebserkrankung erfordern indi- viduelle Therapiekonzepte. Als Reaktion auf die Komplexität einer Tumorerkrankung stellen die meisten heute klinisch angewandten Behandlungsmethoden Kombinationen verschiedener Therapieansätze dar. Einerseits wird bei gut zugänglichen und klar umgrenzten Tumoren eine chirurgische Entfernung des entarteten Gewebes als die Methode der Wahl herangezogen . Ist der Tumor allerdings schwerer zugänglich oder betrifft es lebenswichtige Strukturen, so ist eine Strahlenbehandlung die Methode der Wahl . In einem fortgeschritteneren Stadium, in dem es bereits zur Bildung von Metastasen gekommen ist oder zumindest die Gefahr einer Metastasierung besteht, erfolgt meist umgehend eine Chemotherapie. Weiterhin werden die Methoden der Hormontherapie, der Immuntherapie sowie die Therapie mit Angiogenesehemmern und Kinaseinhibitoren in der Tumortherapie verwendet.

Im Fall einer bereits nachgewiesenen oder zu befürchteten Metastasierung sowie im Fall systemischer Tumoren ist die Chemotherapie die derzeit wichtigste Behandlungsmethode, obwohl sie oftmals mit schweren Nebenwir- kungen, wie Störung des Blutbildes, Immunschwäche, Mucositis, Fieber, Übelkeit, Erbrechen, etc., verbunden ist. Üblicherweise werden die Chemotherapeu- tika über den Blutkreislauf in den gesamten Körper verteilt, so dass diese alle Zellen erreichen können . Chemotherapeutika wirken auf die menschlichen Zellen zytostatisch, d.h., sie verhindern die Zellvermehrung, oder sie wirken zytotoxisch, d.h., sie bewirken das Absterben der Zellen.

Da die meisten Zytostatika ihren Wirkmechanismus bei proliferierenden

Zellen aufzeigen und Tumorzellen zu den schnell proliferierenden Zellentypen gehören, werden sie als Chemotherapeutika verwendet. Allerdings sind auch die Nicht-Tumorzellen der behandelten Person betroffen, insbesondere solche des Knochenmarks, der Haarwurzeln oder Schleimhautzellen .

Die derzeit bekannten, in der Chemotherapie eingesetzten Zytostatika werden gemäß ihrer Wirkmechanismen in die Klassen Alkylantien, Antimetabolitika, Mitosehemmstoffe, Topoisomerase-Hemmstoffe und zytostatische Antibiotika eingeteilt.

Die Alkylantien stellen eine zahlenmäßig bedeutende, strukturell sehr vielfältige Klasse äußerst reaktiver Substanzen dar. Nach einer gegebenenfalls vorhergehenden Aktivierung des Medikaments zum Carbokation reagiert der Wirkstoff als elektrophil, insbesondere mit Nukleinsäuren unter Ausbildung ko- valenter Bindungen. Als Folge treten Quervernetzungen der DNA, abnorme Basenpaarungen oder Strangbrüche auf, die eine Replikation verhindern und schließlich zum Zelltod führen . Typische Beispiele von Alkylantien sind Cyclophosphamid aber auch Cisplatin . Zu einer Gruppe der besonders wirksamen Alkylantien gehören darüber hinaus, das natürliche Antibiotikum CC-1 065, die Duocarmycine, das Yatakemycin sowie Derivate und Analoge dieser Naturstoffklasse.

Aufgrund der Notwendigkeit chemotherapeutischer Behandlungen, der starken Nebenwirkungen eines Großteils klinisch verwendeten Wirkstoffe, sowie dem Auftreten von Resistenzen gegen viele bekannte Chemotherapeutika, ist eine ständige Weiterentwicklung im Bereich der Chemotherapeutika notwendig.

Eine Chemotherapie maligner Erkrankung ist heute mit schweren Ne- benwirkungen verbunden, da eine Differenzierung zwischen gesunden und malignen Gewebe lediglich über die gesteigerte Proliferationsrate von Krebszellen erfolgt. Es wurden daher neue Konzepte entwickelt, die genotypische und phenotypische Eigenschaften von Tumorzellen ausnutzen und eine gezielte Aktivierung von reversiblen detoxifizierten Prodrug direkt am Wirkort ermöglichen . Eine solche gezielte Aktivierung kann z.B. durch einen geänderten ph- Wert, z.B. eine ph-Wert-Senkung, erfolgen . Eine weitere Möglichkeit ist das so genannte ADEPT-Konzept (Antibody-Directed Enzyme Prodrug Therapie). Hierbei werden Antikörper-Enzym-Konjugate genutzt, die direkt am Tumor eine Umwandlung des untoxischen Prodrugs in das Drug bewirkt und eine hohe Selektivität erzielen. Dieser binäre Therapieansatz besteht aus zwei Schritten. Zunächst wird eine bestimmte Menge eines Antikörper-Enzym-Konjugats appliziert, dieses wird dann durch den Blutkreislauf im gesamten Organismus ver- teilt. Das Konjugat bindet an spezifische Antigene auf Tumorzelloberflächen oder wird vom Körper abgebaut bzw. ausgeschieden. Wenn sich das ungebundene Antikörper-Enzym-Konjugat nicht mehr nachweisen lässt, erfolgt im zweiten Schritt die Applikation des Prodrugs. Das möglichst untoxische Prodrug wird ebenfalls im gesamten Organismus verteilt und aufgrund des idealerweise nur an der Tumoroberfläche in Form des Antikörper-Enzym-Konjugats vorhandenen Enzyms gezielt im Tumorgewebe toxifiziert. Das freigesetzte Drug entfaltet dann nach Penetration durch die Zellmembran seine toxische Wirkung, während das Enzym an der Außenseite der Tumorzelle weiterhin aktiv bleibt und weitere Prodrug-Moleküle aktivieren kann . Eine Spaltung der Prodrugs durch körpereigene Enzymsysteme sollte im Rahmen dieses Ansatzes möglichst nicht erfolgen, da ansonsten die Aktivität der Therapie vermindert oder aufgehoben wäre. Nachteile bisher bekannter Prodrugs sind aber ein zu geringer Zytotoxitätsunterschied zwischen dem Prodrug und dem daraus generierten Drug sowie eine zu geringe Zytotoxität des gebildeten Drugs selbst.

Als Richtlinie bei der Entwicklung von Verbindungen für das ADEPT-

Konzept gilt, dass der QIC 5 o-Wert (QIC 5 o = IC 5 o (Prodrug)/IC 5 o (Prodrug in Anwesendheit des Enzyms)) größer 1000 sein sollte und die Zytotoxität des zu Grunde liegenden Drugs einen IC 50 -Wert (Toxinkonzentration, bei der das Zellwachstum um 50% unterbunden wird) kleiner 10 nM aufweisen sollte.

Ein weiterer Ansatz im Rahmen einer gezielten Behandlung maligner

Tumoren stellt die Prodrug-Monotherapie dar. Diese basiert auf dem Vorliegen von in Tumoren überexprimierten Enzymen, die in der Lage sind, ein entsprechendes Prodrug unter Freisetzung des korrespondierenden Drugs zu spalten. Ein mögliches Enzym ist z.B. die ß-D-Glucuronidase, die in erhöhten Konzentrationen in nekrotischen Bereichen von Tumorgeweben nachgewiesen werden konnte. Alternativ können auch Konjugate aus Wirkstoffen und tumorspezifischen Liganden für ein selektives Targeting in der Krebstherapie verwendet werden . Hier kommt es nach einer selektiven Bindung des Liganden an einen Rezeptor auf der Tumoroberfläche zu einer Internalisierung des Konjugats und im Folgenden zu einer intrazellulären Freisetzung.

Weitere Verfahren neben dem oben beschriebenen ADEPT-Verfahren sind die dem Fachmann bekannten Verfahren PDEPT (Polymer-Directed En- zyme Prodrug-Therapy) oder MDEPT (Macromolecular-Directed Enzyme Prodrug Therapy) sowie die VDEPT (Virus-Directed Enzyme Prodrug Therapy) oder GDEPT (Gene-Directed Enzyme Prodrug Therapy). Insbesondere die beiden letzten genannte stellen Möglichkeiten dar, die oben genannte Prodrug- Monotherapie zu verstärken .

Für das ADEPT-Konzept wurden bereits klinische Studien durchgeführt. Es zeigte sich, dass das ADEPT-Konzept per se für eine selektive Tumortherapie geeignet ist, das jedoch noch Verbesserungsbedarf hinsichtlich verschiedener Punkte besteht, um eine selektive und effiziente Therapie zu ermöglichen . Eine dieser wesentlichen Verbesserungspunkte umfasst die Bereitstellung neuer und effektiver Prodrugs, die einen hohen Zytotoxitätsunterschied zwischen dem Prodrug und dem korrespondierenden Drug, eine hohe Zytotoxität des Drugs und eine kurze Plasmahalbwertszeit des Drugs aufweisen .

Es besteht daher nach wie vor ein Bedarf entsprechende Prodrugs bereitzustellen, die zu dem Drug einen hohen Zytotoxitätsunterschied aufweisen und als Prodrug selbst eine geringe Zytotoxität aufzeigen . Der gebildete Wirkstoff (Drug) selbst soll eine möglichst hohe Zytotoxität aufweisen .

Für Analoga des Antibiotikums CC-1065 und der Duocarmycine wurden verschiedenste Versuche durchgeführt, das oben genannte Ziel zu erreichen. Das CC-1 065 selbst weist einen ICso-Wert von 20 pmol auf, führte aber in Tier- versuchen zu verzögerter letaler Hepatoxizität und ist daher für klinische Anwendungen nicht geeignet. Daher wurde versucht, entsprechende Analoga dieser Verbindung darzustellen . So wurde die DNA-Bindestruktureinheit verändert, aber auch des Pharmakophors selbst wurde in verschiedenster Form modifi- ziert. Darüber hinaus wurden seco- und Prodrug-Verbindungen synthetisiert, die im Allgemeinen ähnliche Toxitäten und Selektivitäten wie die Spirocyclopropylverbindungen, z.B. CC-1065 oder Duocarmycine aufweisen. So wurden z.B. durch Tietze CC-1065 Analoga beschrieben, die reversibel durch Glycosidierung des detoxifizierten anti-Methyl-seco-CBI-DMAI-ß-D- Galactosid (+)-(1 S, 10R)-Verbindung ein hervorragendes Ergebnis bezüglich der Zytotoxität und den Quotienten der Zytotoxität des Prodrugs und des Prodrugs in Anwesendheit des aktivierten Enzyms erzielen (QIC 50 -Werte). Es wurden QICso-Werte von über 4500 erzielt.

Bifunktionale Alkylantien sind solche mit zwei reaktiven Zentren. Sie besitzen die Möglichkeit Intra- oder Interstrang-Quervernetzungen der DNA zu verursachen . In Bezug auf die Interstrang-Quervernetzungen werden besonders gute Schädigungen der Zellen und somit ein Zelltod erzielt. Diese Verbindungen weisen eine hohe Zytoxität auf. Bifunktionale Derivate von z.B. Pyrrolobenzodiazidpine sind in der Literatur beschrieben. Solche bifunktionalen Derivate befinden sich derzeit in Phase 1 klinische Studien . Auch für Analoga von CC-1050 wurden bifunktionale Verbindung synthetisiert, Mitchell et al., J. Am . Chem. Soc. 1989, 1 1 1 , 6428 - 6429; Jia, G., and Lown, W., Bioorg. Med. Chem ., 2000, 8, 1607 - 1617. Es besteht aber nach wie vor ein Bedarf an für Chemotherapeutika geeignete Drugs und Prodrugs.

Beschreibung der Erfindung

Erfindungsgemäß werden neue Verbindungen bereitgestellt, die bifunktionale Alkylantien insbesondere zur Anwendung in einer selektiven Tu- mortherapie darstellen. Die hierin beschriebenen neuen Verbindungen zeichnen sich dadurch aus, dass diese neuen Dimere zytotoxischer als die monomeren Prodrugs oder Drugs sind . Üblicherweise ist der ICso-Wert der erfindungsgemäßen Verbindungen im pmol Bereich. Des Weiteren wird ein viel größerer QICso-Wert erzielt. D.h., der Quotient zwischen Zytotoxität des Drugs und der Zytotoxität des Prodrugs ist wesentlich größer. Damit kann eine bessere therapeutische Effektivität verbunden mit einer geringeren Zytotoxität des Prodrugs und damit geringeren Nebenwirkungen bei Applikationen bei den Patienten erreicht werden . In einem ersten Aspekt stellt die vorliegende Erfindung Verbindungen bereit, der allgemeinen Struktur

A - L - B

wobei A und B unabhängig voneinander ausgewählt sind aus den Strukturen I oder II

mit R 1 ausgewählt aus einem Halogen und OSO 2 R u , wobei R u ausgewählt ist aus gegebenenfalls substituierten C-I -C Ö alkyl, C-i-6 Perhaloalkyl, Benzyl und Phenyl;

R 2 ist ausgewählt aus Wasserstoff und gegebenenfalls substituierten C-i-s Alkyl; R 3 , R 3 , R 4 und R 4 sind unabhängig voneinander ausgewählt aus Wasserstoff und gegebenenfalls substituierten C-i-s Alkyl, wobei zwei oder mehrere von R 2 , R 3 , R 3 , R 4 und R 4 gegebenenfalls miteinander verbunden sind, um ein oder mehrere gegebenenfalls substituierte Kohlenstoffzyklen oder Heterozyklen auszubilden;

X 2 ist ausgewählt aus O, C(R 14 )(R 14' ) und NR 14' , wobei R 14 ausgewählt ist aus Wasserstoff und gegebenenfalls substituierten C-i -8 Alkyl oder C-i -8 Acyl und 14'

wobei R nicht vorhanden ist oder ausgewählt ist aus Wasserstoff und gegebenenfalls substituierten C-i -8 Alkyl oder C-i -8 Acyl;

R 5, R 5 , R 6 , R 6 , R 7 und R 7 sind unabhängig voneinander ausgewählt aus H, OH, SH, CF 3 , CN, C(O)NH 2 , C(O)H, C(O)OH, Halogen, R k , SR k , S(O)R k , S(O) 2 R k , S(O)OR k , S(O) 2 OR k , OS(O)R k , OS(O) 2 R k , OS(O)OR k , OS(O) 2 R k , OR k , P(O)(OR k )(OR L ), OP(O)(OR k )(OR L ), SiR k R L R m , C(O)R k , C(O)OR k , C(O)N(R L )R k , OC(O)R k , OC(O)R k , OC(O)OR k , OC(O)N(R k )R L wobei R k , R L und R m unabhängig voneinander ausgewählt sind aus H und gegebenenfalls substituierte C-i- Alkyl, Ci -4 Heteroalkyl, C3-7 Cycloalkyl, C3-7 Heterocycloalkyl, C 4- i 2 Aryl oder C 4- i 2 Heteroaryl Gruppen, zwei oder mehr von R k , R L und R m bilden gegebenenfalls miteinander ein oder mehrere gegebenenfalls substituierte aliphatische oder aromatische Kohlenstoffzyklen oder Heterozyklen aus;

und/oder R 5 und R 6 und/oder R 6 und R 7 und/oder R 7 und R 14 sind nicht vorhanden, d.h., sie bilden eine im Ring vorhandene Doppelbildung zwischen den mit den entsprechenden substituierten Atomen aus, nämlich R 5 und R 6 , und/oder R 6' und R 7 , und/oder R 7' und R 14' ;

zwei oder mehrere von R 5 , R 5 , R 6 , R 7 , R 14 , und R 14 können gegebenenfalls miteinander verbunden sein, um ein oder mehrere gegebenenfalls substituierte aliphatische oder aromatische Kohlenstoffzyklen oder Heterozyklen auszubil- den;

und/oder R 5 + R 5 , und/oder R 6 + R 6 und/oder R 7 + R 7 sind unabhängig voneinander =O, =S oder =NR 12 , wobei R 12 ausgewählt ist aus H und gegebenenfalls substituierten C-i-6 Alkyl;

X 6 ist ausgewählt aus C oder N;

RDB ist ausgewählt aus Wasserstoff und gegebenenfalls substituierten C-i-s Alkyl oder gegebenenfalls substituierten C-i -8 Acyl;

Xi ist ausgewählt aus O, S, und NR 13 , wobei R 13 ausgewählt ist aus H und gegebenenfalls substituierten C-i -8 Alkyl;

R ist ausgewählt aus Wasserstoff oder ein enzymatisch abspaltbares Substrat; a und b sind unabhängig voneinander ausgewählt aus 0 und 1 ;

c ist ausgewählt aus 0, 1 und 2;

d ist ausgewählt aus 0 oder 1 ; L ist eine Verbindungsgruppe zur kovalenten Verbindung von A und B; und pharmazeutisch annehmbare Salze oder pharmazeutisch annehmbare Solvate hiervon.

Die erfindungsgemäßen Verbindungen zeigten in in vitro-Experimenten hervorragende Zytotoxitatswerte mit ICso-Werten im pmol-Bereich, teilweise unterhalb des pmol-Bereichs. Des Weiteren zeigten die Verbindungen einen hervorragenden Quotienten des IC50. Der QICso-Wert der getesteten Verbindungen lag über 1000, besonders geeignete Verbindungen zeigten Werte über 100.000 auf.

D.h., die vorliegend dargestellten Verbindungen, die neue dimere

Prodrugs und Drugs von CC-1065 Analoga darstellen, weisen als Drug eine sehr hohe Zytotoxität auf, während die Prodrugs nur eine geringere Zytotoxität aufzeigen . Dadurch sollten diese Verbindungen in der therapeutischen Anwendung wesentlich sicherer sein. Die erfindungsgemäßen Verbindungen aus Di- meren sind des Weiteren wesentlich zytotoxischer als die monomeren Prodrugs oder Drugs. Die Verbindungen zeigen sich also durch eine hohe Wirksamkeit bei geringeren Nebenwirkungen in der Anwendung aus.

Frühere bifunktionale CC-1 065- und Duocarmycin-Analoga zeigten nur eine geringe Selektivität auf und auch die Zytotoxitätswerte waren ähnlich der monomeren Analoga, teilweise noch geringer. Jia, G. und Lown, J . W., supra, untersuchten bifunktionale Verbindungen, die Zytotoxitätswerte in nanomola- ren-Bereich aufzeigten.

Die erfindungsgemäßen Verbindungen zeichnen sich dadurch aus, dass sie Zytotoxitätswerte im pmol-Bereich aufzeigen und einen sehr großen Quoti- enten der ICso-Werte des Drugs zum Prodrugs haben .

In einer bevorzugten Ausführungsform weisen die Verbindungen einen Linker L auf, ausgewählt aus i) Z - (C(RcH)2)n - Z', wobei n eine ganze Zahl von 1 bis 20 ist, Z und Z' sind unabhängig voneinander ausgewählt aus C=O, OC=O, SO 2 , NR Z , NR z C=O, C=ONR z wobei jedes R C H und R z unabhängig von- einander ausgewählt sind aus Wasserstoff oder gegebenenfalls substituierten Alkyl oder gegebenenfalls substituierten Acyl, bevorzugt aus gegebenenfalls substituierten C-i-C 8 Alkyl oder gegebenenfalls substituierten C-i-C 8 Acyl, oder ii) L ist ein Oligopeptid mit 1 bis 10 Aminosäuren; oder pharmazeutisch an- nehmbare Salze oder Substrate hiervon.

In einer daraus bevorzugten Ausführungsform ist der Linker einer, worin Z, Z' eine Gruppe C=O darstellt und RCH jeweils unabhängig voneinander Wasserstoff. In einer Ausführungsform ist n ein Wert von 1 bis 6, besonders bevor- zugt 3, 4 oder 5. In einer weiteren Ausführungsform ist R C H jeweils unabhängig voneinander Wasserstoff oder CH 3 , n ist eine ganze Zahl von 1 bis 20 und Z und Z' sind C=O, wobei X 6 Stickstoff ist.

Weiterhin ist bevorzugt, dass in der allgemeinen Struktur I a null ist.

Eine weitere bevorzugte Ausführungsform ist derart, dass in den Struktu- ren I und II die Reste R 6 , R 6 , R 7 , R 7 und R 2 jeweils unabhängig voneinander ein Wasserstoff oder eine Methylgruppe - CH 3 - darstellt.

In einer weiteren bevorzugten Ausführungsform handelt es sich bei den Strukturen I und II um solche CC-1065 Analoga, wie sie z.B. in der WO 2007/089149 und WO 01 /83448 offenbart sind, auf die hiermit vollständig Be- zug genommen wird .

Der Ausdruck„substituiert", wie er hierin insbesondere in Bezug auf Al- kyl, Heteroalkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Heteroaryl, Acyl verwendet wird, bezieht sich darauf, dass diese Gruppen ein oder mehrere Substituenten ausgewählt aus der Gruppe umfassend OH, =O, =S, =NR h , =N-OR h , S h , NH 2 , NO 2 , NO, N 3 , CF 3 , CN, OCN, SCN, NCO, NCS, C(O)NH 2 , C(O)H, C(O)OH, Halogen, R h , SR h , S(O)R h , S(O)OR h , S(O) 2 R h , S(O) 2 OR h , OS(O)R h , OS(O)OR h , OS(O) 2 R h , OS(O) 2 OR h , OPCOXOR^OR 1 ), PiOXOR^OR 1 ), OR h , NHR', N(R h )R', + N(R h )(R')R j , S R^R 1 )^, S R^R^R 1 ), C(O)R h , C(O)OR h , C(O)N(R i )R h , OC(O)R h , OC(O)OR h , OCCOJNiR^R 1 , N(R i )C(O)R h , N(R i )C(O)OR h , N(R')C(O)N(R j )R h , und die Thioderivate dieser Substituenten, oder eine protonierte oder deprotonierte Form dieser Substituenten, wobei R h , R 1 , und R j unabhängig voneinander ausgewählt sind aus H and gegebenenfalls substituierte C-i-15 Alkyl, C-i-15 Heteroalkyl, C 3- i 5 Cycloalkyl, C 3- i 5 Heterocycloalkyl, C 4- i 5 Aryl, oder C 4- i s Heteroaryl oder ein Kombination hiervon, zwei oder mehr von R h , R', und R j sind gegebenenfalls miteinander verbunden, um ein oder mehrere Kohlenstoffzyklen oder Heterozyklen auszubilden.

Der Ausdruck „Alkyl", wie er hierin verwendet wird, bezieht sich auf geradkettige oder verzweigte, gesättigte oder ungesättigte Kohlenwasserstoff- Substituenten, Beispiele der Alkylgruppen schließen ein Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Octyl, Decyl, Isopropyl, sec-Butyl, Isobutyl, tert-Butyl, Isopentyl, Vinyl, Allyl, 1-Butenyl, 2-Butenyl, Isobutenyl, Pentenyl und dgl.

Der Ausdruck „Cycloalkyl" oder „Kohlenstoffzyklen", wie er hierin ver- wendet wird, bezieht sich auf gesättigte oder ungesättigte, nicht aromatische Kohlenwasserstoffzyklen, die aus eins, zwei oder mehr Ringen bestehen können. Beispiele hiervon schließen ein: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclopentenyl, Cyclopentadienyl, Cyclohexyl, Cyclohexonyl, usw.

Der Ausdruck„Heteroalkyl", wie er hierin verwendet wird, bezieht sich auf geradkettige oder verzweigte, gesättigte oder ungesättigte Kohlenwasserstoff - Substituenten, in denen mindestens ein Kohlenstoff durch ein Heteroatom ersetzt ist. Die Heteroatome sind bevorzugt ausgewählt aus S, N, O, und P.

Der Ausdruck „Aryl", wie er hierin verwendet wird, bezieht sich auf aromatische Substituenten, die aus ein oder mehreren miteinander fusionierten Ringen bestehen können. Beispiele für Aryl schließen ein: Phenyl, Naphtyl und Antracenyl.

Der Ausdruck „Acyl", wie er hierin verwendet wird, bezieht sich auf die funktionelle Gruppe mit der allgemeinen Struktur R a -(C=O) - wobei R a einen gegebenenfalls substituierten Kohlenwasserstoffrest darstellt, insbesondere eine Kohlenstoffkette mit Ci bis C 8 Kohlenstoffatomen.

Der Ausdruck„Heteroaryl", wie er hierin verwendet wird, bezieht sich auf aromatische Substituenten, die aus ein oder mehreren miteinander fusionierten Ringen bestehen können. Hierbei ist mindestens ein Kohlenstoffatom der aromatischen R-Gruppe durch ein Heteroatom ersetzt, insbesondere S, N, O oder P. Beispiele für Heteroarylgruppen schließen ein: Pyridinyl, Furanyl, Pyrrolyl, Triazolyl, Pyrazolyl, Imidazolyl, Thiophenyl, Indolyl, Benzofuranyl, Benzimidazolyl, Indazolyl, Benzotriazolyl, Benzisoxazolyl, und Chinolinyl.

Der Ausdruck „Heterocycloalkyl" oder „Heterozyklen", wie er hierin verwendet wird, bezieht sich auf gesättigte oder ungesättigte, nicht aromatische zyklische Kohlenwasserstoff-Substituenten, die aus ein oder mehreren miteinander fusionierten Ringen bestehen können, dabei ist mindestens ein Kohlenstoff in einem der Ringe durch ein Heteroatom ersetzt, insbesondere S, N, O oder P. Beispiele für Heterocycloalkyle schließen ein: Tetrahydrofuranyl, Pyrrolidinyl, Piperidinyl, 1 ,4-Dioxanyl, Morpholinyl, Piperazinyl, Oxyzolidinyl, Decahydrochinolinyl .

Wenn Ausdrücke wie „gegebenenfalls substituiert" verwendet werden, beziebeziehen sich diese Ausdrücke auf alle sich anschließenden Reste solan- ge nicht anders ausgeführt. D.h ., der Ausdruck„gegenbenenfalls substituierte Alkyl, Heteroalkyl, Aryl, Acyl" ist als„gegebenenfalls substituierte Alkyl, gegebenenfalls substituierte Heteroalkyl, gegebenenfalls substituierte Aryl, gegebenenfalls substituierte Acyl" zu lesen.

In Abhängigkeit der Substituenten, insbesondere in Abhängigkeit des Substituenten R, können die Verbindungen einfach und gerichtet in Zellen eingebracht werden. In einer Ausführungsform ist R bevorzugt Wasserstoff.

In einer weiteren bevorzugten Ausführungsform stellt R ein Substrat dar, das z.B. enzymatisch abspaltbar ist, um Prodrugs, die am Substituenten R ein spaltbares Produkt aufweisen, in Drugs umzuwandeln.

D.h., in einer bevorzugten Ausführungsform handelt es sich bei dem

Substrat R um ein abspaltbares Produkt.

In einer bevorzugten Ausführungsform handelt es sich bei dem Substrat R um ein abspaltbares Substrat. Dieses abspaltbare Substrat ist bevorzugt eines, dass durch proteolytische Enzyme, Plasmin, Cathepsin, Cathepsin B, be- ta-Glucuronidase, Galactosidase, Mannosidase, GlUcosidase, Neuramidase, Saccharosidase, Maltase, Fructosidase, Glycosylasen, Prostate-specific Antigen (PSA), urokinase-Typ Plasminogen-Aktivator (u-PA), Metalloproteinase, oder ein Enzym, das gezielt mit Hilfe von gerichteter Enzym Prodrug Therapie, wie ADEPT, VDEPT, MDEPT, GDEPT, oder PDEPT gespalten werden kann; oder ein Substituent, der unter hypoxischen Bedingungen oder durch Reduktion durch Nitroreduktase abgespalten oder transformiert werden kann.

Bevorzugt handelt es sich bei dem Rest R um einen ausgewählt aus der Gruppe umfassend Monosaccharid, Disaccharid oder Oligosaccharid, insbesondere Hexosen, Pentosen oder Heptosen gegebenenfalls als Desoxy-Derivat oder Amino-Derivat und gegebenenfalls substituiert mit Halogen, C-i -8 Alkyl, C-i-8 Acyl, C-i -8 Heteroalkyl, C3-7 Cycloalkyl, C3-7 Heterocycloalkyl, C 4- 12 Aryl oder C -12 Heteroaryl, Amino- oder Amidgruppen, oder mit Amino-, Amido- oder Carboxyleinheiten, die gegebenenfalls substituiert sein können mit Halogen, C-i-8 Alkyl , C-i-8 Acyl, C-i-s Heteroalkyl, C3-7 Cycloal kyl , C3-7 Heterocycloalkyl, C -12 Aryl oder C -i 2 Heteroaryl, Amino- oder Amidresten ; Dextran, Dipeptid, Tripeptid , Tetrapeptid , Ol igopeptid , Peptidominnetika, oder einem Antikörper oder einem Antikörperfragment, oder Kombinationen h iervon .

Mit Hilfe des Substrats R ist ein Targeting der erfindungsgemäßen Verbindungen an Zielstru kturen möglich . D.h . , es ist ein zielgerichtetes Koppeln der erfindungsgemäßen Verbindungen an Zielstrukturen und ein entsprechendes Einbringen dieser erfindungsgemäßen Verbindungen in z. B. ausgewählte Zellen und Zellarten möglich . Die erfindungsgemäßen Verbindungen worin R ein Substrat außer H ist, weisen eine abspaltbare oder transformierbare Gruppe auf. Das Abspalten oder d ie Transformation der erfindungsgemäßen Verbindung m it R außer H kann durch chemische, photochemische, physikal ische, biologische oder enzymatische Prozesse unter den entsprechenden Bed ingungen erfolgen . Diese Bedingungen umfassen z.B. die Bereitstellung entspre- chender Enzyme, die Änderung des umgebenen Milieus, das Einwirken von z. B. Strahlung, wie UV-Licht usw. Dem Fachmann sind entsprechende Verfahren bekannt. Das Substrat ist entsprechend zugänglich für bekannte Verfahren wie ADEPT (Antibody Directed Enzyme Prodrug Therapy), PDEPT (Polymer- Directed Enzyme Prodrug Therapy) oder MDEPT (Macromolecular-Directed Enzyme Prodrug Therapy), VDEPT (Virus-Directed Enzyme Prodrug Therapy) oder GDEPT (Gen-Directed Enzyme Prodrug Therapy).

In bevorzugten Ausführungsformen sind R 5 , R 5 , R 6 , R 6 , R 7 und R 7 H . Weiterhin bevorzugt ist X 2 C und/oder X 6 ist N . In einer weiteren bevorzugten Ausführungsform ist a 0 und/oder b ist 1 und/oder c ist 1 . Bevorzugt sind Verbindun- gen , in denen Xi ein O ist. Weiterh in bevorzugt sind Ausführungsformen in dem RDB H ist oder d ist 0.

Besonders bevorzugte Verbindungen sind d ie im Folgenden dargestellten Verbindungen :

(1'S)-55a-c R = H (n = 3-5)

(1'S,10'R)-56a-c R = CH 3 (n = 3-5)

IV

wobei R unabhängig voneinander Wasserstoff oder CH 3 ist und n ist eine ganze Zahl aus 3, 4 oder 5.

In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung sind die Komponenten A und B identische Reste. Erfindungsgemäß werden Hybridverbindungen aus den Strukturen I und II bereitgestellt, bevorzugt sind die Verbindungen aber solche, in denen die Strukturen A und B identische Reste darstellen, wie in den besonders bevorzugten Verbindungen II I und IV, wie sie oben dargestellt sind .

Weiterhin richtet sich die vorliegende Anmeldung auf pharmazeutische Zusammensetzungen, die die erfindungsgemäßen Verbindungen enthalten, gegebenenfalls mit pharmazeutisch annehmbaren Trägern oder Verdünnern. Die erfindungsgemäßen Verbindungen können dabei in Form von pharmazeu- tisch annehmbaren Salzen oder Solvaten vorliegen.

Pharmazeutisch annehmbare Salze sind insbesondere Säureadditionssalze, die entsprechend an Amingruppen ausgebildet werden . Genauso sind Basenadditionssalze möglich oder entsprechende Zwitteradditionssalze. Der Ausdruck „pharmazeutisch annehmbare Solvate", bezieht sich auf die Assoziierung von ein oder mehreren Lösungsmittelmolekülen und einer erfindungsgemäßen Verbindung. Beispiele für solche Lösungsmittelmoleküle, die pharmazeutisch annehmbare Solvate ausbilden, schließen ein : Wasser, Isopropylalkohol, Ethanol, Methanol, DSMO, Ethylacetat und Essigsäure.

Die erfindungsgemäßen Verbindungen eignen sich insbesondere zur Herstellung von pharmazeutischen Zusammensetzungen geeignet in der Tumortherapie. Monomere der erfindungsgemäßen bifunktionalen Verbindungen sind als zytotoxische Verbindungen geeignet zur Tumortherapie bekannt. Zur vorliegenden Erfindung gehören pharmazeutische Zusammensetzungen, die neben den üblichen Trägerstoffen oder Verdünnern die erfindungsgemäßen Verbindungen enthalten . Die Herstellung der oben aufgeführten pharmazeutischen Zubereitungen erfolgt in üblicher Weise nach bekannten Verfahren, z.B. durch Mischen des oder der Wirkstoffe oder Trägerstoffen.

Im Allgemeinen können die erfindungsgemäßen Verbindungen in Gesamtmengen von 0,5 bis etwa 500, vorzugsweise 1 bis 1 50 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung der gewünschten Ergebnisse verabreicht werden . Dem Fachmann sind die Möglichkeiten zur Bestimmung der Dosismenge wohlbekannt. Diese kann in Abhängigkeit vom Alter, dem Körpergewicht, der Art und Schwere der Erkrankung des Patienten, der Art der Zubereitung und der Applikation des Arzneimittels sowie dem Zeitraum bzw. dem Intervall der Verabreichung erfolgen .

Beschreibung der Abbildungen

In der Figur 1 wird die Synthese der ß-D-Galactoside der bifunktionalen

(I S)-seco-CBI und der (1 S, 1 0R)-anti-Methyl-seco-CBI-Derivate, sowie die entsprechenden seco-Drugs beschrieben: Synthese der ?-D-Galactoside der bifunktionalen (1 S)-seco-CBI- und (1 S,10R)-anf/ ' -Methyl-seco-CBI-Derivate sowie der entsprechenden seco-Drugs: a) 87, BF 3 OEt 2 , CH 2 CI 2 , MS (4 A), - 10 °C, 3.5 h, dann BF 3 OEt 2 , RT, 5.5 h; b) 66a-c (n = 3-5), NEt 3 , DMF, RT, 20 h; c) Präparative HPLC: Kromasil ® 100 C18 (250 20 mm, 7 μηη), A = H 2 O, B = MeOH, Gradient: A/B = 30:70 -»· 0: 100 in 6.5 min; d) NaOMe/MeOH, RT, 2 h; e) Präparative HPLC: Kromasir 100 C18 (250 χ 20 mm, 7 μΐτι), A = H 2 O, B = MeOH, Gradient: A/B = 70:30 -^0: 100 in 1 5 min; f ) 4 N HCI/EtOAc, RT, 3 h; g) 66a-c (n = 3-5), Pyridin, DMF, RT, 20 h; h) Präparative HPLC: Kromasil ® 100 C1 8 (250 20 mm, 7 μηη), A = H 2 O, B = MeOH, Gradient: A/B = 30:70 -»· 0: 100 in 6.5 min .

Die Figur 2 zeigt die Racemische Syntheseroute zur Darstellung des N- Boc-seco-CBI (rac-69) mit anschließender Trennung der Enantiomeren über HPLC an chiraler stationärer Phase.

Die Figur 3 zeigt die asymmetrische Syntheseroute zur Darstellung des (I S)-N-Boc-seco-CBI ((-)-(1 S)-69).

Die Figur 4 zeigt die in vitro-Zytoxitäten bestimmt in der A549-Zellline der bifunktionalen (1 S, 10R)-anti-Methyl-seco-CBI-Derivate mit n = 3 (o.E. = ohne Enzym, m .E. = mit Enzym).

Die Figur 5 zeigt die in vitro-Zytoxitäten bestimmt in der A549-Zelllinie der bifunktionalen (1 S, 1 0R)-anti-Methyl-seco-CBI-Derivate mit n = 4 (o.E. = ohne Enzym, m .E. = mit Enzym).

Die Figur 6 zeigt die in vitro-Zytoxitäten bestimmt in der A549-Zelllinie der bifunktionalen anti-Methyl-seco-CBI-Derivate mit n = 5 (o.E. = ohne Enzym, m .E. = mit Enzym).

Im Folgenden wird die Erfindung mit Hilfe der Bespiele näher erläutert, ohne dass die Erfindung auf diese beschränkt ist.

Beispiele

Materialien:

Die verwendeten Zelllinien sind über ATCC beziehbar und wurden in den empfohlenen Medien kultiviert.

Kulturmedium für A549: DMEM (Dulbecco ' s Modified Eagles Medium) mit 4.5 g/l Glucose (Biochrom, T043-10). Das Medium wurde mit 4 m M L-Glutamin und 3.7 g/l Natriumhydrogencarbonat supplementiert.

Medium-Zusätze: 10% FKS (Fötales Kälberserum) der Firma Biochrom, 30 min inaktiviert bei 56 °C.

Enzym: y?-D-Galactosidase (E.C. 3.2.1 .23) von Eschericha coli G 5635 (Sigma), Aktivität: 250-600 Einheiten (Units (U)) pro mg Protein bei pH 7.3 und 37 °C, 1 U = 1 μιτιοΙ Substratumsatz pro Minute.

PBS-Puffer: Lösung der PBS-Trockensubstanz (Phosphate Buffered Saline) der Firma Biochrom KG in bidestilliertem Wasser. Salzkonzentrationen in der Pufferlösung mit pH 7.4: 1 37.0 m M NaCI, 2.7 m M KCl, 8.1 m M Na 2 HPO 4 , 1 .1 mM KH 2 PO 4 .

Drehwerte: Polarimeter Modell 241 der Firma Perkin-Elmer.

Infrarotspektren: Modell Vector 22 der Firma Bruker. Feststoffe wurden als KBr-Presslinge, Flüssigkeiten als Film zwischen KBr-Platten gemessen . Zur Kalibrierung diente die Polystyrolbande bei 1601 cm "1 .

UV/VIS-Spektren: Modell Lambda 2 der Firma Perkin-Elmer.

1 H-NMR-Spektren: Modelle Mercury-200 (200 MHz), Mercury-300 und Unity-300 (jeweils 300 MHz) sowie Unity lnova-600 (600 MHz) der Firma Varian. Die chemischen Verschiebungen sind in Einheiten der δ-Skala angegeben. Tetramethylsilan (5TMS = 0.00 ppm) oder das angegebene Lösungsmittel dienten als interner Standard . Zur Kennzeichnung der Multiplizitaten der Signale werden folgende Abkürzungen verwendet: s (Singulett), d (Dublett), t (Triplett), q (Quartett), m (Multiplett), m c (zentriertes Multiplett), br (breites Signal). Zur Bezeichnung aromatischer Protonen oder Kohlenstoffatome werden folgende Abkürzungen verwendet: / ' (ipso), o (ortho), m (meta), p (para). Die Spektren wurden in der Regel erster Ordnung entsprechend interpretiert. Die Kopplungskonstanten J sind in Hertz (Hz) angegeben .

13 C-NMR-Spektren: Modelle Mercury-200 (50 MHz), Mercury-300 und Unity-300 (jeweils 75 MHz) sowie Unity lnova-600 (1 50 MHz). Als interner Standard diente Tetramethylsilan oder das angegebene Lösungsmittel. Die chemischen Verschiebungen sind den 1 H-breitbandentkoppelten Spektren entnommen, die Multiplizitaten der Signale wurden in multiplett-selection-Experimenten (APT- Pulsfolge) bestimmt.

Massenspektren: Zur Aufnahme der El-Spektren diente ein doppelfokussie- rendes Sektorfeld-Massenspektrometer MAT 95 der Firma Finnigan. ESI- Spektren wurden mit einem lon-Trap-Massenspektrometer LCQ der Firma Finnigan aufgenommen . Angegeben werden die Quotienten aus Masse zu La- dung sowie in Klammern die relativen Intensitäten bezogen auf den Basispeak (1 = 1 00). Die Messung der ESI-HRMS-Spektren erfolgte an einem 7 Tesla- Fourier Transform Ion Cyclotron Resonance (FTICR)-Massenspektrometer APEX IV der Firma Bruker, das mit einer Apollo-ESI-Quelle der Firma Bruker und einer Spritzenpumpe 74900 series der Firma Cole-Parmer ausgestattet ist. Der Fluss der Spritzenpumpe betrug 2 L/min. Zur Aufnahme der Spektren und zur Auswertung diente das Programm XMASS der Firma Bruker.

Dünnschichtchromatographie (DC): Es wurden DC-Fertigfolien SIL G/UV254 der Firma Macherey-Nagel & Co. (Schichtdicke 0.25 mm) verwendet. Angege- ben sind R r Werte (Laufhöhe relativ zur Laufmittelfront). Als Abkürzungen für die verwendeten Lösungsmittel werden benutzt: DMSO (Dimethylsufoxid), EtOAc (Essigsäureethylester), CH 2 CI 2 (Dichlormethan), MeOH (Methanol). Neben der UV-Detektion dienten eine Vanillin-Schwefelsäure-Lösung (0.5 g Vanillin, 3 mL konz. Schwefelsäure, 85 mL Methanol und 1 0 mL Essigsäure) und eine Molybdatophosphorsäure-Lösung (5% in Methanol) als Anfärbereagenzien.

Säulenchromatographie: Alle säulenchromatographischen Trennungen wurden mit Kieselgel 60 (Korngröße: 0.032-0.063 mm) der Firma Merck durchgeführt.

Hochdruckflüssigkeitschromatographie (HPLC):

Analytische HPLC: Analytische Trennungen mit Ausnahme der Oligonukleotid- Experimente wurden auf einer HPLC-Anlage der Firma Jasco, ausgestattet mit einer Lösungsmittelpumpe PU-2080, einer Mischkammer LG-1590-04, einem Multiwellenlängendetektor MD-201 0 Plus und der Steuerung LC-Net ll/ADC, vorgenommen . Zusätzlich war ein automatischer Probenwechsler (Autosampier AS-2055) derselben Firma angeschlossen . Zur Bedienung, Datenerfassung und Datenauswertung wurden die Computerprogramme Borwin PDA, HSS 2000 und Borwin Chromatography der Firma Jasco eingesetzt. Für die analytischen Messungen wurden die Fertigsäulen Chiralcel ® OD (250x4.6 mm, Parti- kelgröße: 1 0 μιτι) der Firma Daicel Chemical Industries Ltd. sowie Kromasil 100 C 18 (5 μηι, 250x4 mm) der Firma Jasco verwendet. Als Lösungsmittel dienten n- Hexan, Dichlormethan und Isopropanol in HPLC-Qualität (Chiralcel ® OD) sowie bidestil I iertes Wasser (Zusatz von 0.1 Vol.-% Trif uoressigsäure zur Peptidsynthese oder 0.06 Vol. -% konzentrierte Salzsäure) und Acetonitril bzw. Methanol in HPLC- Qualität (Kromasil 100 C18). Alle Proben wurden membranfiltriert und die Lösungsmittel entgast.

Präparative HPLC: Präparative Trennungen wurden auf einem HPLC-System der Firma Jasco, ausgestattet mit zwei Lösungsmittelpumpen Modell PU-2087 PLUS und einem UV-Detektor Modell UV-2075 PLUS, vorgenommen. Eingesetzt wurden eine Fertigsäule Chiralpak ® IA (250x20 mm, Partikelgröße: 5 μιτι) sowie eine Fertigsäule des Typs Kromasil 100 C 18 (7 μηι, 250x20 mm) der Firma Jasco in Verbindung mit einer Vorsäule des Typs Kromasil 100 C 18 (5 μιη, 50x20 mm) der Firma Jasco. Als Lösungsmittel dienten n-Heptan, n-Hexan und Dichlormethan in HPLC-Qualität (Chiralpak ® IA) sowie bidestilliertes Wasser (Zusatz von 0.1 Vol.-% Trifluoressigsäure zur Peptidsynthese) und Acetonitril bzw. Methanol in HPLC-Qualität (Kromasil 1 00 C18). Alle Proben wurden membranfiltriert und die Lösungsmittel entgast.

Beispiel 1

Racemische Synthese des seco-CBI-Grundgerüstes, wie in Figur 2 dargestellt. A. (E/Z)-2-Amino-4-benzyloxy-N-(tert-butyloxycarbonyl)-N-(3-chl or-2- propenyl)-1 -iod-naphthalin (75)

Zu einer Suspension von NaH (420 mg, 10.5 mmol, 2.5 Äq.; 60%ige Suspension in Mineralöl) in absolutem DMF (30 mL) wurde via Transferkanüle eine Lösung des Amids 73 (2.00 g, 4.21 mmol, 1 .0 Äq.) in absolutem DMF (20 mL) gegeben. Es wurde 2 h bei Raumtemperatur gerührt, (E/Z)-1 ,3- Dichlorpropen (74) (870 μί, 8.42 mmol, 2.0 Äq.) zugegeben und für weitere 6 h bei Raumtemperatur gerührt. Die Reaktion wurde durch vorsichtige Zugabe ei- ner gesättigten NH CI-Lösung (50 mL) beendet und die Reaktionsmischung mit Essigester (1 00 mL) und Wasser (50 mL) versetzt. Anschließend wurde mit Essigester (3x1 50 mL) extrahiert, die vereinigten organischen Phasen mit Wasser (4x200 mL) sowie gesättigter NaCI-Lösung (200 mL) gewaschen, über MgSO getrocknet und das Lösungsmittel wurde im Vakuum entfernt. Säulenchroma- tographie an Kieselgel (n-Pentan / EtOAc = 10: 1 ) lieferte die Zielverbindung 75 als gelbes Öl (2.29 g, 4.16 mmol, 99%).

R f = 0.51 , 0.44 (n-Pentan / EtOAc = 10: 1 ). 1 H-NMR (200 MHz, CDCI 3 ): δ= 1.33/1.58 (jeweils s, zus.9 H, C(CH 3 ) 3 ), 3.72-4.34 (m, 1 H, 1'-H a ), 4.47-4.63 (m, 1 H, 1'-H b ), 5.26 (s br , 2 H, OCH 2 Ph), 5.93-6.18 (m, 2 H, 2'-H, 3'-H), 6.65-6.79 (m, 1 H, 3-H), 7.31-7.63 (m, 7 H, 6-H, 7-H, 5xPh-H), 8.10, 8.22 (jeweils d, J = 8.0 Hz, jeweils 1 H, 5-H, 8-H).

1 3 C-NMR (50 MHz, CDCI 3 ): δ= 28.3/28.5 (C(CH 3 ) 3 ), 46.0/49.1 (C-1'), 70.3/70.4 (OCH 2 Ph), 80.7 (C(CH 3 ) 3 ), 95.0/95.1 (C-1), 107.1/107.7 (C-3), 120.6/120.8 (C-3'),

122.5 (C-5), 125.5 (C-4a), 126.3, 126.4, 127.3 (C-6, C-2', Ph-C G ), 128.1/128.2 (Ph-Cp), 128.5/128.6 (C-8), 128.7 (Ph-C m ), 132.7 (C-7), 135.3 (C-8a), 136.3/136.4 (Ph-C,), 142.4/142.8 (C-2), 153.7/153.9 (C=0), 155.3 (C-4).

B. rac-5-Benzyloxy-3-(tert-butyloxycarbonyl)-1 -chlormethyl-1 ,2-dihydro-3H- benz[e]indol (rac-58)

Der lodaromat 75 (2.29 g, 4.16 mmol, 1.0 Äq.) wurde in Toluol (50 mL) gelöst und die Lösung gründlich durch Einleiten eines Argon-Gasstromes entgast. Nach Zugabe von Tris-(trimethylsilyl)-silan (1.46 mL, 4.58 mmol, 1.1 Äq.) sowie AIBN (171 mg, 1.04 mmol, 0.25 Äq.) wurde das Gemisch für 4 h bei 80 °C gerührt. Nach dem Abkühlen wurde das Reaktionsgemisch mit einer 10%igen wässrigen KF-Lösung (50 mL) versetzt und 1 h bei Raumtemperatur gerührt. Die organische Phase wurde über MgSO getrocknet, das Lösungsmittel im Vakuum entfernt und der Rückstand durch Säulenchromatographie an Kieselgel (Gradient: n-Pentan / EtOAc = 50:1 -^ 20:1) gereinigt. Das Produkt rac-58 wurde als weißer Feststoff (1.38 g, 3.26 mmol, 78%) erhalten.

R f = 0.50 (n-Pentan / EtOAc = 10:1).

1 H-NMR (300 MHz, CDCI 3 ): δ= 1.62 (s, 9 H, C(CH 3 ) 3 ), 3.44 (t, J = 10.9 Hz, 1 H, 10-H a ), 3.92-4.01 (m, 2 H, 1-H, 10-H b ), 4.13 (t, J = 10.7 Hz, 1 H, 2-H a ), 4.28 (d, J= 11.1 Hz, 1 H, 2-H b ), 5.27 (s, 2 H, OCH 2 Ph), 7.31-7.56 (m, 7 H, 7-H, 8-H, 5xPh-H), 7.65 (d, J = 8.4 Hz, 1 H, 9-H), 7.87 (s br , 1 H, 4-H), 8.30 (d, J = 8.4 Hz, 1 H, 6-H).

13 C-NMR (50 MHz, CDCI 3 ): δ= 28.5 (C(CH 3 ) 3 ), 41.6 (C-1), 46.5 (C-10), 53.0 (C-2), 70.3 (OCH 2 Ph), 81.2 (C(CH 3 ) 3 ), 96.4 (C-4), 114.0 (C-9b), 122.4 (C-5a), 121.7, 123.1,

123.6 (C-6, C-7, C-9), 127.5 (Ph-C G ), 127.6 (C-8), 128.0 (Ph-C p ), 128.5 (Ph-C m ), 130.2 (C-9a), 136.7 (Ph-C,), 143.4 (C-3a), 152.6 (C=0), 156.0 (C-5).

C. rac-3-(tert-Butyloxycarbonyl)-1 -chlormethyl-5-hydroxy-1 ,2-dihydro-3H- benz[e]indol (rac 69) Zu einer Lösung des Benzylethers rac-58 (200 mg, 472 μηηοΙ, 1 .0 Äq.) in frisch destilliertem THF wurden bei 35 °C zunächst Palladium auf Aktivkohle (10%ig, 100 mg, 94 μηηοΙ, 0.2 Äq. bzgl. Pd) und anschließend Ammoniumformiat (25%ige wässrige Lösung, 1 .0 mL) gegeben. Nach 25 min Rühren bei 30 °C wurde sofort über eine Celite-Schicht vom Feststoff abfiltriert, wobei gründlich mit Aceton (400 mL) nachgespült wurde. Das Lösungsmittel wurde im Vakuum entfernt, und nach Säulenchromatographie an Kieselgel (n-Pentan / EtOAc = 5: 1 ) wurden 147 mg eines nicht trennbaren Gemisches (83: 17) aus der Zielverbindung rac-58 (124 mg, 372 μηηοΙ, 79%) und dem dechlorierten racemischen Nebenprodukt (23 mg, 75.5 μηηοΙ, 1 6%) erhalten.

R f = 0.54 (n-Pentan / EtOAc = 5: 1 ).

C18H20CINO3 (333.82). ber.: 334.1205

334.1 205, [M+H] + (ESI-HRMS).

D. Trennung der Enantiomere von rac-3-(tert-Butyloxycarbonyl)-1 - chlormethyl-5-hydroxy-1 ,2-dihydro-3H-benz[e]indol (rac-69)

rac-69 wurde in einem Gemisch aus n-Hexan / / ' so-Propanol (1 :1 ) gelöst (c = 25 mg/mL) und je 1 mL dieser Lösung in das präparative HPLC-System (Säule: Chiralpak ® IA, 250x20 mm, Partikelgröße: 5 μητι, mobile Phase: n- Hexan / / ' so-Propanol = 97:3, Fluss: 18 mL/min, Druck: 5.7 MPa) injiziert. Fraktionierendes Auffangen des Eluates (UV-Detektor: λ = 255 nm) lieferte die Enantiomere (+)-(1 R)-69 und (-)-(1 S)-69.

Analytische Daten für (+H1 ft)-69:

HPLC

f R : 1 1 .9 min

(präparativ):

Fraktion 1 1 .1 -1 3.0 min

HPLC (analy

Säule: Chiralcer OD, 250x4.6 mm, 10 μηη

tisch):

Eluens: 2% / ' so-Propanol in n-Hexan

Fluss: 0.8 mL/min

1 6.4 min, 99.9% ee

[a]„ = +48.6° (c = 0.28, CHCI 3 ). Analytische Daten für (-)-(1S)-69:

HPLC

14.0 min

(präparativ):

Fraktion 13.6-15.8 min

HPLC (analy¬

Säule: Chiralcel OD, 250x4.6 mm, 10 μηη

tisch):

Eluens 2% / ' so-Propanol in n-Hexan

Fluss: 0.8 mL/min

19.3 min, 99.9% ee

[a]„ = -45.8° (c = 0.24, CHCI 3 ).

UV (CH 3 CN): X max (Ig ε) = 208.5 nm (4.236), 220.0 (4.216), 255.0 (4.853), 303.5 (3.933), 314.5 (3.992), 342.0 (3.489).

IR(KBr): v (cm "1 ) = 3368, 2977, 1682, 1629, 1585, 1522, 1480, 1413, 1339, 1236, 1143, 1058, 911, 852, 758, 674.

1 H-NMR (300 MHz, CDCI 3 ): δ= 1.62 (s, 9 H, C(CH 3 ) 3 ), 3.41 (t, J= 11.4 Hz, 10-H a ), 3.90-3.98 (m, 2 H, 1-H, 10-H b ), 4.12 (t, J= 10.5 Hz, 1 H, 2-H a ), 4.25 (d, J= 11.5 Hz, 1 H, 2-H b ), 7.33 (dt, J= 7.6, 1.0 Hz, 1 H, 7-H), 7.49 (dt, J= 7.6, 1.0 Hz, 1 H, 8-H), 7.62 (d, J = 8.4 Hz, 1 H, 9-H), 7.82 (s br , 1 H, 4-H), 8.21 (d, J = 8.4 Hz, 1 H, 6-H).

13 C-NMR (125 MHz, CDCI3): δ= 28.5 (C(CH 3 ) 3 ), 41.8 (C-1), 46.5 (C-10), 53.1 (C-2), 81.8 (C(CH 3 ) 3 ), 99.1 (C-4), 114.3 (C-9b * ), 121.6 (C-5 * ), 121.7 (C-9), 122.9 (C-7), 123.6 (C-6), 127.6 (C-8), 130.4 (C-9a), 141.1 (C-3a), 153.3 (C=0), 154.1 (C-5).

MS (ESI): m/z (%) = 334.1 (15) [M+H] + , 278.1 (100) [M-C 4 H 8 +H] + . C18H20CINO3 (333.82). ber.: 334.1205

334.1205, [M+H] + (ESI-HRMS). Beispiel 2

Asymmetrische Synthese des (1 S)-seco-CBI-Grundgerüstes, wie in Figur 3 gezeigt.

A. (+)-(2S)-Glycidyl-3-nitrobenzolsulfonat ((+)-(S)-77)

Eine Lösung von (+)-(R)-Glycidol (76) (4.85 g, 65.5 mmol, 1.0 Aq.) und

Triethylamin (10.9 mL, 7.95 g, 78.6 mmol, 1.2 Aq.) in absolutem Toluol (130 mL) wurde auf 0 °C gekühlt und portionsweise mit m- Nitrobenzolsulfonsäurechlorid (14.5 g, 65.5 mmol, 1.0 Äq.) versetzt. Nach Erwärmen auf Raumtemperatur wurde für 1 h bei dieser Temperatur gerührt, das Gemisch anschließend über Celite und wenig Kieselgel filtriert und mit Toluol (250 ml_) nachgewaschen. Nach Entfernen des Lösungsmittels im Vakuum wurde das Rohprodukt bei 40 °C in Ethanol (max. 20 mL/g) gelöst und durch langsames Abkühlen auf -30 °C kristallisiert. Die Zielverbindung (+)-(S)-77 (7.70 g, 29.7 mmol, 45%; (R)-Enantiomer nicht detektierbar) wurde in Form farbloser Nadeln erhalten.

Analytische Daten für (-)-(R)-77:

HPLC (analy¬

Säule: Chiralpak IA, 250x4.6 mm, 5 μηη

tisch):

Eluens 14% THF in n-Hexan

Fluss: 0.8 mL/min

t R : 52.3 min

Analytische Daten für (+)-(S)-77:

HPLC (analy¬

Säule: Chiralpak IA, 250x4.6 mm, 5 μηη

tisch):

Eluens 14% THF in n-Hexan

Fluss: 0.8 mL/min

t R : 48.4 min

R f = 0.67 (Et 2 O).

.20

[a] = +22.7° (c = 2.14, CHCI 3 ).

1 H-NMR (300 MHz, CDCIs): δ= 2.63 (dd, J = 4.7, 2.5 Hz, 1 H, 3'-H a ), 2.85 (m c , 1 H,

3'-H b ), 3.23 (m C! 1 H, 2'-H), 4.05 (dd, J = 11.7, 6.6 Hz, 1 H, 1'-H a ), 4.50 (dd, J = 11.6, 2.9 Hz, 1 H, 1'-H b ), 7.83 (t, J= 8.1 Hz, 1 H, 5-H), 8.27 (ddd, J= 7.8, 1.9, 1.2 Hz, 1 H,

6-H), 8.54 (ddd, J= 8.1, 2.2, 1.1 Hz, 1 H, 4-H), 8.78 (m c , 1 H, 2-H). 13 C-

NMR (75 MHz, CDCI 3 ): δ= 44.5 (C-3'), 48.7 (C-2'), 71.7 (C-1'), 123.2 (C-2), 128.4

(C-4), 130.8 (C-5), 133.3 (C-6), 138.0 (C-1), 148.3 (C-3).

B. (+)-{(2'R)-2-Amino-4-benzyloxy-N-(tert-butyloxycarbonyl)-N-( 2,3- epoxypropyl)-1-iod-naphthalin} ((+) (2'R)-78)

Das Amid 73 (4.76 g, 10.0 mmol, 1.0 Äq.) wurde in DMF (125 mL) gelöst und auf 40 °C erwärmt. Nach Zugabe von NaH (721 mg, 30.1 mmol, 3.0 Äq.; 60%ige Suspension in Mineralöl) und des Nosylats (+)-(S)-77 (3.90 g, 15.0 mmol, 1.5 Äq.) wurde das Gemisch für 3 h bei 40 °C gerührt. Nach dem Abkühlen auf Raumtemperatur wurde die Suspension mit gesättigter NH 4 CI- Lösung (250 mL) versetzt, mit Et 2 O (3x200 mL) extrahiert, die vereinigten or- ganischen Phasen mit Wasser (200 mL) und gesättigter NaCI-Lösung (2x200 mL) gewaschen, über Na2SO 4 getrocknet und das Lösungsmittel im Vakuum entfernt. Säulenchromatographische Reinigung an Kieselgel (n- Pentan / EtOAc =5:1) lieferte das Produkt (+)-(2'R)-78 (5.08 g, 9.56 mmol, 96%) als Gemisch von Atropisomeren in Form eines weißen Feststoffes.

R f = 0.53 (n-Pentan / EtOAc = 7:3).

[a]» = +8.0°(c = 0.6, CHCI 3 )

UV (CH 3 CN): X max (Ig ε) = 216.0 nm (4.682), 243.5 (4.437), 304.0 (3.948).

IR(KBr): v (cm "1 ) = 3063, 2978, 2929, 1701, 1617, 1591, 1562, 1503, 1454, 1404, 1370, 1326, 1261, 1231, 1156, 1102, 1029, 973, 912, 879, 841, 760, 736, 697, 642. 1 H-NMR (300 MHz, Tetrachlorethan-d 2 , 100 °C; die jeweiligen Signale der beiden Atropisomere sind mit (a) und (b) bezeichnet): δ= 1.46 (s, 18 H, 2xC(CH 3 ) 3 ), 2.46 (dt, J = 4.7, 2.6 Hz, 2 H, 3'-H a (a), 3'-H a (b)), 2.73 (dt, J = 4.8, 9.0 Hz, 2 H, 3'-H b (a), 3'-H b (b)), 3.12-3.19 (m, 1 H, 2'-H(a)), 3.28 (dd, J= 14.4, 6.6 Hz, 1 H, 1'-H a (a)), 3.35- 3.42 (m, 1 H, 2'-H(b)); 3.49 (dd, J= 14.7, 4.9 Hz, 1 H, 1'-H a (b)), 4.09-4.17 (m, 2 H, 1'-H b (a), 1'-H b (b)), 5.32, 5.33 (2xs, 4 H, OCH 2 Ph(a), OCH 2 Ph(b)), 6.89, 6.99 (2xs, 2 H, 3-H(a), 3-H(b)), 7.34-7.67 (m, 14 H, 6-H(a), 6-H(b), 7-H(a), 7-H(b), 5xPh-H(a) 5xPh-H(b)), 8.25 (m C! 2 H, 8-H(a), 8-H(b)), 8.36 (m C! 2 H, 5-H(a) and 5-H(b)

13 C-NMR (75 MHz, Tetrachlorethan-d 2 , 100 °C; die jeweiligen Signale der beiden Atropisomere sind mit (a) und (b) bezeichnet): δ= 29.8 (2 Signale) (2xC(CH 3 ) 3 ), 47.3, 47.5 (C-3'(a), C-3'(b)), 51.0 (C-2'(a)), 51.5 (C-2'(b)), 52.9 (C-1'(b)), 54.5 (C-1'(a)), 72.2, 72.3 (2xOCH 2 Ph), 82.1 (2 Signale) (2xC(CH 3 ) 3 ), 96.2, 96.3 (C-1(a), C-1(b)), 109.6, 109.7 (C-3(a), C-3(b)), 123.9 (C-5(a), C-5(b)), 127.2 (C-4a(a), C-4a(b)), 127.7 (2 Signale), 128.6, 128.8, 129.4, 129.8, 129.9, 130.0 (2 Signale) (C-6(a), C-6(b), C-7(a), C-7(b), C-8(a), C-8(b), 2xPh-C G (a), 2xPh-C G (b), 2xPh-C m (a), 2xPh-C m (b), Ph-Cp(a), Ph-Cp(a)), 136.9 (2 Signale) (C-8a(a), C-8a(b)), 137.9, 138.0 (Ph-C,(a), Ph-C,(b)), 144.8, 145.3 (C-2(a), C-2(b)), 155.0, 155.2 (C=0(a), C=0(b)), 157.0, 157.1 (C-4(a), C-4(b)). MS (ESI ): m/z (%) = 1085.2 (100) [2M+Na] + , 554.1 (97) [M+Na] + .

C25H26INO4 (531 .38). ber.: 554.0799

gef. : 554.0802, [M+Na] + (ESI-HRMS). C. (+)-{(1 S)-5-Benzyloxy-3-(tert-butyloxycarbonyl)-1 -hydroxymethyl-1 ,2- dihydro-3H-benz[e]indol} ((+)-(1 S)-79)

Eine Lösung von frisch sublimiertem ZnCI 2 (1 .36 g, 9.96 nnnnol, 2.1 1 Äq.) in absolutem THF (80 mL) wurde auf 0 °C gekühlt, langsam mit Methyllithium (24.9 mL einer 1 .6 M Lösung in Et 2 O, 39.8 mmol, 8.42 Äq.) versetzt und für 30 min bei dieser Temperatur gerührt. Anschließend wurde die Lösung auf - 78 °C gekühlt, tropfenweise mit TMS-NCS (1 .42 ml., 1 .31 g, 9.96 mmol, 2.1 1 Äq.) versetzt, wieder auf 0 °C erwärmt und für 30 min bei dieser Tempera- tur gerührt. Nach erneutem Abkühlen auf -78 °C wurde zu dem Reaktionsgemisch eine Lösung des Epoxids ((+)-(2'R)-78 (2.51 g, 4.73 mmol, 1 .0 Äq.) in absolutem THF (80 mL) getropft und für 30 min bei dieser Temperatur gerührt. Nach Erwärmen auf 0 °C wurde die Reaktionlösung zunächst für 1 .5 h bei dieser Temperatur gerührt, dann auf Raumtemperatur erwärmt und für weiter 12 h gerührt. Anschließend wurde das Gemisch vorsichtig mit gesättigter NH 4 CI- Lösung (250 mL) versetzt, mit CH2CI2 (4x250 mL) extrahiert, die vereinigten organischen Phasen über Na 2 SO getrocknet und das Lösungsmittel im Vakuum entfernt. Säulenchromatographische Reinigung an Kieselgel (n-Pentan / EtOAc = 4: 1 ) lieferte die Zielverbindung (+)-(1 S)-79 (1 .12 g,

2.76 mmol, 58%, 96.1 % ee) als weißen Feststoff.

Analytische Daten für (-W1 ?)-79:

HPLC (analy-

Säule: Chiralcel ® OD, 250x4.6 mm,

tisch):

Eluens: 5%) /so-Propanol in n-Hexan

Fluss: 0.8 mL/min

f R : 1 3.6 min

Analytische Daten für (+W1 S)-79:

HPLC (analy-

Säule: Chiralcel ® OD, 250x4.6 mm,

tisch):

Eluens: 5%) /so-Propanol in n-Hexan Fluss: 0.8 mL/min

f R : 14.3 min

R f = 0.35 (n-Pentan / EtOAc = 3:1).

[a]» = +4.3° (c = 1.79, CH 2 CI 2 ).

UV (CH 3 CN): X max (Ig ε) = 207.5 nm (4.447), 217.5 (4.396), 255.0 (4.834), 304.0 (3.994), 315.0 (4.072), 341.0 (3.550).

IR (KBr): v (cm "1 ) = 3446, 2975, 1699, 1626, 1582, 1517, 1460, 1407, 1332, 1268, 1142, 1032, 906, 845, 760, 696,

1 H-NMR (300 MHz, CDCI 3 ): δ= 1.59 (s, 9 H, C(CH 3 ) 3 ), 3.72-3.87 (m, 2 H, 1-H, 10-H a ), 3.91-3.97 (m, 1 H, 10-H b ), 4.08-4.15 (m, 1 H, 2-H a ), 4.19-4.23 (m, 1 H, 2-H b ), 5.26 (s br , 2 H, OCH 2 Ph), 7.28-7.55 (m, 7 H, 7-H, 8-H, 5xPh-H), 7.70 (d, J= 8.4 Hz, 1 H, 9-H), 7.89 (s br , 1 H, 4-H), 8.28 (d, J = 8.2 Hz, 1 H, 6-H).

13 C-NMR (125 MHz, CDCI 3 ): δ= 28.5 (C(CH 3 ) 3 ), 41.3 (C-1), 52.4 (C-2), 64.7 (C-10), 70.3 (OCH 2 Ph), 80.7 (C(CH 3 ) 3 ), 96.5 (C-4), 114.4 (C-9b), 122.3 (C-5a), 122.2 (C-9), 122.9 (C-7), 123.4 (C-6), 127.3 (C-8), 127.5, 127.9, 128.5 (5xPh-CH), 130.6 (C-9a), 136.9 (Ph-C), 141.9 (C-3a), 152.7 (C=0), 155.6 (C-5).

MS (ESI): m/z (%) = 350.1 (100) [M-C 4 H 8 +H] + , 406.2 (44) [M+H] + , 428.2 (22) [M+Na] + , 828.4 (24) [M+NH 4 ] + .

C25H27NO4 (405.49). ber.: 406.2013

gef.: 406.2013, [M+H] + (ESI-HRMS). D. (-)-{(1 S)-3-(tert-Butyloxycarbonyl)-1 -chlormethyl-5-hydroxy-1 ,2-dihydro- 3H-benz[e]indol} ((-)(1S) 58)

Eine Lösung von (+)-(1S)-58 (2.15 g, 5.30 mmol, 1.0 Äq.) in absolutem CH2CI2 (20 mL) wurde bei Raumtemperatur mit Triphenylphosphan (4.17 g, 15.9 mmol, 3.0 Äq.) und CCI 4 (4.60 mL, 7.34 g, 47.7 mmol, 9.0 Äq.) versetzt und für 3 h bei dieser Temperatur gerührt. Nach Entfernen des Lösungsmittels im Vakuum und anschließender säulenchromatographischer Reinigung an Kieselgel (n-Pentan / EtOAc = 20:1) wurde die Zielverbindung (-)(1S)-58 (2.13 g, 5.03 mmol, 95%, 96.1% ee) als weißer Feststoff erhalten.

Analytische Daten für (+)-(1 ?)-58:

HPLC (analy- Säule: Chiralcel® OD, 250x4.6 mm, 10 μηη tisch):

Eluens: 2% / ' so-Propanol in n-Hexan

Fluss: 0.8 mL/min

9.6 min

Anal tische Daten für (-)-(1 S)-58:

Eluens 2% / ' so-Propanol in n-Hexan

Fluss: 0.8 mL/min

1 3.4 min

Die weiteren Schritte wurden wie im Beispiel 1 , Schritt C. durchgeführt, um die Verbindung enatiomeren -3-(tert-Butyloxycarbonyl)-1 -chlormethyl-5- hydroxy-1 ,2-dihydro-3H-benz[e]indol (rac 69) Verbindungen zu erhalten .

Beispiel 3

Synthese der bifunktionalen seco-CBI-Derivate und der entsprechenden ß- D-Galactoside

(A. -)-{1 ,5-Bis[(1 S)-1 -Chlormethyl-5-hydroxy-1 ,2-dihydro-3H-benz[e]indol-3- yl]pentan-1 ,5-dion]} ((-)-(1 'S)-55a, n = 3)

Das Phenol (-)-(1 S)-69 (61 .0 mg, 1 83 μmol, 2.0 Aq.) wurde in 4 M HCl / Essigester (4.5 mL) gelöst und nach 1 h Rühren bei Raumtemperatur das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde 1 h im Vakuum getrocknet, in DMF (5 mL) gelöst, die Lösung auf 0 °C gekühlt und mit Glutarsaurechlorid (66a) (12.0 μΐ, 15.4 mg, 91 .4 μηηοΙ, 1 .0 Äq.) sowie Pyridin (29.5 μΐ, 28.9 mg, 365 μηηοΙ, 4.0 Äq.) versetzt. Nach 20 h Rühren bei Raumtemperatur wurde das Reaktionsgemisch mit DMF (5 mL) verdünnt und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels präparativer HPLC gereinigt. Das Produkt (-)-(1 'S)-55a (38.9 mg, 69.0 μηηοΙ, 76%) wurde als weißer Feststoff erhalten.

HPLC (präparativ):

Säule: Kromasil 100 C18, 250x20 mm, 7 μηη

Vorsäule: -

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-6.0 30/70 -»· 0/100

6.0-8.5 0/100

8.5-9.5 0/100 -»· 30/70

9.5-15 30/70

Fluss: 16 ml_ min "1

λ: 254 nm

8.4 min

.20

[a] = -32.7° (c = 0.257, DMSO).

UV (CH 3 CN): X max (Ig ε) = 205.5 nm (4.550), 222.5 (4.406), 256.5 (4.909), 264.5 (4.921), 319.0 (4.332).

IR(KBr): v (cm "1 ) = 3122, 2926, 1633, 1584, 1522, 1459, 1426, 1394, 1253, 1131, 1075, 1024, 857, 756, 717.

1 H-NMR (600 MHz, DMSO-d 6 ): δ= 1.98 (m C! 2 H, 3-H 2 ), 2.57-2.62 (m, 2 H, 2-H a , 4-H a ), 2.68-2.74 (m, 2 H, 2-H b , 4-H b ), 3.79 (dd, J= 10.9, 8.3 Hz, 2 H, 2x10'-H a ), 3.99 (dd, J= 10.9, 3.2 Hz, 2 H, 2x10'-H b ), 4.14-4.20 (m, 4 H, 2x1'-H, 2x2'-H a ), 4.34 (m C! 2 H, 2x2'-H b ), 7.32 (m c , 2 H, 2x7'-H), 7.49 (m c , 2 H, 2x8'-H), 7.78 (d, J= 8.3 Hz, 2 H, 2x9'-H), 8.02 (s, 2 H, 2x4'-H), 8.09 (d, J = 8.4 Hz, 2 H, 2x6'-H), 10.31 (s, 2 H, 2xOH).

13 C-NMR (125 MHz, DMSO-d 6 ): δ = 19.3 (C-3), 34.4 (C-2, C-4), 40.7 (2xC-1'), 47.6 (2xC-10'), 52.6 (2xC-2'), 99.7 (2xC-4'), 113.6 (2xC-5a'), 121.5 (2xC-9b'), 122.3 (2xC-9'), 122.4 (2xC-7'), 122.9 (2xC-6'), 127.0 (2xC-8'), 129.8 (2xC-9a'), 141.8 (2xC-3a'), 154.0 (2xC-5'), 170.4 (2xC=0).

MS (ESI): m/z(%) = 1125.4 (8) [2M-H] " , 561.2 (96) [M-H] " , 525.2 (100)

[M-2H-CI] " .

C31H28CI2N2O4 (563.47). ber.: 585.1318

gef.: 585.1317, [M+Na] + (ESI-HRMS). Beispiel 4

(-)-{1 ,5-Bis[(1 S)-1 -Chlormethyl-5-(ß-D-galactopyranosyl)-1 ,2-dihydro-3H- benz[e]indol-3-yl]pentan-1 ,5-dion]} ((-)-(1 'S)-53a, n = 3)

Das acetylgeschützte Galactosid (1 'S)-71 a (148 mg, 1 21 μηηοΙ, 1 .0 Äq.) wurde in absolutem Methanol (35 mL) suspendiert und bei 0 °C mit NaOMe in Methanol (90 μί einer 5.4 M Lösung, 484 μηηοΙ, 4.0 Äq.) versetzt. Nach Erwärmen auf Raumtemperatur und 30 min Rühren bei dieser Temperatur hatte sich das Substrat vollständig gelöst. Es wurde noch weitere 1 .5 h bei Raumtempe- ratur gerührt, die Reaktionslösung anschließend mit Wasser (3.0 mL) verdünnt und so lange saurer lonentauscher (Amberlite-IR ® 120) zugegeben, bis die Lösung neutral war (pH = 7). Das Gemisch wurde via Transferkanüle vom Ionenaustauscher abgetrennt, selbiger mit Methanol (2x6 mL) nachgewaschen, die organischen Phasen vereinigt und das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand (1 32 mg) wurde in DMF (5 mL) gelöst und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels präparativer HPLC gereinigt. Das Produkt (-)-(1 'S)-53a (95.3 mg, 1 07 μηηοΙ, 88%) wurde als hellgelber Feststoff erhalten.

HPLC (präparativ):

Säule: Kromasil 100 C1 8, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C1 8, 50x20 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-1 5 70/30 -»· 0/100

15-22 0/100

22-23 0/100 -»· 70/30 23-30 30/70

Fluss: 1 6 iml_ min "

λ: 254 nm

t R : 1 3.9 min

[a]* 0 = -43.6° (c = 0.257, DMSO).

UV (CH 3 CN): X max (Ig ε) = 209.0 nm (4.447), 254.0 (4.702), 262.5 (4.642), 304.0 (4.120), 316.0 (4.200).

IR (KBr): v (cm "1 ) = 3406, 2927, 1655, 1580, 1469, 1403, 1313, 1263, 1 131 , 1076, 856, 760, 664.

1 H-NMR (600 MHz, DMSO-d 6 ): δ = 1 .99 (m c , 2 H, 3-H 2 ), 2.60-2.65 (m, 2 H, 2-H a , 4-H a ), 2.69-2.74 (m, 2 H, 2-H b , 4-H b ), 3.46-3.49 (m, 2 H, 2x3"-H), 3.52-3.64 (m, 6 H, 2x5"-H, 2x6"-H 2 ), 3.75-3.79 (m, 4 H, 2x2"-H , 2x4"-H), 3.85-3.88 (m, 2 H, 2x10'-H a ), 4.02 (dd, J = 10.8, 2.4 Hz, 2 H , 2x10'-H b ), 4.22-4.24 (m, 4 H, 2x1 '-H , 2x2'-H a ), 4.37- 4.40 (m, 2 H, 2x2'-H b ), 4.51 (d, J = 4.6 Hz, 2 H, 2xOH), 4.54 (m c , 2 H, 2xOH), 4.82 (d, J = 5.5 Hz, 2 H , 2xOH), 4.93 (d, J = 7.1 Hz, 2 H , 2x1 "-H), 5.27 (d, J = 4.5 Hz, 2 H, 2xOH), 7.39 (t, J = 7.7 Hz, 2 H , 2x7'-H), 7.54 (t, J = 7.5 Hz, 2 H , 2x8'-H), 7.85 (d, J = 8.6 Hz, 2 H, 2x9'-H), 8.30 (d, J = 8.6 Hz, 2 H , 2x6'-H), 8.23 (s, 2 H, 2x4'-H).

13 C-NMR (125 MHz, DMSO-d 6 ): δ = 19.2 (C-3), 34.5 (C-2, C-4), 40.7 (2xC-1 '), 47.6 (2xC-10'), 52.6 (2xC-2'), 59.7 (2xC-6"), 67.6 (2xC-4"), 70.4 (2xC-2"), 73.1 (2xC-3"), 75.2 (2xC-5"), 101 .2 (2xC-4'), 101 .9 (2xC-1 "), 1 16.6 (2xC-5a'), 122.4 (2xC-9', 2xC-9b'), 123.2 (2xC-6\ 2xC-7'), 127.2 (2xC-8'), 129.4 (2xC-9a'), 141 .7 (2xC-3a'), 153.7 (2xC-5'), 170.6 (2xC=0).

MS (ESI ): m/z (%) = 909.2 (47) [M+Na] + , 885.3 (100) [M-H] " .

C43H48CI2N2O14 (887.75). ber. : 909.2375

gef. : 909.2377, [M+Na] + (ESI-HRMS).

Beispiel 5

1 ,6-Bis[(1 S)-1 -Chlormethyl-5-hydroxy-1 ,2-dihydro-3H-benz[e]indol-3-yl]hexan- 1 ,6-dion]} ((1 'S)-55b, n = 4)

Das Phenol (-)-(1 S)-69 (58.0 mg, 1 74 μηηοΙ, 2.0 Äq.) wurde in 4 M HCl / Essigester (4.5 mL) gelöst und nach 1 h Rühren bei Raumtemperatur das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde 1 h im Vakuum getrocknet, in DMF (5 mL) gelöst, die Lösung auf 0 °C gekühlt und mit Adipinsäurechlorid (66b) (12.9 μΐ, 1 5.9 mg, 86.9 μηηοΙ, 1 .0 Äq.) sowie Pyridin (28.0 μΐ, 27.5 mg, 348 μΐηοΙ, 4.0 Äq.) versetzt. Nach 20 h Rühren bei Raumtemperatur wurde das Reaktionsgemisch mit DMF (5 mL) verdünnt und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels präparativer HPLC gereinigt. Es wurden 3 mg eines Gemisches des Produkts (1 'S)-55b (<5.19 μηηοΙ, <6%) und nicht eindeutig identifizierter Nebenprodukte als weißer Feststoff erhalten .

HPLC (präparativ):

Säule: Kromasil 100 C1 8, 250x20 mm, 7 μηη

Vorsäule:

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-6.0 30/70 -»· 0/100

6.5-8.5 0/100

8.5-9.5 0/100 -»· 30/70

9.5-15 30/70

Fluss: 1 6 mL min "

λ: 254 nm

f R : 9.4 min

1 H-NMR (600 MHz, DMSO-de): δ = 1 .74 (m c , 4 H, 3-H 2 , 4-H 2 ), 2.57 (m c , 4 H, 2-H 2 , 5-H 2 ), 3.79 (dd, J = 10.9, 7.9 Hz, 2 H , 2x10'-H a ), 3.98 (dd, J = 1 1 .1 , 3.1 Hz, 2 H, 2x10'-H b ), 4.13-4.19 (m, 4 H , 2x1 '-H , 2x2'-H a ), 4.30-4,36 (m, 2 H , 2x2'-H b ), 7.31 (t, J = 7.6 Hz, 2 H , 2x7'-H), 7.48 (t, J = 7.6 Hz, 2 H , 2x8'-H), 7.76 (d, J = 8.3 Hz, 2 H, 2x9'-H), 7.99 (s, 2 H, 2x4'-H), 8.07 (d, J = 8.4 Hz, 2 H, 2x6'-H), 10.32 (s, 2 H, 2xOH).

13 C-NMR (125 MHz, DMSO-d 6 ): δ = 23.8 (C-3, C-4), 35.0 (C-2, C-5), 40.7 (2xC-1 '), 47.7 (2xC-10'), 52.7 (2xC-2'), 99.8 (2xC-4'), 1 13.6 (2xC-5a'), 121 .5 (2xC-9b'), 122.4 (2xC-9'), 122.5 (2xC-7'), 123.0 (2xC-6'), 127.0 (2xC-8'), 129.8 (2xC-9a'), 141 .9 (2xC-3a'), 154.1 (2xC-5'), 170.6 (2xC=0).

MS (ESI ): m/z (%) = 575.2 (9) [M-H] " , 539.2 (26) [M-2H-CI] " .

C32H30CI2N2O4 (577.50). ber.: 575.1510

gef. : 575.1520, [M-H] " (ESI-HRMS). Beispiel 6

(-)-{1 ,6-Bis[(1 S)-1 -Chlormethyl-5-(ß-d-galactopyranosyl)-1 ,2-dihydro-3H- 3b, n = 4)

Das acetylgeschützte Galactosid (1 'S)-71 b (125 mg, 1 21 μηηοΙ, 1 .0 Äq.) wurde in absolutem Methanol (35 mL) suspendiert und bei 0 °C mit NaOMe in Methanol (75 μΙ_ einer 5.4 M Lösung, 404 μηηοΙ, 4.0 Äq.) versetzt. Nach Erwärmen auf Raumtemperatur und 2 h Rühren bei dieser Temperatur wurde die Suspension mit Wasser (3.0 mL) verdünnt und so lange saurer lonentauscher (Amberlite-IR ® 120) zugegeben, bis das Gemisch neutral war (pH = 7). Das Gemisch wurde via Transferkanüle vom Ionenaustauscher abgetrennt, selbiger mit DMF (2x6 mL) nachgewaschen, die organischen Phasen vereinigt und das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand (123 mg) wurde in DMF (5 mL) gelöst und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels präparativer HPLC gereinigt. Das Produkt (-)-(1 'S)-53b (76.2 mg, 84.5 μΐηοΙ, 84%) wurde als hellgelber Feststoff erhalten.

HPLC (präparativ):

Säule: Kromasil 100 C1 8, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C1 8, 50x20 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH 0 30/70

0-15 70/30 ^ 0/100

15-22 0/100

22- 23 0/100 ^ 70/30

23- 30 30/70

Fluss: 16 iml_ min "

λ: 254 nm

f R : 14.4 min

[ ζ = -45.0° (c = 0.249, DMSO).

UV (CH 3 CN): X max (Ig ε) = 208.0 nm (4.363), 254.5 (4.623), 262.5 (4.630), 304.0 (3.998), 315.0 (4.055).

IR (KBr): v (cm "1 ) = 3406, 2927, 1656, 1580, 1469, 1402, 1316, 1075, 760, 665. 1 H-NMR (600 MHz, DMSO-de): δ= 1.75 (m c , 4 H, 3-H 2 , 4-H 2 ), 2.60 (m c , 4 H, 2-H 2 , 5-H 2 ), 3.48-3.54 (m, 4 H, 2x3"-H, 2x6"-H a ), 3.56-3.64 (m, 4 H, 2x5"-H, 2x6"-H b ), 3.75-3.80 (m, 4 H, 2x2"-H, 2x4"-H), 3.86 (m c , 2 H, 2x10'-H a ), 4.02 (dd, J = 11.0, 2.7 Hz, 2 H, 2x10'-H b ), 4.22-4.23 (m, 4 H, 2x1'-H, 2x2'-H a ), 4.38-4.41 (m, 2 H, 2x2'-H b ), 4.50 (d, J = 4.6 Hz, 2 H, 2xOH), 4.53 (m c , 2 H, 2xOH), 4.82 (d, J = 5.6 Hz, 2 H, 2xOH), 4.93 (d, J = 7.1 Hz, 2 H, 2x1"-H), 5.26 (d, J = 5.1 Hz, 2 H, 2xOH), 7.38 (t, J = 7.7 Hz, 2 H, 2x7'-H), 7.54 (t, J = 7.6 Hz, 2 H, 2x8'-H), 7.85 (d, J = 8.4 Hz, 2 H, 2x9'-H), 8.29-8.30 (m, 4 H, 2x4'-H, 2x6'-H).

13 C-NMR (125 MHz, DMSO-de): δ= 23.6 (C-3, C-4), 35.0 (C-2, C-5), 40.7 (2xC-1'), 47.6 (2xC-10'), 52.6 (2xC-2'), 59.6 (2xC-6"), 67.6 (2xC-4"), 70.4 (2xC-2"), 73.1 (2xC-3"), 75.2 (2xC-5"), 101.2 (2xC-4'), 101.9 (2xC-1"), 116.5 (2xC-5a'), 122.4 (2xC-9\ 2xC-9b'), 123.1 (2xC-6', 2xC-7'), 127.2 (2xC-8'), 129.4 (2xC-9a'), 141.7 (2xC-3a'), 153.6 (2xC-5'), 170.7 (2xC=0).

MS (ESI): m/z (%) = 923.3 (67) [M+Na] + , 899.3 (100) [M-H] " .

C44H50CI2N2O14 (901.78). ber.: 923.2531

gef.: 923.2530, [M+Na] + (ESI-HRMS).

Beispiel 7

(-)-{1 ,7-Bis[(1 S)-1 -Chlormethyl-5-hydroxy-1 ,2-dihydro-3H-benz[e]indol-3- yl]heptan-1,7-dion]} ((-)-(1'S)-55c, n = 5)

Das Phenol (-)-(1S)-69 (62.0 mg, 186 μηηοΙ, 2.0 Äq.) wurde in 4 M HCl / Essigester (4.5 ml_) gelöst und nach 1 h Rühren bei Raumtemperatur das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde 1 h im Vakuum getrocknet, in DMF (5 ml_) gelöst, die Lösung auf 0 °C gekühlt und mit Pimelinsäurechlorid (66c) (15.5 μΐ, 18.3 mg, 92.9 μηηοΙ, 1.0 Äq.) sowie Pyridin (30.0 μΐ, 29.4 mg, 371 μΐηοΙ, 4.0 Äq.) versetzt. Nach 20 h Rühren bei Raumtemperatur wurde das Reaktionsgemisch mit DMF (5 mL) verdünnt und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels präparativer HPLC gereinigt. Das Produkt (-)- (1'S)-55c (35.9 mg, 60.7 μηηοΙ, 65%) wurde als weißer Feststoff erhalten.

HPLC (präparativ):

Säule: Kromasil 100 C18, 250x20 mm, 7 μηη

Vorsäule:

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-6.0 30/70 -»· 0/100

6.0-8.5 0/100

8.5-9.5 0/100 -»· 30/70

9.5-15 30/70

Fluss: 16 mL min "

λ: 254 nm

t R : 8.9 min

[a]* 0 = -33.6° (c = 0.268, DMSO).

UV (CH 3 CN): X max (Ig ε) = 256.0 nm (4.531), 263.5 (4.514), 318.0 (4.006). 1

IR(KBr): v (cm "1 ) = 3193, 2925, 1636, 1582, 1520, 1474, 1424, 1391, 1247, 1129, 1062, 851, 774, 718.

1 H-NMR (600 MHz, DMSO-de): δ= 1.46-1.51 (m, 2 H, 4-H 2 ), 1.70 (m c , 4 H, 3-H 2 , 5-H 2 ), 2.53 (m C! 4 H, 2-H 2 , 6-H 2 ), 3.78 (dd, J= 10.9, 8.1 Hz, 2 H, 2x10'-H a ), 3.98 (dd, J = 1 1 .1 , 3.0 Hz, 2 H, 2x10'-H b ), 4.12-4.18 (m, 4 H, 2x1 '-H , 2x2'-H a ), 4.34 (m c , 2 H, 2x2'-H b ), 7.31 (m c , 2 H, 2x7'-H), 7.48 (m c , 2 H, 2x8'-H), 7.77 (d, J = 8.4 Hz, 2 H, 2x9'-H), 8.00 (s, 2 H, 2x4'-H), 8.08 (d, J = 8.4 Hz, 2 H , 2x6'-H), 10.28 (s, 2 H, 2xOH).

13 C-NMR (125 MHz, DMSO-d 6 ): δ = 24.0 (C-3, C-5), 28.3 (C-4), 35.0 (C-2, C-6), 40.7 (2xC-1 '), 47.6 (2xC-10'), 52.6 (2xC-2'), 99.7 (2xC-4'), 1 13.5 (2xC-5a'), 121 .4 (2xC-9b'), 122.3 (2xC-9'), 122.4 (2xC-7'), 122.9 (2xC-6'), 126.9 (2xC-8'), 129.8 (2xC-9a'), 141 .9 (2xC-3a'), 154.0 (2xC-5'), 170.6 (2xC=0).

MS (ESI ): m/z (%) = 1 181 .5 (6) [2M-H] " , 589.2 (89) [M-H] " , 553.2 (86)

[M-2H-CI] " .

C33H32CI2N2O4 (591 .52). ber.: 61 3.1631

gef. : 613.1634, [M+Na] + (ESI-HRMS). Beispiel e

(-)-{1 ,7-Bis[(1 S)-1 -Chlormethyl-5-(ß-d-galactopyranosyl)-1 ,2-dihydro-3H- benz[e]indol-3-yl]heptan-1 ,7-dion]} ((-)-(1 'S)-53c, n = 5)

Das acetylgeschützte Galactosid (1 'S)-71 c (152 mg, 1 21 μηηοΙ, 1 .0 Äq.) wurde in absolutem Methanol (35 ml_) suspendiert und bei 0 °C mit NaOMe in Methanol (90 μΙ_ einer 5.4 M Lösung, 486 μηηοΙ, 4.0 Äq.) versetzt. Nach Erwärmen auf Raumtemperatur und 45 min Rühren bei dieser Temperatur hatte sich das Substrat vollständig gelöst. Es wurde noch weitere 1 .5 h bei Raumtemperatur gerührt, die Reaktionslösung anschließend mit Wasser (3.0 mL) verdünnt und so lange saurer lonentauscher (Amberlite-IR ® 120) zugegeben, bis die Lösung neutral war (pH = 7). Das Gemisch wurde via Transferkanüle vom Ionenaustauscher abgetrennt, selbiger mit Methanol (2x6 mL) nachgewaschen, die organischen Phasen vereinigt und das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand (142 mg) wurde in DMF (5 mL) gelöst und in aufeinander- folgenden Injektionen (jeweils 0.3 mL) mittels praparativer HPLC gereinigt. Das Produkt (-)-(1'S)-53c (98.6 mg, 108 μηηοΙ, 89%) wurde als hellgelber Feststoff erhalten.

HPLC (präparativ):

Säule: Kromasil 100 C18, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C18, 50x20 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-15 70/30 -»· 0/100

15-22 0/100

22-23 0/100 -»· 70/30

23-30 30/70

Fluss: 16 mL min "

λ: 254 nm

f R : 15.0 min

[a]* 0 = -42.9° (c = 0.252, DMSO).

UV (CH 3 CN): X max (Ig ε) = 208.0 nm (4.521), 254.5 (4.798), 262.0 (4.801), 303.5 (4.159), 315.0 (4.219).

IR(KBr): v (cm "1 ) = 3406, 2929, 1656, 1580, 1469, 1402, 1313, 1131, 1075, 760, 664.

1H-NMR (600 MHz, DMSO-d 6 ): δ= 1.49 (m C! 2 H, 4-H 2 ), 1.71 (m C! 4 H, 3-H 2 , 5-H 2 ), 2.55 (m C! 4 H, 2-H 2 , 6-H 2 ), 3.48-3.53 (m, 4 H, 2x3"-H, 2x6"-H a ), 3.58-3.64 (m, 4 H, 2x5"-H, 2x6"-H b ), 3.75-3.81 (m, 4 H, 2x2"-H, 2x4"-H), 3.86 (m C! 2 H, 2x10'-H a ), 4.02 (dd, J = 11.0, 2.7 Hz, 2 H, 2x10'-H b ), 4.21-4.22 (m, 4 H, 2x1'-H, 2x2'-H a ), 4.36-4.40 (m, 2 H, 2x2'-H b ), 4.51 (d, J = 4.6 Hz, 2 H, 2xOH), 4.54 (m C! 2 H, 2xOH), 4.83 (d, J = 5.5 Hz, 2 H, 2xOH), 4.94 (d, J = 7.3 Hz, 2 H, 2x1"-H), 5.27 (d, J = 5.0 Hz, 2 H, 2xOH), 7.38 (t, J= 7.7 Hz, 2 H, 2x7'-H), 7.54 (t, J = 7.5 Hz, 2 H, 2x8'-H), 7.85 (d, J = 8.4 Hz, 2 H, 2x9'-H), 8.29-8.30 (m, 4 H, 2x4'-H, 2x6'-H).

13 C-NMR (125 MHz, DMSO-d 6 ): δ= 23.9 (C-3, C-5), 28.3 (C-4), 35.1 (C-2, C-6), 40.7 (2xC-1'), 47.6 (2xC-10'), 52.6 (2xC-2'), 59.6 (2xC-6"), 67.6 (2xC-4"), 70.4 (2xC-2"), 73.1 (2xC-3"), 75.2 (2xC-5"), 101.2 (2xC-4'), 101.9 (2xC-1"), 116.6 (2xC-5a'), 122.4 (2xC-9\ 2xC-9b'), 123.2 (2xC-6', 2xC-7'), 127.2 (2xC-8'), 129.4 (2xC-9a'), 141.7 (2xC-3a'), 153.6 (2xC-5'), 170.8 (2xC=0).

MS (ESI ): m/z (%) = 937.3 (69) [M+Na] + , 913.3 (100) [M-H] " .

C45H52CI2N2O14 (915.81 ). ber.: 937.2688

gef. : 937.2691 , [M+Na] + (ESI-HRMS).

Beispiel 9

(+)-{1 ,5-Bis[(1 S, 10R)-1 -(10-Chlorethyl)-5-hydroxy-1 ,2-dihydro-3H-benz[e]indol- 3-yl]pentan-1 ,5-dion]} +)-(1 'S,1 0'R)-56a, n = 3)

Das Phenol (+)-(1 S,10R)-109 (62.1 mg, 1 79 μηηοΙ, 2.0 Äq.)

wurde in 4 M HCl / Essigester (4.5 mL) gelöst und nach 1 h Rühren bei Raum- temperatur das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde 1 h im Vakuum getrocknet, in DMF (5 mL) gelöst, die Lösung auf 0 °C gekühlt und mit Glutarsäurechlorid (66a) (1 1 .7 μί, 15.1 mg, 89.3 μηηοΙ, 1 .0 Äq.) sowie Pyridin (28.8 μΙ_, 28.2 mg, 357 μηηοΙ, 4.0 Äq.) versetzt. Nach 20 h Rühren bei Raumtemperatur wurde das Reaktionsgemisch mit DMF (5 mL) verdünnt und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels praparativer HPLC gereinigt. Das Produkt (+)-(1 'S, 10'R)-56a (42.1 mg, 71 .2 μηηοΙ, 80%) wurde als weißer Feststoff erhalten .

HPLC (präparativ):

Säule: Kromasil 100 C1 8, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C1 8, 50x20 mm, 5 μηη Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-6.0 30/70 -»· 0/100

6.0-8.5 0/100

8.5-9.5 0/100 -»· 30/70

9.5-15 30/70

Fluss: 16 ml_ min "

λ: 254 nm

f R : 8.7 min

[a]* 0 = +23.2° (c = 0.25, DMSO).

UV (CH 3 CN): X max (Ig ε) = 206.5 nm (4.576), 222.5 (4.410), 257.0 (4.948), 265.0 (4.977), 320.5 (4.355).

IR(KBr): v (cm "1 ) = 3199, 1632, 1684, 1522, 1453, 1415, 1394, 1263, 1158, 1134, 1074, 1024, 859, 757.

1 H-NMR (600 MHz, DMSO-d 6 ): δ= 1.64 (d, J= 6.6 Hz, 6 H, 2x10'-CH 3 ), 1.99 (m c , 2 H, 3-H 2 ), 2.58-2.63 (m, 2 H, 2-H a , 4-H a ), 2.70-2.75 (m, 2 H, 2-H b , 4-H b ), 4.11-4.12 (m, 2 H, 2x1'-H), 4.24-4.29 (m, 4 H, 2x2'-H 2 ), 4.78 (m c , 2 H, 2x10'-H), 7.31 (t, J= 7.6 Hz, 2 H, 2x7'-H), 7.47 (t, J= 7.5 Hz, 2 H, 2x8'-H), 7.82 (d, J= 8.4 Hz, 2 H, 2x9'-H), 8.01 (s, 2 H, 2x4'-H), 8.10 (d, J = 8.4 Hz, 2 H, 2x6'-H), 10.25 (s, 2 H, 2xOH).

13 C-NMR (125 MHz, DMSO-d 6 ): δ = 19.6 (C-3), 23.2 (2xC-11'), 34.5 (C-2, C-4), 45.2 (2xC-1'), 49.6 (2xC-2'), 61.5 (2xC-10'), 99.7 (2xC-4'), 114.7 (2xC-5a'), 121.5 (2xC-9b'), 122.3 (2xC-7'), 122.5 (2xC-9'), 122.9 (2xC-6'), 126.7 (2xC-8'), 129.7 (2xC-9a'), 141.8 (2xC-3a'), 153.7 (2xC-5'), 170.1 (2xC=0).

MS (ESI): m/z (%) = 1205.3 (100) [2M+Na] + , 907.2 (23) [3M+2Na] 2+ , 613.1 (43) [M+Na] + , 589.2 (100) [M-H] " .

C33H32CI2N2O4 (591.52). ber.: 589.1666

gef.: 589.1694, [M-H] " (ESI-HRMS).

Beispiel 10

(-)-{1.5-Bis[(1S,10R)-1-(10-Chlorethyl)-5-(/3-D-galactopyran osyl)-1,2-dihydro- 3H-benz[e]indol-3-yl]pentan-1 ,5-dion]} ((-)-(1 'S,10'R)-54a, n = 3)

Ein Gemisch (96.3 mg) aus dem acetylgeschützten Galactosid (1 'S,10'R)-72a und einem nicht eindeutig identifizierten Nebenprodukt wurde in absolutem Methanol (30 mL) suspendiert und bei 0 °C mit NaOMe in Methanol (57 μΙ_ einer 5.4 M Lösung, 308 μιτιοΙ) versetzt. Nach Erwärmen auf Raumtemperatur und 30 min Rühren bei dieser Temperatur hatte sich das Substanzgemisch vollständig gelöst. Es wurde noch weitere 1 .5 h bei Raumtemperatur gerührt, die Reaktionslösung anschließend mit Wasser (3.0 mL) verdünnt und so lange saurer lonentauscher (Amberlite-IR ® 120) zugegeben, bis die Lösung neutral war (pH = 7). Das Gemisch wurde via Transferkanüle vom Ionenaustauscher abgetrennt, selbiger mit Methanol (2x6 mL) nachgewaschen, die organischen Phasen vereinigt und das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand (68.2 mg) wurde in DMF (5 mL) gelöst und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels präparativer HPLC gereinigt. Das Produkt (- )-(1 'S,10'R)-54a (44.7 mg, 48.8 μηηοΙ, 30% über 3 Stufen und zweimaliger Reinigung mittels präparativer HPLC) wurde als hellgelber Feststoff erhalten.

HPLC (präparativ):

Säule: Kromasil 100 C1 8, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C1 8, 50x20 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-1 5 70/30 -»· 0/100

15-22 0/100

22-23 0/100 -»· 70/30

23-30 30/70

Fluss: 1 6 mL min "1 λ: 254 nm

tR. 12.4 min

[a]* 0 = -7.2° (c = 0.25, DMSO).

UV (CH 3 CN): X max (Ig ε) = 209.0 nm (4.221), 254.5 (4.531), 263.0 (4.489), 306.5 (3.945), 316.5 (4.021).

IR(KBr): v (cm "1 ) = 3406, 2892, 1627, 1581, 1517, 1470, 1402, 1209, 1135, 1075, 854, 760, 618.

1 H-NMR (600 MHz, DMSO-d 6 ): δ = 1.66 (d, J = 6.3 Hz, 6 H, 2x10'-CH 3 ), 2.00 (m c , 2 H, 3-H 2 ), 2.60-2.68 (m, 2 H, 2-H a , 4-H a ), 2.69-2.76 (m, 2 H, 2-H b , 4-H b ), 3.45-3.50 (m, 2 H, 2x3"-H), 3.52-3.66 (m, 6 H, 2x5"-H, 2x6"-H 2 ), 3.75-3.82 (m, 4 H, 2x2"-H, 2x4"-H), 4.18-4.22 (m, 2 H, 2x1'-H), 4.26-4.36 (m, 4 H, 2x2'-H 2 ), 4.52 (d, J = 4.6 Hz, 2 H, 2xOH), 4.55 (m c , 2 H, 2xOH), 4.80-4.87 (m, 4 H, 2x10'-H, 2xOH), 4.92 (d, J = 7.5 Hz, 2 H, 2x1"-H), 5.27 (d, J = 4.9 Hz, 2 H, 2xOH), 7.38 (t, J = 7.5 Hz, 2 H, 2x7'-H), 7.53 (t, J= 7.5 Hz, 2 H, 2x8'-H), 7.90 (d, J= 8.4 Hz, 2 H, 2x9'-H), 8.31-8.32 (m, 4 H, 2x4'-H, 2x6'-H).

13 C-NMR (125 MHz, DMSO-d 6 ): δ = 19.4 (C-3), 23.1 (2xC-11'), 34.5 (C-2, C-4), 45.3 (2xC-1'), 49.5 (2xC-2'), 59.7 (2xC-6"), 61.3 (2xC-10'), 67.6 (2xC-4"), 70.5 (2xC-2"), 73.2 (2xC-3"), 75.3 (2xC-5"), 101.3 (2xC-4'), 102.1 (2xC-1"), 117.8 (2xC-5a'), 122.6 (2 Signale) (2xC-9', 2xC-9b'), 123.2 (2xC-7'), 123.3 (2xC-6'), 127.1 (2xC-8'), 129.5 (2xC-9a'), 141.7 (2xC-3a'), 153.6 (2xC-5'), 170.5 (2xC=0).

MS (ESI): m/z (%) = 1394.4 (8) [3M+2Na] 2+ , 937.3 (100) [M+Na] + .

C45H52CI2N2O14 (915.81). ber.: 937.2685

gef.: 937.2688, [M+Na] + (ESI-HRMS). Beispiel 11

(+)-{1 ,6-Bis[(1 S,10R)-1 -(10-Chlorethyl)-5-hydroxy-1 ,2-dihydro-3H-benz[e]indol- 3-yl]hexan-1,6-dion]} ( +)-(1 'S,10'R)-56b, n = 4)

Das Phenol (+)-(1 S,10R)-109 (59.7 mg, 172 μmol, 2.0 Äq.) wurde in 4 M HCl / Essigester (4.5 mL) gelöst und nach 1 h Rühren bei Raumtemperatur das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde 1 h im Vakuum getrocknet, in DMF (5 mL) gelöst, die Lösung auf 0 °C gekühlt und mit Adipinsäurechlorid (66b) (12.5 μΐ, 15.7 mg, 85.8 μηηοΙ, 1.0 Äq.) sowie Pyridin (27.7 μΙ_, 27.2 mg, 343 μηηοΙ, 4.0 Äq.) versetzt. Nach 20 h Rühren bei Raumtemperatur wurde das Reaktionsgemisch mit DMF (5 mL) verdünnt und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels präparativer HPLC gereinigt. Das Produkt (+)-(1'S,10'R)-56b (39.4 mg, 65.1 μηηοΙ, 76%) wurde als weißer Feststoff erhalten.

HPLC (präparativ):

Säule: Kromasil 100 C18, 250x20 mm, 7 μηη

Vorsäule:

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-6.0 30/70 -»· 0/100

6.0-8.5 0/100

8.5-9.5 0/100 -»· 30/70

9.5-15 30/70

Fluss: 16 mL min "

λ: 254 nm

f R : 8.8 min

[a]* 0 = +8.2° (c = 0.269, DMSO).

UV (CH 3 CN): X max (Ig ε) = 196.5 nm (4.295), 256.5 (4.171), 264.5 (4.177), 320.0 (3.541).

IR(KBr): v (cm "1 ) = 3210, 2924, 1665, 1633, 1582, 1522, 1394, 1253, 1135, 861, 750.

1 H-NMR (600 MHz, DMSO-d 6 ): δ= 1.63 (d, J= 6.6 Hz, 6 H, 2x10'-CH 3 ), 1.76 (m c , 4 H, 3-H 2 , 4-H 2 ), 2.53-2.59 (m, 2 H, 2-H a , 5-H a ), 2.60-2.66 (m, 2 H, 2-H b , 5-H b ), 4.10 (m C! 2 H, 2x1'-H), 4.26-4.27 (m, 4 H, 2x2'-H 2 ), 4.77 (m c , 2 H, 2x10'-H), 7.30 (t, J = 7.6 Hz, 2 H, 2x7'-H), 7.46 (t, J= 7.5 Hz, 2 H, 2x8'-H), 7.81 (d, J= 8.6 Hz, 2 H, 2x9'-H), 7.99 (s, 2 H, 2x4'-H), 8.09 (d, J = 8.4 Hz, 2 H, 2x6'-H), 10.22 (s, 2 H, 2xOH). C-NMR (125 MHz, DMSO-d 6 ): δ = 23.2 (2xC-1 1 '), 23.8 (C-3, C-4), 35.0 (C-2, C-5), 45.2 (2xC-1 '), 49.5 (2xC-2'), 61 .5 (2xC-10'), 99.7 (2xC-4'), 1 14.6 (2xC-5a'), 121 .5 (2xC-9b'), 122.2 (2xC-7'), 122.5 (2xC-9'), 122.9 (2xC-6'), 126.6 (2xC-8'), 129.7 (2xC-9a'), 141 .8 (2xC-3a'), 153.7 (2xC-5'), 170.2 (2xC=0).

MS (ESI): m/z (%) = 627.2 (26) [M+Na] + , 603.2 (80) [M-H] " , 567.3 (100)

[M-2H-CI] " .

C34H34CI2N2O4 (605.55). ber.: 603.1823

gef. : 603.1837, [M-H] " (ESI-HRMS).

Beispiel 12

(-)-{1 ,6-Bis[(1 S,1 0R)-1 -(1 0-Chlorethyl)-5-(ß-d-galactopyranosyl)-1 ,2-dihydro- H-benz[e]indol-3-yl]hexan-1 ,6-dion]} ((-)-(1 'S, 10'R)-54b, n = 4)

Ein Gemisch (97.3 mg) aus dem acetylgeschützten Galactosid (1 'S, 10'R)-72b und einem nicht eindeutig identifizierten Nebenprodukt wurde in absolutem Methanol (30 mL) suspendiert und bei 0 °C mit NaOMe in Methanol (57 μΙ_ einer 5.4 M Lösung, 307 μηηοΙ) versetzt. Nach Erwärmen auf Raumtemperatur und 30 min Rühren bei dieser Temperatur hatten sich das Substanzgemisch vollständig gelöst. Es wurde noch weitere 1 .5 h bei Raumtemperatur gerührt, die Reaktionslösung anschließend mit Wasser (3.0 mL) verdünnt und so lange saurer lonentauscher (Amberlite-IR ® 120) zugegeben, bis die Lösung neutral war (pH = 7). Das Gemisch wurde via Transferkanüle vom Ionenaustauscher abgetrennt, selbiger mit Methanol (2x6 mL) nachgewaschen, die organischen Phasen vereinigt und das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand (75.9 mg) wurde in DMF (5 mL) gelöst und in aufeinanderfolgenden Injektionen (0.3 mL) mittels präparativer HPLC gereinigt. Das Produkt (-)- (1 'S,1 0'R)-54b (43.9 mg, 47.2 μηηοΙ, 27% über 3 Stufen) wurde als hellgelber Feststoff erhalten.

HPLC (präparativ):

Säule: Kromasil 100 C18, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C18, 50x20 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-15 70/30 -»· 0/100

15-22 0/100

22-23 0/100 -»· 70/30

23-30 30/70

Fluss: 16 ml_ min

λ: 254 nm

f R : 13.4 min

[a] D = 13.0° (c = 0.269, DMSO).

UV (CH 3 CN): X max (Ig ε) = 199.0 nm (3.990), 255.0 (3.268), 262.5 (3.255), 304.0 (2.634), 313.5 (2.649).

IR(KBr): v (cm "1 ) = 3406, 2925, 1651, 1579, 1469, 1414, 1210, 1139, 1076, 857, 761.

1 H-NMR (600 MHz, DMSO-d 6 ): δ= 1.65 (d, J= 6.7 Hz, 6 H, 2x10'-CH 3 ), 1.77 (m c , 4 H, 3-H 2 , 4-H 2 ), 2.63 (m C! 4 H, 2-H 2 , 5-H 2 ), 3.47-3.55 (m, 4 H, 2x3"-H, 2x6"-H a ), 3.57- 3.64 (m, 4 H, 2x5"-H, 2x6"-H b ), 3.74-3.81 (m, 4 H, 2x2"-H, 2x4"-H), 4.16-4.21 (m, 2 H, 2x1'-H), 4.28-4.34 (m, 4 H, 2x2'-H 2 ), 4.51 (d, J = 4.0 Hz, 2 H, 2xOH), 4.54 (m C! 2 H, 2xOH), 4.80-4.85 (m, 4 H, 2x10'-H, 2xOH), 4.92 (d, J= 7.5 Hz, 2 H, 2x1"-H), 5.26 (s br , 2 H, 2xOH), 7.37 (t, J = 7.6 Hz, 2 H, 2x7'-H), 7.52 (t, J = 7.5 Hz, 2 H, 2x8'-H), 7.88 (d, J = 8.4 Hz, 2 H, 2x9'-H), 8.29-8.30 (m, 4 H, 2x4'-H, 2x6'-H).

1 3 C-NMR (125 MHz, DMSO-d 6 ): δ = 23.2 (2xC-11'), 23.7 (C-3, C-4), 35.0 (C-2, C-5), 45.3 (2xC-1'), 49.5 (2xC-2'), 59.6 (2xC-6"), 61.3 (2xC-10'), 67.6 (2xC-4"), 70.4 (2xC-2"), 73.1 (2xC-3"), 75.2 (2xC-5"), 101.1 (2xC-4'), 102.0 (2xC-1"), 117.6 (2xC-5a'), 122.4 (2xC-9b'), 122.5 (2xC-9'), 123.0 (2xC-7'), 123.2 (2xC-6'), 126.9 (2xC-8'), 129.3 (2xC-9a'), 141.6 (2xC-3a'), 153.4 (2xC-5'), 170.4 (2xC=0).

MS (ESI): m/z (%) = 1417.4 (4) [3M+2Na] 2+ , 951.3 (100) [M+Na] + . C46H54CI2N2O14 (929.83). ber.: 951 .2844

951 .2839, [M+Na] + (ESI-HRMS).

Beispiel 13

(-)-{1 ,7-Bis[(1 R, 10S)-1 -(1 0-Chlorethyl)-5-hydroxy-1 ,2-dihydro-3H-benz[e]indol- 3-yl]heptan-1 ,7-dion -)-(1 'R, 10'S)-56c, n = 5)

Das Phenol (-)-(1 R, 10S)-109 (41 .3 mg, 1 19 μηηοΙ, 2.0 Äq.) wurde in 4 M HCl / Essigester (3.0 mL) gelöst und nach 1 h Rühren bei Raumtemperatur das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde 1 h im Vakuum getrocknet, in DMF (3.5 mL) gelöst, die Lösung auf 0 °C gekühlt und mit Pimelinsäurechlorid (66c) (9.9 μΐ, 1 1 .7 mg, 59.4 μηηοΙ, 1 .0 Äq.) sowie Pyridin (19.2 μΐ, 18.8 mg, 237 μηηοΙ, 4.0 Äq.) versetzt. Nach 20 h Rühren bei Raumtemperatur wurde das Reaktionsgemisch mit DMF (3.5 mL) verdünnt und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels praparativer HPLC gereinigt. Das Produkt (-)-(1 'S, 10'R)-56c (28.5 mg, 46.0 μηηοΙ, 77%) wurde als weißer Feststoff erhalten .

HPLC (präparativ):

Säule: Kromasil 100 C1 8, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C1 8, 50x20 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-6.0 30/70 0/100

6.0-8.5 0/100

8.5-9.5 0/100 30/70

9.5-15 30/70

Fluss: 1 6 mL min

λ: 254 nm

9.1 min [α] η = -10.7° (c = 0.252, DMSO).

UV (CH 3 CN): X max (Ig ε) = 206.5 nm (4.587), 222.5 (4.409), 256.5 (4.950), 264.0 (4.950), 320.0 (4.338).

IR(KBr): v (cm "1 ) = 3191, 2930, 1631, 1584, 1522, 1454, 1425, 1394, 1322, 1263, 1157, 1134, 1071, 1024, 860, 757.

1 H-NMR (600 MHz, DMSO-d 6 ): δ= 1.50 (m C! 2 H, 4-H 2 ), 1.62 (d, J = 6.7 Hz, 6 H, 2x10'-CH 3 ), 1.71 (m C! 4 H, 3-H 2 , 5-H 2 ), 2.54 (m c , 4 H, 2-H 2 , 6-H 2 ), 4.09 (m c , 2 H, 2x1'-H), 4.24-4.25 (m, 4 H, 2x2'-H 2 ), 4.76 (m C! 2 H, 2x10'-H), 7.30 (t, J = 7.6 Hz, 2 H, 2x7'-H), 7.46 (t, J= 7.6 Hz, 2 H, 2x8'-H), 7.81 (d, J= 8.5 Hz, 2 H, 2x9'-H), 7.99 (s, 2 H, 2x4'-H), 8.09 (d, J = 8.5 Hz, 2 H, 2x6'-H), 10.22 (s, 2 H, 2xOH).

13 C-NMR (125 MHz, DMSO-de): δ= 23.2 (2xC-11'), 24.1 (C-3, C-5), 28.4 (C-4), 35.1 (C-2, C-6), 45.2 (2xC-1'), 49.6 (2xC-2'), 61.5 (2xC-10'), 99.7 (2xC-4'), 114.6 (2xC-5a'), 121.5 (2xC-9b'), 122.2 (2xC-7'), 122.5 (2xC-9'), 122.9 (2xC-6'), 126.6 (2xC-8'), 129.7 (2xC-9a'), 141.8 (2xC-3a'), 153.7 (2xC-5'), 170.2 (2xC=0).

MS (ESI): m/z (%) = 1261.4 (43) [2M+Na] + , 641.2 (43) [M+Na] + , 617.2 (74) [M-H] " , 581.3 (80) [M-2H-CI] " .

C35H36CI2N2O4 (619.58). ber.: 641.1944

gef.: 641.1956, [M+Na] + (ESI-HRMS).

Beispiel 14

(+)-{1,7-Bis[(1S,10R)-1-(10-Chlorethyl)-5-hydro^^

-yl]heptan-1,7-dion]} ((+)-(1'S,10'R)-56c, n = 5)

Das Phenol (+)-(1 S,10R)-109 (59.4 mg, 171 μηηοΙ, 2.0 Äq.) wurde in 4 M HCl / Essigester (4.5 ml_) gelöst und nach 1 h Rühren bei Raumtemperatur das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde 1 h im Vakuum getrocknet, in DMF (5 ml_) gelöst, die Lösung auf 0 °C gekühlt und mit Pimelinsäurechlorid (66c) (14.2 μΐ, 16.8 mg, 85.4 μηηοΙ, 1.0 Äq.) sowie Pyridin (27.6 μΙ_, 27.0 mg, 342 μηηοΙ, 4.0 Äq.) versetzt. Nach 20 h Rühren bei Raum- temperatur wurde das Reaktionsgemisch mit DMF (5 mL) verdünnt und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels praparativer HPLC gereinigt. Das Produkt (+)-(1 'S,10'R)-56c (41 .6 mg, 67.1 μηηοΙ, 79%) wurde als weißer Feststoff erhalten .

HPLC (analytisch):

Säule: Kromasil 1 00 C18, 250x4.0 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-6 30/70 -»· 0/100

6-9.5 0/100

9.5-1 0.0 0/100 -»· 30/70

10.0-1 5 30/70

Fluss: 0.8 mL min "1

f R : 9.9 min

HPLC (präparativ):

Säule: Kromasil 100 C1 8, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C1 8, 50x20 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-6.0 30/70 -»· 0/100

6.0-8.5 0/100

8.5-9.5 0/100 -»· 30/70

9.5-15 30/70

Fluss: 1 6 mL min "1

λ: 254 nm

f R : 9.1 min

,20

[a] = + 1 1 .6° (c = 0.251 , DMSO).

UV (CH 3 CN): X max (Ig ε) = 206.5 nm (4.566), 222.5 (4.401 ), 256.5 (4.953), 264.0 (4.952), 320.0 (4.337).

IR (KBr): v (cm "1 ) = 3184, 2931 , 1631 , 1584, 1522, 1454, 1424, 1393, 1262, 1 157, 1 134, 1066, 1024, 860, 756, 632, 413. 1 H-NMR (600 MHz, CDCI 3 ): δ= 1.31 (d, J = 6.6 Hz, 6 H, 2x10'-CH 3 ), 1.68-1.77 (m, 4 H, 3-H a , 4-H 2 , 5-H a ), 2.07 (m c , 2 H, 3-H b , 5-H b ), 2.44-2.50 (m, 4 H, 2x1'-H, 2-H a , 6-H a ), 2.56-2.61 (m, 2 H, 2-H b , 6-H b ), 3.20 (t, J = 9.6 Hz, 2 H, 2x2'-H a ), 3.77 (dd, J= 10.4, 1.5 Hz, 2 H, 2x2'-H b ), 4.18 (m c , 2 H, 2x10'-H), 7.27 (d, J = 8.2 Hz, 2 H, 2x9'-H), 7.34 (t, J= 7.4 Hz, 2 H, 2x7'-H), 7.44 (t, J = 7.4 Hz, 2 H, 2x8'-H), 8.05 (s, 2 H, 2x4'-H), 8.29 (d, J = 8.3 Hz, 2 H, 2x6'-H), 10.65 (s, 2 H, 2xOH).

13 C-NMR (125 MHz, CDCI 3 ): δ= 23.6 (C-3, C-5), 23.8 (2xC-11'), 28.6 (C-4), 36.1 (C-2, C-6), 45.7 (2xC-1'), 51.1 (2xC-2'), 60.0 (2xC-10'), 100.7 (2xC-4'), 114.7 (2xC-5a'), 122.3 (2xC-7'), 122.4 (2 Signale) (2xC-9\ 2xC-9b'), 123.8 (2xC-6'), 126.0 (2xC-8'), 129.7 (2xC-9a'), 141.3 (2xC-3a'), 154.4 (2xC-5'), 171.7 (2xC=0).

MS (ESI): m/z (%) = 1261.4 (41) [2M+Na] + , 641.2 (57) [M+Na] + , 617.2 (52) [M-H] " , 581.3 (100) [M-2H-CI] " .

C35H36CI2N2O4 (619.38). ber.: 619.2125

619.2125, [M+H] + (ESI-HRMS).

Beispiel 15

(-)-{1,7-Bis[(1S,10R)-1-(10-Chlorethyl)-5-(/3-D-galactopyran osyl)-1,2-dihydro- 3H-benz[e]indol- -yl]heptan-1,7-dion]} ((-)-(1'S,10'R)-54c, n = 5)

Ein Gemisch (126 mg) aus dem acetylgeschützten Galactosid (1'S,10'R)-72c und einem nicht eindeutig identifizierten Nebenprodukt wurde in absolutem Methanol (35 mL) suspendiert und bei 0 °C mit NaOMe in Methanol (73 μΙ_ einer 5.4 M Lösung, 394 μηηοΙ) versetzt. Nach Erwärmen auf Raumtemperatur und 30 min Rühren bei dieser Temperatur hatte sich das Substanzgemisch vollständig gelöst. Es wurde noch weitere 1.5 h bei Raumtemperatur gerührt, die Reaktionslösung anschließend mit Wasser (3.0 mL) verdünnt und so lange saurer lonentauscher (Amberlite-IR ® 120) zugegeben, bis die Lösung neutral war (pH = 7). Das Gemisch wurde via Transferkanüle vom Ionenaustauscher abgetrennt, selbiger mit Methanol (2x6 mL) nachgewaschen, die organischen Phasen vereinigt und das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand (1 14 mg) wurde in DMF (5 mL) gelöst und in aufeinanderfolgenden Injektionen (jeweils 0.4 mL) mittels präparativer HPLC gereinigt. Das Produkt (- )-(1 'S,10'R)-54c (65.8 mg, 69.7 μηηοΙ, 35% über 3 Stufen) wurde als hellgelber Feststoff erhalten .

HPLC (analytisch):

Säule: Kromasil 1 00 C18, 250x4.0 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-1 5 70/30 -»· 0/100

15-22 0/100

22-23 0/100 -»· 70/30

23-30 30/70

Fluss: 0.8 mL min "1

f R : 15.3 min

HPLC (präparativ):

Säule: Kromasil 100 C1 8, 250x20 mm, 7 μηη

Vorsäule: Kromasil 100 C1 8, 50x20 mm, 5 μηη

Gradient: Zeit [min] H 2 O / MeOH

0 30/70

0-22.5 70/30 -»· 17.5/82.5

22.5-23.5 17.5/82.5 -»· 70/30

23.5-30 30/70

Fluss: 1 6 mL min "1

λ: 254 nm

f R : 22.8 min

[a]n = -16.5° (c = 0.254, DMSO).

UV (CH 3 CN): X max (Ig ε) = 206.5 nm (4.088), 255.0 (4.275), 262.5 (4.287), (3.640), 315.0 (3.700). IR (KBr): v (cm "1 ) = 3406, 2927, 1656, 1580, 1470, 1412, 1074, 758.

1 H-NMR (600 MHz, DMSO-de): δ = 1.50 (m c , 2 H, 4-H 2 ), 1 .65 (d, J = 6.5 Hz, 6 H, 2x10'-CH 3 ), 1 .68-1 .74 (m , 4 H, 3-H 2 , 5-H 2 ), 2.57 (m c , 4 H, 2-H 2 , 6-H 2 ), 3.48-3.65 (m , 8 H, 2x3"-H, 2x5"-H, 2x6"-H 2 ), 3.75-3.81 (m , 4 H, 2x2"-H, 2x4"-H), 4.18 (m c , 2 H, 2x1 '-H), 4.27-4.33 (m , 4 H, 2x2'-H 2 ), 4.51 (d, J = 4.5 Hz, 2 H, 2xOH), 4.55 (m c , 2 H, 2xOH), 4.77-4.86 (m , 4 H, 2x10'-H, 2xOH), 4.93 (d, J = 7.6 Hz, 2 H, 2x1 "-H), 5.26 (d, J = 4.9 Hz, 2 H, 2xOH), 7.38 (t, J = 7.6 Hz, 2 H, 2x7'-H), 7.52 (t, J = 7.5 Hz, 2 H, 2x8'-H), 7.89 (d, J = 8.5 Hz, 2 H, 2x9'-H), 8.30-8.31 (m , 4 H, 2x4'-H, 2x6'-H).

13 C-NMR (125 MHz, DMSO-d 6 ): δ = 23.2 (2xC-1 1 '), 24.0 (C-3, C-5), 28.3 (C-4), 35.1 (C-2, C-6), 45.3 (2xC-1 '), 49.5 (2xC-2'), 59.7 (2xC-6"), 61 .3 (2xC-10'), 67.6 (2xC-4"), 70.4 (2xC-2"), 73.1 (2xC-3"), 75.2 (2xC-5"), 101 .2 (2xC-4'), 102.0 (2xC-1 "), 1 17.6 (2xC-5a'), 122.4 (2xC-9b'), 122.5 (2xC-9'), 123.0 (2xC-7'), 123.2 (2xC-6'), 126.9 (2xC-8'), 129.4 (2xC-9a'), 141 .6 (2xC-3a'), 153.4 (2xC-5'), 170.4 (2xC=0).

MS (ESI): m/z (%) = 965.3 (100) [M+Na] + , 941 .4 (100) [M-H] " .

C47H56CI2N2O14 (943.86). ber.: 965.3001

gef. : 965.3036, [M+Na] + (ESI-HRMS). Beispiel 16

Zytotoxizitätstest

Um die zytotoxische Wirkung der neu synthetisierten Substanzen auf adhärent wachsende humane Tumorzellen zu untersuchen, erfolgte ein Klonogenitätstest, der sich an den HTCFA Test anlehnt und die Proliferations- fähigkeit von einzelnen Zellen wiedergibt. Als Zelllinie diente das adhärent wachsende humane Bronchialkarzinom der Linie A549. Die Aussaat der Tumorzellen erfolgte aus einer Stammkultur, in der sie in einem Kulturmedium (DMEM mit Zusatz von 10% fötalem Kälberserum, 44 mM NaHCO3 und 4 mM Glutamin) bei 37 °C und 7.5% CO2 Begasung in Luft permanent gehalten wur- den, in Konzentrationen von 10 2 bis 1 0 4 Zellen in 6 well Multischalen. Nach 24 Stunden wurde das Kulturmedium entfernt, die Zellen einmal mit dem serumfreien Inkubationsmedium UltraCulture gewaschen und die Zellen anschließend in diesem Medium 24 Stunden mit zehn bis zwölf verschiedenen Konzentrationen (drei dekadische Größenordnungen) der zu testenden Substanz inkubiert. Diese wurde vorher frisch in einer DMSO-Stammlösung angesetzt und mit dem Inkubationsmedium verdünnt, so dass in den Näpfen letztlich eine DMSO- Konzentration von 1 % vorlag. Nach Entfernen der Testsubstanz und einem weiteren Waschgang mit dem Kulturmedium wurden die verbliebenen Zellen 12 Tage in normalem Kulturmedium kultiviert. Anschließend wurde dieses entfernt, die gebildeten Klone wurden getrocknet, mit Löffler's Methylenblau angefärbt und ab einer Klongröße von ca. 500 μιτι makroskopisch ausgezählt. Die Bestimmung der relativen Klonbildungsraten erfolgte anhand der in Abbildung Abbildung B.14 angegebenen Formel, wobei sich die Klonzahl des Kontrollversuches aus unbehandelten Zellen ergab und gleich 100% gesetzt wurde. Die Freisetzung der zytotoxischen Verbindungen aus den Prodrugs erfolgte durch Zugabe von 4.0 U/mL ß-D Galactosidase. Jede Versuchsreihe wurde in der Regel mindestens dreimal als Duplikat durchgeführt, um reproduzierbare Testergebnisse zu erhalten . Die Ergebnisse sind in der Tabelle 1 dargestellt.

Tabelle 1

Verbindungsnummer IC 50 Selektivität QIC 5 o

53a 0,1 5 pmol/L (m .E.) 970.000

146.000 pmol/L (o.E.)

53b 5,8 pmol/L (m .E.) 22.000

129.000 pmol/L (o.E.)

53c 1 ,3 pmol/L (m .E.) 140.000

180.000 pmol/L (o.E.)

54a 150 pmol/L (m .E.) 2.200

326 000 pmol/l (o.E.)

54 b 2860 pmol/L (m .E.) 1 .900

5.300 000 pmol/L (o.E.)

54c 260 pmol/L (m .E.) 150.000

38.300 000 pmol/L (o.E.)

55a 0, 1 1 pmol/L

55c 1 ,0 pmol/L

56a 1 60 pmol/L

56b 3140 pmol/L

56c 1 70 pmol/L (m.E.) = mit Enzym, (o.E.) = ohne Enzym

Beispiel 17

In vivo-Evaluierung der erfindungsgemäßen Verbindungen in einem orthotopen Brusttumor SCID-Maus-Modell unter Verwendung des ADEPT-Konzepts

Die weiblichen SCID-Mäuse werden vor Einpflanzen der Tumorzellen durch peritonale Injektion von 75mg/g Ketaminhydrochlorid mit 15mg/g Xylazin betäubt. 1 x 10 6 MDR-MB-231 Zellen (Östrogen-unabhängige humane Brustkrebszelllinie) suspendiert in 5ml sterilen PBS werden anschließend implantiert. Nach Implantation werden die Mäuse täglich auf Verlust des Körperge- wichts, allgemeiner Zustand und Tumorbildung hin untersucht. Am Tag 21 werden die Tiere zufällig in Gruppen von 5 bis 12 Mäusen unterteilt (Kontrolle, nur Antikörper-Enzym, nur Prodrug und ADEPT-Therapie). An den Tagen 22 und 30 werden die Mäuse intravenös mit PBS (Kontrolle, nur Prodrug) oder 50g eines monoklonalen anti-humanen Urokinase Plasminogen-Aktivator-Rezeptor (uPAR) Antikörpers konjugiert mit ß-Galactosidase, uPAR-ß-Gal, in PBS (nur Antikörper-Enzym, ADEPT-Therapie) injiziert. An den Tagen 24, 26, 28, 32, 34 und 36 werden die Mäuse intravenös mit 1 %iger DMSO/NaCL-Lösung (Kontrolle, nur Antikörper-Enzym) der erfindungsgemäßen Verbindung 1 %ziges DMSO/NaCL-Lösung (nur Prodrug, ADEPT-Therapie) behandelt. Die Mäuse werden am Tag 38 getötet und die Tumore herausgenommen, gewogen und im PBS-Puffer in 4% Formalin für 16 Stunden bei Raumtemperatur fixiert und in Parafin eingebettet. Gewebeschnitte werden auf Zellproliferation, z.B. mit einem Antikörper gerichtet gegen Ki-67 untersucht. Weiterhin wird die Tumorgröße mit Hilfe von Computertomographie während der Behandlung bestimmt.

Es kann sowohl Volumenreduktion als auch Reduktion der

Metastasenausbildung beobachtet werden, während kein signifikanter Einfluss auf Gewicht, Leukozyten, Hämoglobin und Trombozyten zu sehen ist. Die Tumorwachstumsrate der ADEPT-Therapie ist geringer.