Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIOMARKERS FOR PREDICTING PRETERM BIRTH DUE TO PRETERM PREMATURE RUPTURE OF MEMBRANES VERSUS IDIOPATHIC SPONTANEOUS LABOR
Document Type and Number:
WIPO Patent Application WO/2018/027171
Kind Code:
A1
Abstract:
The present invention provides compositions and methods for predicting the probability of preterm birth in a pregnant female. The present invention provides a composition comprising one or more biomarkers selected from the group consisting of the biomarkers set forth in Figures 1 and 2 and Tables 1 through (3), (6) through (38), and (44) through (68). In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, optionally preterm birth associated with preterm premature rupture of membranes (PPROM) or preterm birth associated idiopathic spontaneous labor (PTL), the method comprising measuring in a biological sample obtained from the pregnant female one or biomarkers selected from one or more of the biomarkers set forth in Figures 1 and 2 and Tables 1 through (3), (6) through (38), and (44) through (68) to determine the probability for preterm birth in said pregnant female.

Inventors:
BONIFACE JOHN JAY (US)
BURCHARD JULJA (US)
CRITCHFIELD GREG CHARLES (US)
FLEISCHER TRACEY CRISTINE (US)
HICKOK DURLIN EDWARD (US)
HSU CHIEN (US)
Application Number:
PCT/US2017/045576
Publication Date:
February 08, 2018
Filing Date:
August 04, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SERA PROGNOSTICS INC (US)
International Classes:
C12Q1/68; C40B40/10; G01N33/53; G01N33/566
Foreign References:
US20140287948A12014-09-25
US20160003837A12016-01-07
US20050233400A12005-10-20
Other References:
MOUTQUIN: "Classification and heterogeneity of preterm birth", BJOG, vol. 110, no. 20, 2003, pages 30 - 33, XP055461612
MCELROY ET AL.: "Maternal coding variants in complement receptor 1 and spontaneous idiopathic preterm birth", HUM GENET., vol. 132, no. 8, 2013, pages 935 - 942, XP055461614
Attorney, Agent or Firm:
SPAIN, Astrid R. et al. (US)
Download PDF:
Claims:
What is claimed is:

1. A composition comprising one or more biomarkers selected from the group consisting of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 38, and 44 through 68.

2. A method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 38, and 44 through 68 to determine the probability for preterm birth in said pregnant female.

3. A method of determining probability for preterm birth associated with preterm premature rupture of membranes (PPROM) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figure 1 and Tables 6 through 22, 44, 45, and 47 through 68, to determine the probability for preterm birth associated with PPROM in said pregnant female.

4. A method of determining probability for preterm birth associated with idiopathic spontaneous labor (PTL) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figure 2 and Tables 6, 23 through 38, 44, and 46 through 68, to determine the probability for preterm birth associated with PTL in said pregnant female.

Description:
BIOMARKERS FOR PREDICTING PRETERM BIRTH DUE TO PRETERM PREMATURE RUPTURE OF MEMBRANES VERSUS IDIOPATHIC SPONTANEOUS LABOR

[0001] This application claims the benefit of U.S. Provisional Application No.

62/449,862, filed January 24, 2017, and U.S. Provisional Application No. 62/371,666, filed August 5, 2016, each of which is incorporated herein by reference in its entirety.

[0002] The invention relates generally to the field of precision medicine and, more specifically to compositions and methods for determining the probability for preterm birth in a pregnant female.

BACKGROUND

[0003] According to the World Health Organization, an estimated 15 million babies are born preterm (before 37 completed weeks of gestation) every year. In almost all countries with reliable data, preterm birth rates are increasing. See, World Health Organization; March of Dimes; The Partnership for Maternal, Newborn & Child Health; Save the Children, Born too soon: the global action report on preterm birth. ISBN 9789241503433(2012). An estimated 1 million babies die annually from preterm birth complications. Globally, preterm birth is the leading cause of newborn deaths (babies in the first four weeks of life) and the second leading cause of death after pneumonia in children under five years. Many survivors face a lifetime of disability, including learning disabilities and visual and hearing problems.

[0004] Across 184 countries with reliable data, the rate of preterm birth ranges from 5% to 18% of babies born. Blencowe et al., "National, regional and worldwide estimates of preterm birth." The Lancet 9; 379(9832):2162-72 (2012). While over 60% of preterm births occur in Africa and south Asia, preterm birth is nevertheless a global problem. Countries with the highest numbers include Brazil, India, Nigeria and the United States of America. Of the 11 countries with preterm birth rates over 15%, all but two are in sub-Saharan Africa. In the poorest countries, on average, 12% of babies are born too soon compared with 9% in higher- income countries. Within countries, poorer families are at higher risk. More than three- quarters of premature babies can be saved with feasible, cost-effective care, for example, antenatal steroid injections given to pregnant women at risk of preterm labor to strengthen the babies' lungs. [0005] Infants born preterm are at greater risk than infants born at term for mortality and a variety of health and developmental problems. Complications include acute respiratory, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, as well as longer-term motor, cognitive, visual, hearing, behavioral, social-emotional, health, and growth problems. The birth of a preterm infant can also bring considerable emotional and economic costs to families and have implications for public-sector services, such as health insurance, educational, and other social support systems. The greatest risk of mortality and morbidity is for those infants born at the earliest gestational ages. However, those infants born nearer to term represent the greatest number of infants born preterm and also experience more complications than infants born at term.

[0006] To prevent preterm birth in women who are less than 24 weeks pregnant with an ultrasound showing cervical opening, a surgical procedure known as cervical cerclage can be employed in which the cervix is stitched closed with strong sutures. For women less than 34 weeks pregnant and in active preterm labor, hospitalization may be necessary as well as the administration of medications to temporarily halt preterm labor and/or promote the fetal lung development. If a pregnant women is determined to be at risk for preterm birth, health care providers can implement various clinical strategies that may include preventive medications, for example, 17-a hydroxyprogesterone caproate (Makena) injections and/or vaginal progesterone gel, cervical pessaries, restrictions on sexual activity and/or other physical activities, and alterations of treatments for chronic conditions, such as diabetes and high blood pressure, that increase the risk of preterm labor.

[0007] There is a great need to identify and provide women at risk for preterm birth with proper antenatal care. Women identified as high-risk can be scheduled for more intensive antenatal surveillance and prophylactic interventions. Current strategies for risk assessment are based on the obstetric and medical history and clinical examination, but these strategies are only able to identify a small percentage of women who are at risk for preterm delivery. Prior history of spontaneous preterm birth (sPTB) is currently the single strongest predictor of subsequent preterm birth (PTB). After one prior sPTB the probability of a second PTB is 30- 50%. Other maternal risk factors include: black race, low maternal body-mass index, and short cervical length. Amniotic fluid, cervicovaginal fluid, and serum biomarker studies to predict sPTB suggest that multiple molecular pathways are aberrant in women who ultimately deliver preterm. Reliable early identification of risk for preterm birth would enable planning appropriate monitoring and clinical management to prevent preterm delivery. Such monitoring and management might include: more frequent prenatal care visits, serial cervical length measurements, enhanced education regarding signs and symptoms of early preterm labor, lifestyle interventions for modifiable risk behaviors such as smoking cessation, cervical pessaries and progesterone treatment. Finally, reliable antenatal identification of risk for preterm birth also is crucial to cost-effective allocation of monitoring resources.

[0008] Despite intense research to identify at-risk women, PTB prediction algorithms based solely on clinical and demographic factors or using measured serum or vaginal biomarkers have not resulted in clinically useful tests. More accurate methods to identify women at risk during their first pregnancy and sufficiently early in gestation are needed to allow for clinical intervention. The present invention addresses this need by providing compositions and methods for determining whether a pregnant woman is at risk for preterm birth. Related advantages are provided as well.

SUMMARY

[0009] The present invention provides compositions and methods for predicting the probability of preterm birth in a pregnant female.

[0010] The present invention provides a composition comprising one or more biomarkers selected from the group consisting of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67.

[0011] In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67 to determine the probability for preterm birth in said pregnant female.

[0012] In one embodiment, the invention provides a method of determining probability for preterm birth associated with preterm premature rupture of membranes (PPROM) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figure 1 and Tables 1 through 3, 6 through 21, 42, 43, and 45 through 67, to determine the probability for preterm birth associated with PPROM in said pregnant female.

[0013] In one embodiment, the invention provides a method of determining probability for preterm birth associated idiopathic spontaneous labor (PTL) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figure 2 and Tables 1 through 3, 6, 22 through 36, 42, and 44 through 67 to determine the probability for preterm birth associated with PTL in said pregnant female.

[0014] In one embodiment, the invention provides a method of determining probability for preterm birth associated with preterm premature rupture of membranes (PPROM) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figure 1 and Tables 6 through 21, 42, 43, and 45 through 67, to determine the probability for preterm birth associated with PPROM in said pregnant female.

[0015] In one embodiment, the invention provides a method of determining probability for preterm birth associated idiopathic spontaneous labor (PTL) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figure 2 and Tables 6, 22 through 36, 42, and 44 through 67, to determine the probability for preterm birth associated with PTL in said pregnant female.

[0016] Other features and advantages of the invention will be apparent from the detailed description, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] Figure 1 shows proteins enriched in PPROM vs. Term Controls (bold). A large number of these proteins are implicated in immunity and inflammation (bold, shaded) and are linked to pro-inflammatory cytokines.

[0018] Figure 2 shows proteins differentially expressed in PTL vs. term (bold, shaded) are linked to fetal growth/development and insulin signaling. Notably absent are markers of immune response and inflammation, although PSG3 may have a role in immune tolerance. DETAILED DESCRIPTION

[0019] The present disclosure is based, generally, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of preterm birth relative to controls. The present disclosure is further specifically based, in part, on the unexpected discovery that although both deliver preterm, PPROM and PTL women have different proteomic profiles, enabling the creation of a multi-analyte predictor combining biomarkers sensitive to PPROM and PTL.

[0020] The proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting probability of preterm birth, predicting probability of term birth, predicting gestational age at birth (GAB), predicting time to birth (TTB) and/or monitoring of progress of preventative therapy in a pregnant female at risk for PTB, either individually, in ratios, reversal pairs or in panels of biomarkers/reversal pairs. The invention lies, in part, in the selection of particular biomarkers that can predict the probability of pre-term birth. The present invention contemplates compositions of one or more of the biomarkers disclosed in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67, as well as compositions of one or more biomarker pairs selected from the biomarkers disclosed in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67. Accordingly, it is human ingenuity in selecting the specific biomarkers that are informative that underlies the present invention.

[0021] The ability to categorize a woman's risk of spontaneous preterm delivery into a percent risk of PPROM and a percent risk of PTL can be used to facilitate clinical decisions focused on delaying either PTL or PPROM and preparing for complications associated with either PTL or PPROM. Appropriate interventions for either PTL or PPROM, but not necessarily exclusive, can be tailored to the patient's individual risk of PPROM and PTL. A focused treatment approach can be used to extend pregnancy duration and/or improve neonatal outcomes compared to traditional interventional methods used to treat patients at risk of general spontaneous preterm birth. Examples include, but are not limited to, earlier, prophylactic use of antibiotics in women at risk of PPROM, and offering tocolytics with earlier, perhaps milder, signs or symptoms associated with PTL. [0022] The present invention provides a composition comprising one or more biomarkers selected from the group consisting of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67.

[0023] In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67 to determine the probability for preterm birth in said pregnant female.

[0024] In one embodiment, the invention provides a method of determining probability for preterm birth associated with preterm premature rupture of membranes (PPROM) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 21, 42, 43, and 45 through 67 to determine the probability for preterm birth associated with PPROM in said pregnant female.

[0025] In one embodiment, the invention provides a method of determining probability for preterm birth associated idiopathic spontaneous labor (PTL) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6, 22 through 36, 42, and 44 through 67 to determine the probability for preterm birth associated with PTL in said pregnant female.

[0026] In one embodiment, the invention provides a method of determining probability for preterm birth associated with preterm premature rupture of membranes (PPROM) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figure 1 and Tables 6 through 21, 42, 43, and 45 through 67, to determine the probability for preterm birth associated with PPROM in said pregnant female.

[0027] In one embodiment, the invention provides a method of determining probability for preterm birth associated idiopathic spontaneous labor (PTL) in a pregnant female, the method comprising measuring in a biological sample obtained from said pregnant female one or biomarkers selected from the group consisting of one or more of the biomarkers set forth in Figure 2 and Tables 6, 22 through 36, 42, and 44 through 67, to determine the probability for preterm birth associated with PTL in said pregnant female.

[0028] The term "reversal value" refers to the ratio of the relative peak areas

corresponding to the abundance of two analytes and serves to both normalize variability and amplify diagnostic signal. In some embodiments, a reversal value refers to the ratio of the relative peak area of an an up-regulated (interchangeably referred to as "over-abundant," up- regulation as used herein simply refers to an observation of relative abundance) analyte over the relative peak area of a down-regulated analyte (interchangeably referred to as "under- abundant, "down- regulation as used herein simply refers to an observation of relative abundance). In some embodiments, a reversal value refers to the ratio of the relative peak area of an an up-regulated analyte over the relative peak area of a up-regulated analyte, where one analyte differs in the degree of up-regulation relative the other analyte. In some embodiments, a reversal value refers to the ratio of the relative peak area of a down-regulated analyte over the relative peak area of a down-regulated analyte, where one analyte differs in the degree of down-regulation relative the other analyte. One advantageous aspect of a reversal is the presence of complementary information in the two analytes, so that the combination of the two is more diagnostic of the condition of interest than either one alone. Preferably the

combination of the two analytes increases signal-to-noise ratio by compensating for biomedical conditions not of interest, pre-analytic variability and/or analytic variability. Out of all the possible reversals within a narrow window, a subset can be selected based on individual univariate performance. Additionally, a subset can be selected based on bivariate or multivariate performance in a training set, with testing on held-out data or on bootstrap iterations. For example, logistic or linear regression models can be trained, optionally with parameter shrinkage by LI or L2 or other penalties, and tested in leave-one-out, leave-pair-out or leave-fold-out cross-validation, or in bootstrap sampling with replacement, or in a held-out data set. In some embodiments, the analyte value is itself a ratio of the peak area of the endogenous analyte over that of the peak area of the corresponding stable isotopic standard analyte, referred to herein as: response ratio or relative ratio. As disclosed herein, the ratio of the relative peak areas corresponding to the abundance of two analytes, for example, the ratio of the relative peak area of an up-regulated biomarker over the relative peak area of a down- regulated biomarker, referred herein as a reversal value, can be used to identify robust and accurate classifiers and predict probability of preterm birth, predicting probability of term birth, predicting gestational age at birth (GAB), predicting time to birth and/or monitoring of progress of preventative therapy in a pregnant female. The present invention is thus based, in part, on the identification of biomarker pairs where the relative expression of a biomarker pair is reversed that exhibit a change in reversal value between PTB and non-PTB. Use of a ratio of biomarkers in the methods disclosed herein corrects for variability that is the result of human manipulation after the removal of the biological sample from the pregnant female. Such variability can be introduced, for example, during sample collection, processing, depletion, digestion or any other step of the methods used to measure the biomarkers present in a sample and is independent of how the biomarkers behave in nature. Accordingly, the invention generally encompasses the use of a reversal pair in a method of diagnosis or prognosis to reduce variability and/or amplify, normalize or clarify diagnostic signal.

[0029] While the term reversal value refers to the ratio of the relative peak area of an up- regulated analyte over the relative peak area of a down-regulated analyte and serves to both normalize variability and amplify diagnostic signal, it is also contemplated that a pair of biomarkers of the invention could be measured by any other means, for example, by subtraction, addition or multiplication of relative peak areas. The methods disclosed herein encompass the measurement of biomarker pairs by such other means.

[0030] This method is advantageous because it provides the simplest possible classifier that is independent of data normalization, helps to avoid overfitting, and results in a very simple experimental test that is easy to implement in the clinic. The use of marker pairs based on changes in reversal values that are independent of data normalization enabled the development of the clinically relevant biomarkers disclosed herein. Because quantification of any single protein is subject to uncertainties caused by measurement variability, normal fluctuations, and individual related variation in baseline expression, as well as idiopathic variation, or systematic variation related to conditions not of interest, identification of pairs of markers that may be under coordinated, systematic regulation enables robust methods for individualized diagnosis and prognosis.

[0031] The disclosure provides biomarker reversal pairs and associated panels of reversal pairs, methods and kits for determining the probability for preterm birth in a pregnant female. One major advantage of the present disclosure is that risk of developing preterm birth can be assessed early during pregnancy so that appropriate monitoring and clinical management to prevent preterm delivery can be initiated in a timely fashion. The present invention is of particular benefit to females lacking any risk factors for preterm birth and who would not otherwise be identified and treated. The present invention is additionally beneficial to women on progersterone therapy who may be at unknown additional risk and could benefit from the analysis provided by the methods of the invention.

[0032] By way of example, the present disclosure includes methods for generating a result useful in determining probability for preterm birth in a pregnant female by obtaining a dataset associated with a sample, where the dataset at least includes quantitative data about the relative expression of biomarker pairs that have been identified as exhibiting changes in reversal value predictive of preterm birth, and inputting the dataset into an analytic process that uses the dataset to generate a result useful in determining probability for preterm birth in a pregnant female. As described further below, quantitative data can include amino acids, peptides, polypeptides, proteins, nucleotides, nucleic acids, nucleosides, sugars, fatty acids, steroids, metabolites, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof.

[0033] In addition to the specific biomarkers identified in this disclosure, for example, by accession number in a public database, sequence, or reference, the invention also contemplates use of biomarker variants that are at least 90% or at least 95% or at least 97% identical to the exemplified sequences and that are now known or later discovered and that have utility for the methods of the invention. These variants may represent polymorphisms, splice variants, mutations, and the like. In this regard, the instant specification discloses multiple art-known proteins in the context of the invention and provides exemplary accession numbers associated with one or more public databases as well as exemplary references to published journal articles relating to these art-known proteins. However, those skilled in the art appreciate that additional accession numbers and journal articles can easily be identified that can provide additional characteristics of the disclosed biomarkers and that the exemplified references are in no way limiting with regard to the disclosed biomarkers. As described herein, various techniques and reagents find use in the methods of the present invention. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As described herein, biomarkers can be detected through a variety of assays and techniques known in the art. As further described herein, such assays include, without limitation, mass spectrometry (MS)-based assays, antibody -based assays as well as assays that combine aspects of the two.

[0034] In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group comprising those pairs listed in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67.

[0035] The invention provides stable isotope labeled standard peptides (SIS peptides) corresponding to surrogate peptides of the biomarkers disclosed herein. The biomarkers of the invention, their surrogate peptides and the SIS peptides can be used in methods to predict risk for pre-term birth in a pregnant female.

[0036] In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female an individual expression level or a reversal value for a biomarker or pair of biomarkers disclosed herein determine the probability for preterm birth in said pregnant female. In additional embodiments the sample is obtained between 19 and 21 weeks of GABD. In further embodiments the sample is obtained between 19 and 22 weeks of GABD.

[0037] In addition to the specific biomarkers, the disclosure further includes biomarker variants that are about 90%, about 95%, or about 97% identical to the exemplified sequences. Variants, as used herein, include polymorphisms, splice variants, mutations, and the like. Although described with reference to protein biomarkers, changes in reversal value can be identified in protein or gene expression levels for pairs of biomarkers.

[0038] Additional markers can be selected from one or more risk indicia, including but not limited to, maternal characteristics, medical history, past pregnancy history, and obstetrical history. Such additional markers can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, hypertension, urogenital infections (i.e. urinary tract infection), asthma, anxiety and depression, asthma, hypertension, hypothyroidism. Demographic risk indicia for preterm birth can include, for example, maternal age, race/ethnicity, single marital status, low

socioeconomic status, maternal education, maternal age, employment-related physical activity, occupational exposures and environment exposures and stress. Further risk indicia can include, inadequate prenatal care, cigarette smoking, use of marijuana and other illicit drugs, cocaine use, alcohol consumption, caffeine intake, maternal weight gain, dietary intake, sexual activity during late pregnancy and leisure-time physical activities. (Preterm Birth: Causes, Consequences, and Prevention, Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes; Behrman RE, Butler AS, editors.

Washington (DC): National Academies Press (US); 2007). Additional risk indicia useful for as markers can be identified using learning algorithms known in the art, such as linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression, which are known to those of skill in the art and are further described herein.

[0039] It must be noted that, as used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "a biomarker" includes a mixture of two or more biomarkers, and the like.

[0040] The term "about," particularly in reference to a given quantity, is meant to encompass deviations of plus or minus five percent.

[0041] As used in this application, including the appended claims, the singular forms "a," "an," and "the" include plural references, unless the content clearly dictates otherwise, and are used interchangeably with "at least one" and "one or more."

[0042] As used herein, the terms "comprises," "comprising," "includes," "including," "contains," "containing," and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, product-by-process, or composition of matter that comprises, includes, or contains an element or list of elements does not include only those elements but can include other elements not expressly listed or inherent to such process, method, product-by-process, or composition of matter.

[0043] As used herein, the term "panel" refers to a composition, such as an array or a collection, comprising one or more biomarkers. The term can also refer to a profile or index of expression patterns of one or more biomarkers described herein. The number of biomarkers useful for a biomarker panel is based on the sensitivity and specificity value for the particular combination of biomarker values.

[0044] As used herein, and unless otherwise specified, the terms "isolated" and

"purified" generally describes a composition of matter that has been removed from its native environment (e.g., the natural environment if it is naturally occurring), and thus is altered by the hand of man from its natural state so as to possess markedly different characteristics with regard to at least one of structure, function and properties. An isolated protein or nucleic acid is distinct from the way it exists in nature and includes synthetic peptides and proteins.

[0045] The term "biomarker" refers to a biological molecule, or a fragment of a biological molecule, the change and/or the detection of which can be correlated with a particular physical condition or state. The terms "marker" and "biomarker" are used interchangeably throughout the disclosure. For example, the biomarkers of the present invention are correlated with an increased likelihood of preterm birth. Such biomarkers include any suitable analyte, but are not limited to, biological molecules comprising nucleotides, nucleic acids, nucleosides, amino acids, sugars, fatty acids, steroids, metabolites, peptides, polypeptides, proteins, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof (e.g., glycoproteins, ribonucleoproteins, lipoproteins). The term also encompasses portions or fragments of a biological molecule, for example, peptide fragment of a protein or polypeptide that comprises at least 5 consecutive amino acid residues, at least 6 consecutive amino acid residues, at least 7 consecutive amino acid residues, at least 8 consecutive amino acid residues, at least 9 consecutive amino acid residues, at least 10 consecutive amino acid residues, at least 1 1 consecutive amino acid residues, at least 12 consecutive amino acid residues, at least 13 consecutive amino acid residues, at least 14 consecutive amino acid residues, at least 15 consecutive amino acid residues, at least 5 consecutive amino acid residues, at least 16 consecutive amino acid residues, at least 17consecutive amino acid residues, at least 18 consecutive amino acid residues, at least 19 consecutive amino acid residues, at least 20 consecutive amino acid residues, at least 21 consecutive amino acid residues, at least 22 consecutive amino acid residues, at least 23 consecutive amino acid residues, at least 24 consecutive amino acid residues, at least 25 consecutive amino acid residues, or more consecutive amino acid residues.

[0046] As used herein, the term "surrogate peptide" refers to a peptide that is selected to serve as a surrogate for quantification of a biomarker of interest in an MRM assay

configuration. Quantification of surrogate peptides is best achieved using stable isotope labeled standard surrogate peptides ("SIS surrogate peptides" or "SIS peptides") in

conjunction with the MRM detection technique. A surrogate peptide can be synthetic. An SIS surrogate peptide can be synthesized with heavy labeled for example, with an Arginine or Lysine, or any other amino acid at the C-terminus of the peptide to serve as an internal standard in the MRM assay. An SIS surrogate peptide is not a naturally occurring peptide and has markedly different structure and properties compared to its naturally occurring counterpart.

[0047] In some embodiments, the invention provides a method of determining

probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a ratio for at least one pair of biomarkers selected from the group consisting of the biomarkers disclosed in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67 to determine the probability for preterm birth in said pregnant female, wherein the existence of a change in the ratio between the pregnant female and a term control determines the probability for preterm birth in the pregnant female. In some embodiments, the ratio may include an up-regulated protein in the numerator, a down- regulated protein in the denominator or both. For example, a biomarker ratio can include an up-regulated protein in the numerator and a down-regulated protein in the denominator, which is defined herein as a "reversal". In the instances where the ratio includes an up-regulated protein in the numerator, or a down-regulated protein in the denominator, the either protein could serve to normalize (e.g. decrease pre-analytical or analytical variability). In the particular case of a ratio that is a "reversal" both amplification and normalization are possible. It is understood, that the methods of the invention are not limited to the subset of reversals, but also encompass ratios of biomarkers. A ratio of biomarkers can include, for example, an up- regulated protein in the numerator and an un-regulated protein in the denominator, as well as an un-regulated protein in the numerator and a down-regulated protein in the denominator. In these instances, the un-regulated protein would serve as normalizes

[0048] As used herein, the term "reversal pair" refers to biomarkers in pairs that exhibit a change in value between the classes being compared. A reversal pair consists of two biomarkers that classify data better than either biomarker alone. The detection of reversals in protein concentrations or gene expression levels eliminates the need for data normalization or the establishment of population-wide thresholds. Encompassed within the definition of any reversal pair is the corresponding reversal pair wherein individual biomarkers are switched between the numerator and denominator. One skilled in the art will appreciate that such a corresponding reversal pair is equally informative with regard to its predictive power. One skilled in the art further understands that the biomarkers featured in the reversal pairs described herein, including, but not limited to the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67, can also be informative for a method of determining probability for preterm birth in a pregnant female wherein the biomarker values are utilized in a computation method other than a reversal, for example, where two or more of the biomarkers are subtracted from one another, and/or other mathematical operations are applied, or used in a logistic equation.

[0049] As disclosed hererin, the reversal method is advantageous because it provides the simplest possible classifier that is independent of data normalization, helps to avoid overfitting, and results in a very simple experimental test that is easy to implement in the clinic. The use of biomarker pairs based on reversals that are independent of data

normalization as described herein has tremendous power as a method for the identification of clinically relevant PTB biomarkers. Because quantification of any single protein is subject to uncertainties caused by measurement variability, normal fluctuations, and individual related variation in baseline expression, identification of pairs of markers that can be under coordinated, systematic regulation should prove to be more robust for individualized diagnosis and prognosis.

[0050] In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of the biomarkers listed in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67 in a pregnant female to determine the probability for preterm birth in the pregnant female.

[0051] For methods directed to predicating time to birth, it is understood that "birth" means birth following spontaneous onset of labor, with or without rupture of membranes.

[0052] Although described and exemplified with reference to methods of determining probability for preterm birth in a pregnant female, the present disclosure is similarly applicable to methods of predicting gestational age at birth (GAB), methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth (TTB) in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.

[0053] Furthermore, although described and exemplified with reference to methods of determining probability for preterm birth in a pregnant female, the present disclosure is similarly applicable to methods of predicting an abnormal glucola test, gestational diabetes, hypertension, preeclampsia, intrauterine growth restriction, stillbirth, fetal growth restriction, HELLP syndrome, oligohyramnios, chorioamnionitis, chorioamnionitis, placental previa, placental acreta, abruption, abruptio placenta, placental hemorrhage, preterm premature rupture of membranes, preterm labor, unfavorable cervix, postterm pregnancy, cholelithiasis, uterine over distention, stress. As described in more detail below, the classifier described herein is sensitive to a component of medically indicated PTB based on conditions such as, for example, preeclampsia or gestational diabetes.

[0054] In some embodiments, the present disclosure provides biomarkers, biomarker pairs and/or reversals that are strong predictors of time to birth (TTB). TTB is defined as the difference between the GABD and the gestational age at birth (GAB). This discovery enables prediction, either individually or in mathematical combination of such analytes of TTB or GAB. Analytes that lack a case versus control difference, but demonstrate changes in analyte intensity across pregnancy, are useful in a pregnancy clock according to the methods of the invention. Calibration of multiple analytes that may not be diagnostic of preterm birth of other disorders, could be used to date pregnancy. Such a pregnancy clock is of value to confirm dating by another measure (e.g. date of last menstrual period and/or ultrasound dating), or useful alone to subsequently and more accurately predict sPTB, GAB or TTB, for example. These analytes, also referred to herein as "clock proteins", can be used to date a pregnancy in the absence of or in conjunction with other dating methods.

[0055] In additional embodiments, the methods of determining probability for preterm birth in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preterm birth. In additional embodiments the risk indicia are selected form the group consisting of previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, gravidity, primigravida,

multigravida, placental abnormalities, cervical and uterine anomalies, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, hypertension, and urogenital infections.

[0056] A "measurable feature" is any property, characteristic or aspect that can be determined and correlated with the probability for preterm birth in a subject. The term further encompasses any property, characteristic or aspect that can be determined and correlated in connection with a prediction of GAB, a prediction of term birth, or a prediction of time to birth in a pregnant female. For a biomarker, such a measurable feature can include, for example, the presence, absence, or concentration of the biomarker, or a fragment thereof, in the biological sample, an altered structure, such as, for example, the presence or amount of a post- translational modification, such as oxidation at one or more positions on the amino acid sequence of the biomarker or, for example, the presence of an altered conformation in comparison to the conformation of the biomarker in term control subjects, and/or the presence, amount, or altered structure of the biomarker as a part of a profile of more than one biomarker.

[0057] In addition to biomarkers, measurable features can further include risk indicia including, for example, maternal characteristics, education, age, race, ethnicity, medical history, past pregnancy history, obstetrical history. For a risk indicium, a measurable feature can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight/low body mass index, diabetes, hypertension, urogenital infections, hypothyroidism, asthma, low educational attainment, cigarette smoking, drug use and alcohol consumption.

[0058] In some embodiments, the methods of the invention comprise calculation of body mass index (BMI).

[0059] In some embodiments, the disclosed methods for determining the probability of preterm birth encompass detecting and/or quantifying one or more biomarkers using mass spectrometry, a capture agent or a combination thereof.

[0060] In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.

[0061] In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass communicating the probability to a health care provider. The disclosed of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female similarly encompass communicating the probability to a health care provider. As stated above, although described and exemplified with reference to determining probability for preterm birth in a pregnant female, all embodiments described throughout this disclosure are similarly applicable to the methods of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female.

Specifically, the biomarkers and panels recited throughout this application with express reference to methods for preterm birth can also be used in methods for predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.

[0062] In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In some embodiments, the method of determining probability for preterm birth in a pregnant female encompasses the additional feature of expressing the probability as a risk score.

[0063] In the methods disclosed herein, determining the probability for preterm birth in a pregnant female encompasses an initial step that includes formation of a probability/risk index by measuring the ratio of isolated biomarkers selected from the group in a cohort of preterm pregnancies and term pregnancies with known gestational age at birth. For an individual pregnancy, determining the probability of for preterm birth in a pregnant female encompasses measuring the ratio of the isolated biomarker using the same measurement method as used in the initial step of creating the probability/risk index, and comparing the measured ratio to the risk index to derive the personalized risk for the individual pregnancy.

[0064] As used herein, the term "risk score" refers to a score that can be assigned based on comparing the amount of one or more biomarkers or reversal values in a biological sample obtained from a pregnant female to a standard or reference score that represents an average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In some embodiments, the risk score is expressed as the log of the reversal value, i.e. the ratio of the relative intensities of the individual biomarkers. One skilled in the art will appreciate that a risk score can be expressed based on a various data transformations as well as being expressed as the ratio itself. Furthermore, with particular regard to reversal pairs, one skilled in the art will appreciate the any ratio is equally informative if the biomarkers in the numerator and denominator are switched or that related data transformations {e.g. subtraction) are applied. Because the level of a biomarker may not be static throughout pregnancy, a standard or reference score has to have been obtained for the gestational time point that corresponds to that of the pregnant female at the time the sample was taken. The standard or reference score can be predetermined and built into a predictor model such that the comparison is indirect rather than actually performed every time the probability is determined for a subject. A risk score can be a standard {e.g., a number) or a threshold {e.g., a line on a graph). The value of the risk score correlates to the deviation, upwards or downwards, from the average amount of the one or more biomarkers calculated from biological samples obtained from either a random pool or a selected pool of pregnant females. In certain embodiments, if a risk score is greater than a standard or reference risk score, the pregnant female can have an increased likelihood of preterm birth. In some embodiments, the magnitude of a pregnant female's risk score, or the amount by which it exceeds a reference risk score, can be indicative of or correlated to that pregnant female' s level of risk.

[0065] The invention comprises classifiers that include one or more individual biomarkers as well as single and multiple reversals. Improved performance can be achieved by constructing predictors formed from more than one reversal. In some embodiments, one or more analytes may act as normalizers to multiple other analytes in a multivariate panel. In additional embodiments, the invention methods therefore comprise multiple reversals that have a strong predictive performance for example, for separate GABD windows, preterm premature rupture of membranes (PPROM) versus preterm labor in the absence of PPROM (PTL), fetal gender, primigravida versus multigravida. Performance of predictors formed from

combinations (SumLog) of multiple reversals can be evaluated for the entire blood draw range and a predictor score was derived from summing the Log values of the individual reversal (SumLog). One skilled in the art can select other models (e.g. logistic regression) to construct a predictor formed from more than one reversal.

[0066] The predictive performance of the claimed methods can be improved with a BMI stratification, for example, of greater than 22 and equal or less than 37 kg/m 2 . Accordingly, in some embodiments, the methods of the invention can be practiced with samples obtained from pregnant females with a specified BMI. Briefly, BMI is an individual' s weight in kilograms divided by the square of height in meters. BMI does not measure body fat directly, but research has shown that BMI is correlated with more direct measures of body fat obtained from skinfold thickness measurements, bioelectrical impedance, densitometry (underwater weighing), dual energy x-ray absorptiometry (DXA) and other methods. Furthermore, BMI appears to be as strongly correlated with various metabolic and disease outcome as are these more direct measures of body fatness. Generally, an individual with a BMI below 18.5 is considered underweight, an individual with a BMI of equal or greater than 18.5 to 24.9 normal weight, while an individual with a BMI of equal or greater than 25.0 to 29.9 is considered overweight and an individual with a BMI of equal or greater than 30.0 is considered obese. In some embodiments, the predictive performance of the claimed methods can be improved with a BMI stratification of equal or greater than 18, equal or greater than 19, equal or greater than 20, equal or greater than 21, equal or greater than 22, equal or greater than 23, equal or greater than 24, equal or greater than 25, equal or greater than 26, equal or greater than 27, equal or greater than 28, equal or greater than 29 or equal or greater than 30. In other embodiments, the predictive performance of the claimed methods can be improved with a BMI stratification of equal or less than 18, equal or less than 19, equal or less than 20, equal or less than 21, equal or less than 22, equal or less than 23, equal or less than 24, equal or less than 25, equal or less than 26, equal or less than 27, equal or less than 28, equal or less than 29 or equal or less than 30.

[0067] In the context of the present invention, the term "biological sample," encompasses any sample that is taken from pregnant female and contains one or more of the biomarkers disclosed herein. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As will be appreciated by those skilled in the art, a biological sample can include any fraction or component of blood, without limitation, T cells, monocytes, neutrophils, erythrocytes, platelets and microvesicles such as exosomes and exosome-like vesicles. In a particular embodiment, the biological sample is serum.

[0068] As used herein, the term "preterm birth" refers to delivery or birth at a gestational age less than 37 completed weeks. Other commonly used subcategories of preterm birth have been established and delineate moderately preterm (birth at 33 to 36 weeks of gestation), very preterm (birth at <33 weeks of gestation), and extremely preterm (birth at <28 weeks of gestation). With regard to the methods disclosed herein, those skilled in the art understand that the cut-offs that delineate preterm birth and term birth as well as the cut-offs that delineate subcategories of preterm birth can be adjusted in practicing the methods disclosed herein, for example, to maximize a particular health benefit. In various embodiments of the invention, cut-off that delineate preterm birth include, for example, birth at <37 weeks of gestation, <36 weeks of gestation, <35 weeks of gestation, <34 weeks of gestation, <33 weeks of gestation, <32 weeks of gestation, <30 weeks of gestation, <29 weeks of gestation, <28 weeks of gestation, <27 weeks of gestation, <26 weeks of gestation, <25 weeks of gestation, <24 weeks of gestation, <23 weeks of gestation or <22 weeks of gestation. In some embodiments, the cutoff delineating preterm birth is <35 weeks of gestation . It is further understood that such adjustments are well within the skill set of individuals considered skilled in the art and encompassed within the scope of the inventions disclosed herein. Gestational age is a proxy for the extent of fetal development and the fetus's readiness for birth. Gestational age has typically been defined as the length of time from the date of the last normal menses to the date of birth. However, obstetric measures and ultrasound estimates also can aid in estimating gestational age. Preterm births have generally been classified into two separate subgroups. One, spontaneous preterm births are those occurring subsequent to spontaneous onset of preterm labor or preterm premature rupture of membranes regardless of subsequent labor augmentation or cesarean delivery. Two, medically indicated preterm births are those occurring following induction or cesarean section for one or more conditions that the woman's caregiver determines to threaten the health or life of the mother and/or fetus and not in the presence of spontaneous initiation of labor. Also, it may be that voluntary preterm birth for non-life-threatening reasons will still be denoted as medically indicated. In some

embodiments, the methods disclosed herein are directed to determining the probability for spontaneous preterm birth or medically indicated preterm birth. In some embodiments, the methods disclosed herein are directed to determining the probability for spontaneous preterm birth. In additional embodiments, the methods disclosed herein are directed to medically indicated preterm birth. In additional embodiments, the methods disclosed herein are directed to predicting gestational age at birth.

[0069] As used herein, the term "estimated gestational age" or "estimated GA" refers to the GA determined based on the date of the last normal menses and additional obstetric measures, ultrasound estimates or other clinical parameters including, without limitation, those described in the preceding paragraph. In contrast the term "predicted gestational age at birth" or "predicted GAB" refers to the GAB determined based on the methods of the invention as disclosed herein. As used herein, "term birth" refers to birth at a gestational age equal or more than 37 completed weeks.

[0070] In some embodiments, the pregnant female is between 17 and 28 weeks of gestation at the time the biological sample is collected, also referred to as GABD (Gestational Age at Blood Draw). In other embodiments, the pregnant female is between 16 and 29 weeks, between 17 and 28 weeks, between 18 and 27 weeks, between 19 and 26 weeks, between 20 and 25 weeks, between 21 and 24 weeks, or between 22 and 23 weeks of gestation at the time the biological sample is collected. In further embodiments, the pregnant female is between about 17 and 22 weeks, between about 16 and 22 weeks between about 22 and 25 weeks, between about 13 and 25 weeks, between about 26 and 28, or between about 26 and 29 weeks of gestation at the time the biological sample is collected. Accordingly, the gestational age of a pregnant female at the time the biological sample is collected can be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks. In particular embodiments, the biological sample is collected between 19 and 21 weeks of gestational age. In particular embodiments, the biological sample is collected between 19 and 22 weeks of gestational age. In particular embodiments, the biological sample is collected between 19 and 21 weeks of gestational age. In particular embodiments, the biological sample is collected between 19 and 22 weeks of gestational age. In particular embodiments, the biological sample is collected at 18 weeks of gestational age. In further embodiments, the highest performing reversals for consecutive or overlapping time windows can be combined in a single classifier to predict the probability of sPTB over a wider window of gestational age at blood draw.

[0071] The term "amount" or "level" as used herein refers to a quantity of a biomarker that is detectable or measurable in a biological sample and/or control. The quantity of a biomarker can be, for example, a quantity of polypeptide, the quantity of nucleic acid, or the quantity of a fragment or surrogate. The term can alternatively include combinations thereof. The term "amount" or "level" of a biomarker is a measurable feature of that biomarker.

[0072] The invention also provides a method of detecting one or more biomarkers or a pair of isolated biomarkers selected from the group consisting of the biomarker pairs specified in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67 in a pregnant female. For detecting one or more individual biomarkers said method comprises the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether the one or more biomarkers are present in the biological sample by contacting the biological sample with a capture agent that specifically binds to each of said one or more biomarkers; and detecting binding between each of the one or more biomarkers and the corresponding one or more capture agents. For detecting biomarker pairs said method comprises the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether the pair of isolated biomarkers is present in the biological sample by contacting the biological sample with a first capture agent that specifically binds a first member of said pair and a second capture agent that specifically binds a second member of said pair; and detecting binding between the first biomarker of said pair and the first capture agent and between the second member of said pair and the second capture agent.

[0073] In one embodiment, the sample is obtained between 19 and 21 weeks of gestational age. In a further embodiment, the capture agent is selected from the group consisting of and antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In an additional embodiment, the method is performed by an assay selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA).

[0074] In one embodiment the invention provides a method of detecting one or more isolated biomarkers or a pair of isolated biomarkers is present in the biological sample comprising subjecting the sample to a proteomics work-flow comprised of mass spectrometry quantification.

[0075] A "proteomics work-flow" generally encompasses one or more of the following steps: Serum samples are thawed and depleted of the 14 highest abundance proteins by immune-affinity chromatography. Depleted serum is digested with a protease, for example, trypsin, to yield peptides. The digest is subsequently fortified with a mixture of SIS peptides and then desalted and subjected to LC-MS/MS with a triple quadrupole instrument operated in MRM mode. Response ratios are formed from the area ratios of endogenous peptide peaks and the corresponding SIS peptide counterpart peaks. Those skilled in the art appreciate that other types of MS such as, for example, MALDI-TOF, or ESI-TOF, can be used in the methods of the invention. In addition, one skilled in the art can modify a proteomics workflow, for example, by selecting particular reagents (such as proteases) or omitting or changing the order of certain steps, for example, it may not be necessary to immunodeplete, the SIS peptide could be added earlier or later and stable isotope labeled proteins could be used as standards instead of peptides.

[0076] Any existing, available or conventional separation, detection and quantification methods can be used herein to measure the presence or absence (e.g., readout being present vs. absent; or detectable amount vs. undetectable amount) and/or quantity (e.g., readout being an absolute or relative quantity, such as, for example, absolute or relative concentration) of biomarkers, peptides, polypeptides, proteins and/or fragments thereof and optionally of the one or more other biomarkers or fragments thereof in samples. In some embodiments, detection and/or quantification of one or more biomarkers comprises an assay that utilizes a capture agent. In further embodiments, the capture agent is an antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In additional embodiments, the assay is an enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). In some embodiments, detection and/or quantification of one or more biomarkers further comprises mass spectrometry (MS). In yet further embodiments, the mass spectrometry is co-immunoprecipitation-mass spectrometry (co-IP MS), where coimmunoprecipitation, a technique suitable for the isolation of whole protein complexes is followed by mass spectrometric analysis.

[0077] As used herein, the term "mass spectrometer" refers to a device able to

volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable methods of volatilization/ionization are matrix-assisted laser desorption ionization (MALDI), electrospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, time of flight tandem mass spectrometer (TOF

MS/MS), Fourier-transform mass spectrometers, Orbitraps and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments can, in turn, be interfaced with a variety of other instruments that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including matrix-assisted laser desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.

[0078] Generally, any mass spectrometric (MS) technique that can provide precise information on the mass of peptides, and preferably also on fragmentation and/or (partial) amino acid sequence of selected peptides (e.g., in tandem mass spectrometry, MS/MS; or in post source decay, TOF MS), can be used in the methods disclosed herein. Suitable peptide MS and MS/MS techniques and systems are well-known per se (see, e.g., Methods in

Molecular Biology, vol. 146: "Mass Spectrometry of Proteins and Peptides", by Chapman, ed., Humana Press 2000; Biemann 1990. Methods Enzymol 193 : 455-79; or Methods in Enzymology, vol. 402: "Biological Mass Spectrometry", by Burlingame, ed., Academic Press 2005) and can be used in practicing the methods disclosed herein. Accordingly, in some embodiments, the disclosed methods comprise performing quantitative MS to measure one or more biomarkers. Such quantitative methods can be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. In particular embodiments, MS can be operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Other methods useful in this context include isotope-coded affinity tag (ICAT), tandem mass tags (TMT), or stable isotope labeling by amino acids in cell culture (SILAC), followed by chromatography and MS/MS.

[0079] As used herein, the terms "multiple reaction monitoring (MRM)" or "selected reaction monitoring (SRM)" refer to an MS-based quantification method that is particularly useful for quantifying analytes that are in low abundance. In an SRM experiment, a predefined precursor ion and one or more of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. Multiple SRM precursor and fragment ion pairs can be measured within the same experiment on the chromatographic time scale by rapidly toggling between the different precursor/fragment pairs to perform an MRM experiment. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted analyte (e.g., peptide or small molecule such as chemical entity, steroid, hormone) can constitute a definitive assay. A large number of analytes can be quantified during a single LC-MS experiment. The term "scheduled," or "dynamic" in reference to MRM or SRM, refers to a variation of the assay wherein the transitions for a particular analyte are only acquired in a time window around the expected retention time, significantly increasing the number of analytes that can be detected and quantified in a single LC-MS experiment and contributing to the selectivity of the test, as retention time is a property dependent on the physical nature of the analyte. A single analyte can also be monitored with more than one transition. Finally, included in the assay can be standards that correspond to the analytes of interest (e.g., same amino acid sequence), but differ by the inclusion of stable isotopes. Stable isotopic standards (SIS) can be incorporated into the assay at precise levels and used to quantify the corresponding unknown analyte. An additional level of specificity is contributed by the co-elution of the unknown analyte and its corresponding SIS and properties of their transitions (e.g., the similarity in the ratio of the level of two transitions of the unknown and the ratio of the two transitions of its corresponding SIS).

[0080] Mass spectrometry assays, instruments and systems suitable for biomarker peptide analysis can include, without limitation, matrix-assisted laser desorption/ionisation time-of- flight (MALDI-TOF) MS; MALDI-TOF post-source-decay (PSD); MALDI-TOF/TOF;

surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF) MS; electrospray ionization mass spectrometry (ESI-MS); ESI-MS/MS; ESI-MS/(MS) n (n is an integer greater than zero); ESI 3D or linear (2D) ion trap MS; ESI triple quadrupole MS; ESI quadrupole orthogonal TOF (Q-TOF); ESI Fourier transform MS systems;

desorption/ionization on silicon (DIOS); secondary ion mass spectrometry (SIMS);

atmospheric pressure chemical ionization mass spectrometry (APCI-MS); APCI-MS/MS; APCI- (MS) n ; ion mobility spectrometry (IMS); inductively coupled plasma mass

spectrometry (ICP-MS)atmospheric pressure photoionization mass spectrometry (APPI-MS); APPI-MS/MS; and APPI- (MS) n . Peptide ion fragmentation in tandem MS (MS/MS) arrangements can be achieved using manners established in the art, such as, e.g., collision induced dissociation (CID). As described herein, detection and quantification of biomarkers by mass spectrometry can involve multiple reaction monitoring (MRM), such as described among others by Kuhn et al. Proteomics 4: 1175-86 (2004). Scheduled multiple-reaction- monitoring (Scheduled MRM) mode acquisition during LC-MS/MS analysis enhances the sensitivity and accuracy of peptide quantitation. Anderson and Hunter, Molecular and Cellular Proteomics 5(4):573 (2006). As described herein, mass spectrometry-based assays can be advantageously combined with upstream peptide or protein separation or fractionation methods, such as for example with the chromatographic and other methods described herein below. As further described herein, shotgun quantitative proteomics can be combined with SRM/MRM-based assays for high-throughput identification and verification of prognostic biomarkers of preterm birth.

[0081] A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a biomarker, including mass spectrometry approaches, such as MS/MS, LC-MS/MS, multiple reaction monitoring (MRM) or SRM and product-ion monitoring (PIM) and also including antibody based methods such as immunoassays such as Western blots, enzyme-linked immunosorbant assay (ELISA), immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, and FACS. Accordingly, in some embodiments, determining the level of the at least one biomarker comprises using an immunoassay and/or mass spectrometric methods. In additional embodiments, the mass spectrometric methods are selected from MS, MS/MS, LC-MS/MS, SRM, PIM, and other such methods that are known in the art. In other embodiments, LC- MS/MS further comprises ID LC-MS/MS, 2D LC-MS/MS or 3D LC-MS/MS. Immunoassay techniques and protocols are generally known to those skilled in the art ( Price and Newman, Principles and Practice of Immunoassay, 2nd Edition, Grove's Dictionaries, 1997; and

Gosling, Immunoassays: A Practical Approach, Oxford University Press, 2000.) A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used ( Self et al., Curr. Opin. Biotechnol.. 7:60-65 (1996).

[0082] In further embodiments, the immunoassay is selected from Western blot, ELISA, immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay (RIA), dot blotting, and FACS. In certain embodiments, the immunoassay is an ELISA. In yet a further embodiment, the ELISA is direct ELISA (enzyme-linked immunosorbent assay), indirect ELISA, sandwich ELISA, competitive ELISA, multiplex ELISA, ELISPOT technologies, and other similar techniques known in the art. Principles of these immunoassay methods are known in the art, for example John R. Crowther, The ELISA Guidebook, 1st ed., Humana Press 2000, ISBN 0896037282. Typically ELISAs are performed with antibodies but they can be performed with any capture agents that bind specifically to one or more biomarkers of the invention and that can be detected. Multiplex ELISA allows simultaneous detection of two or more analytes within a single compartment (e.g., microplate well) usually at a plurality of array addresses (Nielsen and Geierstanger 2004. J Immunol Methods 290: 107-20 (2004) and Ling et al. 2007. Expert Rev Mol Diagn 7: 87-98 (2007)).

[0083] In some embodiments, Radioimmunoassay (RIA) can be used to detect one or more biomarkers in the methods of the invention. RIA is a competition-based assay that is well known in the art and involves mixing known quantities of radioactively-labelled (e.g., 125 I or 131 I-labelled) target analyte with antibody specific for the analyte, then adding non-labeled analyte from a sample and measuring the amount of labeled analyte that is displaced (see, e.g., An Introduction to Radioimmunoassay and Related Techniques, by Chard T, ed., Elsevier Science 1995, ISBN 0444821198 for guidance). [0084] A detectable label can be used in the assays described herein for direct or indirect detection of the biomarkers in the methods of the invention. A wide variety of detectable labels can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Those skilled in the art are familiar with selection of a suitable detectable label based on the assay detection of the biomarkers in the methods of the invention. Suitable detectable labels include, but are not limited to, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.

[0085] For mass-spectrometry based analysis, differential tagging with isotopic reagents, e.g., isotope-coded affinity tags (ICAT) or the more recent variation that uses isobaric tagging reagents, iTRAQ (Applied Biosystems, Foster City, Calif), or tandem mass tags, TMT, (Thermo Scientific, Rockford, IL), followed by multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis can provide a further methodology in practicing the methods of the invention.

[0086] A chemiluminescence assay using a chemiluminescent antibody can be used for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome also can be suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), beta-galactosidase, urease, and the like. Detection systems using suitable substrates for horseradish-peroxidase, alkaline phosphatase, and beta-galactosidase are well known in the art.

[0087] A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125 I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer' s instructions. If desired, assays used to practice the invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.

[0088] In some embodiments, the methods described herein encompass quantification of the biomarkers using mass spectrometry (MS). In further embodiments, the mass spectrometry can be liquid chromatography-mass spectrometry (LC-MS), multiple reaction monitoring (MRM) or selected reaction monitoring (SRM). In additional embodiments, the MRM or SRM can further encompass scheduled MRM or scheduled SRM.

[0089] As described above, chromatography can also be used in practicing the methods of the invention. Chromatography encompasses methods for separating chemical substances and generally involves a process in which a mixture of analytes is carried by a moving stream of liquid or gas ("mobile phase") and separated into components as a result of differential distribution of the analytes as they flow around or over a stationary liquid or solid phase ("stationary phase"), between the mobile phase and said stationary phase. The stationary phase can be usually a finely divided solid, a sheet of filter material, or a thin film of a liquid on the surface of a solid, or the like. Chromatography is well understood by those skilled in the art as a technique applicable for the separation of chemical compounds of biological origin, such as, e.g., amino acids, proteins, fragments of proteins or peptides, etc.

[0090] Chromatography can be columnar (i.e., wherein the stationary phase is deposited or packed in a column), preferably liquid chromatography, and yet more preferably high- performance liquid chromatography (HPLC), or ultra high performance/pressure liquid chromatography (UHPLC). Particulars of chromatography are well known in the art

(Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons Inc., 1993). Exemplary types of chromatography include, without limitation, high-performance liquid chromatography (HPLC), UHPLC, normal phase HPLC (NP-HPLC), reversed phase HPLC (RP-HPLC), ion exchange chromatography (IEC), such as cation or anion exchange chromatography, hydrophilic interaction chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion chromatography (SEC) including gel filtration chromatography or gel permeation chromatography, chromatofocusing, affinity

chromatography such as immuno-affinity, immobilized metal affinity chromatography, and the like. Chromatography, including single-, two- or more-dimensional chromatography, can be used as a peptide fractionation method in conjunction with a further peptide analysis method, such as for example, with a downstream mass spectrometry analysis as described elsewhere in this specification.

[0091] Further peptide or polypeptide separation, identification or quantification methods can be used, optionally in conjunction with any of the above described analysis methods, for measuring biomarkers in the present disclosure. Such methods include, without limitation, chemical extraction partitioning, isoelectric focusing (IEF) including capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITP), capillary electrochromatography (CEC), and the like, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), capillary gel electrophoresis (CGE), capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), free flow electrophoresis (FFE), etc.

[0092] In the context of the invention, the term "capture agent" refers to a compound that can specifically bind to a target, in particular a biomarker. The term includes antibodies, antibody fragments, nucleic acid-based protein binding reagents (e.g. aptamers, Slow Off-rate Modified Aptamers (SOMAmer™)), protein-capture agents, natural ligands (i.e. a hormone for its receptor or vice versa), small molecules, natural product like macrocyclic N-methyl-peptide inhibitors (PeptiDream Inc., Tokyo, Japan), conotoxin libraries, and the like, or variants thereof.

[0093] Capture agents can be configured to specifically bind to a target, in particular a biomarker. Capture agents can include but are not limited to organic molecules, such as polypeptides, polynucleotides and other non polymeric molecules that are identifiable to a skilled person. In the embodiments disclosed herein, capture agents include any agent that can be used to detect, purify, isolate, or enrich a target, in particular a biomarker. Any art-known affinity capture technologies can be used to selectively isolate and enrich/concentrate biomarkers that are components of complex mixtures of biological media for use in the disclosed methods.

[0094] Antibody capture agents that specifically bind to a biomarker can be prepared using any suitable methods known in the art. See, e.g., Coligan, Current Protocols in

Immunology (1991); Harlow & Lane, Antibodies: A Laboratory Manual (1988); Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986). Antibody capture agents can be any immunoglobulin or derivative thereof, whether natural or wholly or partially synthetically produced. All derivatives thereof which maintain specific binding ability are also included in the term. Antibody capture agents have a binding domain that is homologous or largely homologous to an immunoglobulin binding domain and can be derived from natural sources, or partly or wholly synthetically produced. Antibody capture agents can be monoclonal or polyclonal antibodies. In some embodiments, an antibody is a single chain antibody. Those of ordinary skill in the art will appreciate that antibodies can be provided in any of a variety of forms including, for example, humanized, partially humanized, chimeric, chimeric humanized, etc. Antibody capture agents can be antibody fragments including, but not limited to, Fab, Fab', F(ab')2, scFv, Fv, dsFv diabody, and Fd fragments. An antibody capture agent can be produced by any means. For example, an antibody capture agent can be enzymatically or chemically produced by fragmentation of an intact antibody and/or it can be recombinantly produced from a gene encoding the partial antibody sequence. An antibody capture agent can comprise a single chain antibody fragment. Alternatively or additionally, antibody capture agent can comprise multiple chains which are linked together, for example, by disulfide linkages.; and, any functional fragments obtained from such molecules, wherein such fragments retain specific-binding properties of the parent antibody molecule. Because of their smaller size as functional components of the whole molecule, antibody fragments can offer advantages over intact antibodies for use in certain immunochemical techniques and experimental applications.

[0095] Suitable capture agents useful for practicing the invention also include aptamers. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. An aptamer can include any suitable number of nucleotides and different aptamers can have either the same or different numbers of nucleotides. Aptamers can be DNA or RNA or chemically modified nucleic acids and can be single stranded, double stranded, or contain double stranded regions, and can include higher ordered structures. An aptamer can also be a photoaptamer, where a photoreactive or chemically reactive functional group is included in the aptamer to allow it to be covalently linked to its corresponding target. Use of an aptamer capture agent can include the use of two or more aptamers that specifically bind the same biomarker. An aptamer can include a tag. An aptamer can be identified using any known method, including the SELEX (systematic evolution of ligands by exponential enrichment), process. Once identified, an aptamer can be prepared or synthesized in accordance with any known method, including chemical synthetic methods and enzymatic synthetic methods and used in a variety of applications for biomarker detection. Liu et al, Curr Med Chem. 18(27):4117-25 (2011). Capture agents useful in practicing the methods of the invention also include SOMAmers (Slow Off-Rate Modified Aptamers) known in the art to have improved off-rate characteristics. Brody et al, J Mol Biol. 422(5):595-606 (2012). SOMAmers can be generated using any known method, including the SELEX method.

[0096] It is understood by those skilled in the art that biomarkers can be modified prior to analysis to improve their resolution or to determine their identity. For example, the

biomarkers can be subject to proteolytic digestion before analysis. Any protease can be used. Proteases, such as trypsin, that are likely to cleave the biomarkers into a discrete number of fragments are particularly useful. The fragments that result from digestion function as a fingerprint for the biomarkers, thereby enabling their detection indirectly. This is particularly useful where there are biomarkers with similar molecular masses that might be confused for the biomarker in question. Also, proteolytic fragmentation is useful for high molecular weight biomarkers because smaller biomarkers are more easily resolved by mass spectrometry. In another example, biomarkers can be modified to improve detection resolution. For instance, neuraminidase can be used to remove terminal sialic acid residues from glycoproteins to improve binding to an anionic adsorbent and to improve detection resolution. In another example, the biomarkers can be modified by the attachment of a tag of particular molecular weight that specifically binds to molecular biomarkers, further distinguishing them.

Optionally, after detecting such modified biomarkers, the identity of the biomarkers can be further determined by matching the physical and chemical characteristics of the modified biomarkers in a protein database {e.g., SwissProt).

[0097] It is further appreciated in the art that biomarkers in a sample can be captured on a substrate for detection. Traditional substrates include antibody-coated 96-well plates or nitrocellulose membranes that are subsequently probed for the presence of the proteins.

Alternatively, protein-binding molecules attached to microspheres, microparticles, microbeads, beads, or other particles can be used for capture and detection of biomarkers. The protein- binding molecules can be antibodies, peptides, peptoids, aptamers, small molecule ligands or other protein-binding capture agents attached to the surface of particles. Each protein-binding molecule can include unique detectable label that is coded such that it can be distinguished from other detectable labels attached to other protein-binding molecules to allow detection of biomarkers in multiplex assays. Examples include, but are not limited to, color-coded microspheres with known fluorescent light intensities (see e.g., microspheres with xMAP technology produced by Luminex (Austin, Tex.); microspheres containing quantum dot nanocrystals, for example, having different ratios and combinations of quantum dot colors (e.g., Qdot nanocrystals produced by Life Technologies (Carlsbad, Calif); glass coated metal nanoparticles (see e.g., SERS nanotags produced by Nanoplex Technologies, Inc. (Mountain View, Calif); barcode materials (see e.g., sub-micron sized striped metallic rods such as Nanobarcodes produced by Nanoplex Technologies, Inc.), encoded microparticles with colored bar codes (see e.g., CellCard produced by Vitra Bioscience, vitrabio.com), glass microparticles with digital holographic code images (see e.g., CyVera microbeads produced by Illumina (San Diego, Calif); chemiluminescent dyes, combinations of dye compounds; and beads of detectably different sizes.

[0098] In another aspect, biochips can be used for capture and detection of the biomarkers of the invention. Many protein biochips are known in the art. These include, for example, protein biochips produced by Packard Bioscience Company (Meriden Conn.), Zyomyx (Hayward, Calif.) and Phylos (Lexington, Mass.). In general, protein biochips comprise a substrate having a surface. A capture reagent or adsorbent is attached to the surface of the substrate. Frequently, the surface comprises a plurality of addressable locations, each of which location has the capture agent bound there. The capture agent can be a biological molecule, such as a polypeptide or a nucleic acid, which captures other biomarkers in a specific manner. Alternatively, the capture agent can be a chromatographic material, such as an anion exchange material or a hydrophilic material. Examples of protein biochips are well known in the art.

[0099] In one embodiment, the invention provides a set of reagents to measure the levels of biomarkers, wherein the biomarkers are one or more of the biomarkers selected from the group consisting of the biomarkers set forth in Figures 1 and 2 and Tables 1 through 3, 6 through 36, and 42 through 67. Such reagents include, but are not limited to, the reagents described herein, such as those described above, for detection of the biomarkers of the invention. Such reagents can be used, for example, to measure the amount or level one or more biomarkers of the invention.

[00100] The present disclosure also provides methods for predicting the probability of preterm birth comprising measuring a change in reversal value of a biomarker pair. For example, a biological sample can be contacted with a panel comprising one or more polynucleotide binding agents. The expression of one or more of the biomarkers detected can then be evaluated according to the methods disclosed below, e.g., with or without the use of nucleic acid amplification methods. Skilled practitioners appreciate that in the methods described herein, a measurement of gene expression can be automated. For example, a system that can carry out multiplexed measurement of gene expression can be used, e.g., providing digital readouts of the relative abundance of hundreds of mRNA species simultaneously.

[00101] In some embodiments, nucleic acid amplification methods can be used to detect a polynucleotide biomarker. For example, the oligonucleotide primers and probes of the present invention can be used in amplification and detection methods that use nucleic acid substrates isolated by any of a variety of well-known and established methodologies (e.g., Sambrook et al, Molecular Cloning, A laboratory Manual, pp. 7.37-7.57 (2nd ed., 1989); Lin et al, in

Diagnostic Molecular Microbiology, Principles and Applications, pp. 605-16 (Persing et al, eds. (1993); Ausubel et al, Current Protocols in Molecular Biology (2001 and subsequent updates)). Methods for amplifying nucleic acids include, but are not limited to, for example the polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR) (see e.g., U.S. Pat. Nos. 4,683,195; 4,683,202; 4,800,159; 4,965, 188), ligase chain reaction (LCR) (see, e.g., Weiss, Science 254: 1292-93 (1991)), strand displacement amplification (SDA) (see e.g., Walker et al, Proc. Natl. Acad. Sci. USA 89:392-396 (1992); U.S. Pat. Nos. 5,270,184 and 5,455, 166), Thermophilic SDA (tSDA) (see e.g., European Pat. No. 0 684 315) and methods described in U.S. Pat. No. 5,130,238; Lizardi et al, BioTechnol. 6: 1197-1202 (1988); Kwoh et al, Proc. Natl. Acad. Sci. USA 86: 1173-77 (1989); Guatelli et al, Proc. Natl. Acad. Sci. USA 87: 1874-78 (1990); U.S. Pat. Nos. 5,480,784; 5,399,491; US Publication No. 2006/46265.

[00102] In some embodiments, measuring mRNA in a biological sample can be used as a surrogate for detection of the level of the corresponding protein biomarker in a biological sample. Thus, any of the biomarkers, biomarker pairs or biomarker reversal panels described herein can also be detected by detecting the appropriate RNA. Levels of mRNA can be measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA can be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A.

Shimkets, editor, Humana Press, 2004.

[00103] Some embodiments disclosed herein relate to diagnostic and prognostic methods of determining the probability for preterm birth in a pregnant female. The detection of the level of expression of one or more biomarkers and/or the determination of a ratio of biomarkers can be used to determine the probability for preterm birth in a pregnant female. Such detection methods can be used, for example, for early diagnosis of the condition, to determine whether a subject is predisposed to preterm birth, to monitor the progress of preterm birth or the progress of treatment protocols, to assess the severity of preterm birth, to forecast the outcome of preterm birth and/or prospects of recovery or birth at full term, or to aid in the determination of a suitable treatment for preterm birth.

[00104] The quantitation of biomarkers in a biological sample can be determined, without limitation, by the methods described above as well as any other method known in the art. The quantitative data thus obtained is then subjected to an analytic classification process. In such a process, the raw data is manipulated according to an algorithm, where the algorithm has been pre-defined by a training set of data, for example as described in the examples provided herein. An algorithm can utilize the training set of data provided herein, or can utilize the guidelines provided herein to generate an algorithm with a different set of data.

[00105] In some embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses the use of a predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses comparing said measurable feature with a reference feature. As those skilled in the art can appreciate, such comparison can be a direct comparison to the reference feature or an indirect comparison where the reference feature has been incorporated into the predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses one or more of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a linear, logistic, Cox proportional hazard or Accelerated Time to Failure regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, or a combination thereof. In particular embodiments, the analysis comprises logistic regression.

[00106] An analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, machine learning algorithms; etc.

[00107] For creation of a random forest for prediction of GAB one skilled in the art can consider a set of k subjects (pregnant women) for whom the gestational age at birth (GAB) is known, and for whom N analytes (transitions) have been measured in a blood specimen taken several weeks prior to birth. A regression tree begins with a root node that contains all the subjects. The average GAB for all subjects can be calculated in the root node. The variance of the GAB within the root node will be high, because there is a mixture of women with different GAB's. The root node is then divided (partitioned) into two branches, so that each branch contains women with a similar GAB. The average GAB for subjects in each branch is again calculated. The variance of the GAB within each branch will be lower than in the root node, because the subset of women within each branch has relatively more similar GAB's than those in the root node. The two branches are created by selecting an analyte and a threshold value for the analyte that creates branches with similar GAB. The analyte and threshold value are chosen from among the set of all analytes and threshold values, usually with a random subset of the analytes at each node. The procedure continues recursively producing branches to create leaves (terminal nodes) in which the subjects have very similar GAB's. The predicted GAB in each terminal node is the average GAB for subjects in that terminal node. This procedure creates a single regression tree. A random forest can consist of several hundred or several thousand such trees. [00108] Classification can be made according to predictive modeling methods that set a threshold for determining the probability that a sample belongs to a given class. The probability preferably is at least 50%, or at least 60%, or at least 70%, or at least 80% or higher. Classifications also can be made by determining whether a comparison between an obtained dataset and a reference dataset yields a statistically significant difference. If so, then the sample from which the dataset was obtained is classified as not belonging to the reference dataset class. Conversely, if such a comparison is not statistically significantly different from the reference dataset, then the sample from which the dataset was obtained is classified as belonging to the reference dataset class.

[00109] The predictive ability of a model can be evaluated according to its ability to provide a quality metric, e.g. AUROC (area under the ROC curve) or accuracy, of a particular value, or range of values. Area under the curve measures are useful for comparing the accuracy of a classifier across the complete data range. Classifiers with a greater AUC (area under the curve) have a greater capacity to classify unknowns correctly between two groups of interest. In some embodiments, a desired quality threshold is a predictive model that will classify a sample with an accuracy of at least about 0.5, at least about 0.55, at least about 0.6, at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality threshold can refer to a predictive model that will classify a sample with an AUC of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.

[00110] As is known in the art, the relative sensitivity and specificity of a predictive model can be adjusted to favor either the selectivity metric or the sensitivity metric, where the two metrics have an inverse relationship. The limits in a model as described above can be adjusted to provide a selected sensitivity or specificity level, depending on the particular requirements of the test being performed. One or both of sensitivity and specificity can be at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.

[00111] The raw data can be initially analyzed by measuring the values for each biomarker, usually in triplicate or in multiple triplicates. However, it is understood that measurements in replicate are not required so long as analytes can be adequately measured by the assay used. The data can be manipulated, for example, raw data can be transformed using standard curves, and the average of triplicate measurements used to calculate the average and standard deviation for each patient. These values can be transformed before being used in the models, e.g. log-transformed, Box-Cox transformed (Box and Cox, Royal Stat. Soc, Series B, 26:211-246(1964). The data are then input into a predictive model, which will classify the sample according to the state. The resulting information can be communicated to a patient or health care provider.

[00112] To generate a predictive model for preterm birth, a robust data set, comprising known control samples and samples corresponding to the preterm birth classification of interest is used in a training set. A sample size can be selected using generally accepted criteria. As discussed above, different statistical methods can be used to obtain a highly accurate predictive model. Examples of such analysis are provided in Example 2.

[00113] In one embodiment, hierarchical clustering is performed in the derivation of a predictive model, where the Pearson correlation is employed as the clustering metric. One approach is to consider a preterm birth dataset as a "learning sample" in a problem of

"supervised learning." CART is a standard in applications to medicine (Singer, Recursive Partitioning in the Health Sciences, Springer(1999)) and can be modified by transforming any qualitative features to quantitative features; sorting them by attained significance levels, evaluated by sample reuse methods for Hotelling's T 2 statistic; and suitable application of the lasso method. Problems in prediction are turned into problems in regression without losing sight of prediction, indeed by making suitable use of the Gini criterion for classification in evaluating the quality of regressions.

[00114] This approach led to what is termed FlexTree (Huang, Proc. Nat. Acad. Sci. U S A 101 : 10529-10534(2004)). FlexTree performs very well in simulations and when applied to multiple forms of data and is useful for practicing the claimed methods. Software automating FlexTree has been developed. Alternatively, LARTree or LART can be used (Turnbull (2005) Classification Trees with Subset Analysis Selection by the Lasso, Stanford University). The name reflects binary trees, as in CART and FlexTree; the lasso, as has been noted; and the implementation of the lasso through what is termed LARS by Efron et al. (2004) Annals of Statistics 32:407-451 (2004). See, also, Huang et al.., Proc. Natl. Acad. Sci. USA. 101(29): 10529-34 (2004). Other methods of analysis that can be used include logic regression. One method of logic regression Ruczinski, Journal of Computational and Graphical Statistics 12:475-512 (2003). Logic regression resembles CART in that its classifier can be displayed as a binary tree. It is different in that each node has Boolean statements about features that are more general than the simple "and" statements produced by CART.

[00115] Another approach is that of nearest shrunken centroids (Tibshirani, Proc. Natl. Acad. Sci. U.S. A 99:6567-72(2002)). The technology is k-means-like, but has the advantage that by shrinking cluster centers, one automatically selects features, as is the case in the lasso, to focus attention on small numbers of those that are informative. The approach is available as PAM software and is widely used. Two further sets of algorithms that can be used are random forests (Breiman, Machine Learning 45:5-32 (2001)) and MART (Hastie, The Elements of Statistical Learning, Springer (2001)). These two methods are known in the art as "committee methods," that involve predictors that "vote" on outcome.

[00116] To provide significance ordering, the false discovery rate (FDR) can be determined. First, a set of null distributions of dissimilarity values is generated. In one embodiment, the values of observed profiles are permuted to create a sequence of distributions of correlation coefficients obtained out of chance, thereby creating an appropriate set of null distributions of correlation coefficients (Tusher et al, Proc. Natl. Acad. Sci. U.S. A 98, 5116- 21 (2001)). The set of null distribution is obtained by: permuting the values of each profile for all available profiles; calculating the pair-wise correlation coefficients for all profile;

calculating the probability density function of the correlation coefficients for this permutation; and repeating the procedure for N times, where N is a large number, usually 300. Using the N distributions, one calculates an appropriate measure (mean, median, etc) of the count of correlation coefficient values that their values exceed the value (of similarity) that is obtained from the distribution of experimentally observed similarity values at given significance level.

[00117] The FDR is the ratio of the number of the expected falsely significant correlations (estimated from the correlations greater than this selected Pearson correlation in the set of randomized data) to the number of correlations greater than this selected Pearson correlation in the empirical data (significant correlations). This cut-off correlation value can be applied to the correlations between experimental profiles. Using the aforementioned distribution, a level of confidence is chosen for significance. This is used to determine the lowest value of the correlation coefficient that exceeds the result that would have obtained by chance. Using this method, one obtains thresholds for positive correlation, negative correlation or both. Using this threshold(s), the user can filter the observed values of the pair wise correlation coefficients and eliminate those that do not exceed the threshold(s). Furthermore, an estimate of the false positive rate can be obtained for a given threshold. For each of the individual "random correlation" distributions, one can find how many observations fall outside the threshold range. This procedure provides a sequence of counts. The mean and the standard deviation of the sequence provide the average number of potential false positives and its standard deviation.

[00118] In an alternative analytical approach, variables chosen in the cross-sectional analysis are separately employed as predictors in a time-to-event analysis (survival analysis), where the event is the occurrence of preterm birth, and subjects with no event are considered censored at the time of giving birth. Given the specific pregnancy outcome (preterm birth event or no event), the random lengths of time each patient will be observed, and selection of proteomic and other features, a parametric approach to analyzing survival can be better than the widely applied semi-parametric Cox model. A Weibull parametric fit of survival permits the hazard rate to be monotonically increasing, decreasing, or constant, and also has a proportional hazards representation (as does the Cox model) and an accelerated failure-time representation. All the standard tools available in obtaining approximate maximum likelihood estimators of regression coefficients and corresponding functions are available with this model.

[00119] In addition the Cox models can be used, especially since reductions of numbers of covariates to manageable size with the lasso will significantly simplify the analysis, allowing the possibility of a nonparametric or semi-parametric approach to prediction of time to preterm birth. These statistical tools are known in the art and applicable to all manner of proteomic data. A set of biomarker, clinical and genetic data that can be easily determined, and that is highly informative regarding the probability for preterm birth and predicted time to a preterm birth event in said pregnant female is provided. Also, algorithms provide information regarding the probability for preterm birth in the pregnant female.

[00120] Accordingly, one skilled in the art understands that the probability for preterm birth according to the invention can be determined using either a quantitative or a categorical variable. For example, in practicing the methods of the invention the measurable feature of each of N biomarkers can be subjected to categorical data analysis to determine the probability for preterm birth as a binary categorical outcome. Alternatively, the methods of the invention may analyze the measurable feature of each of N biomarkers by initially calculating quantitative variables, in particular, predicted gestational age at birth. The predicted gestational age at birth can subsequently be used as a basis to predict risk of preterm birth. By initially using a quantitative variable and subsequently converting the quantitative variable into a categorical variable the methods of the invention take into account the continuum of measurements detected for the measurable features. For example, by predicting the gestational age at birth rather than making a binary prediction of preterm birth versus term birth, it is possible to tailor the treatment for the pregnant female. For example, an earlier predicted gestational age at birth will result in more intensive prenatal intervention, i.e. monitoring and treatment, than a predicted gestational age that approaches full term.

[00121] Among women with a predicted GAB of j days plus or minus k days, p(PTB) can estimated as the proportion of women in the PAPR clinical trial {see Example 1) with a predicted GAB of j days plus or minus k days who actually deliver before 37 weeks gestational age. More generally, for women with a predicted GAB of j days plus or minus k days, the probability that the actual gestational age at birth will be less than a specified gestational age, p(actual GAB < specified GAB), was estimated as the proportion of women in the PAPR clinical trial with a predicted GAB of j days plus or minus k days who actually deliver before the specified gestational age.

[00122] In the development of a predictive model, it can be desirable to select a subset of markers, i.e. at least 3, at least 4, at least 5, at least 6, up to the complete set of markers.

Usually a subset of markers will be chosen that provides for the needs of the quantitative sample analysis, e.g. availability of reagents, convenience of quantitation, etc., while maintaining a highly accurate predictive model. The selection of a number of informative markers for building classification models requires the definition of a performance metric and a user-defined threshold for producing a model with useful predictive ability based on this metric. For example, the performance metric can be the AUC, the sensitivity and/or specificity of the prediction as well as the overall accuracy of the prediction model.

[00123] As will be understood by those skilled in the art, an analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include, without limitation, linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, and machine learning algorithms. Various methods are used in a training model. The selection of a subset of markers can be for a forward selection or a backward selection of a marker subset. The number of markers can be selected that will optimize the performance of a model without the use of all the markers. One way to define the optimum number of terms is to choose the number of terms that produce a model with desired predictive ability (e.g. an AUC>0.75, or equivalent measures of

sensitivity/specificity) that lies no more than one standard error from the maximum value obtained for this metric using any combination and number of terms used for the given algorithm.

[00124] In yet another aspect, the invention provides kits for determining probability of preterm birth. The kit can include one or more agents for detection of biomarkers, a container for holding a biological sample isolated from a pregnant female; and printed instructions for reacting agents with the biological sample or a portion of the biological sample to detect the presence or amount of the isolated biomarkers in the biological sample. The agents can be packaged in separate containers. The kit can further comprise one or more control reference samples and reagents for performing an immunoassay.

[00125] The kit can comprise one or more containers for compositions contained in the kit. Compositions can be in liquid form or can be lyophilized. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes. Containers can be formed from a variety of materials, including glass or plastic. The kit can also comprise a package insert containing written instructions for methods of determining probability of preterm birth.

[00126] From the foregoing description, it will be apparent that variations and

modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

[00127] The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof. [00128] All patents and publications mentioned in this specification are herein

incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

[00129] The following examples are provided by way of illustration, not limitation.

EXAMPLES

[00130] Example 1. PPROM and PTL Phenotypes Are Characterized by Differences in Underlying Biochemical Pathways

[00131] OBJECTIVE:

[00132] To examine biological pathways underlying maternal biomarker associations with preterm birth (PTB) due to preterm premature rupture of membranes (PPROM) versus idiopathic spontaneous labor (PTL)

[00133] STUDY DESIGN:

[00134] Secondary nested case-control analysis of Proteomic Assessment of Preterm Risk study. We analyzed clinical characteristics and serum from prospectively collected samples at 191/7-206/7 weeks from 195 subjects (39 sPTB < 37 weeks: 17 PPROM and 22 PTL; 156 term controls). Clinical variables were analyzed using chi-square, Fisher exact, or two-sample Wilcoxon tests as appropriate. Maternal serum levels of 63 proteins representing multiple sPTB pathways were measured using multiple reaction monitoring mass spectrometry. Area under the receiver operator curves were generated for each protein. Proteins differentially expressed in PPROM or PTL vs. term (AUC>0.64 and p-value <0.05) or in PPROM vs. PTL were classified using Ingenuity® pathway analysis.

[00135] METHODS

[00136] Secondary analysis of Proteomic Assessment of Preterm Risk study

(Clinicaltrials.gov identifier: NCT01371019)

[00137] Prospectively collected serum at 191/7-206/7 weeks gestation: 39 SPTB < 37 weeks: 17 PPROM and 22 PTL, 156 matched term controls.

[00138] Clinical variable analysis: chi-square or Fisher exact

[00139] Mass spectrometry analysis: (1) 63 proteins measured by multiple reaction monitoring; (2) area under the receiver operator curves and p-values calculated for each protein; (3) proteins differentially expressed in PPROM or PTL vs. term (AUC>0.64 and p- value <0.05) analyzed using Ingenuity® pathway analysis. [00140] No significant differences in age, race/ethnicity, and parity between PPROM or PTL cases and term controls. Median BMI in the PPROM cohort (33.1) was higher than in PTL cases (24.9) and term controls (25.7). Although not statistically significant (p=0.13), women in the PPROM cohort delivered earlier (244 days) than in the PTL cohort (254 days). More proteins differentially expressed and encompassing a broader set of pathways in PPROM vs. term than in PTL vs. term as shown in Table 1 below.

Table 1. Differential Protein Expression and Pathways in PPROM vs. Term and PTL vs. Term

[00141] Proteins Differentially Expressed in PPROM vs. Term Controls are shown in Table 2 below.

Table 2. Proteins Differentially Expressed in PPROM vs. Term Controls

VTNC 0.71 0.0039 up

C08A 0.69 0.0113 up

CATD 0.69 0.011 up

SHBG 0.69 0.0107 down

C05 0.69 0.0091 up

FETUA 0.68 0.0141 up

HABP2 0.68 0.0126 up

B2MG 0.68 0.016 up

ENPP2 0.67 0.019 up

AFAM 0.67 0.0244 up

APOH 0.66 0.0341 up

ITIH4 0.66 0.0335 up

CFAB 0.66 0.0312 up

C08B 0.65 0.0416 up

BGH3 0.65 0.0387 up

HEMO 0.65 0.0432 up

LBP 0.65 0.0372 up

[00142] Proteins Differentially Expressed in PTL vs. Term Controls are shown in Table 3 below.

Table 3. Proteins Differentially Expressed in PTL vs. Term Controls

[00143] There were no significant differences in race or ethnicity between cases and controls. As expected, gestational age at birth and number of prior term deliveries were significantly different between cases and controls (Table 4). Additionally, BMI was higher in PPROM vs. term (Table 4). Of the 63 proteins measured, 23 were significantly different between PPROM vs. term. A subset (bold: IBP4, SHBG, ENPP2, C08A, C08B, VTNC, HABP2, C05, HEMO, KNGl, CFAB, APOC3, APOH, LBP, CD14, FETUA) are shown in the pathway map (Figure 1), with 13 mapped to inflammatory and immune response pathways (bold, shaded: C08A, C08B, VTNC, HABP2, C05, HEMO, KNGl, CFAB, APOC3, APOH, LBP, CD14, FETUA). Four proteins were differentially expressed in PTL vs. term, and all mapped to pathways involved in growth regulation (Figure 2) (bold, shaded: IBP4, IGF2, mP3, PSG3). Comparing PPROM to PTL, proteins enriched in PPROM had roles in modulating angiogenesis, acute phase response and innate immunity.

Table 4. Maternal Characteristics and Pregnancy Outcomes Stratified by Preterm Birth

Phenotype

[00144] CONCLUSIONS:

[00145] Second trimester maternal serum protein profiles differed in women who delivered preterm via PPROM vs. PTL. The diverse biomarker set identified in PPROM vs. term women suggests that PPROM itself has multiple biological underpinnings. Multianalyte predictors encompassing PPROM and PTL biomarkers may better identify women at risk for SPTB and guide treatment options. [00146] Example 2. Further Studies on PPROM and PTL Phenotypes

[00147] The study from Example 1 was repeated with a larger number of analytes and for different data subsets based on gestational age. In addition to univariate analyses, this example includes assessment of two-analyte reversals (up-regulated protein/down-regulated protein) for PPROM vs. term, PTL vs. term, and PPROM vs. PTL. Lastly, pairs of reversals were evaluated for predicting overall preterm birth by combining a high performing PPROM vs. term reversal with a high performing PTL vs. term reversal and for distinguishing PPROM vs PTL using combinations of reversals highly selective for each phenotype..

[00148] STUDY DESIGN:

[00149] Secondary nested case-control analysis of Proteomic Assessment of Preterm Risk study. We analyzed clinical characteristics and maternal serum from prospectively collected samples at 119-153 days gestation. Data analyses were carried out using the entire cohort (119-153 days), in samples divided into overlapping 3 week windows (119-139 days, 126-146 days, and 133-153 days), and in the commercial window specified for the PreTRM assay (134- 146 days). Clinical variables were analyzed using chi-square, Fisher exact, or two-sample Wilcoxon tests as appropriate. Maternal serum levels of 109 proteins representing multiple sPTB pathways plus an additional 14 proteins used for quality control were measured using multiple reaction monitoring mass spectrometry. The 109 proteins were quantified by a total of 181 peptides, with 1 to 4 peptides per protein. Area under the receiver operator curves were generated for each peptide to identify proteins differentially expressed in PPROM or PTL vs. term and in PPROM vs. PTL. Proteins with AUC>0.64 in any window were classified into functional categories.

[00150] METHODS

[00151] Secondary analysis of Proteomic Assessment of Preterm Risk study

(Clinicaltrials.gov identifier: NCT01371019)

[00152] Analyses were broken down into the following gestational age windows, with the indicated sample numbers (N):

Table 5. Summary of Gestational Age Windows and Sample Numbers 126-146 32 23 251

133-153 25 28 216

134-146 17 22 156

119-153 40 42 331

[00153] Clinical variable analysis: t-test, chi-square or Fisher's exact test were used to compare PPROM, PTL and term subjects (Tables 37-41).

[00154] Samples were analyzed essentially as in Example 1. Briefly, serum samples were depleted of high abundance proteins using the Human 14 Multiple Affinity Removal System (MARS 14), which removes 14 of the most abundant proteins that are treated as uninformative with regard to the identification for disease-relevant changes in the serum proteome. To this end, equal volumes (50 μΐ) of each clinical, pooled human serum sample (HGS) sample, or a human pooled pregnant women serum sample (pHGS) were diluted with 150 μΐ Agilent column buffer A and filtered on a Captiva filter plate to remove precipitates. Filtered samples were depleted using a MARS-14 column (4.6 x 100 mm, Cat. #5188-6558, Agilent

Technologies, Santa Clara, CA), according to manufacturer's protocol. Samples were chilled to 4°C in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4°C until further analysis. The unbound fractions were collected for further analysis.

[00155] Depleted serum samples were, reduced with dithiothreitol, alkylated using iodoacetamide, and then digested with 5.0 μg Trypsin Gold - Mass Spec Grade (Promega) at 37°C for 17 hours (± 1 hour). Following trypsin digestion, a mixture of Stable Isotope Standard (SIS) peptides were added to the samples and half of each sample was desalted on an Empore C18 96-well Solid Phase Extraction Plate (3M Bioanalytical Technologies; St. Paul, MN). The plate was conditioned according to the manufacture's protocol. Peptides were washed with 300 μΐ 1.5% trifluoroacetic acid, 2% acetonitrile, eluted with 250 μΐ 1.5% trifluoroacetic acid, 95% acetonitrile, frozen at -80 °C for 30 minutes, and then lyophilized to dryness. Lyophilized peptides were reconstituted with 2% acetontile/0.1% formic acid containing three non-human internal standard (IS) peptides. Peptides were separated with a 30 min acetonitrile gradient at 400 μΐ/min on an Agilent Poroshell 120 EC-C18 column (2.1x100mm, 2.7 μηι) at 40°C and injected into an Agilent 6490 Triple Quadrapole mass spectrometer.

[00156] Mass spectrometry analysis: (1) 181 peptides representing 109 proteins and their corresponding stable isotope standard (SIS) peptides were measured by multiple reaction monitoring; chromatographic peaks were integrated using Mass Hunter Quantitative Analysis software (Agilent Technologies). Data for 109 proteins represented by 181 peptides was generated by sequential analysis of the same reconstituted peptide digest with two different mass spectrometry assays. The first LC-MS method quantified those proteins in Example 1 and the second assay quantified an additional 50 unque proteins and some proteins that overlapped between the two methods.

[00157] (2) Response ratios were calculated for each peptide by dividing the peak area for the endogenous peptide by the peak area for the spiked synthetic SIS peptide, (3) area under the receiver operator curves and p-values calculated for each peptide response ratio (Tables 7- 36 and 42-67); (4) for each GABD window a set of reversals was formed using all the combinations of up and down-regulated analytes. A reversal value is the ratio of the response ratio of an up-regulated analyte over the response ratio of a down-regulated analyte and serves to both normalize variability and amplify diagnostic signal. AUC values were generated for all possible reversals in each window and for each comparison (PPROM vs term, PTL vs. term, PPROM vs. PTL). A subset of significant AUC values are reported herein (Tables 7-36 and 42-67). For simplification, only the highest scoring reversal pair per protein was reported (i.e. AUC was reported for only 1 peptide per protein in the reversal, although additional peptides would have similar AUC values). For each analysis we also tallied the frequency an up- or down-regulated protein was represented in a reversal (within the given cutoff).

[00158] Next, the top reversals (AUC>=0.7) (and IBP4/SHBG) from the PPROM vs. term analyses were paired with the top reversals (AUC >=0.65) (and IBP4/SHBG) from the PTL vs. term analyses and tested for the ability to predict overall preterm (PPROM and PTL together) vs. term delivery as compared to each single reversal alone. Lastly, performance of the two reversal classifier for the top 400 panels plus all classifiers containing IBP4/SHBG was tested using a Monte Carlo Cross Validation (MCCV) analysis. In the MCCV, models were trained with 67% of the data, and tested with 33% of the data, using 500 iterations. AUC values and confidence intervals were calculated for the training sets. [00159] Results:

[00160] For all windows, as expected, the gestational ages at birth (GAB) and, consequently, the birth weights were significantly earlier/lower in the PPROM and PTL cohorts than in the term cohort (Tables 37-41). No significant differences in age,

race/ethnicity, and parity between PPROM or PTL cases and term controls or between PPROM and PTL cases were seen in any analysis window. In all windows, a higher BMI was seen in the PPROM cohort, often statistically different from the other cohorts (Tables 37-41). Consistent with evidence suggesting that a prior PTB conveys the greatest risk for PTB, in the full cohort there were higher percentages of women with prior PTBs in the PPROM and PTL cohorts than in the term (Table 41). However, the differences in the proportion of subjects with prior sPTB were not significant, nor were they consistent across the smaller gestational age windows (Tables 37-41). We also note that the gestational age at birth trends earlier for PPROM than PTL, consistent with national statistics, but does not reach statistical significance in this cohort (Tables 37-41).

[00161] In all windows, there were more proteins differentially expressed and

encompassing a broader set of pathways in PPROM vs. term than in PTL vs. term as shown in Table 6 below:

Table 6. Functional Characterization of Proteins Identified as Being Differentially Expressed in PPROM or PTL vs. Term from Any of the GA Windows

Growth factor activity PRG4, FGFR1 IGF2, PRL

[00162] This suggests that either PTL and PPROM have very different etiologies or that PTL may be less easily predicted in these gestational ages. Our data suggest that immunity and inflammation are more prominent in PPROM than in PTL, or that these responses have not yet developed in PTL at 119-153 days gestation.

[00163] Lastly, to exemplify those reversals that can distinguish PPROM from PTL, we did the following analyses. For each comparison to term (PPROM vs term, PTL vs. term, PTB vs term), we required the direction of the comparison to be such that AUC > 0.5 indicates scores for cases are higher than terms and AUC <0.5 indicates scores for terms are higher than cases. This allowed us to identify reversals with scores of opposite direction for PPROM and PTL relative to terms. The absolute difference in AUC for PPROM vs. term relative to the AUC for PTL vs. term will be greatest for those reversals with the largest difference in direction. AUC values were also calculated for PPROM vs PTL for reversal ranking purposes, and in this case consistent directionality was not required. Final reversal selection criteria included AUC >=0.65 for PPROM vs PTL and an AUC difference (PPROM vs. term relative to PTL vs. term) of 0.2. Analyses in this case we limited to GABD of 134-146 days. We allowed multiple peptides per protein to be considered in this analysis. Table 66 summarizes results starting with reversals selected initially from PTL vs. term and then applying the analyses listed above. Table 67 summarizes results starting with reversals selected initially from PPROM vs. term and then applying the analyses listed above.

[00164] In Tables 7-36 and 42-67 below, analytes are listed as protein name_peptide sequence. Table 7. Reversals (UpVDown-Regulated) Predicting PPROM vs. Term Birth at GABD 119-139 with an AUC >= 0.7

FA9_EYTNIFLK EG LN_TQI LE WAAE R 0.73 0.0001

HABP2_FLNWIK EG LN_TQI LE WAAE R 0.73 0.0001

INHBC_LDFHFSSD EG LN_TQI LE WAAE R 0.73 0.0002

INHBC_LDFHFSSDR FBLN1_TGYYFDGISR 0.73 0.0001

INHBC_LDFHFSSDR PAEP_QDLELPK 0.73 0.0002

INHBC_LDFHFSSDR TETN_LDTLAQEVALLK 0.73 0.0002

ITIH4_NPLVWVHASPEHVVVTR KIT_YVSELHLTR 0.73 0.0002

KNG1_QVVAGLNFR KIT_YVSELHLTR 0.73 0.0002

LEP_DLLHVLAFSK KIT_YVSELHLTR 0.73 0.0002

SEPP1_LPTDSELAPR FBLN1_TGYYFDGISR 0.73 0.0001

AFAM_HFQNLGK EG LN_TQI LE WAAE R 0.72 0.0004

AFAM_HFQNLGK FBLN1_TGYYFDGISR 0.72 0.0003

AFAM_HFQ.NL.GK GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0003

AFAM_HFQNLGK TETN_LDTLAQEVALLK 0.72 0.0004

ALS_IRPHTFTGLSGLR KIT_YVSELHLTR 0.72 0.0003

ANGT_DPTFIPAPIQAK EG LN_TQI LE WAAE R 0.72 0.0002

ANGT_DPTFIPAPIQAK FBLN1_TGYYFDGISR 0.72 0.0004

CD14_SWLAELQQWLKPGLK EG LN_TQI LE WAAE R 0.72 0.0003

C F AB_YG LVTYATYP K KIT_YVSELHLTR 0.72 0.0003

F13B_GDTYPAELYITGSILR GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0003

FA11_TAAISGYSFK GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0004

FA11_TAAISGYSFK MUC18_EVTVPVFYPTEK 0.72 0.0003

FA11_TAAISGYSFK TETN_LDTLAQEVALLK 0.72 0.0003

FA5_AEVDDVIQVR TETN_LDTLAQEVALLK 0.72 0.0004

HABP2_FLNWIK FBLN1_TGYYFDGISR 0.72 0.0004

HABP2_FLNWIK GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0003

HABP2_FLNWIK MUC18_EVTVPVFYPTEK 0.72 0.0003

INHBC_LDFHFSSDR CNTN1_TTKPYPADIVVQFK 0.72 0.0004

INHBC_LDFHFSSDR ECM1_ELLALIQLER 0.72 0.0003

INHBC_LDFHFSSDR LYAM1_SYYWIGIR 0.72 0.0004

INHBC_LDFHFSSDR MUC18_EVTVPVFYPTEK 0.72 0.0003

INHBC_LDFHFSSDR NCAM1_GLGEISAASEFK 0.72 0.0003

INHBC_LDFHFSSDR PGRP2_AGLLRPDYALLGHR 0.72 0.0003

LBPJTGFLKPGK LIRA3_EGAADSPLR 0.72 0.0003

LBPJTGFLKPGK PAEP_QDLELPK 0.72 0.0004

SEPP1_LPTDSELAPR CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.72 0.0003

SEPP1_VSLATVDK CNTN1JTKPYPADIVVQFK 0.72 0.0004

VTNC_GQYCYELDEK PAEP_QDLELPK 0.72 0.0003

A2GL_DLLLPQPDLR KIT_YVSELHLTR 0.71 0.0005

ANGT_DPTFIPAPIQAK CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.71 0.0005

ANGT_DPTFIPAPIQAK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0007

ANGT_DPTFIPAPIQAK TETN_LDTLAQEVALLK 0.71 0.0006

C1QA_DQPRPAFSAIR PAEP_QDLELPK 0.71 0.0006 C1QA_DQP PAFSAI TETNJ.DTLAQEVALLK 0.71 0.0008

C1QB_VPGLYYFTYHASSR EG LN J " QI LE WAAE R 0.71 0.0005

CD14_SWLAELQQWLKPGLK PAEP_QDLELPK 0.71 0.0006

C06_ALNHLPLEYNSALYSR EG LN J " QI LE WAAE R 0.71 0.0007

C08A_SLLQPNK KITJA SELHLTR 0.71 0.0006

C08B_QALEEFQK KITJA/SELHLTR 0.71 0.0007

F13B_GDTYPAELYITGSILR EG LN J " QI LE WAAE R 0.71 0.0005

F13B_GDTYPAELYITGSILR FBLN1_TGYYFDGISR 0.71 0.0007

FA11_TAAISGYSFK EG LN J " QI LE WAAE R 0.71 0.0004

FA5_AEVDDVIQVR EG LN J " QI LE WAAE R 0.71 0.0007

FA5_AEVDDVIQVR MUC18J.VTVPVFYPTEK 0.71 0.0007

FA9_EYTNIFLK FBLN1_TGYYFDGISR 0.71 0.0008

FA9_EYTNIFLK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0006

FA9_EYTNIFLK MUC18J.VTVPVFYPTEK 0.71 0.0005

FETUA_FSVVYAK EG LN J " QI LE WAAE R 0.71 0.0007

FETUA_FSVVYAK LYAM1J5YYWIGIR 0.71 0.0007

HABP2_FLNWIK LYAM1J5YYWIGIR 0.71 0.0006

HABP2_FLNWIK TETNJ.DTLAQEVALLK 0.71 0.0005

HEMO_NFPSPVDAAFR EG LN J " QI LE WAAE R 0.71 0.0006

HEMO_NFPSPVDAAFR TETNJ.DTLAQEVALLK 0.71 0.0008

1 G F 1_G FYF N K PTGYGSSS R KITJA/SELHLTR 0.71 0.0007

INHBC_LDFHFSSDR A0C1JDNGPNYVQR 0.71 0.0007

INHBC_LDFHFSSDR CRIS3_AVSPPAR 0.71 0.0007

INHBC_LDFHFSSDR CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.71 0.0006

INHBC_LDFHFSSDR DPEP2J.TLEQJDUR 0.71 0.0005

INHBC_LDFHFSSDR LIRA3JEGAADSPLR 0.71 0.0008

INHBC_LDFHFSSDR PR0SJ5QDILLSVENTVIYR 0.71 0.0006

INHBC_LDFHFSSDR PSG3 J/SAPSGTGH LPG LN PL 0.71 0.0006

INHBC_LDFHFSSDR TENXJ.NWEAPPGAFDSFLLR 0.71 0.0006

LBPJTGFLKPGK CRIS3_AVSPPAR 0.71 0.0006

LBPJTGFLKPGK CRIS3_AVSPPAR 0.71 0.0006

LBPJTGFLKPGK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0005

LBPJTGFLKPGK LYAM1J5YYWIGIR 0.71 0.0004

LBPJTGFLKPGK SHBG_ALALPPLGLAPLLNLWAKPQGR 0.71 0.0006

LBPJTGFLKPGK TETNJ.DTLAQEVALLK 0.71 0.0006

LBPJTLPDFTGDLR EG LN J " QI LE WAAE R 0.71 0.0007

LEPJDLLHVLAFSK ATL4JLWIPAGALR 0.71 0.0006

LEPJDLLHVLAFSK C163AJNPASLDK 0.71 0.0006

LEPJDLLHVLAFSK CRAC1_GVALADFNR 0.71 0.0005

LEPJDLLHVLAFSK ECMIJDILTIDIGR 0.71 0.0004

LEPJDLLHVLAFSK LIRA3JEGAADSPLR 0.71 0.0005

LEPJDLLHVLAFSK TETNJ.DTLAQEVALLK 0.71 0.0005

P E D F_TVQA V LTV P K GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0008 P G4JTEVWGIPSPIDTVFT KIT_YVSELHLTR 0.71 0.0006

PROS_FSAEFDFR KIT_YVSELHLTR 0.71 0.0006

PTGDS_GPGEDFR KIT_YVSELHLTR 0.71 0.0004

SEPP1_LPTDSELAPR IBP2_LIQGAPTIR 0.71 0.0006

SEPP1_LPTDSELAPR LYAM 1_SYYWIGIR 0.71 0.0006

SEPP1_LPTDSELAPR PGRP2_AGLLRPDYALLGHR 0.71 0.0007

SEPP1_LPTDSELAPR SHBGJALGGLLFPASNLR 0.71 0.0007

SEPP1_LPTDSELAPR SPRL1_VLTHSELAPLR 0.71 0.0007

SEPP1_LPTDSELAPR SPRL1_VLTHSELAPLR 0.71 0.0007

SEPP1_LPTDSELAPR TENX_LNWEAPPGAFDSFLLR 0.71 0.0007

THBG_AVLH IGEK KIT_YVSELHLTR 0.71 0.0008

VTNC_GQYCYELDEK LYAM 1_SYYWIGIR 0.71 0.0007

VTNC_GQ.YCYEL.DEK TETN_LDTLAQEVALLK 0.71 0.0006

VTNC_VDTVDPPYPR EG LN_TQI LE WAAE R 0.71 0.0005

AFAM_H FQNLGK CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.7 0.0013

AFAM_H FQNLGK LYAM 1_SYYWIGIR 0.7 0.0013

AFAM_H FQNLGK M UC18_EVTVPVFYPTEK 0.7 0.0011

AFAM_H FQNLGK NCAM 1_GLGEISAASEFK 0.7 0.0012

ANGT_DPTFIPAPIQAK NCAM 1_GLGEISAASEFK 0.7 0.0011

ANGT_DPTFIPAPIQAK PAEP_QDLELPK 0.7 0.0013

ANT3_TSDQI HFFFAK KIT_YVSELHLTR 0.7 0.0010

APOC3_GWVTDGFSSLK KIT_YVSELHLTR 0.7 0.0013

A PO H_ATVVYQG E R FBLN1_TGYYFDGISR 0.7 0.0009

BGH3_LTLLAPLNSVFK FBLN1_TGYYFDGISR 0.7 0.0009

C1QA_SLGFCDTTN K GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0010

C1QB_IAFSATR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0012

C1QB_IAFSATR M UC18_EVTVPVFYPTEK 0.7 0.0008

C1QB_VPGLYYFTYHASSR CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.7 0.0008

C1QB_VPGLYYFTYHASSR FBLN1_TGYYFDGISR 0.7 0.0014

CD14_LTVGAAQVPAQLLVGALR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0013

CD14_LTVGAAQVPAQLLVGALR TETN_LDTLAQEVALLK 0.7 0.0011

CD14_SWLAELQQWLKPGLK M UC18_EVTVPVFYPTEK 0.7 0.0013

CLUS_LFDSDPITVTVPVEVSR EG LN_TQI LE WAAE R 0.7 0.0010

C06_ALNH LPLEYNSALYSR PAEP_QDLELPK 0.7 0.0011

F13B_GDTYPAELYITGSI LR M UC18_EVTVPVFYPTEK 0.7 0.0011

F13B_GDTYPAELYITGSI LR TETN_LDTLAQEVALLK 0.7 0.0012

FA11_TAAISGYSFK LYAM 1_SYYWIGIR 0.7 0.0011

FA11_TAAISGYSFK NCAM 1_GLGEISAASEFK 0.7 0.0008

FA5_AEVDDVIQVR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0012

FA9_SALVLQYLR DPEP2_LTLEQI DLI R 0.7 0.0008

FA9_SALVLQYLR NCAM 1_GLGEISAASEFK 0.7 0.0008

FA9_SALVLQYLR PGRP2_AGLLRPDYALLGHR 0.7 0.0008

FETUA_FSVVYAK FBLN1_TGYYFDGISR 0.7 0.0010 FETUA_FSVVYAK GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0009

FETUA_FSVVYAK M UC18_EVTVPVFYPTEK 0.7 0.0013

HABP2_FLNWIK NCAM 1_GLGEISAASEFK 0.7 0.0009

HABP2_FLNWIK TENX_LNWEAPPGAFDSFLLR 0.7 0.0014

HABP2_FLNWIK VTDB_ELPEHTVK 0.7 0.0011

H EMO_NFPSPVDAAF GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0009

H EMO_NFPSPVDAAFR PAEP_QDLELPK 0.7 0.0014

I BP4_QCHPALDGQR EG LN_TQI LE WAAE R 0.7 0.0013

I BP4_QCHPALDGQR EG LN_TQI LE WAAE R 0.7 0.0013

I BP4_QCHPALDGQR FBLN1_TGYYFDGISR 0.7 0.0013

1 BP6_H LDSVLQQLQTEVYR TETN_LDTLAQEVALLK 0.7 0.0011

I NH BC_LDFH FSSDR A0C1_DTVIVWPR 0.7 0.0009

I NH BC_LDFH FSSDR ATL4_ILWI PAGALR 0.7 0.0011

I NH BC_LDFH FSSDR CHL1_VIAVNEVGR 0.7 0.0009

I NH BC_LDFH FSSDR TIE1_VSWSLPLVPGPLVGDGFLLR 0.7 0.0011

I NH BC_LDFH FSSDR VTDB_ELPEHTVK 0.7 0.0010

LBPJTGFLKPGK EG LN_TQI LE WAAE R 0.7 0.0009

LBPJTGFLKPGK FBLN1_TGYYFDGISR 0.7 0.0009

LBP_ITLPDFTGDLR M UC18_EVTVPVFYPTEK 0.7 0.0011

LEP_DLLHVLAFSK CNTN1_TTKPYPADIVVQFK 0.7 0.0009

LEP_DLLHVLAFSK CRIS3_AVSPPAR 0.7 0.0011

LEP_DLLHVLAFSK CRIS3_AVSPPAR 0.7 0.0011

LEP_DLLHVLAFSK FBLN1_TGYYFDGISR 0.7 0.0009

LEP_DLLHVLAFSK GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0009

LEP_DLLHVLAFSK LYAM 1_SYYWIGIR 0.7 0.0014

LEP_DLLHVLAFSK M UC18_EVTVPVFYPTEK 0.7 0.0010

LEP_DLLHVLAFSK PAEP_QDLELPK 0.7 0.0009

PAPP2_LLLRPEVLAEI PR KIT_YVSELHLTR 0.7 0.0014

PEDF_LQSLFDSPDFSK LYAM 1_SYYWIGIR 0.7 0.0012

P E D F_TVQA V LTV P K EG LN_TQI LE WAAE R 0.7 0.0009

P E D F_TVQA V LTV P K FBLN1_TGYYFDGISR 0.7 0.0010

P E D F_TVQA V LTV P K M UC18_EVTVPVFYPTEK 0.7 0.0009

RET4_YWGVASFLQK EG LN_TQI LE WAAE R 0.7 0.0008

SEPP1_LPTDSELAPR DPEP2_LTLEQI DLI R 0.7 0.0011

SEPP1_LPTDSELAPR NCAM 1_GLGEISAASEFK 0.7 0.0010

SEPP1_VSLATVDK CRAC1_GVALADFN R 0.7 0.0010

VTNC_GQYCYELDEK GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0009

VTNC_VDTVDPPYPR FBLN1_TGYYFDGISR 0.7 0.0010

Table 8. Reversals (Up-/Down-Regulated) Predicting PPROM vs. Term Birth at GABD 126-146 with an AUC >= 0.7 FA9_SAL.VLQ.YLR KIT_YVSELHLTR 0.76 <0.0001

INHBC_LDFHFSSDR KIT_YVSELHLTR 0.75 <0.0001

PEDF_LQSLFDSPDFSK KIT_YVSELHLTR 0.75 <0.0001

BGH3_LTLLAPLNSVFK KIT_YVSELHLTR 0.74 <0.0001

C1QA_DQPRPAFSAI KIT_YVSELHLTR 0.74 <0.0001

C1QC_TNQVNSGGVLLR KIT_YVSELHLTR 0.74 <0.0001

FA11_TAAISGYSFK KIT_YVSELHLTR 0.74 <0.0001

FA9_SALVLQYLR CRAC1_GVALADFNR 0.74 <0.0001

HABP2_FLNWIK KIT_YVSELHLTR 0.74 <0.0001

SEPP1_VSLATVDK KIT_YVSELHLTR 0.74 <0.0001

AFAM_DADPDTFFAK KIT_YVSELHLTR 0.73 <0.0001

C1QB_IAFSATR KIT_YVSELHLTR 0.73 <0.0001

FA9_EYTNIFLK GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 <0.0001

FA9_EYTNIFLK PAEP_QDLELPK 0.73 <0.0001

FETUA_FSVVYAK KIT_YVSELHLTR 0.73 <0.0001

HABP2_FLNWIK CRAC1_GVALADFNR 0.73 <0.0001

INHBC_LDFHFSSDR GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 <0.0001

INHBC_LDFHFSSDR TETN_LDTLAQEVALLK 0.73 <0.0001

LBP_ITLPDFTGDLR KIT_YVSELHLTR 0.73 <0.0001

PRG4_ITEVWGIPSPIDTVFTR KIT_YVSELHLTR 0.73 <0.0001

SEPP1_LPTDSELAPR TETN_LDTLAQEVALLK 0.73 <0.0001

SEPP1_VSLATVDK CRAC1_GVALADFNR 0.73 <0.0001

SEPP1_VSLATVDK GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 <0.0001

VTNC_VDTVDPPYPR KIT_YVSELHLTR 0.73 <0.0001

C1QB_IAFSATR TETN_LDTLAQEVALLK 0.72 <0.0001

CD14_LTVGAAQVPAQLLVGALR KIT_YVSELHLTR 0.72 0.0001

C06_ALNHLPLEYNSALYSR KIT_YVSELHLTR 0.72 <0.0001

FA11_TAAISGYSFK CRAC1_GVALADFNR 0.72 <0.0001

FA11_TAAISGYSFK GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0001

FA11_TAAISGYSFK TETN_LDTLAQEVALLK 0.72 <0.0001

FA9_SALVLQYLR DPEP2_LTLEQIDLIR 0.72 <0.0001

HABP2_FLNWIK DPEP2_LTLEQIDLIR 0.72 0.0001

HABP2_FLNWIK GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 <0.0001

IBP4_QCHPALDGQR KIT_YVSELHLTR 0.72 0.0001

INHBC_LDFHFSSDR CRAC1_GVALADFNR 0.72 <0.0001

INHBC_LDFHFSSDR DPEP2_LTLEQIDLIR 0.72 0.0001

INHBC_LDFHFSSDR FBLN1_TGYYFDGISR 0.72 0.0001

LBPJTLPDFTGDLR CRAC1_GVALADFNR 0.72 0.0001

RET4_YWGVASFLQK KIT_LCLHCSVDQEGK 0.72 0.0001

AFAM_HFQNLGK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0001

ALS_IRPHTFTGLSGLR KIT_YVSELHLTR 0.71 0.0001

AMBP_ETLLQDFR KIT_YVSELHLTR 0.71 0.0001

ANGT_DPTFIPAPIQAK KIT_LCLHCSVDQEGK 0.71 0.0002 C1QA_DQP PAFSAI GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0001

C1Q.A_SL.GFC DUN K TETN_LDTLAQEVALLK 0.71 0.0001

CD14_LTVGAAQVPAQLLVGALR TETN_LDTLAQEVALLK 0.71 0.0001

C F AB_YG LVTYATYP K KIT_YVSELH LTR 0.71 0.0001

C05_TLLPVSKPEI R KIT_YVSELH LTR 0.71 0.0001

F13B_GDTYPAELYITGSI LR KIT_YVSELH LTR 0.71 0.0001

FA9_SALVLQYLR FBLN 1_TGYYFDGISR 0.71 0.0001

FA9_SALVLQYLR TENX_LNWEAPPGAFDSFLLR 0.71 0.0001

HABP2_FLNWIK FBLN 1_TGYYFDGISR 0.71 0.0001

HABP2_FLNWIK TETN_LDTLAQEVALLK 0.71 0.0001

HABP2_FLNWIK VTDB_ELPEHTVK 0.71 0.0001

H EMO_NFPSPVDAAFR KIT_YVSELH LTR 0.71 0.0001

1 G F 1_G FYF N K PTGYGSSS R KIT_YVSELH LTR 0.71 0.0001

I NH BC_LDFH FSSDR A0C1_GDFPSPIHVSGPR 0.71 0.0001

I NH BC_LDFH FSSDR ATL4_I LWIPAGALR 0.71 0.0001

I NH BC_LDFH FSSDR PSG3_VSAPSGTGHLPGLNPL 0.71 0.0001

I NH BC_LDFH FSSDR TENX_LNWEAPPGAFDSFLLR 0.71 0.0001

KNG1_QVVAGLN FR KIT_YVSELH LTR 0.71 0.0002

PEDF_LQSLFDSPDFSK CRAC1_GVALADFNR 0.71 0.0002

P E D F_TVQA V LTV P K GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0001

PRG4JTEVWGIPSPIDTVFTR CRAC1_GVALADFNR 0.71 0.0001

PRG4_ITEVWGIPSPIDTVFTR GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0001

PRG4_ITEVWGIPSPIDTVFTR TETN_LDTLAQEVALLK 0.71 0.0001

PROS_FSAEFDFR KIT_YVSELH LTR 0.71 0.0001

RET4_YWGVASFLQK TETN_LDTLAQEVALLK 0.71 0.0001

SEPP1_LPTDSELAPR FBLN 1_TGYYFDGISR 0.71 0.0001

SEPP1_LPTDSELAPR SH BGJALGGLLFPASN LR 0.71 0.0001

VTNC_GQYCYELDEK TETN_LDTLAQEVALLK 0.71 0.0001

AFAM_H FQNLGK FBLN 1_TGYYFDGISR 0.7 0.0003

AFAM_H FQNLGK TETN_LDTLAQEVALLK 0.7 0.0002

ANGT_DPTFIPAPIQAK SH BGJALGGLLFPASN LR 0.7 0.0003

ANGT_DPTFIPAPIQAK TETN_LDTLAQEVALLK 0.7 0.0002

AP0C3_GWVTDGFSSLK KIT_YVSELH LTR 0.7 0.0003

A PO H_ATVVYQG E R KIT_YVSELH LTR 0.7 0.0003

BGH3_LTLLAPLNSVFK FBLN 1_TGYYFDGISR 0.7 0.0003

C1QB_IAFSATR CRAC1_GVALADFNR 0.7 0.0002

C1QC_TNQVNSGGVLLR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0003

C1QC_TNQVNSGGVLLR TETN_LDTLAQEVALLK 0.7 0.0003

CD14_LTVGAAQVPAQLLVGALR CRAC1_GVALADFNR 0.7 0.0002

C05_VFQFLEK KIT_LCLHCSVDQEGK 0.7 0.0003

C08A_SLLQPNK KIT_YVSELH LTR 0.7 0.0002

C08B_QALEEFQK KIT_YVSELH LTR 0.7 0.0003

FA11_TAAISGYSFK DPEP2_LTLEQIDLIR 0.7 0.0003 FA5_AEVDDVIQV CRAC1_GVALADFNR 0.7 0.0002

FA5_AEVDDVIQVR KIT_YVSELHLTR 0.7 0.0002

FA9_EYTNIFLK SHBGJALGGLLFPASNLR 0.7 0.0003

FA9_SALVLQYLR CNTN1_TTKPYPADIVVQFK 0.7 0.0002

HABP2_FLNWIK ATL4_ILWIPAGALR 0.7 0.0002

HABP2_FLNWIK PAEP_QDLELPK 0.7 0.0003

HABP2_FLNWIK TENX_LNWEAPPGAFDSFLLR 0.7 0.0002

IBP4_QCHPALDGQR CRAC1_GVALADFNR 0.7 0.0002

INHBC_LDFHFSSDR ATS13_YGSQLAPETFYR 0.7 0.0002

INHBC_LDFHFSSDR CNTN1_TTKPYPADIVVQFK 0.7 0.0003

INHBC_LDFHFSSDR FGFR1JGPDNLPYVQILK 0.7 0.0003

INHBC_LDFHFSSDR VTDB_ELPEHTVK 0.7 0.0003

LBPJTLPDFTGDLR CRIS3_AVSPPAR 0.7 0.0002

LBP_ITLPDFTGDLR SHBGJALGGLLFPASNLR 0.7 0.0002

LEP_DLLHVLAFSK KIT_YVSELHLTR 0.7 0.0003

P E D F_TVQA V LTV P K TETN_LDTLAQEVALLK 0.7 0.0002

PRG4JTEVWGIPSPIDTVFTR CRIS3_YEDLYSNCK 0.7 0.0003

PRG4_ITEVWGIPSPIDTVFTR VGFR1_YLAVPTSK 0.7 0.0003

RET4_YWGVASFLQK CRAC1_GVALADFNR 0.7 0.0002

SEPP1_LPTDSELAPR DPEP2_LTLEQIDLIR 0.7 0.0003

VTNC_GQYCYELDEK CRAC1_GVALADFNR 0.7 0.0002

Table 9. Reversals (Up-/Down-Regulated) Predicting PPROM vs. Term Birth at GABD 133-153 with an AUC >= 0.7

B2MG_VN HVTL.SQ.PK CRAC1_GVALADFNR 0.74 0.0001

CATD_VGFAEAA TENX_LNWEAPPGAFDSFLLR 0.74 0.0001

FA9_FGSGYVSG WG R GELS_AQPVQVAEGSEPDGFWEALGGK 0.74 0.0001

FA9_SALVLQYLR CRAC1_GVALADFNR 0.74 0.0001

FA9_SALVLQYLR KIT_YVSELH LTR 0.74 0.0001

I BP4_QCHPALDGQR GELS_AQPVQVAEGSEPDGFWEALGGK 0.74 0.0001

I BP4_QCHPALDGQR PGRP2_AGLLRPDYALLGHR 0.74 0.0001

I BP4_QCHPALDGQR TETN_LDTLAQEVALLK 0.74 0.0001

I NH BC_LDFH FSSDR CRAC1_GVALADFNR 0.74 0.0001

PEDF_LQSLFDSPDFSK CRAC1_GVALADFNR 0.74 0.0001

AM BP_ETLLQDFR CNTN 1_TTKPYPADIVVQFK 0.73 0.0001

APOC3_GWVTDGFSSLK ATS13_YGSQLAPETFYR 0.73 0.0002

APOC3_GWVTDGFSSLK GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 0.0001

APOC3_GWVTDGFSSLK IGF2_GIVEECCFR 0.73 0.0002

APOC3_GWVTDGFSSLK PGRP2_AGLLRPDYALLGHR 0.73 0.0001

APOC3_GWVTDGFSSLK TETN_LDTLAQEVALLK 0.73 0.0002

B2MG_VN HVTLSQPK KIT_YVSELH LTR 0.73 0.0001

B2MG_VN HVTLSQPK TETN_LDTLAQEVALLK 0.73 0.0002

CATD_VGFAEAAR FGFR1JGPDN LPYVQILK 0.73 0.0002

CATD_VGFAEAAR GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 0.0001

CD14_LTVGAAQVPAQLLVGALR KIT_YVSELH LTR 0.73 0.0001

ENPP2_TEFLSNYLTNVDDITLVPGT CRAC1_GVASLFAGR 0.73 0.0002 LGR

ENPP2_TYLHTYESEI CRAC1_GVALADFNR 0.73 0.0002

ENPP2_TYLHTYESEI KIT_YVSELH LTR 0.73 0.0002

ENPP2_TYLHTYESEI SH BGJALGGLLFPASN LR 0.73 0.0002

ENPP2_TYLHTYESEI TETN_LDTLAQEVALLK 0.73 0.0002

F13B_GDTYPAELYITGSI LR KIT_YVSELH LTR 0.73 0.0002

FA11_TAAISGYSFK CRAC1_GVALADFNR 0.73 0.0002

FA11_TAAISGYSFK KIT_LCLHCSVDQEGK 0.73 0.0002

FA9_EYTNI FLK PAEP_QDLELPK 0.73 0.0003

FA9_FGSGYVSG WG R LYAM 1_SYYWIGI R 0.73 0.0002

FA9_SALVLQYLR TETN_LDTLAQEVALLK 0.73 0.0002

FETUA_FSVVYAK ATS13_YGSQLAPETFYR 0.73 0.0001

I NH BC_LDFH FSSDR KIT_YVSELH LTR 0.73 0.0001

ITI H3_ALDLSLK KIT_YVSELH LTR 0.73 0.0002

LBP_ITLPDFTGDLR KIT_YVSELH LTR 0.73 0.0001

LBP_ITLPDFTGDLR LYAM 1_SYYWIGI R 0.73 0.0002

LBP_ITLPDFTGDLR PGRP2_AGLLRPDYALLGHR 0.73 0.0001

PEDF_LQSLFDSPDFSK GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 0.0001

P E D F_TVQA V LTV P K TETN_LDTLAQEVALLK 0.73 0.0002

AM BP_ETLLQDFR FGFR1JGPDN LPYVQILK 0.72 0.0002

AM BP_ETLLQDFR PAEP_QDLELPK 0.72 0.0004 ANGT_DPTFIPAPIQAK KIT_YVSELH LTR 0.72 0.0002

APOC3_GWVTDGFSSLK ATL4_I LWIPAGALR 0.72 0.0004

APOC3_GWVTDGFSSLK I BP3_FLNVLSPR 0.72 0.0003

APOC3_GWVTDGFSSLK PAEP_QDLELPK 0.72 0.0004

APOC3_GWVTDGFSSLK SH BGJALGGLLFPASN LR 0.72 0.0004

APOC3_GWVTDGFSSLK VTDB_ELPEHTVK 0.72 0.0003

B2MG_VN HVTLSQPK PGRP2_AGL.LRPDYALL.GHR 0.72 0.0003

BGH3_LTLLAPLNSVFK KIT_YVSELH LTR 0.72 0.0003

CATD_VGFAEAAR ATS13_YGSQLAPETFYR 0.72 0.0002

CATD_VGFAEAAR C1QB_LEQGENVFLQATDK 0.72 0.0003

CATD_VGFAEAAR LYAM 1_SYYWIGI R 0.72 0.0003

CATD_VGFAEAAR PAEP_QDLELPK 0.72 0.0004

CATD_VGFAEAAR PGRP2_AGLLRPDYALLGHR 0.72 0.0003

CD14_LTVGAAQVPAQLLVGALR CRAC1_GVALADFNR 0.72 0.0004

C08A_SLLQPNK KIT_YVSELH LTR 0.72 0.0004

ENPP2_TYLHTYESEI ATS13_YGSQLAPETFYR 0.72 0.0004

ENPP2_TYLHTYESEI IGF2_GIVEECCFR 0.72 0.0003

ENPP2_TYLHTYESEI LYAM 1_SYYWIGI R 0.72 0.0004

ENPP2_TYLHTYESEI PGRP2_AGLLRPDYALLGHR 0.72 0.0003

FA5_NFFNPPI ISR KIT_YVSELH LTR 0.72 0.0003

FA9_FGSGYVSG WG R PGRP2_AGLLRPDYALLGHR 0.72 0.0003

FA9_FGSGYVSG WG R SPRL1_VLTHSELAPLR 0.72 0.0003

FETUA_FSVVYAK CRAC1_GVALADFNR 0.72 0.0003

FETUA_FSVVYAK IGF2_GIVEECCFR 0.72 0.0002

FETUA_FSVVYAK LYAM 1_SYYWIGI R 0.72 0.0003

FETUA_FSVVYAK TETN_LDTLAQEVALLK 0.72 0.0004

FETUA_FSVVYAK VTDB_ELPEHTVK 0.72 0.0004

H EMO_NFPSPVDAAFR KIT_YVSELH LTR 0.72 0.0002

H EMO_NFPSPVDAAFR TETN_LDTLAQEVALLK 0.72 0.0004

I BP4_QCHPALDGQR ATS13_YGSQLAPETFYR 0.72 0.0003

I BP4_QCHPALDGQR LYAM 1_SYYWIGI R 0.72 0.0003

I BP4_QCHPALDGQR PAEP_QDLELPK 0.72 0.0003

I BP4_QCHPALDGQR SH BGJALGGLLFPASN LR 0.72 0.0003

I BP4_QCHPALDGQR TENX_LNWEAPPGAFDSFLLR 0.72 0.0004

1 BP6_H LDSVLQQLQTEVYR KIT_YVSELH LTR 0.72 0.0003

I L1R1_LWFVPAK KIT_YVSELH LTR 0.72 0.0004

I NH BC_LDFH FSSDR GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0003

I NH BC_LDFH FSSDR PGRP2_AGLLRPDYALLGHR 0.72 0.0004

ITI H3_ALDLSLK PGRP2_AGLLRPDYALLGHR 0.72 0.0004

ITI H3_ALDLSLK SH BGJALGGLLFPASN LR 0.72 0.0003

ITI H3_ALDLSLK TETNJ-DTLAQEVALLK 0.72 0.0004

KNG1_DIPTNSPELEETLTHTITK KITJ-CLHCSVDQEGK 0.72 0.0003

LBP_ITLPDFTGDLR ATS13_YGSQLAPETFYR 0.72 0.0002 PEDF_LQSLFDSPDFSK ATS13_YGSQLAPETFYR 0.72 0.0003

PEDF_LQSLFDSPDFSK LYAM 1_SYYWIGI R 0.72 0.0003

P E D F_TVQA V LTV P K IGF2_GIVEECCFR 0.72 0.0004

P E D F_TVQA V LTV P K PAEP_QDLELPK 0.72 0.0005

P G4JTEVWGIPSPIDTVFT CRAC1_GVALADFNR 0.72 0.0003

PRG4_ITEVWGIPSPIDTVFTR KIT_YVSELH LTR 0.72 0.0002

PROS_FSAEFDFR KIT_LCLHCSVDQEGK 0.72 0.0004

VTNC_VDTVDPPYPR KIT_YVSELH LTR 0.72 0.0004

AM BP_ETLLQDFR D E F 1_YGTC 1 YQG R 0.71 0.0005

AM BP_ETLLQDFR LYAM 1_SYYWIGI R 0.71 0.0008

AM BP_ETLLQDFR SH BGJALGGLLFPASN LR 0.71 0.0007

AM BP_ETLLQDFR TENX_LNWEAPPGAFDSFLLR 0.71 0.0005

ANGT_DPTFIPAPIQAK TETN_LDTLAQEVALLK 0.71 0.0007

AP0C3_GWVTDGFSSLK C1Q.B_LEQ.GENVFLQ.ATDK 0.71 0.0007

AP0C3_GWVTDGFSSLK CNTN1_FI PLIPIPER 0.71 0.0006

AP0C3_GWVTDGFSSLK D E F 1_YGTC 1 YQG R 0.71 0.0004

AP0C3_GWVTDGFSSLK DPEP2_LTLEQI DLI R 0.71 0.0005

AP0C3_GWVTDGFSSLK ECM 1_LLPAQLPAEK 0.71 0.0007

AP0C3_GWVTDGFSSLK FGFR1JGPDN LPYVQILK 0.71 0.0004

AP0C3_GWVTDGFSSLK SPRL1_VLTHSELAPLR 0.71 0.0005

AP0C3_GWVTDGFSSLK TENX_LNWEAPPGAFDSFLLR 0.71 0.0004

A PO H_ATVVYQG E R CRAC1_GVALADFNR 0.71 0.0007

A PO H_ATVVYQG E R KIT_YVSELH LTR 0.71 0.0006

B2MG_VN HVTLSQPK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0006

B2MG_VN HVTLSQPK LYAM 1_SYYWIGI R 0.71 0.0006

B2MG_VN HVTLSQPK SH BGJALGGLLFPASN LR 0.71 0.0007

CATD_VGFAEAAR ATL4J LWIPAGALR 0.71 0.0006

CATD_VGFAEAAR CNTN1_FI PLIPIPER 0.71 0.0007

CATD_VGFAEAAR IGF2_GIVEECCFR 0.71 0.0006

CATD_VGFAEAAR M UC18_EVTVPVFYPTEK 0.71 0.0006

CATD_VGFAEAAR SPRL1_VLTHSELAPLR 0.71 0.0006

CD14_LTVGAAQVPAQLLVGALR TETN_LDTLAQEVALLK 0.71 0.0007

C08A_SLLQPNK CRAC1_GVALADFNR 0.71 0.0006

ENPP2_TYLHTYESEI ATL4J LWIPAGALR 0.71 0.0007

ENPP2_TYLHTYESEI FGFR1JGPDN LPYVQILK 0.71 0.0006

ENPP2_TYLHTYESEI GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0006

ENPP2_TYLHTYESEI PAEP_QDLELPK 0.71 0.0009

ENPP2_TYLHTYESEI TENX_LNWEAPPGAFDSFLLR 0.71 0.0008

ENPP2_TYLHTYESEI VTDB_ELPEHTVK 0.71 0.0007

FA11_TAAISGYSFK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0005

FA11_TAAISGYSFK TETN_LDTLAQEVALLK 0.71 0.0007

FA5_AEVDDVIQVR CRAC1_GVALADFNR 0.71 0.0008

FA9_SALVLQYLR CNTN 1_TTKPYPADIVVQFK 0.71 0.0006 FETUA_FSVVYAK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0006

FETUA_FSVVYAK PGRP2_AGLLRPDYALLGHR 0.71 0.0008

HABP2_FLNWIK KIT_LCLHCSVDQEGK 0.71 0.0008

H EMO_NFPSPVDAAF CRAC1_GVALADFNR 0.71 0.0007

I BP4_QCHPALDGQR SPRL1_VLTHSELAPLR 0.71 0.0005

1 BP6_H LDSVLQQLQTEVYR CRAC1_GVALADFNR 0.71 0.0006

I NH BC_LDFH FSSDR IGF2_GIVEECCFR 0.71 0.0005

I NH BC_LDFH FSSDR TETN_LDTLAQEVALLK 0.71 0.0005

KNG1_DIPTNSPELEETLTHTITK CRAC1_GVALADFNR 0.71 0.0005

KNG1_DIPTNSPELEETLTHTITK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0008

KNG1_DIPTNSPELEETLTHTITK LYAM 1_SYYWIGI R 0.71 0.0007

LBPJTLPDFTGDLR D E F 1_YGTC 1 YQG R 0.71 0.0006

LBP_ITLPDFTGDLR GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0006

LBP_ITLPDFTGDLR PAEP_QDLELPK 0.71 0.0006

LBP_ITLPDFTGDLR SH BGJALGGLLFPASN LR 0.71 0.0005

LBP_ITLPDFTGDLR TETN_LDTLAQEVALLK 0.71 0.0006

P E D F_TVQA V LTV P K C1QB_LEQGENVFLQATDK 0.71 0.0007

P E D F_TVQA V LTV P K PGRP2_AGLLRPDYALLGHR 0.71 0.0005

RET4_YWGVASFLQK CRAC1_GVASLFAGR 0.71 0.0006

SEPP1_VSLATVDK CRAC1_GVALADFNR 0.71 0.0004

SEPP1_VSLATVDK KIT_YVSELH LTR 0.71 0.0005

VTNC_VDTVDPPYPR CRAC1_GVALADFNR 0.71 0.0005

VTNC_VDTVDPPYPR TETN_LDTLAQEVALLK 0.71 0.0007

A2GL_DLLLPQPDLR CRAC1_GVALADFNR 0.7 0.0012

AFAM_H FQNLGK CRAC1_GVALADFNR 0.7 0.0013

AFAM_H FQNLGK KIT_YVSELH LTR 0.7 0.0009

AM BP_ETLLQDFR ATS13_YGSQLAPETFYR 0.7 0.0012

AM BP_ETLLQDFR C1QB_LEQGENVFLQATDK 0.7 0.0013

AM BP_ETLLQDFR CRIS3_YEDLYSNCK 0.7 0.0014

AM BP_ETLLQDFR IGF2_GIVEECCFR 0.7 0.0010

AM BP_ETLLQDFR M UC18_EVTVPVFYPTEK 0.7 0.0013

ANGT_DPTFIPAPIQAK CRAC1_GVALADFNR 0.7 0.0009

ANGT_DPTFIPAPIQAK SH BGJALGGLLFPASN LR 0.7 0.0013

AP0C3_GWVTDGFSSLK CRIS3_YEDLYSNCK 0.7 0.0013

AP0C3_GWVTDGFSSLK EGLN_TQI LEWAAER 0.7 0.0010

AP0C3_GWVTDGFSSLK PROS_SQDILLSVENTVIYR 0.7 0.0010

AP0C3_GWVTDGFSSLK TIE1_VSWSLPLVPGPLVGDGFLLR 0.7 0.0009

AP0C3_GWVTDGFSSLK VGFR1_YLAVPTSK 0.7 0.0009

B2MG_VN HVTLSQPK ATS13_YGSQLAPETFYR 0.7 0.0009

B2MG_VN HVTLSQPK PAEP_QDLELPK 0.7 0.0012

BGH3_LTLLAPLNSVFK CRAC1_GVALADFNR 0.7 0.0009

CATD_VGFAEAAR C163AJN PASLDK 0.7 0.0009

CATD_VGFAEAAR EGLN_TQI LEWAAER 0.7 0.0012 CATD_VGFAEAAR SHBGJALGGLLFPASNLR 0.7 0.0013

CATD_VGFAEAAR VGFR1_YLAVPTSK 0.7 0.0009

CD14_LTVGAAQVPAQLLVGALR ATS13_YGSQLAPETFYR 0.7 0.0012

CD14_LTVGAAQVPAQLLVGALR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0011

CD14_LTVGAAQVPAQLLVGALR PGRP2_AGLLRPDYALLGHR 0.7 0.0014

C05_VFQFLEK KIT_LCLHCSVDQEGK 0.7 0.0012

C06_ALNHLPLEYNSALYSR KIT_YVSELHLTR 0.7 0.0009

C08B_QALEEFQK CRAC1_GVALADFNR 0.7 0.0010

C08B_QALEEFQK KIT_YVSELHLTR 0.7 0.0011

ENPP2_TYLHTYESEI C1QB_LEQGENVFLQATDK 0.7 0.0011

ENPP2_TYLHTYESEI CNTN1_TTKPYPADIVVQFK 0.7 0.0011

ENPP2_TYLHTYESEI D E F 1_YGTC 1 YQG R 0.7 0.0014

ENPP2_TYLHTYESEI IBP3_FLNVLSPR 0.7 0.0012

FA9_FGSGYVSG WG R SHBGJALGGLLFPASNLR 0.7 0.0013

FA9_SALVLQYLR ATS13_YGSQLAPETFYR 0.7 0.0012

FA9_SALVLQYLR C1QB_LEQGENVFLQATDK 0.7 0.0014

FETUA_FSVVYAK SHBGJALGGLLFPASNLR 0.7 0.0010

FETUA_FSVVYAK SPRL1_VLTHSELAPLR 0.7 0.0014

FETUA_FSVVYAK TENXJ-NWEAPPGAFDSFLL 0.7 0.0012

IBP4_QCHPALDGQR ATL4JLWIPAGALR 0.7 0.0011

IBP4_QCHPALDGQR C1QBJ.EQGENVFLQATDK 0.7 0.0010

IBP4_QCHPALDGQR CNTNIJ^PLIPIPER 0.7 0.0011

IBP4_QCHPALDGQR DEF1_YGTCIYQGR 0.7 0.0013

IBP4_QCHPALDGQR FGFR1JGPDNLPYVQILK 0.7 0.0008

1 BP6_H LDSVLQQLQTEVYR TETNJ-DTLAQEVALLK 0.7 0.0008

INHBC_LDFHFSSDR ATS13_YGSQLAPETFYR 0.7 0.0008

INHBC_LDFHFSSDR C1QBJ-EQGENVFLQATDK 0.7 0.0013

INHBC_LDFHFSSDR CNTNIJ^PLIPIPER 0.7 0.0014

INHBC_LDFHFSSDR FGFR1JGPDNLPYVQILK 0.7 0.0013

INHBC_LDFHFSSDR LYAM 1J5YYWIGIR 0.7 0.0012

INHBC_LDFHFSSDR PAEP_QDLELPK 0.7 0.0011

INHBC_LDFHFSSDR TENXJ-NWEAPPGAFDSFLLR 0.7 0.0011

ITIH3_ALDLSLK CRAC1_GVALADFNR 0.7 0.0008

KNG1_DIPTNSPELEETLTHTITK TETNJ-DTLAQEVALLK 0.7 0.0013

KNG1_QVVAGLNFR ATS13_YGSQLAPETFYR 0.7 0.0009

KNG1_Q.WAGL.NFR PAEP_QDLELPK 0.7 0.0014

KNG1_QVVAGLNFR PGRP2_AGLLRPDYALLGHR 0.7 0.0010

KNG1_QVVAGLNFR SHBGJALGGLLFPASNLR 0.7 0.0013

LBP_ITLPDFTGDLR C163AJNPASLDK 0.7 0.0011

LBP_ITLPDFTGDLR CRIS3_AVSPPAR 0.7 0.0012

LBP_ITLPDFTGDLR SPRL1_VLTHSELAPLR 0.7 0.0013

LBP_ITLPDFTGDLR TENXJ.NWEAPPGAFDSFLLR 0.7 0.0014

LBP_ITLPDFTGDLR VTDBJELPEHTVK 0.7 0.0010 PCD12_AH DADLGINGK KIT_YVSELH LTR 0.7 0.0008

PCD12_YQVSEEVPSGTVIGK KIT_LCLHCSVDQEGK 0.7 0.0012

PEDF_LQSLFDSPDFSK FGFR1JGPDN LPYVQILK 0.7 0.0009

PEDF_LQSLFDSPDFSK TENX_LNWEAPPGAFDSFLLR 0.7 0.0013

PEDF_LQSLFDSPDFSK VTDB_ELPEHTVK 0.7 0.0013

P E D F_TVQA V LTV P K CNTN 1_TTKPYPADIVVQFK 0.7 0.0010

P E D F_TVQA V LTV P K SH BGJALGGLLFPASN LR 0.7 0.0014

P E D F_TVQA V LTV P K SPRL1_VLTHSELAPLR 0.7 0.0011

P G4JTEVWGIPSPIDTVFT ATS13_YGSQLAPETFYR 0.7 0.0012

PRG4_ITEVWGIPSPIDTVFTR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0013

PRG4JTEVWGIPSPIDTVFTR IGF2_GIVEECCFR 0.7 0.0011

RET4_YWGVASFLQK KIT_LCLHCSVDQEGK 0.7 0.0010

SEPP1_VSLATVDK TETN_LDTLAQEVALLK 0.7 0.0010

S0M2.CSH_NYGLLYCFR KIT_YVSELH LTR 0.7 0.0010

VTNC_VDTVDPPYPR ATS13_YGSQLAPETFYR 0.7 0.0009

VTNC_VDTVDPPYPR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0012

VTNC_VDTVDPPYPR PAEP_QDLELPK 0.7 0.0012

VTNC_VDTVDPPYPR PGRP2_AGLLRPDYALLGHR 0.7 0.0013

VTNC_VDTVDPPYPR SH BGJALGGLLFPASN LR 0.7 0.0012

Table 10. Reversals (UpVDown-Regulated) Predicting PPROM vs. Term Birth at GABD 134- 146 with an AUC >= 0.7

P G4JTEVWGIPSPIDTVFT CRAC1_GVALADFNR 0.78 0.0002

AM BP_ETL.LQ.DFR KIT_YVSELH LTR 0.77 0.0003

APOC3_GWVTDGFSSLK ATL4_I LWIPAGALR 0.77 0.0003

APOC3_GWVTDGFSSLK GELS_AQPVQVAEGSEPDGFWEALGGK 0.77 0.0003

APOC3_GWVTDGFSSLK TETN_LDTLAQEVALLK 0.77 0.0003

APOC3_GWVTDGFSSLK VTDB_ELPEHTVK 0.77 0.0002

A PO H_AT VVYQG E R CRAC1_GVALADFNR 0.77 0.0002

BGH3_LTLLAPLNSVFK CRAC1_GVALADFNR 0.77 0.0002

C08A_SLLQPNK CRAC1_GVALADFNR 0.77 0.0003

FA9_SALVLQYLR KIT_LCLHCSVDQEGK 0.77 0.0003

FETUA_FSVVYAK ATS13_YGSQLAPETFYR 0.77 0.0002

I NH BC_LDFH FSSDR DPEP2_LTLEQIDLIR 0.77 0.0002

I NH BC_LDFH FSSDR KIT_YVSELH LTR 0.77 0.0003

KNG1_DIPTNSPELEETLTHTITK CRAC1_GVALADFNR 0.77 0.0003

LBPJTLPDFTGDLR CRAC1_GVALADFNR 0.77 0.0003

P E D F_TVQA V LTV P K DPEP2_LTLEQIDLIR 0.77 0.0003

P E D F_TVQA V LTV P K SH BGJALGGLLFPASN LR 0.77 0.0003

P E D F_TVQA V LTV P K TETN_LDTLAQEVALLK 0.77 0.0003

AM BP_ETLLQDFR GELS_AQPVQVAEGSEPDGFWEALGGK 0.76 0.0004

AM BP_ETLLQDFR SH BGJALGGLLFPASN LR 0.76 0.0005

AM BP_ETLLQDFR SPRL1_VLTHSELAPLR 0.76 0.0005

AM BP_ETLLQDFR VGFR1_YLAVPTSK 0.76 0.0005

APOC3_GWVTDGFSSLK FBLN 1_TGYYFDGISR 0.76 0.0005

APOC3_GWVTDGFSSLK I BP3_FLNVLSPR 0.76 0.0004

APOC3_GWVTDGFSSLK IGF2_GIVEECCFR 0.76 0.0004

APOC3_GWVTDGFSSLK KIT_LCLHCSVDQEGK 0.76 0.0003

APOC3_GWVTDGFSSLK LYAM 1_SYYWIGI R 0.76 0.0004

APOC3_GWVTDGFSSLK PAEP_QDLELPK 0.76 0.0006

B2MG_VN HVTLSQPK CRAC1_GVALADFNR 0.76 0.0003

CATD_VGFAEAAR CRAC1_GVALADFNR 0.76 0.0006

CATD_VGFAEAAR VGFR1_YLAVPTSK 0.76 0.0004

C08B_QALEEFQK CRAC1_GVALADFNR 0.76 0.0004

FA11_TAAISGYSFK KIT_LCLHCSVDQEGK 0.76 0.0006

FA9_FGSGYVSG WG R VGFR1_YLAVPTSK 0.76 0.0005

FETUA_FSVVYAK CRAC1_GVALADFNR 0.76 0.0004

FETUA_FSVVYAK DPEP2_LTLEQIDLIR 0.76 0.0005

FETUA_FSVVYAK SH BGJALGGLLFPASN LR 0.76 0.0005

HABP2_FLNWIK ATS13_YGSQLAPETFY 0.76 0.0004

HABP2_FLNWIK CRAC1_GVALADFNR 0.76 0.0004

I BP4_QCHPALDGQR ATS13_YGSQLAPETFYR 0.76 0.0006

I BP4_QCHPALDGQR SH BGJALGGLLFPASN LR 0.76 0.0004

I NH BC_LDFH FSSDR ATL4J LWIPAGALR 0.76 0.0004

I NH BC_LDFH FSSDR TETNJ-DTLAQEVALLK 0.76 0.0004 KNG1_Q.WAGL.N FR SH BGJALGGLLFPASN LR 0.76 0.0004

LEP_DLLHVLAFSK CRAC1_GVALADFNR 0.76 0.0005

PEDF_LQSLFDSPDFSK GELS_AQPVQVAEGSEPDGFWEALGGK 0.76 0.0005

PEDF_LQSLFDSPDFSK VGFR1_YLAVPTSK 0.76 0.0005

P E D F_TVQA V LTV P K PAEP_QDLELPK 0.76 0.0007

SEPP1_VSLATVDK CRAC1_GVALADFNR 0.76 0.0003

VTNC_VDTVDPPYPR CRAC1_GVALADFNR 0.76 0.0003

VTNC_VDTVDPPYPR SH BGJALGGLLFPASN LR 0.76 0.0004

AM BP_ETLLQDFR ATL4J LWIPAGALR 0.75 0.0008

AM BP_ETLLQDFR PAEP_QDLELPK 0.75 0.0011

APOC3_GWVTDGFSSLK A0C1_GDFPSPIHVSGPR 0.75 0.0008

APOC3_GWVTDGFSSLK PGRP2_AGLLRPDYALLGH R 0.75 0.0007

APOC3_GWVTDGFSSLK TENX_LSQLSVTDVTTSSLR 0.75 0.0008

BGH3_LTLLAPLNSVFK DPEP2_LTLEQIDLIR 0.75 0.0007

BGH3_LTLLAPLNSVFK KIT_YVSELH LTR 0.75 0.0009

CAM P_AI DGINQR CRAC1_GVALADFNR 0.75 0.0009

CATD_VGFAEAAR ATL4J LWIPAGALR 0.75 0.0007

CATD_VGFAEAAR TETN_LDTLAQEVALLK 0.75 0.0009

CD14_LTVGAAQVPAQLLVGALR ATS13_YGSQLAPETFYR 0.75 0.0009

CD14_LTVGAAQVPAQLLVGALR DPEP2_LTLEQIDLIR 0.75 0.0008

C F AB_YG LVTYATYP K CRAC1_GVALADFNR 0.75 0.0008

FA11_TAAISGYSFK GELS_AQPVQVAEGSEPDGFWEALGGK 0.75 0.0009

FA11_TAAISGYSFK TETN_LDTLAQEVALLK 0.75 0.0008

FA9_SALVLQYLR DPEP2_LTLEQIDLIR 0.75 0.0008

FA9_SALVLQYLR GELS_AQPVQVAEGSEPDGFWEALGGK 0.75 0.0008

FETUA_FSVVYAK KIT_LCLHCSVDQEGK 0.75 0.0007

H EMO_NFPSPVDAAFR CRAC1_GVALADFNR 0.75 0.0008

I BP4_QCHPALDGQR ATL4J LWIPAGALR 0.75 0.0006

I BP4_QCHPALDGQR DPEP2_LTLEQIDLIR 0.75 0.0008

I BP4_QCHPALDGQR TETN_LDTLAQEVALLK 0.75 0.0008

I NH BC_LDFH FSSDR GELS_AQPVQVAEGSEPDGFWEALGGK 0.75 0.0006

I NH BC_LDFH FSSDR SH BGJALGGLLFPASN LR 0.75 0.0006

I NH BC_LDFH FSSDR VGFR1J LAVPTSK 0.75 0.0007

I NH BC_LDFH FSSDR VTDBJELPEHTVK 0.75 0.0009

ITI H3_ALDLSLK SH BGJALGGLLFPASN LR 0.75 0.0006

LEP_DLLHVLAFSK VGFR1J LAVPTSK 0.75 0.0006

PEDF_LQSLFDSPDFSK ATL4J LWIPAGALR 0.75 0.0009

PEDF_LQSLFDSPDFSK VTDBJELPEHTVK 0.75 0.0009

PRG4_ITEVWGIPSPIDTVFTR ATS13J GSQLAPETFYR 0.75 0.0006

PRG4_ITEVWGIPSPIDTVFTR KITJ.CLHCSVDQEGK 0.75 0.0009

PRG4_ITEVWGIPSPIDTVFTR VGFR1J LAVPTSK 0.75 0.0009

PROS_FSAEFDFR CRAC1_GVALADFNR 0.75 0.0009

TIM P1_HLACLPR CRAC1_GVALADFNR 0.75 0.0006 VTNC_VDTVDPPYPR ATS13_YGSQLAPETFYR 0.75 0.0007

AFAM_HFQ.NL.GK CRAC1_GVALADFNR 0.74 0.0010

AFAM_HFQNLGK DPEP2_LTLEQIDLIR 0.74 0.0014

AMBP_ETLLQDFR CNTN1_TTKPYPADIVVQFK 0.74 0.0012

AMBP_ETLLQDFR DPEP2_LTLEQIDLIR 0.74 0.0010

ANGT_DPTFIPAPIQAK SHBGJALGGLLFPASNLR 0.74 0.0013

APOC3_GWVTDGFSSLK C1QB_LEQGENVFLQATDK 0.74 0.0010

APOC3_GWVTDGFSSLK CNTN1_FIPLIPIPER 0.74 0.0014

APOC3_GWVTDGFSSLK ECM1_LLPAQLPAEK 0.74 0.0011

APOC3_GWVTDGFSSLK FGFR1JGPDNLPYVQILK 0.74 0.0014

APOC3_GWVTDGFSSLK NOTUM_GLADSGWFLDNK 0.74 0.0014

APOC3_GWVTDGFSSLK P RG 2_W N F AYW AA H QP WS R 0.74 0.0015

APOC3_GWVTDGFSSLK SPRL1_VLTHSELAPLR 0.74 0.0015

B2MG_VNHVTLSQPK SHBGJALGGLLFPASNLR 0.74 0.0012

BGH3_LTLLAPLNSVFK VGFR1_YLAVPTSK 0.74 0.0012

C1QC_TNQVNSGGVLLR CRAC1_GVALADFNR 0.74 0.0013

CD14_LTVGAAQVPAQLLVGALR ATL4JLWIPAGALR 0.74 0.0013

CD14_LTVGAAQVPAQLLVGALR SHBGJALGGLLFPASNLR 0.74 0.0013

CD14_LTVGAAQVPAQLLVGALR TETNJ-DTLAQEVALLK 0.74 0.0014

C05_VFQFLEK ATS13_YGSQLAPETFY 0.74 0.0012

C05_VFQFLEK CRAC1_GVALADFNR 0.74 0.0010

C05_VFQFLEK SHBGJALGGLLFPASNLR 0.74 0.0010

C06_ALNHLPLEYNSALYSR CRAC1_GVALADFNR 0.74 0.0013

ENPP2_TYLHTYESEI CRAC1_GVALADFNR 0.74 0.0013

FA11_TAAISGYSFK ATS13_YGSQLAPETFYR 0.74 0.0009

FA11_TAAISGYSFK SHBGJALGGLLFPASNLR 0.74 0.0015

FA11_TAAISGYSFK VGFR1_YLAVPTSK 0.74 0.0010

FA9_SALVLQYLR ATS13_YGSQLAPETFYR 0.74 0.0009

FETUA_FSVVYAK VGFR1_YLAVPTSK 0.74 0.0013

HABP2_FLNWIK DPEP2J-TLEQIDUR 0.74 0.0014

HEMO_NFPSPVDAAFR SHBGJALGGLLFPASNLR 0.74 0.0012

HEMO_NFPSPVDAAFR TETNJ-DTLAQEVALLK 0.74 0.0012

IBP4_QCHPALDGQR GELS_AQPVQVAEGSEPDGFWEALGGK 0.74 0.0009

IBP4_QCHPALDGQR KITJ-CLHCSVDQEGK 0.74 0.0010

IBP4_QCHPALDGQR PAEP_QDLELPK 0.74 0.0019

1 BP6_H LDSVLQQLQTEVYR CRAC1_GVALADFNR 0.74 0.0009

1 G F 1_G FYF N K PTGYGSSS R CRAC1_GVALADFNR 0.74 0.0013

INHBC_LDFHFSSDR FBLN1_TGYYFDGISR 0.74 0.0012

INHBC_LDFHFSSDR IGF2_GIVEECCFR 0.74 0.0011

INHBC_LDFHFSSDR PAEP_QDLELPK 0.74 0.0016

INHBC_LDFHFSSDR PR0SJ5QDILLSVENTVIYR 0.74 0.0014

INHBC_LDFHFSSDR PSG3_VSAPSGTGHLPGLNPL 0.74 0.0013

KNG1_DIPTNSPELEETLTHTITK ATL4JLWIPAGALR 0.74 0.0014 KNG1_DIPTNSPELEETLTHTITK ATS13_YGSQLAPETFYR 0.74 0.0012

KNG1_DIPTNSPELEETLTHTITK DPEP2_LTLEQIDLIR 0.74 0.0015

LBPJTLPDFTGDLR VGFR1_YLAVPTSK 0.74 0.0012

LEP_DLLHVLAFSK TETN_LDTLAQEVALLK 0.74 0.0014

PAPP2_LLLRPEVLAEIPR VGFR1_YLAVPTSK 0.74 0.0010

RET4_YWGVASFLQK CRAC1_GVALADFNR 0.74 0.0012

AFAM_HFQNLGK VGFR1_YLAVPTSK 0.73 0.0019

AMBP_ETL.LQ.DFR ATS13_YGSQLAPETFYR 0.73 0.0019

AMBP_ETLLQDFR FGFRIJGPDNLPYVQILK 0.73 0.0020

APOC3_GWVTDGFSSLK CSH_AHQLAIDTYQEFEETYIPK 0.73 0.0023

APOC3_GWVTDGFSSLK EGLN_TQILEWAAER 0.73 0.0019

APOC3_GWVTDGFSSLK NCAM 1_GLGEISAASEFK 0.73 0.0020

APOC3_GWVTDGFSSLK PROS_SQDILLSVENTVIYR 0.73 0.0016

APOC3_GWVTDGFSSLK PSG3_VSAPSGTGHLPGLNPL 0.73 0.0017

BGH3_LTLLAPLNSVFK SHBGJALGGLLFPASNLR 0.73 0.0018

BGH3_LTLLAPLNSVFK TETN_LDTLAQEVALLK 0.73 0.0016

C1QA_DQPRPAFSAIR CRAC1_GVALADFNR 0.73 0.0015

CAMP_AIDGINQR VGFR1_YLAVPTSK 0.73 0.0022

CATD_VGFAEAAR ATS13_YGSQLAPETFYR 0.73 0.0016

CATD_VGFAEAAR DPEP2_LTLEQIDLIR 0.73 0.0017

CATD_VGFAEAAR GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 0.0024

CATD_VGFAEAAR KIT_LCLHCSVDQEGK 0.73 0.0023

CD14_LTVGAAQVPAQLLVGALR KIT_LCLHCSVDQEGK 0.73 0.0019

C05_TLLPVSKPEIR ATL4JLWIPAGALR 0.73 0.0017

C05_VFQFLEK DPEP2_LTLEQIDLIR 0.73 0.0019

C05_VFQFLEK KIT_LCLHCSVDQEGK 0.73 0.0021

ENPP2_TYLHTYESEI ATL4_ILWIPAGALR 0.73 0.0023

ENPP2_TYLHTYESEI DPEP2_LTLEQIDLIR 0.73 0.0019

ENPP2_TYLHTYESEI SHBGJALGGLLFPASNLR 0.73 0.0018

ENPP2_TYLHTYESEI VGFR1_YLAVPTSK 0.73 0.0019

FA11_TAAISGYSFK ATL4JLWIPAGALR 0.73 0.0017

FA11_TAAISGYSFK DPEP2_LTLEQIDLIR 0.73 0.0023

FA5_NFFNPPIISR SHBGJALGGLLFPASNLR 0.73 0.0023

FA9_FGSGYVSG WG R PR0SJ5QDILLSVENTVIYR 0.73 0.0018

FA9_SALVLQYLR ATL4JLWIPAGALR 0.73 0.0019

FETUA_FSVVYAK ATL4JLWIPAGALR 0.73 0.0022

HABP2_FLNWIK ATL4JLWIPAGALR 0.73 0.0020

HABP2_FLNWIK KITJ.CLHCSVDQEGK 0.73 0.0017

IBP4_QCHPALDGQR VGFRIJ/LAVPTSK 0.73 0.0020

INHBC_LDFHFSSDR A0C1_GDFPSPIHVSGPR 0.73 0.0019

INHBC_LDFHFSSDR C1QBJ.EQGENVFLQATDK 0.73 0.0016

INHBC_LDFHFSSDR CADH5J EIVVEAR 0.73 0.0018

INHBC_LDFHFSSDR CNTNIJ^PLIPIPER 0.73 0.0023 I NH BC_LDFH FSSDR PGRP2_AGLLRPDYALLGH R 0.73 0.0018

I NH BC_LDFH FSSDR TENX_LNWEAPPGAFDSFLLR 0.73 0.0024

ITI H3_ALDLSLK CRAC1_GVALADFNR 0.73 0.0017

KNG1_DIPTNSPELEETLTHTITK GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 0.0023

KNG1_DIPTNSPELEETLTHTITK KIT_LCLHCSVDQEGK 0.73 0.0016

KNG1_DIPTNSPELEETLTHTITK TETN_LDTLAQEVALLK 0.73 0.0019

LBP_ITLPDFTGDLR ATS13_YGSQLAPETFYR 0.73 0.0021

LBP_ITLPDFTGDLR SH BGJALGGLLFPASN LR 0.73 0.0018

LEP_DLLHVLAFSK ATL4_I LWIPAGALR 0.73 0.0024

LEP_DLLHVLAFSK SH BGJALGGLLFPASN LR 0.73 0.0021

PCD12_YQVSEEVPSGTVIGK KIT_LCLHCSVDQEGK 0.73 0.0020

PEDF_LQSLFDSPDFSK FGFR1JGPDN LPYVQILK 0.73 0.0022

P E D F_TVQA V LTV P K C1QB_LEQGENVFLQATDK 0.73 0.0015

PRG4_DQYYN I DVPSR TETN_LDTLAQEVALLK 0.73 0.0023

PRG4_ITEVWGIPSPIDTVFTR DPEP2_LTLEQIDLIR 0.73 0.0016

PRG4_ITEVWGIPSPIDTVFTR GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 0.0016

PRG4_ITEVWGIPSPIDTVFTR PAEP_QDLELPK 0.73 0.0024

PRG4_ITEVWGIPSPIDTVFTR PROS_SQDILLSVENTVIYR 0.73 0.0024

PRG4JTEVWGIPSPIDTVFTR SH BG_ALALPPLGLAPLLN LWAKPQGR 0.73 0.0020

PROS_FSAEFDFR KIT_YVSELH LTR 0.73 0.0024

VTNC_GQYCYELDEK DPEP2_LTLEQIDLIR 0.73 0.0019

VTNC_GQYCYELDEK TETN_LDTLAQEVALLK 0.73 0.0023

VTNC_VDTVDPPYPR KIT_LCLHCSVDQEGK 0.73 0.0022

VTNC_VDTVDPPYPR PAEP_QDLELPK 0.73 0.0029

AFAM_H FQNLGK KIT_YVSELH LTR 0.72 0.0034

AM BP_ETLLQDFR PSG3_VSAPSGTGHLPGLNPL 0.72 0.0031

AM BP_ETLLQDFR TENX_LSQLSVTDVTTSSLR 0.72 0.0034

ANGT_DPTFIPAPIQAK CRAC1_GVALADFNR 0.72 0.0032

APOC3_GWVTDGFSSLK CADH5_YEIVVEAR 0.72 0.0032

APOC3_GWVTDGFSSLK CRIS3_AVSPPAR 0.72 0.0027

APOC3_GWVTDGFSSLK DEF1JPACIAGER 0.72 0.0030

APOC3_GWVTDGFSSLK I BP2_LIQGAPTI R 0.72 0.0031

APOC3_GWVTDGFSSLK M UC18_EVTVPVFYPTEK 0.72 0.0033

APOC3_GWVTDGFSSLK PAPP1_DIPHWLN PTR 0.72 0.0033

APOC3_GWVTDGFSSLK TI E1_VSWSLPLVPGPLVGDGFLLR 0.72 0.0028

A PO H_ATVVYQG E R ATS13_YGSQLAPETFYR 0.72 0.0034

B2MG_VN HVTLSQPK ATL4J LWIPAGALR 0.72 0.0025

B2MG_VN HVTLSQPK ATS13_YGSQLAPETFYR 0.72 0.0030

B2MG_VN HVTLSQPK DPEP2_LTLEQIDLIR 0.72 0.0025

B2MG_VN HVTLSQPK VGFR1_YLAVPTSK 0.72 0.0035

BGH3_LTLLAPLNSVFK ATL4J LWIPAGALR 0.72 0.0031

C1QA_DQPRPAFSAI R KIT_YVSELH LTR 0.72 0.0030

C1QA_SLGFCDTTN K KIT_LCLHCSVDQEGK 0.72 0.0027 C1Q.C_TNQ.VNSGGVL.LR KIT_LCLHCSVDQEGK 0.72 0.0026

CAM P_AI DGINQR SH BGJALGGLLFPASN LR 0.72 0.0031

CATD_VGFAEAAR SH BGJALGGLLFPASN LR 0.72 0.0035

CATD_VGFAEAAR TENX_LSQLSVTDVTTSSLR 0.72 0.0032

CD14_LTVGAAQVPAQLLVGALR GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0028

CD14_LTVGAAQVPAQLLVGALR VGFR1_YLAVPTSK 0.72 0.0030

CD14_SWLAELQQWLKPGLK VTDB_ELPEHTVK 0.72 0.0031

C F AB_YG LVTYATYP K DPEP2_LTLEQIDLIR 0.72 0.0028

CLUS_ASSII DELFQDR CRAC1_GVALADFNR 0.72 0.0031

C08A_SLLQPNK KIT_YVSELH LTR 0.72 0.0027

C08A_SLLQPNK SH BGJALGGLLFPASN LR 0.72 0.0029

C08A_SLLQPNK TETN_LDTLAQEVALLK 0.72 0.0027

C08A_SLLQPNK VGFR1_YLAVPTSK 0.72 0.0031

F13B_GDTYPAELYITGSI LR CRAC1_GVALADFNR 0.72 0.0024

F13B_GDTYPAELYITGSI LR KIT_LCLHCSVDQEGK 0.72 0.0035

FA11_TAAISGYSFK PAEP_QDLELPK 0.72 0.0037

FA5_NFFNPPI ISR ATL4J LWIPAGALR 0.72 0.0028

FA5_NFFNPPI ISR KIT_LCLHCSVDQEGK 0.72 0.0026

FA9_FGSGYVSG WG R A0C1_GDFPSPIHVSGPR 0.72 0.0036

FA9_FGSGYVSG WG R CRIS3_YEDLYSNCK 0.72 0.0036

FA9_FGSGYVSG WG R PSG3_VSAPSGTGHLPGLNPL 0.72 0.0028

FA9_SALVLQYLR CNTN IJTKPYPADIVVQFK 0.72 0.0027

FETUA_FSVVYAK GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0034

HABP2_FLNWIK SH BGJALGGLLFPASN LR 0.72 0.0032

HABP2_FLNWIK VGF 1_YLAVPTSK 0.72 0.0027

H EMO_NFPSPVDAAFR ATL4J LWIPAGALR 0.72 0.0032

1 BP6_H LDSVLQQLQTEVYR SH BGJALGGLLFPASN LR 0.72 0.0029

1 BP6_H LDSVLQQLQTEVYR VGFR1_YLAVPTSK 0.72 0.0026

1 G F 1_G FYF N K PTGYGSSS R DPEP2J.TLEQIDLIR 0.72 0.0035

1 G F 1_G FYF N K PTGYGSSS R VGFR1_YLAVPTSK 0.72 0.0032

I NH BC_LDFH FSSDR ECM 1J-LPAQLPAEK 0.72 0.0026

I NH BC_LDFH FSSDR FGFR1JGPDN LPYVQILK 0.72 0.0026

I NH BC_LDFH FSSDR SPRL1_VLTHSELAPLR 0.72 0.0033

ITI H3_ALDLSLK KITJ-CLHCSVDQEGK 0.72 0.0036

ITI H3_ALDLSLK TETNJ-DTLAQEVALLK 0.72 0.0027

KNG1_DIPTNSPELEETLTHTITK PAEP_QDLELPK 0.72 0.0032

KNG1_DIPTNSPELEETLTHTITK VGFR1_YLAVPTSK 0.72 0.0036

LBP_ITLPDFTGDLR KITJ-CLHCSVDQEGK 0.72 0.0027

LEP_DLLHVLAFSK GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0033

LEP_DLLHVLAFSK KITJ.CLHCSVDQEGK 0.72 0.0036

LEP_DLLHVLAFSK NOTU M_GLADSGWFLDNK 0.72 0.0026

PAPP2_LLLRPEVLAEI PR CRAC1_GVALADFNR 0.72 0.0024

PCD12_AH DADLGINGK CRAC1_GVALADFNR 0.72 0.0036 PEDF_LQSLFDSPDFSK CRIS3_AVSPPAR 0.72 0.0033

PEDF_LQSLFDSPDFSK PSG3_VSAPSGTGHLPGLNPL 0.72 0.0025

PEDF_LQSLFDSPDFSK TENX_LSQLSVTDVTTSSLR 0.72 0.0028

PRDX2_GLFIIDGK VGFR1_YLAVPTSK 0.72 0.0029

PRG4_DQYYNIDVPSR PAEP_HLWYLLDLK 0.72 0.0036

PRG4_ITEVWGIPSPIDTVFTR ATL4JLWIPAGALR 0.72 0.0032

RET4_YWGVASFLQK ATS13_YGSQLAPETFYR 0.72 0.0031

SEPP1_VSLATVDK ATL4_ILWIPAGALR 0.72 0.0034

SEPP1_VSLATVDK SHBGJALGGLLFPASNLR 0.72 0.0031

SEPP1_VSLATVDK TETN_LDTLAQEVALLK 0.72 0.0036

TIMP1_HLACLPR SHBGJALGGLLFPASNLR 0.72 0.0024

VTNC_VDTVDPPYPR VGFR1_YLAVPTSK 0.72 0.0027

AFAM_HFQ.NL.GK ATS13_YGSQLAPETFYR 0.71 0.0052

AFAM_HFQNLGK SHBGJALGGLLFPASNLR 0.71 0.0047

ALS_IRPHTFTGLSGLR CRAC1_GVALADFNR 0.71 0.0052

AMBP_ETLLQDFR AOCl_GDFPSPIHVSGPR 0.71 0.0048

AMBP_ETLLQDFR C1QBJ.EQGENVFLQATDK 0.71 0.0043

AMBP_ETLLQDFR ECM1J.LPAQLPAEK 0.71 0.0055

AMBP_ETLLQDFR PGRP2_AGLLRPDYALLGHR 0.71 0.0039

AMBP_ETLLQDFR PRG2_WNFAYWAAHQPWSR 0.71 0.0050

AMBP_ETLLQDFR VTDBJELPEHTVK 0.71 0.0050

ANGT_DPTFIPAPIQAK DPEP2J.TLEQIDLIR 0.71 0.0037

ANGT_DPTFIPAPIQAK TETNJ.DTLAQEVALLK 0.71 0.0054

APOC3_GWVTDGFSSLK CHLl iAVNEVGR 0.71 0.0056

APOC3_GWVTDGFSSLK IBP1_VVESLAK 0.71 0.0044

APOC3_GWVTDGFSSLK ISM2J I DTTPWILCK 0.71 0.0037

APOC3_GWVTDGFSSLK PSG^FQLPGQK 0.71 0.0046

A PO H_AT VVYQG E R DPEP2J.TLEQIDLIR 0.71 0.0055

A PO H_AT VVYQG E R KITJ.CLHCSVDQEGK 0.71 0.0042

A PO H_AT VVYQG E R SHBGJALGGLLFPASNLR 0.71 0.0052

B2MG_VNHVTLSQPK KITJ.CLHCSVDQEGK 0.71 0.0048

B2MG_VNHVTLSQPK TETNJ.DTLAQEVALLK 0.71 0.0038

BGH3_LTLLAPLNSVFK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0043

C1QA_DQPRPAFSAIR SHBGJALGGLLFPASNLR 0.71 0.0050

C1QA_SLGFCDTTNK TETNJ.DTLAQEVALLK 0.71 0.0045

C1QC_TNQVNSGGVLLR C1QBJ.EQGENVFLQATDK 0.71 0.0052

C1QC_TNQVNSGGVLLR SHBGJALGGLLFPASNLR 0.71 0.0050

C1QC_TNQVNSGGVLLR TETNJ.DTLAQEVALLK 0.71 0.0043

CAMP_AIDGINQR ATS13J GSQLAPETFYR 0.71 0.0043

CAMP_AIDGINQR DPEP2J.TLEQIDLIR 0.71 0.0042

CAMP_AIDGINQR KITJ.CLHCSVDQEGK 0.71 0.0037

CAMP_AIDGINQR TETNJ.DTLAQEVALLK 0.71 0.0053

CATD_VGFAEAAR AOC1JDTVIVWPR 0.71 0.0052 CBPN_EALIQ.FLEQ.VHQ.GIK SHBGJALGGLLFPASNLR 0.71 0.0052

C F AB_YG LVTYATYP K ATS13_YGSQLAPETFYR 0.71 0.0056

C F AB_YG LVTYATYP K KIT_LCLHCSVDQEGK 0.71 0.0056

CFAB_YG LVTYATYP K TETN_LDTLAQEVALLK 0.71 0.0043

CLUS_ASSIIDELFQDR SHBGJALGGLLFPASNLR 0.71 0.0053

CLUS_LFDSDPITVTVPVEVSR ATL4JLWIPAGALR 0.71 0.0038

CLUS_LFDSDPITVTVPVEVSR ATS13_YGSQLAPETFYR 0.71 0.0055

C06_ALNHLPLEYNSALYSR DPEP2_LTLEQIDLIR 0.71 0.0041

C06_ALNHLPLEYNSALYSR KIT_LCLHCSVDQEGK 0.71 0.0041

C06_ALNHLPLEYNSALYSR SHBGJALGGLLFPASNLR 0.71 0.0037

C08A_SLLQPNK ATS13J GSQLAPETFYR 0.71 0.0042

C08A_SLLQPNK DPEP2J.TLEQIDLIR 0.71 0.0049

C08B_QALEEFQK ATS13J GSQLAPETFYR 0.71 0.0039

C08B_QALEEFQK DPEP2J.TLEQIDLIR 0.71 0.0048

C08B_QALEEFQK KIT_YVSELHLTR 0.71 0.0052

C08B_QALEEFQK VGFR1J LAVPTSK 0.71 0.0048

ENPP2_TYLHTYESEI ATS13J GSQLAPETFYR 0.71 0.0044

ENPP2_TYLHTYESEI KIT_YVSELHLTR 0.71 0.0045

ENPP2_TYLHTYESEI TETNJ.DTLAQEVALLK 0.71 0.0054

F13B_GDTYPAELYITGSILR ATL4JLWIPAGALR 0.71 0.0041

F13B_GDTYPAELYITGSILR ATS13J GSQLAPETFYR 0.71 0.0053

F13B_GDTYPAELYITGSILR SHBGJALGGLLFPASNLR 0.71 0.0051

FA11_TAAISGYSFK SPRLl LTHSELAPLR 0.71 0.0052

FA5_NFFNPPIISR ATS13J GSQLAPETFYR 0.71 0.0048

FA5_NFFNPPIISR DPEP2J.TLEQIDLIR 0.71 0.0056

FA5_NFFNPPIISR TETNJ.DTLAQEVALLK 0.71 0.0053

FA9_FGSGYVSG WG R IBP2JJQGAPTIR 0.71 0.0051

FA9_FGSGYVSG WG R MUC18J.VTVPVFYPTEK 0.71 0.0048

FA9_FGSGYVSG WG R NCAM 1_GLGEISAASEFK 0.71 0.0056

FA9_SALVLQYLR C1QBJ.EQGENVFLQATDK 0.71 0.0055

FA9_SALVLQYLR SPRLl LTHSELAPLR 0.71 0.0043

FETUA_FSVVYAK TETN_CFLAFTQTK 0.71 0.0043

FETUA_FSVVYAK VTDBJELPEHTVK 0.71 0.0037

FGFR1_VYSDPQPHIQWLK CRAC1_GVALADFNR 0.71 0.0043

HABP2_FLNWIK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0052

HEMOJMFPSPVDAAFR KITJ.CLHCSVDQEGK 0.71 0.0048

IBP4_QCHPALDGQR SPRLl LTHSELAPLR 0.71 0.0052

1 BP6_H LDSVLQQLQTEVYR TETNJ.DTLAQEVALLK 0.71 0.0039

INHBC_LDFHFSSDR IBP3J I LNVLSPR 0.71 0.0040

ITIH3_ALDLSLK ATL4JLWIPAGALR 0.71 0.0054

ITIH3_ALDLSLK ATS13J GSQLAPETFYR 0.71 0.0045

LBP_ITLPDFTGDLR ATL4JLWIPAGALR 0.71 0.0039

LBP_ITLPDFTGDLR DPEP2J.TLEQIDLIR 0.71 0.0053 LEP_DLLHVLAFSK AOCl_AVHSFLWSK 0.71 0.0053

LEP_DLLHVLAFSK PAEP_HLWYLLDLK 0.71 0.0052

PAPP2_LLL PEVLAEIP DPEP2_LTLEQIDLIR 0.71 0.0046

PCD12_YQVSEEVPSGTVIGK DPEP2_LTLEQIDLIR 0.71 0.0043

PCD12_YQVSEEVPSGTVIGK SHBGJALGGLLFPASNLR 0.71 0.0041

PCD12_YQVSEEVPSGTVIGK TETN_LDTLAQEVALLK 0.71 0.0054

PEDF_LQSLFDSPDFSK AOCl_GDFPSPIHVSGPR 0.71 0.0056

PEDF_LQSLFDSPDFSK LYAM1_SYYWIGIR 0.71 0.0037

PEDF_LQSLFDSPDFSK SPRL1_VLTHSELAPLR 0.71 0.0050

P E D F_TVQA V LTV P K FBLN1_TGYYFDGISR 0.71 0.0039

P E D F_TVQA V LTV P K IGF2_GIVEECCFR 0.71 0.0044

PRDX2_GLFIIDGK AOCl_AVHSFLWSK 0.71 0.0052

PRG4_ITEVWGIPSPIDTVFTR C1QB_LEQGENVFLQATDK 0.71 0.0045

PRG4_ITEVWGIPSPIDTVFTR CNTN1_TTKPYPADIVVQFK 0.71 0.0048

PRG4JTEVWGIPSPIDTVFTR IGF2_GIVEECCFR 0.71 0.0047

PRG4_ITEVWGIPSPIDTVFTR PSG3_VSAPSGTGHLPGLNPL 0.71 0.0041

PRG4_ITEVWGIPSPIDTVFTR SPRL1_VLTHSELAPLR 0.71 0.0050

RET4_YWGVASFLQK SHBGJALGGLLFPASNLR 0.71 0.0045

SEPP1_VSLATVDK KIT_LCLHCSVDQEGK 0.71 0.0038

SEPP1_VSLATVDK VGFR1_YLAVPTSK 0.71 0.0041

TIMP1_HLACLPR ATL4JLWIPAGALR 0.71 0.0048

TIMP1_HLACLPR ATS13_YGSQLAPETFYR 0.71 0.0041

VTNC_GQYCYELDEK ATL4JLWIPAGALR 0.71 0.0047

VTNC_VDTVDPPYPR GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0045

VTNC_VDTVDPPYPR VTDB_ELPEHTVK 0.71 0.0051

A2GL_DLLLPQPDLR CRAC1_GVALADFNR 0.7 0.0064

AFAM_HFQNLGK ATL4JLWIPAGALR 0.7 0.0062

AFAM_HFQNLGK GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0074

AFAM_HFQNLGK TETN_LDTLAQEVALLK 0.7 0.0066

AMBP_ETLLQDFR CADH5_YEIVVEAR 0.7 0.0066

AMBP_ETLLQDFR CRIS3_AVSPPAR 0.7 0.0074

AMBP_ETLLQDFR D E F 1_YGTC 1 YQG R 0.7 0.0071

AMBP_ETLLQDFR FBLN1_TGYYFDGISR 0.7 0.0069

AMBP_ETLLQDFR IBP2_LIQGAPTIR 0.7 0.0069

AMBP_ETLLQDFR NCAM 1_GLGEISAASEFK 0.7 0.0071

ANGT_DPTFIPAPIQAK ATL4JLWIPAGALR 0.7 0.0078

ANGT_DPTFIPAPIQAK KIT_YVSELHLTR 0.7 0.0077

AP0C3_GWVTDGFSSLK C163AJNPASLDK 0.7 0.0058

AP0C3_GWVTDGFSSLK PRL_SWNEPLYHLVTEVR 0.7 0.0070

AP0C3_GWVTDGFSSLK SOM2.CSH_SVEGSCGF 0.7 0.0071

A PO H_ATVVYQG E R ATL4JLWIPAGALR 0.7 0.0059

A PO H_ATVVYQG E R GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0073

A PO H_ATVVYQG E R TETN_LDTLAQEVALLK 0.7 0.0078 B2MG_VN HVTL.SQ.PK GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0064

B2MG_VN HVTLSQPK PAEP_QDLELPK 0.7 0.0094

BGH3_LTLLAPLNSVFK ATS13_YGSQLAPETFYR 0.7 0.0066

C1QA_DQP PAFSAI VGFR1_YLAVPTSK 0.7 0.0066

C1QA_SLGFCDTTN K GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0065

C1QB_IAFSATR CRAC1_GVALADFNR 0.7 0.0067

C1QB_IAFSATR SH BGJALGGLLFPASN LR 0.7 0.0071

CAM P_AI DGINQR SPRL1_VLTHSELAPLR 0.7 0.0079

CATD_VGFAEAAR FBLN 1_TGYYFDGISR 0.7 0.0066

CATD_VGFAEAAR M UC18_EVTVPVFYPTEK 0.7 0.0070

CATD_VGFAEAAR NOTU M_GLADSGWFLDNK 0.7 0.0059

CATD_VGFAEAAR PAEP_HLWYLLDLK 0.7 0.0067

CATD_VGFAEAAR PAPP1_DIPHWLN PTR 0.7 0.0075

CATD_VGFAEAAR P RG 2_W N F AYW AA H QP WS R 0.7 0.0079

CBPN_NNANGVDLN R CRAC1_GVALADFNR 0.7 0.0073

CD14_LTVGAAQVPAQLLVGALR C1QB_LEQGENVFLQATDK 0.7 0.0076

CD14_LTVGAAQVPAQLLVGALR PAEP_QDLELPK 0.7 0.0094

C F AB_YG LVTYATYP K SH BGJALGGLLFPASN LR 0.7 0.0063

C F AB_YG LVTYATYP K VGFR1_YLAVPTSK 0.7 0.0058

CLUS_LFDSDPITVTVPVEVSR DPEP2_LTLEQIDLIR 0.7 0.0070

CLUS_LFDSDPITVTVPVEVSR VGFR1_YLAVPTSK 0.7 0.0082

C05_VFQFLEK PAEP_QDLELPK 0.7 0.0077

C05_VFQFLEK TETN_LDTLAQEVALLK 0.7 0.0081

C05_VFQFLEK VGFR1_YLAVPTSK 0.7 0.0063

C06_ALNH LPLEYNSALYSR ATS13_YGSQLAPETFYR 0.7 0.0076

C06_ALNH LPLEYNSALYSR VGFR1_YLAVPTSK 0.7 0.0079

C08A_SLLQPNK ATL4J LWIPAGALR 0.7 0.0058

C08A_SLLQPNK GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0065

C08A_SLLQPNK PAEP_QDLELPK 0.7 0.0094

C08B_QALEEFQK ATL4J LWIPAGALR 0.7 0.0066

C08B_QALEEFQK SH BGJALGGLLFPASN LR 0.7 0.0071

ENPP2_TYLHTYESEI GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0081

F13B_GDTYPAELYITGSI LR VGFR1J LAVPTSK 0.7 0.0075

FA11_TAAISGYSFK C1QBJ.EQGENVFLQATDK 0.7 0.0069

FA11_TAAISGYSFK TENXJ.SQLSVTDVTTSSLR 0.7 0.0078

FA5_NFFNPPI ISR FBLN 1_TGYYFDGISR 0.7 0.0076

FA5_NFFNPPI ISR PAEP_QDLELPK 0.7 0.0087

FA5_NFFNPPI ISR VGFR1J LAVPTSK 0.7 0.0058

FA9_SALVLQYLR FBLN 1_TGYYFDGISR 0.7 0.0082

FA9_SALVLQYLR PGRP2_AGLLRPDYALLGH R 0.7 0.0079

FA9_SALVLQYLR TENXJ.NWEAPPGAFDSFLLR 0.7 0.0069

FETUA_FSVVYAK FBLN 1_TGYYFDGISR 0.7 0.0064

FETUA_FSVVYAK PAEP_QDLELPK 0.7 0.0086 FETUA_FSVVYAK TENX_LSQLSVTDVTTSSLR 0.7 0.0083

FGFR1_VYSDPQPHIQWLK KIT_YVSELHLTR 0.7 0.0083

FGFR1_VYSDPQ.PHIQ.WLK SHBGJALGGLLFPASNLR 0.7 0.0071

HABP2_FLNWIK PAEP_QDLELPK 0.7 0.0082

HABP2_FLNWIK TENX_LSQLSVTDVTTSSLR 0.7 0.0071

HABP2_FLNWIK TETN_LDTLAQEVALLK 0.7 0.0069

HEMO_NFPSPVDAAFR ATS13_YGSQLAPETFYR 0.7 0.0083

HEMO_NFPSPVDAAFR DPEP2_LTLEQIDLIR 0.7 0.0065

HEMO_NFPSPVDAAFR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0075

HEMO_NFPSPVDAAFR VGFR1_YLAVPTSK 0.7 0.0081

IBP6_GAQTLYVPNCDHR KIT_LCLHCSVDQEGK 0.7 0.0083

1 BP6_H LDSVLQQLQTEVYR ATL4JLWIPAGALR 0.7 0.0074

1 G F 1_G FYF N K PTGYGSSS R KIT_YVSELHLTR 0.7 0.0069

INHBC_LDFHFSSDR EGLN_GPITSAAELNDPQSILLR 0.7 0.0067

INHBC_LDFHFSSDR IBP2_LIQGAPTIR 0.7 0.0081

INHBC_LDFHFSSDR LYAM1_SYYWIGIR 0.7 0.0067

INHBC_LDFHFSSDR MUC18_EVTVPVFYPTEK 0.7 0.0060

ITIH3_ALDLSLK VGFR1_YLAVPTSK 0.7 0.0070

ITIH4_NPLVWVHASPEHVVVTR SHBGJALGGLLFPASNLR 0.7 0.0072

KNG1_DIPTNSPELEETLTHTITK TENX_LSQLSVTDVTTSSLR 0.7 0.0063

LBP_ITLPDFTGDLR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0082

LBP_ITLPDFTGDLR PAEP_QDLELPK 0.7 0.0077

LEP_DLLHVLAFSK ATS13_YGSQLAPETFYR 0.7 0.0060

LEP_DLLHVLAFSK CNTN1_TTKPYPADIVVQFK 0.7 0.0059

LEP_DLLHVLAFSK DPEP2_LTLEQIDLIR 0.7 0.0062

LEP_DLLHVLAFSK ECM1_LLPAQLPAEK 0.7 0.0062

LEP_DLLHVLAFSK IBP2_LIQGAPTIR 0.7 0.0082

LEP_DLLHVLAFSK PGRP2_AGLLRPDYALLGHR 0.7 0.0063

LEP_DLLHVLAFSK SPRL1_VLTHSELAPLR 0.7 0.0064

MFAP5_LYSVHRPVK VGFR1_YLAVPTSK 0.7 0.0070

PAPP2_LLLRPEVLAEIPR NOTUM_GLADSGWFLDNK 0.7 0.0070

PAPP2_LLLRPEVLAEIPR TETN_LDTLAQEVALLK 0.7 0.0081

PCD12_AHDADLGINGK KIT_YVSELHLTR 0.7 0.0079

PCD12_AHDADLGINGK VGFR1_YLAVPTSK 0.7 0.0081

PCD12_YQVSEEVPSGTVIGK FBLN1_TGYYFDGISR 0.7 0.0081

PEDF_LQSLFDSPDFSK DEF1JPACIAGER 0.7 0.0082

PEDF_LQSLFDSPDFSK PGRP2_AGLLRPDYALLGHR 0.7 0.0079

P E D F_TVQA V LTV P K PROS_SQDILLSVENTVIYR 0.7 0.0065

PRDX2_GLFIIDGK KIT_LCLHCSVDQEGK 0.7 0.0071

PRDX2_GLFIIDGK P RG 2_W N F AYW AA H QP WS R 0.7 0.0068

PRG4_DQYYNIDVPSR CRIS3_YEDLYSNCK 0.7 0.0083

PRG4_DQYYNIDVPSR ECM1_LLPAQLPAEK 0.7 0.0082

PRG4_ITEVWGIPSPIDTVFTR NOTUM_GLADSGWFLDNK 0.7 0.0076 P G4JTEVWGIPSPIDTVFT PGRP2_AGL.LRPDYALL.GH R 0.7 0.0082

PROS_FSAEFDFR SH BGJALGGLLFPASN LR 0.7 0.0071

PTGDS_AQGFTEDTIVFLPQTDK CRAC1_GVALADFNR 0.7 0.0065

RET4_YWGVASFLQK ATL4_I LWIPAGALR 0.7 0.0066

RET4_YWGVASFLQK DPEP2_LTLEQIDLIR 0.7 0.0077

RET4_YWGVASFLQK Kn _LCLHCSVDQEGK 0.7 0.0062

RET4_YWGVASFLQK PAEP_QDLELPK 0.7 0.0077

RET4_YWGVASFLQK TETN_LDTLAQEVALLK 0.7 0.0077

SOM2.CSH_NYGLLYCFR SH BGJALGGLLFPASN LR 0.7 0.0079

THBG_AVLH IGEK CRAC1_GVALADFNR 0.7 0.0065

TIM P1_HLACLPR PAEP_QDLELPK 0.7 0.0099

TIM P1_HLACLPR VGFR1_YLAVPTSK 0.7 0.0069

Table 11. Reversals (UpVDown-Regulated) Predicting PPROM vs. Term Birth at GABD 119- 153 with an AUC >= 0.7

INHBC_LDFHFSSD PGRP2_AGLLRPDYALLGHR 0.71 <0.0001

INHBC_LDFHFSSDR TETN_LDTLAQEVALLK 0.71 <0.0001

KNG1_Q.WAGL.NFR KIT_YVSELHLTR 0.71 <0.0001

LBPJTLPDFTGDLR LYAM1_SYYWIGIR 0.71 <0.0001

RET4_YWGVASFLQK KIT_YVSELHLTR 0.71 <0.0001

SEPP1_VSLATVDK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 <0.0001

SEPP1_VSLATVDK TETN_LDTLAQEVALLK 0.71 <0.0001

A PO H_AT VVYQG E R KIT_YVSELHLTR 0.7 <0.0001

C1QC_TNQVNSGGVLLR KIT_YVSELHLTR 0.7 <0.0001

C F AB_YG LVTYATYP K KIT_YVSELHLTR 0.7 <0.0001

C05_TLLPVSKPEIR KIT_YVSELHLTR 0.7 <0.0001

C08A_SLLQPNK KIT_YVSELHLTR 0.7 <0.0001

FA5_AEVDDVIQVR KIT_YVSELHLTR 0.7 <0.0001

FA9_EYTNIFLK PAEP_QDLELPK 0.7 <0.0001

FA9_EYTNIFLK PGRP2_AGLLRPDYALLGHR 0.7 0.0001

HEMO_NFPSPVDAAFR TETN_LDTLAQEVALLK 0.7 <0.0001

1 BP6_H LDSVLQQLQTEVYR KIT_YVSELHLTR 0.7 <0.0001

INHBC_LDFHFSSDR TENX_LNWEAPPGAFDSFLLR 0.7 <0.0001

LBP_ITLPDFTGDLR CRAC1_GVALADFNR 0.7 <0.0001

LBP_ITLPDFTGDLR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 <0.0001

LBP_ITLPDFTGDLR PGRP2_AGLLRPDYALLGHR 0.7 <0.0001

LBPJTLPDFTGDLR SHBGJALGGLLFPASNLR 0.7 <0.0001

PCD12_AHDADLGINGK KIT_YVSELHLTR 0.7 <0.0001

PEDF_LQSLFDSPDFSK GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 <0.0001

PROS_FSAEFDFR KIT_YVSELHLTR 0.7 <0.0001

VTNC_GQYCYELDEK TETN_LDTLAQEVALLK 0.7 <0.0001

Table 12. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, 119-139 GABD

Row Labels Count of Up-Regulated (Protein Peptide)

A2GL_DLLLPQPDLR 1

AFAM_DADPDTFFAK 1

AFAM_HFQN LGK 8

ALSJRPHTFTGLSGLR 1

ANGT_DPTFIPAPIQAK 8

ANT3_TSDQIHFFFAK 1

APOC3_GWVTDGFSSLK 1

APOH_ATVVYQGER 2

ATS13_SLVELTPIAAVHGR 1

B2MG_VNHVTLSQPK 1

BGH3_LTLLAPLNSVFK 2

C1QA_DQPRPAFSAIR 2

C1QA_SLGFCDTTNK 2 C1Q.BJAFSATR 5

C1QB_VPGLYYFTYHASS 3

C1QC_TNQ.VNSGGVL.LR 1

CD14_LTVGAAQVPAQLLVGALR 2

CD14_SWLAELQQWLKPGLK 4

C F A B_YG LVTY ATY P K 1

CLUS_ASSI IDELFQDR 1

CLUS_LFDSDPITVTVPVEVSR 1

C05_TLLPVSKPEI R 1

C06_ALNH LPLEYNSALYSR 3

C08A_SLLQPN K 1

C08B_QALEEFQK 1

F13B_GDTYPAELYITGSILR 6

FA11_TAAISGYSFK 8

FA5_AEVDDVIQVR 5

FA9_EYTN IFLK 6

FA9_SALVLQYLR 4

FETUA_FSVVYAK 6

HABP2_FLNWI K 11

H EMO_N FPSPVDAAFR 5

1 BP4_QCH PALDGQR 4

1 BP6_H LDSVLQQLQTEVYR 2

IGF1_GFYFNKPTGYGSSSR 1

I NH BC_LDFH FSSDR 25

ITIH4_NPLVWVHASPEHVVVTR 1

KNG1_QVVAGLNFR 1

LBPJTGFLKPGK 11

LBP_ITLPDFTGDLR 2

LEP_DLLHVLAFSK 15

PAPP2_LLLRPEVLAEI PR 1

PEDF_LQSLFDSPDFSK 2

P E D F_TVQAV LTV P K 4

PRG4_ITEVWGI PSPI DTVFTR 1

PROS_FSAEFDFR 1

PTGDS_GPGEDFR 1

R ET4_YWG VAS F LQK 2

SEPP1_LPTDSELAPR 14

SEPP1_VSLATVDK 5

TH BG_AVLH IGEK 1

VTNC_GQYCYELDEK 4

VTNC_VDTVDPPYPR 3 Grand Total 207 Table 13. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, 119-139 GABD

Row Labels Count of Down-Regulated (Protein_Peptide)

AOCl_DNGPNYVQ

AOC1 DTVIVWPR

ATL4 ILWIPAGALR

C163A INPASLDK

CHL1 VIAVNEVGR

CNTNIJTKPYPADIVVQFK

CRAC1 GVALADFNR

CRIS3 AVSPPAR

CSH_AHQLAIDTYQEFEETYIPK

DPEP2_LTL.EQ.IDUR

ECM1 DILTIDIGR

ECM1 ELLALIQLER

EGLN_TQILEWAAER 22

FBLN1 TGYYFDGISR 16

GELS AQPVQVAEGSEPDGFWEALGGK 18

IBP2 LIQGAPTIR

KIT YVSELHLTR 44

LIRA3 EGAADSPLR

LYAM1 SYYWIGIR 10

MUC18 EVTVPVFYPTEK 14

NCAM1 GLGEISAASEFK

PAEP_QDLELPK 14

PGRP2 AGLLRPDYALLGHR

PROS SQDILLSVENTVIYR

PSG3 VSAPSGTGHLPGLNPL

SHBG_ALALPPLGLAPLLN LWAKPQ.GR

SHBG IALGGLLFPASNLR

SPRL1 VLTHSELAPLR

TENX LNWEAPPGAFDSFLLR

TETN_LDTLAQEVALLK 17

TIE1 VSWSLPLVPGPLVGDGFLLR

VTDB ELPEHTVK

Grand Total ill

Table 14. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, GABD 126-146

Row Labels Count of Up-Regulated (Protein Peptide)

AFAM_DADPDTFFAK 1

AFAM_HFQN LGK 3 AL.S_IRPHTFTGL.SGLR 1

AM BP_ETLLQDFR 1

ANGT_DPTFI PAPIQAK 3

APOC3_GWVTDGFSSLK 1

APOH_ATVVYQGER 1

BGH3_LTLLAPLNSVFK 2

C1QA_DQPRPAFSAI R 2

C1QA_SLGFCDTTN K 1

C1QB_IAFSATR 3

C1QC_TNQVNSGGVLLR 3

CD14_LTVGAAQVPAQLLVGALR 3

C F A B_YG LVTY ATY P K 1

C05_TLLPVSKPEI R 1

C05_VFQFLEK 1

C06_ALNH LPLEYNSALYSR 1

C08A_SLLQPN K 1

C08B_QALEEFQK 1

F13B_GDTYPAELYITGSILR 1

FA11_TAAISGYSFK 5

FA5_AEVDDVIQVR 2

FA9_EYTN IFLK 3

FA9_SALVLQYLR 7

FETUA_FSVVYAK 1

HABP2_FLNWI K 10

H EMO_N FPSPVDAAFR 1

1 BP4_QCH PALDGQR 2

IGF1_GFYFNKPTGYGSSSR 1

I NH BC_LDFH FSSDR 14

KNG1_QVVAGLNFR 1

LBP_ITLPDFTGDLR 4

LEP_DLLHVLAFSK 1

PEDF_LQSLFDSPDFSK 2

P E D F_TVQAV LTV P K 2

PRG4JTEVWGI PSPI DTVFTR 6

PROS_FSAEFDFR 1

R ET4_YWG VAS F LQK 3

SEPP1_LPTDSELAPR 4

SEPP1_VSLATVDK 3

VTNC_GQYCYELDEK 2

VTNC_VDTVDPPYPR 1 Grand Total 108 Table 15. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, GABD 126-146

Row Labels Count of Down-Regulated (Protein_Peptide)

AOC1 GDFPSPIHVSGP

ATL4 I LWIPAGALR

ATS 13 YGSQLAPETFYR

CNTN IJTKPYPADIVVQFK

CRAC1 GVALADFNR 14

CRIS3 AVSPPAR

CRIS3 YEDLYSNCK

DPEP2_LTL.EQ.IDUR

FBLN 1 TGYYFDGISR

FGFR1 IGPDN LPYVQILK

GELS AQPVQVAEGSEPDGFWEALGGK 10

KIT_LCLHCSVDQEGK

KIT YVSELH LTR 33

PAEP QDLELPK

PSG3 VSAPSGTGHLPGLNPL

SH BG IALGGLLFPASN LR

TENX LNWEAPPGAFDSFLLR

TETN LDTLAQEVALLK 15

VGFR1 YLAVPTSK

VTDB ELPEHTVK

Grand Total

Table 16. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, GABD 133-153

Row Labels Count of Up-Regulated (Protein_Peptide)

A2GL_DLLLPQPDLR

AFAM_H FQN LGK

AM BP ETLLQDFR 18

ANGT DPTFI PAPIQAK

APOC3 GWVTDGFSSLK 26

APOH_ATVVYQGER

B2MG VN HVTLSQPK

BGH3 LTLLAPLNSVFK

CATD VGFAEAAR 20

CD14_LTVGAAQVPAQLLVGALR

C05 VFQFLEK

C06 ALNH LPLEYNSALYSR

C08A_SLLQPN K

C08B_QALEEFQK

EN PP2 TEFLSNYLTNVDDITLVPGTLGR ENPP2_TYLHTYESEI 18

F13B_GDTYPAELYITGSIL 1

FA11_TAAISGYSFK 4

FA5_AEVDDVIQVR 1

FA5_NFFNPPIISR 1

FA9_EYTNIFLK 1

FA9_FGSGYVSGWGR 5

FA9_SALVLQYLR 6

FETUA_FSVVYAK 12

HABP2_FLNWIK 1

HEMO_NFPSPVDAAFR 3

1 BP4_QCH PALDGQR 16

1 BP6_H LDSVLQQLQTEVYR 3

IL1R1_LWFVPAK 1

INHBC_LDFHFSSDR 13

ITIH3_ALDLSLK 5

KNG1_DIPTNSPELEETLTHTITK 5

KNG1_QVVAGLNFR 4

LBPJTLPDFTGDLR 15

PCD12_AHDADLGINGK 1

PCD12_YQVSEEVPSGTVIGK 1

PEDF_LQSLFDSPDFSK 8

P E D F_TVQAV LTV P K 9

PRG4_ITEVWGIPSPIDTVFTR 5

PROS_FSAEFDFR 1

R ET4_YWG VAS F LQK 2

SEPP1_VSLATVDK 3

S0M2.CSH_NYGLLYCFR 1

VTNC_VDTVDPPYPR 8

Grand Total 251

Table 17. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, GABD 133-153

Row Labels Count of Down-Regulated (Protein Peptide)

ATL4JLWIPAGALR 4

ATS13_YGSQLAPETFYR 15

C163AJNPASLDK 2

C1QB_LEQGENVFLQATDK 8

CNTN1_FIPLIPIPER 4

CNTNIJTKPYPADIVVQFK 4

CRAC1_GVALADFNR 27

CRAC1_GVASLFAGR 3

CRIS3_AVSPPAR 1 C IS3_YEDLYSNCK 2

D E F 1_YGTC 1 YQG R 5

DPEP2_LTLEQIDLIR 1

ECM1_LLPAQLPAEK 1

EGLN_TQILEWAAER 2

FGFR1_IGPDNL.PYVQ.ILK 7

GELS_AQPVQVAEGSEPDGFWEALGGK 16

IBP3_FLNVLSPR 2

IGF2_GIVEECCFR 8

KIT_LCLHCSVDQEGK 9

KIT_YVSELHLTR 29

LYAM1_SYYWIGIR 12

MUC18_EVTVPVFYPTEK 2

PAEP_QDLELPK 12

PGRP2_AGLLRPDYALLGHR 15

PROS_SQDILLSVENTVIYR 1

SHBGJALGGLLFPASNLR 14

SPRL1_VLTHSELAPLR 8

TENX_LNWEAPPGAFDSFLLR 9

TETN_LDTLAQEVALLK 20

TIE1_VSWSLPLVPGPLVGDGFLLR 1

VGFR1_YLAVPTSK 2

VTDB_ELPEHTVK 5

Grand Total 251

Table 18. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, GABD 134-146

Row Labels Count of Up-Regulated (Protein Peptide)

A2GL_DLLLPQPDLR 1

AFAM_HFQN LGK 9

ALSJRPHTFTGLSGLR 1

AMBP_ETLLQDFR 27

ANGT_DPTFIPAPIQAK 6

APOC3_GWVTDGFSSLK 44

APOH_ATVVYQGER 8

B2MG_VNHVTLSQPK 10

BGH3_LTLLAPLNSVFK 9

C1QA_DQPRPAFSAIR 4

C1QA_SLGFCDTTNK 3

C1QB_IAFSATR 2

C1QC_TNQVNSGGVLLR 5

CAMP_AIDGINQR 8

CATD_VGFAEAAR 17 CBPN_EALIQ.FLEQ.VHQ.GIK 1

CBPNJMNANGVDLNR 1

CD14_LTVGAAQVPAQLLVGALR 11

CD14_SWLAELQQWLKPGLK 1

C F A B_YG LVTY ATY P K 7

CLUS_ASSIIDELFQDR 2

CLUS_LFDSDPITVTVPVEVSR 4

C05_TLLPVSKPEIR 1

C05_VFQFLEK 8

C06_ALNHLPLEYNSALYSR 6

C08A_SLLQPNK 10

C08B_QALEEFQK 7

ENPP2_TYLHTYESEI 9

F13B_GDTYPAELYITGSILR 6

FA11_TAAISGYSFK 13

FA5_AEVDDVIQVR 1

FA5_NFFNPPIISR 9

FA9_FGSGYVSGWGR 10

FA9_SALVLQYLR 13

FETUA_FSVVYAK 13

FGFR1_VYSDPQPHIQWLK 3

HABP2_FLNWIK 11

HEMO_NFPSPVDAAFR 9

1 BP4_QCH PALDGQR 11

IBP6_GAQTLYVPNCDHR 1

1 BP6_H LDSVLQQLQTEVYR 5

IGF1_GFYFNKPTGYGSSSR 4

INHBC_LDFHFSSDR 29

ITIH3_ALDLSLK 7

ITIH4_NPLVWVHASPEHVVVTR 1

KNG1_DIPTNSPELEETLTHTITK 10

KNG1_QVVAGLNFR 1

LBP_ITLPDFTGDLR 9

LEP_DLLHVLAFSK 17

MFAP5_LYSVHRPVK 1

PAPP2_LLLRPEVLAEIPR 5

PCD12_AHDADLGINGK 3

PCD12_YQVSEEVPSGTVIGK 5

PEDF_LQSLFDSPDFSK 15

P E D F_TVQAV LTV P K 9

PRDX2_GLFIIDGK 4

PRG4_DQYYNIDVPSR 4

PRG4_ITEVWGIPSPIDTVFTR 17 P OS_FSAEFDF 3

PTG DS_AQG FTE DTI VF LPQTD K 1

R ET4_YWG VAS F LQ.K 8

SEPP1_VSLATVDK 6

S0M2.CSH_NYGLLYCFR 1

TH BG_AVLH IGEK 1

TI M P1_HLACLPR 6

VTNC_GQ.YCYEL.DEK 3

VTNC_VDTVDPPYPR 8

Grand Total 505

Table 19. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, GABD 134-146

KIT_LCL.HCSVDQ.EGK 31

KIT_YVSELH LTR 13

LYAM 1_SYYWIGI 3

M UC18_EVTVPVFYPTEK 4

NCAM 1_GLGEISAASEFK 3

NOTU M_GLADSGWFLDNK 5

PAEP_HLWYLLDLK 3

PAEP_QDLELPK 20

PAPP1_DIPHWLN PTR 2

PGRP2_AGLLRPDYALLGH R 7

P RG 2_W N F AYW AA H QP WS R 4

PRL_SWN EPLYHLVTEVR 1

PROS_SQDILLSVENTVIYR 5

PSG1_FQLPGQK 1

PSG3_VSAPSGTGHLPGLNPL 6

SH BG_ALALPPLGLAPLLN LWAKPQGR 1

SH BGJALGGLLFPASN LR 45

SOM2.CSH_SVEGSCGF 1

SPRL1_VLTHSELAPLR 10

TENX_LNWEAPPGAFDSFLLR 2

TENX_LSQLSVTDVTTSSLR 8

TETN_CFLAFTQTK 1

TETN_LDTLAQEVALLK 34

TI E1_VSWSLPLVPGPLVGDGFLLR 1

VGFR1_YLAVPTSK 40

VTDB_ELPEHTVK 7

Grand Total 505

Table 20. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, GABD 119-153

C06_ALNH LPLEYNSALYSR 1

C08A_SLLQPN K 1

F13B_GDTYPAELYITGSILR 1

FA11_TAAISGYSFK 3

FA5_AEVDDVIQVR 1

FA9_EYTN IFLK 4

FA9_SALVLQYLR 1

FETUA_FSVVYAK 1

HABP2_FLNWI K 1

H EMO_N FPSPVDAAFR 2

1 BP4_QCH PALDGQR 1

1 BP6_H LDSVLQQLQTEVYR 1

I NH BC_LDFH FSSDR 5

KNG1_Q.WAGL.NFR 1

LBPJTLPDFTGDLR 6

PCD12_AH DADLGINGK 1

PEDF_LQSLFDSPDFSK 1

P E D F_TVQAV LTV P K 1

PRG4_ITEVWGI PSPI DTVFTR 1

PROS_FSAEFDFR 1

R ET4_YWG VAS F LQK 1

SEPP1_VSLATVDK 3

VTNC_GQYCYELDEK 2

Grand Total 53

Table 21. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. Term, GABD 119-153

Row Labels Count of Down-Regulated (Protein Peptide)

CRAC1 GVALADFNR

GELS_AQPVQVAEGSEPDGFWEALGGK

KIT YVSELH LTR 33

LYAM 1 SYYWIGI R

PAEP_QDLELPK

PGRP2 AGLLRPDYALLGH R

SH BG IALGGLLFPASN LR

TENX LNWEAPPGAFDSFLLR

TETN_LDTLAQEVALLK

Grand Total II

Table 22. Reversals (UpVDown-Regulated) Predicting PTL vs. Term Birth at GABD 119-139 with an AUC >= 0.65 C1QA_SLGFCDTTN K PSG3_VSAPSGTGH LPG LN PL 0.71 0.0003

C1Q.C_TNQ.VNSGGVL.LR PSG3_VSAPSGTGH LPG LN PL 0.71 0.0003

A PO H_ATVVYQG E R PSG3_VSAPSGTGH LPG LN PL 0.7 0.0004

FA9_SALVLQYLR AFAM_HFQNLGK 0.7 0.0004

I PSP_AVVEVDESGTR PSG3_VSAPSGTGH LPG LN PL 0.7 0.0003

ADA12_FGFGGSTDSGPIR PSG3_VSAPSGTGH LPG LN PL 0.68 0.0013

C08A_SLLQPNK PSG3_VSAPSGTGH LPG LN PL 0.68 0.0014

FA11_DSVTETLPR IGF2_GIVEECCFR 0.68 0.0013

FA11_DSVTETLPR PSG3_VSAPSGTGH LPG LN PL 0.68 0.0016

FA9_SALVLQYLR CADH5_YEIVVEAR 0.68 0.0018

FA9_SALVLQYLR IGF2_GIVEECCFR 0.68 0.0011

FA9_SALVLQYLR PCD12_YQVSEEVPSGTVIGK 0.68 0.0010

FA9_SALVLQYLR TIE1_VSWSLPLVPGPLVGDGFLLR 0.68 0.0013

I PSP_AVVEVDESGTR TIE1_VSWSLPLVPGPLVGDGFLLR 0.68 0.0015

LI RA3_KPSLSVQPG PVVAPG E K PSG3_VSAPSGTGH LPG LN PL 0.68 0.0014

PROS_FSAEFDFR PSG3_VSAPSGTGH LPG LN PL 0.68 0.0016

VTNC_GQYCYELDEK PSG3_VSAPSGTGH LPG LN PL 0.68 0.0019

C1QA_SLGFCDTTN K AFAM_HFQNLGK 0.67 0.0029

C1QB_IAFSATR PSG3_VSAPSGTGH LPG LN PL 0.67 0.0029

C1QC_TNQVNSGGVLLR AFAM_HFQNLGK 0.67 0.0032

C1QC_TNQVNSGGVLLR CADH5_YEIVVEAR 0.67 0.0028

C1QC_TNQVNSGGVLLR PCD12_YQVSEEVPSGTVIGK 0.67 0.0031

C F AB_YG LVTYATYP K PSG3_VSAPSGTGH LPG LN PL 0.67 0.0022

C05_TLLPVSKPEI R PSG3_VSAPSGTGH LPG LN PL 0.67 0.0024

FA11_DSVTETLPR IBP3_YGQPLPGYTTK 0.67 0.0026

I BP4_QCHPALDGQR PSG3_VSAPSGTGH LPG LN PL 0.67 0.0021

I PSP_AVVEVDESGTR AFAM_HFQNLGK 0.67 0.0030

I PSP_AVVEVDESGTR CADH5_YEIVVEAR 0.67 0.0025

I PSP_AVVEVDESGTR PCD12_YQVSEEVPSGTVIGK 0.67 0.0031

C1QA_SLGFCDTTN K IGF2_GIVEECCFR 0.66 0.0042

C1QA_SLGFCDTTN K PCD12_YQVSEEVPSGTVIGK 0.66 0.0044

C1QA_SLGFCDTTN K TIE1_VSWSLPLVPGPLVGDGFLLR 0.66 0.0058

C1QC_TNQVNSGGVLLR ALS_I RPHTFTGLSGLR 0.66 0.0043

C1QC_TNQVNSGGVLLR IGF2_GIVEECCFR 0.66 0.0037

C1QC_TNQVNSGGVLLR TIE1_VSWSLPLVPGPLVGDGFLLR 0.66 0.0046

C06_ALNH LPLEYNSALYSR PSG3_VSAPSGTGH LPG LN PL 0.66 0.0038

C08B_QALEEFQK PSG3_VSAPSGTGH LPG LN PL 0.66 0.0037

FA11_DSVTETLPR ALS_I RPHTFTGLSGLR 0.66 0.0037

FA11_DSVTETLPR PCD12_YQVSEEVPSGTVIGK 0.66 0.0036

FA9_SALVLQYLR ALSJ RPHTFTGLSGLR 0.66 0.0037

FA9_SALVLQYLR KNG1_QVVAGLN FR 0.66 0.0052

FA9_SALVLQYLR TIM P1_H LACLPR 0.66 0.0037

I PSP_AVVEVDESGTR FGFR1JGPDNLPYVQI LK 0.66 0.0046 I PSP_AVVEVDESGTR GELS_TASDFITK 0.66 0.0052

I PSP_AVVEVDESGTR IGF2_GIVEECCFR 0.66 0.0042

I PSP_AVVEVDESGTR KNG1_QVVAGLN FR 0.66 0.0054

I PSP_AVVEVDESGTR M UC18_EVTVPVFYPTEK 0.66 0.0038

I PSP_AVVEVDESGTR PRG2_WNFAYWAAHQPWSR 0.66 0.0059

LI RA3_KPSLSVQPG PVVAPG E K IGF2_GIVEECCFR 0.66 0.0067

LI RA3_KPSLSVQPG PVVAPG E K PCD12_YQVSEEVPSGTVIGK 0.66 0.0059

LI RA3_KPSLSVQPG PVVAPG E K TIE1_VSWSLPLVPGPLVGDGFLLR 0.66 0.0052

SEPP1_VSLATVDK PSG3_VSAPSGTGH LPG LN PL 0.66 0.0046

SPRL1_VLTHSELAPLR PSG3_VSAPSGTGH LPG LN PL 0.66 0.0059

ADA12_FGFGGSTDSGPIR CGB1_VLQGVLPALPQVVCNYR 0.65 0.0063

C1QA_SLGFCDTTN K CADH5_YEIVVEAR 0.65 0.0081

C1QC_TNQVNSGGVLLR GELS_TASDFITK 0.65 0.0087

C1QC_TNQVNSGGVLLR IBP3_FLNVLSPR 0.65 0.0097

C1QC_TNQVNSGGVLLR IL1R1_LWFVPAK 0.65 0.0068

C1QC_TNQVNSGGVLLR TIM P1_H LACLPR 0.65 0.0099

CBPN_EALIQFLEQVHQGIK PSG3_VSAPSGTGH LPG LN PL 0.65 0.0066

C F AB_YG LVTYATYP K PCD12_YQVSEEVPSGTVIGK 0.65 0.0084

FA11_DSVTETLPR AFAM_HFQNLGK 0.65 0.0065

FA11_DSVTETLPR CADH5_YEIVVEAR 0.65 0.0072

FA11_DSVTETLPR KNG1_QWAGLN FR 0.65 0.0086

FA11_DSVTETLPR M UC18_EVTVPVFYPTEK 0.65 0.0094

FA11_TAAISGYSFK TIM P1_H LACLPR 0.65 0.0095

FA5_LSEGASYLDHTFPAEK PSG3_VSAPSGTGH LPG LN PL 0.65 0.0063

FA9_SALVLQYLR ANGT_DPTFIPAPIQAK 0.65 0.0080

FA9_SALVLQYLR IBP3_FLNVLSPR 0.65 0.0093

FA9_SALVLQYLR IL1R1_LWFVPAK 0.65 0.0073

I PSP_AVVEVDESGTR ALS_I RPHTFTGLSGLR 0.65 0.0085

I PSP_AVVEVDESGTR ATL4_ILWI PAGALR 0.65 0.0088

I PSP_AVVEVDESGTR CRAC1_GVALADFN R 0.65 0.0077

I PSP_AVVEVDESGTR IBP3_YGQPLPGYTTK 0.65 0.0094

I PSP_AVVEVDESGTR LEP_DLLHVLAFSK 0.65 0.0066

I PSP_AVVEVDESGTR RET4_YWGVASFLQK 0.65 0.0067

ITI H4J LDDLSPR PSG3_VSAPSGTGH LPG LN PL 0.65 0.0089

LI RA3_KPSLSVQPG PVVAPG E K CADH5_YEIVVEAR 0.65 0.0092

LI RA3_KPSLSVQPG PVVAPG E K IBP3_FLNVLSPR 0.65 0.0091

LI RA3_KPSLSVQPG PVVAPG E K TIM P1_H LACLPR 0.65 0.0088

LI RA3_KPSLSVQPG PVVAPG E K VG F R 1_Y LAV PTS K 0.65 0.0079

PRL_SWNEPLYHLVTEVR PSG3_VSAPSGTGH LPG LN PL 0.65 0.0072 Table 23. Count of Up-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 119-139

now Laoets count or up- eguiatea i rotein epitaej

ADA12_FGFGGSTDSGPI 2

APOH_ATVVYQGER 1

C1QA_SLGFCDTTN K 6

C1QB_IAFSATR 1

C1QC_TNQVNSGGVLLR 11

CBPN_EALIQFLEQVHQGIK 1

C F A B_YG LVTY ATY P K 2

C05_TLLPVSKPEI R 1

C06_ALNH LPLEYNSALYSR 1

C08A_SLLQPN K 1

C08B_QALEEFQK 1

FA11_DSVTETLPR 9

FA11_TAAISGYSFK 1

FA5_LSEGASYLDHTFPAEK 1

FA9_SALVLQYLR 12

1 BP4_QCH PALDGQR 1

I PSP_AVVEVDESGTR 17

ITIH4JLDDLSPR 1

LI RA3_KPSL.SVQ.PG P VVAPG E K 8

PRL_SWN EPLYHLVTEVR 1

PROS_FSAEFDFR 1

SEPP1_VSLATVDK 1

SPRL1_VLTHSELAPLR 1

VTNC_GQYCYELDEK 1

Grand Total 83

Table 24. Count of Down-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 119-139

Row Labels Count of Down-Regulated (Protein Peptide)

AFAM_H FQN LGK 5

ALSJRPHTFTGLSGLR 4

ANGT_DPTFI PAPIQAK 1

ATL4J LWIPAGALR 1

CADH5_YEIVVEAR 6

CGB1_VLQGVLPALPQVVC NYR 1

CRAC1_GVALADFNR 1

FGFRIJGPDN LPYVQILK 1

GELS_TASDFITK 2

I BP3_FLNVLSPR 3

I BP3_YGQPLPGYTTK 2 IGF2_GIVEECCF 6

I L1R1_LWFVPAK 2

KNG1_Q.WAGL.NFR 3

LEP_DLLHVLAFSK 1

M UC18_EVTVPVFYPTEK 2

PCD12_YQVSEEVPSGTVIGK 7

P RG 2_W N F AYW AA H QP WS R 1

PSG3_VSAPSGTGHLPGLNPL 23

R ET4_YWG VAS F LQK 1

TI E1_VSWSLPLVPGPLVGDGFLLR 5

TI M P1_HLACLPR 4

VGFR1_YLAVPTSK 1

Grand Total

Table 25. Reversals (UpVDown-Regulated) Predicting PTL vs. Term Birth at GABD 126-146 with an AUC >= 0.65

C08B_QALEEFQK PSG3_VSAPSGTGHLPGLN PL 0.67 0.0025

FA11_DSVTETLPR CADH5_YEIVVEAR 0.67 0.0019

FA11_DSVTETLPR FGFR1_VYSDPQPH IQWLK 0.67 0.0026

FA11_DSVTETLPR IBP3_YGQPLPGYTTK 0.67 0.0020

FA11_DSVTETLPR M UC18_EVTVPVFYPTEK 0.67 0.0025

FA11_DSVTETLPR TETN_CFLAFTQTK 0.67 0.0019

FA11_DSVTETLPR TI E1_VSWSLPLVPGPLVGDGFLLR 0.67 0.0027

FA11_TAAISGYSFK TI M P1_H LACLPR 0.67 0.0026

FA9_SALVLQYLR GELS_TASDFITK 0.67 0.0019

FA9_SALVLQYLR PCD12_YQVSEEVPSGTVIGK 0.67 0.0027

FA9_SALVLQYLR TI E1_VSWSLPLVPGPLVGDGFLLR 0.67 0.0016

I PSP_AVVEVDESGTR GELS_TASDFITK 0.67 0.0023

I PSP_AVVEVDESGTR PSG3_VSAPSGTGHLPGLN PL 0.67 0.0017

PRL_SWNEPLYHLVTEVR CRAC1_GVALADFN R 0.67 0.0024

PTGDS_GPGEDFR PSG3_VSAPSGTGHLPGLN PL 0.67 0.0020

ADA12_FGFGGSTDSGPIR PSG3_VSAPSGTGHLPGLN PL 0.66 0.0031

C1QA_DQPRPAFSAI R FGFR1_VYSDPQPH IQWLK 0.66 0.0029

C1QB_LEQ.GENVFLQ.ATDK GELS_TASDFITK 0.66 0.0032

C1QC_TNQVNSGGVLLR CADH5_YEIVVEAR 0.66 0.0028

C1QC_TNQVNSGGVLLR PCD12_YQVSEEVPSGTVIGK 0.66 0.0042

C1QC_TNQVNSGGVLLR TI E1_VSWSLPLVPGPLVGDGFLLR 0.66 0.0038

CSHJSLLLI ESWLEPVR PSG3_VSAPSGTGHLPGLN PL 0.66 0.0033

DEF1JPACIAGER PSG3_VSAPSGTGHLPGLN PL 0.66 0.0040

FA9_EYTNI FLK FGFR1_VYSDPQPH IQWLK 0.66 0.0028

FA9_SALVLQYLR CRAC1_GVALADFN R 0.66 0.0043

FA9_SALVLQYLR IGF2_GIVEECCFR 0.66 0.0039

FA9_SALVLQYLR TI M P1_H LACLPR 0.66 0.0034

FBLN3JPSN PSHR PSG3_VSAPSGTGHLPGLN PL 0.66 0.0032

I BP4_QCHPALDGQR F13B_GDTYPAELYITGSILR 0.66 0.0049

I BP4_QCHPALDGQR GELS_TASDFITK 0.66 0.0040

I PSP_AVVEVDESGTR CRAC1_GVALADFN R 0.66 0.0029

I PSP_AVVEVDESGTR TI E1_VSWSLPLVPGPLVGDGFLLR 0.66 0.0035

KNG1_DIPTNSPELEETLTHTITK PSG3_VSAPSGTGHLPGLN PL 0.66 0.0044

LI RA3_KPSLSVQPG PVVAPG E K PSG3_VSAPSGTGHLPGLN PL 0.66 0.0055

PRL_SWNEPLYHLVTEVR GELS_TASDFITK 0.66 0.0034

PRL_SWNEPLYHLVTEVR PRG2_WN FAYWAAHQPWSR 0.66 0.0027

PRL_SWNEPLYHLVTEVR TI E1_VSWSLPLVPGPLVGDGFLLR 0.66 0.0045

PRL_SWNEPLYHLVTEVR VGFR1_YLAVPTSK 0.66 0.0043

PROS_SQDILLSVENTVIYR PSG3_VSAPSGTGHLPGLN PL 0.66 0.0030

SEPP1_VSLATVDK CRAC1_GVALADFN R 0.66 0.0049

THBG_AVLH IGEK PSG3_VSAPSGTGHLPGLN PL 0.66 0.0035

ANT3_TSDQI HFFFAK PSG3_VSAPSGTGHLPGLN PL 0.65 0.0059

AP0C3_GWVTDGFSSLK ISM2_TRPCGYGCTATETR 0.65 0.0077 A PO H_AT VVYQG E R CRAC1_GVALADFN R 0.65 0.0079

B2MG_VN HVTLSQPK PSG3_VSAPSGTGHLPGLN PL 0.65 0.0076

C1QA_SLGFCDTTN K ISM2_TRPCGYGCTATETR 0.65 0.0081

C1QA_SLGFCDTTN K PCD12_YQVSEEVPSGTVIGK 0.65 0.0062

C1Q.A_SL.GFC DUN K TETN_CFLAFTQTK 0.65 0.0051

C1QA_SLGFCDTTN K TI E1_VSWSLPLVPGPLVGDGFLLR 0.65 0.0051

C1QB_IAFSATR CADH5_YEIVVEAR 0.65 0.0060

C1QB_VPGLYYFTYHASSR FGFR1_VYSDPQPH IQWLK 0.65 0.0083

C1QC_TNQVNSGGVLLR ISM2_TRPCGYGCTATETR 0.65 0.0075

C1QC_TNQVNSGGVLLR M UC18_EVTVPVFYPTEK 0.65 0.0058

CBPN_EALIQFLEQVHQGIK PSG3_VSAPSGTGHLPGLN PL 0.65 0.0058

CD14_LTVGAAQVPAQLLVGALR PSG3_VSAPSGTGHLPGLN PL 0.65 0.0056

C F AB_YG LVTYATYP K PSG3_VSAPSGTGHLPGLN PL 0.65 0.0055

C05_TLLPVSKPEI R PSG3_VSAPSGTGHLPGLN PL 0.65 0.0057

FA11_DSVTETLPR AM BP_ETLLQDFR 0.65 0.0065

FA11_DSVTETLPR BGH3_LTLLAPLNSVFK 0.65 0.0051

FA11_DSVTETLPR ISM2_TRPCGYGCTATETR 0.65 0.0058

FA11_DSVTETLPR VTDB_ELPEHTVK 0.65 0.0084

FA11_TAAISGYSFK ECM 1_LLPAQLPAEK 0.65 0.0052

FA5_AEVDDVIQVR CRAC1_GVALADFN R 0.65 0.0074

FA5_AEVDDVIQVR PSG3_VSAPSGTGHLPGLN PL 0.65 0.0050

FA9_EYTNI FLK ISM2_FDTTPWILCK 0.65 0.0081

FA9_SALVLQYLR AM BP_ETLLQDFR 0.65 0.0051

FA9_SALVLQYLR CADH5_YEIVVEAR 0.65 0.0051

I BP2_LIQGAPTI R PSG3_VSAPSGTGHLPGLN PL 0.65 0.0060

I BP4_QCHPALDGQR ISM2_TRPCGYGCTATETR 0.65 0.0083

I BP4_QCHPALDGQR TI E1_VSWSLPLVPGPLVGDGFLLR 0.65 0.0060

LBPJTLPDFTGDLR PSG3_VSAPSGTGHLPGLN PL 0.65 0.0050

LI RA3_KPSLSVQPG PVVAPG E K VGFR1_YLAVPTSK 0.65 0.0105

PRL_SWNEPLYHLVTEVR CADH5_YEIVVEAR 0.65 0.0071

PRL_SWNEPLYHLVTEVR FGFR1_VYSDPQPH IQWLK 0.65 0.0058

PRL_SWNEPLYHLVTEVR TENX_LNWEAPPGAFDSFLLR 0.65 0.0082

PRL_SWNEPLYHLVTEVR TETN_CFLAFTQTK 0.65 0.0049

PRL_SWNEPLYHLVTEVR TI M P1_H LACLPR 0.65 0.0081

PROS_SQDILLSVENTVIYR CRAC1_GVALADFN R 0.65 0.0049

SEPP1_VSLATVDK ISM2_TRPCGYGCTATETR 0.65 0.0073

SOM2.CSH_NYGLLYCFR PSG3_VSAPSGTGHLPGLN PL 0.65 0.0052

SVEP1_LLSDFPVVPTATR PRG2_WN FAYWAAHQPWSR 0.65 0.0078

VTNC_GQYCYELDEK PCD12_YQVSEEVPSGTVIGK 0.65 0.0072 Table 26. Count of Up-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 126-146

Row Labels Count of Up-Regulated {Protein Peptide)

ADA12_FGFGGSTDSGPI 1

ANT3_TSDQIH FFFAK 1

APOC3_GWVTDGFSSLK 2

APOH_ATVVYQGER 2

B2MG_VN HVTLSQPK 1

C1QA_DQPRPAFSAI R 2

C1QA_SLGFCDTTN K 6

C1QB_IAFSATR 1

C1QB_LEQGENVFLQATDK 3

C1QB_VPGLYYFTYHASSR 1

C1QC_TNQVNSGGVLLR 10

CBPN_EALIQ.FLEQ.VI-IQ.GIK 1

CD14_LTVGAAQVPAQLLVG ALR 1

C F A B_YG LVTY ATY P K 1

C05_TLLPVSKPEI R 1

C08A_SLLQPN K 1

C08B_QALEEFQK 1

CSHJSLLLI ESWLEPVR 1

DEF1JPACIAGER 1

FA11_DSVTETLPR 15

FA11_TAAISGYSFK 3

FA5_AEVDDVIQVR 2

FA9_EYTN IFLK 2

FA9_SALVLQYLR 9

FBLN3JPSNPSH R 1

I BP2_LIQGAPTI R 1

1 BP4_QCH PALDGQR 5

I PSP_AVVEVDESGTR 4

KNG1_DI PTNSPELEETLTHTI TK 1

LBP_ITLPDFTGDLR 1

LI RA3_KPSLSVQPGPVVAPG EK 2

PRL_SWN EPLYHLVTEVR 13

PROS_SQDILLSVENTVIYR 2

PTGDS_GPGEDFR 1

SEPP1_VSLATVDK 3

SOM2.CSH_NYGLLYCFR 1

SVEP1_LLSDFPVVPTATR 1

TH BG_AVLH IGEK 1

VTNC_GQYCYELDEK 2

Grand Total 108 Table 27. Count of Down-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 126-146

Row Labels Count of Down-Regulated (Protein_Peptide)

AM BP_ETL.LQ.DFR

BGH3 LTLLAPLNSVFK

CADH5 YEIVVEAR

CRAC1 GVALADFNR 11

ECM 1_LLPAQLPAEK

F13B GDTYPAELYITGSILR

FGFR1 VYSDPQPHIQWLK

GELS TASDFITK

I BP3_YGQPLPGYTTK

IGF2 GIVEECCFR

ISM2 FDTTPWI LCK

ISM2 TRPCGYGCTATETR

M UC18 EVTVPVFYPTEK

NOTU M GLADSGWFLDNK

PCD12 YQVSEEVPSGTVIGK

PRG2_WN FAYWAAHQPWSR

PSG3 VSAPSGTGHLPGLNPL 33

TENX LNWEAPPGAFDSFLLR

TETN CFLAFTQTK

TI E1 VSWSLPLVPGPLVGDGFLLR

TI M P1 HLACLPR

VGFR1 YLAVPTSK

VTDB ELPEHTVK

Grand Total ϊϋ!

Table 28. Reversals (UpVDown-Regulated) Predicting PTL vs. Term Birth at GABD 133-153 with an AUC >= 0.65

C1QA_SLGFCDTTN K IGF2_GIVEECCFR 0.67 0.0036

C1QC_TNQ.VNSGGVL.LR IGF2_GIVEECCFR 0.67 0.0044

C08B_QALEEFQK IGF2_GIVEECCFR 0.67 0.0030

FA11_DSVTETLPR AM BP_ETLLQDFR 0.67 0.0033

FA9_SALVLQYLR IGF2_GIVEECCFR 0.67 0.0031

I BP4_QCHPALDGQR ANGT_DPTFI PAPIQAK 0.67 0.0032

PRL_LSAYYN LLHCLR AM BP_ETLLQDFR 0.67 0.0030

PRL_LSAYYN LLHCLR CNTN 1_TTKPYPADIVVQFK 0.67 0.0035

PRL_LSAYYN LLHCLR FGFR1_VYSDPQPHIQWLK 0.67 0.0040

PRL_LSAYYN LLHCLR NCAM 1_GLGEISAASEFK 0.67 0.0043

PRL_LSAYYN LLHCLR P E D F_TVQAV LTV P K 0.67 0.0038

PRL_LSAYYN LLHCLR SH BG_ALALPPLGLAPLLN LWAKPQGR 0.67 0.0045

PRL_LSAYYN LLHCLR SOM2.CSH_SVEGSCGF 0.67 0.0029

PRL_SWNEPLYHLVTEVR P RG 2_W N F AYW AA H QP WS R 0.67 0.0029

PRL_SWNEPLYHLVTEVR PSG3_VSAPSGTGHLPGLNPL 0.67 0.0045

PRL_SWNEPLYHLVTEVR TENX_LSQLSVTDVTTSSLR 0.67 0.0045

PRL_SWNEPLYHLVTEVR VGFR1_YLAVPTSK 0.67 0.0032

C1QA_DQPRPAFSAI R FGFR1_VYSDPQPHIQWLK 0.66 0.0061

C1QA_SLGFCDTTN K AM BP_ETLLQDFR 0.66 0.0056

C1QA_SLGFCDTTN K PSG3_VSAPSGTGHLPGLNPL 0.66 0.0062

C1QC_TNQVNSGGVLLR GELS_AQPVQVAEGSEPDGFWEALGGK 0.66 0.0050

C1QC_TNQVNSGGVLLR I BP3_YGQPLPGYTTK 0.66 0.0058

C1QC_TNQVNSGGVLLR PSG3_VSAPSGTGHLPGLNPL 0.66 0.0062

FA11_DSVTETLPR F13B_GDTYPAELYITGSILR 0.66 0.0047

FA11_DSVTETLPR GELS_TASDFITK 0.66 0.0070

FA11_DSVTETLPR PSG3_VSAPSGTGHLPGLNPL 0.66 0.0053

FA11_TAAISGYSFK CRAC1_GVALADFNR 0.66 0.0074

FA11_TAAISGYSFK PCD12_YQVSEEVPSGTVIGK 0.66 0.0062

FA9_SALVLQYLR PSG3_VSAPSGTGHLPGLNPL 0.66 0.0049

I BP4_QCHPALDGQR CLUS_LFDSDPITVTVPVEVSR 0.66 0.0050

I BP4_QCHPALDGQR F13B_GDTYPAELYITGSILR 0.66 0.0068

PRL_LSAYYN LLHCLR BGH3_LTLLAPLNSVFK 0.66 0.0048

PRL_LSAYYN LLHCLR CBPN_N NANGVDLN R 0.66 0.0049

PRL_LSAYYN LLHCLR F13B_GDTYPAELYITGSILR 0.66 0.0054

PRL_LSAYYN LLHCLR I BP6_GAQTLYVPNCDH R 0.66 0.0057

PRL_LSAYYN LLHCLR KNG1_QVVAGLNFR 0.66 0.0066

PRL_SWNEPLYHLVTEVR ISM2_FDTTPWI LCK 0.66 0.0049

PRL_SWNEPLYHLVTEVR NOTU M_GLADSGWFLDNK 0.66 0.0059

PRL_SWNEPLYHLVTEVR PCD12_AH DADLGINGK 0.66 0.0062

THBG_AVLH IGEK PSG3_VSAPSGTGHLPGLNPL 0.66 0.0064

VTNC_VDTVDPPYPR AM BP_ETLLQDFR 0.66 0.0055

ADA12_FGFGGSTDSGPIR P RG 2_W N F AYW AA H QP WS R 0.65 0.0112

A PO H_ATVVYQG E R AM BP_ETLLQDFR 0.65 0.0096 A PO H_AT VVYQG E R I BP3_YGQPLPGYTTK 0.65 0.0093

A PO H_AT VVYQG E R PSG3_VSAPSGTGHLPGLNPL 0.65 0.0080

C1QA_DQPRPAFSAI R GELS_AQPVQVAEGSEPDGFWEALGGK 0.65 0.0082

C1QA_DQPRPAFSAI R I BP3_YGQPLPGYTTK 0.65 0.0107

C1QA_SLGFCDTTN K PCD12_YQVSEEVPSGTVIGK 0.65 0.0101

C1QB_IAFSATR AM BP_ETLLQDFR 0.65 0.0093

C1QB_VPGLYYFTYHASSR PSG3_VSAPSGTGHLPGLNPL 0.65 0.0099

C08A_SLLQPNK IGF2_GIVEECCFR 0.65 0.0094

C08A_SLLQPNK PCD12_YQVSEEVPSGTVIGK 0.65 0.0109

C08B_QALEEFQK I BP3_YGQPLPGYTTK 0.65 0.0126

C08B_QALEEFQK PCD12_YQVSEEVPSGTVIGK 0.65 0.0094

C08B_QALEEFQK PSG3_VSAPSGTGHLPGLNPL 0.65 0.0106

FA11_DSVTETLPR CLUS_LFDSDPITVTVPVEVSR 0.65 0.0125

FA11_DSVTETLPR FGFR1_VYSDPQ.PHIQ.WLK 0.65 0.0089

FA11_DSVTETLPR TENX_LSQLSVTDVTTSSLR 0.65 0.0125

FA9_SALVLQYLR ANGT_DPTFI PAPIQAK 0.65 0.0098

FA9_SAL.VLQ.YLR I BP3_YGQPLPGYTTK 0.65 0.0087

FA9_SALVLQYLR P E D F_TVQAV LTV P K 0.65 0.0093

I BP4_QCHPALDGQR I BP3_YGQPLPGYTTK 0.65 0.0090

LBP_ITLPDFTGDLR PSG3_VSAPSGTGHLPGLNPL 0.65 0.0126

PRL_LSAYYN LLHCLR ATS13_YGSQLAPETFYR 0.65 0.0078

PRL_LSAYYN LLHCLR ECE1_HTLGENIADNGGLK 0.65 0.0121

PRL_LSAYYN LLHCLR FBLN 1_TGYYFDGISR 0.65 0.0093

PRL_LSAYYN LLHCLR I L1R1_LWFVPAK 0.65 0.0122

PRL_LSAYYN LLHCLR LEP_DLLHVLAFSK 0.65 0.0103

PRL_LSAYYN LLHCLR VTDB_ELPEHTVK 0.65 0.0118

PRL_SWNEPLYHLVTEVR ANGT_DPTFI PAPIQAK 0.65 0.0093

PRL_SWNEPLYHLVTEVR GELS_AQPVQVAEGSEPDGFWEALGGK 0.65 0.0126

PRL_SWNEPLYHLVTEVR IGF2_GIVEECCFR 0.65 0.0085

PRL_SWNEPLYHLVTEVR KIT_LCLHCSVDQEGK 0.65 0.0124

PTGDS_GPGEDFR IGF2_GIVEECCFR 0.65 0.0105

SOM2.CSHJMYGLLYCFR PSG3_VSAPSGTGHLPGLNPL 0.65 0.0120

SPRL1_VLTHSELAPLR PSG3_VSAPSGTGHLPGLNPL 0.65 0.0099

Table 29. Count of Up-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 133-153

Row Labels Count of Up-Regulated {Protein Peptide)

ADA12_FGFGGSTDSC 3PI R 1

APOH_ATVVYQGER 4

C1QA_DQPRPAFSAI R 3

C1QA_SLGFCDTTN K 4

C1QBJAFSATR 1

C1QB_VPGLYYFTYHA SSR 1 C1Q.C_TNQ.VNSGGVL.LR 4

C08A_SLLQPN K 2

C08B_QALEEFQK 4

FA11_DSVTETLPR 9

FA11_TAAISGYSFK 2

FA9_SALVLQYLR 6

1 BP4_QCH PALDGQR 8

LBP_ITLPDFTGDLR 1

PRL_LSAYYNLLHCLR 22

PRL_SWN EPLYHLVTEVR 11

PTGDS_GPGEDFR 1

SOM2.CSH_NYGLLYCFR 1

SPRL1_VLTHSELAPLR 1

TH BG_AVLH IGEK 1

VTNC_VDTVDPPYPR 1

Grand Total 88

Table 30. Count of Down-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 133-153

LEP_DLLHVLAFSK 1

NCAM 1_GLGEISAASEFK 1

NOTU M_GLADSGWFLDNK 1

PCD12_AH DADLGINGK 1

PCD12_YQVSEEVPSGTVIGK 4

P E D F_TVQAV LTV P K 3

P RG 2_W N F AYW AA H QP WS R 2

PSG3_VSAPSGTGHLPGLNPL 13

SH BG_ALALPPLGLAPLLN LWAKPQGR 1

SOM2.CSH_SVEGSCGF 1

TENX_LSQLSVTDVTTSSLR 2

TETN_CFLAFTQTK 1

VGFR1_YLAVPTSK 1

VTDB_ELPEHTVK 1 Grand Total 88

Table 31. Reversals (UpVDown-Regulated) Predicting PTL vs. Term Birth at GABD 134-146 with an AUC >= 0.65

A PO H_AT VVYQG E R CRAC1_GVALADFNR 0.69 0.0044

A PO H_AT VVYQG E R I BP3_YGQPLPGYTTK 0.69 0.0045

A PO H_AT VVYQG E R PSG3_VSAPSGTGHLPGLNPL 0.69 0.0049

C1QA_DQPRPAFSAI R FGFR1_VYSDPQPHIQWLK 0.69 0.0040

C1QA_SLGFCDTTN K AM BP_ETLLQDFR 0.69 0.0045

C1QA_SLGFCDTTN K I BP3_YGQPLPGYTTK 0.69 0.0043

C1QA_SLGFCDTTN K PSG3_VSAPSGTGHLPGLNPL 0.69 0.0044

C1QC_TNQVNSGGVLLR FGFR1_VYSDPQPHIQWLK 0.69 0.0045

C1Q.C_TNQVNSGGVL.LR PCD12_YQVSEEVPSGTVIGK 0.69 0.0046

C08B_QALEEFQK IGF2_GIVEECCFR 0.69 0.0034

FA11_DSVTETLPR PSG3_VSAPSGTGHLPGLNPL 0.69 0.0048

FA9_SALVLQYLR AM BP_ETLLQDFR 0.69 0.0048

FA9_SALVLQYLR IGF2_GIVEECCFR 0.69 0.0034

I PSP_AVVEVDESGTR CADH5_YEIVVEAR 0.69 0.0044

I PSP_AVVEVDESGTR FGFR1_VYSDPQPHIQWLK 0.69 0.0039

I PSP_AVVEVDESGTR GELS_TASDFITK 0.69 0.0037

I PSP_AVVEVDESGTR IGF2_GIVEECCFR 0.69 0.0046

PRL_SWNEPLYHLVTEVR PSG3_VSAPSGTGHLPGLNPL 0.69 0.0035

SOM2.CSH_NYGLLYCFR CRAC1_GVALADFNR 0.69 0.0048

SOM2.CSH_NYGLLYCFR PSG3_VSAPSGTGHLPGLNPL 0.69 0.0034

ADA12_FGFGGSTDSGPIR PSG3_VSAPSGTGHLPGLNPL 0.68 0.0075

C1QA_SLGFCDTTN K PCD12_YQVSEEVPSGTVIGK 0.68 0.0053

C1QB_VPGLYYFTYHASSR PSG3_VSAPSGTGHLPGLNPL 0.68 0.0079

C1QC_TNQVNSGGVLLR AM BP_ETLLQDFR 0.68 0.0056

C1QC_TNQVNSGGVLLR GELS_AQPVQVAEGSEPDGFWEALGGK 0.68 0.0076

C08B_QALEEFQK CRAC1_GVALADFNR 0.68 0.0060

CSHJSLLLI ESWLEPVR PCD12_YQVSEEVPSGTVIGK 0.68 0.0062

FA11_DSVTETLPR AM BP_ETLLQDFR 0.68 0.0059

FA11_DSVTETLPR F13B_GDTYPAELYITGSILR 0.68 0.0055

FA11_DSVTETLPR FGFR1_VYSDPQPHIQWLK 0.68 0.0059

FA11_DSVTETLPR PCD12_YQVSEEVPSGTVIGK 0.68 0.0075

FA5_AEVDDVIQVR CRAC1_GVALADFNR 0.68 0.0057

FA5_AEVDDVIQVR FGFR1_VYSDPQPHIQWLK 0.68 0.0063

FA9_EYTNI FLK FGFR1_VYSDPQPHIQWLK 0.68 0.0073

I BP4_QCHPALDGQR CRAC1_GVALADFNR 0.68 0.0072

I BP4_QCHPALDGQR TI M P1_HLACLPR 0.68 0.0080

I PSP_AVVEVDESGTR I BP3_YGQPLPGYTTK 0.68 0.0070

I PSP_AVVEVDESGTR PCD12_YQVSEEVPSGTVIGK 0.68 0.0076

I PSP_AVVEVDESGTR PSG3_VSAPSGTGHLPGLNPL 0.68 0.0068

I PSP_AVVEVDESGTR TI E1_VSWSLPLVPGPLVGDGFLLR 0.68 0.0060

PRL_LSAYYN LLHCLR NOTU M_GLADSGWFLDNK 0.68 0.0060

PRL_SWNEPLYHLVTEVR FGFR1_VYSDPQPHIQWLK 0.68 0.0070

PRL_SWNEPLYHLVTEVR IGF2_GIVEECCFR 0.68 0.0066 SEPP1_VSLATVDK FG F R 1_VYS D PQP H 1 QWLK 0.68 0.0070

VTNC_VDTVDPPYPR AM BP_ETLLQDFR 0.68 0.0074

VTNC_VDTVDPPYPR CRAC1_GVALADFNR 0.68 0.0057

ADA12_FGFGGSTDSGPIR CRAC1_GVALADFNR 0.67 0.0107

C1QA_SLGFCDTTN K GELS_TASDFITK 0.67 0.0107

C1QB_IAFSATR FG F R 1_VYS D PQP H 1 QWLK 0.67 0.0111

C1QB_VPGLYYFTYHASSR AM BP_ETLLQDFR 0.67 0.0086

C08A_SL.LQ.PNK IGF2_GIVEECCFR 0.67 0.0120

C08B_QALEEFQK AM BP_ETLLQDFR 0.67 0.0117

C08B_QALEEFQK FGFR1_VYSDPQPHIQWLK 0.67 0.0115

C08B_QALEEFQK I BP3_YGQPLPGYTTK 0.67 0.0108

C08B_QALEEFQK PCD12_YQVSEEVPSGTVIGK 0.67 0.0103

C08B_QALEEFQK PSG3_VSAPSGTGHLPGLNPL 0.67 0.0123

CSHJSLLLI ESWLEPVR FGFR1_VYSDPQPHIQWLK 0.67 0.0108

FA11_DSVTETLPR GELS_TASDFITK 0.67 0.0097

FA9_EYTNI FLK CRAC1_GVALADFNR 0.67 0.0120

FA9_SALVLQYLR I BP3_YGQPLPGYTTK 0.67 0.0107

FA9_SALVLQYLR PSG3_VSAPSGTGHLPGLNPL 0.67 0.0098

I BP2_LIQGAPTI R CRAC1_GVALADFNR 0.67 0.0104

I BP4_QCHPALDGQR FGFR1_VYSDPQPHIQWLK 0.67 0.0085

I BP4_QCHPALDGQR I BP3_YGQPLPGYTTK 0.67 0.0096

I PSP_AVVEVDESGTR F13B_GDTYPAELYITGSILR 0.67 0.0114

I PSP_AVVEVDESGTR M UC18_GATLALTQVTPQDER 0.67 0.0098

ITI H4_N PLVWVHASPEHVVVTR CRAC1_GVALADFNR 0.67 0.0085

PRL_LSAYYN LLHCLR CNTN 1_FIPLI PIPER 0.67 0.0121

PRL_LSAYYN LLHCLR LEP_DLLHVLAFSK 0.67 0.0106

PRL_SWNEPLYHLVTEVR CADH5_YEIVVEAR 0.67 0.0107

PRL_SWNEPLYHLVTEVR GELS_TASDFITK 0.67 0.0092

PRL_SWNEPLYHLVTEVR ISM2_FDTTPWI LCK 0.67 0.0111

PRL_SWNEPLYHLVTEVR P RG 2_W N F AYW AA H QP WS R 0.67 0.0083

PRL_SWNEPLYHLVTEVR TI M P1_HLACLPR 0.67 0.0085

PRL_SWNEPLYHLVTEVR VGFR1_YLAVPTSK 0.67 0.0108

PROS_SQDILLSVENTVIYR CRAC1_GVALADFNR 0.67 0.0111

PTGDS_GPGEDFR IGF2_GIVEECCFR 0.67 0.0093

SVEP1_LLSDFPVVPTATR PSG3_VSAPSGTGHLPGLNPL 0.67 0.0140

THBG_AVLH IGEK CRAC1_GVALADFNR 0.67 0.0108

ADA12_FGFGGSTDSGPIR GELS_TASDFITK 0.66 0.0137

A PO H_AT VVYQG E R F13B_GDTYPAELYITGSILR 0.66 0.0167

A PO H_AT VVYQG E R FGFR1_VYSDPQPHIQWLK 0.66 0.0175

A PO H_AT VVYQG E R P E D F_TVQAV LTV P K 0.66 0.0173

C1QA_SLGFCDTTN K F13B_GDTYPAELYITGSILR 0.66 0.0134

C1QB_IAFSATR CADH5_YEIVVEAR 0.66 0.0167

C1QB_LEQGENVFLQATDK IGF2_GIVEECCFR 0.66 0.0148 C1QB_LEQ.GENVFLQ.ATDK PCD12_YQVSEEVPSGTVIGK 0.66 0.0188

C1QC_TNQVNSGGVLLR CADH5_YEIVVEAR 0.66 0.0131

C1QC_TNQVNSGGVLLR F13B_GDTYPAELYITGSILR 0.66 0.0165

C08A_SLLQPNK CRAC1_GVALADFNR 0.66 0.0141

C08A_SLLQPNK PCD12_YQVSEEVPSGTVIGK 0.66 0.0146

C08B_QALEEFQK F13B_GDTYPAELYITGSILR 0.66 0.0177

CRAC1_LVNIAVDER FA5_NFFN PPI ISR 0.66 0.0136

CRAC1_LVNIAVDER PTG DS_AQG FTE DTI VF LPQTD K 0.66 0.0159

CSHJSLLLI ESWLEPVR IGF2_GIVEECCFR 0.66 0.0148

I BP4_QCHPALDGQR ANGT_DPTFI PAPIQAK 0.66 0.0153

I BP4_QCHPALDGQR TI E1_VSWSLPLVPGPLVGDGFLLR 0.66 0.0177

I PSP_AVVEVDESGTR ALS_IRPHTFTGLSGLR 0.66 0.0171

I PSP_AVVEVDESGTR AM BP_ETLLQDFR 0.66 0.0173

I PSP_AVVEVDESGTR KIT_YVSELH LTR 0.66 0.0129

I PSP_AVVEVDESGTR P E D F_TVQAV LTV P K 0.66 0.0144

ITI H4_N PLVWVHASPEHVVVTR AM BP_ETLLQDFR 0.66 0.0164

PRL_LSAYYN LLHCLR NCAM 1_GLGEISAASEFK 0.66 0.0184

PRL_SWNEPLYHLVTEVR AM BP_ETLLQDFR 0.66 0.0139

PRL_SWNEPLYHLVTEVR ANGT_DPTFI PAPIQAK 0.66 0.0126

PRL_SWNEPLYHLVTEVR F13B_GDTYPAELYITGSILR 0.66 0.0175

PRL_SWNEPLYHLVTEVR I BP3_FLNVLSPR 0.66 0.0129

PRL_SWNEPLYHLVTEVR M UC18_GATLALTQVTPQDER 0.66 0.0157

PRL_SWNEPLYHLVTEVR P E D F_TVQAV LTV P K 0.66 0.0134

PRL_SWNEPLYHLVTEVR TENX_LNWEAPPGAFDSFLLR 0.66 0.0175

PRL_SWNEPLYHLVTEVR TETN_CFLAFTQTK 0.66 0.0155

PRL_SWNEPLYHLVTEVR TI E1_VSWSLPLVPGPLVGDGFLLR 0.66 0.0148

PROS_SQDILLSVENTVIYR PSG3_VSAPSGTGHLPGLNPL 0.66 0.0126

PTGDS_GPGEDFR PSG3_VSAPSGTGHLPGLNPL 0.66 0.0167

SEPP1_VSLATVDK PSG3_VSAPSGTGHLPGLNPL 0.66 0.0159

SOM2.CSH_NYGLLYCFR IGF2_GIVEECCFR 0.66 0.0184

SOM2.CSH_NYGLLYCFR PCD12_YQVSEEVPSGTVIGK 0.66 0.0179

SPRL1_VLTHSELAPLR CRAC1_GVALADFNR 0.66 0.0165

SVEP1_LLSDFPVVPTATR CRAC1_GVALADFNR 0.66 0.0205

THBG_AVLH IGEK IGF2_GIVEECCFR 0.66 0.0177

THBG_AVLH IGEK PSG3_VSAPSGTGHLPGLNPL 0.66 0.0124

VTNC_GQYCYELDEK PCD12_YQVSEEVPSGTVIGK 0.66 0.0177

VTNC_VDTVDPPYPR PSG3_VSAPSGTGHLPGLNPL 0.66 0.0186

ADA12_FGFGGSTDSGPIR FGFR1_VYSDPQPHIQWLK 0.65 0.0224

ADA12_FGFGGSTDSGPIR IGF2_GIVEECCFR 0.65 0.0214

ADA12_FGFGGSTDSGPIR TI M P1_HLACLPR 0.65 0.0258

ANT3_TSDQI HFFFAK CRAC1_GVALADFNR 0.65 0.0204

A PO H_ATVVYQG E R PCD12_YQVSEEVPSGTVIGK 0.65 0.0204

C1QA_DQPRPAFSAI R GELS_AQPVQVAEGSEPDGFWEALGGK 0.65 0.0258 C1QA_SLGFCDTTN K TI E1_VSWSLPLVPGPLVGDGFLLR 0.65 0.0243

C1QB_LEQ.GENVFLQ.ATDK I BP3_YGQPLPGYTTK 0.65 0.0238

C1QC_TNQVNSGGVLLR P E D F_TVQAV LTV P K 0.65 0.0222

C1QC_TNQVNSGGVLLR TI E1_VSWSLPLVPGPLVGDGFLLR 0.65 0.0232

C08A_SLLQPNK AM BP_ETLLQDFR 0.65 0.0209

C08A_SLLQPNK FGFR1_VYSDPQPHIQWLK 0.65 0.0204

C08A_SLLQPNK PSG3_VSAPSGTGHLPGLNPL 0.65 0.0238

CSHJSLLLI ESWLEPVR GELS_TASDFITK 0.65 0.0238

DPEP2_ALEVSQAPVI FSHSAAR CRAC1_GVALADFNR 0.65 0.0276

FA11_DSVTETLPR P E D F_TVQAV LTV P K 0.65 0.0258

FA11_TAAISGYSFK TI M P1_HLACLPR 0.65 0.0267

FA9_SALVLQYLR F13B_GDTYPAELYITGSILR 0.65 0.0232

FA9_SALVLQYLR PCD12_YQVSEEVPSGTVIGK 0.65 0.0190

FA9_SALVLQYLR TI M P1_HLACLPR 0.65 0.0219

I BP2_LIQGAPTI R PSG3_VSAPSGTGHLPGLNPL 0.65 0.0207

I BP4_QCHPALDGQR CLUS_LFDSDPITVTVPVEVSR 0.65 0.0270

I BP4_QCHPALDGQR GELS_AQPVQVAEGSEPDGFWEALGGK 0.65 0.0276

I BP4_QCHPALDGQR PCD12_YQVSEEVPSGTVIGK 0.65 0.0202

I PSP_AVVEVDESGTR ANGT_DPTFI PAPIQAK 0.65 0.0279

I PSP_AVVEVDESGTR 1 BP6_H LDSVLQQLQTEVYR 0.65 0.0241

I PSP_AVVEVDESGTR KNG1_QVVAGLNFR 0.65 0.0202

I PSP_AVVEVDESGTR LEP_DLLHVLAFSK 0.65 0.0261

I PSP_AVVEVDESGTR P RG 2_W N F AYW AA H QP WS R 0.65 0.0227

I PSP_AVVEVDESGTR R ET4_YWG VAS F LQK 0.65 0.0232

I PSP_AVVEVDESGTR TI M P1_HLACLPR 0.65 0.0204

ITI H4J LDDLSPR IGF2_GIVEECCFR 0.65 0.0258

PRL_SWNEPLYHLVTEVR ALS_IRPHTFTGLSGLR 0.65 0.0246

PRL_SWNEPLYHLVTEVR BGH3_LTLLAPLNSVFK 0.65 0.0255

PRL_SWNEPLYHLVTEVR CBPN_N NANGVDLN R 0.65 0.0270

PRL_SWNEPLYHLVTEVR CLUS_ASSI IDELFQDR 0.65 0.0214

PRL_SWNEPLYHLVTEVR ECE1_HTLGENIADNGGLK 0.65 0.0227

PRL_SWNEPLYHLVTEVR KIT_LCLHCSVDQEGK 0.65 0.0252

PRL_SWNEPLYHLVTEVR KNG1_QVVAGLNFR 0.65 0.0200

PRL_SWNEPLYHLVTEVR M FAP5_LYSVH RPVK 0.65 0.0200

PRL_SWNEPLYHLVTEVR R ET4_YWG VAS F LQK 0.65 0.0255

PRL_SWNEPLYHLVTEVR SH BG_ALALPPLGLAPLLN LWAKPQGR 0.65 0.0267

PROS_SQDILLSVENTVIYR F13B_GDTYPAELYITGSILR 0.65 0.0258

PROS_SQDILLSVENTVIYR IGF2_GIVEECCFR 0.65 0.0227

PTGDS_GPGEDFR CRAC1_GVALADFNR 0.65 0.0204

PTGDS_GPGEDFR F13B_GDTYPAELYITGSILR 0.65 0.0202

SEPP1_VSLATVDK IGF2_GIVEECCFR 0.65 0.0230

SOM2.CSH_NYGLLYCFR FGFR1_VYSDPQPHIQWLK 0.65 0.0209

SVEP1_LLSDFPVVPTATR P RG 2_W N F AYW AA H QP WS R 0.65 0.0261 SVEP1_LLSDFPVVPTATR TI M P1_HLACLPR 0.65 0.0316

VTNC_GQ.YCYEL.DEK IGF2_GIVEECCFR 0.65 0.0255

VTNC_VDTVDPPYPR P E D F_TVQAV LTV P K 0.65 0.0193

Table 32. Count of Up-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 134-146

Row Labels Count of Up-Regulated (Protein Peptide)

ADA12 FGFGGSTDSGPI R

ANT3_TSDQIH FFFAK

APOH_ATVVYQGER

C1QA DQPRPAFSAI R

C1QA SLGFCDTTN K

C1QB_IAFSATR

C1QB_LEQGENVFLQATDK

C1QB VPGLYYFTYHASSR

C1QC TNQVNSGGVLLR 12

C08A_SLLQPN K

C08B_QALEEFQK

CRAC1 LVNIAVDER

CSH ISLLLI ESWLEPVR

DPEP2_ALEVSQAPVI FSHSAAR

FA11 DSVTETLPR 10

FA11 TAAISGYSFK

FA5 AEVDDVIQVR

FA9 EYTN IFLK

FA9_SALVLQYLR

I BP2 LIQGAPTI R

I BP4 QCH PALDGQR 14

I PSP AVVEVDESGTR 22

ITIH4 ILDDLSPR

ITIH4 NPLVWVHASPEHVVVTR

PRL LSAYYNLLHCLR

PRL SWN EPLYHLVTEVR 29

PROS_SQDILLSVENTVIYR

PTGDS GPGEDFR

SEPP1 VSLATVDK

SOM2.CSH NYGLLYCFR

SPRL1 VLTHSELAPLR

SVEP1 LLSDFPVVPTATR

TH BG AVLH IGEK

VTNC_GQYCYELDEK

VTNC VDTVDPPYPR

Grand Total I9S; Table 33. Count of Down-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 134-146

Tl E 1_VS WS LP LVPG P LVG DG F LLR 5

TI M P1_HL.ACL.PR 7

VGFR1_YLAVPTSK 1 Grand Total 199

Table 34. Reversals (UpVDown-Regulated) Predicting PTL vs. Term Birth at GABD 119-153 with an AUC >= 0.65

Table 35. Count of Up-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 119-153

Row Labels Count of Up-Regulated (Protein Peptide)

APOH_ATVVYQGER 1

C1QA_DQPRPAFSAI } 1

C1Q.BJAFSATR 1

C1QC_TNQVNSGGV LLR 2

C F A B_YG LVTY ATY P K 1

C05_TLLPVSKPEI R 1 C08A_SL.LQ.PN K 1

C08B_QALEEFQK 1

FA11_DSVTETLP 5

FA11_TAAISGYSFK 1

FA9_SALVLQYLR 5

1 BP4_QCH PALDGQR 1

PRL_SWN EPLYHLVTEVR 1

SPRL1_VLTHSELAPLR 1

TH BG_AVLH IGEK 1

VTNC_GQYCYELDEK 1

Grand Total 25

Table 36. Count of Down-Regulated Protein Peptide in Reversals >=0.65 for PTL vs. Term, GABD 119-153

Table 37. Comparison of Clinical Characteristics Between Women Delivering PPROM, PTL, and Term (119-139 days gestation

Table 38. Comparison of Clinical Characteristics Between Women Delivering PPROM, PTL, and Term (126-146 days gestation

Multigravida 19(59.37) 23(74.19) 175(69.72)

Number of prior term deliveries 0.0139 0.1162 0.516

1 or More 12(63.16) 17(73.91) 152(86.86)

None 7(36.84) 6(26.09) 23(13.14)

Number of prior SPTBs 0.278 0.502 1.000

1 or More 4(21.05) 4(17.39) 21(12)

None 15(78.95) 19(82.61) 154(88)

Delivery Characteristics

Gestational Age at Birth <0.0001 <0.0001 0.099

Mean 242 247 277

Median 249 253 276

I nterquartile Range 232-251 243-251 272-282

Fetal Characteristics

Fetal Gender 0.261 0.342 1

Male 19(59.38) 18(58.06) 120(47.81)

Female 13(40.62) 13(41.94) 131(52.19)

Birth Weight <0.0001 <0.0001 0.55

Mean 2525 2599.81 3389.57

Median 2545.0 2673 3398.00

I nterquartile Range 2172.75- 2331.81- 3104.57-3674.57

2877.25 2867.81

SPTB, spontaneous preterm birth; PPROM, preterm premature rupture of membranes; PTL, spontaneous onset of labor; N, number of subjects.

Comparisons of clinical data between cases and controls were performed using Chi-square test or Fisher exact test (SAS System 9.4) and R (3.1.0).

Missing values are excluded in the frequency tables.

Table 39. Comparison of Clinical Characteristics Between Women Delivering PPROM, PTL, and Term (133-153 days gestation

Table 40. Comparison of Clinical Characteristics Between Women Delivering PPROM, PTL, and Term (134-146 days gestation

Multigravida 9 (52.9) 15 (68.2) 117 (75.0)

Number of prior term deliveries 0.019 0.034 0.2963

1 or More 5 (55.6) 10(66.7) 104(88.9)

None 4 (44.4) 5 (33.3) 13 (11.1)

Number of prior SPTBs 1 0.700 0.320

1 or More 1 (11.1) 3 (20.0) 17 (14.5)

None 8 (88.9) 12 (80.0) 100 (85.5)

Delivery Characteristics

Gestational Age at Birth <0.0001 <0.0001 0.1299

Mean 240.3 247.3 276.1

Median 244 253.5 275.5

I nterquartile Range 237-257 249.2-258 271.8-281

Fetal Characteristics

Fetal Gender 0.211 0.087 0.0521

Male 11 (61.7) 15 (68.2) 76 (48.7)

Female 6 (35.3) 7 (31.8) 80 (51.3)

Birth Weight <0.0001 <0.0001 0.6043

Mean 2550.9 2637.1 3401.7

Median 2540 2721.5 3399

I nterquartile Range 2287-3120 2410-2981.2 3059-3721.2

SPTB, spontaneous preterm birth; PPROM, preterm premature rupture of membranes; PTL, spontaneous onset of labor; N, number of subjects.

Comparisons of clinical data between cases and controls were performed using Chi-square test or Fisher exact test (SAS System 9.4) and R (3.1.0).

Missing values are excluded in the frequency tables.

Table 41. Comparison of Clinical Characteristics Between Women Delivering PPROM, PTL, and Term (119-153 days gestation

Multigravida 25(62.5) 33(78.57) 235(71.00)

Nu mber of prior term deliveries 0.095 0.088 1

1 or More 17(68) 23(69.70) 196(83.40)

None 8(32) 10(30.30) 39(16.60)

Nu mber of prior SPTB s 0.063 0.413 0.526

1 or More 7(28) 6(18.18) 30(12.77)

None 18(72) 27(81.82) 205(87.23)

Delivery Characteristics

Gestational Age at Bir th <0.0001 <0.0001 0.151

Mean 241.8 246.7 276.8

Median 248.5 252.5 276

I nterquartile Range 236-257 249.2-256 272-282

Fetal Characteristics

Fetal Gender 0.245 0.255 1

Male 23(57.5) 24(57.14) 157(47.43)

Female 17(42.5) 18(42.86) 174(52.57)

Birth Weight <0.0001 <0.0001 0.388

Mean 2516.4 2609.3 3375.0

Median 2545 2685.5 3373

I nterquartile Range 2136.5-2985 . .451-2937.5 3071-3630

SPTB, spontaneous preterm birth; PPROM, preterm premature rupture of membranes; PTL, spontaneous onset of labor; N, number of subjects.

Comparisons of clinical data between cases and controls were performed using Chi-square test or Fisher exact test (SAS System 9.4) and R (3.1.0).

Missing values are excluded in the frequency tables.

Table 42. Functional characterization of proteins identified as being differentially expressed in PPROM or PTL vs. Term from any of the GA windows

Table 45. Differential ex ression of roteins in PPROM vs. PTL in different estational a e at blood draw windows da s

Table 46. Reversals (UpVDown-Regulated) Predicting PPROM vs. PTL at GABD 119-139 with an AUC >= 0.7

SEPP1_VSLATVDK KIT_YVSELHLTR 0.78 0.0003

AM BP_ETL.LQ.DFR LIRA3_EGAADSPLR 0.78 0.0003

B2MG_VN HVTLSQPK LIRA3_EGAADSPLR 0.78 0.0003

C1QB_IAFSATR LIRA3_EGAADSPLR 0.78 0.0004

C F AB_YG LVTYATYP K LIRA3_EGAADSPLR 0.78 0.0003

F13B_GDTYPAELYITGSI LR LIRA3_EGAADSPLR 0.78 0.0004

RET4_YWGVASFLQK LIRA3_EGAADSPLR 0.78 0.0004

FETUA_FSVVYAK TETN_LDTLAQEVALLK 0.78 0.0003

H EMO_NFPSPVDAAFR TETN_LDTLAQEVALLK 0.78 0.0003

P RG 2_W N F AYW AA H QP WS R AOCl_AVHSFLWSK 0.77 0.0004

LEP_DLLHVLAFSK CRIS3_YEDLYSNCK 0.77 0.0004

LEP_DLLHVLAFSK KIT_LCLHCSVDQEGK 0.77 0.0004

CADH5_YEIVVEAR KIT_YVSELHLTR 0.77 0.0004

CD14_SWLAELQQWLKPGLK KIT_YVSELHLTR 0.77 0.0006

C05_TLLPVSKPEI R KIT_YVSELHLTR 0.77 0.0005

FA5_AEVDDVIQVR KIT_YVSELHLTR 0.77 0.0006

I BP3_FLNVLSPR KIT_YVSELHLTR 0.77 0.0004

IGF2_GIVEECCFR KIT_YVSELHLTR 0.77 0.0004

VTNC_VDTVDPPYPR KIT_YVSELHLTR 0.77 0.0005

A2GL_DLLLPQPDLR LIRA3_EGAADSPLR 0.77 0.0005

C1QC_FNAVLTN PQGDYDTSTGK LIRA3_EGAADSPLR 0.77 0.0006

CATD_VGFAEAAR LIRA3_EGAADSPLR 0.77 0.0005

CD14_LTVGAAQVPAQLLVGALR LIRA3_EGAADSPLR 0.77 0.0006

C06_ALNH LPLEYNSALYSR LIRA3_EGAADSPLR 0.77 0.0006

ECE1_HTLGENIADNGGLK LIRA3_EGAADSPLR 0.77 0.0005

ENPP2_TEFLSNYLTNVDDITLVPGTLGR LIRA3_EGAADSPLR 0.77 0.0006

H EMO_NFPSPVDAAFR LIRA3_EGAADSPLR 0.77 0.0005

1 BP6_H LDSVLQQLQTEVYR LIRA3_EGAADSPLR 0.77 0.0005

P E D F_TVQA V LTV P K LIRA3_EGAADSPLR 0.77 0.0004

AFAM_H FQNLGK LI RA3_KPS LSVQPG P VVAPG E K 0.77 0.0006

FETUA_FSVVYAK LI RA3_KPS LSVQPG PVVAPG E K 0.77 0.0004

SEPP1_LPTDSELAPR LI RA3_KPS LSVQPG PVVAPG E K 0.77 0.0005

TIM P1_HLACLPR LI RA3_KPS LSVQPG PVVAPG E K 0.77 0.0006

I NH BC_LDFH FSSDR TETN_LDTLAQEVALLK 0.77 0.0004

LEP_DLLHVLAFSK TETN_LDTLAQEVALLK 0.77 0.0005

RET4_YWGVASFLQK TETN_LDTLAQEVALLK 0.77 0.0005

LEP_DLLHVLAFSK A0C1_AVHSFLWSK 0.76 0.0009

P RG 2_W N F AYW AA H QP WS R A0C1_GDFPSPI HVSGPR 0.76 0.0007

LEP_DLLHVLAFSK CRIS3_AVSPPAR 0.76 0.0007

LEP_DLLHVLAFSK ECM 1_DI LTI DIGR 0.76 0.0008

LEP_DLLHVLAFSK GELS_AQPVQVAEGSEPDGFWEALGGK 0.76 0.0009

FETUA_FSVVYAK KIT_LCLHCSVDQEGK 0.76 0.0009

A PO H_AT VVYQG E R KIT_YVSELHLTR 0.76 0.0009 FA9_EYTNI FLK KIT_YVSELHLTR 0.76 0.0007

FGFR1JGPDN LPYVQILK KIT_YVSELHLTR 0.76 0.0008

I BP4_Q.CHPAL.DGQR KIT_YVSELHLTR 0.76 0.0007

ITI H4_QLGLPGPPDVPDHAAYHPF KIT_YVSELHLTR 0.76 0.0011

PCD12_YQVSEEVPSGTVIGK KIT_YVSELHLTR 0.76 0.0008

CLUS_ASSII DELFQDR LIRA3_EGAADSPLR 0.76 0.0010

FA5_AEVDDVIQVR LIRA3_EGAADSPLR 0.76 0.0007

FA9_EYTNI FLK LIRA3_EGAADSPLR 0.76 0.0009

PSG3_VSAPSGTGH LPGLNPL LIRA3_EGAADSPLR 0.76 0.0009

VTNC_GQYCYELDEK LIRA3_EGAADSPLR 0.76 0.0008

PRG4_DQYYN I DVPSR LI RA3_KPS LSVQPG P VVAPG E K 0.76 0.0007

FETUA_FSVVYAK LYAM 1_SYYWIGIR 0.76 0.0006

LEP_DLLHVLAFSK LYAM 1_SYYWIGIR 0.76 0.0009

C1QB_IAFSATR TETN_LDTLAQEVALLK 0.76 0.0008

CD14_SWLAELQQWLKPGLK TETN_LDTLAQEVALLK 0.76 0.0009

AFAM_H FQNLGK A0C1_AVHSFLWSK 0.75 0.0015

I NH BC_LDFH FSSDR A0C1_AVHSFLWSK 0.75 0.0015

I NH BC_LDFH FSSDR A0C1_DNGPNYVQR 0.75 0.0015

LEP_DLLHVLAFSK A0C1_DNGPNYVQR 0.75 0.0015

LEP_DLLHVLAFSK C163AJ NPASLDK 0.75 0.0015

LBPJTGFLKPGK C1QC_TNQVNSGGVLLR 0.75 0.0015

I NH BC_LDFH FSSDR CRIS3_AVSPPAR 0.75 0.0012

AFAM_H FQNLGK EG LN_TQI LE WAAE R 0.75 0.0012

FETUA_FSVVYAK EG LN_TQI LE WAAE R 0.75 0.0014

SEPP1_LPTDSELAPR EG LN_TQI LE WAAE R 0.75 0.0013

AFAM_H FQNLGK FBLN1_TGYYFDGISR 0.75 0.0011

LBPJTGFLKPGK FBLN1_TGYYFDGISR 0.75 0.0015

AFAM_H FQNLGK GELS_AQPVQVAEGSEPDGFWEALGGK 0.75 0.0014

I NH BC_LDFH FSSDR IPSP_AVVEVDESGTR 0.75 0.0011

F13B_GDTYPAELYITGSI LR KIT_LCLHCSVDQEGK 0.75 0.0010

I NH BC_LDFH FSSDR KIT_LCLHCSVDQEGK 0.75 0.0014

P E D F_TVQA V LTV P K KIT_LCLHCSVDQEGK 0.75 0.0015

B2MG_VN HVTLSQPK KIT_YVSELHLTR 0.75 0.0015

M UC18_GATLALTQVTPQDER KIT_YVSELHLTR 0.75 0.0015

TIE1_VSWSLPLVPGPLVGDGFLLR KIT_YVSELHLTR 0.75 0.0014

A PO H_AT VVYQG E R LIRA3_EGAADSPLR 0.75 0.0013

BGH3_LTLLAPLNSVFK LIRA3_EGAADSPLR 0.75 0.0012

C05_TLLPVSKPEI R LIRA3_EGAADSPLR 0.75 0.0016

C08A_SLLQPNK LIRA3_EGAADSPLR 0.75 0.0013

C08B_QALEEFQK LIRA3_EGAADSPLR 0.75 0.0011

I BP4_QCHPALDGQR LIRA3_EGAADSPLR 0.75 0.0012

ITI H3_ALDLSLK LIRA3_EGAADSPLR 0.75 0.0013

VTDB_ELPEHTVK LIRA3_EGAADSPLR 0.75 0.0012 ANGT_DPTFIPAPIQAK LI R A3 J<PS LSVQPG PVVAPG E K 0.75 0.0012

C1QB_IAFSATR LI R A3 J<PS LSVQPG PVVAPG E K 0.75 0.0015

HABP2_FLNWIK LI R A3 J<PS LSVQPG PVVAPG E K 0.75 0.0014

P E D F_TVQA V LTV P K LI R A3 J<PS LSVQPG PVVAPG E K 0.75 0.0016

RET4_YWGVASFLQK LI R A3 J<PS LSVQPG PVVAPG E K 0.75 0.0012

AFAM_HFQNLGK LYAM1J5YYWIGIR 0.75 0.0014

INHBC_LDFHFSSDR LYAM1J5YYWIGIR 0.75 0.0010

LEP_DLLHVLAFSK PR0SJ5QDILLSVENTVIYR 0.75 0.0012

FETUA_FSVVYAK TETN_CFLAFTQTK 0.75 0.0013

F13B_GDTYPAELYITGSILR TETNJ.DTLAQEVALLK 0.75 0.0015

HABP2_FLNWIK TETNJ.DTLAQEVALLK 0.75 0.0010

LBPJTGFLKPGK TETNJ.DTLAQEVALLK 0.75 0.0015

VTNC_GQYCYELDEK TETNJ.DTLAQEVALLK 0.75 0.0015

AFAM_HFQNLGK A0C1JDNGPNYVQR 0.74 0.0016

P RG 2_W N F AYW AA H QP WS R AOC1JDNGPNYVQR 0.74 0.0020

RET4_YWGVASFLQK AOC1JDNGPNYVQR 0.74 0.0021

AFAM_HFQNLGK AOCl_GDFPSPIHVSGPR 0.74 0.0024

INHBC_LDFHFSSDR AOCl_GDFPSPIHVSGPR 0.74 0.0016

LEP_DLLHVLAFSK AOCl_GDFPSPIHVSGPR 0.74 0.0021

AFAM_HFQNLGK C1QC_TNQVNSGGVLLR 0.74 0.0018

SEPP1_LPTDSELAPR C1QC_TNQVNSGGVLLR 0.74 0.0018

LEP_DLLHVLAFSK CNTNIJTKPYPADIVVQFK 0.74 0.0022

LEP_DLLHVLAFSK CRAC1J.VNIAVDER 0.74 0.0022

LBPJTGFLKPGK CRIS3_AVSPPAR 0.74 0.0021

FETUA_FSVVYAK CRIS3_YEDLYSNCK 0.74 0.0018

INHBC_LDFHFSSDR CRIS3_YEDLYSNCK 0.74 0.0021

INHBC_LDFHFSSDR EGLN_GPITSAAELNDPQSILLR 0.74 0.0021

ANGT_DPTFIPAPIQAK EG LN J " QI LE WAAE R 0.74 0.0016

INHBC_LDFHFSSDR EG LN J " QI LE WAAE R 0.74 0.0022

RET4_YWGVASFLQK EG LN J " QI LE WAAE R 0.74 0.0024

ANGT_DPTFIPAPIQAK FBLN1_TGYYFDGISR 0.74 0.0022

INHBC_LDFHFSSDR FBLN1_TGYYFDGISR 0.74 0.0024

LEP_DLLHVLAFSK FBLN1_TGYYFDGISR 0.74 0.0020

RET4_YWGVASFLQK GELS_AQPVQVAEGSEPDGFWEALGGK 0.74 0.0016

AFAM_HFQNLGK IPSP_AVVEVDESGTR 0.74 0.0016

SEPP1_VSLATVDK IPSP_AVVEVDESGTR 0.74 0.0024

ANGT_DPTFIPAPIQAK KITJ.CLHCSVDQEGK 0.74 0.0024

1 BP6_H LDSVLQQLQTEVYR KITJ.CLHCSVDQEGK 0.74 0.0022

KNG1_QVVAGLNFR KITJ.CLHCSVDQEGK 0.74 0.0020

LBPJTGFLKPGK KITJ.CLHCSVDQEGK 0.74 0.0021

A2GLJDLLLPQPDLR KITJA SELHLTR 0.74 0.0021

ATS13_SLVELTPIAAVHGR KITJA/SELHLTR 0.74 0.0019

CATD_VGFAEAAR KITJA/SELHLTR 0.74 0.0019 C F AB_YG LVTYATYP K KIT_YVSELHLTR 0.74 0.0024

THBG_AVLH IGEK KIT_YVSELHLTR 0.74 0.0019

VTDB_ELPEHTVK KIT_YVSELHLTR 0.74 0.0024

ALS_IRPHTFTGLSGLR LIRA3_EGAADSPLR 0.74 0.0024

ATS13_SLVELTPIAAVHGR LIRA3_EGAADSPLR 0.74 0.0020

C1QA_DQPRPAFSAI R LIRA3_EGAADSPLR 0.74 0.0018

CADH5_YEIVVEAR LIRA3_EGAADSPLR 0.74 0.0020

FA11_TAAISGYSFK LIRA3_EGAADSPLR 0.74 0.0024

FGFR1JGPDN LPYVQILK LIRA3_EGAADSPLR 0.74 0.0027

PTGDS_GPGEDFR LIRA3_EGAADSPLR 0.74 0.0021

THBG_AVLH IGEK LIRA3_EGAADSPLR 0.74 0.0024

AM BP_ETLLQDFR LI RA3_KPS LSVQPG PVVAPG E K 0.74 0.0024

B2MG_VEHSDLSFSK LI RA3_KPS LSVQPG PVVAPG E K 0.74 0.0027

F13B_GDTYPAELYITGSI LR LI RA3_KPS LSVQPG PVVAPG E K 0.74 0.0018

FA5_NFFNPPI ISR LI RA3_KPS LSVQPG PVVAPG E K 0.74 0.0027

1 BP6_H LDSVLQQLQTEVYR LI RA3_KPS LSVQPG PVVAPG E K 0.74 0.0027

KNG1_QVVAGLN FR LI RA3_KPS LSVQPG PVVAPG E K 0.74 0.0024

PCD12_YQVSEEVPSGTVIGK LI RA3_KPS LSVQPG PVVAPG E K 0.74 0.0022

LEP_DLLHVLAFSK PAEP_QDLELPK 0.74 0.0026

AFAM_H FQ.NL.GK PGRP2_AGLLRPDYALLGHR 0.74 0.0022

FETUA_FSVVYAK PGRP2_AGLLRPDYALLGHR 0.74 0.0022

SEPP1_LPTDSELAPR SPRL1_VLTHSELAPLR 0.74 0.0022

AFAM_H FQNLGK TENX_LSQLSVTDVTTSSLR 0.74 0.0016

FETUA_FSVVYAK TENX_LSQLSVTDVTTSSLR 0.74 0.0022

ANGT_DPTFIPAPIQAK TETN_LDTLAQEVALLK 0.74 0.0019

C06_ALNH LPLEYNSALYSR TETN_LDTLAQEVALLK 0.74 0.0024

1 BP6_H LDSVLQQLQTEVYR TETN_LDTLAQEVALLK 0.74 0.0021

KNG1_QVVAGLN FR TETN_LDTLAQEVALLK 0.74 0.0016

P E D F_TVQA V LTV P K TETN_LDTLAQEVALLK 0.74 0.0021

RET4_YWGVASFLQK A0C1_AVHSFLWSK 0.73 0.0036

F13B_GDTYPAELYITGSI LR A0C1_DNGPNYVQR 0.73 0.0034

I NH BC_LDFH FSSDR A0C1_DTVIVWPR 0.73 0.0027

LEP_DLLHVLAFSK A0C1_DTVIVWPR 0.73 0.0029

F13B_GDTYPAELYITGSI LR A0C1_GDFPSPI HVSGPR 0.73 0.0038

RET4_YWGVASFLQK A0C1_GDFPSPI HVSGPR 0.73 0.0036

I NH BC_LDFH FSSDR C1QC_TNQVNSGGVLLR 0.73 0.0029

LEP_DLLHVLAFSK C1QC_TNQVNSGGVLLR 0.73 0.0027

LEP_DLLHVLAFSK CNTN1_FI PLIPI PER 0.73 0.0036

AFAM_H FQNLGK CNTN1_TTKPYPADIVVQFK 0.73 0.0030

AFAM_H FQNLGK CRIS3_AVSPPAR 0.73 0.0027

FETUA_FSVVYAK CRIS3_AVSPPAR 0.73 0.0027

PEDF_LQSLFDSPDFSK CRIS3_AVSPPAR 0.73 0.0027

AFAM_H FQNLGK CRIS3_YEDLYSNCK 0.73 0.0032 LBPJTGFLKPGK CRIS3_YEDLYSNCK 0.73 0.0027

ANGT_DPTFIPAPIQAK CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.73 0.0038

LEP_DLLHVLAFSK ECM 1_ELLALIQLER 0.73 0.0036

AFAM_H FQNLGK EGLN_GPITSAAELNDPQSILLR 0.73 0.0036

LEP_DLLHVLAFSK EGLN_GPITSAAELNDPQSILLR 0.73 0.0034

H EMO_NFPSPVDAAFR EG LN_TQI LE WAAE R 0.73 0.0032

LEP_DLLHVLAFSK EG LN_TQI LE WAAE R 0.73 0.0034

I NH BC_LDFH FSSDR GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 0.0036

LEP_DLLHVLAFSK GELS_TASDFITK 0.73 0.0036

RET4_YWGVASFLQK IBP2_LIQGAPTIR 0.73 0.0029

ALS_IRPHTFTGLSGLR KIT_LCLHCSVDQEGK 0.73 0.0032

C06_ALNH LPLEYNSALYSR KIT_LCLHCSVDQEGK 0.73 0.0034

HABP2_FLNWIK KIT_LCLHCSVDQEGK 0.73 0.0027

H EMO_NFPSPVDAAFR KIT_LCLHCSVDQEGK 0.73 0.0025

PSG3_VSAPSGTGH LPGLNPL KIT_LCLHCSVDQEGK 0.73 0.0038

SEPP1_LPTDSELAPR KIT_LCLHCSVDQEGK 0.73 0.0029

C1QB_IAFSATR KIT_YVSELHLTR 0.73 0.0032

C08A_SL.LQ.PNK KIT_YVSELHLTR 0.73 0.0034

FA11_TAAISGYSFK KIT_YVSELHLTR 0.73 0.0034

PRG4_DQYYN I DVPSR KIT_YVSELHLTR 0.73 0.0032

PROS_FSAEFDFR KIT_YVSELHLTR 0.73 0.0029

PTGDS_GPGEDFR KIT_YVSELHLTR 0.73 0.0034

ANT3_TSDQI HFFFAK LIRA3_EGAADSPLR 0.73 0.0041

CAH 1_GGPFSDSYR LIRA3_EGAADSPLR 0.73 0.0036

I BP3_FLNVLSPR LIRA3_EGAADSPLR 0.73 0.0032

M FAP5_LYSVH RPVK LIRA3_EGAADSPLR 0.73 0.0030

P RG 2_W N F AYW AA H QP WS R LIRA3_EGAADSPLR 0.73 0.0034

A2GL_DLLLPQPDLR LI RA3_KPS LSVQPG P VVAPG E K 0.73 0.0030

CATD_VGFAEAAR LI RA3_KPS LSVQPG PVVAPG E K 0.73 0.0030

CD14_LTVGAAQVPAQLLVGALR LI RA3_KPS LSVQPG PVVAPG E K 0.73 0.0039

C F AB_YG LVTYATYP K LI RA3_KPS LSVQPG PVVAPG E K 0.73 0.0034

PSG3_VSAPSGTGH LPGLNPL LI RA3_KPS LSVQPG PVVAPG E K 0.73 0.0039

HABP2_FLNWIK LYAM 1_SYYWIGIR 0.73 0.0038

LBPJTGFLKPGK LYAM 1_SYYWIGIR 0.73 0.0025

SEPP1_LPTDSELAPR LYAM 1_SYYWIGIR 0.73 0.0027

AFAM_H FQNLGK PAEP_QDLELPK 0.73 0.0036

KNG1_QVVAGLN FR PAEP_QDLELPK 0.73 0.0034

I NH BC_LDFH FSSDR PGRP2_AGLLRPDYALLGHR 0.73 0.0029

LEP_DLLHVLAFSK PGRP2_AGLLRPDYALLGHR 0.73 0.0032

AFAM_H FQNLGK PROS_SQDI LLSVENTVIYR 0.73 0.0027

I NH BC_LDFH FSSDR PROS_SQDI LLSVENTVIYR 0.73 0.0036

ALSJRPHTFTGLSGLR TETN_LDTLAQEVALLK 0.73 0.0030

BGH3_LTLLAPLNSVFK TETN_LDTLAQEVALLK 0.73 0.0036 I BP3_FLNVLSP TETNJ-DTLAQEVALLK 0.73 0.0032

PCD12_YQVSEEVPSGTVIGK TETNJ-DTLAQEVALLK 0.73 0.0038

ANGT_DPTFIPAPIQAK A0C1_AVHSFLWSK 0.72 0.0051

F13B_GDTYPAELYITGSI LR A0C1_AVHSFLWSK 0.72 0.0054

FETUA_FSVVYAK A0C1_AVHSFLWSK 0.72 0.0040

P E D F_TVQA V LTV P K A0C1_AVHSFLWSK 0.72 0.0043

ANGT_DPTFIPAPIQAK AOC1JDNGPNYVQR 0.72 0.0048

LBPJTGFLKPGK AOC1JDNGPNYVQR 0.72 0.0043

AFAM_H FQNLGK AOC1JDTVIVWPR 0.72 0.0040

ANGT_DPTFIPAPIQAK AOCl_GDFPSPI HVSGPR 0.72 0.0045

LEP_DLLHVLAFSK ATL4JLWI PAGALR 0.72 0.0057

FETUA_FSVVYAK C1QC_TNQVNSGGVLLR 0.72 0.0045

RET4_YWGVASFLQK CNTN1_TTKPYPADIVVQFK 0.72 0.0057

LEP_DLLHVLAFSK CRAC1_GVALADFN R 0.72 0.0054

PEDF_LQSLFDSPDFSK CRIS3_YEDLYSNCK 0.72 0.0057

AFAM_H FQNLGK CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.72 0.0048

I NH BC_LDFH FSSDR CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.72 0.0040

LEP_DLLHVLAFSK CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.72 0.0057

I NH BC_LDFH FSSDR DPEP2J.TLEQI DLI R 0.72 0.0043

LEP_DLLHVLAFSK DPEP2J.TLEQI DLI R 0.72 0.0040

HABP2_FLNWIK EG LN J " QI LE WAAE R 0.72 0.0045

ITI H4_QLGLPGPPDVPDHAAYHPF EGLNJTQILEWAAER 0.72 0.0054

KNG1_QVVAGLN FR EG LN J " QI LE WAAE R 0.72 0.0043

LBPJTGFLKPGK EGLNJTQILEWAAER 0.72 0.0045

BGH3_LTLLAPLNSVFK FBLN1JTGYYFDGISR 0.72 0.0054

FETUA_FSVVYAK FBLN1JTGYYFDGISR 0.72 0.0057

SEPP1_LPTDSELAPR FBLN1JTGYYFDGISR 0.72 0.0048

FETUA_FSVVYAK GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0045

H EMOJMFPSPVDAAFR GELS_AQPVQVAEGSEPDGFWEALGGK 0.72 0.0054

AFAM_DADPDTFFAK IBP2JUQGAPTIR 0.72 0.0057

LEP_DLLHVLAFSK IBP2JUQGAPTIR 0.72 0.0040

SEPP1_LPTDSELAPR IBP2JUQGAPTIR 0.72 0.0054

I PSP_DFTFDLYR IPSP_AVVEVDESGTR 0.72 0.0040

LBPJTGFLKPGK IPSP_AVVEVDESGTR 0.72 0.0040

CD14_SWLAELQQWLKPGLK KITJLCLHCSVDQEGK 0.72 0.0054

ITI H4_QLGLPGPPDVPDHAAYHPF KITJLCLHCSVDQEGK 0.72 0.0048

AM BPJETLLQDFR KITJA SELHLTR 0.72 0.0040

CIQCJFNAVLTN PQGDYDTSTGK KITJA SELHLTR 0.72 0.0043

C08B_QALEEFQK KITJA SELHLTR 0.72 0.0040

ECE1JHTLGENIADNGGLK KITJA SELHLTR 0.72 0.0054

TIM PIJHLACLPR KITJA SELHLTR 0.72 0.0051

IGF2_GIVEECCFR LIRA3JEGAADSPLR 0.72 0.0046

I L1 1J-WFVPAK LIRA3JEGAADSPLR 0.72 0.0058 TIE1_VSWSLPLVPGPLVGDGFLLR LIRA3JEGAADSPLR 0.72 0.0043

C1QC_FNAVLTNPQGDYDTSTGK LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0049

CLUS_LFDSDPITVTVPVEVSR LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0061

C06_ALNHLPLEYNSALYSR LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0061

ECE1_HTLGENIADNGGLK LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0052

ENPP2_TEFLSNYLTNVDDITLVPGTLGR LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0058

FA9_EYTNIFLK LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0052

HEMOJMFPSPVDAAFR LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0043

IBP4_QCHPALDGQR LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0061

ITIH3_ALDLSLK LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0061

VTNC_VDTVDPPYPR LI R A3 J<PS LSVQPG PVVAPG E K 0.72 0.0046

ANGT_DPTFIPAPIQAK LYAM1J5YYWIGIR 0.72 0.0057

HEMOJMFPSPVDAAFR LYAM1J5YYWIGIR 0.72 0.0051

KNG1_Q.WAGL.NFR LYAM1J5YYWIGIR 0.72 0.0051

P E D F_TVQA V LTV P K LYAM1J5YYWIGIR 0.72 0.0045

LEP_DLLHVLAFSK MUC18J.VTVPVFYPTEK 0.72 0.0060

INHBC_LDFHFSSDR PAEP_QDLELPK 0.72 0.0048

LBPJTGFLKPGK PAEP_QDLELPK 0.72 0.0043

RET4_YWGVASFLQK PAEP_QDLELPK 0.72 0.0057

SEPP1_VSLATVDK PAEP_QDLELPK 0.72 0.0048

LEP_DLLHVLAFSK SHBG_ALALPPLGLAPLLNLWAKPQGR 0.72 0.0054

LEP_DLLHVLAFSK SPRL1 LTHSELAPLR 0.72 0.0043

LEP_DLLHVLAFSK TENXJ.NWEAPPGAFDSFLLR 0.72 0.0048

ANGT_DPTFIPAPIQAK TENXJ.SQLSVTDVTTSSLR 0.72 0.0043

HABP2_FLNWIK TENXJ.SQLSVTDVTTSSLR 0.72 0.0045

INHBC_LDFHFSSDR TENXJ.SQLSVTDVTTSSLR 0.72 0.0051

LBPJTGFLKPGK TENXJ.SQLSVTDVTTSSLR 0.72 0.0054

LEPJDLLHVLAFSK TENXJ.SQLSVTDVTTSSLR 0.72 0.0040

AFAMJHFQNLGK TETN_CFLAFTQTK 0.72 0.0048

INHBCJ.DFHFSSDR TETN_CFLAFTQTK 0.72 0.0054

LEPJDLLHVLAFSK TETN_CFLAFTQTK 0.72 0.0043

ITIH4_QLGLPGPPDVPDHAAYHPF TETNJ.DTLAQEVALLK 0.72 0.0064

ALSJRPHTFTGLSGLR A0C1_AVHSFLWSK 0.71 0.0060

HABP2J I LNWIK A0C1_AVHSFLWSK 0.71 0.0074

IBP3_YGQPLPGYTTK A0C1_AVHSFLWSK 0.71 0.0070

1 BP6 JH LDSVLQQLQTEVYR A0C1_AVHSFLWSK 0.71 0.0063

LBPJTGFLKPGK A0C1_AVHSFLWSK 0.71 0.0063

ITIH4_QLGLPGPPDVPDHAAYHPF AOC1JDNGPNYVQR 0.71 0.0080

P E D F_TVQA V LTV P K AOC1JDNGPNYVQR 0.71 0.0070

PSG3 SAPSGTGHLPGLNPL AOC1JDNGPNYVQR 0.71 0.0060

SEPP1J.PTDSELAPR AOC1JDNGPNYVQR 0.71 0.0087

PRG2J/VNFAYWAAHQPWSR AOC1JDTVIVWPR 0.71 0.0060

ALSJRPHTFTGLSGLR AOCl_GDFPSPIHVSGPR 0.71 0.0087 HABP2_FLNWIK A0C1_GDFPSPIHVSGPR 0.71 0.0063

1 BP6_H LDSVLQQLQTEVY A0C1_GDFPSPIHVSGPR 0.71 0.0078

KNG1_QVVAGLNFR A0C1_GDFPSPIHVSGPR 0.71 0.0083

LBPJTGFLKPGK A0C1_GDFPSPIHVSGPR 0.71 0.0063

P E D F_TVQA V LTV P K A0C1_GDFPSPIHVSGPR 0.71 0.0087

SEPP1_LPTDSELAPR A0C1_GDFPSPIHVSGPR 0.71 0.0063

LEP_DLLHVLAFSK ATS13J GSQLAPETFYR 0.71 0.0063

LEP_DLLHVLAFSK C1QBJ.EQGENVFLQATDK 0.71 0.0070

ANGT_DPTFIPAPIQAK C1QC_TNQVNSGGVLLR 0.71 0.0060

KNG1_QVVAGLNFR C1QC_TNQVNSGGVLLR 0.71 0.0083

RET4_YWGVASFLQK C1QC_TNQVNSGGVLLR 0.71 0.0060

AFAM_DADPDTFFAK CNTNIJ^PLIPIPER 0.71 0.0087

SEPP1_LPTDSELAPR CNTN1_TTKPYPADIVVQFK 0.71 0.0074

LEP_DLLHVLAFSK CRAC1_GVASLFAGR 0.71 0.0070

ANGT_DPTFIPAPIQAK CRIS3_AVSPPAR 0.71 0.0063

F13B_GDTYPAELYITGSILR CRIS3_AVSPPAR 0.71 0.0083

HEMO_NFPSPVDAAFR CRIS3_AVSPPAR 0.71 0.0074

RET4_YWGVASFLQK CRIS3_AVSPPAR 0.71 0.0078

SEPP1_LPTDSELAPR CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.71 0.0078

ANGT_DPTFIPAPIQAK CSHJSLLLIESWLEPVR 0.71 0.0070

LEP_DLLHVLAFSK CSHJSLLLIESWLEPVR 0.71 0.0070

INHBC_LDFHFSSDR DEF1J GTCIYQGR 0.71 0.0063

LEP_DLLHVLAFSK DEF1J GTCIYQGR 0.71 0.0087

LEP_DLLHVLAFSK DPEP2_ALEVSQAPVIFSHSAAR 0.71 0.0067

LEP_DLLHVLAFSK DPEP2_GWSEEELQGVLR 0.71 0.0067

LBPJTGFLKPGK DPEP2J.TLEQIDLIR 0.71 0.0087

INHBC_LDFHFSSDR ECMIJDILTIDIGR 0.71 0.0083

SEPP1_LPTDSELAPR EGLN_GPITSAAELNDPQSILLR 0.71 0.0070

ALSJRPHTFTGLSGLR EG LN J " QI LE WAAE R 0.71 0.0070

CD14_LTVGAAQVPAQLLVGALR EGLNJTQILEWAAER 0.71 0.0083

CLUS_LFDSDPITVTVPVEVSR EG LN J " QI LE WAAE R 0.71 0.0063

F13B_GDTYPAELYITGSILR EGLNJTQILEWAAER 0.71 0.0060

1 BP6_H LDSVLQQLQTEVYR EG LN J " QI LE WAAE R 0.71 0.0074

IGF2_GIVEECCFR EGLNJTQILEWAAER 0.71 0.0074

CD14_SWLAELQQWLKPGLK FBLN1JTGYYFDGISR 0.71 0.0083

F13B_GDTYPAELYITGSILR FBLN1JTGYYFDGISR 0.71 0.0070

KNG1_QVVAGLNFR FBLN1JTGYYFDGISR 0.71 0.0070

ANGT_DPTFIPAPIQAK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0074

F13B_GDTYPAELYITGSILR GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0063

LBPJTGFLKPGK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0083

SEPP1J.PTDSELAPR GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0074

INHBCJ.DFHFSSDR IBP2JUQGAPTIR 0.71 0.0067

LBPJTGFLKPGK IBP2JUQGAPTIR 0.71 0.0070 LEP_DLLHVLAFSK IGF1_GFYFN KPTGYGSSSR 0.71 0.0087

FA5_AEVDDVIQVR IPSP_AVVEVDESGTR 0.71 0.0074

BGH3_LTLLAPLNSVFK KIT_LCLHCSVDQEGK 0.71 0.0060

CLUS_LFDSDPITVTVPVEVSR KIT_LCLHCSVDQEGK 0.71 0.0083

FA5_AEVDDVIQVR KIT_LCLHCSVDQEGK 0.71 0.0083

I BP3_FLNVLSPR KIT_LCLHCSVDQEGK 0.71 0.0083

IGF2_GIVEECCFR KIT_LCLHCSVDQEGK 0.71 0.0070

TIE1_VSWSLPLVPGPLVGDGFLLR KIT_LCLHCSVDQEGK 0.71 0.0078

VTNC_VDTVDPPYPR KIT_LCLHCSVDQEGK 0.71 0.0078

ANT3_TSDQI HFFFAK KIT_YVSELHLTR 0.71 0.0087

C1QA_DQPRPAFSAI R KIT_YVSELHLTR 0.71 0.0074

CBPN_NNANGVDLN R LIRA3_EGAADSPLR 0.71 0.0090

ECM 1_LLPAQLPAEK LIRA3_EGAADSPLR 0.71 0.0068

ISM2_FDTTPWI LCK LIRA3_EGAADSPLR 0.71 0.0085

M UC18_GATLALTQVTPQDER LIRA3_EGAADSPLR 0.71 0.0080

A PO H_AT VVYQG E R LI RA3_KPS LSVQPG P VVAPG E K 0.71 0.0090

ATS13_SLVELTPIAAVHGR LI RA3_KPS LSVQPG PVVAPG E K 0.71 0.0065

BGH3_LTLLAPLNSVFK LI RA3_KPS LSVQPG PVVAPG E K 0.71 0.0065

C05_TLLPVSKPEI R LI RA3_KPS LSVQPG PVVAPG E K 0.71 0.0080

FA11_TAAISGYSFK LI RA3_KPS LSVQPG PVVAPG E K 0.71 0.0068

IGF2_GIVEECCFR LI RA3_KPS LSVQPG PVVAPG E K 0.71 0.0076

PTGDS_GPGEDFR LI RA3_KPS LSVQPG PVVAPG E K 0.71 0.0080

TIE1_VSWSLPLVPGPLVGDGFLLR LYAM 1_SYYWIGIR 0.71 0.0087

I NH BC_LDFH FSSDR M UC18_EVTVPVFYPTEK 0.71 0.0063

LEP_DLLHVLAFSK M UC18_GPVLQLHDLK 0.71 0.0087

FETUA_HTLNQI DEVK PAEP_QDLELPK 0.71 0.0087

LEP_DLLHVLAFSK PAEP_VHITSLLPTPEDNLEIVLHR 0.71 0.0074

I NH BC_LDFH FSSDR PRL_LSAYYN LLHCLR 0.71 0.0083

LEP_DLLHVLAFSK PRL_LSAYYN LLHCLR 0.71 0.0070

HABP2_FLNWIK PROS_SQDI LLSVENTVIYR 0.71 0.0083

ITI H4_QLGLPGPPDVPDHAAYHPF PROS_SQDI LLSVENTVIYR 0.71 0.0072

LBPJTGFLKPGK PROS_SQDI LLSVENTVIYR 0.71 0.0087

RET4_YWGVASFLQK PROS_SQDI LLSVENTVIYR 0.71 0.0067

SEPP1_LPTDSELAPR PROS_SQDI LLSVENTVIYR 0.71 0.0078

LBPJTGFLKPGK PSG11_LFIPQITPK 0.71 0.0087

LEP_DLLHVLAFSK PSG11_LFIPQITPK 0.71 0.0067

LEP_DLLHVLAFSK PSG9_LFI PQITR 0.71 0.0083

LEP_DLLHVLAFSK SHBGJALGGLLFPASNLR 0.71 0.0074

LEP_DLLHVLAFSK SOM2.CSH_NYGLLYCFR 0.71 0.0087

FETUA_FSVVYAK TENX_LNWEAPPGAFDSFLLR 0.71 0.0083

B2MG_VN HVTLSQPK TETN_LDTLAQEVALLK 0.71 0.0063

CADH5_YEIVVEAR TETN_LDTLAQEVALLK 0.71 0.0087

CLUS_LFDSDPITVTVPVEVSR TETN_LDTLAQEVALLK 0.71 0.0070 C05_TLLPVSKPEI TETN_LDTLAQEVALLK 0.71 0.0083

FA5_AEVDDVIQVR TETN_LDTLAQEVALLK 0.71 0.0074

FA9_EYTNIFLK TETN_LDTLAQEVALLK 0.71 0.0070

PSG3_VSAPSGTGHLPGLNPL TETN_LDTLAQEVALLK 0.71 0.0067

TIMP1_HLACLPR TETN_LDTLAQEVALLK 0.71 0.0083

PSG3_VSAPSGTGHLPGLNPL C1QC_TNQVNSGGVLLR 0.71 0.0003

BGH3_LTLLAPLNSVFK A0C1_AVHSFLWSK 0.7 0.0102

CATD_VGFAEAAR A0C1_AVHSFLWSK 0.7 0.0107

CLUS_LFDSDPITVTVPVEVSR A0C1_AVHSFLWSK 0.7 0.0102

ITIH4_QLGLPGPPDVPDHAAYHPF A0C1_AVHSFLWSK 0.7 0.0111

SEPP1_LPTDSELAPR A0C1_AVHSFLWSK 0.7 0.0107

TIMP1_HLACLPR A0C1_AVHSFLWSK 0.7 0.0124

AL.S_IRPHTFTGL.SGLR A0C1_DNGPNYVQR 0.7 0.0092

BGH3_LTLLAPLNSVFK A0C1_DNGPNYVQR 0.7 0.0102

CLUS_LFDSDPITVTVPVEVSR A0C1_DNGPNYVQR 0.7 0.0124

FA5_AEVDDVIQVR A0C1_DNGPNYVQR 0.7 0.0124

FETUA_FSVVYAK A0C1_DNGPNYVQR 0.7 0.0102

HABP2_FLNWIK A0C1_DNGPNYVQR 0.7 0.0113

1 BP6_H LDSVLQQLQTEVYR A0C1_DNGPNYVQR 0.7 0.0118

KNG1_QVVAGLNFR A0C1_DNGPNYVQR 0.7 0.0097

PCD12_YQVSEEVPSGTVIGK A0C1_DNGPNYVQR 0.7 0.0107

ITIH4_QLGLPGPPDVPDHAAYHPF A0C1_DTVIVWPR 0.7 0.0111

LBPJTGFLKPGK A0C1_DTVIVWPR 0.7 0.0124

RET4_YWGVASFLQK A0C1_DTVIVWPR 0.7 0.0102

SEPP1_LPTDSELAPR A0C1_DTVIVWPR 0.7 0.0107

CATD_VGFAEAAR A0C1_GDFPSPIHVSGPR 0.7 0.0124

CLUS_LFDSDPITVTVPVEVSR A0C1_GDFPSPIHVSGPR 0.7 0.0118

C06_ALNHLPLEYNSALYSR A0C1_GDFPSPIHVSGPR 0.7 0.0118

FETUA_FSVVYAK A0C1_GDFPSPIHVSGPR 0.7 0.0124

ITIH4_QLGLPGPPDVPDHAAYHPF A0C1_GDFPSPIHVSGPR 0.7 0.0099

TIMP1_HLACLPR A0C1_GDFPSPIHVSGPR 0.7 0.0113

INHBC_LDFHFSSDR C163AJNPASLDK 0.7 0.0118

INHBC_LDFHFSSDR C1QB_LEQGENVFLQATDK 0.7 0.0113

INHBC_LDFHFSSDR CNTN1_FIPLIPIPER 0.7 0.0124

INHBC_LDFHFSSDR CNTN1_TTKPYPADIVVQFK 0.7 0.0097

LBPJTGFLKPGK CNTN1_TTKPYPADIVVQFK 0.7 0.0102

HABP2_FLNWIK CRIS3_AVSPPAR 0.7 0.0118

ITIH4_QLGLPGPPDVPDHAAYHPF CRIS3_AVSPPAR 0.7 0.0123

KNG1_QVVAGLNFR CRIS3_AVSPPAR 0.7 0.0102

SEPP1_LPTDSELAPR CRIS3_AVSPPAR 0.7 0.0102

ANGT_DPTFIPAPIQAK CRIS3_YEDLYSNCK 0.7 0.0124

HABP2_FLNWIK CRIS3_YEDLYSNCK 0.7 0.0102

HEMO_NFPSPVDAAFR CRIS3_YEDLYSNCK 0.7 0.0107 SEPP1_LPTDSELAPR CRIS3_YEDLYSNCK 0.7 0.0118

I NH BC_LDFH FSSDR CSHJSLLLIESWLEPVR 0.7 0.0102

LEP_DLLHVLAFSK DEF1J PACIAGER 0.7 0.0130

AFAM_H FQNLGK DPEP2_LTLEQI DLI R 0.7 0.0092

HABP2_FLNWIK EGLN_GPITSAAELNDPQSILLR 0.7 0.0102

KNG1_QVVAGLN FR EGLN_GPITSAAELNDPQSILLR 0.7 0.0102

LBPJTGFLKPGK EGLN_GPITSAAELNDPQSILLR 0.7 0.0113

RET4_YWGVASFLQK EGLN_GPITSAAELNDPQSILLR 0.7 0.0102

BGH3_LTLLAPLNSVFK EG LN_TQI LE WAAE R 0.7 0.0118

C06_ALNH LPLEYNSALYSR EG LN_TQJ LE WAAE R 0.7 0.0107

FA9_EYTNI FLK EG LN_TQI LE WAAE R 0.7 0.0113

I BP4_QCHPALDGQR EG LN_TQJ LE WAAE R 0.7 0.0124

P E D F_TVQA V LTV P K EG LN_TQI LE WAAE R 0.7 0.0097

PSG3_VSAPSGTGH LPGLNPL EG LN_TQI LE WAAE R 0.7 0.0097

A2GL_DLLLPQPDLR FBLN1_TGYYFDGISR 0.7 0.0118

ALS_IRPHTFTGLSGLR FBLN1_TGYYFDGISR 0.7 0.0118

CLUS_LFDSDPITVTVPVEVSR FBLN1_TGYYFDGISR 0.7 0.0092

HABP2_FLNWIK FBLN1_TGYYFDGISR 0.7 0.0097

ITI H4_QLGLPGPPDVPDHAAYHPF FBLN1_TGYYFDGISR 0.7 0.0123

P E D F_TVQA V LTV P K FBLN1_TGYYFDGISR 0.7 0.0107

ANGT_DPTFIPAPIQAK IBP2_LIQGAPTIR 0.7 0.0113

1 BP6_H LDSVLQQLQTEVYR IBP2_LIQGAPTIR 0.7 0.0118

ANGT_DPTFIPAPIQAK IPSP_AVVEVDESGTR 0.7 0.0102

ITI H4_QLGLPGPPDVPDHAAYHPF IPSP_AVVEVDESGTR 0.7 0.0116

C1QB_IAFSATR KIT_LCLHCSVDQEGK 0.7 0.0124

CADH5_YEIVVEAR KIT_LCLHCSVDQEGK 0.7 0.0110

CATD_VGFAEAAR KIT_LCLHCSVDQEGK 0.7 0.0097

FA9_EYTNI FLK KIT_LCLHCSVDQEGK 0.7 0.0113

I BP4_QCHPALDGQR KIT_LCLHCSVDQEGK 0.7 0.0118

PCD12_YQVSEEVPSGTVIGK KIT_LCLHCSVDQEGK 0.7 0.0118

PTGDS_GPGEDFR KIT_LCLHCSVDQEGK 0.7 0.0124

TIM P1_HLACLPR KIT_LCLHCSVDQEGK 0.7 0.0124

ENPP2_TYLHTYESEI KIT_YVSELHLTR 0.7 0.0118

M FAP5_LYSVH RPVK KIT_YVSELHLTR 0.7 0.0113

AP0C3_GWVTDGFSSLK LIRA3_EGAADSPLR 0.7 0.0111

CGB1_VLQGVLPALPQVVCNYR LIRA3_EGAADSPLR 0.7 0.0111

CHL1_VIAVNEVGR LIRA3_EGAADSPLR 0.7 0.0111

PRDX2_GLFII DGK LIRA3_EGAADSPLR 0.7 0.0105

ALS_IRPHTFTGLSGLR LI RA3_KPS LSVQPG PVVAPG E K 0.7 0.0094

CADH5_YEIVVEAR LI RA3_KPS LSVQPG PVVAPG E K 0.7 0.0105

CAH 1_GGPFSDSYR LI RA3_KPS LSVQPG PVVAPG E K 0.7 0.0100

C08B_QALEEFQK LI RA3_KPS LSVQPG PVVAPG E K 0.7 0.0094

FGFR1JGPDN LPYVQILK LI RA3_KPS LSVQPG PVVAPG E K 0.7 0.0117 ITI H4_QLGLPGPPDVPDHAAYHPF LYAM 1_SYYWIGIR 0.7 0.0105 ET4_YWGVASFLQK LYAM 1_SYYWIGIR 0.7 0.0107

AFAM_H FQ.NL.GK M UC18_EVTVPVFYPTEK 0.7 0.0102

LEP_DLLHVLAFSK NOTUM_LYIQN LGR 0.7 0.0124

LEP_DLLHVLAFSK PAEP_H LWYLLDLK 0.7 0.0097

LEP_DLLHVLAFSK PAPP1_DI PHWLN PTR 0.7 0.0102

LEP_DLLHVLAFSK PAPP2_LLLRPEVLAEIPR 0.7 0.0118

HABP2_FLNWIK PGRP2_AGLLRPDYALLGHR 0.7 0.0097

LBPJTGFLKPGK PGRP2_AGLLRPDYALLGHR 0.7 0.0118

LEP_DLLHVLAFSK PRL_SWN EPLYH LVTEVR 0.7 0.0107

ANGT_DPTFIPAPIQAK PROS_SQDI LLSVENTVIYR 0.7 0.0113

F13B_GDTYPAELYITGSI LR PROS_SQDI LLSVENTVIYR 0.7 0.0107

I NH BC_LDFH FSSDR PSG11_LFIPQITPK 0.7 0.0102

LEP_DLLHVLAFSK PSG9_DVLLLVH NLPQNLPGYFWYK 0.7 0.0118

LBPJTGFLKPGK SHBGJALGGLLFPASNLR 0.7 0.0097

SEPP1_LPTDSELAPR SHBGJALGGLLFPASNLR 0.7 0.0118

I NH BC_LDFH FSSDR SPRL1_VLTHSELAPLR 0.7 0.0124

AFAM_H FQNLGK TENX_LNWEAPPGAFDSFLLR 0.7 0.0092

KNG1_QVVAGLN FR TENX_LSQLSVTDVTTSSLR 0.7 0.0107

SEPP1_LPTDSELAPR TENX_LSQLSVTDVTTSSLR 0.7 0.0124

HABP2_FLNWIK TETN_CFLAFTQTK 0.7 0.0107

AM BP_ETLLQDFR TETN_LDTLAQEVALLK 0.7 0.0092

C1QA_DQPRPAFSAI R TETN_LDTLAQEVALLK 0.7 0.0092

I BP4_QCHPALDGQR TETN_LDTLAQEVALLK 0.7 0.0102

IGF2_GIVEECCFR TETN_LDTLAQEVALLK 0.7 0.0102

PSG3_VSAPSGTGH LPGLNPL IPSP_AVVEVDESGTR 0.7 0.0003

Table 47. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 119- 139 GABD

Row Labels Count of Up-Regulated (Protei n_Peptide)

A2GL_DLLLPQPDLR 4

AFAM_DADPDTFFAK 2

AFAM_H FQN LGK 28

ALSJRPHTFTGLSGLR 10

AM BP_ETLLQDFR 4

ANGT_DPTFI PAPIQAK 21

ANT3_TSDQIH FFFAK 2

APOC3_GWVTDGFSSLK 1

APOH_ATVVYQGER 3

ATS13_SLVELTPIAAVHGR 3

B2MG_VEHSDLSFSK 1

B2MG_VN HVTLSQPK 3

BGH3_LTLLAPLNSVFK 9 C1QA_DQPRPAFSAIR 3

C1Q.BJAFSATR 5

C1QC_FNAVLTNPQGDYDTSTGK 3

CADH5_YEIVVEAR 5

CAH1_GGPFSDSYR 2

CATD_VGFAEAAR 6

CBPN_NNANGVDLNR 1

CD14_LTVGAAQVPAQLLVGALR 3

CD14_SWLAELQQWLKPGLK 4

C F A B_YG LVTY ATY P K 3

CGB1_VLQGVLPALPQVVCNYR 1

CHL1_VIAVNEVGR 1

CLUS_ASSIIDELFQDR 1

CLUS_LFDSDPITVTVPVEVSR 9

C05_TLLPVSKPEIR 4

C06_ALNHLPLEYNSALYSR 7

C08A_SLLQPNK 2

C08B_QALEEFQK 3

ECE1_HTLGENIADNGGLK 3

ECM1_LLPAQLPAEK 1

ENPP2_TEFLSNYLTNVDDITLVPGTLGR 2

ENPP2_TYLHTYESEI 1

F13B_GDTYPAELYITGSILR 13

FA11_TAAISGYSFK 3

FA5_AEVDDVIQVR 6

FA5_NFFNPPIISR 1

FA9_EYTNIFLK 6

FETUA_FSVVYAK 19

FETUA_HTLNQIDEVK 1

FGFR1JGPDNLPYVQILK 3

HABP2_FLNWIK 18

HEMO_NFPSPVDAAFR 10

IBP3_FLNVLSPR 4

IBP3_YGQPLPGYTTK 1

1 BP4_QCH PALDGQR 6

1 BP6_H LDSVLQQLQTEVYR 10

IGF2_GIVEECCFR 6

IL1R1_LWFVPAK 1

INHBC_LDFHFSSDR 37

IPSP_DFTFDLYR 1

ISM2_FDTTPWILCK 1

ITIH3_ALDLSLK 2

ITIH4_QLGLPGPPDVPDHAAYHPF 15 KNG1_Q.WAGL.NFR 15

LBPJTGFLKPGK 27

LEP_DLLHVLAFSK 61

MFAP5_LYSVH PVK 2

MUC18_GATLALTQVTPQDER 2

PCD12_YQVSEEVPSGTVIGK 6

PEDF_LQSLFDSPDFSK 2

PEDF_TVQ.AVL.TVPK 11

PRDX2_GLFIIDGK 1

P RG 2_W N F AYW AA H QP WS R 5

PRG4_DQYYNIDVPSR 3

PROS_FSAEFDFR 1

PSG3_VSAPSGTGHLPGLNPL 9

PTGDS_GPGEDFR 4

R ET4_YWG VAS F LQK 19

SEPP1_LPTDSELAPR 23

SEPP1_VSLATVDK 3

THBG_AVLHIGEK 2

TIE1_VSWSLPLVPGPLVGDGFLLR 4

TIMP1_HLACLPR 7

VTDB_ELPEHTVK 2

VTNC_GQYCYELDEK 2

VTNC_VDTVDPPYPR 3 Grand Total 539

Table 48. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 119-139 GABD

Row Labels Count of Down-Regulated (Protein Peptide)

AOCl_AVHSFLWSK 20

AOCl_DNGPNYVQR 21

AOCl_DTVIVWPR 8

AOCl_GDFPSPIHVSGPR 20

ATL4JLWIPAGALR 1

ATS13_YGSQLAPETFYR 1

C163AJNPASLDK 2

C1QB_LEQGENVFLQATDK 2

C1QC_TNQVNSGGVLLR 10

CNTN1_FIPLIPIPER 3

CNTN1_TTKPYPADIVVQFK 6

CRAC1_GVALADFNR 1

CRAC1_GVASLFAGR 1

CRAC1_LVNIAVDER 1

CRIS3_AVSPPAR 14 CRIS3_YEDLYSNCK 10

CSH_AHQLAIDTYQEFEETYIPK 5

CSHJSLLLIESWLEPVR 3

DEF1JPACIAGER 1

D E F 1_YGTC 1 YQG R 2

DPEP2_ALEVSQAPVIFSHSAAR 1

DPEP2_GWSEEELQGVLR 1

DPEP2_LTLEQIDLIR 4

ECM1_DILTIDIGR 2

ECM1_ELLALIQLER 1

EGLN_GPHSAAELNDPQ.SIL.LR 8

EGLN_TQILEWAAER 24

FBLN1_TGYYFDGISR 17

GELS_AQPVQVAEGSEPDGFWEALGGK 10

GELS_TASDFITK 1

IBP2_LIQGAPTIR 8

IGF1_GFYFNKPTGYGSSSR 1

IPSP_AVVEVDESGTR 10

KIT_LCLHCSVDQEGK 34

KIT_YVSELHLTR 56

LIRA3_EGAADSPLR 66

LI R A3_KPS LSVQPG P VVAPG E K 48

LYAM1_SYYWIGIR 14

MUC18_EVTVPVFYPTEK 3

MUC18_GPVLQLHDLK 1

NOTUM_LYIQNLGR 1

PAEP_HLWYLLDLK 1

PAEP_QDLELPK 8

PAEP_VHITSLLPTPEDNLEIVLHR 1

PAPP1_DIPHWLNPTR 1

PAPP2_LLLRPEVLAEIPR 1

PGRP2_AGLLRPDYALLGHR 6

PRL_LSAYYNLLHCLR 2

PRL_SWNEPLYHLVTEVR 1

PROS_SQDILLSVENTVIYR 10

PSG11_LFIPQITPK 3

PSG9_DVLLLVHN LPQN LPGYFWYK 1

PSG9_LFIPQITR 1

SHBG_ALALPPLGLAPLLNLWAKPQGR 1

SHBGJALGGLLFPASNLR 3

S0M2.CSH_NYGLLYCFR 1

SPRL1_VLTHSELAPLR 3

TENX_LNWEAPPGAFDSFLLR 3 TENX_LSQLSVTDVTTSSL 9

TETN_CFLAFTQTK 5

TETN_LDTLAQ.EVAL.LK 35 Grand Total 539

Table 49. Reversals (UpVDown-Regulated) Predicting PPROM vs. PTL at GABD 126-146 with an AUC >= 0.7

INHBC_LDFHFSSDR EGLN_GPITSAAELNDPQSILLR 0.7 0.0063

INHBC_LDFHFSSDR FBLN1_TGYYFDGISR 0.7 0.0060

INHBC_LDFHFSSDR FBLN3JPSNPSHR 0.7 0.0069

INHBC_LDFHFSSDR LI RA3_KPS LSVQPG P VVAPG E K 0.7 0.0074

ISM2_FDTTPWILCK A0C1_GDFPSPIHVSGPR 0.7 0.0072

KNG1_QVVAGLNFR KIT_YVSELHLTR 0.7 0.0063

LBP_ITGFLKPGK LI RA3_KPS LSVQPG P VVAPG E K 0.7 0.0085

LEP_DLLHVLAFSK ATL4JLWIPAGALR 0.7 0.0060

LEP_DLLHVLAFSK PRL_SWNEPLYHLVTEVR 0.7 0.0060

LEP_DLLHVLAFSK TETN_LDTLAQEVALLK 0.7 0.0063

PCD12_YQVSEEVPSGTVIGK KIT_YVSELHLTR 0.7 0.0058

PCD12_YQVSEEVPSGTVIGK PAEP_QDLELPK 0.7 0.0072

PSG3_VSAPSGTGH LPG LN PL KIT_YVSELHLTR 0.7 0.0055

TIMP1_HLACLPR PAEP_QDLELPK 0.7 0.0055

TIMP1_HLACLPR TETN_LDTLAQEVALLK 0.7 0.0058

Table 50. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 126- 146 GABD

Row Labels Count of Up-Regulated (Protein Peptide)

AFAM_DADPDTFFAK 1

AFAM_HFQN LGK 2

ALSJRPHTFTGLSGLR 1

AMBP_ETLLQDFR 1

ANGT_DPTFIPAPIQAK 1

BGH3_LTLLAPLNSVFK 3

CADH5_YEIVVEAR 1

C06_ALNHLPLEYNSALYSR 2

F13B_GDTYPAELYITGSILR 1

FA9_EYTNIFLK 1

FETUA_FSVVYAK 2

HABP2_FLNWIK 1

IBP3_YGQPLPGYTTK 1

INHBC_LDFHFSSDR 8

IPSP_DFTFDLYR 1

ISM2_FDTTPWILCK 1

KNG1_QVVAGLNFR 1

LBPJTGFLKPGK 1

LEP_DLLHVLAFSK 5

M UC18_GATLALTQVTPQD ER 1

PCD12_YQVSEEVPSGTVIG K 2

P E D F_TVQAV LTV P K 2

PRG4_DQYYNIDVPSR 1

PRG4_ITEVWGIPSPIDTVFT R 1 PSG3_VSAPSGTGHL.PGL.NPL 1 ET4_YWG VAS F LQK 3

TI M P1_HLACLPR 4

Grand Total 50

Table 51. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 126-146 GABD

Row Labels Count of Down-Regulated (Protein_Peptide)

AOC1 GDFPSPIHVSGPR

ATL4 I LWIPAGALR

CSH AHQLAI DTYQEFEETYI PK

DPEP2 LTLEQIDUR

EGLN_GPITSAAELN DPQSI LLR

FBLN 1 TGYYFDGISR

FBLN3 IPSNPSH R

I PSP AVVEVDESGTR

KIT_LCLHCSVDQEGK

KIT YVSELH LTR 18

LI RA3 KPSLSVQPGPVVAPGEK

PAEP QDLELPK

PRL SWN EPLYHLVTEVR

SH BG IALGGLLFPASN LR

TETN LDTLAQEVALLK

Grand Total m

Table 52. Reversals (UpVDown-Regulated) Predicting PPROM vs. PTL at GABD 133-153 with an AUC >= 0.7

Up-Regulated (Protein Peptide) Down-Regulated (Protein Peptide) AUC P-value

AM BP_ETLLQDFR C1QC_TNQVNSGGVLLR 0.81 0.0001

AM BP_ETLLQDFR SPRL1_VLTHSELAPLR 0.81 0.0001

P E D F_TVQA V LTV P K C1QC_TNQVNSGGVLLR 0.81 0.0001

AM BP_ETLLQDFR PGRP2_AGLLRPDYALLGHR 0.8 0.0001

AM BP_ETLLQDFR KIT_YVSELHLTR 0.79 0.0002

AM BP_ETLLQDFR TETN_LDTLAQEVALLK 0.79 0.0002

AM BP_ETLLQDFR C1QB_LEQGENVFLQATDK 0.78 0.0003

AM BP_ETLLQDFR CRAC1_GVALADFN R 0.77 0.0006

P E D F_TVQA V LTV P K SPRL1_VLTHSELAPLR 0.77 0.0004

AM BP_ETLLQDFR CNTN1_TTKPYPADIVVQFK 0.76 0.0007

AM BP_ETLLQDFR PAEP_QDLELPK 0.76 0.0012

FETUA_FSVVYAK SPRL1_VLTHSELAPLR 0.76 0.0011

P E D F_TVQA V LTV P K PGRP2_AGLLRPDYALLGHR 0.76 0.0009

AM BP_ETLLQDFR GELS_AQPVQVAEGSEPDGFWEALGGK 0.75 0.0014

AM BP_ETLLQDFR IBP2_LIQGAPTIR 0.75 0.0016 AM BP_ETL.LQ.DFR LYAM 1_SYYWIGIR 0.75 0.0012

CATD_VGFAEAAR C163A_I NPASLDK 0.75 0.0015

CATD_VGFAEAAR C1QB_LEQGENVFLQATDK 0.75 0.0014

FA9_FGSGYVSG WG R C1QC_TNQVNSGGVLLR 0.75 0.0017

LEP_DLLHVLAFSK PGRP2_AGLLRPDYALLGHR 0.75 0.0014

P E D F_TVQA V LTV P K C1QB_LEQGENVFLQATDK 0.75 0.0012

AM BP_ETLLQDFR ATL4_ILWI PAGALR 0.74 0.0024

AM BP_ETLLQDFR ATS13_YGSQLAPETFYR 0.74 0.0025

AM BP_ETLLQDFR FBLN3J PSN PSHR 0.74 0.0029

CATD_VGFAEAAR PRL_SWN EPLYH LVTEVR 0.74 0.0024

FA9_FGSGYVSG WG R C1QB_LEQGENVFLQATDK 0.74 0.0024

FA9_FGSGYVSG WG R SPRL1_VLTHSELAPLR 0.74 0.0027

FA9_FGSGYVSG WG R TETN_LDTLAQEVALLK 0.74 0.0022

FETUA_FSVVYAK ATS13_YGSQLAPETFYR 0.74 0.0021

PCD12_YQVSEEVPSGTVIGK C1QC_TNQVNSGGVLLR 0.74 0.0029

P E D F_TVQA V LTV P K ATS13_YGSQLAPETFYR 0.74 0.0029

P E D F_TVQA V LTV P K KIT_YVSELHLTR 0.74 0.0025

P E D F_TVQA V LTV P K LYAM 1_SYYWIGIR 0.74 0.0024

P E D F_TVQA V LTV P K PRL_SWN EPLYH LVTEVR 0.74 0.0029

PSG3_VSAPSGTGH LPGLNPL SPRL1_VLTHSELAPLR 0.74 0.0029

RET4_YWGVASFLQK ATL4_ILWI PAGALR 0.74 0.0027

AM BP_ETLLQDFR SHBGJALGGLLFPASNLR 0.73 0.0037

CATD_VGFAEAAR TETN_LDTLAQEVALLK 0.73 0.0032

FA9_FGSGYVSG WG R PAEP_QDLELPK 0.73 0.0045

FA9_FGSGYVSG WG R PGRP2_AGLLRPDYALLGHR 0.73 0.0037

FETUA_FSVVYAK C1QC_TNQVNSGGVLLR 0.73 0.0032

LEP_DLLHVLAFSK C1QC_TNQVNSGGVLLR 0.73 0.0039

LEP_DLLHVLAFSK SPRL1_VLTHSELAPLR 0.73 0.0032

LEP_DLLHVLAFSK TETN_LDTLAQEVALLK 0.73 0.0039

P E D F_TVQA V LTV P K GELS_TASDFITK 0.73 0.0041

P E D F_TVQA V LTV P K TETN_LDTLAQEVALLK 0.73 0.0030

PSG3_VSAPSGTGH LPGLNPL ATS13_YGSQLAPETFYR 0.73 0.0037

AM BP_ETLLQDFR EG LN_TQI LE WAAE R 0.72 0.0052

AM BP_ETLLQDFR PROS_SQDI LLSVENTVIYR 0.72 0.0049

AM BP_ETLLQDFR TENX_LNWEAPPGAFDSFLLR 0.72 0.0056

ANGT_DPTFIPAPIQAK SHBGJALGGLLFPASNLR 0.72 0.0062

BGH3_LTLLAPLNSVFK SPRL1_VLTHSELAPLR 0.72 0.0059

CATD_VGFAEAAR ATL4JLWI PAGALR 0.72 0.0062

CATD_VGFAEAAR C1QC_TNQVNSGGVLLR 0.72 0.0049

CATD_VGFAEAAR PGRP2_AGLLRPDYALLGHR 0.72 0.0066

F13B_GDTYPAELYITGSI LR C1QC_TNQVNSGGVLLR 0.72 0.0052

F13B_GDTYPAELYITGSI LR SPRL1_VLTHSELAPLR 0.72 0.0062

FA9_FGSGYVSG WG R PRL_SWN EPLYH LVTEVR 0.72 0.0059 FETUA_FSVVYAK C1QB_LEQGENVFLQATDK 0.72 0.0059

FETUA_FSVVYAK LYAM 1_SYYWIGIR 0.72 0.0052

FETUA_FSVVYAK PGRP2_AGLLRPDYALLGHR 0.72 0.0047

FETUA_FSVVYAK PRL_SWN EPLYH LVTEVR 0.72 0.0056

LEP_DLLHVLAFSK ATL4JLWI PAGALR 0.72 0.0047

LEP_DLLHVLAFSK C1QB_LEQGENVFLQATDK 0.72 0.0062

LEP_DLLHVLAFSK DEF1J PACIAGER 0.72 0.0052

LEP_DLLHVLAFSK FBLN3J PSN PSHR 0.72 0.0056

LEP_DLLHVLAFSK PRL_SWN EPLYH LVTEVR 0.72 0.0047

LEP_DLLHVLAFSK SHBGJALGGLLFPASNLR 0.72 0.0056

PCD12_YQVSEEVPSGTVIGK C1QB_LEQGENVFLQATDK 0.72 0.0059

PCD12_YQVSEEVPSGTVIGK SPRL1_VLTHSELAPLR 0.72 0.0047

P E D F_TVQA V LTV P K ATL4_ILWI PAGALR 0.72 0.0059

P E D F_TVQA V LTV P K PAEP_QDLELPK 0.72 0.0061

PSG3_VSAPSGTGH LPGLNPL FBLN3J PSN PSHR 0.72 0.0066

PSG3_VSAPSGTGH LPGLNPL PAEP_QDLELPK 0.72 0.0051

PSG3_VSAPSGTGH LPGLNPL TETN_LDTLAQEVALLK 0.72 0.0052 ET4_YWGVASFLQK ATS13_YGSQLAPETFYR 0.72 0.0062

RET4_YWGVASFLQK PAEP_QDLELPK 0.72 0.0072

RET4_YWGVASFLQK PRL_SWN EPLYH LVTEVR 0.72 0.0052

RET4_YWGVASFLQK SPRL1_VLTHSELAPLR 0.72 0.0059

AM BP_ETLLQDFR CRIS3_AVSPPAR 0.71 0.0083

AM BP_ETLLQDFR ECM 1_ELLALIQLER 0.71 0.0097

AM BP_ETLLQDFR IBP1_VVESLAK 0.71 0.0083

AM BP_ETLLQDFR M UC18_EVTVPVFYPTEK 0.71 0.0083

AM BP_ETLLQDFR PRL_SWN EPLYH LVTEVR 0.71 0.0070

ANGT_DPTFIPAPIQAK ATL4_ILWI PAGALR 0.71 0.0083

ANGT_DPTFIPAPIQAK SPRL1_VLTHSELAPLR 0.71 0.0074

CATD_VGFAEAAR ATS13_YGSQLAPETFYR 0.71 0.0074

CATD_VGFAEAAR SPRL1_VLTHSELAPLR 0.71 0.0074

F13B_GDTYPAELYITGSI LR TETN_LDTLAQEVALLK 0.71 0.0070

FA9_FGSGYVSG WG R KIT_YVSELHLTR 0.71 0.0083

FA9_FGSGYVSG WG R LYAM 1_SYYWIGIR 0.71 0.0074

HABP2_FLNWIK ATS13_YGSQLAPETFYR 0.71 0.0078

ITI H3_ALDLSLK PGRP2_AGLLRPDYALLGHR 0.71 0.0087

ITI H3_ALDLSLK SPRL1_VLTHSELAPLR 0.71 0.0092

KNG1_DIPTNSPELEETLTHTITK SPRL1_VLTHSELAPLR 0.71 0.0074

LEP_DLLHVLAFSK C163A_I NPASLDK 0.71 0.0070

LEP_DLLHVLAFSK CNTN1_FI PLIPI PER 0.71 0.0095

LEP_DLLHVLAFSK CRAC1_GVALADFN R 0.71 0.0088

LEP_DLLHVLAFSK ECM 1_ELLALIQLER 0.71 0.0083

LEP_DLLHVLAFSK GELS_TASDFITK 0.71 0.0070

LEP_DLLHVLAFSK IBP2_LIQGAPTIR 0.71 0.0083 LEP_DLLHVLAFSK KIT_YVSELHLTR 0.71 0.0097

PSG3_VSAPSGTGH LPGLNPL KIT_YVSELHLTR 0.71 0.0083

PSG3_VSAPSGTGH L.PGL.NPL PRL_SWN EPLYH LVTEVR 0.71 0.0078

PSG3_VSAPSGTGH LPGLNPL SHBGJALGGLLFPASNLR 0.71 0.0092

RET4_YWGVASFLQK C1QB_LEQGENVFLQATDK 0.71 0.0086

RET4_YWGVASFLQK C1QC_TNQVNSGGVLLR 0.71 0.0078

RET4_YWGVASFLQK TETN_LDTLAQEVALLK 0.71 0.0097

AFAM_H FQNLGK PRL_SWN EPLYH LVTEVR 0.7 0.0134

AM BP_ETLLQDFR LIRB5_KPSLLI PQGSVVAR 0.7 0.0103

ANGT_DPTFIPAPIQAK ATS13_YGSQLAPETFYR 0.7 0.0121

ANGT_DPTFIPAPIQAK C1QC_TNQVNSGGVLLR 0.7 0.0103

ANGT_DPTFIPAPIQAK FBLN3J PSN PSHR 0.7 0.0103

ANGT_DPTFIPAPIQAK PRL_SWN EPLYH LVTEVR 0.7 0.0109

BGH3_LTLLAPLNSVFK PRL_SWN EPLYH LVTEVR 0.7 0.0141

BGH3_LTLLAPLNSVFK TETN_LDTLAQEVALLK 0.7 0.0127

CATD_VGFAEAAR EG LN_TQI LE WAAE R 0.7 0.0141

CATD_VGFAEAAR LYAM 1_SYYWIGIR 0.7 0.0121

CATD_VGFAEAAR M UC18_GPVLQLHDLK 0.7 0.0141

CATD_VGFAEAAR SHBGJALGGLLFPASNLR 0.7 0.0115

CATD_VGFAEAAR TENX_LNWEAPPGAFDSFLLR 0.7 0.0141

ENPP2_TYLHTYESEI PRL_LSAYYN LLHCLR 0.7 0.0141

F13B_GDTYPAELYITGSI LR ATL4JLWI PAGALR 0.7 0.0141

F13B_GDTYPAELYITGSI LR KIT_YVSELHLTR 0.7 0.0109

F13B_GDTYPAELYITGSI LR PGRP2_AGLLRPDYALLGHR 0.7 0.0103

F13B_GDTYPAELYITGSI LR PRL_LSAYYN LLHCLR 0.7 0.0127

FA9_FGSGYVSG WG R ATS13_YGSQLAPETFYR 0.7 0.0103

FA9_FGSGYVSG WG R GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0134

FETUA_FSVVYAK ATL4JLWI PAGALR 0.7 0.0127

FETUA_FSVVYAK CNTN1_FI PLIPI PER 0.7 0.0141

FETUA_FSVVYAK TETN_LDTLAQEVALLK 0.7 0.0134

FGFR1_VYSDPQPHIQWLK PGRP2_AGLLRPDYALLGHR 0.7 0.0134

FGFR1_VYSDPQPHIQWLK SPRL1_VLTHSELAPLR 0.7 0.0134

HABP2_FLNWIK C1QB_LEQGENVFLQATDK 0.7 0.0115

I NH BC_LDFH FSSDR PRL_SWN EPLYH LVTEVR 0.7 0.0121

ITI H3_ALDLSLK TETN_LDTLAQEVALLK 0.7 0.0141

KNG1_QWAGLN FR ATS13_YGSQLAPETFYR 0.7 0.0134

KNG1_QVVAGLN FR C1QB_LEQGENVFLQATDK 0.7 0.0141

KNG1_QVVAGLN FR PRL_SWN EPLYH LVTEVR 0.7 0.0121

LEP_DLLHVLAFSK ATS13_YGSQLAPETFYR 0.7 0.0134

LEP_DLLHVLAFSK EGLN_GPITSAAELNDPQSILLR 0.7 0.0114

LEP_DLLHVLAFSK LIRB5_KPSLLI PQGSVVAR 0.7 0.0108

LEP_DLLHVLAFSK LYAM 1_SYYWIGIR 0.7 0.0103

PEDF_LQSLFDSPDFSK CRAC1_GVASLFAGR 0.7 0.0121 PEDF_LQSLFDSPDFSK FBLN3JPSNPSHR 0.7 0.0134

PEDF_LQSLFDSPDFSK IBP2_LIQGAPTIR 0.7 0.0115

P E D F_TVQA V LTV P K CNTN1_FIPLIPIPER 0.7 0.0103

P E D F_TVQA V LTV P K DPEP2_LTLEQIDLIR 0.7 0.0141

P E D F_TVQA V LTV P K EG LN_TQI LE WAAE R 0.7 0.0134

P E D F_TVQA V LTV P K SHBGJALGGLLFPASNLR 0.7 0.0127

P OS_FSAEFDF PRL_LSAYYNLLHCLR 0.7 0.0103

PSG2JHPSYTNYR PRL_LSAYYNLLHCLR 0.7 0.0127

PSG3_VSAPSGTGHLPGLNPL ATL4_ILWIPAGALR 0.7 0.0127

PSG3_VSAPSGTGHLPGLNPL C1Q.B_LEQ.GENVFLQ.ATDK 0.7 0.0121

PSG3_VSAPSGTGHLPGLNPL C1QC_TNQVNSGGVLLR 0.7 0.0121

PSG3_VSAPSGTGHLPGLNPL IBP2_LIQGAPTIR 0.7 0.0121

RET4_YWGVASFLQK KIT_LCLHCSVDQEGK 0.7 0.0141

TIMP1_HLACLPR PRL_SWNEPLYHLVTEVR 0.7 0.0134

Table 53. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 133- 153 GABD

Row Labels Count of Up-Regulated (Protein_Peptide)

AFAM HFQNLGK

AMBP ETLLQDFR 25

ANGT_DPTFIPAPIQAK

BGH3 LTLLAPLNSVFK

CATD VGFAEAAR 14

ENPP2 TYLHTYESEI

F13B GDTYPAELYITGSILR

FA9 FGSGYVSGWGR 11

FETUA FSVVYAK 10

FGFR1 VYSDPQPHIQWLK

HABP2 FLNWIK

INHBC LDFHFSSDR

ITIH3 ALDLSLK

KNGl DIPTNSPELEETLTHTITK

KNG1_QVVAGLNFR

LEP DLLHVLAFSK 21

PCD12 YQVSEEVPSGTVIGK

PEDF LQSLFDSPDFSK

P E D F_TVQAV LTV P K 16

PROS FSAEFDFR

PSG2 IHPSYTNYR

PSG3 VSAPSGTGHLPGLNPL 12

R ET4_YWG VAS F LQK

TIMP1 HLACLPR

Grand Total iiii Table 54. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 133-153 GABD

Table 55. Reversals (UpTDown-Regulated) Predicting PPROM vs. PTL at GABD134-146 with an AUC >= 0.7

KNG1_Q.WAGL.NFR FBLN3JPSNPSHR 0.79 0.0017

KNG1_QVVAGLNFR PRL_SWNEPLYHLVTEVR 0.79 0.0014

LEP_DLLHVLAFSK ATL4_ILWIPAGALR 0.79 0.0015

LEP_DLLHVLAFSK ECM1_ELLALIQLER 0.79 0.0019

LEP_DLLHVLAFSK PGRP2_AGLLRPDYALLGHR 0.79 0.0017

LEP_DLLHVLAFSK TETN_LDTLAQEVALLK 0.79 0.0014

P E D F_TVQA V LTV P K ATL4_ILWIPAGALR 0.79 0.0014

P E D F_TVQA V LTV P K ATS13_YGSQLAPETFYR 0.79 0.0014

RET4_YWGVASFLQK ATL4_ILWIPAGALR 0.79 0.0015

TIMP1_HLACLPR PAEP_QDLELPK 0.79 0.0023

AMBP_ETLLQDFR CRAC1_GVALADFNR 0.78 0.0026

AMBP_ETLLQDFR ECM1_ELLALIQLER 0.78 0.0024

AMBP_ETLLQDFR FBLN1_TGYYFDGISR 0.78 0.0029

AMBP_ETLLQDFR SHBGJALGGLLFPASNLR 0.78 0.0021

AMBP_ETLLQDFR TENX_LNWEAPPGAFDSFLLR 0.78 0.0024

BGH3_LTLLAPLNSVFK PRL_SWNEPLYHLVTEVR 0.78 0.0029

CATD_VGFAEAAR DPEP2_LTLEQIDLIR 0.78 0.0024

CATD_VGFAEAAR FBLN3JPSNPSHR 0.78 0.0026

FA9_FGSGYVSG WG R C1QC_TNQVNSGGVLLR 0.78 0.0024

FETUA_FSVVYAK DPEP2_LTLEQIDLIR 0.78 0.0021

FETUA_FSVVYAK FBLN3JPSNPSHR 0.78 0.0021

IBP4_QCHPALDGQR PRL_SWNEPLYHLVTEVR 0.78 0.0029

LEP_DLLHVLAFSK EGLN_GPITSAAELNDPQSILLR 0.78 0.0034

LEP_DLLHVLAFSK SHBGJALGGLLFPASNLR 0.78 0.0021

PCD12_YQVSEEVPSGTVIGK ECM1_ELLALIQLER 0.78 0.0024

P E D F_TVQA V LTV P K EGLN_GPITSAAELNDPQSILLR 0.78 0.0021

P E D F_TVQA V LTV P K FBLN1_TGYYFDGISR 0.78 0.0026

P E D F_TVQA V LTV P K PGRP2_AGLLRPDYALLGHR 0.78 0.0021

P E D F_TVQA V LTV P K PROS_SQDILLSVENTVIYR 0.78 0.0024

P E D F_TVQA V LTV P K TETN_LDTLAQEVALLK 0.78 0.0026

PRG4_GLPNVVTSAISLPNIR PRL_SWNEPLYHLVTEVR 0.78 0.0029

RET4_YWGVASFLQK PRL_SWNEPLYHLVTEVR 0.78 0.0024

ALS_IRPHTFTGLSGLR PRL_SWNEPLYHLVTEVR 0.77 0.0032

AMBP_ETLLQDFR IBP2_LIQGAPTIR 0.77 0.0032

ANGT_DPTFIPAPIQAK PRL_SWNEPLYHLVTEVR 0.77 0.0040

CATD_VGFAEAAR EGLN_GPITSAAELNDPQSILLR 0.77 0.0032

CATD_VGFAEAAR FBLN1_TGYYFDGISR 0.77 0.0032

CATD_VGFAEAAR SHBGJALGGLLFPASNLR 0.77 0.0040

F13B_GDTYPAELYITGSILR PRLJ5WNEPLYHLVTEVR 0.77 0.0032

FETUA_FSVVYAK C1QBJ.EQGENVFLQATDK 0.77 0.0040

HABP2_FLNWIK ATS13JGSQLAPETFYR 0.77 0.0036

HABP2_FLNWIK FBLN3JPSNPSHR 0.77 0.0040

HEMO_NFPSPVDAAFR FBLN3JPSNPSHR 0.77 0.0040 INHBC_LDFHFSSDR DPEP2_LTLEQIDLIR 0.77 0.0036

INHBC_LDFHFSSDR FBLN3JPSNPSHR 0.77 0.0036

LEP_DLLHVLAFSK C1Q.B_LEQ.GENVFLQ.ATDK 0.77 0.0036

LEP_DLLHVLAFSK C1QC_TNQVNSGGVLLR 0.77 0.0040

LEP_DLLHVLAFSK CRAC1_GVASLFAGR 0.77 0.0036

LEP_DLLHVLAFSK DEF1JPACIAGER 0.77 0.0032

LEP_DLLHVLAFSK FBLN1_TGYYFDGISR 0.77 0.0040

LEP_DLLHVLAFSK KIT_YVSELHLTR 0.77 0.0036

PCD12_YQVSEEVPSGTVIGK DPEP2_LTLEQIDLIR 0.77 0.0040

PCD12_YQVSEEVPSGTVIGK PRL_SWNEPLYHLVTEVR 0.77 0.0040

PCD12_YQVSEEVPSGTVIGK SHBGJALGGLLFPASNLR 0.77 0.0036

P E D F_TVQA V LTV P K PAEP_QDLELPK 0.77 0.0047

P E D F_TVQA V LTV P K SPRL1_VLTHSELAPLR 0.77 0.0040

TIMP1_HLACLPR FBLN3JPSNPSHR 0.77 0.0036

AFAM_DADPDTFFAK PRL_SWNEPLYHLVTEVR 0.76 0.0053

AFAM_HFQNLGK FBLN1_TGYYFDGISR 0.76 0.0053

AMBP_ETLLQDFR DPEP2_LTLEQIDLIR 0.76 0.0044

AP0C3_GWVTDGFSSLK ATL4JLWIPAGALR 0.76 0.0053

AP0C3_GWVTDGFSSLK PRL_SWNEPLYHLVTEVR 0.76 0.0044

B2MG_VNHVTLSQPK PRL_SWNEPLYHLVTEVR 0.76 0.0058

BGH3_LTLLAPLNSVFK ATL4_ILWIPAGALR 0.76 0.0058

BGH3_LTLLAPLNSVFK FBLN1_TGYYFDGISR 0.76 0.0053

BGH3_LTLLAPLNSVFK FBLN3JPSNPSHR 0.76 0.0044

C1QA_SLGFCDTTNK PRL_SWNEPLYHLVTEVR 0.76 0.0053

CD14_LTVGAAQVPAQLLVGALR PRL_SWNEPLYHLVTEVR 0.76 0.0053

CLUS_LFDSDPITVTVPVEVSR ATL4_ILWIPAGALR 0.76 0.0053

ECE1_HTLGENIADNGGLK PRL_SWNEPLYHLVTEVR 0.76 0.0048

ENPP2_TYLHTYESEI PRL_SWNEPLYHLVTEVR 0.76 0.0053

F13B_GDTYPAELYITGSILR ATL4_ILWIPAGALR 0.76 0.0053

FA9_FGSGYVSG WG R ATS13_YGSQLAPETFYR 0.76 0.0044

FA9_FGSGYVSG WG R DPEP2_LTLEQIDLIR 0.76 0.0048

FA9_FGSGYVSG WG R FBLN1_TGYYFDGISR 0.76 0.0053

FGFR1_VYSDPQPHIQWLK ECM1_ELLALIQLER 0.76 0.0048

FGFR1_VYSDPQPHIQWLK KIT_YVSELHLTR 0.76 0.0058

FGFR1_VYSDPQPHIQWLK PRL_SWNEPLYHLVTEVR 0.76 0.0053

HABP2_FLNWIK DPEP2_LTLEQIDLIR 0.76 0.0058

HABP2_FLNWIK FBLN1_TGYYFDGISR 0.76 0.0053

HABP2_FLNWIK PRL_SWNEPLYHLVTEVR 0.76 0.0044

HEMO_NFPSPVDAAFR PRL_SWNEPLYHLVTEVR 0.76 0.0048

IBP3_YGQPLPGYTTK DPEP2_LTLEQIDLIR 0.76 0.0053

1 BP6_H LDSVLQQLQTEVYR PRL_SWNEPLYHLVTEVR 0.76 0.0053

INHBC_LDFHFSSDR FBLN1_TGYYFDGISR 0.76 0.0048

INHBC_LDFHFSSDR PROS_SQDILLSVENTVIYR 0.76 0.0048 IPSP_DFTFDLYR IPSP_AVVEVDESGTR 0.76 0.0044

ITIH3_ALDLSLK PRL_SWNEPLYHLVTEVR 0.76 0.0058

KNG1_Q.WAGL.NFR SHBGJALGGLLFPASNLR 0.76 0.0044

LBPJTGFLKPGK PRL_SWNEPLYHLVTEVR 0.76 0.0053

LEP_DLLHVLAFSK CNTNIJTKPYPADIVVQFK 0.76 0.0058

LEP_DLLHVLAFSK CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.76 0.0053

LEP_DLLHVLAFSK DPEP2_LTLEQIDLIR 0.76 0.0068

LEP_DLLHVLAFSK GELS_TASDFITK 0.76 0.0048

LEP_DLLHVLAFSK IBP2_LIQGAPTIR 0.76 0.0058

LEP_DLLHVLAFSK IPSP_AVVEVDESGTR 0.76 0.0058

LEP_DLLHVLAFSK LIRB5_KPSLLIPQGSVVAR 0.76 0.0053

LEP_DLLHVLAFSK PROS_SQDILLSVENTVIYR 0.76 0.0048

LEP_DLLHVLAFSK SPRL1_VLTHSELAPLR 0.76 0.0053

PCD12_YQVSEEVPSGTVIGK ATS13_YGSQLAPETFYR 0.76 0.0048

PCD12_YQVSEEVPSGTVIGK PAEP_QDLELPK 0.76 0.0058

PSG3_VSAPSGTGHLPGLNPL PRL_SWNEPLYHLVTEVR 0.76 0.0044

TIE1_VSWSLPLVPGPLVGDGFLLR PRL_SWNEPLYHLVTEVR 0.76 0.0048

AFAM_HFQ.NL.GK DPEP2_LTLEQIDLIR 0.75 0.0084

AMBP_ETLLQDFR A0C1_GDFPSPIHVSGPR 0.75 0.0070

AMBP_ETLLQDFR ATS13_YGSQLAPETFYR 0.75 0.0070

AMBP_ETLLQDFR CRIS3_AVSPPAR 0.75 0.0084

AMBP_ETLLQDFR DEF1JPACIAGER 0.75 0.0084

AMBP_ETLLQDFR IPSP_AVVEVDESGTR 0.75 0.0084

ANGT_DPTFIPAPIQAK FBLN3JPSNPSHR 0.75 0.0084

A PO H_AT VVYQG E R PRL_SWNEPLYHLVTEVR 0.75 0.0084

BGH3_LTLLAPLNSVFK DPEP2_LTLEQIDLIR 0.75 0.0070

CADH5_YEIVVEAR FBLN1_TGYYFDGISR 0.75 0.0064

CADH5_YEIVVEAR PRL_SWNEPLYHLVTEVR 0.75 0.0064

CATD_VGFAEAAR ATS13_YGSQLAPETFYR 0.75 0.0070

CATD_VGFAEAAR CSHJSLLLIESWLEPVR 0.75 0.0064

CATD_VGFAEAAR IPSP_AVVEVDESGTR 0.75 0.0084

CATD_VGFAEAAR KIT_YVSELHLTR 0.75 0.0077

CATD_VGFAEAAR PGRP2_AGLLRPDYALLGHR 0.75 0.0084

CATD_VGFAEAAR TENX_LNWEAPPGAFDSFLLR 0.75 0.0070

CBPN_EALIQFLEQVHQGIK PRL_SWNEPLYHLVTEVR 0.75 0.0070

CD14_SWLAELQQWLKPGLK ATL4_ILWIPAGALR 0.75 0.0077

CD14_SWLAELQQWLKPGLK FBLN3JPSNPSHR 0.75 0.0077

C F AB_YG LVTYATYP K PRL_SWNEPLYHLVTEVR 0.75 0.0077

C05_TLLPVSKPEIR PRL_SWNEPLYHLVTEVR 0.75 0.0070

C05_VFQFLEK FBLN3JPSNPSHR 0.75 0.0077

C06_ALNHLPLEYNSALYSR PRL_SWNEPLYHLVTEVR 0.75 0.0070

ENPP2_TYLHTYESEI FBLN1_TGYYFDGISR 0.75 0.0070

FA11_TAAISGYSFK PRL_SWNEPLYHLVTEVR 0.75 0.0064 FA9_SAL.VLQ.YLR FBLN3JPSNPSHR 0.75 0.0070

FETUA_FSVVYAK ATL4_ILWIPAGALR 0.75 0.0070

FG F R 1_VYS D PQP H 1 QWLK ATL4JLWIPAGALR 0.75 0.0077

FGFR1_VYSDPQPHIQWLK C1QB_LEQGENVFLQATDK 0.75 0.0084

FGFR1_VYSDPQPHIQWLK EGLN_GPITSAAELNDPQSILLR 0.75 0.0070

FGFR1_VYSDPQPHIQWLK PAEP_QDLELPK 0.75 0.0093

FGFR1_VYSDPQPHIQWLK SHBGJALGGLLFPASNLR 0.75 0.0077

FG F R 1_VYS D PQP H 1 QWLK SPRL1_VLTHSELAPLR 0.75 0.0077

HABP2_FLNWIK ATL4_ILWIPAGALR 0.75 0.0084

HEMO_NFPSPVDAAFR SHBGJALGGLLFPASNLR 0.75 0.0064

IBP3_FLNVLSPR PRL_SWNEPLYHLVTEVR 0.75 0.0077

1 BP6_H LDSVLQQLQTEVYR FBLN3JPSNPSHR 0.75 0.0084

ITIH3_ALDLSLK FBLN3JPSNPSHR 0.75 0.0084

ITIH3_ALDLSLK KIT_LCLHCSVDQEGK 0.75 0.0084

KNG1_DIPTNSPELEETLTHTITK ATL4JLWIPAGALR 0.75 0.0070

LEP_DLLHVLAFSK A0C1_GDFPSPIHVSGPR 0.75 0.0070

LEP_DLLHVLAFSK ATS13_YGSQLAPETFYR 0.75 0.0070

LEP_DLLHVLAFSK C163AJNPASLDK 0.75 0.0077

LEP_DLLHVLAFSK LYAM1_SYYWIGIR 0.75 0.0077

LEP_DLLHVLAFSK PAEP_HLWYLLDLK 0.75 0.0077

LEP_DLLHVLAFSK PAPP1_DIPHWLNPTR 0.75 0.0084

LEP_DLLHVLAFSK S0M2.CSH_NYGLLYCFR 0.75 0.0084

PCD12_YQVSEEVPSGTVIGK ATL4JLWIPAGALR 0.75 0.0064

PCD12_YQVSEEVPSGTVIGK EGLN_GPITSAAELNDPQSILLR 0.75 0.0077

PCD12_YQVSEEVPSGTVIGK PGRP2_AGLLRPDYALLGHR 0.75 0.0070

PCD12_YQVSEEVPSGTVIGK TETN_LDTLAQEVALLK 0.75 0.0084

P E D F_TVQA V LTV P K ECM1_ELLALIQLER 0.75 0.0077

P E D F_TVQA V LTV P K GELS_TASDFITK 0.75 0.0070

P E D F_TVQA V LTV P K LYAM1_SYYWIGIR 0.75 0.0064

P E D F_TVQA V LTV P K PAPP1_DIPHWLNPTR 0.75 0.0077

PRG4_ITEVWGIPSPIDTVFTR PROS_SQDILLSVENTVIYR 0.75 0.0070

PROS_FSAEFDFR PRL_SWNEPLYHLVTEVR 0.75 0.0070

PROS_FSAEFDFR PROS_SQDILLSVENTVIYR 0.75 0.0064

PSG3_VSAPSGTGHLPGLNPL FBLN3JPSNPSHR 0.75 0.0077

SEPP1_VSLATVDK PRL_SWNEPLYHLVTEVR 0.75 0.0077

TIMP1_HLACLPR TETN_LDTLAQEVALLK 0.75 0.0070

VTNC_GQYCYELDEK PRL_SWNEPLYHLVTEVR 0.75 0.0070

ALS_IRPHTFTGLSGLR FBLN1_TGYYFDGISR 0.74 0.0110

AMBP_ETLLQDFR CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.74 0.0120

AMBP_ETLLQDFR IBP1_VVESLAK 0.74 0.0120

AMBP_ETLLQDFR LYAM1_SYYWIGIR 0.74 0.0101

AMBP_ETLLQDFR MUC18_EVTVPVFYPTEK 0.74 0.0092

AMBP_ETLLQDFR PAPP1_DIPHWLNPTR 0.74 0.0110 APOC3_GWVTDGFSSLK ECM1_ELLALIQLER 0.74 0.0120

APOC3_GWVTDGFSSLK SHBG_ALALPPLGLAPLLNLWAKPQGR 0.74 0.0110

BGH3_LTLLAPLNSVFK SHBGJALGGLLFPASNLR 0.74 0.0110

BGH3_LTLLAPLNSVFK TETN_LDTLAQEVALLK 0.74 0.0101

CATD_VGFAEAAR ECM1_ELLALIQLER 0.74 0.0092

CATD_VGFAEAAR PAPP1_DIPHWLNPTR 0.74 0.0101

CD14_LTVGAAQVPAQLLVGALR DPEP2_LTLEQIDLIR 0.74 0.0101

CD14_LTVGAAQVPAQLLVGALR ECM1_ELLALIQLER 0.74 0.0092

CD14_SWLAELQQWLKPGLK C1QB_LEQGENVFLQATDK 0.74 0.0110

CLUS_ASSIIDELFQDR PRL_SWNEPLYHLVTEVR 0.74 0.0120

C08A_SLLQPNK PRL_SWNEPLYHLVTEVR 0.74 0.0110

F13B_GDTYPAELYITGSILR KIT_YVSELHLTR 0.74 0.0120

F13B_GDTYPAELYITGSILR SHBGJALGGLLFPASNLR 0.74 0.0110

FA9_FGSGYVSG WG R A0C1_GDFPSPIHVSGPR 0.74 0.0110

FETUA_FSVVYAK KITJ.CLHCSVDQEGK 0.74 0.0092

FGFR1_VYSDPQPHIQWLK C1QC_TNQVNSGGVLLR 0.74 0.0110

FGFR1_VYSDPQPHIQWLK DPEP2J.TLEQIDLIR 0.74 0.0110

FGFR1_VYSDPQPHIQWLK FBLN1_TGYYFDGISR 0.74 0.0101

FGFR1_VYSDPQPHIQWLK FBLN3JPSNPSHR 0.74 0.0092

FGFR1_VYSDPQPHIQWLK IBP2JJQGAPTIR 0.74 0.0101

FGFR1_VYSDPQPHIQWLK IPSP_AVVEVDESGTR 0.74 0.0120

FGFR1_VYSDPQ.PHIQ.WLK PGRP2_AGLLRPDYALLGHR 0.74 0.0092

HABP2_FLNWIK SHBGJALGGLLFPASNLR 0.74 0.0101

IBP3_YGQPLPGYTTK FBLN1_TGYYFDGISR 0.74 0.0110

INHBC_LDFHFSSDR ATS13J GSQLAPETFYR 0.74 0.0120

INHBC_LDFHFSSDR ECMIJELLALIQLER 0.74 0.0092

INHBC_LDFHFSSDR EGLN_GPITSAAELNDPQSILLR 0.74 0.0110

INHBC_LDFHFSSDR SHBGJALGGLLFPASNLR 0.74 0.0110

ITIH3_ALDLSLK SHBGJALGGLLFPASNLR 0.74 0.0110

ITIH3_ALDLSLK TETNJ.DTLAQEVALLK 0.74 0.0120

KNG1_DIPTNSPELEETLTHTITK ATS13J GSQLAPETFYR 0.74 0.0110

KNG1_DIPTNSPELEETLTHTITK C1QBJ.EQGENVFLQATDK 0.74 0.0120

LBPJTGFLKPGK ATL4JLWIPAGALR 0.74 0.0101

LBPJTGFLKPGK FBLN3JPSNPSHR 0.74 0.0120

LBPJTGFLKPGK SHBGJALGGLLFPASNLR 0.74 0.0092

LEP_DLLHVLAFSK IBPl VESLAK 0.74 0.0101

LEP_DLLHVLAFSK LI R A3 J<PS LSVQPG PVVAPG E K 0.74 0.0149

LEP_DLLHVLAFSK TENXJ.SQLSVTDVTTSSLR 0.74 0.0092

MFAP5_LYSVHRPVK PRLJ5WNEPLYHLVTEVR 0.74 0.0092

PCD12_YQVSEEVPSGTVIGK CNTN] _FIPUPIPER 0.74 0.0120

PCD12_YQVSEEVPSGTVIGK CSHJSLLLIESWLEPVR 0.74 0.0120

PCD12_YQVSEEVPSGTVIGK FBLN3JPSNPSHR 0.74 0.0092

PCD12_YQVSEEVPSGTVIGK SPRLl LTHSELAPLR 0.74 0.0120 PEDF_LQSLFDSPDFSK DEF1JPACIAGER 0.74 0.0110

PEDF_LQSLFDSPDFSK GELS_AQPVQVAEGSEPDGFWEALGGK 0.74 0.0110

PEDF_LQSLFDSPDFSK IBP2_LIQGAPTIR 0.74 0.0120

P E D F_TVQA V LTV P K A0C1_GDFPSPIHVSGPR 0.74 0.0110

P E D F_TVQA V LTV P K CNTN1_FIPLIPIPER 0.74 0.0092

P E D F_TVQA V LTV P K CSHJSLLLIESWLEPVR 0.74 0.0110

P G4JTEVWGIPSPIDTVFT ATL4JLWIPAGALR 0.74 0.0101

PRG4_ITEVWGIPSPIDTVFTR C1QB_LEQGENVFLQATDK 0.74 0.0120

PRG4_ITEVWGIPSPIDTVFTR SHBGJALGGLLFPASNLR 0.74 0.0101

PTGDS_AQGFTEDTIVFLPQTDK PRL_SWNEPLYHLVTEVR 0.74 0.0120

RET4_YWGVASFLQK ATS13_YGSQLAPETFYR 0.74 0.0120

RET4_YWGVASFLQK FBLN3JPSNPSHR 0.74 0.0092

TIMP1_HLACLPR EGLN_GPITSAAELNDPQSILLR 0.74 0.0120

TIMP1_HLACLPR KIT_LCLHCSVDQEGK 0.74 0.0092

TIMP1_HLACLPR SHBGJALGGLLFPASNLR 0.74 0.0101

VTNC_GQYCYELDEK FBLN3JPSNPSHR 0.74 0.0101

A2GL_DLLLPQPDLR PRL_SWNEPLYHLVTEVR 0.73 0.0154

AFAM_HFQNLGK FBLN3JPSNPSHR 0.73 0.0142

AMBP_ETLLQDFR LIRB5_KPSLLIPQGSVVAR 0.73 0.0154

ANGT_DPTFIPAPIQAK ATL4JLWIPAGALR 0.73 0.0154

AP0C3_GWVTDGFSSLK DPEP2_LTLEQIDLIR 0.73 0.0142

AP0C3_GWVTDGFSSLK FBLN1_TGYYFDGISR 0.73 0.0131

AP0C3_GWVTDGFSSLK PGRP2_AGLLRPDYALLGHR 0.73 0.0131

AP0C3_GWVTDGFSSLK PROS_SQDILLSVENTVIYR 0.73 0.0142

BGH3_LTLLAPLNSVFK KIT_YVSELHLTR 0.73 0.0142

C1QC_FNAVLTNPQGDYDTSTGK PRL_SWNEPLYHLVTEVR 0.73 0.0154

CATD_VGFAEAAR C163AJNPASLDK 0.73 0.0142

CATD_VGFAEAAR GELS_AQPVQVAEGSEPDGFWEALGGK 0.73 0.0154

CATD_VGFAEAAR PROS_SQDILLSVENTVIYR 0.73 0.0131

CD14_LTVGAAQVPAQLLVGALR ATS13_YGSQLAPETFYR 0.73 0.0154

CD14_LTVGAAQVPAQLLVGALR SHBGJALGGLLFPASNLR 0.73 0.0154

C05_TLLPVSKPEIR ATL4JLWIPAGALR 0.73 0.0154

C05_VFQFLEK SHBGJALGGLLFPASNLR 0.73 0.0142

ENPP2_TYLHTYESEI ATL4JLWIPAGALR 0.73 0.0142

ENPP2_TYLHTYESEI DPEP2J.TLEQJDLIR 0.73 0.0154

F13B_GDTYPAELYITGSILR FBLN1_TGYYFDGISR 0.73 0.0154

F13B_GDTYPAELYITGSILR TETNJ.DTLAQ.EVALLK 0.73 0.0131

FA9_FGSGYVSG WG R IBP2JJQ.GAPTIR 0.73 0.0131

FA9_SALVLQYLR TETNJ.DTLAQ.EVALLK 0.73 0.0142

FETUA_FSVVYAK C1QC_TNQVNSGGVLLR 0.73 0.0142

FETUA_FSVVYAK CNTNIJ^PLIPIPER 0.73 0.0154

FETUA_FSVVYAK ECM1JELLALIQLER 0.73 0.0154

FETUA_FSVVYAK FBLN1_TGYYFDGISR 0.73 0.0131 FETUA_FSVVYAK LYAM1_SYYWIGIR 0.73 0.0131

FETUA_FSVVYAK PGRP2_AGLLRPDYALLGHR 0.73 0.0142

FGFR1_VYSDPQ.PHIQ.WLK CNTN1_TTKPYPADIVVQFK 0.73 0.0154

FG F R 1_VYS D PQP H 1 QWLK PROS_SQDILLSVENTVIYR 0.73 0.0142

FGFR1_VYSDPQPHIQWLK TETN_LDTLAQEVALLK 0.73 0.0142

HABP2_FLNWIK C1QB_LEQGENVFLQATDK 0.73 0.0154

HABP2_FLNWIK DEF1JPACIAGER 0.73 0.0154

HABP2_FLNWIK EGLN_GPITSAAELNDPQSILLR 0.73 0.0154

HABP2_FLNWIK PGRP2_AGLLRPDYALLGHR 0.73 0.0142

IGF2_GIVEECCFR PRL_SWNEPLYHLVTEVR 0.73 0.0154

INHBC_LDFHFSSDR ATL4JLWIPAGALR 0.73 0.0142

INHBC_LDFHFSSDR C1QB_LEQGENVFLQATDK 0.73 0.0154

INHBC_LDFHFSSDR PGRP2_AGLLRPDYALLGHR 0.73 0.0142

ISM2_FDTTPWILCK NOTUM_GLADSGWFLDNK 0.73 0.0131

ITIH3_ALDLSLK ATL4_ILWIPAGALR 0.73 0.0131

ITIH3_ALDLSLK PGRP2_AGLLRPDYALLGHR 0.73 0.0142

ITIH4JLDDLSPR PRL_SWNEPLYHLVTEVR 0.73 0.0142

KNG1_DIPTNSPELEETLTHTITK ECM1_ELLALIQLER 0.73 0.0131

KNG1_DIPTNSPELEETLTHTITK SPRL1_VLTHSELAPLR 0.73 0.0154

LBP_ITLPDFTGDLR DEF1JPACIAGER 0.73 0.0154

LEP_DLLHVLAFSK CRIS3_AVSPPAR 0.73 0.0142

LEP_DLLHVLAFSK MUC18_EVTVPVFYPTEK 0.73 0.0143

MUC18_GATLALTQVTPQDER PRL_SWNEPLYHLVTEVR 0.73 0.0154

PCD12_YQVSEEVPSGTVIGK KIT_LCLHCSVDQEGK 0.73 0.0142

PEDF_LQSLFDSPDFSK CRAC1_LVNIAVDER 0.73 0.0154

PEDF_LQSLFDSPDFSK CRIS3_AVSPPAR 0.73 0.0131

PEDF_LQSLFDSPDFSK TENX_LNWEAPPGAFDSFLLR 0.73 0.0154

P E D F_TVQA V LTV P K TENX_LSQLSVTDVTTSSLR 0.73 0.0142

PRG4_DQYYNIDVPSR FBLN3JPSNPSHR 0.73 0.0154

PRG4_DQYYNIDVPSR PGRP2_AGLLRPDYALLGHR 0.73 0.0154

PRG4_ITEVWGIPSPIDTVFTR ATS13_YGSQLAPETFYR 0.73 0.0154

PRG4_ITEVWGIPSPIDTVFTR DEF1JPACIAGER 0.73 0.0154

PRG4_ITEVWGIPSPIDTVFTR ECM1_ELLALIQLER 0.73 0.0131

PSG3_VSAPSGTGHLPGLNPL SHBGJALGGLLFPASNLR 0.73 0.0154

RET4_YWGVASFLQK DPEP2_LTLEQIDLIR 0.73 0.0154

RET4_YWGVASFLQK PAEP_QDLELPK 0.73 0.0174

RET4_YWGVASFLQK TETN_LDTLAQEVALLK 0.73 0.0154

SEPP1_LPTDSELAPR ATL4_ILWIPAGALR 0.73 0.0142

TIMP1_HLACLPR ATS13_YGSQLAPETFYR 0.73 0.0142

TIMP1_HLACLPR PGRP2_AGLLRPDYALLGHR 0.73 0.0142

VTNC_GQYCYELDEK SHBGJALGGLLFPASNLR 0.73 0.0142

AFAM_HFQNLGK SHBGJALGGLLFPASNLR 0.72 0.0214

AP0C3_GWVTDGFSSLK ATS13JGSQLAPETFYR 0.72 0.0168 APOC3_GWVTDGFSSLK CNTN1_TTKPYPADIVVQFK 0.72 0.0182

APOC3_GWVTDGFSSLK CRAC1_GVALADFN R 0.72 0.0214

APOC3_GWVTDGFSSLK FBLN3J PSN PSHR 0.72 0.0168

APOC3_GWVTDGFSSLK PAEP_QDLELPK 0.72 0.0243

APOC3_GWVTDGFSSLK TETN_LDTLAQEVALLK 0.72 0.0214

BGH3_LTLLAPLNSVFK CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.72 0.0182

BGH3_LTLLAPLNSVFK EGLN_GPITSAAELNDPQSILLR 0.72 0.0214

BGH3_LTLLAPLNSVFK PROS_SQDI LLSVENTVIYR 0.72 0.0214

CATD_VGFAEAAR C1QC_TNQVNSGGVLLR 0.72 0.0182

CATD_VGFAEAAR CNTN1_FI PLIPI PER 0.72 0.0214

CATD_VGFAEAAR M UC18_EVTVPVFYPTEK 0.72 0.0214

CATD_VGFAEAAR PAEP_QDLELPK 0.72 0.0224

CD14_LTVGAAQVPAQLLVGALR FBLN1_TGYYFDGISR 0.72 0.0214

CD14_LTVGAAQVPAQLLVGALR KIT_LCLHCSVDQEGK 0.72 0.0182

CD14_LTVGAAQVPAQLLVGALR PGRP2_AGLLRPDYALLGHR 0.72 0.0182

CD14_LTVGAAQVPAQLLVGALR TETN_LDTLAQEVALLK 0.72 0.0214

CLUS_LFDSDPITVTVPVEVSR FBLN1_TGYYFDGISR 0.72 0.0182

C06_ALNH LPLEYNSALYSR ATL4_ILWI PAGALR 0.72 0.0214

C06_ALNH LPLEYNSALYSR C1QB_LEQGENVFLQATDK 0.72 0.0182

C06_ALNH LPLEYNSALYSR DPEP2_LTLEQI DLI R 0.72 0.0214

ENPP2_TYLHTYESEI FBLN3J PSN PSHR 0.72 0.0168

ENPP2_TYLHTYESEI SHBGJALGGLLFPASNLR 0.72 0.0168

F13B_GDTYPAELYITGSI LR DPEP2_LTLEQI DLI R 0.72 0.0214

F13B_GDTYPAELYITGSI LR FBLN3J PSN PSHR 0.72 0.0214

FA11_TAAISGYSFK FBLN3J PSN PSHR 0.72 0.0168

FA5_NFFNPPI ISR ECM 1_ELLALIQLER 0.72 0.0168

FA5_NFFNPPI ISR KIT_LCLHCSVDQEGK 0.72 0.0214

FA5_NFFNPPI ISR PRL_SWN EPLYH LVTEVR 0.72 0.0168

FA5_NFFNPPI ISR SHBGJALGGLLFPASNLR 0.72 0.0197

FA9_FGSGYVSG WG R CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.72 0.0214

FA9_SALVLQYLR ATL4JLWI PAGALR 0.72 0.0214

FA9_SAL.VLQ.YLR KIT_LCLHCSVDQEGK 0.72 0.0197

FETUA_FSVVYAK DEF1J PACIAGER 0.72 0.0182

FETUA_FSVVYAK PROS_SQDI LLSVENTVIYR 0.72 0.0197

FETUA_FSVVYAK SPRL1_VLTHSELAPLR 0.72 0.0197

FETUA_FSVVYAK TENX_LNWEAPPGAFDSFLLR 0.72 0.0168

FGFR1_VYSDPQPHIQWLK A0C1_GDFPSPI HVSGPR 0.72 0.0197

FGFR1_VYSDPQPHIQWLK ATS13_YGSQLAPETFYR 0.72 0.0197

HABP2_FLNWIK KIT_LCLHCSVDQEGK 0.72 0.0214

HABP2_FLNWIK TETN_LDTLAQEVALLK 0.72 0.0182

H EMO_NFPSPVDAAFR TETN_LDTLAQEVALLK 0.72 0.0214

IGF2_GIVEECCFR DPEP2_LTLEQI DLI R 0.72 0.0168

I NH BC_LDFH FSSDR A0C1_GDFPSPI HVSGPR 0.72 0.0168 INHBC_LDFHFSSDR DEF1JPACIAGER 0.72 0.0182

INHBC_LDFHFSSDR PAPP1_DIPHWLNPTR 0.72 0.0168

ITIH3_ALDLSLK ATS13_YGSQLAPETFYR 0.72 0.0197

ITIH3_ALDLSLK IBP2_LIQGAPTIR 0.72 0.0214

KNG1_DIPTNSPELEETLTHTITK DPEP2_LTLEQIDLIR 0.72 0.0214

KNG1_DIPTNSPELEETLTHTITK EGLN_GPITSAAELNDPQSILLR 0.72 0.0168

KNG1_DIPTNSPELEETLTHTITK KIT_LCLHCSVDQEGK 0.72 0.0168

KNG1_DIPTNSPELEETLTHTITK PAEP_QDLELPK 0.72 0.0224

KNG1_DIPTNSPELEETLTHTITK TETN_LDTLAQEVALLK 0.72 0.0168

KNG1_QVVAGLNFR CSHJSLLLIESWLEPVR 0.72 0.0182

KNG1_QVVAGLNFR FBLN1_TGYYFDGISR 0.72 0.0214

LBPJTGFLKPGK PGRP2_AGLLRPDYALLGHR 0.72 0.0214

LEP_DLLHVLAFSK NOTUM_GLADSGWFLDNK 0.72 0.0182

MUC18_GATLALTQVTPQDER KIT_YVSELHLTR 0.72 0.0214

P E D F_TVQA V LTV P K CRAC1_GVALADFNR 0.72 0.0182

P E D F_TVQA V LTV P K MUC18_GPVLQLHDLK 0.72 0.0214

PRG4_DQYYNIDVPSR A0C1_GDFPSPIHVSGPR 0.72 0.0168

PRG4_DQYYNIDVPSR FBLN1_TGYYFDGISR 0.72 0.0182

PRG4_DQYYNIDVPSR KIT_LCLHCSVDQEGK 0.72 0.0197

PRG4_DQYYNIDVPSR LI RA3_KPS LSVQPG PVVAPG E K 0.72 0.0215

PRG4_DQYYNIDVPSR LYAM1_SYYWIGIR 0.72 0.0168

RET4_YWGVASFLQK KIT_LCLHCSVDQEGK 0.72 0.0197

TIE1_VSWSLPLVPGPLVGDGFLLR DPEP2_LTLEQIDLIR 0.72 0.0168

TIE1_VSWSLPLVPGPLVGDGFLLR FBLN1_TGYYFDGISR 0.72 0.0197

TIMP1_HLACLPR ATL4_ILWIPAGALR 0.72 0.0182

TIMP1_HLACLPR C1QB_LEQGENVFLQATDK 0.72 0.0214

TIMP1_HLACLPR IBP2_LIQGAPTIR 0.72 0.0168

TIMP1_HLACLPR SPRL1_VLTHSELAPLR 0.72 0.0214

AFAM_DADPDTFFAK KIT_YVSELHLTR 0.71 0.0250

AFAM_HFQNLGK ATL4_ILWIPAGALR 0.71 0.0270

ALS_IRPHTFTGLSGLR ATL4_ILWIPAGALR 0.71 0.0291

ALS_IRPHTFTGLSGLR DPEP2_LTLEQJDLIR 0.71 0.0270

AMBP_ETLLQDFR S0M2.CSH_NYGLLYCFR 0.71 0.0291

AP0C3_GWVTDGFSSLK C1QB_LEQGENVFLQATDK 0.71 0.0291

AP0C3_GWVTDGFSSLK EGLN_GPITSAAELNDPQSILLR 0.71 0.0231

AP0C3_GWVTDGFSSLK KIT_YVSELHLTR 0.71 0.0250

B2MG_VNHVTLSQPK FBLN3JPSNPSHR 0.71 0.0270

B2MG_VNHVTLSQPK SHBGJALGGLLFPASNLR 0.71 0.0270

C1QB_IAFSATR PRL_SWNEPLYHLVTEVR 0.71 0.0291

CADH5_YTFVVPEDTR ATL4_ILWIPAGALR 0.71 0.0270

CATD_VGFAEAAR A0C1_GDFPSPIHVSGPR 0.71 0.0270

CATD_VGFAEAAR CRAC1_LVNIAVDER 0.71 0.0270

CATD_VGFAEAAR DEF1JPACIAGER 0.71 0.0231 CATD_VGFAEAAR IBP2_LIQGAPTIR 0.71 0.0250

CATD_VGFAEAAR LYAM1_SYYWIGIR 0.71 0.0270

CATD_VGFAEAAR SPRL1_VLTHSELAPLR 0.71 0.0231

CBPN_EALIQFLEQVHQGIK FBLN3JPSNPSHR 0.71 0.0291

CBPN_NNANGVDLNR FBLN1_TGYYFDGISR 0.71 0.0291

CD14_LTVGAAQVPAQLLVGALR CSHJSLLLIESWLEPVR 0.71 0.0291

CD14_SWLAELQQWLKPGLK EGLN_GPITSAAELNDPQSILLR 0.71 0.0291

C F AB_YG LVTYATYP K C1QB_LEQGENVFLQATDK 0.71 0.0270

C F AB_YG LVTYATYP K C1QC_TNQVNSGGVLLR 0.71 0.0291

CFAB_YG LVTYATYP K DPEP2_LTLEQIDLIR 0.71 0.0291

CLUS_ASSIIDELFQDR SHBGJALGGLLFPASNLR 0.71 0.0231

C05_VFQFLEK ATS13_YGSQLAPETFYR 0.71 0.0231

C05_VFQFLEK C1QB_LEQGENVFLQATDK 0.71 0.0231

C05_VFQFLEK KIT_LCLHCSVDQEGK 0.71 0.0270

C05_VFQFLEK PGRP2_AGLLRPDYALLGHR 0.71 0.0291

C06_ALNHLPLEYNSALYSR FBLN3JPSNPSHR 0.71 0.0270

C08B_QALEEFQK PRL_SWNEPLYHLVTEVR 0.71 0.0250

ENPP2_TYLHTYESEI CSHJSLLLIESWLEPVR 0.71 0.0270

ENPP2_TYLHTYESEI ECM1_ELLALIQLER 0.71 0.0250

ENPP2_TYLHTYESEI IPSP_AVVEVDESGTR 0.71 0.0291

ENPP2_TYLHTYESEI KIT_YVSELHLTR 0.71 0.0231

F13B_GDTYPAELYITGSILR ATS13_YGSQLAPETFYR 0.71 0.0270

F13B_GDTYPAELYITGSILR DEF1JPACIAGER 0.71 0.0291

FA9_FGSGYVSG WG R IBP1_VVESLAK 0.71 0.0231

FA9_FGSGYVSG WG R PAPP1_DIPHWLNPTR 0.71 0.0231

FA9_SALVLQYLR PGRP2_AGLLRPDYALLGHR 0.71 0.0231

FETUA_FSVVYAK CSHJSLLLIESWLEPVR 0.71 0.0270

FETUA_FSVVYAK EGLN_GPITSAAELNDPQSILLR 0.71 0.0231

FETUA_FSVVYAK PAPP1JDIPHWLNPTR 0.71 0.0270

FETUA_FSVVYAK TETNJ.DTLAQEVALLK 0.71 0.0250

FGFR1_VYSDPQPHIQWLK CRAC1_GVASLFAGR 0.71 0.0291

FGFR1_VYSDPQPHIQWLK CRIS3_AVSPPAR 0.71 0.0291

FGFR1_VYSDPQPHIQWLK CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.71 0.0250

FGFR1_VYSDPQPHIQWLK GELS_AQPVQVAEGSEPDGFWEALGGK 0.71 0.0250

FGFR1_VYSDPQPHIQWLK IBPl VESLAK 0.71 0.0270

FGFR1_VYSDPQPHIQWLK MUC18J.VTVPVFYPTEK 0.71 0.0270

HABP2_FLNWIK PAEP_QDLELPK 0.71 0.0285

HEMO_NFPSPVDAAFR ATL4JLWIPAGALR 0.71 0.0291

IBP3_YGQPLPGYTTK C1QBJ.EQGENVFLQATDK 0.71 0.0291

IBP4_QCHPALDGQR FBLN3JPSNPSHR 0.71 0.0250

INHBC_LDFHFSSDR CS H_A H QLA 1 DTYQE F E ETY 1 P K 0.71 0.0291

INHBC_LDFHFSSDR KITJA SELHLTR 0.71 0.0231

INHBC_LDFHFSSDR TETNJ.DTLAQEVALLK 0.71 0.0250 ITIH3_ALDLSLK FBLN1_TGYYFDGISR 0.71 0.0250

ITIH3_ALDLSLK SPRL1 LTHSELAPLR 0.71 0.0270

KNG1_DIPTNSPELEETLTHTITK CRAC1_GVASLFAGR 0.71 0.0231

KNG1_QVVAGLNFR DEF1JPACIAGER 0.71 0.0270

LBPJTGFLKPGK C163AJNPASLDK 0.71 0.0291

LBPJTGFLKPGK C1QBJ.EQGENVFLQATDK 0.71 0.0231

LBPJTGFLKPGK C1QC_TNQVNSGGVLLR 0.71 0.0250

LBPJTGFLKPGK IBP1 VESLAK 0.71 0.0291

LBPJTGFLKPGK KITJA SELHLTR 0.71 0.0270

LBPJTGFLKPGK PAEP_QDLELPK 0.71 0.0309

LBPJTGFLKPGK PAPP1JDIPHWLNPTR 0.71 0.0231

LEPJDLLHVLAFSK PSG9J.FI PQITR 0.71 0.0291

PCD12J QVSEEVPSGTVIGK PAPP1JDIPHWLNPTR 0.71 0.0270

PCD12J QVSEEVPSGTVIGK TENXJ.NWEAPPGAFDSFLLR 0.71 0.0291

PEDFJ.QSLFDSPDFSK IPSP_AVVEVDESGTR 0.71 0.0291

PRG4JDQYYNIDVPSR C1QC_TNQVNSGGVLLR 0.71 0.0250

PRG4JDQYYNIDVPSR CRIS3_YEDLYSNCK 0.71 0.0231

PRG4JDQYYNIDVPSR EGLN_GPITSAAELNDPQSILLR 0.71 0.0270

PRG4JDQYYNIDVPSR TETNJ.DTLAQEVALLK 0.71 0.0231

PRG4_GLPNVVTSAISLPNIR DPEP2J.TLEQIDLIR 0.71 0.0291

RET4J WGVASFLQK PR0SJ5QDILLSVENTVIYR 0.71 0.0231

SEPP1J.VYHLGLPFSFLTFPYVEEAIK FBLN1_TGYYFDGISR 0.71 0.0270

THBG_AVLHIGEK PRLJ5WNEPLYHLVTEVR 0.71 0.0231

TIE1_VSWSLPLVPGPLVGDGFLLR FBLN3JPSNPSHR 0.71 0.0250

TIE1_VSWSLPLVPGPLVGDGFLLR SHBGJALGGLLFPASNLR 0.71 0.0270

TIMPIJHLACLPR CSHJSLLLIESWLEPVR 0.71 0.0231

TIMPIJHLACLPR DPEP2J.TLEQIDLIR 0.71 0.0231

TIMPIJHLACLPR IBPl VESLAK 0.71 0.0250

TIMPIJHLACLPR IPSP_AVVEVDESGTR 0.71 0.0250

TIMPIJHLACLPR PROS_SQDILLSVENTVIYR 0.71 0.0250

VTDBJELPEHTVK PRLJ5WNEPLYHLVTEVR 0.71 0.0291

A2GLJDLLLPQPDLR ATL4JLWIPAGALR 0.7 0.0313

A2GLJDLLLPQPDLR IBP2J.IQGAPTIR 0.7 0.0363

A2GLJDLLLPQPDLR SHBGJALGGLLFPASNLR 0.7 0.0390

AFAMJHFQNLGK DEF1JPACIAGER 0.7 0.0390

ALSJRPHTFTGLSGLR FBLN3JPSNPSHR 0.7 0.0337

AP0C3_GWVTDGFSSLK DEF1JPACIAGER 0.7 0.0363

AP0C3_GWVTDGFSSLK LYAM1J5YYWIGIR 0.7 0.0313

AP0C3_GWVTDGFSSLK PAPP1JDIPHWLNPTR 0.7 0.0390

B2MG NHVTLSQ.PK ATL4JLWIPAGALR 0.7 0.0363

B2MG NHVTLSQ.PK TETNJ.DTLAQEVALLK 0.7 0.0337

BGH3J.TLLAPLNSVFK A0C1_GDFPSPIHVSGPR 0.7 0.0390

BGH3J.TLLAPLNSVFK C1QBJ.EQGENVFLQATDK 0.7 0.0313 BGH3_LTLLAPLNSVFK CRAC1_LVNIAVDER 0.7 0.0313

BGH3_LTLLAPLNSVFK DEF1JPACIAGER 0.7 0.0313

BGH3_LTLLAPLNSVFK IBP2_LIQGAPTIR 0.7 0.0363

BGH3_LTLLAPLNSVFK IPSP_AVVEVDESGTR 0.7 0.0313

BGH3_LTLLAPLNSVFK PGRP2_AGLLRPDYALLGHR 0.7 0.0390

BGH3_LTLLAPLNSVFK SPRL1_VLTHSELAPLR 0.7 0.0337

C1QA_DQPRPAFSAIR PAPP1_DIPHWLNPTR 0.7 0.0363

C1QA_DQPRPAFSAIR SHBGJALGGLLFPASNLR 0.7 0.0390

CADH5_YEIVVEAR DPEP2_LTLEQIDLIR 0.7 0.0313

CADH5_YEIVVEAR FBLN3JPSNPSHR 0.7 0.0363

CADH5_YEIVVEAR KIT_YVSELHLTR 0.7 0.0313

CADH5_YEIVVEAR SHBGJALGGLLFPASNLR 0.7 0.0313

CATD_VGFAEAAR IBP1_VVESLAK 0.7 0.0363

CATD_VGFAEAAR S0M2.CSH_NYGLLYCFR 0.7 0.0337

CBPN_EALIQFLEQVHQGIK ATS13_YGSQLAPETFYR 0.7 0.0337

CBPN_NNANGVDLNR DEF1JPACIAGER 0.7 0.0337

CD14_LTVGAAQVPAQLLVGALR PAPP1_DIPHWLNPTR 0.7 0.0313

CD14_LTVGAAQVPAQLLVGALR PROS_SQDILLSVENTVIYR 0.7 0.0337

C F AB_YG LVTYATYP K FBLN3JPSNPSHR 0.7 0.0337

C F AB_YG LVTYATYP K PAEP_QDLELPK 0.7 0.0360

CFAB_YG LVTYATYP K SHBGJALGGLLFPASNLR 0.7 0.0363

CFAB_YG LVTYATYP K TETNJ.DTLAQ.EVALLK 0.7 0.0390

CLUS_ASSIIDELFQDR DPEP2J.TLEQJDUR 0.7 0.0363

CLUS_ASSIIDELFQDR FBLN3JPSNPSHR 0.7 0.0363

CLUS_ASSIIDELFQDR KITJASELHLTR 0.7 0.0363

CLUS_LFDSDPITVTVPVEVSR ATS13JGSQLAPETFYR 0.7 0.0390

C05_TLLPVSKPEIR TETNJ.DTLAQ.EVALLK 0.7 0.0363

C06_ALNHLPLEYNSALYSR EGLN_GPITSAAELNDPQSILLR 0.7 0.0390

C06_ALNHLPLEYNSALYSR FBLN1_TGYYFDGISR 0.7 0.0363

C06_ALNHLPLEYNSALYSR SHBGJALGGLLFPASNLR 0.7 0.0337

ECE1_HTLGENIADNGGLK DPEP2J.TLEQJDLIR 0.7 0.0390

ENPP2_TEFLSNYLTNVDDITLVPGTLGR PAPP1JDIPHWLNPTR 0.7 0.0337

ENPP2_TYLHTYESEI ATS13JGSQLAPETFYR 0.7 0.0313

ENPP2_TYLHTYESEI PAEP_QDLELPK 0.7 0.0418

F13B_GDTYPAELYITGSILR C1QBJ.EQGENVFLQATDK 0.7 0.0337

F13B_GDTYPAELYITGSILR C1QC_TNQVNSGGVLLR 0.7 0.0363

F13B_GDTYPAELYITGSILR EGLN_GPITSAAELNDPQSILLR 0.7 0.0337

F13B_GDTYPAELYITGSILR PAPP1JDIPHWLNPTR 0.7 0.0363

F13B_GDTYPAELYITGSILR PGRP2_AGLLRPDYALLGHR 0.7 0.0363

F13B_GDTYPAELYITGSILR PR0SJ5QDILLSVENTVIYR 0.7 0.0337

FA11_TAAISGYSFK TETNJ.DTLAQ.EVALLK 0.7 0.0390

FA5_NFFNPPIISR ATL4JLWIPAGALR 0.7 0.0313

FA5_NFFNPPIISR DPEP2J.TLEQJDUR 0.7 0.0313 FA5_NFFNPPIISR FBLN3JPSNPSHR 0.7 0.0337

FETUA_FSVVYAK A0C1_GDFPSPIHVSGPR 0.7 0.0363

FETUA_FSVVYAK PAEP_QDLELPK 0.7 0.0388

FGFR1_VYSDPQPHIQWLK PAPP1_DIPHWLNPTR 0.7 0.0337

HABP2_FLNWIK C1QC_TNQVNSGGVLLR 0.7 0.0337

HABP2_FLNWIK CNTN1_FIPLIPIPER 0.7 0.0390

HABP2_FLNWIK ECM1_ELLALIQLER 0.7 0.0337

HABP2_FLNWIK LYAM1_SYYWIGIR 0.7 0.0313

HABP2_FLNWIK PROS_SQDILLSVENTVIYR 0.7 0.0337

HABP2_FLNWIK SPRL1_VLTHSELAPLR 0.7 0.0337

HABP2_FLNWIK TENX_LNWEAPPGAFDSFLLR 0.7 0.0390

HEMO_NFPSPVDAAFR ATS13_YGSQLAPETFYR 0.7 0.0313

HEMO_NFPSPVDAAFR DEF1JPACIAGER 0.7 0.0390

HEMO_NFPSPVDAAFR ECM1_ELLALIQLER 0.7 0.0313

HEMO_NFPSPVDAAFR KIT_LCLHCSVDQEGK 0.7 0.0363

IBP3_FLNVLSPR A0C1_GDFPSPIHVSGPR 0.7 0.0337

IBP3_FLNVLSPR ATS13_YGSQLAPETFYR 0.7 0.0313

IBP3_FLNVLSPR KIT_YVSELHLTR 0.7 0.0390

IBP3_YGQPLPGYTTK FBLN3JPSNPSHR 0.7 0.0363

IBP3_YGQPLPGYTTK PAEP_QDLELPK 0.7 0.0360

IBP3_YGQPLPGYTTK SHBGJALGGLLFPASNLR 0.7 0.0313

IBP3_YGQPLPGYTTK SPRL1_VLTHSELAPLR 0.7 0.0390

IBP4_QCHPALDGQR ATL4JLWIPAGALR 0.7 0.0313

IBP4_QCHPALDGQR SHBGJALGGLLFPASNLR 0.7 0.0337

1 BP6_H LDSVLQQLQTEVYR ATL4JLWIPAGALR 0.7 0.0337

1 BP6_H LDSVLQQLQTEVYR SHBGJALGGLLFPASNLR 0.7 0.0337

IGF2_GIVEECCFR FBLN1_TGYYFDGISR 0.7 0.0363

IGF2_GIVEECCFR SHBGJALGGLLFPASNLR 0.7 0.0363

IL1R1_LWFVPAK PRLJ5WNEPLYHLVTEVR 0.7 0.0313

IL1R1_LWFVPAK SHBGJALGGLLFPASNLR 0.7 0.0363

INHBC_LDFHFSSDR C1QC_TNQVNSGGVLLR 0.7 0.0390

INHBC_LDFHFSSDR CRAC1J.VNIAVDER 0.7 0.0363

INHBC_LDFHFSSDR PAEP_QDLELPK 0.7 0.0388

INHBC_LDFHFSSDR S0M2.CSH JMYGLLYCFR 0.7 0.0337

IPSP_DFTFDLYR PRLJ5WNEPLYHLVTEVR 0.7 0.0390

ITIH3_ALDLSLK DEF1JPACIAGER 0.7 0.0390

ITIH3_ALDLSLK DPEP2J.TLEQIDLIR 0.7 0.0363

ITIH3_ALDLSLK PAEP_QDLELPK 0.7 0.0360

ITIH3_ALDLSLK PAPP1JDIPHWLNPTR 0.7 0.0313

KNG1_DIPTNSPELEETLTHTITK PGRP2_AGLLRPDYALLGHR 0.7 0.0337

LBPJTGFLKPGK ATS13JGSQLAPETFYR 0.7 0.0313

LBPJTGFLKPGK DPEP2J.TLEQIDLIR 0.7 0.0363

LBPJTGFLKPGK FBLN1_TGYYFDGISR 0.7 0.0363 LBPJTGFLKPGK PROS_SQDILLSVENTVIYR 0.7 0.0390

LBPJTGFLKPGK TETN_LDTLAQEVALLK 0.7 0.0363

LEP_DLLHVLAFSK PAPP2_LLLRPEVLAEIPR 0.7 0.0390

PCD12_YQVSEEVPSGTVIGK A0C1_GDFPSPIHVSGPR 0.7 0.0313

PCD12_YQVSEEVPSGTVIGK DEF1JPACIAGER 0.7 0.0363

PCD12_YQVSEEVPSGTVIGK LYAM1_SYYWIGIR 0.7 0.0337

PEDF_LQSLFDSPDFSK IBP1_VVESLAK 0.7 0.0390

PEDF_LQSLFDSPDFSK LIRB5_KPSLLIPQGSVVAR 0.7 0.0390

P E D F_TVQA V LTV P K S0M2.CSH_NYGLLYCFR 0.7 0.0363

P DX2_GLFIIDGK PAPP1_DIPHWLNPTR 0.7 0.0390

PRG4_DQYYNIDVPSR CNTN1_TTKPYPADIVVQFK 0.7 0.0313

PRG4_DQYYNIDVPSR IBP2_LIQGAPTIR 0.7 0.0390

PRG4_DQYYNIDVPSR IPSP_AVVEVDESGTR 0.7 0.0337

PRG4_DQYYNIDVPSR PAEP_QDLELPK 0.7 0.0388

PRG4_DQYYNIDVPSR SPRL1_VLTHSELAPLR 0.7 0.0363

PRG4_ITEVWGIPSPIDTVFTR CRAC1_GVALADFNR 0.7 0.0313

PRG4_ITEVWGIPSPIDTVFTR PAPP1_DIPHWLNPTR 0.7 0.0390

PROS_FSAEFDFR KIT_LCLHCSVDQEGK 0.7 0.0337

PSG3_VSAPSGTGHLPGLNPL DEF1JPACIAGER 0.7 0.0390

PSG3_VSAPSGTGHLPGLNPL FBLN1_TGYYFDGISR 0.7 0.0337

PSG3_VSAPSGTGHLPGLNPL KIT_YVSELHLTR 0.7 0.0337

RET4_YWGVASFLQK C1QB_LEQGENVFLQATDK 0.7 0.0337

RET4_YWGVASFLQK DEF1JPACIAGER 0.7 0.0390

RET4_YWGVASFLQK ECM1_ELLALIQLER 0.7 0.0313

RET4_YWGVASFLQK EGLN_GPITSAAELNDPQSILLR 0.7 0.0337

RET4_YWGVASFLQK SHBGJALGGLLFPASNLR 0.7 0.0313

TIMP1_HLACLPR C1QC_TNQVNSGGVLLR 0.7 0.0313

TIMP1_HLACLPR ECM1_ELLALIQLER 0.7 0.0337

TIMP1_HLACLPR GELS_AQPVQVAEGSEPDGFWEALGGK 0.7 0.0390

TIMP1_HLACLPR LYAM1_SYYWIGIR 0.7 0.0313

TIMP1_HLACLPR PAPP1_DIPHWLNPTR 0.7 0.0363

TIMP1_HLACLPR S0M2.CSH_NYGLLYCFR 0.7 0.0390

TIMP1_HLACLPR TENX_LNWEAPPGAFDSFLLR 0.7 0.0390

Table 56. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 134- 146 GABD

APOC3_GWVTDGFSSLK 20

APOH_ATVVYQGER 1

B2MG_VNHVTL.SQ.PK 5

BGH3_LTLLAPLNSVFK 19

C1QA_DQPRPAFSAIR 2

C1QA_SLGFCDTTNK 1

C1QB_IAFSATR 1

C1QC_FNAVLTNPQGDYDTSTGK 1

CADH5_YEIVVEAR 6

CADH5_YTFVVPEDTR 1

CATD_VGFAEAAR 32

CBPN_EALIQFLEQVHQGIK 3

CBPNJMNANGVDLNR 2

CD14_LTVGAAQVPAQLLVGALR 12

CD14_SWLAELQQWLKPGLK 4

C F A B_YG LVTY ATY P K 8

CLUS_ASSIIDEL.FQ.DR 5

CLUS_LFDSDPITVTVPVEVSR 3

C05_TLLPVSKPEIR 3

C05_VFQFLEK 6

C06_ALNHLPLEYNSALYSR 8

C08A_SLLQPNK 1

C08B_QALEEFQK 1

ECE1_HTLGENIADNGGLK 2

ENPP2_TEFLSNYLTNVDDITLVPGTLGR 1

ENPP2_TYLHTYESEI 12

F13B_GDTYPAELYITGSILR 16

FA11_TAAISGYSFK 3

FA5_NFFNPPIISR 7

FA9_FGSGYVSGWGR 13

FA9_SALVLQYLR 5

FETUA_FSVVYAK 24

FGFR1_VYSDPQPHIQWLK 28

HABP2_FLNWIK 21

HEMO_NFPSPVDAAFR 9

IBP3_FLNVLSPR 4

IBP3_YGQPLPGYTTK 7

1 BP4_QCH PALDGQR 4

1 BP6_H LDSVLQQLQTEVYR 4

IGF2_GIVEECCFR 4

IL1R1_LWFVPAK 2

INHBC_LDFHFSSDR 22

IPSP_DFTFDLYR 2 ISM2_FDTTPWILCK 1

ITIH3_ALDLSLK 15

ITIH4JLDDLSP 1

KNG1_DIPTNSPELEETLTHTITK 12

KNG1_QVVAGLNFR 6

LBPJTGFLKPGK 17

LBP_ITLPDFTGDLR 1

LEP_DLLHVLAFSK 38

MFAP5_LYSVH PVK 1

MUC18_GATLALTQVTPQDER 2

PCD12_YQVSEEVPSGTVIGK 23

PEDF_LQSLFDSPDFSK 10

P E D F_TVQAV LTV P K 26

PRDX2_GLFIIDGK 1

PRG4_DQYYNIDVPSR 16

PRG4_GLPNVVTSAISLPNIR 2

PRG4_ITEVWGIPSPIDTVFTR 9

PROS_FSAEFDFR 3

PSG3_VSAPSGTGHLPGLNPL 6

PTG DS_AQG FTE DTI VF LPQTD K 1

R ET4_YWG VAS F LQ.K 14

SEPP1_LPTDSELAPR 1

SEPP1_LVYHLGLPFSFLTFPYVEEAIK 1

SEPP1_VSLATVDK 1

THBG_AVLHIGEK 1

TIE1_VSWSLPLVPGPLVGDGFLLR 5

TIMP1_HLACLPR 25

VTDB_ELPEHTVK 1

VTNC_GQYCYELDEK 3

Grand Total 632

Table 57. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 134-146 GABD

Row Labels Count of Down-Regulated (Protein Peptide)

AOCl_GDFPSPIHVSGPR 12

ATL4JLWIPAGALR 35

ATS13_YGSQLAPETFYR 25

C163AJNPASLDK 3

C1QB_LEQGENVFLQATDK 23

C1QC_TNQVNSGGVLLR 15

CNTN1_FIPLIPIPER 5

CNTNIJTKPYPADIVVQFK 5

CRAC1_GVALADFNR 4 CRAC1_GVASLFAGR 3

CRAC1_LVNIAVDER 4

CRIS3_AVSPPAR 4

CRIS3_YEDLYSNCK 1

CSH_AHQLAIDTYQEFEETYIPK 6

CSHJSLLLIESWLEPVR 8

DEF1JPACIAGER 20

DPEP2_LTL.EQ.IDUR 32

ECM1_ELLALIQLER 18

EGLN_GPITSAAELNDPQSILLR 18

FBLN1_TGYYFDGISR 30

FBLN3JPSNPSHR 40

GELS_AQPVQVAEGSEPDGFWEALGGK 5

GELS_TASDFITK 2

IBP1_VVESLAK 8

IBP2_LIQGAPTIR 11

IPSP_AVVEVDESGTR 10

KIT_LCLHCSVDQEGK 14

KIT_YVSELHLTR 17

LI R A3_KPS LSVQPG P VVAPG E K 2

LIRB5_KPSLLIPQGSVVAR 3

LYAM1_SYYWIGIR 10

MUC18_EVTVPVFYPTEK 4

MUC18_GPVLQLHDLK 1

NOTUM_GLADSGWFLDNK 2

PAEP_HLWYLLDLK 1

PAEP_QDLELPK 19

PAPP1_DIPHWLNPTR 19

PAPP2_LLLRPEVLAEIPR 1

PGRP2_AGLLRPDYALLGHR 20

PRL_SWNEPLYHLVTEVR 59

PROS_SQDILLSVENTVIYR 17

PSG9_LFIPQITR 1

SHBG_ALALPPLGLAPLLNLWAKPQGR 1

SHBGJALGGLLFPASNLR 40

S0M2.CSH_NYGLLYCFR 6

SPRL1_VLTHSELAPLR 14

TENX_LNWEAPPGAFDSFLLR 7

TENX_LSQLSVTDVTTSSLR 2

TETN_LDTLAQEVALLK 25 Grand Total 632 Table 58. Reversals (UpVDown-Regulated) Predicting PPROM vs. PTL at GABD 119-153 with an AUC >= 0.7

Table 59. Count of Up-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 119- 153 GABD

Row Labels Count c >f Up-Regulated (Protein Peptide)

AFAM_H FQN LGK 2

AM BP_ETLLQDFR 3

ANGT_DPTFI PAPIQAK 2

F13B_GDTYPAELYITGSILR 1

FETUA_FSVVYAK 1

1 BP6_H LDSVLQQLQTEVYR 1

KNG1_QVVAGLNFR 1

LEP_DLLHVLAFSK 2

P E D F_TVQAV LTV P K 3

PSG3_VSAPSGTGHLPGLNPL 1

R ET4_YWG VAS F LQK 4

Grand Total 21 Table 60. Count of Down-Regulated Protein Peptide in Reversals >=0.7 for PPROM vs. PTL, 119-153 GABD

Row Labels Count of Down-Regulated (Protein_Peptide)

C1Q.C_TNQ.VNSGGVL.LR

KIT YVSELH LTR 11

LI RA3 KPSLSVQPGPVVAPGEK

PAEP_QDLELPK

PGRP2 AGLLRPDYALLGH R

SH BG IALGGLLFPASN LR

TETN LDTLAQEVALLK

Grand Total II

S E P P1_VS LATVDK-C R AC 1_G VALAD F N R BP4_QCHPALDGQR- 0.6318 0.6116 0.6389 0.63 0.5092- SHBGJALGGLLFPASNLR 0.7508

VTNC_GQYCYELDEK- BP4_QCHPALDGQR- 0.6177 0.6116 0.654 0.64 0.5237- GELS_AQPVQVAEGSEPDGFWEALGGK SHBGJALGGLLFPASNLR 0.7563

VTNC_VDTVDPPYPR-FBLN1_TGYYFDGISR BP4_QCHPALDGQR- 0.596 0.6116 0.6327 0.61 0.4901- SHBGJALGGLLFPASNLR 0.7299

SHBGJALGGLLFPASNLR 0.8028

TIMP1_HLACLP -VGF 1_YLAVPTSK IBP4_QCHPALDGQR- 0.6171 0.6785 0.692 0.67 0.5325- SHBGJALGGLLFPASNLR 0.8075

Table 66. Best PTL Reversals Distinguishing PPROM vs PTL and Separately Predicting the Risk of Either Outcome at 134-146 GABD

C1QB_VPGLYYFTYHASSR-PEDF_TVQ.AVL.TVPK 0.6225 0.3561 0.4722 0.2664 0.7781

APOH_ATVVYQGER-PEDF_TVQAVLTVPK 0.6478 0.3429 0.4758 0.3049 0.7754

FA11_DSVTETLPR-AMBP_ETLLQDFR 0.6044 0.3182 0.443 0.2862 0.7754

PRL_SWNEPLYHLVTEVR- 0.5984 0.3526 0.4597 0.2458 0.7754 BGH3_LTLLAPLNSVFK

IBP2_LIQGAPTIR-AMBP_ETLLQDFR 0.6998 0.3881 0.524 0.3117 0.7727

DEF1_IPACIAGER-LEP_DLLHVLAFSK 0.6857 0.4059 0.5279 0.2798 0.7727

PRL_SWNEPLYHLVTEVR- 0.5777 0.3432 0.4454 0.2345 0.7727 F13B_GDTYPAELYITGSILR

PRL_SWNEPLYHLVTEVR- 0.5569 0.3517 0.4412 0.2052 0.7727 ALS_IRPHTFTGLSGLR

FETUA_FSVVYAK-VTDB_ELPEHTVK 0.2854 0.5656 0.4435 0.2802 0.7727

CATD_VGFAEAAR-FBLN1_TGYYFDGISR 0.299 0.5624 0.4476 0.2634 0.7727

CATD_VGFAEAAR- 0.3322 0.5857 0.4752 0.2535 0.7727 EGLN_GPITSAAELNDPQSILLR

FBLN3_IPSNPSHR-TIMP1_HLACLPR 0.6587 0.3741 0.4982 0.2846 0.7701

IBP4_QCHPALDGQR-PEDF_TVQAVLTVPK 0.5867 0.3007 0.4254 0.286 0.7674

C1QC_TNQVNSGGVLLR-LEP_DLLHVLAFSK 0.6618 0.3776 0.5015 0.2842 0.7674

SPRL1_VLTHSELAPLR-PEDF_TVQAVLTVPK 0.7146 0.4309 0.5546 0.2837 0.7674

ITIH4_ILDDLSPR-LEP_DLLHVLAFSK 0.6817 0.4033 0.5247 0.2784 0.7674

C08 B_QALE E FQK-AM B P_ETLLQD F R 0.6086 0.3336 0.4535 0.275 0.7674

CATD_VGFAEAAR- 0.3077 0.5807 0.4617 0.273 0.7674 PTGDS_AQGFTEDTIVFLPQTDK

PRL_SWNEPLYHLVTEVR- 0.5664 0.3354 0.4361 0.231 0.7674 ANGT_DPTFIPAPIQAK

C1QB_VPGLYYFTYHASSR-AMBP_ETLLQDFR 0.6127 0.3266 0.4513 0.2861 0.7647

C08 A_S LLQP N K-AM B P_ETLLQD F R 0.6335 0.3476 0.4722 0.2859 0.7647

B2MG_VNHVTLSQPK-AMBP_ETLLQDFR 0.655 0.3715 0.4951 0.2835 0.7647

C1QA_SLGFCDTTNK-LEP_DLLHVLAFSK 0.6635 0.3811 0.5042 0.2824 0.7647

FBLN3_IPSNPSHR-BGH3_LTLLAPLNSVFK 0.6844 0.4184 0.5344 0.266 0.7647

CFAB_YGLVTYATYPK-LEP_DLLHVLAFSK 0.6663 0.4123 0.523 0.254 0.7647

PRL_SWNEPLYHLVTEVR- 0.5196 0.3071 0.3997 0.2125 0.7647 PSG3_VSAPSGTGH LPG LN PL

FA9_FGSGYVSGWGR- 0.253 0.5248 0.4063 0.2718 0.7647 PGRP2_AGLLRPDYALLGHR

C1QB_VPGLYYFTYHASSR-LEP_DLLHVLAFSK 0.6569 0.3686 0.4942 0.2883 0.762

PROS_SQDILLSVENTVIYR-LEP_DLLHVLAFSK 0.6889 0.4114 0.5324 0.2775 0.762

HEMO_NFPSPVDAAFR-AMBP_ETLLQDFR 0.6629 0.3869 0.5072 0.276 0.762

CSH_ISLLLIESWLEPVR-LEP_DLLHVLAFSK 0.6531 0.3808 0.4995 0.2723 0.762

PEDF_LQSLFDSPDFSK- 0.3035 0.5726 0.4553 0.2691 0.762 PGRP2_AGLLRPDYALLGHR

INHBC_LDFHFSSDR-FBLN1_TGYYFDGISR 0.2594 0.5146 0.4034 0.2552 0.762

C06_ALNHLPLEYNSALYSR- 0.6784 0.4324 0.5396 0.246 0.762 P E D F_TVQA V LTV P K PRL_LSAYYNLLHCLR- 0.5411 0.2995 0.4048 0.2416 0.762 PCD12_YQVSEEVPSGTVIGK

PRL_SWNEPLYHLVTEVR- 0.5558 0.3392 0.4336 0.2166 0.762 TIE1_VSWSLPLVPGPLVGDGFLLR

PRL_SWNEPLYHLVTEVR- 0.5552 0.3496 0.4392 0.2056 0.762 ECE1_HTLGENIADNGGLK

B2MG_VNHVTLSQPK-LEP_DLLHVLAFSK 0.6716 0.3872 0.5112 0.2844 0.7594

S E P P1_VS LATVD K-AM B P_ETLLQD F R 0.6463 0.3648 0.4875 0.2815 0.7594

VTNC_VDTVDPPYPR-AMBP_ETLLQDFR 0.6044 0.3234 0.4459 0.281 0.7594

PRL_SWNEPLYHLVTEVR- 0.6003 0.322 0.4433 0.2783 0.7594 FGFR1_VYSDPQ.PHIQ.WLK

SPRL1_VLTHSELAPLR-LEP_DLLHVLAFSK 0.7017 0.4312 0.5491 0.2705 0.7594

VTNC_VDTVDPPYPR-PEDF_TVQAVLTVPK 0.6139 0.3456 0.4625 0.2683 0.7594

HABP2_FLNWIK-FBLN1_TGYYFDGISR 0.3133 0.5693 0.4578 0.256 0.7594

LIRB5_KPSLLIPQGSVVAR-LEP_DLLHVLAFSK 0.6486 0.4003 0.5085 0.2483 0.7594

PRL_SWNEPLYHLVTEVR- 0.5882 0.3706 0.4655 0.2176 0.7594 AFAM_DADPDTFFAK

THBG_AVLHIGEK-AMBP_ETLLQDFR 0.6652 0.3628 0.4946 0.3024 0.7567

IBP2_LIQGAPTIR-LEP_DLLHVLAFSK 0.6957 0.4135 0.5365 0.2822 0.7567

IPSP_AVVEVDESGTR-LEP_DLLHVLAFSK 0.6263 0.3531 0.4722 0.2732 0.7567

C1QA_SLGFCDTTNK- 0.575 0.3159 0.4288 0.2591 0.7567 PCD12_YQVSEEVPSGTVIGK

A2GL_DLLLPQPDLR-LEP_DLLHVLAFSK 0.664 0.4181 0.5253 0.2459 0.7567

HABP2_FLNWIK-VTDB_ELPEHTVK 0.3111 0.583 0.4645 0.2719 0.754

IBP4_QCHPALDGQR-LEP_DLLHVLAFSK 0.6448 0.3753 0.4928 0.2695 0.754

FA11_DSVTETLPR-LEP_DLLHVLAFSK 0.6312 0.3674 0.4824 0.2638 0.754

FA9_FGSGYVSGWGR- 0.2971 0.5443 0.4366 0.2472 0.754 PTGDS_AQGFTEDTIVFLPQTDK

PEDF_LQSLFDSPDFSK-FBLN1_TGYYFDGISR 0.2998 0.5408 0.4357 0.241 0.754

PEDF_LQSLFDSPDFSK- 0.3322 0.5361 0.4472 0.2039 0.754 NCAM1_GLGEISAASEFK

PEDF_LQSLFDSPDFSK-PAEP_QDLELPK 0.26 0.5431 0.4239 0.2831 0.7528

THBG_AVLHIGEK-LEP_DLLHVLAFSK 0.661 0.403 0.5155 0.258 0.7513

CRAC1_LVNIAVDER-LEP_DLLHVLAFSK 0.7262 0.4811 0.5879 0.2451 0.7513

FETUA_FSVVYAK-ATL4_ILWIPAGALR 0.2734 0.5154 0.4099 0.242 0.7513

KNG1_DIPTNSPELEETLTHTITK- 0.2632 0.4988 0.3961 0.2356 0.7513 ATL4_ILWIPAGALR

SPRL1_VLTHSELAPLR- 0.6859 0.3619 0.5031 0.324 0.7487 FGFR1_VYSDPQPHIQWLK

APOH_ATVVYQGER-LEP_DLLHVLAFSK 0.6618 0.3814 0.5036 0.2804 0.7487

C163A_INPASLDK-LEP_DLLHVLAFSK 0.6746 0.4006 0.5201 0.274 0.7487

C08B_QALEEFQK-PEDF_TVQAVLTVPK 0.5977 0.3566 0.4617 0.2411 0.7487

FA11_DSVTETLPR-PEDF_TVQAVLTVPK 0.5897 0.3529 0.4561 0.2368 0.7487

PRL_SWNEPLYHLVTEVR- 0.5713 0.3587 0.4513 0.2126 0.7487 IBP6_GAQTLYVPNCDHR FBLN3JPSNPSHR- 0.5705 0.3581 0.4507 0.2124 0.7487 PSG3_VSAPSGTGH LPG LN PL

PRL_SWNEPLYHLVTEVR-IBP3_FLNVLSPR 0.5479 0.336 0.4283 0.2119 0.7487

PEDF_LQSLFDSPDFSK-TETN_LDTLAQEVALLK 0.2485 0.5379 0.4117 0.2894 0.7487

FA5_LSEGASYLDHTFPAEK- 0.389 0.6091 0.5132 0.2201 0.7487 EGLN_GPITSAAELNDPQSILLR

PEDF_LQSLFDSPDFSK- 0.253 0.5481 0.4195 0.2951 0.746 ATS13_SLVELTPIAAVHGR

DEF1_IPACIAGER-AMBP_ETLLQDFR 0.6825 0.3902 0.5176 0.2923 0.746

PEDF_LQSLFDSPDFSK- 0.3337 0.6104 0.4898 0.2767 0.746 EGLN_GPITSAAELNDPQSILLR

C08A_SLLQPNK-LEP_DLLHVLAFSK 0.6523 0.3916 0.5053 0.2607 0.746

HABP2_FLNWIK-ATL4_ILWIPAGALR 0.2711 0.53 0.4172 0.2589 0.746

S0M2.CSH_NYGLLYCFR-LEP_DLLHVLAFSK 0.6406 0.382 0.4947 0.2586 0.746

CATD_VGFAEAAR-TENX_LSQLSVTDVTTSSLR 0.2821 0.5402 0.4277 0.2581 0.746

CRIS3_AVSPPAR-AMBP_ETLLQDFR 0.6983 0.4409 0.5531 0.2574 0.746

DPEP2_ALEVSQAPVIFSHSAAR- 0.6934 0.4371 0.5488 0.2563 0.746 P E D F_TVQA V LTV P K

FBLN3_IPSNPSHR-ANGT_DPTFIPAPIQAK 0.6516 0.3957 0.5072 0.2559 0.746

IPSP_AVVEVDESGTR-AMBP_ETLLQDFR 0.5777 0.3429 0.4453 0.2348 0.746

CATD_VGFAEAAR-PGRP2_AGLLRPDYALLGHR 0.3258 0.5586 0.4571 0.2328 0.746

FBLN3_IPSNPSHR-IBP6_HLDSVLQQLQTEVYR 0.6753 0.4426 0.544 0.2327 0.746

KNG1_DIPTNSPELEETLTHTITK- 0.3239 0.5673 0.4612 0.2434 0.7433 VTDB_ELPEHTVK

CD14_LTVGAAQVPAQLLVGALR- 0.3145 0.5469 0.4456 0.2324 0.7433 ECM1_ELLALIQLER

FBLN3JPSNPSHR- 0.6625 0.396 0.5122 0.2665 0.7433 PCD12_YQVSEEVPSGTVIGK

FBLN3_IPSNPSHR-FGFR1_VYSDPQPHIQWLK 0.6369 0.3741 0.4887 0.2628 0.7433

FBLN3_IPSNPSHR-RET4_YWGVASFLQK 0.655 0.4283 0.5271 0.2267 0.7433

IBP2_LIQGAPTIR-FGFR1_VYSDPQPHIQWLK 0.6297 0.3625 0.479 0.2672 0.7406

LI RA3_KPS LSVQPG P VVAPG E K- 0.6471 0.3957 0.5074 0.2514 0.7406 LEP_DLLHVLAFSK

CATD_VGFAEAAR-PAPP1_DIPHWLNPTR 0.302 0.5428 0.4379 0.2408 0.7406

PEDF_LQSLFDSPDFSK-MFAP5_LYSVHRPVK 0.2926 0.5309 0.427 0.2383 0.7406

LBP_ITGFLKPGK-ATL4_ILWIPAGALR 0.2979 0.5108 0.418 0.2129 0.7406

C1QC JNQVNSGGVLLR- 0.5732 0.3126 0.4262 0.2606 0.738 FGFR1_VYSDPQPHIQWLK

VTNC_GQYCYELDEK-LEP_DLLHVLAFSK 0.6463 0.391 0.5023 0.2553 0.738

DPEP2_ALEVSQAPVIFSHSAAR- 0.6482 0.3954 0.5056 0.2528 0.738 PCD12_YQVSEEVPSGTVIGK

INHBC_LDFHFSSDR- 0.2994 0.5463 0.4387 0.2469 0.738 EGLN_GPITSAAELNDPQSILLR

CSH_ISLLLIESWLEPVR-PEDF_TVQAVLTVPK 0.6425 0.4047 0.5084 0.2378 0.738

CRAC1_LVNIAVDER-AMBP_ETLLQDFR 0.7643 0.539 0.6372 0.2253 0.738 PEDF_LQSLFDSPDFSK-GELS_TASDFITK 0.2613 0.4709 0.3795 0.2096 0.738

PEDF_LQSLFDSPDFSK-LYAM1_SYYWIGI 0.2851 0.5632 0.442 0.2781 0.7353

HIH3_ALDLSLK-TETN_LDTLAQ.EVAL.LK 0.2783 0.5274 0.4188 0.2491 0.7353

INHBC_LDFHFSSD R-ATS 13_YGSQLAP ETFYR 0.2097 0.4519 0.3463 0.2422 0.7353

CD14_LTVGAAQVPAQLLVGALR- 0.2613 0.4863 0.3882 0.225 0.7353 ATL4_ILWIPAGALR

CSHJSLLLIESWLEPVR- 0.5754 0.3193 0.431 0.2561 0.7353 PCD12_YQVSEEVPSGTVIGK

SPRL1_VLTHSELAPLR- 0.6727 0.4193 0.5298 0.2534 0.7353 PCD12_YQVSEEVPSGTVIGK

HEMO_NFPSPVDAAFR-LEP_DLLHVLAFSK 0.6704 0.4309 0.5353 0.2395 0.7353

A2GL_DLLLPQPDLR-AMBP_ETLLQDFR 0.6493 0.4117 0.5153 0.2376 0.7353

IPSP_AVVEVDESGTR- 0.5381 0.3097 0.4093 0.2284 0.7353 FGFR1_VYSDPQPHIQWLK

PRL_SWNEPLYHLVTEVR-CLUS_ASSIIDELFQDR 0.5637 0.3482 0.4421 0.2155 0.7353

PRL_SWNEPLYHLVTEVR- 0.5573 0.354 0.4426 0.2033 0.7353 CBPN_NNANGVDLNR

SVEP1_LLSDFPVVPTATR-LEP_DLLHVLAFSK 0.6285 0.3857 0.4907 0.2428 0.7351

C1QA_DQPRPAFSAIR- 0.5818 0.31 0.4285 0.2718 0.7326 FGFR1_VYSDPQPHIQWLK

SEPP1_VSLATVDK-LEP_DLLHVLAFSK 0.6565 0.3954 0.5092 0.2611 0.7326

CD14_LTVGAAQVPAQLLVGALR- 0.6433 0.4117 0.5127 0.2316 0.7326 LEP_DLLHVLAFSK

CD14_SWLAELQQWLKPGLK- 0.2813 0.5399 0.4272 0.2586 0.7326 VTDB_ELPEHTVK

FETU A_FS VVYAK-LYAM 1_SYYWIG 1 R 0.3164 0.5705 0.4597 0.2541 0.7326

FETUA_FSVVYAK-FBLN1_TGYYFDGISR 0.2983 0.549 0.4397 0.2507 0.7326

PRG4_DQYYNIDVPSR-ATL4_ILWIPAGALR 0.2941 0.5134 0.4178 0.2193 0.7326

ITIH3_ALDLSLK-ATL4_ILWIPAGALR 0.2941 0.5079 0.4147 0.2138 0.7326

KNG1_DIPTNSPELEETLTHTITK- 0.3382 0.5507 0.4581 0.2125 0.7326 ECM1_ELLALIQLER

AP0C3_GWVTDGFSSLK-FBLN1_TGYYFDGISR 0.2425 0.4443 0.3563 0.2018 0.7326

HABP2_FLNWIK-PGRP2_AGLLRPDYALLGHR 0.3269 0.5784 0.4688 0.2515 0.7299

DPEP2_ALEVSQAPVIFSHSAAR- 0.6708 0.4196 0.5291 0.2512 0.7299 LEP_DLLHVLAFSK

C08B_QALEEFQK-LEP_DLLHVLAFSK 0.6339 0.3849 0.4934 0.249 0.7299

PTGDS_GPGEDFR-TIMP1_HLACLPR 0.6271 0.3785 0.4869 0.2486 0.7299

FETUA_FSVVYAK-PGRP2_AGLLRPDYALLGHR 0.3401 0.5784 0.4745 0.2383 0.7299

CRIS3_AVSPPAR-LEP_DLLHVLAFSK 0.6637 0.4286 0.5311 0.2351 0.7299

PROS_SQDILLSVENTVIYR- 0.5894 0.3555 0.4574 0.2339 0.7299 FGFR1_VYSDPQPHIQWLK

1 N H BC_LD F H FSS D R-ATL4J LWI P AG ALR 0.2357 0.4671 0.3662 0.2314 0.7299

INHBC_LDFHFSSDR- 0.2685 0.4913 0.3941 0.2228 0.7299 PGRP2_AGLLRPDYALLGHR

C05_TLLPVSKPEIR-LEP_DLLHVLAFSK 0.6531 0.4309 0.5278 0.2222 0.7299 ENPP2_TEFLSNYLTNVDDITLVPGTLGR- 0.3149 0.5361 0.4397 0.2212 0.7299 FBLN1_TGYYFDGISR

PEDF_LQ.SLFDSPDFSK-PAPP1_DIPHWL.NPTR 0.3314 0.542 0.4502 0.2106 0.7299

ITIH3_ALDLSLK-PGRP2_AGLLRPDYALLGHR 0.3345 0.5443 0.4528 0.2098 0.7299

FETUA_HTLNQIDEVK-ATS13_YGSQLAPETFYR 0.259 0.4639 0.3746 0.2049 0.7299

HABP2_FLNWIK- 0.3676 0.6087 0.5036 0.2411 0.7273 EGLN_GPITSAAELNDPQSILLR

FETUA_FSVVYAK-ECM1_ELLALIQLER 0.3262 0.5586 0.4573 0.2324 0.7273

CD14_LTVGAAQVPAQLLVGALR- 0.2541 0.4834 0.3835 0.2293 0.7273 ATS13_YGSQLAPETFYR

PEDF_LQSLFDSPDFSK-CHL1_VIAVNEVGR 0.3296 0.544 0.4505 0.2144 0.7273

PRG4_DQYYNIDVPSR- 0.3152 0.5291 0.4359 0.2139 0.7273 PGRP2_AGLLRPDYALLGHR

PEDF_LQSLFDSPDFSK- 0.2941 0.5064 0.4139 0.2123 0.7273 TENX_LNWEAPPGAFDSFLLR

ADA12_FGFGGSTDSGPIR-LEP_DLLHVLAFSK 0.6143 0.3619 0.4719 0.2524 0.7273

C06_ALNHLPLEYNSALYSR-LEP_DLLHVLAFSK 0.6565 0.4135 0.5194 0.243 0.7273

LIRB5_KPSLLIPQGSVVAR-AMBP_ETLLQDFR 0.5811 0.375 0.4648 0.2061 0.7273

PRL_SWNEPLYHLVTEVR-IGF2_GIVEECCFR 0.5241 0.3208 0.4094 0.2033 0.7273

DEF1_IPACIAGER-PEDF_TVQAVLTVPK 0.6851 0.4132 0.5317 0.2719 0.7246

IBP2_LIQGAPTIR-PEDF_TVQAVLTVPK 0.6708 0.4111 0.5243 0.2597 0.7246

DPEP2_ALEVSQAPVIFSHSAAR- 0.6682 0.4193 0.5278 0.2489 0.7246 AMBP_ETLLQDFR

PRG4_DQYYNIDVPSR-ECM1_ELLALIQLER 0.29 0.5262 0.4232 0.2362 0.7246

KNG1_DIPTNSPELEETLTHTITK- 0.3578 0.5932 0.4906 0.2354 0.7246 EGLN_GPITSAAELNDPQSILLR

PTGDS_GPGEDFR-F13B_GDTYPAELYITGSILR 0.5788 0.3467 0.4479 0.2321 0.7246

IBP2_LIQGAPTIR-TIMP1_HLACLPR 0.621 0.3913 0.4915 0.2297 0.7246

PEDF_LQSLFDSPDFSK- 0.3307 0.5597 0.4599 0.229 0.7246 IBP6_GAQTLYVPNCDHR

CD14_SWLAELQQWLKPGLK- 0.3152 0.5396 0.4418 0.2244 0.7246 FBLN1_TGYYFDGISR

PRL_SWNEPLYHLVTEVR-FA5_NFFNPPIISR 0.5977 0.3887 0.4798 0.209 0.7246

KNG1_DIPTNSPELEETLTHTITK- 0.2662 0.4747 0.3838 0.2085 0.7246 KIT_LCLHCSVDQEGK

PRG4_DQYYNIDVPSR-LYAM1_SYYWIGIR 0.325 0.5309 0.4412 0.2059 0.7246

HABP2_FLNWIK-TETN_LDTLAQEVALLK 0.3002 0.56 0.4467 0.2598 0.7219

CRIS3_AVSPPAR-PEDF_TVQAVLTVPK 0.6919 0.4513 0.5562 0.2406 0.7219

MUC18_GPVLQLHDLK-LEP_DLLHVLAFSK 0.6746 0.4344 0.5391 0.2402 0.7219

ANT3_TS DQI H F F F AK-AM B P_ETLLQD F R 0.6753 0.4365 0.5406 0.2388 0.7219

C06_ALNHLPLEYNSALYSR-AMBP_ETLLQDFR 0.6463 0.4085 0.5122 0.2378 0.7219

HEMO_NFPSPVDAAFR-PEDF_TVQAVLTVPK 0.6618 0.4304 0.5312 0.2314 0.7219

C08 A_S LLQP N K- P E D F_TVQAV LTV P K 0.6048 0.3747 0.475 0.2301 0.7219

CSH_ISLLLIESWLEPVR-KNG1_QVVAGLNFR 0.6143 0.4003 0.4936 0.214 0.7219 PRG4_DQYYNIDVPSR-FBLN1_TGYYFDGISR 0.333 0.5385 0.4489 0.2055 0.7219

ITIH4_NPLVWVHASPEHVVVTR- 0.5928 0.3416 0.4511 0.2512 0.7193 AMBP_ETL.LQ.DFR

FA9_SALVLQYLR-AMBP_ETLLQDFR 0.5543 0.3138 0.4186 0.2405 0.7193

FA5_AEVDDVIQVR-AMBP_ETLLQDFR 0.6305 0.3942 0.4972 0.2363 0.7193

CD14_SWLAELQQWLKPGLK- 0.3296 0.5571 0.4579 0.2275 0.7193 PGRP2_AGLLRPDYALLGHR

ENPP2_TEFLSNYLTNVDDITLVPGTLGR- 0.2768 0.4857 0.3946 0.2089 0.7193 ATL4_ILWIPAGALR

DPEP2_ALEVSQAPVIFSHSAAR- 0.667 0.4595 0.55 0.2075 0.7193 BGH3_LTLLAPLNSVFK

PRL_LSAYYNLLHCLR-CAH1_GGPFSDSYR 0.5848 0.3785 0.4684 0.2063 0.7193

ITIH4_NPLVWVHASPEHVVVTR- 0.5935 0.3935 0.4807 0.2 0.7193 P E D F_TVQA V LTV P K

PROS_SQDILLSVENTVIYR- 0.6471 0.3899 0.502 0.2572 0.7166 BGH3_LTLLAPLNSVFK

FBLN3_IPSNPSHR-F13B_GDTYPAELYITGSILR 0.6637 0.4111 0.5212 0.2526 0.7166

SPRL1_VLTHSELAPLR-TIMP1_HLACLPR 0.6584 0.4097 0.5181 0.2487 0.7166

CSH_ISLLLIESWLEPVR-AMBP_ETLLQDFR 0.6161 0.3695 0.477 0.2466 0.7166

PTGDS_GPGEDFR-BGH3_LTLLAPLNSVFK 0.6342 0.4126 0.5092 0.2216 0.7166

MUC18_GPVLQLHDLK-PEDF_TVQAVLTVPK 0.6633 0.4423 0.5386 0.221 0.7166

CATD_VGFAEAAR-MUC18_EVTVPVFYPTEK 0.3005 0.5213 0.425 0.2208 0.7166

LBP_ITGFLKPGK-PGRP2_AGLLRPDYALLGHR 0.3337 0.5475 0.4543 0.2138 0.7166

HABP2_FLNWIK-KIT_LCLHCSVDQEGK 0.2673 0.4808 0.3877 0.2135 0.7166

PTG DS_G PG E D F R-KN G 1_QVVAG LN F R 0.6316 0.4216 0.5131 0.21 0.7166

FA5_LSEGASYLDHTFPAEK- 0.3598 0.5689 0.4778 0.2091 0.7166 CNTN1_TTKPYPADIVVQFK

THBG_AVLHIGEK-PCD12_YQVSEEVPSGTVIGK 0.5645 0.3558 0.4467 0.2087 0.7166

FBLN3_IPSNPSHR-AFAM_DADPDTFFAK 0.655 0.4484 0.5385 0.2066 0.7166

CD14_LTVGAAQVPAQLLVGALR- 0.6158 0.4105 0.5 0.2053 0.7166 AMBP_ETLLQDFR

CSHJSLLLIESWLEPVR- 0.5973 0.3319 0.4476 0.2654 0.7139 FGFR1_VYSDPQPHIQWLK

FA5_AEVDDVIQVR-LEP_DLLHVLAFSK 0.664 0.4114 0.5215 0.2526 0.7139

PEDF_LQSLFDSPDFSK-CRIS3_YEDLYSNCK 0.2862 0.528 0.4226 0.2418 0.7139

FETUA_FSVVYAK- 0.3805 0.6078 0.5087 0.2273 0.7139 EGLN_GPITSAAELNDPQSILLR

ENPP2_TYLHTYESEI-KIT_YVSELHLTR 0.2896 0.5163 0.4175 0.2267 0.7139

CSH_ISLLLIESWLEPVR-TIM P1_HLACLPR 0.5814 0.3616 0.4574 0.2198 0.7139

ITIH4_ILDDLSPR-PCD12_YQVSEEVPSGTVIGK 0.5995 0.384 0.478 0.2155 0.7139

PRG4_DQYYNIDVPSR- 0.3171 0.5291 0.4367 0.212 0.7139 PTGDS_AQGFTEDTIVFLPQTDK

CBPN_EALIQFLEQVHQGIK-LEP_DLLHVLAFSK 0.6538 0.4464 0.5368 0.2074 0.7139

PROS_SQDILLSVENTVIYR- 0.5969 0.3904 0.4804 0.2065 0.7139 RET4_YWGVASFLQK PEDF_LQSLFDSPDFSK- 0.3096 0.5691 0.456 0.2595 0.7112 CNTNIJTKPYPADIVVQFK

C1QB_IAFSATR-FGFR1_VYSDPQPHIQWLK 0.5913 0.3325 0.4453 0.2588 0.7112

FETUA_FSVVYAK-TETN_LDTLAQEVALLK 0.2873 0.5329 0.4259 0.2456 0.7112

PROS_SQDI LLSVE NTVIYR-TI M P1_H LACLPR 0.6067 0.3648 0.4702 0.2419 0.7112

IPSP_AVVEVDESGTR-PEDF_TVQAVLTVPK 0.5781 0.3386 0.443 0.2395 0.7112

FBLN3JPSNPSHR- 0.621 0.4006 0.4967 0.2204 0.7112 TIE1_VSWSLPLVPGPLVGDGFLLR

ITIH3_ALDLSLK-FBLN1_TGYYFDGISR 0.3201 0.5382 0.4431 0.2181 0.7112

FETUA_FSVVYAK- 0.3522 0.5696 0.4749 0.2174 0.7112 PTGDS_AQGFTEDTIVFLPQTDK

FA5_LSEGASYLDHTFPAEK- 0.3431 0.5516 0.4607 0.2085 0.7112 PGRP2_AGLLRPDYALLGHR

HABP2_FLNWIK-PAEP_QDLELPK 0.2989 0.535 0.4356 0.2361 0.7102

FA9_EYTNIFLK-LEP_DLLHVLAFSK 0.6293 0.3797 0.4885 0.2496 0.7086

DEF1_IPACIAGER-KNG1_QVVAGLNFR 0.6667 0.4295 0.5329 0.2372 0.7086

CATD_VGFAEAAR-A0C1_GDFPSPIHVSGPR 0.2971 0.5309 0.429 0.2338 0.7086

C05_VFQFLEK-ATL4_ILWIPAGALR 0.2809 0.5134 0.4121 0.2325 0.7086

MUC18_GPVLQLHDLK-AMBP_ETLLQDFR 0.6523 0.4362 0.5304 0.2161 0.7086

PEDF_LQSLFDSPDFSK-CRAC1_GVALADFNR 0.1942 0.4097 0.3157 0.2155 0.7086

CATD_VGFAEAAR-CNTN1_TTKPYPADIVVQFK 0.3243 0.537 0.4443 0.2127 0.7086

CSH_ISLLLIESWLEPVR-BGH3_LTLLAPLNSVFK 0.615 0.4033 0.4956 0.2117 0.7086

PRG4_DQYYNIDVPSR- 0.3473 0.5583 0.4663 0.211 0.7086 EGLN_GPITSAAELNDPQSILLR

CATD_VGFAEAAR-LYAM1_SYYWIGIR 0.3269 0.5361 0.4449 0.2092 0.7086

FETUA_FSVVYAK-PAPP1_DIPHWLNPTR 0.3299 0.5361 0.4463 0.2062 0.7086

DPEP2_ALEVSQAPVIFSHSAAR- 0.6697 0.4685 0.5562 0.2012 0.7086 KNG1_QVVAGLNFR

INHBC_LDFHFSSDR- 0.2489 0.4869 0.3831 0.238 0.7059 PTGDS_AQ.GFTEDTIVFLPQ.TDK

S0M2.CSH_NYGLLYCFR-AMBP_ETLL.QDFR 0.6007 0.3753 0.4735 0.2254 0.7059

C1QB_LEQGENVFLQATDK- 0.5705 0.3508 0.4466 0.2197 0.7059 IBP3_YGQPLPGYTTK

DEF1_IPACIAGER-F13B_GDTYPAELYITGSILR 0.6259 0.4065 0.5021 0.2194 0.7059

CD14_SWLAELQQWLKPGLK- 0.3646 0.583 0.4878 0.2184 0.7059 EGLN_GPITSAAELNDPQSILLR

HEM0_NFPSPVDAAFR-ATL4_ILWIPAGALR 0.2817 0.4971 0.4032 0.2154 0.7059

INHBC_LDFHFSSDR-VTDB_ELPEHTVK 0.2545 0.4691 0.3756 0.2146 0.7059

C05_VFQFLEK-PGRP2_AGLLRPDYALLGHR 0.3454 0.5551 0.4637 0.2097 0.7059

CF AB_YG LVTYATYP K-AM B P_ETLLQD F R 0.5935 0.3928 0.4803 0.2007 0.7059

C05_TLLPVSKPEIR-AMBP_ETLLQDFR 0.6308 0.396 0.4984 0.2348 0.7032

PRG4_DQYYNIDVPSR- 0.3009 0.5248 0.4272 0.2239 0.7032 CNTN1_TTKPYPADIVVQFK

DPEP2_ALEVSQAPVIFSHSAAR- 0.6354 0.4126 0.5097 0.2228 0.7032 TIMP1_HLACLPR CRAC1_LVNIAVDER-PEDF_TVQ.AVL.TVPK 0.7813 0.5609 0.657 0.2204 0.7032

C05_VFQFLEK-TETN_LDTLAQEVALLK 0.3039 0.5169 0.4241 0.213 0.7032

HABP2_FLNWIK-LYAM1_SYYWIGIR 0.3439 0.5551 0.463 0.2112 0.7032

PEDF_LQSLFDSPDFSK-IL1R1_LWFVPAK 0.3397 0.5484 0.4574 0.2087 0.7032

PRL_LSAYYNLLHCLR- 0.5628 0.356 0.4462 0.2068 0.7032 ITIH4_QLGLPGPPDVPDHAAYHPF

DEF1_IPACIAGER-BGH3_LTLLAPLNSVFK 0.6482 0.4426 0.5322 0.2056 0.7032

APOC3_GWVTDGFSSLK-LYAMl_SYYWIGIR 0.236 0.4394 0.3508 0.2034 0.7032

IPSP_AVVEVDESGTR-BGH3_LTLLAPLNSVFK 0.5633 0.3622 0.4499 0.2011 0.7032

FETUA_HTLNQIDEVK-LEP_DLLHVLAFSK 0.6308 0.4298 0.5174 0.201 0.7032

ITIH3_ALDLSLK-PAEP_QDLELPK 0.3069 0.5262 0.4339 0.2193 0.7017

PEDF_LQSLFDSPDFSK- 0.2949 0.5332 0.4293 0.2383 0.7005 AOCl_GDFPSPIHVSGPR

PROS_SQDILLSVENTVIYR- 0.5833 0.3529 0.4533 0.2304 0.7005 F13B_GDTYPAELYITGSILR

HABP2_FLNWIK-ECM1_ELLALIQLER 0.3164 0.542 0.4436 0.2256 0.7005

SPRL1_VLTHSELAPLR-BGH3_LTLLAPLNSVFK 0.6806 0.456 0.5539 0.2246 0.7005

FBLN3JPSNPSHR-ALSJRPHTFTGLSGLR 0.632 0.4135 0.5087 0.2185 0.7005

PTGDS_GPGEDFR- 0.5867 0.3712 0.4652 0.2155 0.7005 PCD12_YQVSEEVPSGTVIGK

KNG1_DIPTNSPELEETLTHTITK- 0.3322 0.5469 0.4533 0.2147 0.7005 PGRP2_AGLLRPDYALLGHR

FBLN3_IPSNPSHR-CBPN_NNANGVDLNR 0.6478 0.4382 0.5296 0.2096 0.7005

HABP2_FLNWIK-ATS13_SLVELTPIAAVHGR 0.319 0.5271 0.4364 0.2081 0.7005

DEF1_IPACIAGER-PCD12_YQVSEEVPSGTVIGK 0.6422 0.4003 0.5058 0.2419 0.6979

SEPP1_VSLATVDK-PEDF_TVQAVLTVPK 0.6354 0.3951 0.4998 0.2403 0.6979

FBLN3_IPSNPSHR-CADH5_YEIVVEAR 0.612 0.3887 0.486 0.2233 0.6979

ADA12_FGFGGSTDSGPIR- 0.5984 0.3805 0.4755 0.2179 0.6979 P E D F_TVQA V LTV P K

FBLN3_IPSNPSHR-CLUS_ASSIIDELFQDR 0.6444 0.4295 0.5232 0.2149 0.6979

FBLN3_IPSNPSHR-IBP3_YGQPLPGYTTK 0.6056 0.3936 0.486 0.212 0.6979

ADA12_FGFGGSTDSGPIR- 0.5611 0.3494 0.4417 0.2117 0.6979 FGFR1_VYSDPQPHIQWLK

SOM2.CSH_NYGLLYCFR-PEDF_TVQAVLTVPK 0.6146 0.4038 0.4957 0.2108 0.6979

IBP2_LIQGAPTIR-BGH3_LTLLAPLNSVFK 0.6569 0.4476 0.5388 0.2093 0.6979

FETUA_FSVVYAK-A0C1_GDFPSPIHVSGPR 0.3205 0.5274 0.4372 0.2069 0.6979

ADA12_FGFGGSTDSGPIR- 0.595 0.3575 0.461 0.2375 0.6952 PCD12_YQVSEEVPSGTVIGK

CBPN_EALIQFLEQ.VHQ.GIK- 0.3232 0.558 0.4556 0.2348 0.6952 FBLN1_TGYYFDGISR

ADA12_FGFGGSTDSGPIR-AMBP_ETLLQDFR 0.6018 0.368 0.4699 0.2338 0.6952

ANT3_TSDQIHFFFAK-LEP_DLLHVLAFSK 0.684 0.4582 0.5566 0.2258 0.6952

PAPP2_LLLRPEVLAEIPR-LEP_DLLHVLAFSK 0.6293 0.4178 0.51 0.2115 0.6952

PRG4JTEVWGIPSPIDTVFTR- 0.2979 0.5067 0.4157 0.2088 0.6952 CRIS3_YEDLYSNCK

DEF1_IPACIAGER-R ET4_Y WG V AS F LQK 0.6286 0.4248 0.5136 0.2038 0.6952

ENPP2_TYLHTYESEI- 0.342 0.5693 0.4702 0.2273 0.6925 EGLN_GPITSAAELNDPQSILLR

PEDF_LQSLFDSPDFSK-ECM1_LLPAQLPAEK 0.3164 0.5361 0.4403 0.2197 0.6925

KNG1_DIPTNSPELEETLTHTITK- 0.6433 0.4301 0.523 0.2132 0.6925 LEP_DLLHVLAFSK

MUC18_GPVLQLHDLK- 0.5905 0.382 0.4729 0.2085 0.6925 FGFR1_VYSDPQPHIQWLK

PROS_SQDILLSVENTVIYR- 0.6056 0.405 0.4924 0.2006 0.6925 PCD12_YQVSEEVPSGTVIGK

LBP_ITGFLKPGK-LYAM 1_SYYWIGIR 0.3284 0.5286 0.4413 0.2002 0.6925

ENPP2_TYLHTYESEI-TETN_LDTLAQEVALLK 0.2941 0.5402 0.4329 0.2461 0.6898

ENPP2_TYLHTYESEI-A0C1_GDFPSPIHVSGPR 0.3205 0.5379 0.4431 0.2174 0.6898

KNG1_DIPTNSPELEETLTHTITK- 0.3118 0.5245 0.4318 0.2127 0.6898 LYAM1_SYYWIGIR

INHBC_LDFHFSSDR-KIT_LCLHCSVDQEGK 0.2481 0.4604 0.3679 0.2123 0.6898

CBPN_EALIQFLEQVHQGIK- 0.3167 0.5265 0.4351 0.2098 0.6898 ATL4_ILWIPAGALR

PRG4JTEVWGIPSPIDTVFTR- 0.2541 0.4612 0.371 0.2071 0.6898 KIT_LCLHCSVDQEGK

C05_TLLPVSKPEIR-PEDF_TVQAVLTVPK 0.6437 0.4406 0.5291 0.2031 0.6898

PEDF_LQSLFDSPDFSK-CLUS_ASSIIDELFQDR 0.325 0.5271 0.439 0.2021 0.6898

KNG1_DIPTNSPELEETLTHTITK- 0.3413 0.5428 0.455 0.2015 0.6898 PAPP1_DIPHWLNPTR

PSG11_LFIPQITPK-LEP_DLLHVLAFSK 0.6207 0.4205 0.5077 0.2002 0.6898

THBG_AVLHIGEK-FGFR1_VYSDPQPHIQWLK 0.5886 0.3561 0.4574 0.2325 0.6872

ENPP2_TYLHTYESEI- 0.319 0.546 0.4471 0.227 0.6872 PGRP2_AGLLRPDYALLGHR

SOM2.CSH_NYGLLYCFR- 0.566 0.3476 0.4428 0.2184 0.6872 FGFR1_VYSDPQ.PHIQ.WLK

DEF1_IPACIAGER-CLUS_ASSIIDELFQDR 0.6237 0.4105 0.5035 0.2132 0.6872

PTGDS_GPGEDFR-FGFR1_VYSDPQPHIQWLK 0.5777 0.3677 0.4592 0.21 0.6872

KNG1_DIPTNSPELEETLTHTITK- 0.629 0.4038 0.502 0.2252 0.6845 AMBP_ETLLQDFR

CATD_VGFAEAAR-PSG1_FQLPGQK 0.3337 0.5577 0.4601 0.224 0.6845

ENPP2_TEFLSNYLTNVDDITLVPGTLGR- 0.333 0.5382 0.4487 0.2052 0.6845 VTDB_ELPEHTVK

ENPP2_TYLHTYESEI-ECM1_LLPAQLPAEK 0.339 0.5408 0.4528 0.2018 0.6845

DPEP2_ALEVSQAPVIFSHSAAR- 0.6041 0.373 0.4737 0.2311 0.6818 FGFR1_VYSDPQPHIQWLK

SEPP1_VSLATVDK-FGFR1_VYSDPQPHIQWLK 0.552 0.322 0.4223 0.23 0.6818

CATD_VGFAEAAR-ATS13_SLVELTPIAAVHGR 0.3167 0.5422 0.444 0.2255 0.6818

SOM2.CSH_NYGLLYCFR- 0.5558 0.3438 0.4362 0.212 0.6818 PCD12_YQVSEEVPSGTVIGK IBP2_UQGAPTIR-KNG1_Q.VVAGL.NFR 0.6376 0.4327 0.522 0.2049 0.6818

FA9_SALVL.QYLR-PEDF_TVQAVL.TVPK 0.5611 0.359 0.4471 0.2021 0.6818

IGF1_GFYFNKPTGYGSSSR-ATL4_ILWIPAGALR 0.3183 0.5189 0.4315 0.2006 0.6818

IGF1_GFYFNKPTGYGSSSR- 0.3186 0.5189 0.4316 0.2003 0.6818 AOCl_GDFPSPIHVSGPR

ENPP2_TYLHTYESEI-PAEP_HLWYLLDLK 0.3118 0.5355 0.438 0.2237 0.6791

ADA12_FGFGGSTDSGPIR-TIMP1_HLACLPR 0.5724 0.3529 0.4486 0.2195 0.6791

DPEP2_GWSEEELQGVLR- 0.6271 0.4178 0.509 0.2093 0.6791 ANGT_DPTFIPAPIQAK

DEF1_IPACIAGER-ANGT_DPTFIPAPIQAK 0.6354 0.4286 0.5187 0.2068 0.6791

HABP2_FLNWIK-AOCl_GDFPSPIHVSGPR 0.3235 0.528 0.4389 0.2045 0.6791

IBP2_LIQGAPTIR-PCD12_YQVSEEVPSGTVIGK 0.6037 0.4036 0.4908 0.2001 0.6791

DEF1_IPACIAGER-TIMP1_HLACLPR 0.6301 0.4123 0.5072 0.2178 0.6765

IBP2_LIQGAPTIR-RET4_YWGVASFLQK 0.6143 0.4027 0.4949 0.2116 0.6765

CD14_LTVGAAQVPAQLLVGALR- 0.2779 0.4892 0.3971 0.2113 0.6765 TETN_CFLAFTQTK

ITIH3_ALDLSLK-ECM 1_ELLALIQLER 0.3454 0.551 0.4614 0.2056 0.6765

ENPP2_TYLHTYESEI- 0.3167 0.5667 0.4578 0.25 0.6738 PTGDS_AQGFTEDTIVFLPQTDK

ANT3_TSDQIHFFFAK-PEDF_TVQAVLTVPK 0.6867 0.4627 0.5603 0.224 0.6738

C08B_QALEEFQK-FGFR1_VYSDPQPHIQWLK 0.5358 0.3333 0.4216 0.2025 0.6738

ENPP2_TYLHTYESEI- 0.3367 0.537 0.4497 0.2003 0.6738 CNTNIJTKPYPADIVVQFK

C06_ALNHLPLEYNSALYSR- 0.586 0.3773 0.4683 0.2087 0.6684 FGFR1_VYSDPQPHIQWLK

PRL_SWNEPLYHLVTEVR-PRDX2_GLFIIDGK 0.6308 0.4225 0.5133 0.2083 0.6684

PAPP2_LLLRPEVLAEIPR-FBLN1_TGYYFDGISR 0.3428 0.5446 0.4566 0.2018 0.6684

C08A_SLLQPNK-FGFR1_VYSDPQPHIQWLK 0.5475 0.347 0.4344 0.2005 0.6658

FA5_AEVDDVIQVR-FGFR1_VYSDPQPHIQWLK 0.5539 0.3199 0.4219 0.234 0.6631

DEF1_IPACIAGER-FGFR1_VYSDPQPHIQWLK 0.6026 0.3858 0.4803 0.2168 0.6631

INHBC_LDFHFSSDR-TETN_CFLAFTQTK 0.2545 0.4569 0.3687 0.2024 0.6604

ENPP2_TYLHTYESEI-LYAM 1_SYYWIGIR 0.3201 0.5207 0.4333 0.2006 0.6604

ENPP2_TYLHTYESEI- 0.3273 0.5405 0.4476 0.2132 0.6578 ATS13_SLVELTPIAAVHGR

ENPP2_TEFLSNYLTNVDDITLVPGTLGR- 0.3201 0.5251 0.4357 0.205 0.6578 TENX_LSQLSVTDVTTSSLR

IBP2_LIQGAPTIR-F13B_GDTYPAELYITGSILR 0.6056 0.403 0.4913 0.2026 0.6551

IBP2_LIQGAPTIR-ANGT_DPTFIPAPIQAK 0.6052 0.4041 0.4918 0.2011 0.6524

Table 67. Best PPROM Reversals Distinguishing PPROM vs PTL and Separately Predicting the Risk of Either Outcome at 134-146 GABD Absolute AUC

Difference in for

AUC for AUC for AUC

AUC for PPROM

Reversal PPROM PTL s for PTB

PPROM vs vs PTL vs term term vs term

term Minus or PTL vs term Inverse

AMBP_ETLLQDFR-TETN_LDTLAQ.EVAL.LK 0.2217 0.5868 0.4277 0.3651 0.8369

PEDF_TVQAVLTVPK- 0.2651 0.6098 0.4596 0.3447 0.8075 C1QB_LEQGENVFLQATDK

AMBP_ETLLQDFR-CNTN1_TTKPYPADIVVQFK 0.2609 0.6023 0.4535 0.3414 0.7941

AMBP_ETLLQDFR-VTDB_ELPEHTVK 0.2922 0.6314 0.4836 0.3392 0.8102

AMBP_ETLLQDFR-SPRL1_VLTHSELAPLR 0.2425 0.5772 0.4313 0.3347 0.8182

AMBP_ETLLQDFR-C1QB_LEQGENVFLQATDK 0.2888 0.6233 0.4775 0.3345 0.8128

AMBP_ETLLQDFR-PAEP_QDLELPK 0.2508 0.5769 0.4396 0.3261 0.7955

LEP_DLLHVLAFSK-PRL_SWNEPLYHLVTEVR 0.3299 0.6544 0.513 0.3245 0.8048

FGFR1_VYSDPQPHIQWLK- 0.3141 0.6381 0.4969 0.324 0.7487 SPRL1_VLTHSELAPLR

PEDF_TVQAVLTVPK-TETN_LDTLAQEVALLK 0.233 0.5539 0.414 0.3209 0.7781

PCD12_YQVSEEVPSGTVIGK- 0.3039 0.6195 0.4819 0.3156 0.7968 FBLN1_TGYYFDGISR

PEDF_TVQAVLTVPK-DPEP2_LTLEQIDLIR 0.2304 0.5449 0.4078 0.3145 0.8262

AMBP_ETLLQDFR-PGRP2_AGLLRPDYALLGHR 0.2866 0.6008 0.4638 0.3142 0.8021

AMBP_ETLLQDFR-PROS_SQDILLSVENTVIYR 0.3118 0.6253 0.4887 0.3135 0.7995

PEDF_LQSLFDSPDFSK-ATS13_YGSQLAPETFYR 0.207 0.5201 0.3836 0.3131 0.7727

AMBP_ETLLQDFR- 0.3307 0.6431 0.5069 0.3124 0.7914 EGLN_GPITSAAELNDPQSILLR

AMBP_ETLLQDFR-PRL_SWNEPLYHLVTEVR 0.3499 0.6623 0.5261 0.3124 0.8235

AMBP_ETLLQDFR-IBP2_LIQGAPTIR 0.3002 0.6119 0.476 0.3117 0.7727

FGFR1_VYSDPQPHIQWLK- 0.348 0.6597 0.5238 0.3117 0.746 C1QB_LEQGENVFLQATDK

FGFR1_VYSDPQPHIQWLK-PAEP_QDLELPK 0.3241 0.6342 0.5036 0.3101 0.7472

FGFR1_VYSDPQPHIQWLK-ECM1_ELLALIQLER 0.3341 0.6434 0.5085 0.3093 0.762

PEDF_TVQAVLTVPK- 0.2986 0.6066 0.4724 0.308 0.7807 PROS_SQDILLSVENTVIYR

FA9_FGSGYVSGWGR- 0.2689 0.5766 0.4425 0.3077 0.7487 PROS_SQDILLSVENTVIYR

PEDF_LQSLFDSPDFSK-VTDB_ELPEHTVK 0.2534 0.5609 0.4269 0.3075 0.7888

PCD12_YQVSEEVPSGTVIGK- 0.2888 0.5956 0.4619 0.3068 0.7674 DPEP2_LTLEQIDLIR

FETUA_FSVVYAK-DPEP2_LTLEQIDLIR 0.2421 0.5487 0.415 0.3066 0.7834

TIMP1_HLACLPR-PRL_SWNEPLYHLVTEVR 0.368 0.6737 0.5404 0.3057 0.8102

AMBP_ETLLQDFR-SHBG_IALGGLLFPASNLR 0.2417 0.546 0.4134 0.3043 0.7834

FGFR1_VYSDPQPHIQWLK- 0.3891 0.6932 0.5607 0.3041 0.7513 EGLN_GPITSAAELNDPQSILLR

AMBP_ETLLQDFR-DPEP2_LTLEQIDLIR 0.2564 0.5586 0.4269 0.3022 0.7647 LEP_DLLHVLAFSK-TETN_LDTLAQ.EVAL.LK 0.2628 0.5647 0.4331 0.3019 0.7941

TIMP1_HLACLPR-PAEP_QDLELPK 0.3037 0.604 0.4776 0.3003 0.7869

P E D F_TVQA V LTV P K- P AE P_QD L E LP K 0.2432 0.5428 0.4167 0.2996 0.767

CATD_VGFAEAAR-PRL_SWNEPLYHLVTEVR 0.359 0.6585 0.5279 0.2995 0.8102

LEP_DLLHVLAFSK-C1QB_LEQGENVFLQATDK 0.3058 0.6037 0.4739 0.2979 0.7701

PEDF_TVQAVLTVPK-KIT_LCLHCSVDQEGK 0.2134 0.5111 0.3813 0.2977 0.7914

AMBP_ETLLQDFR-KIT_YVSELHLTR 0.2338 0.5315 0.4017 0.2977 0.8235

PEDF_TVQAVLTVPK-SHBG_IALGGLLFPASNLR 0.2315 0.5288 0.3992 0.2973 0.7968

CATD_VGFAEAAR-TETN_LDTLAQEVALLK 0.2545 0.551 0.4218 0.2965 0.7941

AMBP_ETLLQDFR-ATS13_YGSQLAPETFYR 0.2696 0.5653 0.4364 0.2957 0.7513

PCD12_YQVSEEVPSGTVIGK- 0.2941 0.5892 0.4606 0.2951 0.746 TETN_LDTLAQEVALLK

LEP_DLLHVLAFSK-PGRP2_AGLLRPDYALLGHR 0.2979 0.5912 0.4633 0.2933 0.7888

FGFR1_VYSDPQPHIQWLK- 0.3009 0.5932 0.4658 0.2923 0.7487 SHBGJALGGLLFPASNLR

FGFR1_VYSDPQPHIQWLK- 0.3567 0.6489 0.5215 0.2922 0.7433 PGRP2_AGLLRPDYALLGHR

AMBP_ETLLQDFR-FGFR1_IGPDNLPYVQILK 0.2715 0.5632 0.4361 0.2917 0.7834

FGFR1_VYSDPQPHIQWLK- 0.3484 0.6399 0.5128 0.2915 0.7273 CNTN1_TTKPYPADIVVQFK

AMBP_ETLLQDFR-ATL4_ILWIPAGALR 0.2523 0.539 0.414 0.2867 0.7995

PEDF_LQSLFDSPDFSK- 0.3748 0.6611 0.5363 0.2863 0.8048 PRL_SWNEPLYHLVTEVR

FA9_FGSGYVSGWGR-PAEP_QDLELPK 0.2019 0.4881 0.3676 0.2862 0.8068

BGH3_LTLLAPLNSVFK-TETN_LDTLAQEVALLK 0.2666 0.5524 0.4278 0.2858 0.7406

FGFR1_VYSDPQPHIQWLK- 0.3239 0.6093 0.4849 0.2854 0.7299 TETN_LDTLAQEVALLK

LEP_DLLHVLAFSK-ATL4_ILWIPAGALR 0.2749 0.5597 0.4356 0.2848 0.7914

AMBP_ETLLQDFR-NCAM1_GLGEISAASEFK 0.3009 0.5854 0.4614 0.2845 0.8075

TIMP1_HLACLPR-SHBG_IALGGLLFPASNLR 0.2756 0.56 0.4361 0.2844 0.7406

AMBP_ETLLQDFR-FBLN1_TGYYFDGISR 0.3002 0.5842 0.4604 0.284 0.7754

LEP_DLLHVLAFSK- 0.3258 0.6093 0.4857 0.2835 0.7781 EGLN_GPITSAAELNDPQSILLR

F13B_GDTYPAELYITGSILR- 0.3058 0.5889 0.4655 0.2831 0.7326 TETN_LDTLAQEVALLK

BGH3_LTLLAPLNSVFK-DPEP2_LTLEQIDLIR 0.2504 0.5329 0.4098 0.2825 0.7513

PCD12_YQVSEEVPSGTVIGK- 0.3725 0.655 0.5319 0.2825 0.8075 C1QB_LEQGENVFLQATDK

LEP_DLLHVLAFSK-IBP2_LIQGAPTIR 0.3043 0.5865 0.4635 0.2822 0.7567

FGFR1_VYSDPQPHIQWLK-KIT_YVSELHLTR 0.3047 0.5868 0.4638 0.2821 0.7567

FA9_FGSGYVSGWGR- 0.3499 0.6314 0.5087 0.2815 0.8316 PRL_SWNEPLYHLVTEVR

FETUA_FSVVYAK-VTDB_ELPEHTVK 0.2854 0.5656 0.4435 0.2802 0.7727

LEP_DLLHVLAFSK-DEF1_IPACIAGER 0.3143 0.5941 0.4721 0.2798 0.7727 LEP_DLLHVLAFSK-CNTN1_TTKPYPADIVVQFK 0.2964 0.5759 0.4541 0.2795 0.7567

LEP_DLLHVLAFSK-VTDB_ELPEHTVK 0.3084 0.5874 0.4658 0.279 0.7647

FGFR1_VYSDPQ.PHIQ.WLK- 0.3997 0.678 0.5567 0.2783 0.7594 PRL_SWNEPLYHLVTEVR

PEDF_LQSLFDSPDFSK-LYAM1_SYYWIGIR 0.2851 0.5632 0.442 0.2781 0.7353

LEP_DLLHVLAFSK-PROS_SQDILLSVENTVIYR 0.3111 0.5886 0.4676 0.2775 0.762

PEDF_LQSLFDSPDFSK- 0.3337 0.6104 0.4898 0.2767 0.746 EGLN_GPITSAAELNDPQSILLR

CATD_VGFAEAAR-DPEP2_LTLEQIDLIR 0.2673 0.5437 0.4232 0.2764 0.7807

PCD12_YQVSEEVPSGTVIGK-PAEP_QDLELPK 0.3181 0.5944 0.4781 0.2763 0.7614

LEP_DLLHVLAFSK-FBLN1_TGYYFDGISR 0.3133 0.5892 0.4689 0.2759 0.7674

LEP_DLLHVLAFSK-LIRA3_EGAADSPLR 0.3533 0.6275 0.5056 0.2742 0.7781

LEP_DLLHVLAFSK-C163A_INPASLDK 0.3254 0.5994 0.4799 0.274 0.7487

ENPP2_TYLHTYESEI-PRL_SWNEPLYHLVTEVR 0.3718 0.6448 0.5258 0.273 0.7594

AMBP_ETLLQDFR- 0.2383 0.5111 0.3922 0.2728 0.8021

GELS_AQPVQVAEGSEPDGFWEALGGK

INHBC_LDFHFSSDR-PRL_SWNEPLYHLVTEVR 0.3363 0.6084 0.4898 0.2721 0.8075

HABP2_FLNWIK-VTDB_ELPEHTVK 0.3111 0.583 0.4645 0.2719 0.754

FGFR1_VYSDPQPHIQWLK-ATL4_ILWIPAGALR 0.3277 0.5994 0.4809 0.2717 0.7487

PEDF_TVQAVLTVPK-FBLN1_TGYYFDGISR 0.2862 0.5577 0.4393 0.2715 0.7781

LEP_DLLHVLAFSK-SHBG_IALGGLLFPASNLR 0.2726 0.544 0.4257 0.2714 0.7834

LEP_DLLHVLAFSK-SPRL1_VLTHSELAPLR 0.2983 0.5688 0.4509 0.2705 0.7594

AMBP_ETLLQDFR-ECM1_LLPAQLPAEK 0.2945 0.5647 0.4469 0.2702 0.7594

CATD_VGFAEAAR-ATL4_ILWIPAGALR 0.2485 0.5186 0.4009 0.2701 0.8102

TIMP1_HLACLPR-PGRP2_AGLLRPDYALLGHR 0.3477 0.6177 0.5 0.27 0.7299

HABP2_FLNWIK-DPEP2_LTLEQIDLIR 0.2628 0.5321 0.4147 0.2693 0.7567

INHBC_LDFHFSSDR-PROS_SQDILLSVENTVIYR 0.2636 0.5329 0.4155 0.2693 0.762

PEDF_LQSLFDSPDFSK- 0.3035 0.5726 0.4553 0.2691 0.762 PGRP2_AGLLRPDYALLGHR

INHBC_LDFHFSSDR-DPEP2_LTLEQIDLIR 0.2274 0.4953 0.3785 0.2679 0.7701

LEP_DLLHVLAFSK-NCAM1_GLGEISAASEFK 0.3081 0.5753 0.4588 0.2672 0.7834

FGFR1_VYSDPQPHIQWLK-IBP2_LIQGAPTIR 0.3703 0.6375 0.521 0.2672 0.7406

TIMP1JHLACL.PR-DPEP2_L.TLEQIDL.IR 0.3186 0.5854 0.4691 0.2668 0.7139

FGFR1_VYSDPQPHIQWLK- 0.3446 0.611 0.4949 0.2664 0.738 DPEP2_LTLEQIDLIR

PRG4_DQYYNIDVPSR- 0.3401 0.6064 0.4903 0.2663 0.7674 PRL_SWNEPLYHLVTEVR

AMBP_ETLLQDFR-AOCl_GDFPSPIHVSGPR 0.2915 0.5577 0.4417 0.2662 0.7513

CATD_VGFAEAAR-PROS_SQDILLSVENTVIYR 0.322 0.5874 0.4717 0.2654 0.7326

FGFR1_VYSDPQPHIQWLK- 0.4027 0.6681 0.5524 0.2654 0.7139 CSHJSLLLIESWLEPVR

ANGT_DPTFIPAPIQAK-DPEP2_LTLEQIDLIR 0.2851 0.5501 0.4346 0.265 0.6872

LEP_DLLHVLAFSK-DPEP2_LTLEQIDLIR 0.2975 0.5625 0.447 0.265 0.7567

ENPP2_TYLHTYESEI-DPEP2_LTLEQIDLIR 0.2707 0.5355 0.4201 0.2648 0.7273 AMBP_ETLLQDFR-TENX_LSQLSVTDVTTSSLR 0.2836 0.5484 0.4329 0.2648 0.746

FETUA_FSVVYAK-PRL_SWNEPLYHLVTEVR 0.3948 0.6594 0.544 0.2646 0.8075

CATD_VGFAEAAR-FBLN1_TGYYFDGISR 0.299 0.5624 0.4476 0.2634 0.7727

LEP_DLLHVLAFSK-PAEP_HLWYLLDLK 0.293 0.5562 0.4415 0.2632 0.7487

LEP_DLLHVLAFSK-LYAM1_SYYWIGIR 0.3292 0.5921 0.4775 0.2629 0.7487

KNG1_QVVAGLNFR-PRL_SWNEPLYHLVTEVR 0.391 0.6536 0.5391 0.2626 0.7941

PEDF_LQSLFDSPDFSK-DEF1_IPACIAGER 0.3043 0.5664 0.4522 0.2621 0.738

LEP_DLLHVLAFSK- 0.3446 0.6066 0.4924 0.262 0.7594

CS H_A H QLA 1 DTYQE F E ETY 1 P K

PEDF_LQSLFDSPDFSK-IBP2_LIQGAPTIR 0.3201 0.5807 0.4671 0.2606 0.7353

PEDF_LQSLFDSPDFSK-ATL4_ILWIPAGALR 0.2538 0.5143 0.4007 0.2605 0.7834

TIMP1_HLACLPR-TETN_LDTLAQEVALLK 0.3092 0.5696 0.4561 0.2604 0.7513

CATD_VGFAEAAR-ATS13_YGSQLAPETFYR 0.2666 0.5268 0.4134 0.2602 0.7513

HABP2_FLNWIK-TETN_LDTLAQEVALLK 0.3002 0.56 0.4467 0.2598 0.7219

FETUA_FSVVYAK-ATS13_YGSQLAPETFYR 0.2274 0.4866 0.3736 0.2592 0.7888

FA9_FGSGYVSGWGR-IBP2_LIQGAPTIR 0.2926 0.5516 0.4387 0.259 0.7326

HABP2_FLNWIK-ATL4_ILWIPAGALR 0.2711 0.53 0.4172 0.2589 0.746

PCD12_YQVSEEVPSGTVIGK- 0.2873 0.546 0.4333 0.2587 0.7701 SHBGJALGGLLFPASNLR

CD14_SWLAELQQ.WLKPGL.K- 0.2813 0.5399 0.4272 0.2586 0.7326 VTDB_ELPEHTVK

CATD_VGFAEAAR-C1QB_LEQGENVFLQATDK 0.3164 0.5749 0.4622 0.2585 0.7861

AMBP_ETLLQDFR-CHL1_VIAVNEVGR 0.3198 0.5781 0.4655 0.2583 0.754

CATD_VGFAEAAR-TENX_LSQLSVTDVTTSSLR 0.2821 0.5402 0.4277 0.2581 0.746

HABP2_FLNWIK-ATS13_YGSQLAPETFYR 0.2379 0.4959 0.3835 0.258 0.7701

PEDF_LQSLFDSPDFSK-SPRL1_VLTHSELAPLR 0.2922 0.5501 0.4377 0.2579 0.7433

TIMP1_HLACLPR-ATS13_YGSQLAPETFYR 0.2877 0.5452 0.4329 0.2575 0.7299

LEP_DLLHVLAFSK-FGFR1_IGPDNLPYVQILK 0.3158 0.5733 0.461 0.2575 0.7647

KNG1_DIPTNSPELEETLTHTITK- 0.2647 0.5221 0.4099 0.2574 0.7166 DPEP2_LTLEQIDLIR

AMBP_ETLLQDFR-CRIS3_AVSPPAR 0.3017 0.5591 0.4469 0.2574 0.746

PEDFJ.QSLFDSPDFSK- 0.2734 0.5306 0.4185 0.2572 0.746 FGFR1JGPDNLPYVQILK

BGH3_LTLLAPLNSVFK- 0.3529 0.6101 0.498 0.2572 0.7166 PROS_SQDILLSVENTVIYR

FGFR1_VYSDPQPHIQWLK- 0.3665 0.6235 0.5115 0.257 0.7406 FBLN1_TGYYFDGISR

PEDF_LQSLFDSPDFSK-CRIS3_AVSPPAR 0.2828 0.5396 0.4277 0.2568 0.7326

FGFR1_VYSDPQPHIQWLK- 0.3684 0.625 0.5131 0.2566 0.7567 NCAM1_GLGEISAASEFK

HABP2_FLNWIK-FBLN1_TGYYFDGISR 0.3133 0.5693 0.4578 0.256 0.7594

PCD12_YQVSEEVPSGTVIGK- 0.3126 0.5679 0.4566 0.2553 0.754 ATL4_ILWIPAGALR

BGH3_LTLLAPLNSVFK- 0.3409 0.5962 0.4849 0.2553 0.7166 EGLN_GPITSAAELNDPQ.SIL.LR

INHBC_LDFHFSSDR-FBLN1_TGYYFDGISR 0.2594 0.5146 0.4034 0.2552 0.762

HABP2_FLNWIK-PRL_SWNEPLYHLVTEVR 0.3918 0.6469 0.5357 0.2551 0.7647

FETUA_FSVVYAK-SHBG_IALGGLLFPASNLR 0.244 0.4991 0.3879 0.2551 0.7861

CD14_LTVGAAQVPAQLLVGALR- 0.3024 0.5571 0.4461 0.2547 0.7273 C1QB_LEQGENVFLQATDK

FETU A_FS VVYAK-LYAM 1_SYYWIG 1 R 0.3164 0.5705 0.4597 0.2541 0.7326

PCD12_YQVSEEVPSGTVIGK- 0.3273 0.5807 0.4702 0.2534 0.7353 SPRL1_VLTHSELAPLR

INHBC_LDFHFSSDR-TETN_LDTLAQEVALLK 0.2372 0.4898 0.3797 0.2526 0.7112

PCD12_YQVSEEVPSGTVIGK- 0.3571 0.6096 0.4995 0.2525 0.7513 PGRP2_AGLLRPDYALLGHR

HABP2_FLNWIK-PGRP2_AGLLRPDYALLGHR 0.3269 0.5784 0.4688 0.2515 0.7299

TIMP1_HLACLPR-C1QB_LEQGENVFLQATDK 0.3548 0.6058 0.4964 0.251 0.7166

FETUA_FSVVYAK-FBLN1_TGYYFDGISR 0.2983 0.549 0.4397 0.2507 0.7326

AM BP_ETLLQDFR-LYAM 1_SYYWIGI R 0.3322 0.5822 0.4732 0.25 0.7406

LEP_DLLHVLAFSK-ECM1_LLPAQLPAEK 0.2975 0.5475 0.4385 0.25 0.754

FGFR1_VYSDPQ.PHIQ.WLK- 0.3869 0.6369 0.5279 0.25 0.7166 FGFR1JGPDNLPYVQILK

LEP_DLLHVLAFSK- 0.2824 0.5323 0.4234 0.2499 0.7406

GELS_AQPVQVAEGSEPDGFWEALGGK

KNG1_DIPTNSPELEETLTHTITK- 0.27 0.5198 0.4109 0.2498 0.7246 TETN_LDTLAQEVALLK

LEP_DLLHVLAFSK-CADH5_YTFVVPEDTR 0.3062 0.5558 0.447 0.2496 0.7219

AMBP_ETLLQDFR-PAPP1_DIPHWLNPTR 0.322 0.5714 0.4627 0.2494 0.738

FETUA_FSVVYAK-C1QB_LEQGENVFLQATDK 0.3363 0.5857 0.477 0.2494 0.7674

LEP_DLLHVLAFSK-S0M2.CSH_SVEGSCGF 0.3424 0.5918 0.4831 0.2494 0.7487

KNG1_DIPTNSPELEETLTHTITK- 0.276 0.5253 0.4204 0.2493 0.7188 PAEP_QDLELPK

ITIH3_ALDLSLK-TETN_LDTLAQEVALLK 0.2783 0.5274 0.4188 0.2491 0.7353

CATD_VGFAEAAR-ECM1_ELLALIQLER 0.3183 0.5673 0.4587 0.249 0.7433

HEMO_NFPSPVDAAFR-TETN_LDTLAQEVALLK 0.2602 0.509 0.4006 0.2488 0.7166

FGFR1_VYSDPQPHIQWLK- 0.3299 0.5787 0.4702 0.2488 0.7193 A0C1_GDFPSPIHVSGPR

TIMP1_HLACLPR-SPRL1_VLTHSELAPLR 0.3416 0.5903 0.4819 0.2487 0.7166

HABP2_FLNWIK-C1QB_LEQGENVFLQATDK 0.3443 0.5929 0.4845 0.2486 0.7273

ANGT_DPTFIPAPIQAK-ATL4_ILWIPAGALR 0.3032 0.5513 0.4431 0.2481 0.7273

INHBC_LDFHFSSDR- 0.2662 0.514 0.406 0.2478 0.7273 C1QB_LEQGENVFLQATDK

INHBC_LDFHFSSDR- 0.2994 0.5463 0.4387 0.2469 0.738 EGLN_GPITSAAELNDPQSILLR

PCD12_YQVSEEVPSGTVIGK- 0.3635 0.6098 0.5025 0.2463 0.7353 CNTN1_FIPLIPIPER

AMBP_ETLLQDFR-CRAC1_GVALADFNR 0.1957 0.442 0.3346 0.2463 0.7781

KNG1_DIPTNSPELEETLTHTITK- 0.3307 0.5769 0.4696 0.2462 0.7005 DEF1JPACIAGER

ENPP2_TYLHTYESEI-TETN_LDTLAQ.EVAL.LK 0.2941 0.5402 0.4329 0.2461 0.6898

LEP_DLLHVLAFSK-KIT_LCLHCSVDQEGK 0.2845 0.5303 0.4232 0.2458 0.7594

BGH3_LTLLAPLNSVFK- 0.4016 0.6474 0.5403 0.2458 0.7754 PRL_SWNEPLYHLVTEVR

RET4_YWGVASFLQK-DPEP2_LTLEQIDLIR 0.3028 0.5484 0.4413 0.2456 0.7273

ANGT_DPTFIPAPIQAK-TETN_LDTLAQEVALLK 0.2941 0.5396 0.4326 0.2455 0.6684

AMBP_ETLLQDFR- 0.3684 0.6133 0.5066 0.2449 0.7353

CS H_A H QLA 1 DTYQE F E ETY 1 P K

LBP_ITGFLKPGK-PRL_SWNEPLYHLVTEVR 0.385 0.6297 0.523 0.2447 0.7594

PEDF_LQSLFDSPDFSK-CNTN1_FIPLI PIPER 0.3107 0.5551 0.4486 0.2444 0.7326

TIMPIJHLACLPR- 0.3835 0.6279 0.5214 0.2444 0.7353 EGLN_GPITSAAELNDPQSILLR

FETUA_FSVVYAK-PROS_SQDILLSVENTVIYR 0.3518 0.5962 0.4896 0.2444 0.7193

ITIH3_ALDLSLK-SHBG_IALGGLLFPASNLR 0.2474 0.4916 0.3851 0.2442 0.738

APOC3_GWVTDGFSSLK-DPEP2_LTLEQJDLIR 0.2029 0.447 0.3406 0.2441 0.7299

FA9_SALVLQYLR-TETN_LDTLAQEVALLK 0.2183 0.4621 0.3559 0.2438 0.7299

ITIH3_ALDLSLK-IBP2_LIQGAPTIR 0.3529 0.5967 0.4905 0.2438 0.7166

TIMP1_HLACLPR-FBLN1_TGYYFDGISR 0.3337 0.5772 0.4711 0.2435 0.6898

FETUA_FSVVYAK-DEF1_IPACIAGER 0.3277 0.5711 0.465 0.2434 0.7219

KNG1_DIPTNSPELEETLTHTITK- 0.3239 0.5673 0.4612 0.2434 0.7433 VTDB_ELPEHTVK

ENPP2_TYLHTYESEI-SHBG_IALGGLLFPASNLR 0.2689 0.5122 0.4061 0.2433 0.7246

AM B P_ETLLQD F R-D E F 1_YGTC 1 YQG R 0.3009 0.544 0.438 0.2431 0.7112

AMBP_ETLLQDFR-CADH5_YEIVVEAR 0.299 0.542 0.4361 0.243 0.7032

F13B_GDTYPAELYITGSILR- 0.31 0.5527 0.4469 0.2427 0.7166 DPEP2_LTLEQIDLIR

PCD12_YQVSEEVPSGTVIGK- 0.3503 0.5929 0.4872 0.2426 0.7086 PAPP1_DIPHWLNPTR

HABP2_FLNWIK-PR0S_SQDILLSVENTVIYR 0.3556 0.5982 0.4924 0.2426 0.7005

BGH3_LTLLAPLNSVFK-FBLN1_TGYYFDGISR 0.3096 0.5519 0.4463 0.2423 0.7594

INHBC_LDFHFSSD R-ATS 13_YGSQLAP ETFYR 0.2097 0.4519 0.3463 0.2422 0.7353

LEP_DLLHVLAFSK-ATS13_YGSQLAPETFYR 0.2966 0.5388 0.4332 0.2422 0.7513

CFAB_YGLVTYATYPK-PRL_SWNEPLYHLVTEVR 0.4042 0.6463 0.5408 0.2421 0.7487

FETUA_FSVVYAK-ATL4_ILWIPAGALR 0.2734 0.5154 0.4099 0.242 0.7513

PCD12_AHDADLGINGK- 0.4201 0.662 0.5565 0.2419 0.7567 PRL_SWNEPLYHLVTEVR

PCD12_YQVSEEVPSGTVIGK-DEF1_IPACIAGER 0.3578 0.5997 0.4942 0.2419 0.6979

TIMP1_HLACLPR-PR0S_SQDILLSVENTVIYR 0.3933 0.6352 0.5298 0.2419 0.7112

BGH3_LTLLAPLNSVFK- 0.2692 0.5108 0.4055 0.2416 0.738 SHBGJALGGLLFPASNLR

PEDF_LQSLFDSPDFSK- 0.2421 0.4837 0.3784 0.2416 0.738 GELS_AQPVQVAEGSEPDGFWEALGGK

LEP_DLLHVLAFSK-TENX_LSQLSVTDVTTSSLR 0.3101 0.5513 0.4462 0.2412 0.7433 LEP_DLLHVLAFSK-CHL1_VIAVNEVGR 0.3232 0.5644 0.4592 0.2412 0.7594

ANGT_DPTFIPAPIQAK- 0.2613 0.5023 0.3973 0.241 0.7861 SHBGJALGGLLFPASNLR

AFAM_HFQNLGK-DPEP2_LTLEQIDLIR 0.2632 0.5041 0.3991 0.2409 0.746

CATD_VGFAEAAR-A0C1_DTVIVWPR 0.293 0.5338 0.4288 0.2408 0.7193

LEP_DLLHVLAFSK-A0C1_AVHSFLWSK 0.2937 0.5345 0.4296 0.2408 0.6925

CATD_VGFAEAAR-PAPP1_DIPHWLNPTR 0.302 0.5428 0.4379 0.2408 0.7406

TIMP1_HLACLPR-ATL4_ILWIPAGALR 0.2911 0.5318 0.4269 0.2407 0.7219

BGH3_LTLLAPLNSVFK-KIT_YVSELHLTR 0.2534 0.4939 0.3891 0.2405 0.7299

F13B_GDTYPAELYITGSILR- 0.2926 0.5323 0.4278 0.2397 0.738 SHBGJALGGLLFPASNLR

FGFR1_VYSDPQPHIQWLK-VTDB_ELPEHTVK 0.4114 0.6509 0.5465 0.2395 0.6818

CATD_VGFAEAAR-KIT_LCLHCSVDQEGK 0.2741 0.5134 0.4091 0.2393 0.7353

PCD12_YQVSEEVPSGTVIGK- 0.3062 0.5455 0.4412 0.2393 0.762 ATS13_YGSQLAPETFYR

AMBP_ETLLQDFR-MUC18_EVTVPVFYPTEK 0.3092 0.5484 0.4441 0.2392 0.7433

CD14_LTVGAAQVPAQLLVGALR- 0.3888 0.6279 0.5237 0.2391 0.7594 PRL_SWNEPLYHLVTEVR

F13B_GDTYPAELYITGSILR-ATL4_ILWIPAGALR 0.2873 0.5259 0.4219 0.2386 0.7594

LEP_DLLHVLAFSK-MUC18_EVTVPVFYPTEK 0.3118 0.5503 0.4463 0.2385 0.7326

PEDFJ.QSLFDSPDFSK- 0.2949 0.5332 0.4293 0.2383 0.7005 A0C1_GDFPSPIHVSGPR

FETUA_FSVVYAK-PGRP2_AGLLRPDYALLGHR 0.3401 0.5784 0.4745 0.2383 0.7299

LEP_DLLHVLAFSK-CRAC1_GVALADFNR 0.244 0.4822 0.3784 0.2382 0.762

AP0C3_GWVTDGFSSLK- 0.3005 0.5382 0.4346 0.2377 0.7647 PRL_SWNEPLYHLVTEVR

FGFR1_VYSDPQPHIQWLK- 0.3424 0.5795 0.4762 0.2371 0.7112 GELS_AQ.PVQ.VAEGSEPDGFWEAL.GGK

R ET4_YWG V AS F LQK- ATS 13_YG SQLA P ETF YR 0.2813 0.5181 0.4149 0.2368 0.7353

TIMP1_HLACLPR-KIT_LCLHCSVDQEGK 0.3069 0.5437 0.4405 0.2368 0.7433

KNG1_QVVAGLNFR-SHBG_IALGGLLFPASNLR 0.2383 0.4749 0.3718 0.2366 0.7647

HABP2_FLNWIK-PAEP_QDLELPK 0.2989 0.535 0.4356 0.2361 0.7102

ALS_IRPHTFTGLSGLR-FBLN1_TGYYFDGISR 0.3394 0.5752 0.4724 0.2358 0.738

KNG1_DIPTNSPELEETLTHTITK- 0.2632 0.4988 0.3961 0.2356 0.7513 ATL4_ILWI PAGALR

ENPP2_TYLHTYESEI-VTDB_ELPEHTVK 0.31 0.5449 0.4425 0.2349 0.6658

CBPN_EALIQFLEQVHQGIK- 0.3232 0.558 0.4556 0.2348 0.6952 FBLN1_TGYYFDGISR

C05_VFQFLEK-DPEP2_LTLEQIDLIR 0.2707 0.5055 0.4032 0.2348 0.6845

LEP_DLLHVLAFSK-PAPP1_DIPHWLNPTR 0.3288 0.5635 0.4612 0.2347 0.746

PCD12_YQVSEEVPSGTVIGK- 0.3469 0.5816 0.4793 0.2347 0.7487 ECM1_LLPAQLPAEK

ANGT_DPTFIPAPIQAK- 0.3149 0.5495 0.4472 0.2346 0.6898 ATS13_YGSQLAPETFYR

F13B_GDTYPAELYITGSILR- 0.4223 0.6568 0.5546 0.2345 0.7727 PRL_SWNEPLYHLVTEVR

HABP2_FLNWIK-DEF1_IPACIAGER 0.3499 0.5842 0.4821 0.2343 0.7273

F13B_GDTYPAELYITGSILR- 0.2839 0.5181 0.416 0.2342 0.7112 KIT_LCLHCSVDQEGK

C05_VFQFLEK-ATS13_YGSQLAPETFYR 0.2609 0.495 0.393 0.2341 0.7139

FGFR1_VYSDPQ.PHIQ.WLK- 0.3605 0.5944 0.4924 0.2339 0.7086 MUC18_EVTVPVFYPTEK

FGFR1_VYSDPQPHIQWLK- 0.4106 0.6445 0.5426 0.2339 0.7299 PROS_SQDILLSVENTVIYR

F13B_GDTYPAELYITGSILR- 0.2937 0.5274 0.4255 0.2337 0.7086 ATS13_YGSQLAPETFYR

CLUS_LFDSDPITVTVPVEVSR- 0.3005 0.5341 0.4323 0.2336 0.6872 DPEP2_LTL.EQ.IDUR

CD14_LTVGAAQVPAQLLVGALR- 0.3424 0.5758 0.474 0.2334 0.6845 DEF1JPACIAGER

RET4_YWGVASFLQK-ATL4_ILWIPAGALR 0.299 0.5323 0.4306 0.2333 0.7914

C05_TLLPVSKPEIR-ATL4_ILWIPAGALR 0.2681 0.5012 0.3996 0.2331 0.7273

CATD_VGFAEAAR-PGRP2_AGLLRPDYALLGHR 0.3258 0.5586 0.4571 0.2328 0.746

FETUA_FSVVYAK-KIT_LCLHCSVDQEGK 0.2492 0.4814 0.3802 0.2322 0.7433

INHBC_LDFHFSSDR-A0C1_GDFPSPIHVSGPR 0.2696 0.5017 0.4006 0.2321 0.7246

ITIH3_ALDLSLK-DEF1_IPACIAGER 0.3273 0.5591 0.4581 0.2318 0.6952

IBP6_HLDSVLQQLQTEVYR- 0.2866 0.5184 0.4173 0.2318 0.6925 TETN_LDTLAQEVALLK

1 N H BC_LD F H FSS D R-ATL4J LWI P AG ALR 0.2357 0.4671 0.3662 0.2314 0.7299

HEMOJMFPSPVDAAFR- 0.4148 0.646 0.5452 0.2312 0.762 PRL_SWNEPLYHLVTEVR

PCD12_YQVSEEVPSGTVIGK- 0.4182 0.6492 0.5485 0.231 0.7112 CS H_A H QLA 1 DTYQE F E ETY 1 P K

ANGT_DPTFIPAPIQAK- 0.4336 0.6646 0.5639 0.231 0.7674 PRL_SWNEPLYHLVTEVR

KNG1_DIPTNSPELEETLTHTITK- 0.2609 0.4918 0.3912 0.2309 0.738 ATS13_YGSQLAPETFYR

F13B_GDTYPAELYITGSILR- 0.4167 0.6471 0.5467 0.2304 0.7005 PROS_SQDILLSVENTVIYR

CD14_LTVGAAQVPAQLLVGALR- 0.2508 0.4811 0.3807 0.2303 0.7406 DPEP2_LTLEQIDLIR

FGFR1_VYSDPQPHIQWLK-LYAM1_SYYWIGIR 0.4008 0.6311 0.5307 0.2303 0.6872

ITIH3_ALDLSLK-PRL_SWNEPLYHLVTEVR 0.4076 0.6378 0.5375 0.2302 0.7567

PEDF_TVQAVLTVPK-NCAM1_GLGEISAASEFK 0.3164 0.5466 0.4463 0.2302 0.762

PCD12_YQVSEEVPSGTVIGK-VTDB_ELPEHTVK 0.3801 0.6101 0.5099 0.23 0.7326

C05_TLLPVSKPEIR-DEF1_IPACIAGER 0.3488 0.5787 0.4785 0.2299 0.6765

TIMP1_HLACLPR-IBP2_LIQGAPTIR 0.379 0.6087 0.5085 0.2297 0.7246

CD14_LTVGAAQVPAQLLVGALR- 0.2541 0.4834 0.3835 0.2293 0.7273 ATS13_YGSQLAPETFYR

PRG4JTEVWGIPSPIDTVFTR- 0.2749 0.5041 0.4042 0.2292 0.7513 PROS_SQDILLSVENTVIYR

CFAB_YGLVTYATYPK-DPEP2_LTL.EQ.IDUR 0.2787 0.5079 0.408 0.2292 0.7059

PCD12_YQVSEEVPSGTVIGK- 0.3424 0.5711 0.4714 0.2287 0.7032 AOCl_GDFPSPIHVSGPR

LEP_DLLHVLAFSK-CRIS3_YEDLYSNCK 0.3299 0.5583 0.4587 0.2284 0.7326

INHBC_LDFHFSSDR-KIT_YVSELHLTR 0.2338 0.4621 0.3626 0.2283 0.7139

HEMO_NFPSPVDAAFR-DPEP2_LTLEQIDLIR 0.2986 0.5268 0.4274 0.2282 0.6658

C08A_SLLQPNK-PRL_SWNEPLYHLVTEVR 0.3899 0.618 0.5186 0.2281 0.738

R ET4_YWG V AS F LQK- P R L_S W N E P LYH LVT E V R 0.4193 0.6474 0.548 0.2281 0.7807

FGFR1_VYSDPQ.PHIQ.WLK- 0.3514 0.5793 0.4799 0.2279 0.6765 TENX_LNWEAPPGAFDSFLLR

CD14_LTVGAAQVPAQLLVGALR- 0.264 0.4913 0.3922 0.2273 0.7166 TETN_LDTLAQEVALLK

ENPP2_TYLHTYESEI- 0.342 0.5693 0.4702 0.2273 0.6925 EGLN_GPITSAAELNDPQSILLR

FETUA_FSVVYAK- 0.3805 0.6078 0.5087 0.2273 0.7139 EGLN_GPITSAAELNDPQSILLR

KNG1_DIPTNSPELEETLTHTITK- 0.3439 0.5711 0.4721 0.2272 0.6925 IBP2_LIQGAPTIR

ENPP2_TYLHTYESEI- 0.319 0.546 0.4471 0.227 0.6872 PGRP2_AGLLRPDYALLGHR

FA9_FGSGYVSGWGR- 0.2213 0.4481 0.3493 0.2268 0.7861 SHBGJALGGLLFPASNLR

ENPP2_TYLHTYESEI-KIT_YVSELHLTR 0.2896 0.5163 0.4175 0.2267 0.7139

F13B_GDTYPAELYITGSILR- 0.3511 0.5778 0.479 0.2267 0.7273 FBLN1_TGYYFDGISR

RET4_YWGVASFLQK-TETN_LDTLAQEVALLK 0.3028 0.5291 0.4305 0.2263 0.7273

C05_VFQFLEK-FBLN1_TGYYFDGISR 0.3084 0.5347 0.4361 0.2263 0.6925

HABP2_FLNWIK-SHBG_IALGGLLFPASNLR 0.2817 0.5079 0.4093 0.2262 0.7406

HABP2_FLNWIK-ECM1_ELLALIQLER 0.3164 0.542 0.4436 0.2256 0.7005

LEP_DLLHVLAFSK-VGFR1_YLAVPTSK 0.2474 0.473 0.3747 0.2256 0.6791

BGH3_LTLLAPLNSVFK-ATL4_ILWIPAGALR 0.2809 0.5064 0.4081 0.2255 0.7567

C05_VFQFLEK-SHBG_IALGGLLFPASNLR 0.2568 0.4822 0.384 0.2254 0.7299

CD14_LTVGAAQVPAQLLVGALR- 0.2613 0.4863 0.3882 0.225 0.7353 ATL4_ILWIPAGALR

FA5_NFFNPPIISR-ECM 1_ELLALIQLER 0.3081 0.5329 0.4349 0.2248 0.7246

AP0C3_GWVTDGFSSLK- 0.1995 0.4242 0.3263 0.2247 0.7246 ATS13_YGSQLAPETFYR

BGH3_LTLLAPLNSVFK-SPRL1_VLTHSELAPLR 0.3194 0.544 0.4461 0.2246 0.7005

PRG4JTEVWGIPSPIDTVFTR- 0.2817 0.5061 0.4083 0.2244 0.7406 ATL4_ILWIPAGALR

C06_ALNHLPLEYNSALYSR- 0.2873 0.5114 0.4137 0.2241 0.7166 DPEP2_LTLEQIDLIR

CATD_VGFAEAAR-PSG1_FQLPGQK 0.3337 0.5577 0.4601 0.224 0.6845

CD14_LTVGAAQVPAQLLVGALR- 0.3103 0.5341 0.4366 0.2238 0.7166 FBLN1_TGYYFDGISR

LEP_DLLHVLAFSK-IBP1_VVESLAK 0.3409 0.5647 0.4671 0.2238 0.7406

ENPP2_TYLHTYESEI-PAEP_HLWYLLDLK 0.3118 0.5355 0.438 0.2237 0.6791

C05_TLLPVSKPEIR-PRL_SWNEPLYHLVTEVR 0.4238 0.6474 0.55 0.2236 0.7513

FBLN3_IPSNPSHR-CADH5_YEIVVEAR 0.612 0.3887 0.486 0.2233 0.6979

ENPP2_TYLHTYESEI-ATL4_ILWIPAGALR 0.2745 0.4977 0.4004 0.2232 0.7299

KNG1_QVVAGLNFR-FBLN1_TGYYFDGISR 0.3122 0.5353 0.438 0.2231 0.7166

PEDF_TVQAVLTVPK-ECM1_LLPAQLPAEK 0.3115 0.5344 0.4372 0.2229 0.7166

VTNC_VDTVDPPYPR-PRL_SWNEPLYHLVTEVR 0.3925 0.6154 0.5182 0.2229 0.7487

INHBC_LDFHFSSDR- 0.2685 0.4913 0.3941 0.2228 0.7299 PGRP2_AGLLRPDYALLGHR

ENPP2_TYLHTYESEI-ATS13_YGSQLAPETFYR 0.2892 0.5119 0.4149 0.2227 0.7032

AMBP_ETLLQ.DFR-IBP1_VVESL.AK 0.3356 0.558 0.461 0.2224 0.7353

PRG4JTEVWGIPSPIDTVFTR- 0.3239 0.5463 0.4494 0.2224 0.7273 DEF1JPACIAGER

ITIH3_ALDLSLK-DPEP2_LTLEQIDLIR 0.3066 0.5286 0.4318 0.222 0.6979

TIMP1_HLACLPR-PAPP1_DIPHWLNPTR 0.3439 0.5659 0.4691 0.222 0.6979

ANGT_DPTFIPAPIQAK-KIT_YVSELHLTR 0.3028 0.5245 0.4278 0.2217 0.6551

ENPP2_TEFLSNYLTNVDDITLVPGTLGR- 0.3149 0.5361 0.4397 0.2212 0.7299 FBLN1_TGYYFDGISR

KNG1_DIPTNSPELEETLTHTITK- 0.3171 0.5382 0.4418 0.2211 0.7273 SPRL1_VLTHSELAPLR

HABP2_FLNWIK-SPRL1_VLTHSELAPLR 0.3303 0.5513 0.455 0.221 0.7005

AFAM_HFQNLGK-FBLN1_TGYYFDGISR 0.3084 0.5294 0.4331 0.221 0.7594

CATD_VGFAEAAR-MUC18_EVTVPVFYPTEK 0.3005 0.5213 0.425 0.2208 0.7166

PRG4_DQYYNIDVPSR-TETN_LDTLAQEVALLK 0.2745 0.495 0.3989 0.2205 0.7139

FBLN3JPSNPSHR- 0.621 0.4006 0.4967 0.2204 0.7112 TIE1_VSWSLPLVPGPLVGDGFLLR

LEP_DLLHVLAFSK-NOTUM_GLADSGWFLDNK 0.2771 0.4974 0.4014 0.2203 0.7219

CLUS_LFDSDPITVTVPVEVSR- 0.2858 0.5061 0.4101 0.2203 0.7594 ATL4_ILWIPAGALR

PRG4JTEVWGIPSPIDTVFTR- 0.2915 0.5117 0.4157 0.2202 0.6952 CNTNIJTKPYPADIVVQFK

FA9_SALVLQYLR-DEF1_IPACIAGER 0.3318 0.5519 0.456 0.2201 0.6925

INHBC_LDFHFSSDR-PAEP_QDLELPK 0.2596 0.4796 0.387 0.22 0.6989

R ET4_YWG V AS F LQ.K- P A E P_QD LE L P K 0.2973 0.5172 0.4246 0.2199 0.7273

INHBC_LDFHFSSDR-DEF1_IPACIAGER 0.3084 0.5283 0.4324 0.2199 0.7219

C05_VFQFLEK-C1QB_LEQGENVFLQATDK 0.3518 0.5714 0.4757 0.2196 0.7139

C06_ALNHLPLEYNSALYSR- 0.4208 0.6404 0.5447 0.2196 0.7513 PRL_SWNEPLYHLVTEVR

F13B_GDTYPAELYITGSILR-DEF1_IPACIAGER 0.3741 0.5935 0.4979 0.2194 0.7059

ITIH3_ALDLSLK-PAEP_QDLELPK 0.3069 0.5262 0.4339 0.2193 0.7017

PRG4JTEVWGIPSPIDTVFTR- 0.2896 0.5084 0.4131 0.2188 0.7353 C1QB_LEQGENVFLQATDK CD14_LTVGAAQ.VPAQ.LLVGAL.R- 0.3827 0.6014 0.5061 0.2187 0.7059 CSHJSLLLIESWLEPVR

PROS_FSAEFDFR-PROS_SQDILLSVENTVIYR 0.3661 0.5845 0.4893 0.2184 0.754

CATD_VGFAEAAR-FGFR1_IGPDNLPYVQILK 0.3069 0.5251 0.43 0.2182 0.762

TIMP1_HLACLPR-IBP1_VVESLAK 0.3526 0.5708 0.4757 0.2182 0.7112

ITIH3_ALDLSLK-FBLN1_TGYYFDGISR 0.3201 0.5382 0.4431 0.2181 0.7112

Tl MP1_H LACLPR-LYAM 1_SYYWIG 1 R 0.3635 0.5816 0.4865 0.2181 0.7032

PRG4JTEVWGIPSPIDTVFTR- 0.2451 0.463 0.368 0.2179 0.7273 ATS13_YGSQLAPETFYR

CD14_LTVGAAQVPAQLLVGALR- 0.3262 0.544 0.449 0.2178 0.7219 PGRP2_AGLLRPDYALLGHR

CATD_VGFAEAAR-SPRL1_VLTHSELAPLR 0.3247 0.5425 0.4476 0.2178 0.7139

TIMP1_HLACLPR-DEF1_IPACIAGER 0.3699 0.5877 0.4928 0.2178 0.6765

FA9_FGSGYVSGWGR- 0.2949 0.5125 0.4177 0.2176 0.7112 NCAM1_GLGEISAASEFK

AFAM_DADPDTFFAK- 0.4118 0.6294 0.5345 0.2176 0.7594 PRL_SWNEPLYHLVTEVR

ENPP2_TYLHTYESEI-A0C1_GDFPSPIHVSGPR 0.3205 0.5379 0.4431 0.2174 0.6898

PCD12_YQVSEEVPSGTVIGK- 0.3277 0.5449 0.4502 0.2172 0.7059 TENX_LNWEAPPGAFDSFLLR

B2MG_VNHVTLSQPK-TETN_LDTLAQEVALLK 0.2858 0.5026 0.4081 0.2168 0.7005

CATD_VGFAEAAR- 0.2749 0.4916 0.3971 0.2167 0.7273

GELS_AQPVQVAEGSEPDGFWEALGGK

PCD12_YQVSEEVPSGTVIGK- 0.2715 0.4878 0.3935 0.2163 0.7299 KIT_LCLHCSVDQEGK

PEDF_TVQAVLTVPK-PAPP1_DIPHWLNPTR 0.3243 0.5402 0.4461 0.2159 0.7487

PRG4JTEVWGIPSPIDTVFTR- 0.2662 0.4819 0.3879 0.2157 0.7032 DPEP2_LTLEQIDLIR

FA9_FGSGYVSGWGR- 0.2843 0.5 0.406 0.2157 0.738 A0C1_GDFPSPIHVSGPR

PEDF_LQSLFDSPDFSK-CRAC1_GVALADFNR 0.1942 0.4097 0.3157 0.2155 0.7086

INHBC_LDFHFSSDR-ECM 1_LLPAQLPAEK 0.2775 0.493 0.3991 0.2155 0.7059

HEM0_NFPSPVDAAFR-ATL4_ILWIPAGALR 0.2817 0.4971 0.4032 0.2154 0.7059

ENPP2_TYLHTYESEI-PR0S_SQDILLSVENTVIYR 0.3405 0.5557 0.4619 0.2152 0.6658

VTNC_GQYCYELDEK-TETN_LDTLAQEVALLK 0.2741 0.4892 0.3955 0.2151 0.6711

PRG4_DQYYNIDVPSR-PAEP_HLWYLLDLK 0.2847 0.4997 0.406 0.215 0.6872

FETUA_FSVVYAK-SPRL1_VLTHSELAPLR 0.3145 0.5294 0.4357 0.2149 0.7193

FETUA_FSVVYAK-A0C1_DNGPNYVQR 0.3103 0.5251 0.4315 0.2148 0.6845

CLUS_ASSIIDELFQDR-FBLN1_TGYYFDGISR 0.342 0.5568 0.4632 0.2148 0.7139

ENPP2_TYLHTYESEI-PAPP1_DIPHWLNPTR 0.3243 0.539 0.4454 0.2147 0.7032

KNG1_DIPTNSPELEETLTHTITK- 0.3322 0.5469 0.4533 0.2147 0.7005 PGRP2_AGLLRPDYALLGHR

INHBC_LDFHFSSDR-VTDB_ELPEHTVK 0.2545 0.4691 0.3756 0.2146 0.7059

PEDF_LQSLFDSPDFSK- 0.2787 0.4933 0.3997 0.2146 0.7112 TENX_LSQLSVTDVTTSSLR LBPJTLPDFTGDLR-DEF1JPACIAGER 0.3183 0.5329 0.4393 0.2146 0.7273

CATD_VGFAEAAR-SHBG_IALGGLLFPASNLR 0.2839 0.4983 0.4048 0.2144 0.7674

PEDF_LQSLFDSPDFSK-CHL1_VIAVNEVGR 0.3296 0.544 0.4505 0.2144 0.7273

Tl MP1_H LACLPR-CH L1_VI AVN EVG R 0.3586 0.5726 0.4793 0.214 0.7005

ITIH3_ALDLSLK-ATL4_ILWIPAGALR 0.2941 0.5079 0.4147 0.2138 0.7326

CATD_VGFAEAAR-EGLN_TQILEWAAER 0.3209 0.5347 0.4415 0.2138 0.762

PROS_FSAEFDFR-PRL_SWNEPLYHLVTEVR 0.4163 0.63 0.5368 0.2137 0.7513

HABP2_FLNWIK-KIT_LCLHCSVDQEGK 0.2673 0.4808 0.3877 0.2135 0.7166

ITIH3_ALDLSLK-KIT_LCLHCSVDQEGK 0.2843 0.4977 0.4047 0.2134 0.746

CATD_VGFAEAAR- 0.3533 0.5667 0.4737 0.2134 0.7273

CS H_A H QLA 1 DTYQE F E ETY 1 P K

BGH3_LTLLAPLNSVFK- 0.3273 0.5405 0.4476 0.2132 0.6845 NCAM1_GLGEISAASEFK

FGFR1_VYSDPQPHIQWLK- 0.3752 0.5883 0.4954 0.2131 0.7005 PAPP1_DIPHWLNPTR

RET4_YWGVASFLQK-SHBG_IALGGLLFPASNLR 0.2896 0.5026 0.4098 0.213 0.7032

C05_VFQFLEK-TETN_LDTLAQEVALLK 0.3039 0.5169 0.4241 0.213 0.7032

FETUA_FSVVYAK-IBP2_LIQGAPTIR 0.359 0.572 0.4791 0.213 0.6845

TIMP1_HLACLPR-VTDB_ELPEHTVK 0.3899 0.6029 0.51 0.213 0.6791

APOH_ATVVYQGER-PRL_SWNEPLYHLVTEVR 0.4001 0.6128 0.5201 0.2127 0.746

KNG1_DIPTNSPELEETLTHTITK- 0.3118 0.5245 0.4318 0.2127 0.6898 LYAM1_SYYWIGIR

TIMP1_HLACLPR- 0.362 0.5746 0.4819 0.2126 0.6952 TENX_LNWEAPPGAFDSFLLR

IBP6_GAQTLYVPNCDHR- 0.4287 0.6413 0.5487 0.2126 0.7487 PRL_SWNEPLYHLVTEVR

FBLN3JPSNPSHR- 0.5705 0.3581 0.4507 0.2124 0.7487 PSG3_VSAPSGTGH LPG LN PL

CLUS_LFDSDPITVTVPVEVSR- 0.3737 0.586 0.4934 0.2123 0.6872 DEF1JPACIAGER

BGH3_LTLLAPLNSVFK- 0.3118 0.5239 0.4315 0.2121 0.6952 A0C1_GDFPSPIHVSGPR

FBLN3_IPSNPSHR-IBP3_YGQPLPGYTTK 0.6056 0.3936 0.486 0.212 0.6979

CATD_VGFAEAAR-PAEP_HLWYLLDLK 0.2994 0.5114 0.419 0.212 0.7139

FA5_NFFNPPIISR-DPEP2_LTLEQJDLIR 0.2949 0.5067 0.4144 0.2118 0.7032

BGH3_LTLLAPLNSVFK- 0.3473 0.5591 0.4668 0.2118 0.6952 PGRP2_AGLLRPDYALLGHR

TIMP1_HLACLPR-A0C1_GDFPSPIHVSGPR 0.3526 0.5644 0.4721 0.2118 0.6845

F13B_GDTYPAELYITGSILR- 0.3891 0.6008 0.5085 0.2117 0.7005 C1QB_LEQGENVFLQATDK

RET4_YWGVASFLQK-IBP2_LIQGAPTIR 0.3857 0.5973 0.5051 0.2116 0.6765

PRG4JTEVWGIPSPIDTVFTR- 0.3073 0.5189 0.4267 0.2116 0.7112 LYAM1_SYYWIGIR

ENPP2_TYLHTYESEI-CSH_ISLLLIESWLEPVR 0.3548 0.5664 0.4742 0.2116 0.7086

B2MG_VNHVTLSQPK- 0.417 0.6285 0.5363 0.2115 0.7567 PRL_SWNEPLYHLVTEVR

HABP2_FLNWIK-LYAM1_SYYWIGIR 0.3439 0.5551 0.463 0.2112 0.7032

KNG1_DIPTNSPELEETLTHTITK- 0.371 0.5822 0.4901 0.2112 0.6791 PROS_SQDILLSVENTVIYR

FETUA_FSVVYAK-CSH_ISLLLIESWLEPVR 0.3827 0.5938 0.5018 0.2111 0.7086

CBPN_EAUQFLEQ.VHQ.GIK- 0.4449 0.6556 0.5638 0.2107 0.7513 PRL_SWNEPLYHLVTEVR

CD14_LTVGAAQVPAQLLVGALR- 0.3597 0.5702 0.4785 0.2105 0.7032 EGLN_GPITSAAELNDPQSILLR

FGFR1_VYSDPQPHIQWLK-IBP1_VVESLAK 0.3756 0.586 0.4942 0.2104 0.7086

CATD_VGFAEAAR-CNTN1_FIPLIPIPER 0.3213 0.5315 0.4398 0.2102 0.7166

F13B_GDTYPAELYITGSILR- 0.3906 0.6008 0.5092 0.2102 0.6979 PGRP2_AGLLRPDYALLGHR

FETUA_FSVVYAK-TETN_CFLAFTQTK 0.2888 0.4988 0.4073 0.21 0.6791

INHBC_LDFHFSSDR- 0.3149 0.5248 0.4333 0.2099 0.7059

CS H_A H QLA 1 DTYQE F E ETY 1 P K

ITIH3_ALDLSLK-PGRP2_AGLLRPDYALLGHR 0.3345 0.5443 0.4528 0.2098 0.7299

C05_VFQFLEK-PGRP2_AGLLRPDYALLGHR 0.3454 0.5551 0.4637 0.2097 0.7059

PAPP2_LLLRPEVLAEIPR-DPEP2_LTLEQIDLIR 0.2903 0.5 0.4086 0.2097 0.6604

FGFR1_VYSDPQPHIQWLK-CHL1_VIAVNEVGR 0.3903 0.5999 0.5085 0.2096 0.6925

FGFR1_VYSDPQPHIQWLK- 0.3563 0.5659 0.4745 0.2096 0.7193 ATS13_YGSQLAPETFYR

KNG1_QWAGLNFR- 0.3141 0.5236 0.4323 0.2095 0.7246 C1QB_LEQGENVFLQATDK

HEMO_NFPSPVDAAFR- 0.2606 0.47 0.3787 0.2094 0.754 SHBGJALGGLLFPASNLR

BGH3_LTLLAPLNSVFK-IBP2_LIQGAPTIR 0.3431 0.5524 0.4612 0.2093 0.6979

C06_ALNHLPLEYNSALYSR- 0.3118 0.521 0.4298 0.2092 0.6872 TETN_LDTLAQEVALLK

CATD_VGFAEAAR-LYAM1_SYYWIGIR 0.3269 0.5361 0.4449 0.2092 0.7086

BGH3_LTLLAPLNSVFK-CNTN1_FIPLI PIPER 0.3164 0.5256 0.4344 0.2092 0.6711

B2MG_VNHVTLSQPK- 0.3341 0.5431 0.452 0.209 0.6791 C1QB_LEQGENVFLQATDK

PR0S_FSAEFDFR-DPEP2_LTLEQIDLIR 0.3341 0.5431 0.452 0.209 0.6898

FA5_NFFNPPIISR-PRL_SWNEPLYHLVTEVR 0.4023 0.6113 0.5202 0.209 0.7246

R ET4_YWG V AS F LQK- 0.359 0.5679 0.4768 0.2089 0.6845 CNTN1_TTKPYPADIVVQFK

PRG4JTEVWGIPSPIDTVFTR- 0.3043 0.5131 0.4221 0.2088 0.6979 PGRP2_AGLLRPDYALLGHR

ITIH3_ALDLSLK-SPRL1_VLTHSELAPLR 0.3107 0.5195 0.4285 0.2088 0.7086

C05_VFQFLEK-IBP2_LIQGAPTIR 0.3748 0.5836 0.4926 0.2088 0.6711

TIMP1_HLACLPR- 0.3216 0.5303 0.4393 0.2087 0.6952

GELS_AQPVQVAEGSEPDGFWEALGGK

CLUS_LFDSDPITVTVPVEVSR- 0.4333 0.6419 0.551 0.2086 0.7299 PRL_SWNEPLYHLVTEVR KNG1_DIPTNSPELEETLTHTITK- 0.2662 0.4747 0.3838 0.2085 0.7246 KIT_LCLHCSVDQEGK

ITIH3_ALDLSLK-ATS13_YGSQLAPETFYR 0.2896 0.498 0.4071 0.2084 0.7193

BGH3_LTLLAPLNSVFK-PAEP_QDLELPK 0.3341 0.5425 0.4548 0.2084 0.6847

PRDX2_GLFIIDGK-PRL_SWNEPLYHLVTEVR 0.3692 0.5775 0.4867 0.2083 0.6684

PRG4JTEVWGIPSPIDTVFTR- 0.3721 0.5804 0.4878 0.2083 0.7281 LIRA3_EGAADSPLR

LBP_ITGFLKPGK-C1QB_LEQGENVFLQATDK 0.3533 0.5615 0.4707 0.2082 0.7139

ENPP2_TYLHTYESEI- 0.3375 0.5457 0.455 0.2082 0.6818 C1QB_LEQGENVFLQATDK

IGF1_GFYFNKPTGYGSSSR- 0.4114 0.6195 0.5288 0.2081 0.7193 PRL_SWNEPLYHLVTEVR

FETUA_FSWYAK-PAEP_Q.DLEL.PK 0.3001 0.5082 0.4205 0.2081 0.6989

LBP_ITLPDFTGDLR-ATL4_ILWIPAGALR 0.2866 0.4945 0.4038 0.2079 0.7273

ENPP2_TYLHTYESEI-SPRL1_VLTHSELAPLR 0.3307 0.5385 0.4479 0.2078 0.6818

VTNC_GQYCYELDEK-DPEP2_LTLEQIDLIR 0.2704 0.4781 0.3876 0.2077 0.6872

CD14_LTVGAAQVPAQLLVGALR- 0.2624 0.47 0.3795 0.2076 0.7273 SHBGJALGGLLFPASNLR

PRG4JTEVWGIPSPIDTVFTR- 0.2541 0.4612 0.371 0.2071 0.6898 KIT_LCLHCSVDQEGK

ANGT_DPTFIPAPIQAK-FBLN1_TGYYFDGISR 0.3397 0.5466 0.4564 0.2069 0.6925

C05_VFQFLEK-KIT_LCLHCSVDQEGK 0.2719 0.4787 0.3886 0.2068 0.7086

FA11_TAAISGYSFK-DEF1_IPACIAGER 0.325 0.5318 0.4417 0.2068 0.6872

ANGT_DPTFIPAPIQAK-DEF1_IPACIAGER 0.3646 0.5714 0.4813 0.2068 0.6791

B2MG_VNHVTLSQPK- 0.2602 0.4668 0.3767 0.2066 0.7086 SHBGJALGGLLFPASNLR

R ET4_YWG V AS F LQ.K- 0.4031 0.6096 0.5196 0.2065 0.7139 PROS_SQDILLSVENTVIYR

PRG4JTEVWGIPSPIDTVFTR- 0.3198 0.5262 0.4362 0.2064 0.7032 FBLN1_TGYYFDGISR

PRG4_DQYYNIDVPSR-IBP2_LIQGAPTIR 0.3333 0.5396 0.4497 0.2063 0.6952

FETUA_FSVVYAK-PAPP1_DIPHWLNPTR 0.3299 0.5361 0.4463 0.2062 0.7086

FETUA_FSVVYAK-TENX_LSQLSVTDVTTSSLR 0.3047 0.5108 0.4209 0.2061 0.7005

FA9_FGSGYVSGWGR- 0.3281 0.5341 0.4443 0.206 0.7166

CS H_A H QLA 1 DTYQE F E ETY 1 P K

CAT D_VG FAEAAR-VGFR 1_Y LAV PTS K 0.2379 0.4438 0.354 0.2059 0.6578

HEM0_NFPSPVDAAFR-DEF1_IPACIAGER 0.3609 0.5667 0.477 0.2058 0.6952

LEP_DLLHVLAFSK- 0.3594 0.5651 0.4754 0.2057 0.6818 TIE1_VSWSLPLVPGPLVGDGFLLR

ITIH4_QLGLPGPPDVPDHAAYHPF- 0.4269 0.6326 0.5429 0.2057 0.7005 PRL_SWNEPLYHLVTEVR

RET4_YWGVASFLQK-FBLN1_TGYYFDGISR 0.3526 0.5583 0.4686 0.2057 0.6791

ENPP2_TYLHTYESEI-DEF1_IPACIAGER 0.3269 0.5326 0.443 0.2057 0.6845

BGH3_LTLLAPLNSVFK-DEF1_IPACIAGER 0.3518 0.5574 0.4678 0.2056 0.7032

ECE1JHTLGENIADNGGLK- 0.4448 0.6504 0.5608 0.2056 0.762 PRL_SWNEPLYHLVTEVR

TIMP1_HLACLPR- 0.4133 0.6186 0.5291 0.2053 0.7005

CS H_A H QLA 1 DTYQE F E ETY 1 P K

INHBC_LDFHFSSDR-FGFR1_IGPDNLPYVQILK 0.2775 0.4828 0.3933 0.2053 0.6684

ALSJRPHTFTGLSGLR- 0.4431 0.6483 0.5588 0.2052 0.7727 PRL_SWNEPLYHLVTEVR

CFAB_YGLVTYATYPK- 0.3507 0.5557 0.4663 0.205 0.6872 PROS_SQDILLSVENTVIYR

HABP2_FLNWIK-A0C1_GDFPSPIHVSGPR 0.3235 0.528 0.4389 0.2045 0.6791

HABP2_FLNWIK-IBP2_LIQGAPTIR 0.3571 0.5612 0.4722 0.2041 0.6711

INHBC_LDFHFSSDR-IBP2_LIQGAPTIR 0.3039 0.5079 0.419 0.204 0.6845

ITIH3_ALDLSLK-C1QB_LEQGENVFLQATDK 0.3771 0.581 0.4921 0.2039 0.6925

R ET4_YWG V AS FLQK-DEF1_IPACIAGER 0.3714 0.5752 0.4864 0.2038 0.6952

IBP4_QCHPALDGQR-PRL_SWNEPLYHLVTEVR 0.3997 0.6034 0.5146 0.2037 0.7754

SEPP1_VSLATVDK-PRL_SWNEPLYHLVTEVR 0.4159 0.6195 0.5307 0.2036 0.7487

CBPN_NNANGVDLNR-ATL4_ILWIPAGALR 0.3118 0.5154 0.4267 0.2036 0.6872

AP0C3_GWVTDGFSSLK-LYAM1_SYYWIGIR 0.236 0.4394 0.3508 0.2034 0.7032

IBP4_QCHPALDGQR-DEF1_IPACIAGER 0.3284 0.5318 0.4431 0.2034 0.6738

CATD_VGFAEAAR-IBP2_LIQGAPTIR 0.3616 0.565 0.4763 0.2034 0.7112

FA9_FGSGYVSGWGR-PAPP1_DIPHWLNPTR 0.3118 0.5149 0.4264 0.2031 0.7139

CFAB_YGLVTYATYPK-TETN_LDTLAQEVALLK 0.2885 0.4913 0.4029 0.2028 0.6952

LEP_DLLHVLAFSK-PSG1_FQLPGQK 0.3695 0.5723 0.4839 0.2028 0.6765

F13B_GDTYPAELYITGSILR-IBP2_LIQGAPTIR 0.3944 0.597 0.5087 0.2026 0.6551

AMBP_ETLLQDFR-LIRA3_EGAADSPLR 0.3971 0.5993 0.5094 0.2022 0.7125

BGH3_LTLLAPLNSVFK- 0.299 0.5012 0.4131 0.2022 0.6845 ATS13_YGSQLAPETFYR

AMBP_ETLLQDFR-VGFR1_YLAVPTSK 0.2436 0.4458 0.3577 0.2022 0.6738

ENPP2_TYLHTYESEI-ECM1_DILTIDIGR 0.3239 0.5259 0.4379 0.202 0.6979

AP0C3_GWVTDGFSSLK-FBLN1_TGYYFDGISR 0.2425 0.4443 0.3563 0.2018 0.7326

PAPP2_LLLRPEVLAEIPR-FBLN1_TGYYFDGISR 0.3428 0.5446 0.4566 0.2018 0.6684

FETUA_FSVVYAK- 0.2832 0.4848 0.3969 0.2016 0.6898

GELS_AQPVQVAEGSEPDGFWEALGGK

TIMP1_HLACLPR-CNTN1_TTKPYPADIVVQFK 0.3643 0.5659 0.478 0.2016 0.6765

ENPP2_TYLHTYESEI-CRAC1_GVALADFNR 0.2621 0.4636 0.3757 0.2015 0.6845

KNG1_DIPTNSPELEETLTHTITK- 0.3413 0.5428 0.455 0.2015 0.6898 PAPP1_DIPHWLNPTR

INHBC_LDFHFSSDR-CNTN1_FIPLIPIPER 0.2741 0.4755 0.3877 0.2014 0.6898

FA9_SALVLQYLR-KIT_LCLHCSVDQEGK 0.2308 0.4321 0.3443 0.2013 0.7193

VTNC_VDTVDPPYPR-PAEP_Q.DLEL.PK 0.2736 0.4749 0.3902 0.2013 0.6875

CLUS_ASSIIDELFQDR- 0.2937 0.495 0.4073 0.2013 0.7139 SHBGJALGGLLFPASNLR

CBPN_NNANGVDLNR-DPEP2_LTLEQIDLIR 0.3058 0.507 0.4193 0.2012 0.6845

ANGT_DPTFIPAPIQAK-IBP2_LIQGAPTIR 0.3948 0.5959 0.5082 0.2011 0.6524

AP0C3_GWVTDGFSSLK- 0.253 0.454 0.3664 0.201 0.6872 AOCl_GDFPSPIHVSGPR

CAH1_GGPFSDSYR-PRL_SWNEPLYHLVTEVR 0.3925 0.5932 0.5058 0.2007 0.6684

ENPP2_TYLHTYESEI-LYAM 1_SYYWIGIR 0.3201 0.5207 0.4333 0.2006 0.6604

IGF1_GFYFNKPTGYGSSSR-ATL4_ILWIPAGALR 0.3183 0.5189 0.4315 0.2006 0.6818

PCD12_YQVSEEVPSGTVIGK- 0.3944 0.595 0.5076 0.2006 0.6925 PROS_SQDILLSVENTVIYR

AFAM_HFQNLGK-AOCl_GDFPSPIHVSGPR 0.3133 0.5137 0.4264 0.2004 0.6791

ECE1_HTLGENIADNGGLK-DPEP2_LTL.EQ.IDUR 0.3797 0.5801 0.4927 0.2004 0.6952

PCD12_YQVSEEVPSGTVIGK- 0.3835 0.5839 0.4965 0.2004 0.6818 NCAM1_GLGEISAASEFK

IGF1_GFYFNKPTGYGSSSR- 0.3186 0.5189 0.4316 0.2003 0.6818 AOCl_GDFPSPIHVSGPR

PRG4_DQYYNIDVPSR-CRIS3_YEDLYSNCK 0.3047 0.505 0.4177 0.2003 0.7139

CD14_SWLAELQQWLKPGLK- 0.3612 0.5615 0.4742 0.2003 0.6952 PROS_SQDILLSVENTVIYR

PCD12_YQVSEEVPSGTVIGK-IBP2_LIQGAPTIR 0.3963 0.5964 0.5092 0.2001 0.6791