Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIO-BASED AND BIODEGRADABLE RESIN SUITABLE FOR PRODUCTION OF COMPOSITE MATERIALS
Document Type and Number:
WIPO Patent Application WO/2017/071825
Kind Code:
A1
Abstract:
The present invention discloses a bio-based and biodegradable resin with a low viscosity and good elastic modulus and tensile strength that can be used for production of composite materials. The invention also relates to composite materials manufactured from said resin and methods for manufacturing said composite materials. The resin is comprised by at least 50 % cyclic diesters or oligomers of said cyclic diesters with lactide and poly lactic acid as preferred components.

Inventors:
PEDERSEN THOMAS BRORSEN (DK)
Application Number:
PCT/EP2016/025132
Publication Date:
May 04, 2017
Filing Date:
October 31, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BIO BOND IVS (DK)
International Classes:
C08G63/08; B29C70/48; C08J5/04
Domestic Patent References:
WO2003064531A12003-08-07
WO2014115029A22014-07-31
WO1999021900A11999-05-06
WO2014115029A22014-07-31
Foreign References:
US20060235113A12006-10-19
US20090069463A12009-03-12
EP2905297A12015-08-12
US20110190437A12011-08-04
US20140057919W2014-09-27
US8378027B22013-02-19
US20150056880A12015-02-26
Download PDF:
Claims:
Claims

1. A resin containing at least 50 % by weight of lactide or other cyclic diesters such as glycolide or poly lactic acid oligomers or other oligomers that can be synthesised from the aforementioned cyclic diesters such as poly glycolic acid

oligomers with an average molecular mass between 200 and 6000 g/mol or at least 50 % by weight of cyclic diester and oligomers synthesied from the said diesters where the preferred choice of cyclic diester and oligomer are lactide and poly lactic acid oligomer, respectively.

2. The resin according to claim 1, comprised by at least 70 % by weight of lactide or poly lactic acid oligomers with an average molecular mass between 200 and 6000 g/mol or at least 70 % by weight of lactide and poly lactic acid oligomers.

3. The resin according the claim 1, wherein the resin is compared as a one component system where the diesters or oligomers are brought to a liquid state and mixed with other chemical compounds forming the resin composition and one or more catalysts followed by cooling to and storage at a temperature where

polymerisation is absent or highly limited.

4. The resin according to claim 1, wherein the resin

contains one or more compounds to improve its fracture toughness with examples being BASF Ecoflex, GS Pla®, poly olefins, poly hydroxyalkanoates , poly (ethylene glycole) and organomodified layered silicates such as montmorillonite .

5. The resin according to claim 1, wherein one or more chemical compounds increasing the impact strength are included in the resin composition with examples being triacetin, poly

(butylene succinate), glucose monoesters and poly ethylene.

6. The resin according to claim 1, where it comprises one or more cross linking agents that can contain two or more chemical groups capable of establishing a chemical bond to poly lactic acid such as amine groups and carboxylic acid groups.

7. The resin according to claim 1, where it is dyed with one or more molecules such as molecules present in the following commercially available brands Dorospers, Cibacet, Foron and C. I. Disperse

8. The resin according to claim 1, containing one or more flame regarding molecules or compounds to increase the fire safety of the resin with examples being spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine, organomodified silicates, triazine phosphamide, ethyl phosphorodichloridate, aryl

polyphenylphosphonates , spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine.

9. The resin according to claim 1, where the lactide part of the resin comprises at least 50% by weight either L-lactide, D- lactide or oligomers of either poly D-lactic acid or poly L-lactic acid, with the ratio between the said two enantiomers preferably being at least 1:10 by weight, more preferably at least 1:15 by weight where the L-enantiomer is the preferred enantiomer to be enriched .

10. The resin according to claim 1, where the lactide part of the resin comprises at least 50% by weight either L-lactide, D- lactide or oligomers of either poly D-lactic acid or poly L-lactic acid, with the ratio between said two enantiomers preferably between 1:1 and 1:4 by weight.

11. A method of preparing a composite material with a resin according to any of claims 1-10, wherein the resin is injected or infused into a mould containing a preform with a plurality of fibres serving as reinforcement in the composite material and after impregnation of the fibres, the resin is polymerised.

12. A method according to claim 11, wherein the resin is injected or infused into a mould containing a preform containing a fibrous reinforcement and bio-based polymers such as poly

hydroxyalkanoates , poly lactic acid and poly glycolic acid, with poly lactic acid being preferred, that can be present in various forms such as randomly oriented fibres, mats, layers, films, powder, pellets and coating on other fibres and said bio-based polymers can contain dyes, flame retarders and toughening agents.

13. A method according to claim 11 wherein the resin is injected or infused into a mould containing a preform with a plurality of fibres serving as reinforcement in the composite material and in addition hereto the preform contains poly lactic acid fibres or powder and after impregnation of the fibres, the resin is polymerised.

14. A method according to claim 11, where the resin in liquid state is mixed in a container with or sprayed or poured onto a fibrous material or a plurality of fibrous materials such as wood, shredded wood, hemp, flax, jute, kenaf, coconut, bamboo, sphagnum and hay and potentially poly lactic acid fibres or powder in a container followed by shaping into the desired shape and

polymerisation of the resin.

15. A composite material comprising a resin according to any of claims 1-10, where the composite material also comprises a fibrous material or a plurality of fibrous materials such as wood,

shredded wood, hemp, flax, jute, kenaf, coconut, bamboo, sphagnum, hay, glass, carbon and aramid and potentially poly lactic acid fibres, films or powder.

Description:
Bio-based and biodegradable resin suitable for production of composite materials

The invention relates to a bio-based and biodegradable resin that can be used for composite materials and composite mate ¬ rials produced herewith.

In view of finding sustainable materials and environmental protection, there is a general need for materials that are based on renewable resources such as plant material and mate ¬ rials that can be discarded in an environmentally friendly manner. Through the last decades, the use of composite mate ¬ rials has grown significantly due to their high strength to weight ratio. Composite materials consist of at least two macroscopically different phases, commonly a fibrous rein ¬ forcement embedded in an organic polymer matrix. The fibrous reinforcement is commonly glass, carbon or aramid, but re ¬ cently bio-based fibres such as hemp, flax, kenaf and jute have become commercially available. The polymer matrix is in most cases epoxy, polyester, vinyl ester or polyurethane, which are all based on crude oil and non-biodegradable and in most cases non-recyclable.

Due to the commercial availability of bio-based fibres, com- posite materials with a sustainable reinforcement can be ob ¬ tained whereas most available matrix materials are unsustain ¬ able. In addition to being non-biodegradable and only partly sustainable, composite materials made from a biological fibre and an oil-based polymer matrix has the drawback of a poor compatibility between the reinforcement and matrix due to differences in polarity and chemical groups between the fi ¬ bres and the matrix. The poor compatibility has a negative impact on the mechanical properties of the composite mate ¬ rial .

One route to obtain a fully bio-based and biodegradable com ¬ posite material is to utilise resins based on plant triglyc ¬ erides as matrix material. An example of a triglyceride based resin is disclosed in WO9921900, where triglycerides are functionalised through chemical reactions employing oil-based products to incorporate reactive groups such as epoxy, acry- late and glycerol. The functionalisation by for instance ep- oxy groups can make the resin less environmentally safe as epoxy is sensitising to the human skin and it uses oil-based products. In addition, the resin based on functionalised triglycerides has elastic modulus and flexural modulus values lower than those of presently used composite matrix materi- als, even when the functionalised trigycerides are mixed with oil-based components.

Another option to obtain a fully bio-based and biodegradable composite material is to use poly lactic acid as matrix, which is a polymer that can be amorphous or semicrystalline . Poly lactic acid can be produced from various plant sources such as maize, beans, peas, sugarcanes and wood. Poly lactic acid has an elastic modulus of 3.2-3.4 GPa which exceeds that of commonly used epoxy, polyester and vinylester resins used as composite matrix material. Some drawbacks of poly lactic acid are a low impact resistance, low fracture toughness, high viscosity and for some applications a glass transition temperature maximum of about 65 °C. Fibre reinforced composite materials are often manufactured by means of either resin transfer moulding (RTM) or vacuum assisted resin transfer moulding (VARTM) processes. Both processes involve two basic steps: first fabrication of a fi ¬ bre preform inside a mould with the shape of the finished composite material, where the preform is comprised by a plu ¬ rality of fibres in most cases present as fabric layers and second impregnation of the preform with a resin. During the process, full impregnation of the fibres is essential for the performance of the final composite material.

In RTM processes, the matrix resin is injected into the mould under pressure. In the VARTM process, the resin is drawn into the mould by applying a pressure inside the mould that is lower than the pressure outside the mould. If a thermoplastic resin is used, the resin is injected or drawn into the mould at a temperature above its melting point and upon impregna ¬ tion of the preform, a temperature reduction will cause the resin to solidify and constitute the matrix of the composite material. For thermosetting resins, the resin is injected or drawn into the mould at a temperature where it is in a liquid state and upon impregnation of the preform, the resin is allowed to cure through polymerisation upon which the final composite material is obtained.

EP2905297 discloses a poly lactic acid resin that can be used for injection moulding. The resin is produced in a separate container and made into pellets. The pellets are remelted and the molten resin can be injected into a preform. A disadvantage of this approach is the high melt viscosity of the poly lactic acid being around 5-40 Pa-s in the temperature range 190-200 °C due to influence of the polymer molecular weight on the melt viscosity. The high viscosity makes the resin less suitable for larger structures and structures with com ¬ plex geometries as areas of unimpregnated fibres are likely to arise in the final structure.

Others inventions such as US20110190437, WO2014US57919, US8378027, WO2014115029 and US2015056880 describe the use of poly lactic acid resin, in some embodiments mixed with other resins, including oil-based resins, to manufacture composite materials. These inventions manufacture the composite through injection moulding, where the resin is often injected at tem- peratures between 180 and 220 °C . Despite the high tempera ¬ ture, the viscosity of the resin at the injection temperature is at a level that complicates the production of larger com ¬ posite materials. Furthermore, temperatures between 180 and 220 °C can lead to degradation of some natural fibres which limit the use of the aforementioned resins in the manufacture of fully bio-based and biodegradable composites. Further, at temperatures above 200 °C, degradation of poly lactic acid initiates . Therefore, at present the reinforcement for bio-based and biodegradable composite materials exists, but the use is im ¬ peded by the lack of a suitable bio-based and biodegradable resin.

As used herein, the term lactide refers to any of the iso ¬ meric states of L-lactide, D-lactide and meso-lactide or mix ¬ tures hereof.

As used herein, the term poly lactic acid refers to any of the isomeric states of poly (L-lactic acid) , poly (D-lactic acid) and poly (L, D-lactic acid) or mixtures hereof. In the present invention, a bio-based and biodegradable resin with a low viscosity very suitable for production of compos ¬ ite materials through the use in RTM and VARTM processes is disclosed. The resin can also find application in other areas and processes with an example being adhesive and processes involving mechanical mixing and spraying. The resin can be manufactured as a two component system with the resin base and the curing agent or compound causing the resin to polymerise in separate containers or in a one component system where the resin and the curing agent or compound causing the resin to polymerise are present in the same container, mixed in the desired ratio. The resin has a low viscosity and good elastic modulus and tensile strength. The impregnation of the fibres is promoted by a low viscosity of the resin and a matching polarity between the fibres and the resin. The im- portance of having a resin with low viscosity increases with the size and geometric complexity of the composite material.

The resin contains at least 50 % by weight of lactide or other cyclic diesters such as glycolide or poly lactic acid oligomers or other oligomers that can be synthesised from the aforementioned cyclic diesters such as poly glycolic acid oligomers with an average molecular mass between 200 and 6000 g/mol or at least 50 % by weight of cyclic diester and oli- gomers synthesised from said diesters. The cyclic diester and oligomer are preferably lactide and poly lactic acid oli ¬ gomer, respectively. The lactide part of the resin is polym ¬ erised to poly lactic acid or the poly lactic acid oligomers are fully polymerised inside the mould containing the compos ¬ ite preform by one or more catalysts suitable for the ring- opening polymerisation of lactide and other cyclic diesters or catalysis of polymerisation of poly lactic acid. Numerous catalysts are available such as stannous octoate, zinc oc- toate, stannous alkoxides, aluminium isopropoxide, 4-

(dimethylamino) pyridine and novozym 435 and their concentra ¬ tion can be varied as a larger concentration of catalyst increases the polymerisation rate, but on the contrary reduces the maximum obtainable molecular weight of the polymer. Com- mon catalyst concentrations are 0.01 to 0.5 % by weight. The resin is stored under conditions where polymerisation of lac ¬ tide or poly lactic acid oligomers or any other components in the resin is absent or highly limited. Shortly prior to in ¬ jection of infusion, the resin including the catalyst is brought into a liquid state, if not present in liquid state at temperatures normally found in composite production envi ¬ ronments, and is then injected or infused into the mould con ¬ taining the preform to impregnate the plurality of fibres comprising the preform. Infusion or injection of lactide monomers or poly lactic acid oligomers ensures a resin with viscosity values as low as 10 mPa-s during the impregnation process, which ensures a fast and full impregnation of the fibres, even for very large structures. After impregnation of the fibres, the resin is allowed to polymerise within the mould to yield the composite material. Thus the mechanical properties such as elastic modulus and tensile strength of the polymerised resin can reach the same levels as poly lac ¬ tic acid. The ratio between lactide and poly lactic acid oligomers in the resin can be tailored to the application. For large structures, a high lactide to poly lactic acid oligomer ratio is employed as this gives the resin a low viscosity, which leads to a fast impregnation of the preform. For smaller structures, a smaller lactide to poly lactic acid oligomer ratio is employed as this reduces the polymerisation time and therefore can provide a faster component manufacture time compared to a resin with a higher lactide to poly lactic acid oligomer ratio.

Particularly advantageous embodiments and features of the in ¬ vention are given by the dependent claims, as revealed in the following description. Further embodiments may be derived by combining the features of the various embodiments described in the following, and features of the various claim catego ¬ ries can be combined in any appropriate manner. In advantageous embodiments, the resin is comprised by at least 70 % by weight of lactide or poly lactic acid oligomers with an average molecular mass between 200 and 6000 g/mol or at least 70 % by weight of lactide and poly lactic acid oli ¬ gomers due to the high elastic modulus of the poly lactic acid compared to other bio-based polymers.

In advantageous embodiments, the resin is a one component system implying that the resin contains a plurality of chemi ¬ cal constituents and the catalysts or curing agents necessary to polymerise the resin. A one component resin system can be produced by mixing the different chemical constituents of the resin in the liquid state and upon mixing adding the cata ¬ lysts or curing agents to the mixed chemical constituents followed by another mixing of the catalysts or curing agents into the resin. Shortly after the addition of catalysts or curing agents, the liquid mixture is cooled to a temperature where either the resin or the catalysts or curing agents are unreactive, which implies that the chemical structures in the resin do not undergo or only to a very limited extent undergo polymerisation or other chemical reactions.

In various preferred embodiments, the resin composition is fully biodegradable as this environmentally advantageous. Full biodegradability can be achieved by solely employing biodegradable plant based material in the resin composition or through addition crude-oil based components capable of un ¬ dergoing biodegradation such as Dupont Biomax®, BASF Ecoflex and poly (butyrate adipate terephthalate) .

For various embodiments, components increasing the fracture toughness of the polymerised resin are added to the resin. Examples hereof are BASF Ecoflex, GS Pla ® , poly olefins, poly hydroxyalkanoates , poly (ethylene glycole) and organo modi ¬ fied layered silicates such as montmorillonite .

In other embodiments, chemical compounds increasing the im ¬ pact strength are included in the resin composition. Various compounds can be used to increase the impact strength of the resin and these include, but are not limited to, triacetin, poly (butylene succinate) , glucose monoesters and poly ethyl ¬ ene . In alternative embodiments, a resin capable of cross linking, i.e., establishing interconnecting bonds between polymer chains, is manufactured as cross linking can increase the glass transition temperature and strength of the polymerised resin. One example of a cross linking agent is a molecule with at least two amine groups and at least 3 active protons, i.e., at least 3 hydrogen atoms attached to a nitrogen atom within the entire molecule. Preferably, the cross linking agent has at least three primary amine groups as this in ¬ creases the probability of cross linking and the primary amine groups are more reactive than the secondary ones. The amine groups can undergo reaction with the ester group in the poly lactic acid chain or other structures within the polymer that contain ester bonds to yield an amide. With at least 3 active hydrogen atoms in the amine molecule it can connect different polymer chains containing ester bonds and thereby establish a crosslinked structure. Other suitable cross link ¬ ing agents are molecules containing at least three carboxylic acids groups. The terminal groups of poly lactic acid chains are a hydroxyl groups which can undergo reaction with a car- boxylic acid group to yield a linkage of the two molecules through an ester bond under the displacement of water. Other cross linking agents are available and should be able to un- dergo reaction with ester bonds, hydroxyl groups or other functional groups present in the resin composition.

In another embodiment, the cross linking agent contains 2 chemical groups with a functionality to bind to a part of the poly lactic acid such as amine groups or carboxylic acid groups. In addition hereto, the binding agent contains an ¬ other functional group that can bind to another cross linking agent molecule and examples of said functional group are car ¬ bon-carbon double or triple bond, epoxy or hydroxyl.

For various embodiments, the lactide part of the resin is mainly comprised by either L-lactide, D-lactide or oligomers of either poly D-lactic acid or poly L-lactic acid to obtain a polymerised resin dominated by either the poly L-lactic acid or poly D-lactic acid enantiomer. Preferably, the ratio between the said two enantiomers is 1:10 by weight, more preferably at least 1:15 by weight. Preferably, the composi ¬ tion is enriched in the L-enantiomer as this has better crys ¬ tallisation properties than the D-enantiomer . A polymer en- riched in either of the two enantiomers possesses a higher crystallisation tendency implying that at a given set of process conditions, the polymer enriched in either of the two enantiomers can reach a higher crystallisation degree than a polymer comprised by an even mixture of the two enantiomers. The higher crystallisation degree increases the heat resis ¬ tance of the matrix part of the composite and therefore com ¬ posites can be applied at higher temperature if the resin is enriched in either of the two enantiomers. The higher heat resistance is obtained as the melting temperature of the crystalline phase is typically around 150-170 °C, whereas the glass transition temperature of the amorphous phase of the matrix is around 60 °C . In various embodiments, the resin is dyed with one or more molecules as this enables tailoring of the colour of the po ¬ lymerised to a specific application. A broad selection of commercial dyes is available including the following trade- names: Dorospers, Cibacet, Foron and C. I. Disperse.

In various embodiments of the invention, the resin contains one or more flame regarding molecules or compounds to in ¬ crease the fire safety of the resin. Examples of flame re- tarders suitable for poly lactic acid include spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine, or- ganomodified silicates, triazine phosphamide, ethyl phos- phorodichloridate, aryl polyphenylphosphonates , spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine.

In other embodiments, the ratio between the two enantiomers of poly lactic acid and the process conditions are controlled as to minimise or maximise the crystallisation degree as the biodegradation rate depends on the crystallisation degree of the poly lactic acid part of the polymerised resin. As the crystalline phase exhibits a slower biodegradation than the amorphous phase, polymerised resin with a high crystallisa ¬ tion degree will have a slow biodegradation, whereas polymerised resin with a large amorphous part will exhibit a fast biodegradation. Suitable enantiomer ratios for obtaining a high amorphous to crystalline ratio in the matrix are between 1 : 1 and 1:4.

For advantageous embodiments, the preform layup consists of the fibres required for the reinforcement of the composite material and bio-based polymers such as poly hydroxyalka- noates, poly lactic acid and poly glycolic acid, with poly lactic acid being preferred, that can be present in various forms such as randomly oriented fibres, mats, layers, films, powder, pellets and coating on other fibres. Said bio-based polymers can contain dyes and flame retarders . After impreg ¬ nation of the preform with the resin, the biopolymer dissolves into the injected or infused resin and establishes chemical bonds hereto. By means hereof, the resin and the biopolymer in the preform polymerise together. This approach is advantageous as fibres can be impregnated with a low vis ¬ cosity resin and the already polymerised polymer inside the preform ensures a short polymerisation time and good mechanical properties of the composite matrix.

For preferred embodiments, the preform layup consists of the fibres required for the reinforcement of the composite mate- rial and poly lactic acid fibres or powder. The poly lactic acid fibres can be present as randomly oriented fibres or fi ¬ bres present in a continuous piece of material containing a plurality of fibres, which is commonly called a fabric and can be woven or non-woven. In these embodiments, the tempera- ture during the impregnation of the fibres and polymerisation of the resin is below the melting temperature of the poly lactic acid fibres, which implies that the temperature in most cases should not exceed about 150 °C . Preferably, the poly lactic acid fibres have a crystallinity of 15-100 %, more preferably 25-90 %. The poly lactic acid fibres increase the fracture toughness of the final composite material as they are embedded in the composite matrix and have excellent compatibility with the matrix. In various embodiments, the resin is in liquid state mixed with natural fibres such as wood, shredded wood, hemp, flax, jute, kenaf, coconut, bamboo, sphagnum and hay and poten ¬ tially poly lactic acid fibres or powder in a container and following impregnation of the fibres the structure comprising the impregnated fibres and any excess resin is shaped into a desired dimension. Upon shaping, the resin is polymerised to yield a cohesive structure where the fibres are held together by the resin through chemical bonds. Said various embodiments can for instance be used to manufacture biodegradable chip boards.

For various embodiments, the resin is in liquid state spayed or poured onto natural fibres such as wood, shredded wood, hemp, flax, jute, kenaf, coconut, bamboo, sphagnum and hay and potentially poly lactic acid fibres or powder to impreg ¬ nate the fibres. Upon impregnation, the fibres and any excess resin are shaped into a desired dimension followed by polym- erisation of the resin to yield a cohesive structure where the fibres are held together by the resin through chemical bonds. Said various embodiments can for instance be used to manufacture biodegradable chip boards