Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIOMARKERS PREDICTIVE OF ENDOCRINE RESISTANCE IN BREAST CANCER
Document Type and Number:
WIPO Patent Application WO/2018/013466
Kind Code:
A2
Abstract:
The present invention is based on the identification of novel biomarkers predictive of endocrine resistance in breast cancer.

Inventors:
LIU XIAOLE (US)
BROWN MYLES (US)
LI WEI (US)
XIAO TENGFEI (US)
Application Number:
PCT/US2017/041335
Publication Date:
January 18, 2018
Filing Date:
July 10, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DANA FARBER CANCER INST INC (US)
International Classes:
C12Q1/68; G01N33/574
Attorney, Agent or Firm:
SMITH, DeAnn F. et al. (US)
Download PDF:
Claims:
What is claimed is:

1. A method of identifying the likelihood of a breast cancer in a subject to be responsive to an endocrine therapy, the method comprising:

a) obtaining or providing a sample from a patient having the breast cancer;

b) measuring the presence, absence, amount, or activity of at least one biomarker listed in Table 1 or 2 in the subject sample; and

c) comparing said presence, absence, amount, or activity of the at least one biomarker listed in Table 1 or 2 in a control sample,

wherein the presence of the at least one biomarker listed in Table 1 or a significantly increased amount or activity of the at least one biomarker listed in Table 1, or the absence of the at least one biomarker listed in Table 2 or a significantly decreased amount or activity of the at least one biomarker listed in Table 2, in the subject sample relative to the control sample identifies the breast cancer as being more likely to be responsive to the endocrine therapy, and

wherein the absence of the at least one biomarker listed in Table 1 or a significantly decreased amount or activity of the at least one biomarker listed in Table 1, or the presence of the at least one biomarker listed in Table 2 or a significantly increased amount or activity of the at least one biomarker listed in Table 2, in the subject sample relative to the control sample identifies the breast cancer as being less likely to be responsive to the endocrine therapy. 2. A method of identifying the likelihood of a breast cancer in a subject to be responsive to an endocrine therapy, the method comprising:

a) obtaining or providing a sample from a patient having the breast cancer, wherein the sample comprises nucleic acid molecules from the subject;

b) determining the copy number of at least one biomarker listed in Table 1 or 2 in the sample; and

c) comparing said copy number to that of a control sample, wherein an increased copy number of the at least one biomarker listed in Table 1or a decreased copy number of the at least one biomarker listed in Table 2 in the sample relative to the control sample identifies the breast cancer as being more likely to be responsive to the endocrine therapy, and

wherein a decreased copy number of the at least one biomarker listed in Table 1 or an increased copy number of the at least one biomarker listed in Table 2 in the sample relative to the control sample identifies the breast cancer as being less likely to be responsive to the endocrine therapy. 3. The method of claim 1 or 2, further comprising recommending, prescribing, or administering endocrine therapy if the breast cancer is determined to be likely to be responsive to endocrine therapy. 4. The method of claim 1 or 2, further comprising recommending, prescribing, or administering non-endocrine therapy, or anti-cancer therapy other than endocrine therapy, if the breast cancer is determined be less likely to be responsive to endocrine therapy. 5. The method of claim 4, wherein the anti-cancer therapy is selected from the group consisting of targeted therapy, chemotherapy, radiation therapy, and/or

hormonal therapy. 6. The method of claim 4, wherein the non-endocrine therapy is a Src family kinase signaling pathway (SFKSP) inhibitor therapy. 7. The method of any one of claims 1-6, wherein the control sample is determined from a cancerous or non-cancerous sample from either the patient or a member of the same species to which the patient belongs. 8. The method of any one of claims 1-7, wherein the control sample comprises cells or does not comprise cells. 9. The method of any one of claims 1-8, wherein the control sample comprises cancer cells known to be responsive or non-responsive to the endocrine therapy. 10. A method of assessing the efficacy of an agent for treating a breast cancer that is unlikely to be responsive to endocrine therapy in a subject, comprising:

a) detecting in a first subject sample and maintained in the presence of the agent the presence, absence, amount, or activity of at least one biomarker listed in Table 1 or 2;

b) detecting the presence, absence, amount, or activity of the at least one biomarker listed in Table 1 or 2 in a second subject sample and maintained in the absence of the test compound; and c) comparing the presence, absence, amount, or activity of the at least one biomarker listed in Table 1 or 2 from steps a) and b), wherein a presence or a significantly increased amount or activity of the at least one biomarker listed in Table 1 or an absence or a significantly decreased amount or activity of the at least one biomarker listed in Table 2 in the first subject sample relative to at least one subsequent subject sample, indicates that the agent treats the breast cancer that is unlikely to be responsive to endocrine therapy in the subject. 11. A method of assessing the efficacy of an agent for treating a breast cancer in a subject that is unlikely to be responsive to endocrine therapy, comprising:

a) detecting in a subject sample at a first point in time the presence, absence, amount, or activity of at least one biomarker listed in Table 1 or 2;

b) repeating step a) during at least one subsequent point in time after administration of the agent; and

c) comparing the presence, absence, amount, or activity detected in steps a) and b), wherein a presence or a significantly increased amount or activity of the at least one biomarker listed in Table 2 or an absence or a significantly decreased amount or activity of the at least one biomarker listed in Table 1, in the first subject sample relative to at least one subsequent subject sample, indicates that the agent treats the breast cancer that is unlikely to be responsive to endocrine therapy in the subject. 12. The method of claim 11, wherein between the first point in time and the subsequent point in time, the subject has undergone treatment, completed treatment, and/or is in remission for the cancer. 13. The method of claim 11, wherein the first and/or at least one subsequent sample is selected from the group consisting of ex vivo and in vivo samples. 14. The method of claim 11, wherein the first and/or at least one subsequent sample is obtained from an animal model of the cancer. 15. The method of claim 11, wherein the first and/or at least one subsequent sample is a portion of a single sample or pooled samples obtained from the subject.

16. A cell-based assay for screening for cytotoxic or cytostatic agents comprising contacting a breast cancer cell resistant to endocrine therapy with a test agent, and determining the ability of the test agent to increase the amount or activity of at least one biomarker listed in Table 1 and/or decrease the amount or activity of at least one biomarker listed in Table 2. 17. The cell-based assay of claim 16, wherein the step of contacting occurs in vivo, ex vivo, or in vitro. 18. A cell-based assay for screening for agents that have a cytotoxic or cytostatic effect on a breast cancer cell resistant to endocrine therapy comprising, contacting the breast cancer cell with a test agent, and determining the ability of the test agent to increase the amount or activity of at least one biomarker listed in Table 1 and/or decrease the amount or activity of at least one biomarker listed in Table 2. 19. The cell-based assay of claim 18, wherein the step of contacting occurs in vivo, ex vivo, or in vitro. 20. The method or assay of any one of claims 1-19, wherein the at least one biomarker listed in Table 1 comprises c-src tyrosine kinase (CSK) or an ortholog thereof. 21. The method or assay of any one of claims 1-19, wherein the at least one biomarker listed in Table 1 comprises an mRNA or cDNA of the CSK. 22. The method or assay of any one of claims 1-19, wherein the at least one biomarker listed in Table 2 comprises p21 protein-activated kinase 2 (PAK2) or an ortholog thereof. 23. The method or assay of any one of claims 1-19, wherein at least one biomarker listed in Table 2 comprises proto-oncogene c (CRK) or an ortholog thereof. 24. The method or assay of any one of claims 1-25, wherein the subject sample is selected from the group consisting of whole blood, serum, plasma, urine, cells, cell lines, and biopsies.

25. The method or assay of any one of claims 1-23, wherein the presence or amount of the at least one biomarker listed in Table 1 or 2 is detected using a reagent which specifically binds with the protein. 26. The method or assay of claim 25, wherein the reagent is selected from the group consisting of an antibody, an antibody derivative, and an antibody fragment. 27. The method or assay of any one of claims 1-23, wherein the presence or amount of the at least one biomarker listed in Table 1 is assessed by detecting the presence in the sample of a transcribed polynucleotide or portion thereof. 28. The method or assay of claim 27, wherein the transcribed polynucleotide is an mRNA or a cDNA. 29. The method or assay of claim 27, wherein the step of detecting further comprises amplifying the transcribed polynucleotide. 30. The method or assay of claim 27, wherein the transcribed polynucleotide is detected by identifying a nucleic acid that anneals with the biomarker nucleic acid, or a portion thereof, under stringent hybridization conditions. 31. A method of treating a subject afflicted with a breast cancer that is resistant to an endocrine therapy comprising administering to the subject a therapeutically effective amount of at least one agent that activates or increases at least one biomarker listed in Table 1 and/or inhibits or blocks at least one biomarker listed in Table 2, thereby treating the subject afflicted with the breast cancer that is resistant to the endocrine therapy. 32. The method of claim 31, wherein the cancer is an estrogen receptor positive (ER+) breast cancer. 33. The method of claim 31, wherein the agent directly binds the at least one biomarker listed in Tables 1 or 2. 34. The method of any one of claims 31-33, wherein the at least one biomarker listed in Table 1 comprises CSK or an ortholog thereof.

35. The method of any one of claims 31-33, wherein the at least one biomarker listed in Table 1 comprises an mRNA or cDNA of the CSK. 36. The method of any one of claims 31-33, wherein the at least one biomarker listed in Table 2 comprises PAK2 or an ortholog thereof. 37. The method of any one of claims 31-33, wherein the at least one biomarker listed in Table 1 comprises an mRNA or cDNA of PAK2. 38. The method of any one of claims 31-33, wherein the at least one biomarker listed in Table 2 comprises CRK or an ortholog thereof. 39. The method of any one of claims 31-33, wherein the at least one biomarker listed in Table 1 comprises an mRNA or cDNA of PAK2. 40. The method of any one of claims 31-33, wherein the at least one agent comprises a small molecule that inhibits or blocks PAK2. 41. The method of claim 40, wherein the at least one agent is FRAX597. 42. The method of any one of claims 31-33, wherein the at least one agent inhibits or blocks CRK. 43. The method of any one of claims 31-33, wherein the at least one agent comprises an RNA interfering agent which inhibits expression of at least one biomarker listed in Table 2. 44. The method of claim 43, wherein the RNA interfering agent is a small interfering RNA (siRNA), small hairpin RNA (shRNA), or a microRNA (miRNA). 45. The method of any one of claims 31-33, wherein the at least one agent comprises an antisense oligonucleotide complementary to at least one biomarker listed in Table 2. 46. The method of any one of claims 31-33, wherein the at least one agent comprises a peptide or peptidomimetic that inhibits or blocks at least one biomarker listed in Table 2. 47. The method of any one of claims 31-33, wherein the at least one agent comprises an aptamer that inhibits or blocks at least one biomarker listed in Table 2.

48. The method of any one of claims 31-33, wherein the at least one agent is an antibody and/or an intrabody, or an antigen binding fragment thereof, which specifically binds to at least one biomarker listed in Table 2. 49. The method of claim 48, wherein the antibody and/or intrabody, or antigen binding fragment thereof, is murine, chimeric, humanized, composite, or human. 50. The method of claim 48 or 49, wherein the antibody and/or intrabody, or antigen binding fragment thereof, is detectably labeled, comprises an effector domain, comprises an Fc domain, and/or is selected from the group consisting of Fv, Fav, F(ab’)2), Fab’, dsFv, scFv, sc(Fv)2, and diabodies fragments. 51. The method of any one of claims 48-50, wherein the antibody and/or intrabody, or antigen binding fragment thereof, is conjugated to a cytotoxic agent. 52. The method of claim 51, wherein the cytotoxic agent is selected from the group consisting of a chemotherapeutic agent, a biologic agent, a toxin, and a radioactive isotope. 53. The method of any one of claims 31-33, wherein the at least one agent comprises a polypeptide molecule or peptide directed to at least one biomarker listed in Table 1. 54. The method of any one of claims 31-33, wherein the at least one agent comprises an mRNA or cDNA of PAK. 55. The method of any one of claims 31-54, wherein the at least one agent reduces the number of proliferating cells in the cancer and/or reduces the volume or size of a tumor of the cancer. 56. The method of any one of claims 31-55, wherein the at least one agent is administered in a pharmaceutically acceptable formulation. 57. The method of any one of claims 31-56, further comprising administering to the subject a therapeutic agent or regimen for treating the cancer. 58. The method or assay of any one of claims 1-57, wherein the subject is an animal model of ER+ breast cancer.

59. The method or assay of claim 58, wherein the animal model is a mouse model. 60. The method or assay of claim 58, wherein the subject is a mammal.

61. The method of claim 60, wherein the mammal is a mouse or a human.

62. The method of claim 61, wherein the mammal is a human.

Description:
BIOMARKERS PREDICTIVE OF ENDOCRINE RESISTANCE IN BREAST

CANCER Cross-Reference to Related Applications

This application claims the benefit of U.S. Provisional Application No.62/363,029, filed on 15 July 2016; the entire contents of said application are incorporated herein in their entirety by this reference. Statement of Rights

This invention was made with government support under grant number HG008728 awarded by The National Institutes of Health and grant number PC140817 awarded by The Department of Defense. The government has certain rights in the invention. Background of the Invention

Oncogenic activation of the estrogen receptor (ER) signaling pathway occurs in over 70% of breast cancers (Musgrove et al. (2009) Nat. Rev. Cancer 9:631–643). This forms the basis of endocrine therapy that employs anti-estrogens and aromatase inhibitors for both breast cancer prevention and treatment (Howell (2008) Best Pract. Res. Clin. Endocrinol. Metab.22:615–623). However, most patients with advanced disease eventually develop resistance to these endocrine therapies. For example, over 40% of ER+ breast cancer patients are resistant against endocrine therapy, a standard treatment for ER+ breast cancer. Previous experimental and clinical evidence implicated increased expression of ER and/or activated growth factor receptor signaling pathways, especially the

EGFR/HER2 pathway, as major mechanisms of acquired resistance (Osborne et al. (2011) Annu. Rev. Med.62:233–247; Fan et al. (2015) Mol. Cell. Endocrinol.418 Pt 3:245–263). To date, how these oncogenic pathways are activated during endocrine therapy remains an open question. Accordingly, there is a great need to identify the mechanisms and biomarkers leading to endocrine resistance in breast cancer for developing improved diagnostic, prognostic, and therapeutic strategies. Summary of the Invention

The present invention is based, at least in part, on the discovery that certain biomarkers described herein predict clinical outcome in endocrine resistant breast cancer (e.g., ER+ breast cancer). Accordingly, the present invention relates, in part, to methods for stratifying patients who are predicted to be resistant to endocrine therapy based upon a determination and analysis of biomarkers described herein according to amount (e.g., copy number or level of expression) and/or activity, relative to a control. In addition, such analyses can be used in order to provide useful therapeutic regimens (e.g., based on predictions of clinical response, subject survival or relapse, timing of adjuvant or neoadjuvant treatment, etc.).

In one aspect, a method of identifying the likelihood of a breast cancer in a subject to be responsive to an endocrine therapy, the method comprising: a) obtaining or providing a sample from a patient having the breast cancer; b) measuring the presence, absence, amount, or activity of at least one biomarker listed in Table 1 or 2 in the subject sample; and c) comparing said presence, absence, amount, or activity of the at least one biomarker listed in Table 1 or 2 in a control sample, wherein the presence of the at least one biomarker listed in Table 1 or a significantly increased amount or activity of the at least one biomarker listed in Table 1, or the absence of the at least one biomarker listed in Table 2 or a significantly decreased amount or activity of the at least one biomarker listed in Table 2, in the subject sample relative to the control sample identifies the breast cancer as being more likely to be responsive to the endocrine therapy, and wherein the absence of the at least one biomarker listed in Table 1 or a significantly decreased amount or activity of the at least one biomarker listed in Table 1, or the presence of the at least one biomarker listed in Table 2 or a significantly increased amount or activity of the at least one biomarker listed in Table 2, in the subject sample relative to the control sample identifies the breast cancer as being less likely to be responsive to the endocrine therapy is provided.

In another aspect, a method of identifying the likelihood of a breast cancer in a subject to be responsive to an endocrine therapy, the method comprising: a) obtaining or providing a sample from a patient having the breast cancer, wherein the sample comprises nucleic acid molecules from the subject; b) determining the copy number of at least one biomarker listed in Table 1 or 2 in the sample; and c) comparing said copy number to that of a control sample, wherein an increased copy number of the at least one biomarker listed in Table 1or a decreased copy number of the at least one biomarker listed in Table 2 in the sample relative to the control sample identifies the breast cancer as being more likely to be responsive to the endocrine therapy, and wherein a decreased copy number of the at least one biomarker listed in Table 1 or an increased copy number of the at least one biomarker listed in Table 2 in the sample relative to the control sample identifies the breast cancer as being less likely to be responsive to the endocrine therapy is provided.

In one embodiment of any aspect of the present invention, the method further comprises recommending, prescribing, or administering endocrine therapy if the breast cancer is determined to be likely to be responsive to endocrine therapy. In another embodiment, the method further comprises recommending, prescribing, or administering non-endocrine therapy, or anti-cancer therapy other than endocrine therapy, if the breast cancer is determined be less likely to be responsive to endocrine therapy. In still another embodiment, the anti-cancer therapy is selected from the group consisting of targeted therapy, chemotherapy, radiation therapy, and/or hormonal therapy. In yet another embodiment, the non-endocrine therapy is a Src family kinase signaling pathway (SFKSP) inhibitor therapy. In yet another embodiment, the control sample is determined from a cancerous or non-cancerous sample from either the patient or a member of the same species to which the patient belongs. In another embodiment, the control sample comprises cells or does not comprise cells. In still another embodiment, the control sample comprises cancer cells known to be responsive or non-responsive to the endocrine therapy.

In still another aspect, a method of assessing the efficacy of an agent for treating a breast cancer that is unlikely to be responsive to endocrine therapy in a subject, comprising: a) detecting in a first subject sample and maintained in the presence of the agent the presence, absence, amount, or activity of at least one biomarker listed in Table 1 or 2; b) detecting the presence, absence, amount, or activity of the at least one biomarker listed in Table 1 or 2 in a second subject sample and maintained in the absence of the test compound; and c) comparing the presence, absence, amount, or activity of the at least one biomarker listed in Table 1 or 2 from steps a) and b), wherein a presence or a significantly increased amount or activity of the at least one biomarker listed in Table 1 or an absence or a significantly decreased amount or activity of the at least one biomarker listed in Table 2 in the first subject sample relative to at least one subsequent subject sample, indicates that the agent treats the breast cancer that is unlikely to be responsive to endocrine therapy in the subject is provided.

In yet another aspect, a method of assessing the efficacy of an agent for treating a breast cancer in a subject that is unlikely to be responsive to endocrine therapy, comprising: a) detecting in a subject sample at a first point in time the presence, absence, amount, or activity of at least one biomarker listed in Table 1 or 2; b) repeating step a) during at least one subsequent point in time after administration of the agent; and c) comparing the presence, absence, amount, or activity detected in steps a) and b), wherein a presence or a significantly increased amount or activity of the at least one biomarker listed in Table 2 or an absence or a significantly decreased amount or activity of the at least one biomarker listed in Table 1, in the first subject sample relative to at least one subsequent subject sample, indicates that the agent treats the breast cancer that is unlikely to be responsive to endocrine therapy in the subject is provided. In one embodiment, the first point in time and the subsequent point in time, the subject has undergone treatment, completed treatment, and/or is in remission for the cancer. In another embodiment, the first and/or at least one subsequent sample is selected from the group consisting of ex vivo and in vivo samples. In still another embodiment, the first and/or at least one subsequent sample is obtained from an animal model of the cancer. In yet another embodiment, the first and/or at least one subsequent sample is a portion of a single sample or pooled samples obtained from the subject.

In another aspect, a cell-based assay for screening for cytotoxic or cytostatic agents comprising contacting a breast cancer cell resistant to endocrine therapy with a test agent, and determining the ability of the test agent to increase the amount or activity of at least one biomarker listed in Table 1 and/or decrease the amount or activity of at least one biomarker listed in Table 2 is provided. In one embodiment, the step of contacting occurs in vivo, ex vivo, or in vitro.

In still another aspect, a cell-based assay for screening for agents that have a cytotoxic or cytostatic effect on a breast cancer cell resistant to endocrine therapy comprising, contacting the breast cancer cell with a test agent, and determining the ability of the test agent to increase the amount or activity of at least one biomarker listed in Table 1 and/or decrease the amount or activity of at least one biomarker listed in Table 2 is provided. In one embodiment, the step of contacting occurs in vivo, ex vivo, or in vitro.

In any aspect of the present invention, certain embodiments are contemplated. For example, in one embodiment of a method or assay described herein, the at least one biomarker listed in Table 1 comprises c-src tyrosine kinase (CSK) or an ortholog thereof. In another embodiment, the at least one biomarker listed in Table 1 comprises an mRNA or cDNA of the CSK. In still another embodiment, the at least one biomarker listed in Table 2 comprises p21 protein-activated kinase 2 (PAK2) or an ortholog thereof. In another embodiment, the at least one biomarker listed in Table 2 comprises proto-oncogene c (CRK) or an ortholog thereof. In still another embodiment, the subject sample is selected from the group consisting of whole blood, serum, plasma, urine, cells, cell lines, and biopsies. In yet another embodiment, the presence or amount of the at least one biomarker listed in Table 1 or 2 is detected using a reagent which specifically binds with the protein (e.g., a reagent is selected from the group consisting of an antibody, an antibody derivative, and an antibody fragment). In another embodiment, the presence or amount of the at least one biomarker listed in Table 1 is assessed by detecting the presence in the sample of a transcribed polynucleotide or portion thereof (e.g., an mRNA or a cDNA). In still another embodiment, the step of detecting further comprises amplifying the transcribed

polynucleotide. In yet another embodiment, the transcribed polynucleotide is detected by identifying a nucleic acid that anneals with the biomarker nucleic acid, or a portion thereof, under stringent hybridization conditions.

In still another aspect, a method of treating a subject afflicted with a breast cancer that is resistant to an endocrine therapy comprising administering to the subject a therapeutically effective amount of at least one agent that activates or increases at least one biomarker listed in Table 1 and/or inhibits or blocks at least one biomarker listed in Table 2, thereby treating the subject afflicted with the breast cancer that is resistant to the endocrine therapy is provided. In one embodiment, the cancer is an estrogen receptor positive (ER+) breast cancer. In another embodiment, the agent directly binds the at least one biomarker listed in Tables 1 or 2.

In any aspect of the present invention described above, certain embodiments are contemplated. For example, in one embodiment of any method or assay, the at least one biomarker listed in Table 1 comprises CSK or an ortholog thereof. In another embodiment, the at least one biomarker listed in Table 1 comprises an mRNA or cDNA of the CSK. In still another embodiment, the at least one biomarker listed in Table 2 comprises PAK2 or an ortholog thereof. In yet another embodiment, the at least one biomarker listed in Table 1 comprises an mRNA or cDNA of PAK2. In another embodiment, the at least one biomarker listed in Table 2 comprises CRK or an ortholog thereof. In still another embodiment, the at least one biomarker listed in Table 1 comprises an mRNA or cDNA of PAK2. In yet another embodiment, the at least one agent comprises a small molecule that inhibits or blocks PAK2, such as FRAX597. In another embodiment, the at least one agent inhibits or blocks CRK. In still another embodiment, the at least one agent comprises an RNA interfering agent which inhibits expression of at least one biomarker listed in Table 2 (e.g., a small interfering RNA (siRNA), small hairpin RNA (shRNA), or a microRNA (miRNA)). In another embodiment, the at least one agent comprises an antisense oligonucleotide complementary to at least one biomarker listed in Table 2. In still another embodiment, the at least one agent comprises a peptide or peptidomimetic that inhibits or blocks at least one biomarker listed in Table 2. In yet another embodiment, the at least one agent comprises an aptamer that inhibits or blocks at least one biomarker listed in Table 2. In another embodiment, the at least one agent is an antibody and/or an intrabody, or an antigen binding fragment thereof, which specifically binds to at least one biomarker listed in Table 2. In still another embodiment, the antibody and/or intrabody, or antigen binding fragment thereof, that is murine, chimeric, humanized, composite, or human. In yet another embodiment, the antibody and/or intrabody, or antigen binding fragment thereof, is detectably labeled, comprises an effector domain, comprises an Fc domain, and/or is selected from the group consisting of Fv, Fav, F(ab’)2), Fab’, dsFv, scFv, sc(Fv)2, and diabodies fragments. In another embodiment, the antibody and/or intrabody, or antigen binding fragment thereof, is conjugated to a cytotoxic agent (e.g., a chemotherapeutic agent, a biologic agent, a toxin, and a radioactive isotope). In another embodiment, the at least one agent comprises a polypeptide molecule or peptide directed to at least one biomarker listed in Table 1. In still another embodiment, the at least one agent comprises an mRNA or cDNA of PAK. In yet another embodiment, the at least one agent reduces the number of proliferating cells in the cancer and/or reduces the volume or size of a tumor of the cancer. In yet another embodiment, the at least one agent is administered in a pharmaceutically acceptable formulation. In another embodiment, the method further comprises administering to the subject a therapeutic agent or regimen for treating the cancer.

In any aspect of the present invention, certain embodiments are contemplated. For example, in one embodiment of any method or assay, wherein the subject is an animal model of ER+ breast cancer. In another embodiment, the subject is a mammal, such as an mouse model of cancer, or a human. Brief Description of Figures

Figure 1 includes 6 panels, identified as panels A, B, C, D, E, and F, which show CRISPR functional screens on two breast cancer cell lines, T47D and MCF7. Experimental procedures of the screening (Panel A). Positively selected (red) and negatively selected genes (blue) in T47D and MCF7 cells under E2 and veh treatments (Panel B). The positive (or negative) β values (calculated from the MAGeCK algorithm) indicate a positive (or negative) selection of a gene, respectively. A network view of top 1000 negatively selected genes in T47D and MCF7. In the network, nodes represent genes, and an edge connecting two genes if both are in the same pathway (Panel C). ER and its associated genes are highlighted in red, and some major gene clusters are also marked using different colors. The pathway information is extracted from GeneMANIA database (Warde-Farley et al. (2010) Nucleic Acids Res.38:W214–20).671 unconnected genes are now shown. Breast cancer specific essential genes in multiple cancer cell lines and cell types (Panel D).

Screening data of cancer types other than breast cancer are collected from several public CRISPR screening experiments. The scores of breast cancer specific essential genes (Panel E). The names and ranks of some known breast cancer specific genes are marked. The expressions of breast cancer specific essential genes are significantly higher in breast cancer cell lines than other cell lines (Panel F). * p<0.05, Wilcox rank sum test.

Figure 2 includes 5 panels, identified as panels A, B, C, D, and E, which show that CSK mediates hormone independent breast cancer cell growth. CSK is positively selected in vehicle treated conditions compared with E2 treated conditions in both T47D and MCF7 cell lines (Panel A). The Robust Rank Aggregation (RRA) scores by comparing vehicle vs. E2 conditions from MAGeCK(Li, W et al. (2014) Genome Biol.15:554) are shown. A smaller RRA score indicates a stronger negative selection. Knocking out of CSK in T47D and MCF7 cells by three different gRNAs result in hormone independent growth, while the cells infected with AAVS1_gRNA (control) cannot grow in the hormone-depleted medium (Panel B). And expression of three gRNA-resistant CSK cDNAs in these CSK-null cells fully rescues the growth phenotype (cell growth by crystal violet staining assays is shown. All of the cells were cultured in hormone-depleted medium). Immunoblot analysis for indicated proteins of control (gAAVS1), CSK-null and rescued CSK-null cells. GAPDH was used as a loading control. The ER ChIP-seq, as well as DNA hypersensitivity (DNase- I) and H3K27ac signals on the proximal region of CSK (Panel C). A zoom-in view of the enhancer regions on the upstream of CSK. The positions of 6 gRNA positions targeting this putative enhancer are also shown (Panel D). Knocking out ER binding sites decreases CSK expression, while knocking out the flanking regions has no effect on CSK expression (Panel E). The relative gene expression was measured by qRT-PCR after normalizing to the amount of GAPDH signal (mean ± SD, for n = 3). Figure 3 includes 3 panels, identified as panels A, B, and C, which show growth factor and ER signaling changes induced by CSK loss. Gene Set Expression Analysis (GSEA) identified EGFR gene signatures are up-regulated upon CSK loss in T47D cells (Panel A). Genes in the EGFR signature (black bars) are ranked based on their differential expression between CSK-null and CSK-wt cells, and the Enrichment Score (ES) from GSEA for each gene is plotted. Effects of CSK knockout on sensitivity to two ER antagonist tamoxifen and fulvestrant in T47D and MCF7 cells (Panels B and C). Relative cell viability of control (AAVS1) and CSK-null cells after treatment with indicated compound concentrations for 5 days are shown (mean ± SD, for n = 3). The control cells were cultured in hormone-depleted medium plus E2 (10nM) and the CSK-null cells were cultured in hormone-depleted medium plus vehicle.

Figure 4 includes 6 panels, identified as panels A, B, C, D, E, and F, which show PAK2 is synthetic lethal to CSK loss. The essentialities of genes in the SFK and associated pathways, measured by β scores from CRISPR screens, in CSK-null cells (Panel A). Genes are colored based on their β scores. Several genes in the SFK associated pathways are found to be essential, while SFK members are not essential. PAK2 targeting gRNAs reduce cell viability in T47D CSK-null cells, but not in control (AAVS1) cells (mean ± SD, for n = 3) (Panel B). The immunoblot analysis indicated proteins of PAK2 and CSK upon control (AAVS1) and CSK–null cells. GAPDH was used as a loading control (Panel C).

Doxycycline induced expressions and relative cell viabilities of PAK2 with different mutants on tyrosine sites (Y130F, Y139F, Y194F), as well as wild-type PAK2 (mean ± SD, for n = 3, **p < 0.01) (Panel D). All of the cells were cultured in hormone-depleted medium, and GAPDH was used as a loading control. The immunoblot analysis indicated proteins of autophosphorylation sites of PAK2 and SFK as well as total proteins of CSK, SFK and PAK2 upon CSK knockout and rescue (Panel E). The expressions of PAK2 and PAK2 S141 upon treatments of two SFK inhibitors Dasatinib and Saracatinib in the CSK-null cells for 1h, 3h and 6h (Panel F). The term“ctrl” denotes the CSK-null cells with vehicle treatment for 6 hours.

Figure 5 includes 4 panels, identified as panels A, B, C, and D, which show the clinical relevance of CSK and PAK2. CSK loss corresponds to worse clinical outcome in METABRIC breast cancer patients (Panel A). The p-value is calculated using the log-rank test. The p-value is calculated using the log-rank test. PAK2 over-expression corresponds to worse clinical outcome in breast cancer patients treated with tamoxifen (Panel B). Relative cell viability of control (AAVS1), CSK-null cells after treatment with a SFK inhibitor (Saracatinib) and a PAK2 inhibitor (FRAX597) for 5 days are shown (mean ± SD, for n = 3) (Panel C). The control cells were cultured in hormone-depleted medium plus E2 (10nM) and the CSK-null cells were cultured in hormone-depleted medium plus vehicle. Proposed mechanism of endocrine Resistance driven by CSK loss and synthetic lethal vulnerabilities with SFK and PAK2 genes for ER+ breast cancer (Panel D).

Figure 6 includes 5 panels, identified as panels A, B, C, D, and E, which show the quality control measurements of T47D and MCF7 CRISPR screens, including total reads and the percentage of unmapped reads (Panel A), the number of missed gRNAs (Panel B), the Gini-index of read count distribution (Panel C), the distribution of normalized reads (Panel D), as well as sample correlation and clustering results (Panel E). All measurements are generated from MAGeCK-VISPR (Li, W et al. (2015) Genome Biol.16:281).

Figure 7 includes 4 panels, identified as panels A, B, C, and D, which show copy number variations (CNV) affect screening results in MCF7, but not in T47D. The CNV measurements (measured in log2 ration) and beta scores of all genes in the chromosome 17 of T47D and MCF7 cells (Panels A and B). The distributions of beta scores of all genes, grouped by the copy number status of the gene (Panels C and D).

Figure 8 shows enriched Gene Ontology (GO) terms in negatively selected genes. The functional enrichment is analyzed using Gorilla (Montojo et al. (2010) Bioinformatics 26:2927–2928).

Figure 9 includes 2 panels, identified as panels A and B, which show clinical associations of breast cancer specific essential genes. Genetic alterations of top 20 breast cancer specific essential genes in TCGA breast cancer dataset (Panel A) (Koboldt et al. (2012) Nature 490:61–70). Alterations of TRPS1 and GRHL2 predicts worse clinical outcome. Data is downloaded and visualized from cBioPortal (Panel B) (Gao et al. (2013) Sci. Signal 6:l1–l1).

Figure 10 shows a network view of 149 breast cancer specific essential genes. Dots represent essential genes, and edges indicate two genes have genetic, physical interactions, are co-localized, or are in the same pathway. The network is extracted from

GeneMANIA(Warde-Farley et al. (2010) Nucleic Acids Res.38:W214–20). Kinases are marked as blue, and genes connected with ER are highlighted.

Figure 11 includes 2 panels, identified as panels A and B, which show CSK regulates the growth of T47D and MCF7. CSK shows positively selected in vehicle treated conditions compared with E2 treated conditions in both T47D and MCF7 cell lines (Panel A). The β scores of all genes in two conditions (vehicle and E2) are shown. The normalized read counts of gRNAs targeting CSK in two cell lines (Panel B).

Figure 12 shows the morphology change of cell shapes after knocking out CSK in T47D and MCF7 cells. Rescuing CSK expression recovers the original cell shapes in both cell lines.

Figure 13 includes 2 panels, identified as panels A and B, which show CRISPR-out CSK enhancer. The knockout efficiency of CSK enhancer deletions (Panel A). The effects of deleting enhancers and flanking regions on cell growth (Panel B). Cell growth by crystal violet staining assays is shown. All of the cells were cultured in hormone-depleted medium.

Figure 14 includes 2 panels, identified as panels A and B, which show gene expression changes upon CSK knockout. The expression patterns of 6536 differentially expressed gene (FDR=1e-5) between T47D CSK-null and wild-type cells (Panel A). The expressions of genes are measured in Transcripts Per Million (TPM) from RNA-seq. The normalized expression of selected genes in control and CSK null cells (Panel B).

Figure 15 shows enriched pathways in up- and down-regulated genes in CSK-null cells using Gene Set Enrichment Analysis (GSEA)

Figure 16 includes 2 panels, identified as panels A and B, which show a secondary genome-wide screen of CSK null cells. The screening strategy (Panel A). The normalized counts of CSK-targeting gRNAs in control and CSK null cells (Panel B). The 6 CSK- targeting gRNA ids in the GeCKO2 library are shown in the legend.

Figure 17 includes 5 panels, identified as panels A, B, C, D, and E, which show the quality control measurements of secondary CRISPR screens. Similar to Figure 6, the measurements include total reads and the percentage of unmapped reads (Panel A), the number of missed gRNAs (Panel B), the Gini-index of read count distribution (Panel C), the distribution of normalized reads (Panel D), as well as sample correlation and clustering results (Panel E). All measurements are generated from MAGeCK-VISPR (Li, W et al. (2015) Genome Biol.16:281).

Figure 18 shows a network view of 649 specific essential genes in T47D CSK null cells. Dots represent essential genes, and edges indicate two genes have genetic, physical interactions, are co-localized, or are in the same pathway. The network is extracted from GeneMANIA56. Kinases are marked as blue, and genes connected with ER are highlighted. Figure 19 includes 2 panels, identified as panels A and B. The beta scores of specific essential genes CSK null cells compared with CSK wild-type cells (Panel A). Two Src pathway genes (PAK2 and CRK), and Src Family Kinases (SFKs) are marked. An interaction network of genes that become essential upon CSK loss (Panel B). Edges connecting genes indicate possible gene interactions from public datasets.

Figure 20 includes 2 panels, identified as panels A and B, which show the normalized counts of PAK2 (Panel A) and CRK (Panel B) targeting gRNAs in 0-day, AAVS1 knockout and CSK knockout cells.

Figure 21 includes 3 panels, identified as panels A, B, and C, which show expression of CSK in TAMR, FULR and LTED cells. The relative expressions of CSK in T47D and MCF7, as well as the long-term estrogen deprivation (LTED) cells and tamoxifen/fulvestrant-resistant (TAMR/FULR) cells (Panels A and B). The relative gene expression was measured by qRT-PCR after normalizing to the amount of GAPDH signal (mean ± SD, for n = 3) ** p<0.01, student’s t test. The protein expression of CSK in wild- type T47D and MCF7, as well as LTED T47D and two LTED MCF7 cells (2A-MCF7 and 5C-MCF7) (Panel C). GAPDH was used as a loading control.

Figure 22 includes 3 panels, identified as panels A, B, and C, which show the clinical implications of CSK in breast cancer. CSK loss corresponds to higher grade tumors in the METABRIC dataset (Panel A). Lower expression of CSK indicates worse clinical outcome in two expression datasets of tamoxifen treated breast cancer patients (Panels B and C). Expression data is extracted and processed from NCBI Gene Expression Omnibus (GEO) under the accession number GSE17705 (b) and GSE1379 (c).

Figure 23 includes 2 panels, identified as panels A and B, which show treatment of SFK and PAK2 inhibitors. Relative viability of control (AAVS1) and LTED cells treated with Saracatinib (SFK inhibitor) (Panel A). Relative viability of control (AAVS1) and LTED cells after treatment with FRAX597 (PAK2 inhibitor) (Panel B). Relative viability of cells after treatment with indicated compound concentrations for 5 days are shown (mean ± SD, for n = 3). The control cells were cultured in hormone-depleted medium plus E2 (10nM) and the CSK-null cells were cultured in hormone-depleted medium plus vehicle.

Figure 24 shows the estrogen-independent growth of MCF7 xenografts. MCF7 cells harboring either gAAVS1 or gCSK were injected to the ovariectomized nude mice in the presence of estrogen. Mice were assigned randomly (day 7), in groups of eight, to continued estrogen supplementation (E2, 0.1 mg/kg/week) or estrogen withdrawal (– E2). Luminescence values were plotted as an average of % of the first measurement (% relative bioluminescence) for each mouse in each respective group. The measurements were done in intact male mice at days 10, 17, 25, 31, and 37 after tumor cell injection, *P < 0.05, **P < 0.005, two-tailed student’s t-test.

Figure 25 includes 2 panels, identified as panels A and B, which show the results of treating CSK-null tumors with PAK2 and/or SFK inhibitors. Panel A includes

representative images showing bioluminescent signals in female athymic ovariectomized nude mice plus/minus estrogen (0.1 mg/kg/week) bearing MCF7 CSK null tumors, which treated with vehicle (10% (PEG400:Tween-80:PVP-K30, 90:5:5), 15% Vitamin E-TPGS, 75% of hydroxypropylcellulose (0.5%) in 50 mM citrate buffer (pH 3.0), FRAX597(60 mg/kg/day), saracatinib (40 mg/kg/day), fulvestrant (5 mg/week) or variable combinations for 4 weeks. Panel B shows the effects of treatments on the CSK null xenografts. Mice with CSK null tumors were treated with the single or combination treatment of vehicle, saracatinib, FRAX597, and fulvestrant for 4 weeks. Luminescence values were plotted as an average of % of the first measurement (% relative bioluminescence) for each mouse in each respective group (n=8). P-values were calculated by student’s t-test.

Figure 26 illustrates images of CSK staining (immunohistochemistry) in matched primary and tamoxifen resistant (Tamer) ER+ breast tumors (scale bar 100um).

Quantification of CSK staining in 47 matched pairs of primary and tamoxifen resistant tumor samples are shown (two-tailed paired student’s t-test).

Figure 27 includes 2 panels, identified as panels A and B, which show clinical implications of CSK and PAK2 in breast cancer patient survival. CSK gene signatures predict patient response to endocrine treatments in two endocrine treatment clinical trials that have matched expression measurements before/after treatment (Dunbie et al. (2013) Clin. Cancer Res.19:2775-2786; Ellis et al. (2011) J. Clin. Oncol.29:2342-2349). CSK- patients (with reduced expression of CSK signature genes after treatment) have a less reduction of Ki67 gene expression, an indication of less efficacy in endocrine treatment. The p value is calculated using Wilcox rank-sum test.

Figure 28 includes 2 panels, identified as panels A and B, which show that CSK loss indicates worse treatment response in patient-derived xenograft (PDX) breast cancer models. The CSK copy number and drug response measurements from PDX models are downloaded from the BCaPE database 9 (at the World Wide Web site of

caldaslab.cruk.cam.ac.uk/bcape). For tamoxifen treated samples, PDX models with CSK CNV loss had lower AUC values (indicating less response to drug treatments) and higher IC50. p-value is calculated using Wilcox rank-sum test.

Figure 29 compares single or combination treatments of vehicle, FRAX597 and fulvestrant in TM00386 PDX (Jackson Labs) tumors for 35 days in each respective group (n=8). P-values are indicated from two- tailed unpaired t-test. Data are represented as means ± SD.

Figure 30 shows that ER binds to the enhancer of CSK in 86% (19/22) ER+ breast cancer patients in a public ER ChIP-seq dataset.

Note that for every figure containing a histogram, the bars from left to right for each discreet measurement correspond to the figure boxes from top to bottom in the figure legend as indicated. Detailed Description of the Invention

It has been determined herein that certain biomarkers described herein predict clinical outcome in endocrine resistant breast cancer (e.g., ER+ breast cancer).

Accordingly, the present invention relates, in part, to methods for stratifying patients who are predicted to be resistant to endocrine therapy based upon a determination and analysis of biomarkers described herein according to amount (e.g., copy number or level of expression) and/or activity, relative to a control. In addition, such analyses can be used in order to provide useful therapeutic regimens (e.g., based on predictions of clinical response, subject survival or relapse, timing of adjuvant or neoadjuvant treatment, etc.). I. Definitions

The articles“a” and“an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example,“an element” means one element or more than one element.

The term“altered amount” or“altered level” refers to increased or decreased copy number (e.g., germline and/or somatic) of a biomarker nucleic acid, e.g., increased or decreased expression level in a cancer sample, as compared to the expression level or copy number of the biomarker nucleic acid in a control sample. The term“altered amount” of a biomarker also includes an increased or decreased protein level of a biomarker protein in a sample, e.g., a cancer sample, as compared to the corresponding protein level in a normal, control sample. Furthermore, an altered amount of a biomarker protein may be determined by detecting posttranslational modification such as methylation status of the marker, which may affect the expression or activity of the biomarker protein.

The amount of a biomarker in a subject is“significantly” higher or lower than the normal amount of the biomarker, if the amount of the biomarker is greater or less, respectively, than the normal level by an amount greater than the standard error of the assay employed to assess amount, and preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or than that amount. Alternately, the amount of the biomarker in the subject can be considered“significantly” higher or lower than the normal amount if the amount is at least about two, and preferably at least about three, four, or five times, higher or lower, respectively, than the normal amount of the biomarker. Such“significance” can also be applied to any other measured parameter described herein, such as for expression, inhibition, cytotoxicity, cell growth, and the like.

The term“altered level of expression” of a biomarker refers to an expression level or copy number of the biomarker in a test sample, e.g., a sample derived from a patient suffering from cancer, that is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least twice, and more preferably three, four, five or ten or more times the expression level or copy number of the biomarker in a control sample (e.g., sample from a healthy subjects not having the associated disease) and preferably, the average expression level or copy number of the biomarker in several control samples. The altered level of expression is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more times the expression level or copy number of the biomarker in a control sample (e.g., sample from a healthy subjects not having the associated disease) and preferably, the average expression level or copy number of the biomarker in several control samples.

The term“altered activity” of a biomarker refers to an activity of the biomarker which is increased or decreased in a disease state, e.g., in a cancer sample, as compared to the activity of the biomarker in a normal, control sample. Altered activity of the biomarker may be the result of, for example, altered expression of the biomarker, altered protein level of the biomarker, altered structure of the biomarker, or, e.g., an altered interaction with other proteins involved in the same or different pathway as the biomarker or altered interaction with transcriptional activators or inhibitors.

The term“altered structure” of a biomarker refers to the presence of mutations or allelic variants within a biomarker nucleic acid or protein, e.g., mutations which affect expression or activity of the biomarker nucleic acid or protein, as compared to the normal or wild-type gene or protein. For example, mutations include, but are not limited to substitutions, deletions, or addition mutations. Mutations may be present in the coding or non-coding region of the biomarker nucleic acid.

Unless otherwise specified here within, the terms“antibody” and“antibodies” broadly encompass naturally-occurring forms of antibodies (e.g. IgG, IgA, IgM, IgE) and recombinant antibodies such as single-chain antibodies, chimeric and humanized antibodies and multi-specific antibodies, as well as fragments and derivatives of all of the foregoing, which fragments and derivatives have at least an antigenic binding site. Antibody derivatives may comprise a protein or chemical moiety conjugated to an antibody.

The term“antibody” as used herein also includes an“antigen-binding portion” of an antibody (or simply“antibody portion”). The term“antigen-binding portion”, as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., a biomarker polypeptide or fragment thereof). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full- length antibody. Examples of binding fragments encompassed within the term“antigen- binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab') 2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent polypeptides (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; and Osbourn et al.1998, Nature

Biotechnology 16: 778). Such single chain antibodies are also intended to be encompassed within the term“antigen-binding portion” of an antibody. Any VH and VL sequences of specific scFv can be linked to human immunoglobulin constant region cDNA or genomic sequences, in order to generate expression vectors encoding complete IgG polypeptides or other isotypes. VH and VL can also be used in the generation of Fab, Fv or other fragments of immunoglobulins using either protein chemistry or recombinant DNA technology. Other forms of single chain antibodies, such as diabodies are also encompassed. Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123).

Still further, an antibody or antigen-binding portion thereof may be part of larger immunoadhesion polypeptides, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides. Examples of such immunoadhesion polypeptides include use of the streptavidin core region to make a tetrameric scFv polypeptide (Kipriyanov, S.M., et al. (1995) Human Antibodies and Hybridomas 6:93-101) and use of a cysteine residue, biomarker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv polypeptides (Kipriyanov, S.M., et al. (1994) Mol. Immunol. 31:1047-1058). Antibody portions, such as Fab and F(ab') 2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies. Moreover, antibodies, antibody portions and immunoadhesion polypeptides can be obtained using standard recombinant DNA techniques, as described herein.

Antibodies may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof (e.g. humanized, chimeric, etc.). Antibodies may also be fully human. Preferably, antibodies of the present invention bind specifically or substantially specifically to a biomarker polypeptide or fragment thereof. The terms“monoclonal antibodies” and“monoclonal antibody composition”, as used herein, refer to a population of antibody polypeptides that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of an antigen, whereas the term“polyclonal antibodies” and“polyclonal antibody composition” refer to a population of antibody polypeptides that contain multiple species of antigen binding sites capable of interacting with a particular antigen. A monoclonal antibody composition typically displays a single binding affinity for a particular antigen with which it immunoreacts.

Antibodies may also be“humanized”, which is intended to include antibodies made by a non-human cell having variable and constant regions which have been altered to more closely resemble antibodies that would be made by a human cell. For example, by altering the non-human antibody amino acid sequence to incorporate amino acids found in human germline immunoglobulin sequences. The humanized antibodies of the present invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs. The term“humanized antibody”, as used herein, also includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.

The term“assigned score” refers to the numerical value designated for each of the biomarkers after being measured in a patient sample. The assigned score correlates to the absence, presence or inferred amount of the biomarker in the sample. The assigned score can be generated manually (e.g., by visual inspection) or with the aid of instrumentation for image acquisition and analysis. In certain embodiments, the assigned score is determined by a qualitative assessment, for example, detection of a fluorescent readout on a graded scale, or quantitative assessment. In one embodiment, an“aggregate score,” which refers to the combination of assigned scores from a plurality of measured biomarkers, is determined. In one embodiment the aggregate score is a summation of assigned scores. In another embodiment, combination of assigned scores involves performing mathematical operations on the assigned scores before combining them into an aggregate score. In certain, embodiments, the aggregate score is also referred to herein as the“predictive score.”

The term“biomarker” refers to a measurable entity of the present invention that has been determined to be predictive of endocrine resistance therapy effects on a cancer.

Biomarkers can include, without limitation, nucleic acids (e.g., genomic nucleic acids and/or transcribed nucleic acids) and proteins, including those shown in Tables 1 and 2, the Examples, and the Figures. Many biomarkers listed in Tables 1 and 2 are also useful as therapeutic targets. In one embodiment, such targets are CSK members shown in Table 1. In one embodiment, such targets are PAK2 and CRK members shown in Table 2. A“blocking” antibody or an antibody“antagonist” is one which inhibits or reduces at least one biological activity of the antigen(s) it binds. In certain embodiments, the blocking antibodies or antagonist antibodies or fragments thereof described herein substantially or completely inhibit a given biological activity of the antigen(s).

The term“body fluid” refers to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g. amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper’s fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit).

The terms“cancer” or“tumor” or“hyperproliferative” refer to the presence of cells possessing characteristics typical of cancer-causing cells, such as uncontrolled proliferation, immortality, metastatic potential, rapid growth and proliferation rate, and certain

characteristic morphological features. In some embodiments, such cells exhibit such characteristics in part or in full due to the reduced expression, activity, and/or loss of CSK. Cancer cells are often in the form of a tumor, but such cells may exist alone within an animal, or may be a non-tumorigenic cancer cell, such as a leukemia cell. As used herein, the term“cancer” includes premalignant as well as malignant cancers. As used herein, the term“cancer” includes premalignant as well as malignant cancers. Cancers include, but are not limited to, B cell cancer, e.g., multiple myeloma, Waldenström's macroglobulinemia, the heavy chain diseases, such as, for example, alpha chain disease, gamma chain disease, and mu chain disease, benign monoclonal gammopathy, and immunocytic amyloidosis, melanomas, breast cancer, lung cancer, bronchus cancer, colorectal cancer, prostate cancer, pancreatic cancer, stomach cancer, ovarian cancer, urinary bladder cancer, brain or central nervous system cancer, peripheral nervous system cancer, esophageal cancer, cervical cancer, uterine or endometrial cancer, cancer of the oral cavity or pharynx, liver cancer, kidney cancer, testicular cancer, biliary tract cancer, small bowel or appendix cancer, salivary gland cancer, thyroid gland cancer, adrenal gland cancer, osteosarcoma, chondrosarcoma, cancer of hematologic tissues, and the like. Other non-limiting examples of types of cancers applicable to the methods encompassed by the present invention include human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, colorectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, liver cancer, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, bone cancer, brain tumor, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma,

medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, and heavy chain disease. In some embodiments, cancers are epithlelial in nature and include but are not limited to, bladder cancer, breast cancer, cervical cancer, colon cancer, gynecologic cancers, renal cancer, laryngeal cancer, lung cancer, oral cancer, head and neck cancer, ovarian cancer, pancreatic cancer, prostate cancer, or skin cancer. In other embodiments, the cancer is breast cancer, prostate cancer, lung cancer, or colon cancer. In still other embodiments, the epithelial cancer is non-small-cell lung cancer, nonpapillary renal cell carcinoma, cervical carcinoma, ovarian carcinoma (e.g., serous ovarian carcinoma), or breast carcinoma. The epithelial cancers may be characterized in various other ways including, but not limited to, serous, endometrioid, mucinous, clear cell, Brenner, or undifferentiated.

Cancers that have grown into these structures or that have spread to distant lymph nodes or to other organs are considered unresectable, so treatments other than surgery are usually the best option.

The term“coding region” refers to regions of a nucleotide sequence comprising codons which are translated into amino acid residues, whereas the term“noncoding region” refers to regions of a nucleotide sequence that are not translated into amino acids (e.g., 5' and 3' untranslated regions).

The term“complementary” refers to the broad concept of sequence

complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds (“base pairing”) with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.

The term“control” refers to any reference standard suitable to provide a comparison to the expression products in the test sample. In one embodiment, the control comprises obtaining a“control sample” from which expression product levels are detected and compared to the expression product levels from the test sample. Such a control sample may comprise any suitable sample, including but not limited to a sample from a control cancer patient (can be stored sample or previous sample measurement) with a known outcome; normal tissue or cells isolated from a subject, such as a normal patient or the cancer patient, cultured primary cells/tissues isolated from a subject such as a normal subject or the cancer patient, adjacent normal cells/tissues obtained from the same organ or body location of the cancer patient, a tissue or cell sample isolated from a normal subject, or a primary cells/tissues obtained from a depository. In another preferred embodiment, the control may comprise a reference standard expression product level from any suitable source, including but not limited to housekeeping genes, an expression product level range from normal tissue (or other previously analyzed control sample), a previously determined expression product level range within a test sample from a group of patients, or a set of patients with a certain outcome (for example, survival for one, two, three, four years, etc.) or receiving a certain treatment (for example, standard of care cancer therapy). It will be understood by those of skill in the art that such control samples and reference standard expression product levels can be used in combination as controls in the methods of the present invention. In one embodiment, the control may comprise normal or non-cancerous cell/tissue sample. In another preferred embodiment, the control may comprise an expression level for a set of patients, such as a set of cancer patients, or for a set of cancer patients receiving a certain treatment, or for a set of patients with one outcome versus another outcome. In the former case, the specific expression product level of each patient can be assigned to a percentile level of expression, or expressed as either higher or lower than the mean or average of the reference standard expression level. In another preferred embodiment, the control may comprise normal cells, cells from patients treated with combination chemotherapy, and cells from patients having benign cancer. In another embodiment, the control may also comprise a measured value for example, average level of expression of a particular gene in a population compared to the level of expression of a housekeeping gene in the same population. Such a population may comprise normal subjects, cancer patients who have not undergone any treatment (i.e., treatment naive), cancer patients undergoing standard of care therapy, or patients having benign cancer. In another preferred embodiment, the control comprises a ratio transformation of expression product levels, including but not limited to determining a ratio of expression product levels of two genes in the test sample and comparing it to any suitable ratio of the same two genes in a reference standard;

determining expression product levels of the two or more genes in the test sample and determining a difference in expression product levels in any suitable control; and determining expression product levels of the two or more genes in the test sample, normalizing their expression to expression of housekeeping genes in the test sample, and comparing to any suitable control. In particularly preferred embodiments, the control comprises a control sample which is of the same lineage and/or type as the test sample. In another embodiment, the control may comprise expression product levels grouped as percentiles within or based on a set of patient samples, such as all patients with cancer. In one embodiment a control expression product level is established wherein higher or lower levels of expression product relative to, for instance, a particular percentile, are used as the basis for predicting outcome. In another preferred embodiment, a control expression product level is established using expression product levels from cancer control patients with a known outcome, and the expression product levels from the test sample are compared to the control expression product level as the basis for predicting outcome. As demonstrated by the data below, the methods of the present invention are not limited to use of a specific cut-off point in comparing the level of expression product in the test sample to the control.

The“copy number” of a biomarker nucleic acid refers to the number of DNA sequences in a cell (e.g., germline and/or somatic) encoding a particular gene product. Generally, for a given gene, a mammal has two copies of each gene. The copy number can be increased, however, by gene amplification or duplication, or reduced by deletion. For example, germline copy number changes include changes at one or more genomic loci, wherein said one or more genomic loci are not accounted for by the number of copies in the normal complement of germline copies in a control (e.g., the normal copy number in germline DNA for the same species as that from which the specific germline DNA and corresponding copy number were determined). Somatic copy number changes include changes at one or more genomic loci, wherein said one or more genomic loci are not accounted for by the number of copies in germline DNA of a control (e.g., copy number in germline DNA for the same subject as that from which the somatic DNA and corresponding copy number were determined).

The“normal” copy number (e.g., germline and/or somatic) of a biomarker nucleic acid or“normal” level of expression of a biomarker nucleic acid or protein is the activity/level of expression or copy number in a biological sample, e.g., a sample containing tissue, whole blood, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, and bone marrow, from a subject, e.g., a human, not afflicted with cancer, or from a corresponding non-cancerous tissue in the same subject who has cancer.

The term“determining a suitable treatment regimen for the subject” is taken to mean the determination of a treatment regimen (i.e., a single therapy or a combination of different therapies that are used for the prevention and/or treatment of the cancer in the subject) for a subject that is started, modified and/or ended based or essentially based or at least partially based on the results of the analysis according to the present invention. One example is determining whether to provide targeted therapy against a cancer to provide immunotherapy that generally increases immune responses against the cancer. Another example is starting an adjuvant therapy after surgery whose purpose is to decrease the risk of recurrence, another would be to modify the dosage of a particular chemotherapy. The determination can, in addition to the results of the analysis according to the present invention, be based on personal characteristics of the subject to be treated. In most cases, the actual determination of the suitable treatment regimen for the subject will be performed by the attending physician or doctor.

The term“diagnosing cancer” includes the use of the methods, systems, and code of the present invention to determine the presence or absence of a cancer or subtype thereof in an individual. The term also includes methods, systems, and code for assessing the level of disease activity in an individual.

In some embodiments, the cancer is“estrogen positive breast cancer” or“(ER+) breast cancer,” which refers to breast cancers that are estrogen receptor (ER) positive. Breast cancer is the most common cancer affecting women and accounts for 26% of newly diagnosed cancers (Cecchini et al. (2015) Cureus 7(10):e364). Of these cancers, over 80% will express either the estrogen or progesterone receptor and be amenable to hormonal therapy (Howlader et al. (2014) J Natl Cancer Inst.106). The use of aromatase inhibitors, anti-estrogens, tamoxifen, or fulvestrant is associated with a significant reduction in breast cancer recurrence and improved overall survival (Davies et al. (2011) Lancet 378:771- 784). However, most patients with advanced disease eventually develop resistance to these therapies. Breast-conserving surgery has been shown to have equivalent outcomes to mastectomy when combined with radiation therapy and has become the main treatment method for breast cancer patients (Clarke et al. (2005) Lancet 366:2087–2106). Thereby, there are a substantial number of women who receive radiation and hormonal therapy.

Estradiol activates proliferation through transcriptional activation of c-Myc and cyclin D, which allow for downstream activation of the cyclin-dependent kinases required for progression from G1 into S phase of the cell cycle (Schmidberger et al. (2003) Endocr Relat Cancer 10:375–388). This activity of estrogen is required for the proliferation of the cancer cells; tamoxifen or aromatase inhibitors are utilized to block this pathway

(Schmidberger et al. (2003) Endocr Relat Cancer 10:375–388). Treatment of cells with tamoxifen or aromatase inhibitors results in an accumulation of cells in the G1 phase of the cell cycle. Radiation sensitivity depends on the stage of the cell cycle, with cells in G2/M being the most sensitive to radiation changes (Sinclair et al. (1966) Radiat Res.29:450– 474). Therefore, it is possible that hormonal therapy may reduce the efficacy of radiation by arresting the cells in a stage of the cell cycle that is more resistant to DNA damage.

As used herein,“endocrine therapies” are first-line treatments for estrogen receptor- positive (ER+) breast cancer, such as selective ER modulation using tamoxifen or anti- estrogens, aromatase inhibitors, nonsteroidal drugs (e.g., letrozol, anastrozol, and vostrozol), steroidal drugs (e.g., exemestane), ovarian ablation surgery, ovarian ablation radiotherapy, LHRH analog therapy, anti-HER-2 antibodies, anti-ER antibodies, anti-PR antibodies, and the like. Representative endocrine therapies are further described below (see US2007/0192880). Although complementation and convergence of various signaling pathways are ultimately responsible for the physiology and pathophysiology of breast tissue, it is clear that estrogens are primary agents in the development of most breast cancers by stimulating and maintaining malignant cell proliferation. Consequently, measures that perturb the estrogen environment of the tumor cells by blocking the synthesis of estrogen or by preventing estrogen actions are current strategies for therapeutic intervention for the neoplasm. The management of early breast cancer is primarily based on surgical removal of the tumor by mastectomy or lumpectomy without or with radiotherapy, followed by an adjuvant systemic therapy dependent upon the ER status.

(1) GnRH Antagonist

GnRH regulates the synthesis and secretion of LH and FSH from the anterior pituitary (Shalev, E. et al. (2003) J Obstet Gynaecol Can 25, 98-113). GnRH-stimulated gonadotropin secretion can be blocked with antagonists as well as agonists whose sustained delivery induces pituitary desensitization (Limonta, P. et al. (2001) Expert Opin Investig Drugs 10, 709-720). These compounds ultimately reduce the circulating levels of gonadotropins and subsequently gonadal steroid hormone synthesis and secretion. Termed medical castration, this effect is exploited in the treatments of sex hormone-dependent neoplasms that also include breast (Robertson, J. F. et al. (2003) Eur. J. Cancer 39, 861- 869; Grundker, C. et al. (2003) Reprod Biol Endocrinol 1, 65). The GnRH agonist, goserelin, remains the treatment of choice for pre-menopausal patients with ER-positive breast cancers. It appears that a combination of goserelin and antiestrogenic compounds to produce an estrogen blockade is a more effective treatment regimen in prolonging progression-free survival than the use of a GnRH agonist alone (Robertson, J. F. et al. (2003) Eur. J. Cancer 39, 861-869; Grundker, C. et al. (2003) Reprod Biol Endocrinol 1, 65).

(2) Aromatase Inhibitors

Since, as described above, estrogens are synthesized from androgenic steroid substrates by the aromatase enzyme, an effective perturbation of enzyme activity provides the most specific effects on estrogen production. Two major classes of aromatase inhibitors have been developed and are currently in clinical use. Type 1 inhibitors are steroidal analogues of androstenedione and bind to the same site as androstenedione on the aromatase molecule. However, unlike androstenedione these analogues bind to the enzyme irreversibly and covalently, because of their conversion to reactive intermediates by aromatase (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res.57, 317-338; Santen, R. J. (2002) J. Clin. Endocrinol. Metab.87, 3007-3012). Therefore, Type 1 inhibitors are now commonly known as enzyme inactivators that include formestane and exemestane. Since the recovery of enzyme activity depends on both the re-synthesis of enzyme and the pharmacokinetics of the drug, these types of inhibitors have the potential for selectivity for the enzyme target and long-term effectiveness. However, such steroidal structures also have the potential for hormonal activity (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res. 57, 317-338; Santen, R. J. (2002) J. Clin. Endocrinol. Metab.87, 3007-3012).

Type II inhibitors are non-steroidal compounds that are triazoles and include anastrozole and letrozole. These type II inhibitors bind reversibly to the enzyme and fit into the substrate-binding site such that azole nitrogens interact with the heme prosthetic group in the aromatase enzyme with high affinity and specificity (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res.57, 317-338; Santen, R. J. (2002) J. Clin. Endocrinol. Metab.87, 3007-3012).

Aromatase inhibitors are not effective in pre-menopausal women, as lower circulating levels of estrogen could result in the stimulation of the hypothalamo- hypophyseal axis activity, which in turn increases circulating estrogen levels by enhancing estrogen synthesis from the ovaries (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res. 57, 317-338; Santen, R. J. (2002) J. Clin. Endocrinol. Metab.87, 3007-3012). Thus, application of aromatase inhibitors to treatment of pre-menopausal women with breast cancer is limited to their combined usage with goserelin. Since, however, the primary source of estrogen in post-menopausal women is the conversion of adrenal C19 steroids into estrogens by intra-tumor as well as extra-gonadal sites of aromatase activity, aromatase inhibitors constitute an effective therapeutic intervention for breast cancers (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res.57, 317-338; Santen, R. J. (2002) J. Clin. Endocrinol. Metab.87, 3007-3012). Studies indicate that aromatase inhibitor therapy leads to a precipitous drop in the intratumoral concentrations of estrogens together with a

corresponding loss of intratumoral aromatase activity (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res.57, 317-338; Santen, R. J. (2002) J. Clin. Endocrinol. Metab.87, 3007- 3012). Clinical trials have provided further support for the use of the aromatase inhibitors as first line treatment of ER positive breast cancers in post-menopausal women (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res.57, 317-338; Santen, R. J. (2002) J. Clin.

Endocrinol. Metab.87, 3007-3012). Since, however, aromatase inhibitors inhibit aromatase activity globally, these compounds could affect many other tissues wherein estrogens are required for normal function. The development of tissue-specific aromatase inhibitors could expand the utility of this approach in the treatment of breast cancers (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res.57, 317-338; Santen, R. J. (2002) J. Clin. Endocrinol. Metab.87, 3007-3012).

(3) Antiestrogens

In addition to estrogen, ER also binds compounds that act as estrogen competitors (McDonnell, D. P. (1999) Trends Endocrinol Metab 10, 301-311; Jordan, V. C. et al.

(1999) Endocr. Rev.20, 253-278; Jensen, E. V. et al. (2003) Clin Cancer Res 9, 1980- 1989). These compounds can be divided into two categories: Type I and II. Type I compounds include tamoxifen, toremifene and raloxifene and are now referred to as selective estrogen receptor modulators, SERMs. Tamoxifen and toremifene have a triphenylethylene structure and raloxifene has a benzothiophene structure. Although the primary structure of these SERMs differs significantly from that of estrogen which is a cyclophenanthrene, they have conformations that allow them to bind to ERs. SERMs can function as agonists or antagonists depending on ER subtypes, and the cells and tissues in which they operate (McDonnell, D. P. (1999) Trends Endocrinol Metab 10, 301-311;

Wakeling, A. E. (2000) Endocr Relat Cancer 7, 17-28). Tamoxifen and raloxifene function as antagonists in breast. While tamoxifen acts as an agonist in the uterus, bone and cardiovascular system, raloxifen functions as a pure antagonist in the uterus but an agonist in bone.

Type II compounds that include steroidal compounds ICI 164,384 and ICI 182,780 are derivatives of estrogen with long alkyl 7α-substitutions and are considered as pure antagonists devoid of estrogenic activity in most experimental systems tested (McDonnell, D. P. (1999) Trends Endocrinol Metab 10, 301-311; Wakeling, A. E. et al. (2001) Clin Cancer Res 7, 4350s-4355s; discussion 4411s-4412s). The distinct pharmacological properties of these antiestrogens allow treatment regimens to be targeted to a specific tissue of interest to minimize unintended development of other tissue malignancies.

Biochemical, functional and structural studies have indicated that antiestrogens alter the conformation of the carboxyl-terminal regions of ERs (McDonnell, D. P. (1999) Trends Endocrinol Metab 10, 301-311; Wakeling, A. E. et al. (2001) Clin Cancer Res 7, 4350s- 4355s; discussion 4411s-4412s). Ligand binding is accompanied by a major reorganization in the tertiary structure of the LBD. Key differences in receptor conformation in the presence of different ligands are an indication for a structural basis for antagonism. Agonist binding induces a conformational change in which the carboxyl terminal helix 12 (H12), containing the core region of AF2, is aligned over the ligand-binding cavity that is composed of helices 3, 5/6, and 11. This alignment results in the formation of a specific binding site for the consensus LXXLL motif of co-activators. Binding of the Type 1 antagonists to ER sterically interferes with H12 positioning in that H12 interacts with a hydrophobic groove composed of residues from helices 3 and 5. This distinct orientation of H12 partially buries residues in the groove necessary for AF-2 activity, thereby preventing co-factor recruitment (Brzozowski, A. M. et al. (1997) Nature 389, 753-758; Pike, A. C. et al. (1999) EMBO J.18, 4608-4618).

In ICI-bound ER, the side chain of ICI completely prevents H12 from associating with the LBD. This disordered conformation is thought to lead to full antagonism that results in the destabilized ER structure leading to disruption of nuclear-cytoplasmic shuttling and increased receptor turnover (Dauvois, S. et al. (1992) Proc Natl Acad Sci USA 89, 4037-4041; Dauvois, S. et al. (1993) J. Cell Sci.106 (Pt 4), 1377-1388). ICI 182,780 (Faslodex) is approved as a "second-line" hormonal therapy for post-menopausal women with ER-positive metastatic breast cancer (Howell, A. et al. (2000) Cancer 89, 817-825).

Although blocking the AF-2 function by antagonists suggests a passive role for the prevention of ER-mediated transactivation by antiestrogens, an active repression of gene transcription appears to be involved. Tamoxifen-ER is shown to recruit the co-repressors NCoR, SMRT (Lavinsky, R. M. et al. (1998) Proc. Natl. Acad. Sci. USA 95, 2920-2925; Shang, Y. et al. (2000) Cell 103, 843-852) and REA (Delage-Mourroux, R. et al. (2000) J. Biol. Chem.275, 35848-35856) to the promoters of estrogen responsive genes. The subsequent recruitment of histone deacetylases (HDACs) to the repressor-ER complex causes deacetylation of histone proteins. This event leads to chromatin compaction and transcriptional repression.

How does a SERM display partial agonist activity in an ER subtype and cell context dependent manner? The partial agonist activity of an antagonist is manifested as transcriptional responses from ERE-dependent genomic signaling pathway that are siginficantly lower than those observed with the estrogen-ER complex. The partial agonistic effect of SERMs, particularly tamoxifen, bound ERα, but not ERβ, from the ERE- dependent signaling pathway is modulated through the amino terminal AF-1 (Berry, M. et al. (1990) EMBO J.9, 2811-2818; Yi, P. et al. (2002) Mol. Endocrinol.16, 1810-1827). It appears that although the binding of a SERM to ERα prevents the AF-2 domain of the receptor from interacting with co-factors, the ability of the AF-1 domain to recruit the p160 family of co-factors in a cell-context dependent manner provides a mechanism for the partial agonistic effect of an antagonist for ERα (Yi, P. et al. (2002) Mol. Endocrinol.16, 1810-1827; Webb, P. et al. (1998) Mol. Endocrinol.12, 1605-1618; Yi, P. et al. (2002) Mol. Endocrinol.16, 674-693). Studies have shown that the tamoxifen-bound ERα recruits co-repressors, but not co-activators, to target promoters in breast cancer cells (Lavinsky, R. M. et al. (1998) Proc. Natl. Acad. Sci. USA 95, 2920-2925; Shang, Y. et al. (2000) Cell 103, 843-852; Shang, Y. et al. (2002) Science 295, 2465-2468; Lee, E. J. et al. (2001) Mol. Med.7, 773-782). On the other hand, the tamoxifen- ERα complex interacts preferentially with the p160 family co-activators as well as co-repressors to target promoters to stimulate transcription in cells derived from endometrium (Shang, Y. et al. (2002) Science 295, 2465- 2468). This allows the tamoxifen- ERα complex to induce transcription, albeit at lower levels than estrogen- ERα, from estrogen responsive genes. Since the relative and absolute levels of expression of co-regulators vary among estrogen target cells, a balance between cell specific co-activators and co-repressors recruited by the antagonist- ERα complex appears to underlie the tissue selective pharmacology of SERMs (Shang, Y. et al. (2002) Science 295, 2465-2468; McKenna, N. J. et al. (1999) Endocr. Rev.20, 321-344).

It should be noted that antiestrogens could also affect the function of intracellular proteins and signaling independently from ER signaling pathways. These include changes in oxidative stress responses, activation of specific protein kinase C isoforms as well as alterations in calmodulin finction and in cell membrane structure/function (Clarke, R. et al. (2001) Pharmacol. Rev.53, 25-71).

As used herein,“endocrine resistant” refers to patients who initially respond to endocrine therapies but later become unresponsive to endocrine therapies. Current therapeutic approaches for breast cancer treatment utilize endocrine measures to counteract the effects of estrogens and are often successful in the remission of tumors (Nicholson, R. I. et al. (2000) Br. J. Cancer 82, 501-513; Clarke, R. et al. (2001) J. Steroid Biochem. Mol. Biol.76, 71-84; Nicholson, R. I. et al. (2003) Breast Cancer Res. Treat.80 Suppl 1, S29- 34; Clarke, R. et al. (2003) Oncogene 22, 7316-7339). However, one-third of breast cancers fails to respond to endocrine therapy (de novo endocrine resistance). Moreover, the beneficial effects of antiestrogens are counteracted by the capacity of tumor cells to eventually circumvent such therapies, allowing the tumor cells to resume growth (acquired endocrine resistance).

(1) De Novo Endocrine Resistance

The most important factor in de novo resistance to endocrine therapies is the lack of ER expression. However, the ontology of de novo endocrine resistance cells is unclear. These populations could stem from ERα-negative epithelial cells that acquire autonomous growth properties. It is also possible that mitogenic changes in non-proliferate and ERα positive epithelial cells give rise to a phenotype that gains autonomous growth but loses its ability to express the ERα gene. Although the status of the ERβ gene expression remains unknown in de novo resistant phenotypes, genetic alterations such as homozygous deletion, loss of heterozygosity or ERα gene mutation have not been reported to play a major role in the absence or loss of ER expression. Epigenetic control of ERα gene expression, on the other hand, appears to be critical for the absence/loss of the ERα gene transcription. CpG dinucleotides are frequently clustered into CpG islands and are often found in the promoters of genes (Chen, D. et al. (1999) Science 284, 2174-2177; Yang, X. et al. (2001) Endocr Relat Cancer 8, 115-127). Methylation of cytosines in these islands is associated with the repression of gene transcription (Chen, D. et al. (1999) Science 284, 2174-2177; Yang, X. et al. (2001) Endocr Relat Cancer 8, 115-127). Studies have indicated that the ERα gene contains CpG islands in its promoter and first exon (Falette, N. S. et al. (1990) Cancer Res. 50, 3974-3978; Ottaviano, Y. L. et al. (1994) Cancer Res.54, 2552-2555). These ERα CpG islands are unmethylated in normal breast tissue and ERα-positive tumor lines but they are methylated in about half of primary breast cancers and most ER-negative breast cancer cell lines (Ottaviano, Y. L. et al. (1994) Cancer Res.54, 2552-2555; Piva, R. et al. (1989) Biochemistry International 19, 267-275). The methylation status of CpG islands is associated with reduced or absent ERα expression, consequently cessation of ER protein synthesis (Ottaviano, Y. L. et al. (1994) Cancer Res.54, 2552-2555; Piva, R. et al. (1989) Biochemistry International 19, 267-275). DNA methylation is regulated by the members of DNA-cytosine methyltransferase (DNMT) family (Chen, D. et al. (1999) Science 284, 2174-2177; Yang, X. et al. (2001) Endocr Relat Cancer 8, 115-127). Studies have shown that methyltransferase inhibitors cause partial de-methylation and restoration of ERα mRNA expression and synthesis of functional ERα protein (Ferguson, A. T. et al. (1995) Cancer Res.55, 2279-2283). A disregulated expression of DNMT in ERα-negative breast cancer cell lines is proposed to be associated with the ER-gene repression (Yang, X. et al. (2001) Endocr Relat Cancer 8, 115-127).

Methylation of the ERα gene is required but may not be sufficient for ERα gene repression. It appears that the acetylation status of the ERα gene also contributes to ERα gene silencing (Yang, X. et al. (2000) Cancer Res.60, 6890-6894). Studies showed that an increase in the acetylation of histones and de-methylation of the ER CpG islands synergistically activate ERα expression (Yang, X. et al. (2001) Cancer Res.61, 7025- 7029). This suggests that DNMT and HDAC are key regulators of methylation-mediated ERα gene silencing. These findings also imply that DNMT and HDAC inhibitors could be potentially important in establishing hormone responsiveness, and consequently in breast cancer treatment.

The underlying mechanisms for the methylation and acetylation status of the ERα gene promoter are unclear. Studies showed that the activation of the growth factor signaling pathways in breast cancer cells results in down-regulation of ERα gene expression (Pietras, R. J. et al. (1995) Oncogene 10, 2435-2446; Kumar, R. et al. (1996) J. Cell. Biochem.62, 102-112; Tang, C. K. et al. (1996) Cancer Res.56, 3350-3358) through, at least in part, an enhanced deacetylase activity (Mazumdar, A. et al. (2001) Nat Cell Biol 3, 30-37). It is therefore possible that aberrant growth factor signaling is involved in the absence or loss of ER gene expression. Additionally, altered expression of transacting factors responsible for ERα transcription and/or abnormalities in post-transcriptional and translational processing of ERα could also contribute to the absence of ER synthesis (Weigel, R. J. et al. (1993) Cancer Res.53, 3472-3474; Ferguson, A. T. et al. (1997) Crit. Rev. Oncog.8, 29-46;

Ferguson, A. T. et al. (1998) Cancer Treat. Res.94, 255-278).

Whatever the underlying mechanisms for the absence or loss of the ERα gene expression might be, an autonomous regulation of cell growth defines de novo resistance malignancies. Several growth factors and their receptors that include EGF, FGF, IGF, and TGF families have been shown to be over-expressed and to act as autocrine growth stimulators for breast cancer cells (Nicholson, R. I. et al. (2000) Br. J. Cancer 82, 501-513; Clarke, R. et al. (2001) J. Steroid Biochem. Mol. Biol.76, 71-84; Clarke, R. et al. (2003) Oncogene 22, 7316-7339). Increased expression of growth factor receptors correlates with the severity of the disease (Nicholson, R. I. et al. (2000) Br. J. Cancer 82, 501-513; Clarke, R. et al. (2001) J. Steroid Biochem. Mol. Biol.76, 71-84; Clarke, R. et al. (2003) Oncogene 22, 7316-7339). Receptors for growth factors are trans-membrane tyrosine kinases that are linked to activation of MAPK and/or AKT signaling pathways critical for cellular transformation, cancer progression and resistance to endocrine therapy (Nicholson, R. I. et al. (2000) Br. J. Cancer 82, 501-513; Clarke, R. et al. (2001) J. Steroid Biochem. Mol. Biol. 76, 71-84; Clarke, R. et al. (2003) Oncogene 22, 7316-7339). Disrupting signal

transduction by specifically modulating the activity of these trans-membrane tyrosine kinases, therefore, constitutes an important strategy in the development anticancer agents. This includes antibody therapy to block ligand binding to the receptors and administration of small molecule tyrosine kinase inhibitors to inhibit receptor tyrosine kinase activity.

The EGFR belongs to a family of tyrosine kinases that contains human epidermal growth factor receptor-1 (or HER1), HER2, HER3, and HER4 (Yarden, Y. (2001)

Oncology 61 Suppl 2, 1-13). Receptor activation is mediated by homo- and hetero- dimerization among all four HER family members upon binding to various ligands.

Dimerization results in receptor tyrosine phosphorylation that allows the binding of downstream signaling molecules leading to the activation of kinases. Heterodimerization of HERs provides further diversification and specificity of signal transduction. Moreover, many other growth factor receptors can phosphorylate and activate HERs. HERs also act as a conduit for multiple other signaling pathways through trans-phosphorylation. HER2 is over-expressed in approximately 30% of breast cancers with adverse clinical prognosis (Slamon, D. J. et al. (1989) Science 244, 707-712). Trastuzumab is a novel humanized monoclonal antibody that binds to the extracellular domain of HER2 (Modi, S. et al. (2002) Curr Oncol Rep 4, 47-55). This leads to receptor down-regulation, degradation and consequently to inhibition of cell growth. Trastuzumab is currently being used in clinical settings for the treatment of patients with HER2-positive metastatic breast cancer with significant benefits as monotherapy or in combination with chemotherapy (Vogel, C. L. et al. (2002) J. Clin. Oncol.20, 719-726; Slamon, D. J. et al. (2001) N. Engl. J. Med.344, 783-792). Similarly, a humanized monoclonal antibody BX-EGF that targets the extracellular domain of HER1 has entered clinical trials for breast cancer treatments (Modi, S. et al. (2002) Curr Oncol Rep 4, 47-55).

Small molecule compounds compete for the ATP-binding sites of the tyrosine kinase domains of the HER-family. Binding of these compounds to the receptor block the activation of the tyrosine kinase domain and subsequently prevent the downstream signaling cascades that include MAPK and AKT pathways (Modi, S. et al. (2002) Curr Oncol Rep 4, 47-55; Arteaga, C. L. et al. (2002) Semin. Oncol.29, 4-10; Goel, S. et al. (2002) Curr Oncol Rep 4, 9-19). The two most clinically advanced compounds in this class of agents are ZD1839 and OSI-774 that specifically target HER1, whereas CI-1033 interacts with all four members of the HER-family. In pre-clinical models ZD1839 displays anti-proliferative activity by interfering with cell cycle progression in a wide range of HER- expressing cancer cell lines (Sliwkowski, M. X. et al. (1999) Semin. Oncol.26, 60-70). ZD1839 also augments the antitumor effects of chemo- and radiation-therapies (Modi, S. et al. (2002) Curr Oncol Rep 4, 47-55; Arteaga, C. L. et al. (2002) Semin. Oncol.29, 4-10; Goel, S. et al. (2002) Curr Oncol Rep 4, 9-19). However, recent clinical trials in patients with refractory metastatic breast cancer, suggest that EGFR inhibitor ZD1839 has no clinical activity (Arteaga, C. L. et al. (2004) Semin. Oncol.31, 3-8). Pharmacodynamic studies (Arteaga, C. L. et al. (2004) Semin. Oncol.31, 3-8) also indicate that the activated EGFR in breast tumor cells is indeed blocked by EGFR tyrosine kinase inhibitors but without an associated reduction in tumor cell proliferation. These results imply that 1) levels of P-EGFR do not predict for EGFR dependence nor sensitivity to therapeutic EGFR blockade, and 2) drug-induced inhibition of P-EGFR is not predictive of response to treatment either.

(2) Acquired Endocrine Resistance

Counteraction of the beneficial effects of endocrine approaches by the tumor cells that express ER leads to acquired endocrine resistance phenotypes, in which the cells are no longer growth inhibited by antiestrogens (Nicholson, R. I. et al. (2000) Br. J. Cancer 82, 501-513; Clarke, R. et al. (2001) J. Steroid Biochem. Mol. Biol.76, 71-84; Nicholson, R. I. et al. (2003) Breast Cancer Res. Treat.80 Suppl 1, S29-34; Clarke, R. et al. (2003) Oncogene 22, 7316-7339). It is certain that endocrine resistance is multi-factorial. Since breast cancers display a remarkable phenotypic heterogeneity as a result of distinct gene expression profiles (Perou, C. M. et al. (2000) Nature 406, 747-752; Sorlie, T. et al. (2001) Proc Natl Acad Sci USA 98, 10869-10874), each cancer type likely utilizes a different resistance mechanism. Nonetheless, aberrations in ER signaling pathways appear to be critical events that drive the response and resistance to antiestrogens. A rise in the population of ER mutants as ligand-independent, constitutively active or dominant-negative phenotypes, is postulated to contribute to the endocrine resistance of tumors (Murphy, L. C. et al. (1997) Ann. Med.29, 221-234; Leygue, E. et al. (1998) Cancer Res.58, 3197-3201). Despite the fact that ERα and ERβ possess similar structural and biochemical properties, they display distinct activation properties for the expression of estrogen responsive genes. An alteration in the relative levels of ERα and ERβ when co-synthesized could, therefore, contribute to endocrine resistance by offsetting the balance between the regulatory potentials of ER-subtypes (Lazennec, G. et al. (2001) Endocrinology 142, 4120-4130; Speirs, V. et al. (1999) Cancer Res.59, 525-528; Speirs, V. et al. (1999) Cancer Res.59, 5421-5424). Aberrations in signaling pathways converging onto ER (post-translational processing) and/or ER-mediated events (promoter cross-talk) could also contribute to resistance by altering the sensitivity of ligand-ER mediated events or by circumventing the need for ligand-driven cell-growth (Kato, S. et al. (1998) Oncology 55 Suppl 1, 5-10;

Nicholson, R. I. et al. (1999) Endocr Relat Cancer 6, 373-387).

Alterations in co-regulator expression or availability could also be one mechanism for the development of endocrine resistance. Tamoxifen resistance is characterized not only by the ineffectiveness of the compound to inhibit tumor growth but also by a gained ability to act as a partial agonist in breast cells. Co-regulatory proteins are present at rate-limiting levels in cells such that modification in the level of co-regulator expression or activity could lead to alterations in the ER signaling, consequently endocrine resistance (Shang, Y. et al. (2002) Science 295, 2465-2468). As discussed above, the transcriptional activity of the tamoxifen-ERα complex is modulated by the ratio between co-activator and co-repressor recruited to the complexes in cells within which tamoxifen acts as a partial agonist (Fujita, T. et al. (2003) J. Biol. Chem.278, 26704-26714). A decrease in the level or activity of co- repressors (Lavinsky, R. M. et al. (1998) Proc. Natl. Acad. Sci. USA 95, 2920-2925;

Graham, J. D. et al. (2000) J. Steroid Biochem. Mol. Biol.74, 255-259; Graham, J. D. et al. (2000) Steroids 65, 579-584) with or without a concurrent increase in the level of co- activators (Hudelist, G. et al. (2003) Breast Cancer Res. Treat.78, 193-204; Font de Mora, J. et al. (2000) Mol. Cell. Biol.20, 5041-5047) could therefore play a critical role in the development of tarnoxifen resistance in ER positive breast cancers.

Studies showed that ERα positive breast cancer cells that are resistant to the growth- inhibitory effects of tamoxifen remain sensitive to growth inhibition by ICI 182,780 in experimental models in situ (Clarke, R. et al. (2001) Pharmacol. Rev.53, 25-71; Brunner, N. et al. (1993) Cancer Res.53, 3229-3232). It is likely that the ability of ICI 182,780 to promote monomerization of ER and subsequent degradation by preventing the

nuclearicytopiasm shuttling of ER is the basis for its effectiveness as an antiestrogen. This interpretation is also consistent with second-line endocrine responses in patients who had relapsed on tamoxifen but responded to ICI 182,780 (Howell, A. et al. (1996) Br. J. Cancer 74, 300-308). It is unknown whether patients undergoing ICI 182,780 treatment develop resistance to the compound. However, the continuous long-term exposure of estrogen responsive breast cancer cells that are initially growth inhibited by ICI 182,780 develop resistance to the compound (Larsen, S. S. et al. (1997) Int. J. Cancer 72, 1129-1136;

Brunner, N. et al. (1997) Cancer Res.57, 3486-3493), as observed with experimental cell models (Simpson, E. R. et al. (2002) Recent Prog. Horm. Res.57, 317-338). This appears, at least in part, to be due to the re-bounding synthesis of ERα with a concomitant increase in responsiveness to estrogens (Larsen, S. S. et al. (1997) Int. J. Cancer 72, 1129-1136). The regulation of ERα gene expression involves activity of several distinct promoters whose activities are mediated by AP-1, AP-2, and estrogen receptor factor 1 (ERF-1) binding sites that interact with a member of the AP-2 family proteins (Tang, Z. et al. (1997) Mol. Cell. Biol.17, 1274-1280; deConinck, E. C. et al. (1995) Mol. Cell. Biol.15, 2191- 2196; Tanimoto, K. et al. (1999) Nucleic Acids Res.27, 903-909). Similarly, Alu ERE, Oct- 1, AP-1 and SP-1 sites regulate the expression of the ERβ gene (Li, L. C. et al. (2000) Biochem. Biophys. Res. Commun.275, 682-689). There is evidence that both ERs also auto- regulate their own transcription (Castles, C. G. et al. (1997) J. Steroid Biochem. Mol. Biol. 62, 155-163; Vladusic, E. A. et al. (2000) Oncol Rep 7, 157-167). It is likely that modulation of the synthesis or activity of transacting factors responsible for the ER expression could be responsible for re-bounding/increase expression of ERs. This, together with findings that ICI 182,780 treatment can also lead to cross-resistance to tamoxifen (Brunner, N. et al. (1997) Cancer Res.57, 3486-3493), indicates that the estrogen-mediated ER signaling participates in the development of acquired endocrine resistance. This reinforces expectations that inhibition of estrogen biosynthesis by aromatase inhibitors or by GnRH analogs together with antiestrogenic compounds could provide more effective treatment regimens for hormone responsive breast cancer.

As in endocrine de novo resistance, growth factor signaling pathways become up- regulated and/or activated in resistant breast cancer cells, which show an increased dependence on growth factor signaling pathways as an adaptive mechanism (Yarden, Y. (2001) Oncology 61 Suppl 2, 1-13). Therefore, blockage or inhibition of growth factor signaling pathways in acquired endocrine resistance could also provide a basis for treatment. Indeed, in situ, in vivo, and clinical studies clearly indicate that inhibition of a variety of growth factor-mediated signaling processes is effective in the prevention of endocrine-resistant phenotypes Nicholson, R. I. et al. (2001) Endocr Relat Cancer 8, 175- 182; Jeng, M. H. et al. (2000) Breast Cancer Res. Treat.62, 167-175). The efficacy of anti- growth factor modalities can be further enhanced by combined treatments involving estrogen synthesis inhibitors and/or antiestrogens (Wakeling, A. E. et al. (2001) Clin Cancer Res 7, 4350s-4355s).

The term“expression signature” or“signature” refers to a group of two or more coordinately expressed biomarkers. For example, the genes, proteins, metabolites, and the like making up this signature may be expressed in a specific cell lineage, stage of differentiation, or during a particular biological response. The biomarkers can reflect biological aspects of the tumors in which they are expressed, such as the cell of origin of the cancer, the nature of the non-malignant cells in the biopsy, and the oncogenic mechanisms responsible for the cancer. Expression data and gene expression levels can be stored on computer readable media, e.g., the computer readable medium used in

conjunction with a microarray or chip reading device. Such expression data can be manipulated to generate expression signatures.

A molecule is“fixed” or“affixed” to a substrate if it is covalently or non-covalently associated with the substrate such that the substrate can be rinsed with a fluid (e.g. standard saline citrate, pH 7.4) without a substantial fraction of the molecule dissociating from the substrate.

“Homologous” as used herein, refers to nucleotide sequence similarity between two regions of the same nucleic acid strand or between regions of two different nucleic acid strands. When a nucleotide residue position in both regions is occupied by the same nucleotide residue, then the regions are homologous at that position. A first region is homologous to a second region if at least one nucleotide residue position of each region is occupied by the same residue. Homology between two regions is expressed in terms of the proportion of nucleotide residue positions of the two regions that are occupied by the same nucleotide residue. By way of example, a region having the nucleotide sequence 5'- ATTGCC-3' and a region having the nucleotide sequence 5'-TATGGC-3' share 50% homology. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. More preferably, all nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. The term“inhibit” includes the decrease, limitation, or blockage, of, for example a particular action, function, or interaction. In some embodiments, cancer is“inhibited” if at least one symptom of the cancer is alleviated, terminated, slowed, or prevented. As used herein, cancer is also“inhibited” if recurrence or metastasis of the cancer is reduced, slowed, delayed, or prevented. Similarly, a biological function, such as the function of a protein, is inhibited if it is decreased as compared to a reference state, such as a control like a wild-type state. For example, kinase activity of a mutant PAK2 or a PAK2 that is contacted with a PAK2 inhibitor is inhibited or deficient if the kinase activity is decreased due to the mutation and/or contact with the inhibitor, in comparison to the wild-type PAK2 and/or the PAK2 not contacted with the inhibitor. Such inhibition or deficiency can be induced, such as by application of agent at a particular time and/or place, or can be constitutive, such as by a heritable mutation. Such inhibition or deficiency can also be partial or complete (e.g., essentially no measurable activity in comparison to a reference state, such as a control like a wild-type state). Essentially complete inhibition or deficiency is referred to as blocked.

The term“interaction”, when referring to an interaction between two molecules, refers to the physical contact (e.g., binding) of the molecules with one another. Generally, such an interaction results in an activity (which produces a biological effect) of one or both of said molecules.

An“isolated protein” refers to a protein that is substantially free of other proteins, cellular material, separation medium, and culture medium when isolated from cells or produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. An“isolated” or“purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the antibody, polypeptide, peptide or fusion protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language“substantially free of cellular material” includes preparations of a biomarker polypeptide or fragment thereof, in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language“substantially free of cellular material” includes preparations of a biomarker protein or fragment thereof, having less than about 30% (by dry weight) of non-biomarker protein (also referred to herein as a“contaminating protein”), more preferably less than about 20% of non-biomarker protein, still more preferably less than about 10% of non-biomarker protein, and most preferably less than about 5% non- biomarker protein. When antibody, polypeptide, peptide or fusion protein or fragment thereof, e.g., a biologically active fragment thereof, is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.

A“kit” is any manufacture (e.g. a package or container) comprising at least one reagent, e.g. a probe or small molecule, for specifically detecting and/or affecting the expression of a marker of the present invention. The kit may be promoted, distributed, or sold as a unit for performing the methods of the present invention. The kit may comprise one or more reagents necessary to express a composition useful in the methods of the present invention. In certain embodiments, the kit may further comprise a reference standard, e.g., a nucleic acid encoding a protein that does not affect or regulate signaling pathways controlling cell growth, division, migration, survival or apoptosis. One skilled in the art can envision many such control proteins, including, but not limited to, common molecular tags (e.g., green fluorescent protein and beta-galactosidase), proteins not classified in any of pathway encompassing cell growth, division, migration, survival or apoptosis by GeneOntology reference, or ubiquitous housekeeping proteins. Reagents in the kit may be provided in individual containers or as mixtures of two or more reagents in a single container. In addition, instructional materials which describe the use of the compositions within the kit can be included.

The term“long-term estradiol-deprived” or LTED refers to cells that have been culture under prolonged estrogen-deprived conditions. LTED cells are refractory to tamoxifen but sensitive to fulvestrant.

The term“micrometastasis” as used herein is preferably defined as a group of confluent cancer cells measuring from greater than 0.2 mm and/or having greater than 200 cells to 2 mm in maximum width. More preferably“micrometastasis” is defined as a group of confluent cancer cells from 0.2 mm to 2 mm in maximum width (see Edge et al. (2010) AJCC Cancer Staging Manual and Handbook (7th ed.)). An alternative preferred definition of“micrometastasis” is a confluent group of at least 1000 cancer cells and at least 0.1 mm in widest dimension up to 1 mm in widest dimension. Micrometastasis is generally not visible in standard contrast MRI imaging or other clinical imaging techniques. However, in certain cancers, radioactive antibodies directed to tumor selective antigens (e.g., Her2 for breast cancer metastasis) allows for visualization of micrometastasis. Other indirect detection methods include contrast media leakage at brain micrometastasis sites due to VEGF induced vascular leakage (Yano et al. (2000) Cancer Res.60:4959-49067; U.S. Pat. Publ.2015/0352113). More sensitive imaging techniques may also be applied to detect micrometastases. For example, blood volume may be imaged by MRI using the alternative contrast agent, USPIO (Molday Iron, Biopal, Worcester, Mass.) to detect micrometastasis (Yin et al. (2009) Clin. Exp. Metastasis.26:403-414).

The term“neoadjuvant therapy” refers to a treatment given before the primary treatment. Examples of neoadjuvant therapy can include chemotherapy, radiation therapy, and hormone therapy. For example, in treating breast cancer, neoadjuvant therapy can allows patients with large breast cancer to undergo breast-conserving surgery.

The“normal” level of expression of a biomarker is the level of expression of the biomarker in cells of a subject, e.g., a human patient, not afflicted with a cancer. An“over- expression” or“significantly higher level of expression” of a biomarker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples. A“significantly lower level of expression” of a biomarker refers to an expression level in a test sample that is at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.

An“over-expression” or“significantly higher level of expression” of a biomarker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples. A “significantly lower level of expression” of a biomarker refers to an expression level in a test sample that is at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.

The term“pre-determined” biomarker amount and/or activity measurement(s) may be a biomarker amount and/or activity measurement(s) used to, by way of example only, evaluate a subject that may be selected for a particular treatment, evaluate a response to a treatment such as a PD-1 pathway inhibitor therapy, and/or evaluate the disease state. A pre-determined biomarker amount and/or activity measurement(s) may be determined in populations of patients with or without cancer. The pre-determined biomarker amount and/or activity measurement(s) can be a single number, equally applicable to every patient, or the pre-determined biomarker amount and/or activity measurement(s) can vary according to specific subpopulations of patients. Age, weight, height, and other factors of a subject may affect the pre-determined biomarker amount and/or activity measurement(s) of the individual. Furthermore, the pre-determined biomarker amount and/or activity can be determined for each subject individually. In one embodiment, the amounts determined and/or compared in a method described herein are based on absolute measurements. In another embodiment, the amounts determined and/or compared in a method described herein are based on relative measurements, such as ratios (e.g., serum biomarker normalized to the expression of a housekeeping or otherwise generally constant biomarker). The pre-determined biomarker amount and/or activity measurement(s) can be any suitable standard. For example, the pre-determined biomarker amount and/or activity

measurement(s) can be obtained from the same or a different human for whom a patient selection is being assessed. In one embodiment, the pre-determined biomarker amount and/or activity measurement(s) can be obtained from a previous assessment of the same patient. In such a manner, the progress of the selection of the patient can be monitored over time. In addition, the control can be obtained from an assessment of another human or multiple humans, e.g., selected groups of humans, if the subject is a human. In such a manner, the extent of the selection of the human for whom selection is being assessed can be compared to suitable other humans, e.g., other humans who are in a similar situation to the human of interest, such as those suffering from similar or the same condition(s) and/or of the same ethnic group.

The term“predictive” includes the use of a biomarker nucleic acid and/or protein status, e.g., over- or under- activity, emergence, expression, growth, remission, recurrence or resistance of tumors before, during or after therapy, for determining the likelihood of response of a cancer to endocrine therapy. Such predictive use of the biomarker may be confirmed by, e.g., (1) increased or decreased copy number (e.g., by FISH, FISH plus SKY, single-molecule sequencing, e.g., as described in the art at least at Augustin et al. (2001) J. Biotechnol., 86:289-301, or qPCR), overexpression or underexpression of a biomarker nucleic acid (e.g., by ISH, Northern Blot, or qPCR), increased or decreased biomarker protein (e.g., by IHC), or increased or decreased activity, e.g., in more than about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, or more of assayed human cancers types or cancer samples; (2) its absolute or relatively modulated presence or absence in a biological sample, e.g., a sample containing tissue, whole blood, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, or bone marrow, from a subject, e.g. a human, afflicted with cancer; (3) its absolute or relatively modulated presence or absence in clinical subset of patients with cancer (e.g., those responding to a particular endocrine or non-endocrine therapy or those developing resistance thereto).

The term“pre-malignant lesions” as described herein refers to a lesion that, while not cancerous, has potential for becoming cancerous. It also includes the term“pre- malignant disorders” or“potentially malignant disorders.” In particular this refers to a benign, morphologically and/or histologically altered tissue that has a greater than normal risk of malignant transformation, and a disease or a patient's habit that does not necessarily alter the clinical appearance of local tissue but is associated with a greater than normal risk of precancerous lesion or cancer development in that tissue (leukoplakia, erythroplakia, erytroleukoplakia lichen planus (lichenoid reaction) and any lesion or an area which histological examination showed atypia of cells or dysplasia. In one embodiment, a metaplasia is a pre-malignant lesion. The terms“prevent,”“preventing,”“prevention,”“prop hylactic treatment,” and the like refer to reducing the probability of developing a disease, disorder, or condition in a subject, who does not have, but is at risk of or susceptible to developing a disease, disorder, or condition.

The term“probe” refers to any molecule which is capable of selectively binding to a specifically intended target molecule, for example, a nucleotide transcript or protein encoded by or corresponding to a biomarker nucleic acid. Probes can be either synthesized by one skilled in the art, or derived from appropriate biological preparations. For purposes of detection of the target molecule, probes may be specifically designed to be labeled, as described herein. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.

The term“prognosis” includes a prediction of the probable course and outcome of cancer or the likelihood of recovery from the disease. In some embodiments, the use of statistical algorithms provides a prognosis of cancer in an individual. For example, the prognosis can be surgery, development of a clinical subtype of cancer (e.g., solid tumors, such as ER+ breast cancer), development of one or more clinical factors, or recovery from the disease.

The term“response to anti-cancer therapy” relates to any response of the hyperproliferative disorder (e.g., cancer) to an anti-cancer agent, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant chemotherapy.

Hyperproliferative disorder response may be assessed , for example for efficacy or in a neoadjuvant or adjuvant situation, where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation. Responses may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection. Response may be recorded in a quantitative fashion like percentage change in tumor volume or in a qualitative fashion like“pathological complete response” (pCR),“clinical complete remission” (cCR),“clinical partial remission” (cPR),“clinical stable disease” (cSD), “clinical progressive disease” (cPD) or other qualitative criteria. Assessment of hyperproliferative disorder response may be done early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months. A typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed. This is typically three months after initiation of neoadjuvant therapy. In some embodiments, clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR). The clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy. The shorthand for this formula is CBR=CR+PR+SD over 6 months. In some embodiments, the CBR for a particular cancer therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more. Additional criteria for evaluating the response to cancer therapies are related to“survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related);“recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence. For example, in order to determine appropriate threshold values, a particular cancer therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to biomarker measurements that were determined prior to administration of any cancer therapy. The outcome measurement may be pathologic response to therapy given in the neoadjuvant setting. Alternatively, outcome measures, such as overall survival and disease-free survival can be monitored over a period of time for subjects following cancer therapy for whom biomarker measurement values are known. In certain embodiments, the doses administered are standard doses known in the art for cancer therapeutic agents. The period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months. Biomarker measurement threshold values that correlate to outcome of a cancer therapy can be determined using well-known methods in the art, such as those described in the Examples section.

The term“resistance” refers to an acquired or natural resistance of a cancer sample or a mammal to a cancer therapy ( i.e., being nonresponsive to or having reduced or limited response to the therapeutic treatment), such as having a reduced response to a therapeutic treatment by 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2- fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more. The reduction in response can be measured by comparing with the same cancer sample or mammal before the resistance is acquired, or by comparing with a different cancer sample or a mammal who is known to have no resistance to the therapeutic treatment. A typical acquired resistance to chemotherapy is called“multidrug resistance.” The multidrug resistance can be mediated by P-glycoprotein or can be mediated by other mechanisms, or it can occur when a mammal is infected with a multi-drug-resistant microorganism or a combination of microorganisms. The determination of resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician, for example, can be measured by cell proliferative assays and cell death assays as described herein as“sensitizing.” In some embodiments, the term“reverses resistance” means that the use of a second agent in combination with a primary cancer therapy (e.g., chemotherapeutic or radiation therapy) is able to produce a significant decrease in tumor volume at a level of statistical significance (e.g., p<0.05) when compared to tumor volume of untreated tumor in the circumstance where the primary cancer therapy (e.g., chemotherapeutic or radiation therapy) alone is unable to produce a statistically significant decrease in tumor volume compared to tumor volume of untreated tumor. This generally applies to tumor volume measurements made at a time when the untreated tumor is growing log rhythmically.

The terms“response” or“responsiveness” refers to an anti-cancer response, e.g. in the sense of reduction of tumor size or inhibiting tumor growth. The terms can also refer to an improved prognosis, for example, as reflected by an increased time to recurrence, which is the period to first recurrence censoring for second primary cancer as a first event or death without evidence of recurrence, or an increased overall survival, which is the period from treatment to death from any cause. To respond or to have a response means there is a beneficial endpoint attained when exposed to a stimulus. Alternatively, a negative or detrimental symptom is minimized, mitigated or attenuated on exposure to a stimulus. It will be appreciated that evaluating the likelihood that a tumor or subject will exhibit a favorable response is equivalent to evaluating the likelihood that the tumor or subject will not exhibit favorable response (i.e., will exhibit a lack of response or be non-responsive).

An“RNA interfering agent” as used herein, is defined as any agent which interferes with or inhibits expression of a target biomarker gene by RNA interference (RNAi). Such RNA interfering agents include, but are not limited to, nucleic acid molecules including RNA molecules which are homologous to the target biomarker gene of the present invention, or a fragment thereof, short interfering RNA (siRNA), and small molecules which interfere with or inhibit expression of a target biomarker nucleic acid by RNA interference (RNAi).

“RNA interference (RNAi)” is an evolutionally conserved process whereby the expression or introduction of RNA of a sequence that is identical or highly similar to a target biomarker nucleic acid results in the sequence specific degradation or specific post- transcriptional gene silencing (PTGS) of messenger RNA (mRNA) transcribed from that targeted gene (see Coburn, G et al. (2002) J. of Virology 76(18):9225), thereby inhibiting expression of the target biomarker nucleic acid. In one embodiment, the RNA is double stranded RNA (dsRNA). This process has been described in plants, invertebrates, and mammalian cells. In nature, RNAi is initiated by the dsRNA-specific endonuclease Dicer, which promotes processive cleavage of long dsRNA into double-stranded fragments termed siRNAs. siRNAs are incorporated into a protein complex that recognizes and cleaves target mRNAs. RNAi can also be initiated by introducing nucleic acid molecules, e.g., synthetic siRNAs or RNA interfering agents, to inhibit or silence the expression of target biomarker nucleic acids. As used herein,“inhibition of target biomarker nucleic acid expression” or “inhibition of marker gene expression” includes any decrease in expression or protein activity or level of the target biomarker nucleic acid or protein encoded by the target biomarker nucleic acid. The decrease may be of at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% or more as compared to the expression of a target biomarker nucleic acid or the activity or level of the protein encoded by a target biomarker nucleic acid which has not been targeted by an RNA interfering agent.

The term“sample” used for detecting or determining the presence or level of at least one biomarker is typically whole blood, plasma, serum, saliva, urine, stool (e.g., feces), tears, and any other bodily fluid (e.g., as described above under the definition of“body fluids”), or a tissue sample (e.g., biopsy) such as a small intestine, colon sample, or surgical resection tissue. In certain instances, the method of the present invention further comprises obtaining the sample from the individual prior to detecting or determining the presence or level of at least one marker in the sample.

The term“sensitize” means to alter cancer cells or tumor cells in a way that allows for more effective treatment of the associated cancer with a cancer therapy (e.g., chemotherapeutic, and/or radiation therapy). In some embodiments, normal cells are not affected to an extent that causes the normal cells to be unduly injured by the endocrine or non-endocrine therapy. An increased sensitivity or a reduced sensitivity to a therapeutic treatment is measured according to a known method in the art for the particular treatment and methods described herein below, including, but not limited to, cell proliferative assays (Tanigawa, N et al. (9821) Cancer Res 42: 2159-2164), cell death assays (Weisenthal, L et al. (1984) Cancer Res 94: 161-173; Weisenthal, L et al. (1985) Cancer Treat Rep 69: 615- 632; Weisenthal, L et al. Harwood Academic Publishers, 1993: 415-432; Weisenthal, L (1994) Contrib Gynecol Obstet 19: 82-90). The sensitivity or resistance may also be measured in animal by measuring the tumor size reduction over a period of time, for example, 6 month for human and 4-6 weeks for mouse. A composition or a method sensitizes response to a therapeutic treatment if the increase in treatment sensitivity or the reduction in resistance is 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more, compared to treatment sensitivity or resistance in the absence of such composition or method. The determination of sensitivity or resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician. It is to be understood that any method described herein for enhancing the efficacy of a cancer therapy can be equally applied to methods for sensitizing hyperproliferative or otherwise cancerous cells (e.g., resistant cells) to the cancer therapy.

The term“Src family kinase signaling pathway” or“SFKSP” refers to members (e.g., upstream, downstream, adaptors, and the like) of the Src Family Kinases (SFKs), such as the nine members of the human SFK family, as well as modulators of SFKs including, but not limited to, CSK, PAK2 and CRK. Additional SFKSP members may include, but not limited to, Killer Cell Lectin Like Receptor F1 (KLRF1), Serine/Threonine Kinase 33 (STK33), EPH Receptor B2 (EPHB2), Gamma-Aminobutyric Acid Type A Receptor Alpha4 Subunit (GABRA4), Phosphatidylinositol 4-Kinase Type 2 Alpha (PI4K2A), Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2), Cholinergic Receptor Nicotinic Alpha 1 Subunit (CHRNA1), N-Acetylglucosamine-1-Phosphodiester Alpha-N- Acetylglucosaminidase (NAGPA), Protocadherin Beta 15 (PCDHB15), Uracil

Phosphoribosyltransferase Homolog (UPRT), Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1), Protein Tyrosine Phosphatase Non-Receptor Type 2 (PTPN2),Signal Transducer And Activator Of Transcription 3 (STAT3), HCK Proto-Oncogene Src Family Tyrosine Kinase (HCK), NCK Adaptor Protein 1 (NCK1), Janus Kinase 1 (JAK1), SRC Proto-Oncogene Non-Receptor Tyrosine Kinase (SRC), Zinc Finger Protein 658B

(Pseudogene) (ZNF658B), Epidermal Growth Factor Receptor (EGFR), Artemin (ARTN), Solute Carrier Family 4 Member 4 (SLC4A4), Mechanistic Target Of Rapamycin

(MTOR),Actin, Beta (ACTB), RUN And FYVE Domain Containing 1 (RUFY1), Protein Kinase C Alpha (PRKCA), Mitogen-Activated Protein Kinase 3 (MAPK3), and V-Akt Murine Thymoma Viral Oncogene Homolog 1 (AKT1). Human and orthologous nucleic acid and amino acid sequences of SFKSP members are publicly available on the GenBank database maintained by the U.S. National Center for Biotechnology Information.

Representative nucleic acid and polypeptide sequences are indicated below.

In particular, SFKs are a family of redundant kinases that interact with many cellular cytosolic, nuclear and membrane proteins, modifying these proteins by

phosphorylation of tyrosine residues. The term“pan-SFK” refers to the entire set or a plurality of members of the SFK family. For example, a“pan-SFK inhibitor” inhibits at least 2, 3, 4, 5, 6, 7, 8, or 9 SFK family members. Examples of pan-SFK inhibitors include, but not limited to, Dasatinib and Saracatinib. By contrast, an“SFK selective inhibitor” preferentially inhibits a single SFK family member. Anti-SFK agents, may include intrabodies, nucleic acids, and the like are well-known in the art. SFK members include Leukocyte C-Terminal Proto-Oncogene Tyrosine Kinase (LCK), SRC Rous sarcoma Proto-Oncogene, Non-Receptor Tyrosine Kinase (SRC), Hemopoietic Cell Kinase Proto- Oncogene Tyrosine Kinase (HCK), FYN Proto-Oncogene Tyrosine Kinase (FYN), LYN Proto-Oncogene Tyrosine Kinase (LYN), Feline Gardner-Rasheed Proto-Oncogene

Tyrosine Kinase (FGR), B Lymphoid Proto-Oncogene, Src Family Tyrosine Kinase (BLK), Fyn Related Src Family Tyrosine Kinase (FRK), and Yes-1 Yamaguchi Proto-Oncogene 1Tyrosine Kinase (YES1).

As used herein, the term“CSK” refers to the c-src tyrosine kinase, which is a non- receptor tyrosine-protein kinase that plays an important role in the regulation of cell growth, differentiation, migration and immune response. CSK phosphorylates tyrosine residues located in the C-terminal tails of Src-family kinases (SFKs) including LCK, SRC, HCK, FYN, LYN or YES1. Upon tail phosphorylation, Src-family members engage in

intramolecular interactions between the phosphotyrosine tail and the SH2 domain that result in an inactive conformation. To inhibit SFKs, CSK is recruited to the plasma membrane via binding to transmembrane proteins or adapter proteins located near the plasma membrane. CSK suppresses signaling by various surface receptors, including T-cell receptor (TCR) and B-cell receptor (BCR) by phosphorylating and maintaining inactive several positive effectors such as FYN or LCK. CSK is herein shown to be an estrogen- stimulated tumor suppressor. Since cell transformation by SRC oncoproteins is caused by various mechanisms that interfere with this phosphorylation, the CSK gene might function as an antioncogene (Armstrong et al. (1992) Cytogenet. Cell Genet.60:119-120). The Src homology-3 (SH3) domain of CSK associates with a proline-rich region of PEP, a protein- tyrosine phosphatase expressed in hemopoietic cells (Cloutier et al. (1996 EMBO J.15: 4909-4918). This association is highly specific and it has been speculated that PEP may be an effector and/or regulator of CSK in T cells and other hemopoietic cells. CSK physically interacts with the intracellular phosphatase LYP (PTPN22) and can modify the activation state of downstream Src kinases, such as LYN, in lymphocytes. CSK also plays a critical role in mediating G protein signals in the reorganization of the actin cytoskeleton (Lowry et al. (2002) Dev. Cell 2: 733-744). Inhibitors of CSK include, but not limited to,

Staurosporine, TG100801, and apatinib. Activators of CSK may include, but not limited to, human CSK nucleic acid molecules and polypeptides molecules and orthologs thereof. Representative nucleic acid and polypeptide sequences are provided in Table 1.

As used herein, the term“PAK2” refers to the p21-activated kinase 2. Ras (HRAS)- related GTPases, or p21 proteins, of the Rho (RHOA) subfamily are critical regulators of signal transduction pathways. The p21-activated kinases (PAKs) are a family of serine/threonine kinases that are central to signal transduction and cellular regulation.

PAKs are involved in a variety of cellular processes, including cytoskeletal dynamics, cell motility, gene transcription, death and survival signaling, and cell cycle progression.

Consequently, PAKs are implicated in numerous pathologic conditions and in cell transformation. The PAK family is divided into 2 subfamilies, group I and group II, based on domain architecture and regulation. Group I, the conventional PAKs, includes PAK1, PAK2, and PAK3, which are activated upon binding the GTP-bound forms of the Rho GTPases CDC42 and RAC1. Group II, the nonconventional PAKs, includes PAK4, PAK5 (PAK7and PAK6, which are active independent of Rho GTPases (reviews by Zhao et al. (2005) Biochem. J.386: 201-214 and Eswaran et al. (2008) Trends Biochem. Sci.33: 394- 403).

PAK2 (p21 protein-activated kinase 2) is a serine/threonine kinase whose activity can be stimulated by small GTPases CDC42 and RAC130 and regulated by the Src Family Kinases (SFKs) (Renkema et al. (2002) Mol. Cell. Biol.22:6719–6725; Koh et al. (2009) J. Cell. Sci.122:1812–1822). PAK2 plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation. Acts as downstream effector of the small GTPases CDC42 and RAC1.

Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Full- length PAK2 stimulates cell survival and cell growth. PAK2 phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. PAK2 phosphorylates JUN and plays an important role in EGF-induced cell proliferation. PAK2 phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP. Additionally, associates with ARHGEF7 and GIT1 to perform kinase- independent functions such as spindle orientation control during mitosis. On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway. Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation. Inhibitors of PAK2 include, but not limited to FRAX597. Additional inhibitors of PAK2 block phosphorylation of PAK2 at the following Tyrosine residues: Y130, Y139, Y194. Inhibitors of PAK2 may comprise phosphorylation defective PAK2, such as PAK2 Y130F, PAK2 Y139F, and PAK2

(Y194F). Representative nucleic acid and polypeptide sequences are provided in Table 2.

Binding analysis confirmed that PAK2 associates with the p21 proteins CDC42 and RAC1, but not with RHOA (ARHA) (Martin et al. (1995) EMBO J.14: 1970-1978).

Functional analysis determined that CDC42 and RAC1 induce autophosphorylation of PAK2, which stimulates sustained phosphorylation of other substrates.

PAK2 is unique among PAK family members in that it can be activated by proteolytic cleavage to generate a constitutively active fragment, PAK2p34. Activation of PAK2 by RAC or CDC42 stimulates cell survival, whereas caspase-activated PAK2p34 induces a cell death response. Using yeast 2-hybrid analysis, it was determined that PSGAP (ARHGAP10) interacted specifically with PAK2p34, but not with active or inactive full-length PAK2, in vitro and in vivo via a region between the GAP and SH3 domains of PSGAP (Koeppel et al. (2004) J. Biol. Chem.279: 53653-53664). The interaction with PSGAP inhibited the protein kinase activity of PAK2p34 in vitro and changed the localization of PAK2p24 from the nucleus to the perinuclear region.

Furthermore, PSGAP appeared to regulate the ability of PAK2p34 to induce programmed cell death.

As used herein, the term“CRK” refers to the proto-oncogene c-crk or avian sarcoma virus CT10 (v-crk) homolog, which is a member of an adapter protein family that binds to several tyrosine-phosphorylated proteins and involved in activating SFKs (Sabe et al.

(1992) Mol. Cell. Biol.12:4706–4713). The CRK oncogene was originally identified as a transforming component of the avian sarcoma virus CT10. A cDNA encoding the chicken cellular homolog of v-crk was isolated by Reichman et al. (1992) Cell Growth Differ.3: 451-460 and shown to consist primarily of the SRC (190090) homology domains SH2 and SH3. Matsuda et al. (1992) Molec. Cell. Biol.12: 3482-3489 isolated 2 distinct human CRK cDNA species and showed that the deduced amino acid sequences of the

corresponding polypeptides differed in their C termini. The 2 cDNA species were considered to derive from the same genomic locus by alternative splicing.

Feller et al. (1994) Trends Biochem. Sci.19: 453-458 described the SRC homology domains SH2 and SH3 as molecular adhesives on many proteins involved in signal transduction. They reviewed the interactions of ABL and CRK as a model of SH2 and SH3 interaction. Hallock et al. (2010) Genes Dev.24: 2451-2461 found that Crk and Crkl were recruited to mouse skeletal muscle synapses and played redundant roles in synaptic differentiation. Crk and Crkl bound the same tyrosine-phosphorylated sequences in Dok7, a protein that functions downstream of agrin (AGRN) and muscle-specific receptor kinase (MUSK) in synapse formation. CRK has several SH2 and SH3 domains (src-homology domains) and is involved in several signaling pathways, recruiting cytoplasmic proteins in the vicinity of tyrosine kinase through SH2-phosphotyrosine interaction. The N-terminal SH2 domain of this protein functions as a positive regulator of transformation whereas the C-terminal SH3 domain functions as a negative regulator of transformation. Two alternative transcripts encoding different isoforms with distinct biological activity have been described. The Crk-I and Crk-II forms differ in their biological activities. Crk-II has less transforming activity than Crk-I. Crk-II mediates attachment-induced MAPK8 activation, membrane ruffling and cell motility in a Rac-dependent manner. CRK is involved in phagocytosis of apoptotic cells and cell motility via its interaction with DOCK1 and DOCK4. CRK may regulate the EFNA5-EPHA3 signaling. CRK interacts with ABL1, C3G, DOCK3, MAP4K1, MAPK8 and SOS via its first SH3 domain. CRK interacts (via SH2 domain) with BCAR1, CBL, CBLB, PXN, IRS4 and GAB1 upon stimulus-induced tyrosine phosphorylation. CRK interacts (via SH2 domain) with several tyrosine- phosphorylated growth factor receptors such as EGFR and INSR. CRK interacts with FLT1 (tyrosine-phosphorylated). CRK interacts with DOCK1 and DOCK4, SHB, PEAK1, and FASLG. Isoform Crk-II interacts with KIT. CRK interacts with EPHA3; upon activation of EPHA3 by the ligand EFNA5 and EPHA3 tyrosine kinase activity-dependent. CRK interacts with EPHA3 (phosphorylated); mediates EFNA5-EPHA3 signaling through RHOA GTPase activation. CRK interacts with FLT4 (tyrosine-phosphorylated). Isoform Crk-II (via SH2 domain) interacts with PDGFRA (tyrosine phosphorylated) and PDGFRB (tyrosine phosphorylated). CRK is part of a collagen stimulated complex involved in cell migration composed of CDC42, CRK, TNK2 and p130cas/BCAR1. CRK interacts (via SH2 domain) with the Tyr-9 phosphorylated form of PDPK1. CRK interacts with CBLC. CRK is found in a complex with ABL1, ABL2, CRK and UNC119; leading to the inhibition of CRK phosphorylation by ABL kinases. Representative nucleic acid and polypeptide sequences are provided in Table 2.

BLK encodes a nonreceptor tyrosine-kinase of the src family of proto-oncogenes that are typically involved in cell proliferation and differentiation. The protein has a role in B-cell receptor signaling and B-cell development. The protein also stimulates insulin synthesis and secretion in response to glucose and enhances the expression of several pancreatic beta-cell transcription factors. BLK is involved in B-lymphocyte development, differentiation and signaling. B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B- cell activation. Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor. BLK pecifically binds and phosphorylates CD79A at Tyr-188and Tyr-199, as well as CD79B at Tyr-196 and Tyr-207. BLK phosphorylates also the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C. With FYN and LYN, BLK plays an essential role in pre-B-cell receptor (pre- BCR)-mediated NF-kappa-B activation. BLK contributes also to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation. In pancreatic islets, BLK acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose. Inhibitors of BLK include, but not limited to, ENMD-2076.

Nucleic acid and polypeptide sequences of BLK are well-known and include, but not limited to, human BLK (NM_001715.2, NP_001706.2), chimp BLK

(XM_016959095.1, XP_016814584.1), dog BLK (XM_543206.4, XP_543206.2), and cow BLK (NM_001075968.2, NP_001069436.1), mouse BLK (NM_007549.2, NP_031575.2), rat BLK (NM_001025751.1, NP_001020922.1), and chicken BLK (XM_004935895.2, XP_004935952.1).

FGR is a member of the Src family of protein tyrosine kinases (PTKs). The encoded protein contains N-terminal sites for myristylation and palmitylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with phosphotyrosine-containing and proline-rich motifs, respectively. The protein localizes to plasma membrane ruffles, and functions as a negative regulator of cell migration and adhesion triggered by the beta-2 integrin signal transduction pathway. Infection with Epstein-Barr virus results in the overexpression of this gene. Multiple alternatively spliced variants, encoding the same protein, have been identified. FGR transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. FGR promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. FGR acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. FGR acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, FGR activates or inhibits cellular responses. FGR functions as negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. FGR is required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. FGR functions as positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. FGR phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. FGR phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. FGR promotes activation of PIK3R1. FGR phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. FGR phosphorylates ABL1. FGR promotes phosphorylation of CBL, CTTN, PIK3R1,

PTK2/FAK1, PTK2B/PYK2 and VAV2. FGR phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Inhibitors of FGR include, but not limited to, Phosphodiesterase 5 Inhibitors, Phosphodiesterase Inhibitors, Sildenafil Citrate, and Vasodilator Agents.

Nucleic acid and polypeptide sequences of FGR are well-known and include, but not limited to, human FGR (NM_005248.2, NP_005239.1), chimp FGR

(XM_016957241.1, XP_003307960.1), monkey FGR (NM_001258057.1,

NP_001244986.1), dog FGR (XM_544467.5, XP_544467.2), and cow FGR

(NM_001098991.1, NP_001092461.1), mouse FGR (NM_010208.4, NP_034338.3), rat FGR (NM_024145.2, NP_077059.2), and chicken FGR (NM_001109787.1,

NP_001103257.1).

FRK is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. FRK negatively regulates cell proliferation. FRK positively regulates PTEN protein stability through phosphorylation of PTEN on Tyr-336, which in turn prevents its ubiquitination and degradation, possibly by reducing its binding to NEDD4. FRK may function as a tumor suppressor. Inhibitors of FRK include, but not limited to, regorafenib and Stivarga.

Nucleic acid and polypeptide sequences of FRK are well-known and include, but not limited to, human FRK (NM_002031.2, NP_002022.1), chimp FRK (XM_518702.5, XP_518702.3), monkey FRK (XM_015137546.1, XP_001112190.1), dog FRK

(XM_539091.4, XP_539091.2), and cow FRK (XM_002690084.5, XP_586141.3), mouse FRK (NM_001159544.1, NP_034367.2), rat FRK (NM_024368.1, NP_077344.1), and chicken FRK (XM_419779.5, XP_419779.3).

FYN is a member of the protein-tyrosine kinase oncogene family. It encodes a membrane-associated tyrosine kinase that has been implicated in the control of cell growth. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. FYN plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance. Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain. Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions. FYN is involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin). FYN regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT. FYN promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage. FYN participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL and TRPC6. FYN plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre- synaptic protein. FYN participates in the downstream signaling pathways that lead to T- cell differentiation and proliferation following T-cell receptor (TCR) stimulation. FYN also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts. CSK maintains LCK and FYN in an inactive form. FYN promotes CD28- induced phosphorylation of VAV1. Inhibitors of FYN include, but not limited to,

Dasatinib, Sprycel, Piceatannol, and 1-Methoxy-2-[2-(2-Methoxy-Ethoxy]-Ethane.

Nucleic acid and polypeptide sequences of FYN are well-known and include, but not limited to, human FYN (NM_002037.5, NP_002028.1), chimp FYN

(XM_001159342.5, XP_001159342.1), monkey FYN (XM_015137564.1,

XP_014993050.1), dog FYN (XM_849374.3, XP_854467.1), and cow FYN

(NM_001077972.1, NP_001071440.1), mouse FYN (NM_008054.2, NP_032080.2), rat FYN (NM_012755.1, NP_036887.1), and chicken FYN (NP_036887.1, NP_990680.2).

LCK is a member of the Src family of protein tyrosine kinases (PTKs). The encoded protein is a key signaling molecule in the selection and maturation of developing T-cells. It contains N-terminal sites for myristylation and palmitylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with

phosphotyrosine-containing and proline-rich motifs, respectively. The protein localizes to the plasma membrane and pericentrosomal vesicles, and binds to cell surface receptors, including CD4 and CD8, and other signaling molecules. Multiple alternatively spliced variants, encoding the same protein, have been described. LCK plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. LCK plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. LCK is constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the

immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70 that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. LCK associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. LCK also plays a role in the IL2 receptor- linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. LCK is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. LCK phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP. Inhibitors of LCK include, but not limited to, Dasatinib, Nintedanib, ponatinib, Pazopanib, and Iclusig.

Nucleic acid and polypeptide sequences of LCK are well-known and include, but not limited to, human LCK (NM_001042771.2, NP_005347.3), chimp LCK

(XM_016958271.1, XP_016813760.1), dog LCK (XM_005617639.1, XP_005617696.1), cow LCK (NM_001034334.1, NP_001029506.1), mouse LCK (NM_001162432.1, NP_034823.1), rat LCK (NM_001100709.1, NP_001094179.1), and chicken LCK

(XM_015297854.1, XP_427615.3).

LYN encodes a tyrosine protein kinase, which maybe involved in the regulation of mast cell degranulation, and erythroid differentiation. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. LYN transmits signals from cell surface receptors and plays an important role in the regulation of innate and adaptive immune responses, hematopoiesis, responses to growth factors and cytokines, integrin signaling, but also responses to DNA damage and genotoxic agents. LYN functions primarily as negative regulator, but can also function as activator, depending on the context. LYN is required for the initiation of the B-cell response, but also for its down- regulation and termination. LYN plays an important role in the regulation of B-cell differentiation, proliferation, survival and apoptosis, and is important for immune self- tolerance. LYN acts downstream of several immune receptors, including the B-cell receptor, CD79A, CD79B, CD5, CD19, CD22, FCER1, FCGR2, FCGR1A, TLR2 and TLR4. LYN plays a role in the inflammatory response to bacterial lipopolysaccharide. LYN mediates the responses to cytokines and growth factors in hematopoietic progenitors, platelets, erythrocytes, and in mature myeloid cells, such as dendritic cells, neutrophils and eosinophils. LYN acts downstream of EPOR, KIT, MPL, CXCR4, IL3 receptor, IL5 receptor, and CSF2 receptor. LYN plays an important role in integrin signaling. LYN regulates cell proliferation, survival, differentiation, migration, adhesion, degranulation, and cytokine release. LYN down-regulates signaling pathways by phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIM), that then serve as binding sites for phosphatases, such as PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1, that modulate signaling by dephosphorylation of kinases and their substrates. LYN

phosphorylates LIME1 in response to CD22 activation. LYN phosphorylates BTK, CBL, CD5, CD19, CD72, CD79A, CD79B, CSF2RB, DOK1, HCLS1, LILRB3/PIR-B,

MS4A2/FCER1B, PTK2B/PYK2, SYK and TEC. LYN promotes phosphorylation of SIRPA, PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1. LYN mediates

phosphorylation of the BCR-ABL fusion protein. LYN is required for rapid

phosphorylation of FER in response to FCER1 activation. LYN mediates KIT

phosphorylation. LYN acts as an effector of EPOR (erythropoietin receptor) in controlling KIT expression and may play a role in erythroid differentiation during the switch between proliferation and maturation. Depending on the context, LYN activates or inhibits several signaling cascades. LYN regulates phosphatidylinositol 3-kinase activity and activation. LYN regulates activation of the MAP kinase signaling cascade, including activation of MAP2K1/MEK1, MAPK1/ERK2, MAPK3/ERK1, MAPK8/JNK1 and MAPK9/JNK2. LYN mediates activation of STAT5A and/or STAT5B. LYN phosphorylates LPXN on Tyr-72. LYN kinase activity facilitates TLR4-TLR6 heterodimerization and signal initiation. Inhibitors of LYN include, but not limited to, bosutinib, Nintedanib, ponatinib, Bosulif, and Iclusig.

Nucleic acid and polypeptide sequences of LYN are well-known and include, but not limited to, human LYN (NM_002350.3, NP_002341.1), chimp LYN (XM_016959500.1, XP_528143.2), monkey LYN (XM_001087049.3, XP_001087049.2), dog LYN (XM_005637999.1, XP_535078.2), cow LYN (NM_001177740.1,

NP_001171211.1), mouse LYN (NM_010747.2, NP_034877.2), rat LYN

(NM_001111098.1, NP_110484.1), and chicken LYN (NM_001006390.1,

NP_001006390.1).

YES1 is the cellular homolog of the Yamaguchi sarcoma virus oncogene. The encoded protein has tyrosine kinase activity and belongs to the src family of proteins. This gene lies in close proximity to thymidylate synthase gene on chromosome 18, and a corresponding pseudogene has been found on chromosome 22. YES1 is involved in the regulation of cell growth and survival, apoptosis, cell-cell adhesion, cytoskeleton remodeling, and differentiation. Stimulation by receptor tyrosine kinases (RTKs) including EGRF, PDGFR, CSF1R and FGFR leads to recruitment of YES1 to the phosphorylated receptor, and activation and phosphorylation of downstream substrates. Upon EGFR activation, YES1 promotes the phosphorylation of PARD3 to favor epithelial tight junction assembly. YES1 participates in the phosphorylation of specific junctional components such as CTNND1 by stimulating the FYN and FER tyrosine kinases at cell-cell contacts. Upon T-cell stimulation by CXCL12, YES1 phosphorylates collapsin response mediator protein 2/DPYSL2 and induces T-cell migration. YES1 participates in CD95L/FASLG signaling pathway and mediates AKT-mediated cell migration. YES1 plays a role in cell cycle progression by phosphorylating the cyclin-dependent kinase 4/CDK4 thus regulating the G1 phase. YES1 is also involved in G2/M progression and cytokinesis. Inhibitors of YES1 include, but not limited to, Dasatinib, Sprycel, AT9283, and ENMD-2076.

Nucleic acid and polypeptide sequences of YES1 are well-known and include, but not limited to, human YES1 (NM_005433.3), chimp YES1 (XM_001148240.3,

XP_001148240.1), monkey YES1 (NM_001257512.1, NP_001244441.1), dog YES1 (NM_001003239.2, NP_001003239.2), cow YES1 (NM_001101060.1, NP_001094530.1), mouse YES1 (NM_009535.3, NP_033561.1), rat YES1 (NM_033298.1, NP_150640.1), and chicken YES1 (NM_205301.1, NP_990632.1).

KLRF1, an activating homodimeric C-type lectin-like receptor (CTLR), is expressed on nearly all natural killer (NK) cells and stimulates their cytoxicity and cytokine release (Kuttruff et al., (2009) Blood 113: 358-369). FACS and surface plasmon resonance analyses showed that AICL (CLEC2B), a myeloid cell-specific receptor, interacted with NKp80 at an intermediate on rate and a rapid off rate. AICL expression was upregulated by a number of Toll-like receptor (TLR) ligands, but not by TLR9 ligands. Welte et al. (2006) Nature Immun.7: 1334-1342 concluded that AICL is a ligand for the activating NK receptor NKp80 and that NKp80-AICL interaction induces cytolysis of myeloid cells and activation of both NK cells and monocytes. They noted that both molecules are present in humans but not in rodents.

Using gene expression profiling and FACS analysis, Kuttruff et al., (2009) Blood 113: 358-369 showed that NKp80 was expressed on a small but highly responsive subset of effector memory CD8-positive T cells with an inflammatory NK-like phenotype and that NKp80 promoted T-cell responses toward AICL-expressing cells. Nucleic acid and polypeptide sequences of KLRF1 are well-known and include, but not limited to, human KLRF1 (NM_001291823.1, NP_057607.1), chimp KLRF1 (NM_001079918.1,

NP_001073387.1), monkey KLRF1 (NM_001032961.1, NP_001028133.1), dog KLRF1 (XM_849098.2, XP_854191.2), and cow KLRF1 (NM_001099120.2, NP_001092590.1).

STK33 is a serine/threonine protein kinase which phosphorylates VIME. STK33 may play a specific role in the dynamic behavior of the intermediate filament cytoskeleton by phosphorylation of VIME (By similarity). STK22 does not appear to be essential for the survival of KRAS-dependent AML cell lines. Mutations in the KRAS gene are responsible for oncogenic cell growth in a wide range of human cancers. Using an RNA interference screen, Scholl et al. (2009) Cell 137: 821-834 found that STK33 was essential for abnormal cell growth in human cell lines expressing oncogenic mutations in KRAS, but not in human cancer cell lines expressing wildtype KRAS. Knockdown of STK33 in mutant KRAS- dependent cell lines via small interfering RNA (siRNA) decreased phosphorylation of S6K1 (RPS6KB1) and the S6K1 substrate RPS6, and it induced expression of genes involved in the mitochondrial apoptotic pathway, including BAD, which encodes a proapoptotic protein. Knockdown of BAD via siRNA rescued cell viability after STK33 suppression in KRAS-dependent cell lines. Knockdown of STK33 in cancer cell lines expressing wildtype KRAS had no effect on cell growth or apoptotic signaling. Scholl et al. (2009) Cell 137: 821-834concluded that STK33 is required for survival and proliferation of mutant KRAS-dependent cancer cells, in which it suppresses the S6K1-BAD proapoptotic signaling pathway.

Nucleic acid and polypeptide sequences of STK33 are well-known and include, but not limited to, human STK33 (NM_030906.3, NP_112168.1), chimp STK33

(XM_009459902.2, XP_009458177.2), monkey STK33 (XM_015114926.1, XP_014970412.1), dog STK33 (XM_534045.4, XP_534045.3), and cow STK33

(NM_001075908.1, NP_001069376.1), mouse STK33 (NM_054103.1, NP_473444.1), and rat STK22 (XM_008774641.1, XP_008772863.1).

EPHB2 is a member of the Eph receptor family of receptor tyrosine kinase transmembrane glycoproteins. These receptors are composed of an N-terminal glycosylated ligand-binding domain, a transmembrane region and an intracellular kinase domain. They bind ligands called ephrins and are involved in diverse cellular processes including motility, division, and differentiation. A distinguishing characteristic of Eph-ephrin signaling is that both receptors and ligands are competent to transduce a signaling cascade, resulting in bidirectional signaling. This protein belongs to a subgroup of the Eph receptors called EphB. Proteins of this subgroup are distinguished from other members of the family by sequence homology and preferential binding affinity for membrane-bound ephrin-B ligands. Allelic variants are associated with prostate and brain cancer susceptibility.

Alternative splicing of the EPHB2 gene results in multiple transcript variants.

EPHB2 binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. EPHB2 functions in axon guidance during development. EPHB2 is involved in the guidance of commissural axons that form a major interhemispheric connection between the 2 temporal lobes of the cerebral cortex. EPHB2 is also involved in guidance of

contralateral inner ear efferent growth cones at the midline and of retinal ganglion cell axons to the optic disk. In addition to axon guidance, EPHB2 also regulates dendritic spines development and maturation and stimulates the formation of excitatory synapses. Upon activation by EFNB1, EPHB2 abolishes the ARHGEF15-mediated negative regulation on excitatory synapse formation. EPHB2 controls other aspects of development including angiogenesis, palate development and in inner ear development through regulation of endolymph production. Forward and reverse signaling through the EFNB2/EPHB2 complex regulate movement and adhesion of cells that tubularize the urethra and septate the cloaca. EPHB2 may also function as a tumor suppressor.

Nucleic acid and polypeptide sequences of EPHB2 are well-known and include, but not limited to, human EPHB2 (NM_004442.7, NP_004433.2), chimp EPHB2

(XM_016956064.1, XP_016811553.1), chicken EPHB2 (NM_206951.3, NP_996834.1), mouse (NM_010142.4, NP_034272.1), dog EPHB2 (XM_005617823.2, XP_005617880.1), rat EPHB2 (NM_001127319.1, NP_001120791.1), and cow EPHB2 (NM_001191498.1, NP_001178427.1).

GABRA4 is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride

conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. At least 16 distinct subunits of GABA-A receptors have been identified. This gene encodes subunit alpha-4, which is involved in the etiology of autism and eventually increases autism risk through interaction with another subunit, gamma-aminobutyric acid receptor beta-1 (GABRB1). Alternatively spliced transcript variants encoding different isoforms have been found in this gene. GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. GABAA receptors are members of the Cys-loop family of ligand-gated ion channels and, along with GABAB receptors, are responsible for mediating the inhibitory effects of GABA. They are pentameric proteins, consisting of five subunits belonging to different families. GABRA4 inhibitors include, but not limitd to, Bromazepam, Butabarbital, Butalbital, Butethal 2, and Chlordiazepoxide.

GABRA4 Nucleic acid and polypeptide sequences of GABRA4 are well-known and include, but not limited to, human GABRA4 (NM_000809.3, NP_000800.2), chimp GABRA4 (XM_526774.5, XP_526774.2), mouse GABRA4 (NM_010251.2,

NP_034381.1), monkey GABRA4 (XM_001101231.3, XP_001101231.1), dog GABRA4 (XM_014118665.1, XP_013974140.1), rat GABRA4 (NM_080587.3, NP_542154.3), chicken GABRA4 (XM_004936058.2, XP_420724.2), and cow GABRA4 (NM_174543.2, NP_776968.1).

PI4K2A phosphorylates PtdIns at the D-4 position, an essential step in the biosynthesis of Phosphatidylinositolpolyphosphates (PtdInsPs) (Barylko et al. (2001) J Biol Chem.2001276(11):7705-8). PtdInsPs are centrally involved in many biologic processes, ranging from cell growth and organization of the actin cytoskeleton to endo- and exocytosis. PI4K2A is a membrane-bound phosphatidylinositol-4 kinase (PI4-kinase) that catalyzes the phosphorylation of phosphatidylinositol (PI) to phosphatidylinositol 4- phosphate (PI4P), a lipid that plays important roles in endocytosis, Golgi function, protein sorting and membrane trafficking. PI4K2A is required for prolonged survival of neurons. Phosphorylation of phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P) is the first committed step in the generation of phosphatidylinositol 4,5-bisphosphate (PIP2), a precursor of the second messenger inositol 1,4,5-trisphosphate (InsP3).

Nucleic acid and polypeptide sequences of PI4K2A are well-known and include, but not limited to, human PI4K2A (NM_018425.3, NP_060895.1), chimp PI4K2A

(XM_507965.4, XP_507965.2), mouse PI4K2A (NM_145501.2 NP_663476.1), dog PI4K2A (XM_543953.5, XP_543953.2), rat PI4K2A (NM_053735.1, NP_446187.1), chicken PI4K2A (XM_423069.5, XP_423069.1), and cow PI4K2A (NM_001100316.1, NP_001093786.1).

PIK3R2 is a lipid kinase that phosphorylates phosphatidylinositol and similar compounds, creating second messengers important in growth signaling pathways. PI3K functions as a heterodimer of a regulatory and a catalytic subunit. The protein encoded by this gene is a regulatory component of PI3K. Two transcript variants, one protein coding and the other non-protein coding, have been found for this gene. PIK3R2 is the regulatory subunit of phosphoinositide-3-kinase (PI3K), a kinase that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5- trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. PIK3R2 binds to activated (phosphorylated) protein-tyrosine kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. PIK3R2 indirectly regulates autophagy (Kuchay et al. (2013) Nat Cell Biol 15(5):472-480). PIK3R2 promotes nuclear translocation of XBP1 isoform 2 in an ER stress- and/or insulin- dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement. PIK3R2 inhibitors include, but not limited to,

GSK2636771, SF1126, XL147, Isoproterenol, and Quercetin.

Nucleic acid and polypeptide sequences of PIK3R2 are well-known and include, but not limited to, human PIK3R2 (NM_005027.3, NP_005018.1), chimp PIK3R2

(XM_512509.4, XP_512509.2), monkey PIK3R2 (NM_001258052.1, NP_001244981.1), dog PIK3R2 (XM_847313.4, XP_852406.2), cow PIK3R2 (NM_174576.2, NP_777001.1), mouse PIK3R2 (NM_008841.2, NP_032867.2), rat PIK3R2 (NM_022185.2,

NP_071521.2), and chicken PIK3R2 (XM_001233340.4, XP_001233341.3). CHRNA1 encodes an alpha subunit that plays a role in acetlycholine

binding/channel gating. Alternatively spliced transcript variants encoding different isoforms have been identified. The muscle acetylcholine receptor consiststs of 5 subunits of 4 different types: 2 alpha subunits and 1 each of the beta, gamma, and delta subunits. After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Inhibitors of CHRNA1 include, but not limited to, Mecamylamine,

Pancuronium, Succinylcholine, Galantamine, and Acetylcysteine.

Nucleic acid and polypeptide sequences of CHRNA1 are well-known and include, but not limited to, human CHRNA1 (NM_001039523.2, NP_000070.1), chimp CHRNA1 (XM_016950066.1, XP_016805555.1), monkey CHRNA1 (XM_001091711.3,

XP_001091711.1), dog CHRNA1 (NM_001003144.2, NP_001003144.1), mouse CHRNA1 (NM_007389.5, NP_031415.2), rat CHRNA1 (NM_024485.1, NP_077811.1), chicken CHRNA1 (NM_204816.1, NP_990147.1), and cow CHRNA1 (NM_176664.2,

NP_788837.1).

NAGPA encodes the enzyme that catalyzes the second step in the formation of the mannose 6-phosphate recognition marker on lysosomal hydrolases. Hydrolases are transported to lysosomes after binding to mannose 6-phosphate receptors in the trans-Golgi network. Commonly known as 'uncovering enzyme' or UCE, this enzyme removes N- acetyl-D-glucosamine (GlcNAc) residues from GlcNAc-alpha-P-mannose moieties and thereby produces the recognition marker. The encoded preproprotein is proteolytically processed by furin to generate the mature enzyme, a homotetramer of two disulfide-linked homodimers. Mutations in this gene are associated with developmental stuttering in human patients. NAGPA catalyzes the second step in the formation of the mannose 6-phosphate targeting signal on lysosomal enzyme oligosaccharides by removing GlcNAc residues from GlcNAc-alpha-P-mannose moieties, which are formed in the first step. NAGPA also hydrolyzes UDP-GlcNAc, a sugar donor for Golgi N-acetylglucosaminyltransferases.

Nucleic acid and polypeptide sequences of NAGPA are well-known and include, but not limited to, human NAGPA (NM_016256.3, NP_057340.2), chimp NAGPA

(XM_510795.6, XP_510795.2), monkey NAGPA (XM_001100122.3, XP_001100122.1), dog NAGPA (XM_005621579.2, XP_005621636.1), cow NAGPA (NM_001206618.1, NP_001193547.1), mouse NAGPA (NM_013796.3, NP_038824.2), rat NAGPA (NM_001108265.1, NP_001101735.1), and chicken NAGPA (XM_414709.5,

XP_414709.4).

PCDHB15 is a member of the protocadherin beta gene cluster, one of three related gene clusters tandemly linked on chromosome five. The gene clusters demonstrate an unusual genomic organization similar to that of B-cell and T-cell receptor gene clusters. The beta cluster contains 16 genes and 3 pseudogenes, each encoding 6 extracellular cadherin domains and a cytoplasmic tail that deviates from others in the cadherin superfamily. The extracellular domains interact in a homophilic manner to specify differential cell-cell connections. Unlike the alpha and gamma clusters, the transcripts from these genes are made up of only one large exon, not sharing common 3' exons as expected. These neural cadherin-like cell adhesion proteins are integral plasma membrane proteins. Their specific functions are unknown but they most likely play a critical role in the establishment and function of specific cell-cell neural connections. PCDHB15 may be a potential calcium-dependent cell-adhesion protein. PCDHB15 may be involved in the establishment and maintenance of specific neuronal connections in the brain.

Nucleic acid and polypeptide sequences of PCDHB15 are well-known and include, but not limited to, human PCDHB15 (NM_018935.3, NP_061758.1), chimp PCDHB15 (NM_001013011.2, NP_001013029.1), monkey PCDHB15 (XM_001092245.3,

XP_001092245.1), dog PCDHB15 (XM_005617297.2, XP_005617354.1), mouse

PCDHB15 (NM_053147.3, NP_444377.3), and rat PCDHB15 (XM_001065549.5, XP_001056235.1).

UPRT encodes uracil phosphoribosyltransferase, which catalyzes the conversion of uracil and 5-phosphoribosyl-1-R-diphosphate to uridine monophosphate (UMP). This reaction is an important part of nucleotide metabolism, specifically the pyrimidine salvage pathway. The enzyme localizes to the nucleus and cytoplasm. The protein is a potential target for rational design of drugs to treat parasitic infections and cancer. Inhibitors for UPRT include, but not limited to, Orphenadrine, Meperidine, Phenobarbital, and

Acamprosate.

Nucleic acid and polypeptide sequences of UPRT are well-known and include, but not limited to, human UPRT (NM_145052.3, NP_659489.1), chimp UPRT (XM_521142.5, XP_521142.2), monkey UPRT (NM_001261749.1, NP_001248678.1), dog UPRT

(XM_538081.4, XP_538081.2), cow UPRT (NM_001076245.2, NP_001069713.1), mouse UPRT (NM_001081189.1, NP_001074658.1), rat UPRT (XM_006227407.2,

XP_228538.3), and chicken UPRT (NM_001031124.1, NP_001026295.1).

GRIN1 is a critical subunit of N-methyl-D-aspartate receptors, members of the glutamate receptor channel superfamily which are heteromeric protein complexes with multiple subunits arranged to form a ligand-gated ion channel. These subunits play a key role in the plasticity of synapses, which is believed to underlie memory and learning. Cell- specific factors are thought to control expression of different isoforms, possibly

contributing to the functional diversity of the subunits. Alternatively spliced transcript variants have been described.

Nucleic acid and polypeptide sequences of GRIN1 are well-known and include, but not limited to, human GRIN1 (NM_000832.6, NP_067544.1), monkey GRIN1

(XM_015116264.1, XP_014971750.1), dog GRIN1 (NM_001008717.1, NP_001008717.1), cow GRIN1 (XM_015473721.1, XP_015329207.1), mouse GRIN1 (NM_001177657.2, NP_032195.1), rat GRIN1 (NM_001270602.1, NP_058706.1), and chicken GRIN1

(NM_206979.1, NP_996862.1).

PTPN2 is a member of the protein tyrosine phosphatase (PTP) family. Members of the PTP family share a highly conserved catalytic motif, which is essential for the catalytic activity. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic

transformation. Epidermal growth factor receptor and the adaptor protein Shc were reported to be substrates of this PTP, which suggested the roles in growth factor mediated cell signaling. Multiple alternatively spliced transcript variants encoding different isoforms have been found. Two highly related but distinctly processed pseudogenes that localize to chromosomes 1 and 13, respectively, have been reported. PTPN2 dephosphorylates receptor protein tyrosine kinases including INSR, EGFR, CSF1R, and PDGFR. PTPN2 also dephosphorylates non-receptor protein tyrosine kinases like JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3, STAT5A, STAT5B and STAT6 either in the nucleus or the cytoplasm. PTPN2 negatively regulates numerous signaling pathways and biological processes like hematopoiesis, inflammatory response, cell proliferation and differentiation, and glucose homeostasis. PTPN2 plays a multifaceted and important role in the

development of the immune system. PTPN2 functions in T-cell receptor signaling through dephosphorylation of FYN and LCK to control T-cells differentiation and activation. PTPN2 dephosphorylates CSF1R, negatively regulating its downstream signaling and macrophage differentiation. PTPN2 negatively regulates cytokine (IL2/interleukin-2 and interferon)-mediated signaling through dephosphorylation of the cytoplasmic kinases JAK1, JAK3 and their substrate STAT1, that propagate signaling downstream of the cytokine receptors. PTPN2 also regulates the IL6/interleukin-6 and IL4/interleukin-4 cytokine signaling through dephosphorylation of STAT3 and STAT6 respectively. In addition to the immune system, it is involved in anchorage-dependent, negative regulation of EGF-stimulated cell growth. Activated by the integrin ITGA1/ITGB1, it

dephosphorylates EGFR and negatively regulates EGF signaling. PTPN2 dephosphorylates PDGFRB and negatively regulates platelet-derived growth factor receptor-beta signaling pathway and therefore cell proliferation. PTPN2 negatively regulates tumor necrosis factor-mediated signaling downstream via MAPK through SRC dephosphorylation. PTPN2 may also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of the hepatocyte growth factor receptor MET. PTPN2 plays also an important role in glucose homeostasis. For instance, PTPN2 negatively regulates the insulin receptor signaling pathway through the dephosphorylation of INSR and control gluconeogenesis and liver glucose production through negative regulation of the IL6 signaling pathways. Finally, it negatively regulates prolactin-mediated signaling pathway through dephosphorylation of STAT5A and STAT5B. PTPN2 may also bind DNA.

Nucleic acid and polypeptide sequences of PTPN2 are well-known and include, but not limited to, human PTPN2 (NG_029116, NP_001295216.1, NP_001193942.1,

NP_002819.2, NP_536348.1, NP_536347.1), chimp PTPN2 (XM_009433613.2,

XM_009433614.2, XM_009433615.2, XM_003953237.2, XM_001171536.4,

XP_009431892.1, XP_009431888.2, XP_009431889.2, XP_009431890.2,

XP_003953286.2), mouse PTPN2 (NM_008977.3, NM_001127177.1, NP_001120649.1, NP_033003.1), and rat PTPN2 (NM_053990.1, NP_446442.1).

STAT3 is a member of the STAT protein family. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators. This protein is activated through phosphorylation in response to various cytokines and growth factors including IFNs, EGF, IL5, IL6, HGF, LIF and BMP2. STAT3 mediates the expression of a variety of genes in response to cell stimuli, and thus plays a key role in many cellular processes such as cell growth and apoptosis. The small GTPase Rac1 has been shown to bind and regulate the activity of this protein. PIAS3 protein is a specific inhibitor of this protein. Mutations in STAT3 are associated with infantile-onset multisystem autoimmune disease and hyper- immunoglobulin E syndrome. Alternative splicing of the STAT3 gene results in multiple transcript variants encoding distinct isoforms. STAT3 is a signal transducer and

transcription activator that mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors. Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene (Saxena et al. (2007) J. Biol Chem 282(18):13316- 25). STAT3 may mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4. STAT3 binds to the interleukin-6 (IL-6)-responsive elements identified in the promoters of various acute-phase protein genes. STAT3 is activated by IL31 through IL31RA. STAT3 is involved in cell cycle regulation by inducing the expression of key genes for the progression from G1 to S phase, such as CCND1 (Saxena et al. (2007) J. Biol Chem 282(18):13316-25). STAT3 mediates the effects of LEP on melanocortin production, body energy homeostasis and lactation (By similarity). STAT3 may play an apoptotic role by transctivating BIRC5 expression under LEP activation (Jiang et al. (2008) Biochem Biophys Res Commun.368(1):1-5). Cytoplasmic STAT3 represses macroautophagy by inhibiting EIF2AK2/PKR activity. Inhibitors of STAT3 include, but not limited to, guanosine triphophosphate, and Ethambutol, Isoniazid, Pyrazinamide, Rifampicin, and Streptomycin. Nucleic acid and polypeptide sequences of STAT3 are well-known and include, but not limited to, human STAT3 (NM_139276.2, NM_003150.3, NM_213662.1, NP_003141.2, NP_644805.1, NP_998827.1), monkey STAT3 (XM_015119695.1,

XP_014975181.1), mouse STAT3 (NM_213659.3, NM_213660.3, NM_011486.5,

NP_035616.1, NP_998824.1, NP_998825.1), and rat STAT3 (NM_012747.2,

NP_036879.1).

HCK is a member of the Src family of tyrosine kinases. This protein is primarily hemopoietic, particularly in cells of the myeloid and B-lymphoid lineages. It may help couple the Fc receptor to the activation of the respiratory burst. In addition, it may play a role in neutrophil migration and in the degranulation of neutrophils. Multiple isoforms with different subcellular distributions are produced due to both alternative splicing and the use of alternative translation initiation codons, including a non-AUG (CUG) codon. HCK is found in hematopoietic cells that transmits signals from cell surface receptors and plays an important role in the regulation of innate immune responses, including neutrophil, monocyte, macrophage and mast cell functions, phagocytosis, cell survival and

proliferation, cell adhesion and migration. HCK acts downstream of receptors that bind the Fc region of immunoglobulins, such as FCGR1A and FCGR2A, but also CSF3R, PLAUR, the receptors for IFNG, IL2, IL6 and IL8, and integrins, such as ITGB1 and ITGB2.

During the phagocytic process, HCK mediates mobilization of secretory lysosomes, degranulation, and activation of NADPH oxidase to bring about the respiratory burst. HCK plays a role in the release of inflammatory molecules. HCK promotes reorganization of the actin cytoskeleton and actin polymerization, formation of podosomes and cell protrusions. HCK inhibits TP73-mediated transcription activation and TP73-mediated apoptosis. HCK phosphorylates CBL in response to activation of immunoglobulin gamma Fc region receptors. HCK phosphorylates ADAM15, BCR, ELMO1, FCGR2A, GAB1, GAB2, RAPGEF1, STAT5B, TP73, VAV1 and WAS. Inhibitors of HCK include, but not limited to, bosutinib, Bosulif, 1-Ter-Butyl-3-P-Tolyl-1h-Pyrazolo[3,4-D]Pyrimidin-4-Ylamine, O- Phosphotyrosine, and Adenosine triphosphate. Nucleic acid and polypeptide sequences of HCK are well-known and include, but not limited to, human HCK (NM_002110.3, NM_001172129.1, NM_001172130.1, NM_001172131.1, NM_001172132.1,

NM_001172133.1, NP_002101.2, NP_001165600.1, NP_001165601.1, NP_001165602.1, NP_001165603.1, NP_001165604.1), monkey HCK (XM_015149268.1,

XM_015149269.1, XP_015004754.1, XP_015004755.1), mouse HCK (NM_010407.4, NM_001172117.1, NP_034537.2, NP_001165588.1), and rat HCK (NM_013185.3, NP_037317.2).

NCK1 is one of the signaling and transforming proteins containing Src homology 2 and 3 (SH2 and SH3) domains. It is located in the cytoplasm and is an adaptor protein involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as RAS. Alternatively spliced transcript variants encoding different isoforms have been found. NCK1 is an adapter protein which associates with tyrosine- phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. NCK1 maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. NCK1 plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. NCK1 plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. NCK1 modulates the activation of EIF2AK2/PKR by dsRNA. NCK1 may play a role in cell adhesion and migration through interaction with ephrin receptors. Nucleic acid and polypeptide sequences of NCK1 are well-known and include, but not limited to, human NCK1 (NM_006153.5, NM_001291999.1,

NM_001190796.2, NP_006144.1, NP_001177725.1, NP_001278928.1), monkey NCK1 (), mouse NCK1 (NM_010878.3, NM_001324530.1, NP_035008.2, NP_001311459.1), and rat NCK1 (NM_001106851.2, NP_001100321.1).

JAK1 is a membrane protein that is a member of a class of protein-tyrosine kinases (PTK) characterized by the presence of a second phosphotransferase-related domain immediately N-terminal to the PTK domain. The encoded kinase phosphorylates STAT proteins (signal transducers and activators of transcription) and plays a key role in interferon-alpha/beta and interferon-gamma signal transduction. Alternative splicing of the JAK1 gene results in multiple transcript variants. JAK2 is a tyrosine kinase of the non- receptor type, involved in the IFN-alpha/beta/gamma signal pathway (Sakatsume et al. (1995) J. Biol. Chem 270(29):17528-34). JAK1 is a kinase partner for the interleukin (IL)- 2 receptor (Simoncic et al. (1995) Curr Biol 12(6);446-53). Inhibitors of JAK2 include, but not limited to, ruxolitinib, Adenosine triphosphate, 2-(1,1-DIMETHYLETHYL)9- FLUORO-3,6-DIHYDRO-7H-BENZ[H]-IMIDAZ[4,5-F]ISOQUINOLIN-7-ONE , 3- {(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl) amino]piperidin-1-yl}-3- oxopropanenitrile, and Tofacitinib. Nucleic acid and polypeptide sequences of JAK1 are well-known and include, but not limited to, human JAK1 (NM_001320923.1,

NM_001321856.1, NM_001321853.1, NM_001321854.1, NP_002218.2, NP_001307852.1, NP_001308785.1, NP_001308782.1), monkey JAK1 (NM_001257909.1,

NP_001244838.1), mouse JAK1 (NM_146145.2, NP_666257.2), and rat JAK1

(NM_053466.1, NP_445918.1).

SRC is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the regulation of embryonic development and cell growth. The protein encoded by this gene is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the malignant progression of colon cancer. Two transcript variants encoding the same protein have been found for this gene. SRC is a non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors. SRC

participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. SRC plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre- mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1. SRC also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors. SRC is involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1. SRC plays a role in EGF-mediated calcium-activated chloride channel activation. SRC is required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at Tyr-1477. SRC is involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of ADRBK1, leading to beta-arrestin phosphorylation and internalization. SRC has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor. SRC might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane, but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus. SRC plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. SRC is recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function. SRC promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase. SRC phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent

autophosphorylation. SRC phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on Tyr-284 and CBL on Tyr-731. SRC enhances DDX58/RIG-I-elicited antiviral signaling. SRC phosphorylates PDPK1 at Tyr-9, Tyr-373 and Tyr-376. SRC phosphorylates BCAR1 at Tyr-128. SRC phosphorylates CBLC at multiple tyrosine residues, phosphorylation at Tyr-341 activates CBLC E3 activity. SRC is required for podosome formation. Inhibitors of SRC include, but not limited to, Dasatinib, bosutinib, ponatinib, Nintedanib, and

Bevacizumab. Nucleic acid and polypeptide sequences of SRC are well-known and included, but not limited to, human SRC (NM_005417.4, NM_198291.2, NP_005408.1, NP_938033.1), monkey SRC (NM_001261334.1, NP_001248263.1), mouse SRC

(NM_009271.3, NM_001025395.2, NP_001020566.1, NP_033297.2), and rat SRC

(NM_031977.1, NP_114183.1).

ZNF658B (Zinc Finger Protein 658B (Pseudogene)) is a Pseudogene and may be involved in transcriptional regulation. Nucleic acid and polypeptide sequences of

ZNF658B are well-known and include, but not limited to, human ZNF658B

(NR_003528.3), monkey ZNF658B (NR_003528.3), mouse ZNF658B (NR_003528.3), and rat ZNF658B (NR_003528.3).

EGFR is a transmembrane glycoprotein that is a member of the protein kinase superfamily. EGFR is a receptor tyrosine kinase of the ErbB family. Four members of the ErbB family have been identified; EGFR (ErbB1, HER1), ErbB2 (HER2), ErbB3 (HER3) and ErbB4 (HER4). EGFR signaling drives many cellular responses. This protein is a receptor for members of the epidermal growth factor family. EGFR is a cell surface protein that binds to epidermal growth factor. Binding of the protein to a ligand induces receptor dimerization and tyrosine autophosphorylation and leads to cell proliferation. Mutations in this gene are associated with lung cancer. Multiple alternatively spliced transcript variants that encode different protein isoforms have been found for this gene. EGFR is a receptor tyrosine kinase that binds ligands of the EGF family, and activates several signaling cascades to convert extracellular cues into appropriate cellular responses. Known ligands of EGFR include EGF, TGFA/TGF-alpha, amphiregulin, epigen/EPGN, BTC/betacellulin, epiregulin/EREG, and HBEGF/heparin-binding EGF. Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. EGFR activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma- PKC and STATs modules. EGFR may also activate the NF-kappa-B signaling cascade. EGFR also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling. EGFR also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin. Isoform 2 may act as an antagonist of EGF action. Inhibitors of EGFR include, but not limited to, Lapatinib, Gefitinib, Cetuximab, Panitumumab, and Erlotinib. Nucleic acid and polypeptide sequences of EGFR are well-known and include, but not limited to, human EGFR (NM_201282.1, NM_201283.1, NM_201284.1,

NM_005228.3, NP_005219.2, NP_958439.1, NP_958440.1, NP_958441.1), monkey EGFR (XM_015133436.1, XP_014988922.1), mouse EGFR (NM_207655.2, NM_007912.4), and rat EGFR (NM_031507.1, NP_113695.1).

ARTN is a member of the glial cell line-derived neurotophic factor (GDNF) family of ligands which are a group of ligands within the TGF-beta superfamily of signaling molecules. GDNFs are unique in having neurotrophic properties and have potential use for gene therapy in neurodegenerative disease. Artemin has been shown in culture to support the survival of a number of peripheral neuron populations and at least one population of dopaminergic CNS neurons. Its role in the PNS and CNS is further substantiated by its expression pattern in the proximity of these neurons. Multiple transcript variants encoding different isoforms have been found for this gene. ARTN is a ligand for the RET receptor and uses GFR-alpha 3 as a coreceptor. ARTN is a ligand for the GFR-alpha-3-RET receptor complex but can also activate the GFR-alpha-1-RET receptor complex. ARTN supports the survival of sensory and sympathetic peripheral neurons in culture and also supports the survival of dopaminergic neurons of the ventral mid-brain. ARTN is a strong attractant of gut hematopoietic cells thus promoting the formation Peyers patch-like structures, a major component of the gut-associated lymphoid tissue. Nucleic acid and polypeptide sequences of ARTN are well-known and include, but not limited to, human ARTN (NM_057090.2, NM_057091.2, NM_001136215.1, NP_476431.2, NP_476432.2, NP_001129687.1), monkey ARTN (XM_015137660.1, XP_014993146.1), mouse ARTN (NM_001284193.1, NM_001284191.1, NM_001284192.1, NM_009711.4, NP_033841.1, NP_001271122.1, NP_001271120.1, NP_001271121.1), and rat ARTN (NM_053397.1, NP_445849.1).

SLC4A4 is a sodium bicarbonate cotransporter (NBC) involved in the regulation of bicarbonate secretion and absorption and intracellular pH. Mutations in this gene are associated with proximal renal tubular acidosis. Multiple transcript variants encoding different isoforms have been found for this gene. SLC4A4 may regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. Isoform 2 may have a higher activity than isoform 1. Nucleic acid and polypeptide sequences of SLC4A4 are well-known and include, but not limited to, human SLC4A4

(NM_001098484.2, NM_003759.3, NM_001134742.1, NP_003750.1, NP_001091954.1, NP_001128214.1), monkey SLC4A4 (XM_012464422.1, XP_012319845.1), mouse SLC4A4 (NM_018760.2, NM_001136260.1, NM_001197147.1, NP_061230.2,

NP_001129732.1, NP_001184076.1), and rat SLC4A4 (NM_053424.1, NP_445876.1). mTOR belongs to a family of phosphatidylinositol kinase-related kinases. These kinases mediate cellular responses to stresses such as DNA damage and nutrient deprivation. This protein acts as the target for the cell-cycle arrest and immunosuppressive effects of the FKBP12-rapamycin complex. The ANGPTL7 gene is located in an intron of this gene. mTOR is a serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated

phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5- phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. mTOR regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through

phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis, mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at Ser-758, disrupting the interaction with AMPK and preventing activation of ULK1. mTOR also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at Ser-473 of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at Ser-422. mTOR regulates osteoclastogensis by adjusting the expression of CEBPB isoforms (By similarity). Inhibitors of mTOR include, but not limited to, Everolimus, Temsirolimus, Miconazole, Sirolimus, and Pimecrolimus. Nucleic acid and polypeptide sequences of MTOR are well-known and include, but not limited to, human MTOR (NM_004958.3, NP_004949.1), monkey MTOR (XM_009192311.1, XP_009190575.1), mouse MTOR (NM_020009.2, NP_064393.2), and rat MTOR (NM_019906.1, NP_063971.1).

ACTB encodes one of six different actin proteins. Actins are highly conserved proteins that are involved in cell motility, structure, and integrity. This actin is a major constituent of the contractile apparatus and one of the two nonmuscle cytoskeletal actins. Inhibitors of ACTB include, but not limited to, Latrunculin A. Nucleic acid and polypeptide sequences of ACTB are well-known and include, but not limited to, human ACTB (NM_001101.3, NP_001092.1), monkey ACTB (NM_001033084.1,

NP_001028256.1), mouse ACTB (NM_007393.5, NP_031419.1), and rat ACTB

(NM_031144.3, NP_112406.1). RUFY1 encodes a protein that contains a RUN domain and a FYVE-type zinc finger domain. The encoded protein binds to phosphatidylinositol-3-phosphate (PI3P) and plays a role in early endosomal trafficking, tethering and fusion through interactions with small GTPases including Rab4, Rab5 and Rab14. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. RUFY1 binds phospholipid vesicles containing phosphatidylinositol 3-phosphate and participates in early endosomal trafficking. Inhibitors of RUFY1 include, but not limited to, Guanosine triphosphate.

Nucleic acid and polypeptide sequences of RUFY1 are well-known and include, but not limited to, human RUFY1 (NM_001040451.2, NM_025158.4, NM_001040452.2,

NP_001035542.1, NP_001035541.1, NP_079434.3), monkey RUFY1 (XM_015141621.1, XP_014997107.1), mouse RUFY1 (NM_172557.2, NP_766145.1), and rat RUFY1 (NP_766145.1, NP_001094197.1).

PRKCA is a member of a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role in cells. The protein encoded by this gene is one of the PKC family members. This kinase has been reported to play roles in many different cellular processes, such as cell adhesion, cell transformation, cell cycle checkpoint, and cell volume control. Knockout studies in mice suggest that this kinase may be a fundamental regulator of cardiac contractility and Ca(2+) handling in myocytes.

Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine- protein kinase that is involved in positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating targets such as RAF1, BCL2, CSPG4, TNNT2/CTNT, or activating signaling cascade involving MAPK1/3 (ERK1/2) and RAP1GAP. PRKCA is involved in cell proliferation and cell growth arrest by positive and negative regulation of the cell cycle. PRKCA can promote cell growth by phosphorylating and activating RAF1, which mediates the activation of the MAPK/ERK signaling cascade, and/or by up-regulating CDKN1A, which facilitates active cyclin-dependent kinase (CDK) complex formation in glioma cells. In intestinal cells stimulated by the phorbol ester PMA, PRKCA can trigger a cell cycle arrest program which is associated with the accumulation of the hyper-phosphorylated growth-suppressive form of RB1 and induction of the CDK inhibitors CDKN1A and CDKN1B. PRKCA exhibits anti-apoptotic function in glioma cells and protects them from apoptosis by suppressing the p53/TP53-mediated activation of IGFBP3, and in leukemia cells mediates anti-apoptotic action by phosphorylating BCL2. During macrophage differentiation induced by macrophage colony-stimulating factor (CSF1), is translocated to the nucleus and is associated with macrophage development. After wounding, PRKCA translocates from focal contacts to lamellipodia and participates in the modulation of desmosomal adhesion. PRKCA plays a role in cell motility by phosphorylating CSPG4, which induces association of CSPG4 with extensive lamellipodia at the cell periphery and polarization of the cell accompanied by increases in cell motility. Is highly expressed in a number of cancer cells where it can act as a tumor promoter and is implicated in malignant phenotypes of several tumors such as gliomas and breast cancers. PRKCA negatively regulates myocardial contractility and positively regulates angiogenesis, platelet aggregation and thrombus formation in arteries. PRKCA mediates hypertrophic growth of neonatal cardiomyocytes, in part through a MAPK1/3 (ERK1/2)-dependent signaling pathway, and upon PMA treatment, is required to induce cardiomyocyte hypertrophy up to heart failure and death, by increasing protein synthesis, protein-DNA ratio and cell surface area. PRKCA regulates cardiomyocyte function by phosphorylating cardiac troponin T (TNNT2/CTNT), which induces significant reduction in actomyosin ATPase activity, myofilament calcium sensitivity and myocardial contractility. In angiogenesis, PRKCA is required for full endothelial cell migration, adhesion to vitronectin (VTN), and vascular endothelial growth factor A (VEGFA)-dependent regulation of kinase activation and vascular tube formation. PRKCA is involved in the stabilization of VEGFA mRNA at post-transcriptional level and mediates VEGFA-induced cell proliferation. In the regulation of calcium-induced platelet aggregation, PRKCA mediates signals from the CD36/GP4 receptor for granule release, and activates the integrin heterodimer ITGA2B-ITGB3 through the RAP1GAP pathway for adhesion. During response to lipopolysaccharides (LPS), PRKCA may regulate selective LPS-induced macrophage functions involved in host defense and inflammation. But in some inflammatory responses, PRKCA may negatively regulate NF-kappa-B-induced genes, through IL1A-dependent induction of NF-kappa-B inhibitor alpha (NFKBIA/IKBA). Upon stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA), PRKCA

phosphorylates EIF4G1, which modulates EIF4G1 binding to MKNK1 and may be involved in the regulation of EIF4E phosphorylation. PRKCA phosphorylates KIT, leading to inhibition of KIT activity. PRKCA phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription. Inhibitors for PRKCA include, but not limited to, Hydrochlorothiazide, and Tamoxifen. Nucleic acid and polypeptide sequences of PRKCA are well-known and include, but not limited to, human PRKCA (NM_002737.2, NP_002728.1), monkey PRKCA (NM_001260733.1, NP_001247662.1), mouse PRKCA (NM_011101.3, NP_035231.2), and rat PRKCA (NM_001105713.1, NP_001099183.1).

MAPK3 is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals. This kinase is activated by upstream kinases, resulting in its translocation to the nucleus where it phosphorylates nuclear targets.

Alternatively spliced transcript variants encoding different protein isoforms have been described. MAPK3 is a serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, FRS2 or GRB10). Protein kinases (such as RAF1,

RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK,

MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Inhibitors of MAPK include, but not limited to, Sumatriptan, Simvastatin, Trisenox, Sulindac, and Arsenic trioxide. Nucleic acid and polypeptide sequences of MAPK3 are well-known and include, but not limited to, human MAPK3 (NM_002746.2, NM_001109891.1, NM_001040056.2, NP_001035145.1, NP_002737.2, NP_001103361.1), monkey MAPK3 (XM_015125898.1, XP_014981384.1), mouse MAPK3 (NM_011952.2, NP_036082.1), and rat MAPK3 (NM_017347.2, NP_059043.1).

AKT1 is a serine-threonine protein kinase encoded by the AKT1 gene is

catalytically inactive in serum-starved primary and immortalized fibroblasts. AKT1 and the related AKT2 are activated by platelet-derived growth factor. The activation is rapid and specific, and it is abrogated by mutations in the pleckstrin homology domain of AKT1. It was shown that the activation occurs through phosphatidylinositol 3-kinase. In the developing nervous system, AKT is a critical mediator of growth factor-induced neuronal survival. Survival factors can suppress apoptosis in a transcription-independent manner by activating the serine/threonine kinase AKT1, which then phosphorylates and inactivates components of the apoptotic machinery. Mutations in this gene have been associated with the Proteus syndrome. Multiple alternatively spliced transcript variants have been found for this gene. AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at Ser-50 negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at Ser-21 and GSK3B at Ser-9, resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal- related kinase). Phosphorylation of Ser-83 decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at Ser-939 and Thr-1462, thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at Thr-24, Ser-256 and Ser-319. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates Ser-454 on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. AKT activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of Ser-273, resulting in reduced cyclic AMP levels and inhibition of lipolysis. AKT phosphorylates PIKFYVE on Ser-318, which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its

phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. AKT signals

downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. AKT is essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. AKT may be involved in the regulation of the placental development. Phosphorylates STK4/MST1 at Thr-120 and Thr-387 leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3. AKT phosphorylates STK3/MST2 at Thr-117 and Thr-384 leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation. AKT phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation. AKT phosphorylates RAF1 at Ser-259 and negatively regulates its activity. AKT

phosphorylation of BAD stimulates its pro-apoptotic activity. AKT phosphorylates KAT6A at Thr-369 and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53.

AKT1-specific substrates have been recently identified, including palladin

(PALLD), which phosphorylation modulates cytoskeletal organization and cell motility; prohibitin (PHB), playing an important role in cell metabolism and proliferation; and CDKN1A, for which phosphorylation at Thr-145 induces its release from CDK2 and cytoplasmic relocalization. These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation. AKT1 phosphorylates CLK2 thereby controlling cell survival to ionizing radiation. Inhibitors for AKT1 include, but not limited to, Cisplatin, Everolimus, and Carboplatin. Nucleic acid and polypeptide sequences of AKT1 are well-known and include, but not limited to, human AKT1 (NM_005163.2, NM_001014431.1, NM_001014432.1, NP_005154.2, NP_001014431.1, NP_001014432.1), monkey AKT1 (NM_001261625.1, NP_001248554.1), mouse AKT1 (NM_009652.3, NM_001165894.1, NP_033782.1, NP_001159366.1), and rat AKT1 (NM_033230.2, NP_150233.1).

The term“SRC family kinase signaling pathway therapy” or SFKSP therapy encompass agents that modulate (e.g., enhance, reduce, inhibit, block, increase, decrease), directly or indirectly, the SRC family members. For instance, SRC family members (e.g., CSK) can be modulated directly or indirectly such as by overexpressing CSK or

introducing an agent that enhances and/or increases the expression, activity, or level of CSK. Similarly, SRC family members (e.g., PAK2 and CRK) can be modulated directly or indirectly such as by using RNAi or any other means, or deletion of the gene (e.g., by knock-out or clustered regularly interspaced short palindromic repeats (CRISPR) technology) leads to inhibition of oncogenesis, tumor cell proliferation, tumor metastasis or induces tumor cell differentiation. A significantly modulated amount of SRC family member relative to the normal amount of the SRC family members is an amount less than or greater than, respectively, the standard error of the assay employed to assess amount, and preferably at least 5%, 10%, 15% 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200%, 250%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more than the normal (control) amount. Alternately, the amount of the biomarker (e.g., Tables 1 and 2) in the subject can be considered“significantly” modulated relative to the normal (control) amount if the amount is at least about 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200%, 250%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more, higher or lower, respectively, than the normal (control) amount of the SRC family member.

Exemplary agents useful for inhibiting members of the SFKSP, or other biomarkers described herein, include antibodies, small molecules, peptides, peptidomimetics, natural ligands, and derivatives of natural ligands, that can either bind and/or inactivate or inhibit target proteins, or fragments thereof; as well as RNA interference, antisense, nucleic acid aptamers, etc. that can downregulate the expression and/or activity of target nucleic acids, or fragments thereof. Exemplary inhibitors of the SFKSP signaling pathway are also well known in the art (see US20160175284) and include, but are not limited to: PAK2 inhibitors, such as FRAX597; SFK inhibitors, such as dastinib, saracatinib; CRK inhibitors, such as CAS 784211-09-2 (Calbiochem). Additional inhibitors include, but not limited to, abiraterone; abarelix; adriamycin; aactinomycin; acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; alemtuzumab; allopurinol; alitretinoin; altretamine; ambomycin; ametantrone acetate; aminoglutethimide; aminolevulinic acid; amifostine; amsacrine; anastrozole; anthramycin; aprepitant; arsenic trioxide; asparaginase; asperlin; azacitidine; AZD6244; azetepa; azotomycin; batimastat; bendamustine

hydrochloride; benzodepa; bevacizumab; bexarotene; bicalutamide; bisantrene

hydrochloride; bisnafide dimesylate; bizelesin; bleomycin; bleomycin sulfate; bortezomib; bosutinib; brequinar sodium; bropirimine; busulfan; cabozantinib; cactinomycin;

calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride; carzelesin; capecitabine; cedefingol; cetuximab; chlorambucil; cirolemycin; cisplatin;

cladribine; clofarabine; crisnatol mesylate; cyclophosphamide; cytarabine; dacarbazine; dasatinib; daunorubicin hydrochloride; dactinomycin; darbepoetin alfa; decitabine;

degarelix; denileukin diftitox; dinaciclib; dexormaplatin; dexrazoxane hydrochloride;

dezaguanine; dezaguanine mesylate; diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride; droloxifene; droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate; eflornithine hydrochloride; elsamitrucin; eltrombopag olamine; enloplatin; ENMD-2076; enpromate; epipropidine; epirubicin hydrochloride; epoetin alfa; erbulozole; erlotinib hydrochloride; esorubicin hydrochloride; estramustine; estramustine phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; everolimus; exemestane; fadrozole hydrochloride; fazarabine; fenretinide; filgrastim; floxuridine; fludarabine phosphate; fluorouracil; flurocitabine; foretinib; fosquidone; fostriecin sodium; FRAX597, fulvestrant; gefitinib; gemcitabine; gemcitabine hydrochloride; gemcitabine-cisplatin;

gemtuzumab ozogamicin; goserelin acetate; GSK1120212; histrelin acetate; hydroxyurea; idarubicin hydrochloride; ifosfamide; iimofosine; ibritumomab tiuxetan; idarubicin;

ifosfamide; imatinib mesylate; imiquimod; interleukin II (including recombinant interleukin II, or rlL2), interferon alfa-2a; interferon alfa-2b; interferon alfa-n1; interferon alfa-n3; interferon beta-1 a; interferon gamma-1 b; iproplatin; irinotecan hydrochloride;

ixabepilone; lanreotide acetate; lapatinib; lenalidomide; letrozole; leuprolide acetate;

leucovorin calcium; leuprolide acetate; levamisole; liposomal cytarabine; liarozole hydrochloride; lometrexol sodium; lomustine; losoxantrone hydrochloride; masoprocol; maytansine; mechlorethamine hydrochloride; megestrol acetate; melengestrol acetate;

melphalan; menogaril; mercaptopurine; methotrexate; methotrexate sodium; methoxsalen; metoprine; meturedepa; mitindomide; mitocarcin; mitocromin; mitogillin; mitomalcin; mitomycin C; mitosper; mitotane; mitoxantrone hydrochloride; MM-121; mycophenolic acid; nandrolone phenpropionate; nelarabine; nilotinib; nocodazoie; nofetumomab;

nogalamycin; ofatumumab; onartuzumab; oprelvekin; ormaplatin; oxaliplatin;oxisuran; paclitaxel; palbociclib (PD-0332991); palifermin; palonosetron hydrochloride;

pamidronate; pegfilgrastim; pemetrexed disodium; pentostatin; panitumumab; pazopanib hydrochloride; pemetrexed disodium; plerixafor; pralatrexate; pegaspargase; peliomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piposulfan; piroxantrone hydrochloride; plicamycin; plomestane; porfimer sodium; porfiromycin; prednimustine; procarbazine hydrochloride; puromycin; puromycin hydrochloride; pyrazofurin; quinacrine; raloxifene hydrochloride; rasburicase; recombinant HPV bivalent vaccine; recombinant HPV quadrivalent vaccine; riboprine; rogletimide; rituximab; romidepsin; romiplostim; safingol; safingol hydrochloride; saracatinib; sargramostim; seliciclib; semustine;

simtrazene; sipuleucel-T; sorafenib; sparfosate sodium; sparsomycin; spirogermanium hydrochloride; spiromustine; spiroplatin; streptonigrin; streptozocin; sulofenur; sunitinib malate; talisomycin; tamoxifen citrate; tecogalan sodium; TAK-733; tegafur; teloxantrone hydrochloride; temozolomide; temoporfin; temsirolimus; teniposide; teroxirone;

testolactone; thalidomide; thiamiprine; thioguanine; thiotepa; tiazofurin; tirapazamine; topotecan hydrochloride; toremifene; tositumomab and I 131 Iodine tositumomab;

trastuzumab; trestolone acetate; tretinoin; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin; tubulozole hydrochloride; U3-1287; uracil mustard; uredepa;

valrubicin; vapreotide; verteporfin; vinblastine; vinblastine sulfate; vincristine sulfate; vindesine; vindesine sulfate; vinepidine sulfate; vinglycinate sulfate; vinleurosine sulfate; vinorelbine tartrate; vinrosidine sulfate; vinzolidine sulfate; vorinostat; vorozole; zeniplatin; zinostatin; zoledronic acid; or zorubicin hydrochloride.

In some embodiments, the at least one agent comprises an antisense oligonucleotide complementary to PAK2 and/or CRK. In still another embodiment, the at least one agent comprises a peptide or peptidomimetic that inhibits or blocks PAK2 and/or CRK. In yet another embodiment, the at least one agent comprises an aptamer that inhibits or blocks PAK2 and/or CRK. In another embodiment, the at least one agent is an antibody and/or an intrabody, or an antigen binding fragment thereof, which specifically binds to PAK2 and/or CRK (e.g., the antibody and/or intrabody, or antigen binding fragment thereof, is murine, chimeric, humanized, composite, or human). In still another embodiment, the antibody and/or intrabody, or antigen binding fragment thereof, is detectably labeled, comprises an effector domain, comprises an Fc domain, and/or is selected from the group consisting of Fv, Fav, F(ab’)2), Fab’, dsFv, scFv, sc(Fv)2, and diabodies fragments. In yet another embodiment, the antibody and/or intrabody, or antigen binding fragment thereof, is conjugated to a cytotoxic agent (e.g., the cytotoxic agent is selected from the group consisting of a chemotherapeutic agent, a biologic agent, a toxin, and a radioactive isotope).

The term“synergistic effect” refers to the combined effect of two or more anti- cancer agents (e.g., two or more Src family kinase signaling pathway inhibitors,

combination of aromatase inhibitor and at least one Src family kinase signaling pathway inhibitor, or anti-estrogen and at least one Src family kinase signaling pathway inhibitor) can be greater than the sum of the separate effects of the anticancer agents alone. In some embodiments, an endocrine resistant breast cancer is significantly or synergistically more responsive when treated with two or more SFKSP inhibitors, such as a PAK2 inhibitor and CRK inhibitor in combination.

“Short interfering RNA” (siRNA), also referred to herein as“small interfering RNA” is defined as an agent which functions to inhibit expression of a target biomarker nucleic acid, e.g., by RNAi. An siRNA may be chemically synthesized, may be produced by in vitro transcription, or may be produced within a host cell. In one embodiment, siRNA is a double stranded RNA (dsRNA) molecule of about 15 to about 40 nucleotides in length, preferably about 15 to about 28 nucleotides, more preferably about 19 to about 25 nucleotides in length, and more preferably about 19, 20, 21, or 22 nucleotides in length, and may contain a 3’ and/or 5’ overhang on each strand having a length of about 0, 1, 2, 3, 4, or 5 nucleotides. The length of the overhang is independent between the two strands, i.e., the length of the overhang on one strand is not dependent on the length of the overhang on the second strand. Preferably the siRNA is capable of promoting RNA interference through degradation or specific post-transcriptional gene silencing (PTGS) of the target messenger RNA (mRNA).

In another embodiment, an siRNA is a small hairpin (also called stem loop) RNA (shRNA). In one embodiment, these shRNAs are composed of a short (e.g., 19-25 nucleotide) antisense strand, followed by a 5-9 nucleotide loop, and the analogous sense strand. Alternatively, the sense strand may precede the nucleotide loop structure and the antisense strand may follow. These shRNAs may be contained in plasmids, retroviruses, and lentiviruses and expressed from, for example, the pol III U6 promoter, or another promoter (see, e.g., Stewart, et al. (2003) RNA Apr;9(4):493-501 incorporated by reference herein).

RNA interfering agents, e.g., siRNA molecules, may be administered to a patient having or at risk for having cancer, to inhibit expression of a biomarker gene which is overexpressed in cancer and thereby treat, prevent, or inhibit cancer in the subject.

The term“subject” refers to any healthy animal, mammal or human, or any animal, mammal or human afflicted with a breast cancer. The term“subject” is interchangeable with“patient.”

The term“survival” includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related);“recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g. time of diagnosis or start of treatment) and end point (e.g. death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.

The term“therapeutic effect” refers to a local or systemic effect in animals, particularly mammals, and more particularly humans, caused by a pharmacologically active substance. The term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in an animal or human. The phrase“therapeutically- effective amount” means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. In certain embodiments, a therapeutically effective amount of a compound will depend on its therapeutic index, solubility, and the like. For example, certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.

The terms“therapeutically-effective amount” and“effective amount” as used herein means that amount of a compound, material, or composition comprising a compound of the present invention which is effective for producing some desired therapeutic effect in at least a sub-population of cells in an animal at a reasonable benefit/risk ratio applicable to any medical treatment. Toxicity and therapeutic efficacy of subject compounds may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 and the ED 50 . Compositions that exhibit large therapeutic indices are preferred. In some embodiments, the LD50 (lethal dosage) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more reduced for the agent relative to no administration of the agent. Similarly, the ED 50 (i.e., the concentration which achieves a half-maximal inhibition of symptoms) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more increased for the agent relative to no administration of the agent. Also, Similarly, the IC50 (i.e., the concentration which achieves half-maximal cytotoxic or cytostatic effect on cancer cells) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more increased for the agent relative to no administration of the agent. In some embodiments, cancer cell growth in an assay can be inhibited by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100%. In another embodiment, at least about a 10% , 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100% decrease in a solid malignancy can be achieved.

In one embodiment, a therapeutically effective amount of antibody (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of an antibody can include a single treatment or, preferably, can include a series of treatments. In a preferred example, a subject is treated with antibody in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of antibody used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result from the results of diagnostic assays.

A“transcribed polynucleotide” or“nucleotide transcript” is a polynucleotide (e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA) which is complementary to or homologous with all or a portion of a mature mRNA made by transcription of a biomarker nucleic acid and normal post-transcriptional processing (e.g. splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.

As used herein, the term“anergy” or“tolerance” includes refractivity to activating receptor-mediated stimulation. Such refractivity is generally antigen-specific and persists after exposure to the tolerizing antigen has ceased. For example, anergy in T cells (as opposed to unresponsiveness) is characterized by lack of cytokine production, e.g., IL-2. T cell anergy occurs when T cells are exposed to antigen and receive a first signal (a T cell receptor or CD-3 mediated signal) in the absence of a second signal (a costimulatory signal). Under these conditions, reexposure of the cells to the same antigen (even if reexposure occurs in the presence of a costimulatory polypeptide) results in failure to produce cytokines and, thus, failure to proliferate. Anergic T cells can, however, proliferate if cultured with cytokines (e.g., IL-2). For example, T cell anergy can also be observed by the lack of IL-2 production by T lymphocytes as measured by ELISA or by a proliferation assay using an indicator cell line. Alternatively, a reporter gene construct can be used. For example, anergic T cells fail to initiate IL-2 gene transcription induced by a heterologous promoter under the control of the 5’ IL-2 gene enhancer or by a multimer of the AP1 sequence that can be found within the enhancer (Kang et al. (1992) Science 257:1134).

As used herein, the term“unresponsiveness” includes refractivity of cancer cells to therapy or refractivity of therapeutic cells, such as immune cells, to stimulation, e.g., stimulation via an activating receptor or a cytokine. Unresponsiveness can occur, e.g., because of exposure to immunosuppressants or exposure to high doses of antigen. As used herein, the term“anergy” or“tolerance” includes refractivity to activating receptor- mediated stimulation. Such refractivity is generally antigen-specific and persists after exposure to the tolerizing antigen has ceased. For example, anergy in T cells (as opposed to unresponsiveness) is characterized by lack of cytokine production, e.g., IL-2. T cell anergy occurs when T cells are exposed to antigen and receive a first signal (a T cell receptor or CD-3 mediated signal) in the absence of a second signal (a costimulatory signal). Under these conditions, reexposure of the cells to the same antigen (even if reexposure occurs in the presence of a costimulatory polypeptide) results in failure to produce cytokines and, thus, failure to proliferate. Anergic T cells can, however, proliferate if cultured with cytokines (e.g., IL-2). For example, T cell anergy can also be observed by the lack of IL-2 production by T lymphocytes as measured by ELISA or by a proliferation assay using an indicator cell line. Alternatively, a reporter gene construct can be used. For example, anergic T cells fail to initiate IL-2 gene transcription induced by a heterologous promoter under the control of the 5’ IL-2 gene enhancer or by a multimer of the AP1 sequence that can be found within the enhancer (Kang et al. (1992) Science 257:1134).

There is a known and definite correspondence between the amino acid sequence of a particular protein and the nucleotide sequences that can code for the protein, as defined by the genetic code (shown below). Likewise, there is a known and definite correspondence between the nucleotide sequence of a particular nucleic acid and the amino acid sequence encoded by that nucleic acid, as defined by the genetic code. GENETIC CODE

Alanine (Ala, A) GCA, GCC, GCG, GCT

Arginine (Arg, R) AGA, ACG, CGA, CGC, CGG, CGT

An important and well known feature of the genetic code is its redundancy, whereby, for most of the amino acids used to make proteins, more than one coding nucleotide triplet may be employed (illustrated above). Therefore, a number of different nucleotide sequences may code for a given amino acid sequence. Such nucleotide sequences are considered functionally equivalent since they result in the production of the same amino acid sequence in all organisms (although certain organisms may translate some sequences more efficiently than they do others). Moreover, occasionally, a methylated variant of a purine or pyrimidine may be found in a given nucleotide sequence. Such methylations do not affect the coding relationship between the trinucleotide codon and the corresponding amino acid.

In view of the foregoing, the nucleotide sequence of a DNA or RNA encoding a biomarker nucleic acid (or any portion thereof) can be used to derive the polypeptide amino acid sequence, using the genetic code to translate the DNA or RNA into an amino acid sequence. Likewise, for polypeptide amino acid sequence, corresponding nucleotide sequences that can encode the polypeptide can be deduced from the genetic code (which, because of its redundancy, will produce multiple nucleic acid sequences for any given amino acid sequence). Thus, description and/or disclosure herein of a nucleotide sequence which encodes a polypeptide should be considered to also include description and/or disclosure of the amino acid sequence encoded by the nucleotide sequence. Similarly, description and/or disclosure of a polypeptide amino acid sequence herein should be considered to also include description and/or disclosure of all possible nucleotide sequences that can encode the amino acid sequence.

Finally, nucleic acid and amino acid sequence information for the loci and biomarkers of the present invention (e.g., biomarkers listed in Tables 1 and 2) are well known in the art and readily available on publicly available databases, such as the National Center for Biotechnology Information (NCBI). For example, exemplary nucleic acid and amino acid sequences derived from publicly available sequence databases are provided below. It is to be noted that the terms described above can further be used to refer to any combination of features described herein regarding the biomarkers. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe a biomarker of the present invention.

Human CSK nucleic acid (NM_004383) and amino acid (NP_001120662,

NP_004374) sequences are publicly available on the GenBank database maintained by the U.S. National Center for Biotechnology Information. Nucleic acid and polypeptide sequences of CSK orthologs in species other than humans are also well known and include, for example, mouse CSK (NM_007783, NP_001291690), chimpanzee CSK

(XM_016927198, XP_016782687), monkey CSK (NM_001261636, NP_001248565), dog CSK (XM_544774, XP_005638682), cow CSK (NM_001075397, NP_001068865), rat CSK (NM_001030039, NP_001025210), and chicken CSK (NM_205425, NP_990756).

Representative sequences of CSK orthologs are presented below in Table 1. CSK agents, including antibodies, nucleic acids, and the like are well-known in the art. It is to be noted that the term can further be used to refer to any combination of features described herein regarding CSK molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an CSK molecule of the present invention. Table 1

SEQ ID NO: 1 Homo sapiens c-src tyrosine kinase (CSK) cDNA, transcript variant 1 (NM_004383)

atgtcagcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 cacggcactg ccgagcagga cctgcccttc tgcaaaggag acgtgctcac cattgtggcc 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa gcgggagggc gtgaaggcgg gtaccaaact cagcctcatg 240 ccttggttcc acggcaagat cacacgggag caggctgagc ggcttctgta cccgccggag 300 acaggcctgt tcctggtgcg ggagagcacc aactaccccg gagactacac gctgtgcgtg 360 agctgcgacg gcaaggtgga gcactaccgc atcatgtacc atgccagcaa gctcagcatc 420 gacgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac ctcagacgca 480 gatggactct gtacgcgcct cattaaacca aaggtcatgg agggcacagt ggcggcccag 540 gatgagttct accgcagcgg ctgggccctg aacatgaagg agctgaagct gctgcagacc 600 atcgggaagg gggagttcgg agacgtgatg ctgggcgatt accgagggaa caaagtcgcc 660 gtcaagtgca ttaagaacga cgccactgcc caggccttcc tggctgaagc ctcagtcatg 720 acgcaactgc ggcatagcaa cctggtgcag ctcctgggcg tgatcgtgga ggagaagggc 780 gggctctaca tcgtcactga gtacatggcc aaggggagcc ttgtggacta cctgcggtct 840 aggggtcggt cagtgctggg cggagactgt ctcctcaagt tctcgctaga tgtctgcgag 900 gccatggaat acctggaggg caacaatttc gtgcatcgag acctggctgc ccgcaatgtg 960 ctggtgtctg aggacaacgt ggccaaggtc agcgactttg gtctcaccaa ggaggcgtcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacag cccctgaggc cctgagagag 1080 aagaaattct ccactaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta tccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggatgc ccccgacggc tgcccgcccg cagtctatga agtcatgaag 1260 aactgctggc acctggacgc cgccatgcgg ccctccttcc tacagctccg agagcagctt 1320 gagcacatca aaacccacga gctgcacctg tga 1353 SEQ ID NO: 2 Homo sapiens c-src tyrosine kinase (CSK) cDNA, transcript variant 2 (NM_001127190)

atgtcagcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 cacggcactg ccgagcagga cctgcccttc tgcaaaggag acgtgctcac cattgtggcc 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa gcgggagggc gtgaaggcgg gtaccaaact cagcctcatg 240 ccttggttcc acggcaagat cacacgggag caggctgagc ggcttctgta cccgccggag 300 acaggcctgt tcctggtgcg ggagagcacc aactaccccg gagactacac gctgtgcgtg 360 agctgcgacg gcaaggtgga gcactaccgc atcatgtacc atgccagcaa gctcagcatc 420 gacgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac ctcagacgca 480 gatggactct gtacgcgcct cattaaacca aaggtcatgg agggcacagt ggcggcccag 540 gatgagttct accgcagcgg ctgggccctg aacatgaagg agctgaagct gctgcagacc 600 atcgggaagg gggagttcgg agacgtgatg ctgggcgatt accgagggaa caaagtcgcc 660 gtcaagtgca ttaagaacga cgccactgcc caggccttcc tggctgaagc ctcagtcatg 720 acgcaactgc ggcatagcaa cctggtgcag ctcctgggcg tgatcgtgga ggagaagggc 780 gggctctaca tcgtcactga gtacatggcc aaggggagcc ttgtggacta cctgcggtct 840 aggggtcggt cagtgctggg cggagactgt ctcctcaagt tctcgctaga tgtctgcgag 900 gccatggaat acctggaggg caacaatttc gtgcatcgag acctggctgc ccgcaatgtg 960 ctggtgtctg aggacaacgt ggccaaggtc agcgactttg gtctcaccaa ggaggcgtcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacag cccctgaggc cctgagagag 1080 aagaaattct ccactaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta tccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggatgc ccccgacggc tgcccgcccg cagtctatga agtcatgaag 1260 aactgctggc acctggacgc cgccatgcgg ccctccttcc tacagctccg agagcagctt 1320 gagcacatca aaacccacga gctgcacctg tga 1353 SEQ ID NO: 3 Homo sapiens c-src tyrosine kinase (CSK) cDNA, transcript variant X1 (XM_005254165)

atgtcagcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 cacggcactg ccgagcagga cctgcccttc tgcaaaggag acgtgctcac cattgtggcc 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa gcgggagggc gtgaaggcgg gtaccaaact cagcctcatg 240 ccttggttcc acggcaagat cacacgggag caggctgagc ggcttctgta cccgccggag 300 acaggcctgt tcctggtgcg ggagagcacc aactaccccg gagactacac gctgtgcgtg 360 agctgcgacg gcaaggtgga gcactaccgc atcatgtacc atgccagcaa gctcagcatc 420 gacgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac ctcagacgca 480 gatggactct gtacgcgcct cattaaacca aaggtcatgg agggcacagt ggcggcccag 540

600 atcgggaagg gggagttcgg agacgtgatg ctgggcgatt accgagggaa caaagtcgcc 660 gtcaagtgca ttaagaacga cgccactgcc caggccttcc tggctgaagc ctcagtcatg 720 acgcaactgc ggcatagcaa cctggtgcag ctcctgggcg tgatcgtgga ggagaagggc 780 gggctctaca tcgtcactga gtacatggcc aaggggagcc ttgtggacta cctgcggtct 840 aggggtcggt cagtgctggg cggagactgt ctcctcaagt tctcgctaga tgtctgcgag 900 gccatggaat acctggaggg caacaatttc gtgcatcgag acctggctgc ccgcaatgtg 960 ctggtgtctg aggacaacgt ggccaaggtc agcgactttg gtctcaccaa ggaggcgtcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacag cccctgaggc cctgagagag 1080 aagaaattct ccactaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta tccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggatgc ccccgacggc tgcccgcccg cagtctatga agtcatgaag 1260 aactgctggc acctggacgc cgccatgcgg ccctccttcc tacagctccg agagcagctt 1320 gagcacatca aaacccacga gctgcacctg tga 1353 SEQ ID NO: 4 Homo sapiens c-src tyrosine kinase (CSK) cDNA, transcript variant X2 (XM_017021925)

atgtcagcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 cacggcactg ccgagcagga cctgcccttc tgcaaaggag acgtgctcac cattgtggcc 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa gcgggagggc gtgaaggcgg gtaccaaact cagcctcatg 240 ccttggttcc acggcaagat cacacgggag caggctgagc ggcttctgta cccgccggag 300 acaggcctgt tcctggtgcg ggagagcacc aactaccccg gagactacac gctgtgcgtg 360 agctgcgacg gcaaggtgga gcactaccgc atcatgtacc atgccagcaa gctcagcatc 420 gacgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac ctcagacgca 480 gatggactct gtacgcgcct cattaaacca aaggtcatgg agggcacagt ggcggcccag 540 gatgagttct accgcagcgg ctgggccctg aacatgaagg agctgaagct gctgcagacc 600 atcgggaagg gggagttcgg agacgtgatg ctgggcgatt accgagggaa caaagtcgcc 660 gtcaagtgca ttaagaacga cgccactgcc caggccttcc tggctgaagc ctcagtcatg 720 acgcaactgc ggcatagcaa cctggtgcag ctcctgggcg tgatcgtgga ggagaagggc 780 gggctctaca tcgtcactga gtacatggcc aaggggagcc ttgtggacta cctgcggtct 840 aggggtcggt cagtgctggg cggagactgt ctcctcaagt tctcgctaga tgtctgcgag 900 gccatggaat acctggaggg caacaatttc gtgcatcgag acctggctgc ccgcaatgtg 960 ctggtgtctg aggacaacgt ggccaaggtc agcgactttg gtctcaccaa ggaggcgtcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacag cccctgaggc cctgagagag 1080 aagaaattct ccactaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta tccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggatgc ccccgacggc tgcccgcccg cagtctatga agtcatgaag 1260 aactgctggc acctggacgc cgccatgcgg ccctccttcc tacagctccg agagcagctt 1320 gagcacatca aaacccacga gctgcacctg tga 1353 SEQ ID NO: 5 Homo sapiens c-src tyrosine-protein kinase CSK amino acid sequence, isoform X1 (XP_016877414)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAAMR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 6 Homo sapiens c-src tyrosine-protein kinase CSK amino acid sequence, isoform X1 (XP_005254222)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAAMR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 7 Homo sapiens c-src tyrosine-protein kinase CSK amino acid sequence (NP_001120662)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAAMR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 8 Homo sapiens c-src tyrosine-protein kinase CSK amino acid sequence (NP_004374)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAAMR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 9 Mus musculus c-src tyrosine kinase (CSK) cDNA, transcript variant 1 (NM_007783)

atgtcggcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 catggcactg ctgagcaaga ccttcccttc tgcaaaggag atgtgctcac catcgtggct 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaaag tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgtgagggt gtgaaggcag gcaccaaact cagccttatg 240 ccctggttcc acggcaagat cacacgggag caggccgagc ggcttcttta cccaccagag 300 acaggcctgt tcctcgtgcg ggaaagcacc aactaccctg gagactacac actgtgtgtg 360 agctgtgagg gcaaggtgga gcactaccgc atcatgtatc atgcgagcaa gctgagcatt 420 gatgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac cacagatgcc 480 gatggactct gcactcgcct catcaaacca aaggtcatgg agggcaccgt ggcggcccag 540 gatgagttct accgcagtgg ctgggcactg aacatgaagg aactgaagct gctacagaca 600 atagggaagg gggagtttgg agatgtgatg ctgggggatt accggggcaa caaagttgca 660 gtcaagtgca tcaagaatga cgcaactgcc caggccttcc tggctgaagc ctccgtcatg 720 acgcaacttc ggcacagcaa cctcgtccag ctgctgggtg tgattgtgga ggagaagggt 780 gggctctaca tcgtcacaga gtacatggcc aaggggagtt tggtggacta tcttcgatca 840 cgtggtcgtt cggtgctagg tggagactgt ctcctcaaat tctcattaga cgtctgtgaa 900 gccatggagt acctggaggg taacaatttt gtgcaccggg acttggctgc ccggaatgtg 960 ctggtgtctg aagacaacgt ggccaaagtc agtgactttg gcctcactaa ggaagcctcc 1020 agcactcagg acacaggcaa gctgccagtc aaatggacag cgcctgaagc cttgagagag 1080 aagaaatttt ccaccaagtc tgatgtgtgg agtttcggaa tccttctctg ggaaatctat 1140 tccttcgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggaa 1200 aagggctata agatggacgc tccggatggc tgcccgcccg cagtctacga ggtgatgaag 1260 aactgctggc acctggatgc tgccacacgg cccacgtttt tgcagcttcg ggaacagctc 1320 gagcacatca agacccatga gctgcacctg tga 1353 SEQ ID NO: 10 Mus musculus c-src tyrosine kinase (CSK) cDNA, transcript variant 2 (NM_001304761)

atgtcggcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 catggcactg ctgagcaaga ccttcccttc tgcaaaggag atgtgctcac catcgtggct 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaaag tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgtgagggt gtgaaggcag gcaccaaact cagccttatg 240 ccctggttcc acggcaagat cacacgggag caggccgagc ggcttcttta cccaccagag 300 acaggcctgt tcctcgtgcg ggaaagcacc aactaccctg gagactacac actgtgtgtg 360 agctgtgagg gcaaggtgga gcactaccgc atcatgtatc atgcgagcaa gctgagcatt 420 gatgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac cacagatgcc 480 gatggactct gcactcgcct catcaaacca aaggtcatgg agggcaccgt ggcggcccag 540 gatgagttct accgcagtgg ctgggcactg aacatgaagg aactgaagct gctacagaca 600 atagggaagg gggagtttgg agatgtgatg ctgggggatt accggggcaa caaagttgca 660 gtcaagtgca tcaagaatga cgcaactgcc caggccttcc tggctgaagc ctccgtcatg 720 acgcaacttc ggcacagcaa cctcgtccag ctgctgggtg tgattgtgga ggagaagggt 780 gggctctaca tcgtcacaga gtacatggcc aaggggagtt tggtggacta tcttcgatca 840 cgtggtcgtt cggtgctagg tggagactgt ctcctcaaat tctcattaga cgtctgtgaa 900 gccatggagt acctggaggg taacaatttt gtgcaccggg acttggctgc ccggaatgtg 960 ctggtgtctg aagacaacgt ggccaaagtc agtgactttg gcctcactaa ggaagcctcc 1020 agcactcagg acacaggcaa gctgccagtc aaatggacag cgcctgaagc cttgagagag 1080 aagaaatttt ccaccaagtc tgatgtgtgg agtttcggaa tccttctctg ggaaatctat 1140 tccttcgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggaa 1200 aagggctata agatggacgc tccggatggc tgcccgcccg cagtctacga ggtgatgaag 1260 aactgctggc acctggatgc tgccacacgg cccacgtttt tgcagcttcg ggaacagctc 1320 gagcacatca agacccatga gctgcacctg tga 1353 SEQ ID NO: 11 Mus musculus c-src tyrosine kinase (CSK) cDNA, transcript variant X1 (XM_006510802)

atgtcggcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 catggcactg ctgagcaaga ccttcccttc tgcaaaggag atgtgctcac catcgtggct 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaaag tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgtgagggt gtgaaggcag gcaccaaact cagccttatg 240 ccctggttcc acggcaagat cacacgggag caggccgagc ggcttcttta cccaccagag 300 acaggcctgt tcctcgtgcg ggaaagcacc aactaccctg gagactacac actgtgtgtg 360 agctgtgagg gcaaggtgga gcactaccgc atcatgtatc atgcgagcaa gctgagcatt 420 gatgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac cacagatgcc 480 gatggactct gcactcgcct catcaaacca aaggtcatgg agggcaccgt ggcggcccag 540 gatgagttct accgcagtgg ctgggcactg aacatgaagg aactgaagct gctacagaca 600 atagggaagg gggagtttgg agatgtgatg ctgggggatt accggggcaa caaagttgca 660 gtcaagtgca tcaagaatga cgcaactgcc caggccttcc tggctgaagc ctccgtcatg 720 acgcaacttc ggcacagcaa cctcgtccag ctgctgggtg tgattgtgga ggagaagggt 780 gggctctaca tcgtcacaga gtacatggcc aaggggagtt tggtggacta tcttcgatca 840 cgtggtcgtt cggtgctagg tggagactgt ctcctcaaat tctcattaga cgtctgtgaa 900 gccatggagt acctggaggg taacaatttt gtgcaccggg acttggctgc ccggaatgtg 960 ctggtgtctg aagacaacgt ggccaaagtc agtgactttg gcctcactaa ggaagcctcc 1020 agcactcagg acacaggcaa gctgccagtc aaatggacag cgcctgaagc cttgagagag 1080 aagaaatttt ccaccaagtc tgatgtgtgg agtttcggaa tccttctctg ggaaatctat 1140 tccttcgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggaa 1200 aagggctata agatggacgc tccggatggc tgcccgcccg cagtctacga ggtgatgaag 1260 aactgctggc acctggatgc tgccacacgg cccacgtttt tgcagcttcg ggaacagctc 1320 gagcacatca agacccatga gctgcacctg tga 1353 SEQ ID NO: 12 Mus musculus c-src tyrosine kinase (CSK) cDNA, transcript variant X2 (XM_006510801)

atgtcggcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 catggcactg ctgagcaaga ccttcccttc tgcaaaggag atgtgctcac catcgtggct 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaaag tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgtgagggt gtgaaggcag gcaccaaact cagccttatg 240 ccctggttcc acggcaagat cacacgggag caggccgagc ggcttcttta cccaccagag 300 acaggcctgt tcctcgtgcg ggaaagcacc aactaccctg gagactacac actgtgtgtg 360 agctgtgagg gcaaggtgga gcactaccgc atcatgtatc atgcgagcaa gctgagcatt 420 gatgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac cacagatgcc 480 gatggactct gcactcgcct catcaaacca aaggtcatgg agggcaccgt ggcggcccag 540 gatgagttct accgcagtgg ctgggcactg aacatgaagg aactgaagct gctacagaca 600 atagggaagg gggagtttgg agatgtgatg ctgggggatt accggggcaa caaagttgca 660 gtcaagtgca tcaagaatga cgcaactgcc caggccttcc tggctgaagc ctccgtcatg 720 acgcaacttc ggcacagcaa cctcgtccag ctgctgggtg tgattgtgga ggagaagggt 780 gggctctaca tcgtcacaga gtacatggcc aaggggagtt tggtggacta tcttcgatca 840 cgtggtcgtt cggtgctagg tggagactgt ctcctcaaat tctcattaga cgtctgtgaa 900 gccatggagt acctggaggg taacaatttt gtgcaccggg acttggctgc ccggaatgtg 960 ctggtgtctg aagacaacgt ggccaaagtc agtgactttg gcctcactaa ggaagcctcc 1020 agcactcagg acacaggcaa gctgccagtc aaatggacag cgcctgaagc cttgagagag 1080 aagaaatttt ccaccaagtc tgatgtgtgg agtttcggaa tccttctctg ggaaatctat 1140 tccttcgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggaa 1200 aagggctata agatggacgc tccggatggc tgcccgcccg cagtctacga ggtgatgaag 1260 aactgctggc acctggatgc tgccacacgg cccacgtttt tgcagcttcg ggaacagctc 1320 gagcacatca agacccatga gctgcacctg tga 1353 SEQ ID NO: 13 Mus musculus c-src tyrosine kinase (CSK) cDNA, transcript variant X3 (XM_011242659)

atgtcggcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 catggcactg ctgagcaaga ccttcccttc tgcaaaggag atgtgctcac catcgtggct 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaaag tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgtgagggt gtgaaggcag gcaccaaact cagccttatg 240 ccctggttcc acggcaagat cacacgggag caggccgagc ggcttcttta cccaccagag 300 acaggcctgt tcctcgtgcg ggaaagcacc aactaccctg gagactacac actgtgtgtg 360 agctgtgagg gcaaggtgga gcactaccgc atcatgtatc atgcgagcaa gctgagcatt 420 gatgaggagg tgtactttga gaacctcatg cagctggtgg agatcaggac acaaaggttc 480 ggatcagcga agatcccctc gtctacgcat tggaggtgtc tgtctgatcc agacctcact 540 tcctccagca ctcagaacct catgtcggga tgtgtacatt gccgtcaagg tcctggaggc 600 aggcacacag gtccttgctg cttccaacac cggctccacc cgttccagcc aggccatatc 660 tggcatcaaa gacccatagg ttcctctgag ctcactctca tctctggccc gccctgtccc 720 tga 723 SEQ ID NO: 14 Mus musculus c-src tyrosine-protein kinase (CSK) amino acid sequence (NP_001291690)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTTDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAATR PTFLQLREQL EHIKTHELHL 450 SEQ ID NO: 15 Mus musculus c-src tyrosine-protein kinase (CSK) amino acid sequence (NP_031809)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTTDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAATR PTFLQLREQL EHIKTHELHL 450 SEQ ID NO: 16 Mus musculus c-src tyrosine-protein kinase (CSK) amino acid sequence, isoform X1 (XP_006510864)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTTDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAATR PTFLQLREQL EHIKTHELHL 450 SEQ ID NO: 17 Mus musculus c-src tyrosine-protein kinase (CSK) amino acid sequence, isoform X1 (XP_006510865)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTTDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAATR PTFLQLREQL EHIKTHELHL 450 SEQ ID NO: 18 Mus musculus c-src tyrosine-protein kinase (CSK) amino acid sequence, isoform X2 (XP_011240961)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IMYHASKLSI DEEVYFENLM QLVEIRTQRF GSAKIPSSTH WRCLSDPDLT 180 SSSTQNLMSG CVHCRQGPGG RHTGPCCFQH RLHPFQPGHI WHQRPIGSSE LTLISGPPCP 240 SEQ ID NO: 19 Pan troglodytes (chimpanzee) c-src tyrosine kinase (CSK) cDNA (XM_016927198)

atgtcagcaa tacaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 cacggcactg ccgagcagga cctgcccttc tgcaaaggag acgtgctcac cattgtggcc 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa gcgggagggc gtgaaggcgg gtaccaaact cagcctcatg 240 ccttggttcc acggcaagat cacacgggag caggctgagc ggcttctgta cccgccggag 300 acaggcctgt tcctggtgcg ggagagcacc aactaccccg gagactacac gctgtgcgtg 360 agctgcgacg gcaaggtgga gcactaccgc atcatgtacc atgccagcaa gctcagcatc 420 gacgaggagg tgtactttga gaacctcatg cagctggtgg agcactacac ctcagacgca 480 gatggactct gtacgcgcct cattaaacca aaggtcatgg agggcacagt ggcggcccag 540 gatgagttct accgcagcgg ctgggccctg aacatgaagg agctgaagct gctgcagacc 600 atcgggaagg gggagttcgg agacgtgatg ctgggcgatt accgagggaa caaagtcgct 660 gtcaagtgca ttaagaacga cgccactgcc caggccttcc tggctgaagc ctcagtcatg 720 acgcaactgc ggcatagcaa cctggtgcag ctcctgggcg tgatcgtgga ggagaagggc 780 gggctctaca tcgtcactga gtacatggcc aaggggagcc tcgtggacta cctgcggtct 840 cggggtcggt cagtgctggg cggagactgt ctcctcaagt tctcgctaga tgtctgcgag 900 gccatggaat acctggaggg caacaatttc gtgcatcgag acctggctgc ccgcaatgtg 960 ctggtgtctg aggacaacgt ggccaaggtc agcgactttg gtctcaccaa ggaggcgtcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacag cccctgaggc cctgagagag 1080 aagaaattct ccactaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta tccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggatgc ccccgacggc tgcccgcccg cagtctatga ggtcatgaag 1260 aactgctggc acctggacgc cgccatgcgg ccctccttcc tacagctccg agagcagctt 1320 gagcacatca aaacccacga gctgcacctg tga 1353 SEQ ID NO: 20 Pan troglodytes (chimpanzee) c-src tyrosine kinase (CSK) amino acid sequence (XP_016782687)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAAMR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 21 Macaca mulatta (Rhesus macaque) c-src tyrosine kinase (CSK) cDNA (NM_001261636)

atgtcagcaa tacaggcctc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 cacggcaccg ccgagcaaga cctgcctttc tgcaaaggag acgtgctcac cattgtggcc 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa gcgggagggc gtgaaggcgg gtaccaaact cagcctcatg 240 ccttggttcc acggcaagat cacacgggag caggctgagc ggcttctgta cccgccggag 300 acaggcctgt tcctggtgcg ggagagcacc aactaccctg gggactacac gctgtgcgtg 360 agctgcgatg gcaaggtgga gcactaccgc atcatgtacc atgccagcaa gctcagcatc 420 gacgaggagg tgtactttga gaatctcatg cagctggtgg agcactacac ctcagacgca 480 gatggactct gtacgcgcct cattaaacca aaggtcatgg agggcacggt ggcggcccag 540 gatgagttct accgcagtgg ctgggccctg aacatgaagg agctgaagct actgcagacc 600 attgggaagg gggagttcgg agacgtgatg ctgggcgatt accgagggaa caaagtcgct 660 gtcaagtgca ttaagaacga cgccaccgcc caggccttcc tggctgaagc ttcagtcatg 720 acgcaactgc ggcatagcaa cctggtgcag ctcctgggcg tgatcgtgga ggagaagggc 780 gggctctaca tcgtcactga gtacatggcc aaggggagcc tcgtggacta cctgcggtct 840 cggggtcggt cagtgctggg cggagactgt ctcctcaagt tctcgctaga tgtctgcgag 900 gccatggaat acctggaggg caacaacttc gtgcatcgag acctggctgc ccgcaacgtg 960 ctggtgtctg aggacaacgt ggccaaggtc agcgactttg gtctcaccaa ggaggcgtcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacag cccctgaggc cctgagagag 1080 aagaaattct ccactaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta tccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggatgc ccccgatggc tgcccgcccg cagtctatga ggtcatgaag 1260 aactgctggc acctggacgc cgccatgcgg ccatccttcc tacagctccg agagcagctt 1320 gagcacatca aaacccatga gctgcacctg tga 1353 SEQ ID NO: 22 Macaca mulatta (Rhesus macaque) c-src tyrosine kinase (CSK) amino acid sequence (NP_001248565)

MSAIQASWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAAMR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 23 Canis lupus familiaris (dog) c-src tyrosine kinase (CSK) cDNA, transcript variant X1 (XM_544774)

atgtcagcaa tccaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaatttc 60 catggcactg ccgagcagga ccttcccttc tgcaaaggag acgtgctcac cattgtggcg 120 gtcaccaagg acccaaactg gtacaaagcc aagaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa acgggagggc gtgaaggccg gcaccaagct cagcctcatg 240 ccctggttcc atggcaagat cacgcgggag caggccgagc ggctgctgtg cccgcccgag 300 accggcctgt tcctggtgcg ggagagcacc aactacccgg gggactacac gctgtgcgtg 360 agctgtgacg gcaaggtgga gcactaccgc atcatgtacc acgccagcaa gctcagcatc 420 gacgaggagg tgtacttcga gaacctcatg cagctggtgg agcactacac ctcggacgcg 480 gacggactct gtactcgcct catcaagcca aaggtcatgg agggcacggt ggccgcccag 540 gatgagttct tccgcagcgg ctgggcactg aacatgaagg acctgaagct gctgcagacc 600 attgggaagg gggagtttgg agacgtgatg ctaggcgatt accgagggaa caaggttgct 660 gtcaagtgca ttaaaaatga cgccactgcc caggcctttc tggctgaagc ctctgtgatg 720 acgcaacttc ggcatagcaa cctggtacag cttctgggtg tgatcgtgga agagaagggc 780 gggctgtaca ttgtcacgga gtacatggcc aagggaagcc tggtggacta tctgcggtca 840 aggggtcgat cggtgctggg cggagactgt ctcctcaagt tctcactaga tgtctgtgag 900 gccatggaat acctggaggg caacaacttc gtgcaccggg atctggctgc ccgcaacgtg 960 ctggtgtctg aagacaacgt ggccaaggtc agcgactttg gcctcaccaa ggaggcctcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacgg ccccggaggc cctgagagag 1080 aagaaattct ccaccaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggacgc ccccgacggc tgcccacctg cggtctacga ggtcatgaag 1260 aactgctggc acctggatgc tgccacaagg ccctccttcc tgcagctccg ggagcagctc 1320 gagcacatca aaacccacga gttgcacctg tga 1353 SEQ ID NO: 24 Canis lupus familiaris (dog) c-src tyrosine kinase (CSK) cDNA, transcript variant X2 (XM_005638624)

atgtcagcaa tccaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaatttc 60 catggcactg ccgagcagga ccttcccttc tgcaaaggag acgtgctcac cattgtggcg 120 gtcaccaagg acccaaactg gtacaaagcc aagaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa acgggagggc gtgaaggccg gcaccaagct cagcctcatg 240 ccctggttcc atggcaagat cacgcgggag caggccgagc ggctgctgtg cccgcccgag 300 accggcctgt tcctggtgcg ggagagcacc aactacccgg gggactacac gctgtgcgtg 360 agctgtgacg gcaaggtgga gcactaccgc atcatgtacc acgccagcaa gctcagcatc 420 gacgaggagg tgtacttcga gaacctcatg cagctggtgg agcactacac ctcggacgcg 480 gacggactct gtactcgcct catcaagcca aaggtcatgg agggcacggt ggccgcccag 540 gatgagttct tccgcagcgg ctgggcactg aacatgaagg acctgaagct gctgcagacc 600 attgggaagg gggagtttgg agacgtgatg ctaggcgatt accgagggaa caaggttgct 660 gtcaagtgca ttaaaaatga cgccactgcc caggcctttc tggctgaagc ctctgtgatg 720 acgcaacttc ggcatagcaa cctggtacag cttctgggtg tgatcgtgga agagaagggc 780 gggctgtaca ttgtcacgga gtacatggcc aagggaagcc tggtggacta tctgcggtca 840 aggggtcgat cggtgctggg cggagactgt ctcctcaagt tctcactaga tgtctgtgag 900 gccatggaat acctggaggg caacaacttc gtgcaccggg atctggctgc ccgcaacgtg 960 ctggtgtctg aagacaacgt ggccaaggtc agcgactttg gcctcaccaa ggaggcctcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacgg ccccggaggc cctgagagag 1080 aagaaattct ccaccaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggacgc ccccgacggc tgcccacctg cggtctacga ggtcatgaag 1260 aactgctggc acctggatgc tgccacaagg ccctccttcc tgcagctccg ggagcagctc 1320 gagcacatca aaacccacga gttgcacctg tga 1353 SEQ ID NO: 25 Canis lupus familiaris (dog) c-src tyrosine kinase (CSK) cDNA, transcript variant X3 (XM_005638625)

atgtcagcaa tccaggccgc ctggccatcc ggtacagaat gtattgccaa gtacaatttc 60 catggcactg ccgagcagga ccttcccttc tgcaaaggag acgtgctcac cattgtggcg 120 gtcaccaagg acccaaactg gtacaaagcc aagaacaagg tgggccgtga gggcatcatc 180 ccagccaact acgtccagaa acgggagggc gtgaaggccg gcaccaagct cagcctcatg 240 ccctggttcc atggcaagat cacgcgggag caggccgagc ggctgctgtg cccgcccgag 300 accggcctgt tcctggtgcg ggagagcacc aactacccgg gggactacac gctgtgcgtg 360 agctgtgacg gcaaggtgga gcactaccgc atcatgtacc acgccagcaa gctcagcatc 420 gacgaggagg tgtacttcga gaacctcatg cagctggtgg agcactacac ctcggacgcg 480 gacggactct gtactcgcct catcaagcca aaggtcatgg agggcacggt ggccgcccag 540 gatgagttct tccgcagcgg ctgggcactg aacatgaagg acctgaagct gctgcagacc 600 attgggaagg gggagtttgg agacgtgatg ctaggcgatt accgagggaa caaggttgct 660 gtcaagtgca ttaaaaatga cgccactgcc caggcctttc tggctgaagc ctctgtgatg 720 acgcaacttc ggcatagcaa cctggtacag cttctgggtg tgatcgtgga agagaagggc 780 gggctgtaca ttgtcacgga gtacatggcc aagggaagcc tggtggacta tctgcggtca 840 aggggtcgat cggtgctggg cggagactgt ctcctcaagt tctcactaga tgtctgtgag 900 gccatggaat acctggaggg caacaacttc gtgcaccggg atctggctgc ccgcaacgtg 960 ctggtgtctg aagacaacgt ggccaaggtc agcgactttg gcctcaccaa ggaggcctcc 1020 agcacccagg acacgggcaa gctgccagtc aagtggacgg ccccggaggc cctgagagag 1080 aagaaattct ccaccaagtc tgacgtgtgg agtttcggaa tccttctctg ggaaatctac 1140 tcctttgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggag 1200 aagggctaca agatggacgc ccccgacggc tgcccacctg cggtctacga ggtcatgaag 1260 aactgctggc acctggatgc tgccacaagg ccctccttcc tgcagctccg ggagcagctc 1320 gagcacatca aaacccacga gttgcacctg tga 1353 SEQ ID NO: 26 Canis lupus familiaris (dog) c-src tyrosine kinase (CSK) amino acid sequence (XP_005638682)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLCPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFFRSGWAL NMKDLKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAATR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 27 Canis lupus familiaris (dog) c-src tyrosine kinase (CSK) amino acid sequence (XP_005638681)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLCPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFFRSGWAL NMKDLKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAATR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 28 Canis lupus familiaris (dog) c-src tyrosine kinase (CSK) amino acid sequence (XP_544774)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLCPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFFRSGWAL NMKDLKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAATR PSFLQLREQL EHIKTHELHL 450 SEQ ID NO: 29 Bos taurus (cow) c-src tyrosine kinase (CSK) cDNA

(NM_001075397)

atgtcagcaa ttcaggctgc ctggccatcc ggtacagaat gtattgccaa gtacaacttt 60 cacggcactg ctgagcaaga ccttcccttc tgcaaaggag atgtgctcac cattgtggct 120 gtcaccaagg accccaattg gtacaaagcc aagaacaagg tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgggagggt gtgaaggcag gcaccaagct cagcctcatg 240 ccctggttcc atggcaagat cacgcgggaa caggcagagc ggctcctgtg cccaccggag 300 acaggcctgt tcctggtgcg ggagagcacc aactaccccg gggactacac gctgtgcgtg 360 agctgtgatg gcaaggtgga gcattaccgc atcatgtacc acgccagcaa gctcagcatc 420 gatgaagagg tgtactttga gaacctcatg cagctggtgg agcactacac ctcagatgca 480 gatggcctct gtactcgcct catcaagcca aaggtcatgg agggcaccgt ggccgcccag 540 gatgagttct tccgcagtgg ctgggcgctg aacatgaagg acctgaagct gctgcagacc 600 atagggaagg gggagtttgg agacgtgatg ctgggtgact accgagggaa caaagtcgct 660 gtcaagtgca ttaagaacga tgccactgca caggccttcc tggctgaagc ctccgtcatg 720 acgcaactcc ggcatagcaa cctggtacag cttctgggcg tgatcgtaga ggagaagagc 780 gggctgtaca tcgttaccga gtacatggcc aaggggagtc tagtggacta cctgcggtct 840 cggggtcggt cggtgcttgg cggagactgt ctcctcaagt tctcactaga cgtctgtgag 900 gccatggaat acctggaggg caacaacttc gtgcatcggg atctggctgc ccgcaacgtg 960 ctggtgtctg aggacaatgt ggccaaggtc agcgacttcg gcctcaccaa ggaggcctcc 1020 agcacccagg acacgggcaa gctgccggtc aagtggacag cccccgaggc cctaagagag 1080 aagaaattct ccaccaagtc tgatgtgtgg agtttcggga tccttctctg ggaaatctac 1140 tctttcgggc gagtgcctta tccaagaatt cccctgaagg acgtcgtccc gcgggtggag 1200 aagggctaca agatggatgc ccctgacggc tgcccacctg cagtctacga ggtcatgaag 1260 aactgctggc acctggatgc cgccacgcgg ccctccttcc tgcagctccg cgagcagctc 1320 gagcgcatca agacccacga gctgcacctg tga 1353 SEQ ID NO: 30 Bos taurus (cow) c-src tyrosine kinase (CSK) amino acid sequence (NP_001068865)

MSAIQAAWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLCPPE TGLFLVREST NYPGDYTLCV 120 SCDGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTSDA DGLCTRLIKP KVMEGTVAAQ 180 DEFFRSGWAL NMKDLKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKS GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYEVMK 420 NCWHLDAATR PSFLQLREQL ERIKTHELHL 450 SEQ ID NO: 31 Rattus norvegicus (rat) c-src tyrosine kinase (CSK) cDNA (NM_001030039)

atgtcggcta tacaggcctc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 catggcactg ccgagcaaga ccttcccttc tgcaaaggag atgtgctcac cattgtggct 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaaag tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgtgagggt gtgaaggcag gcaccaagct cagccttatg 240 ccctggttcc acggcaagat cacacgggag caggcggagc ggcttctcta cccaccagag 300 acaggcctgt tcctggtgcg ggaaagcacc aactaccctg gggactacac actgtgtgtg 360 agctgtgaag gcaaggtgga gcactaccgc atcatgtatc acgcgagcaa gctgagcatt 420 gatgaggagg tgtacttcga gaacctcatg cagctggtgg agcactacac cacagatgcc 480 gacggactct gcactcgcct catcaaacca aaggtcatgg agggcacagt ggcggcccaa 540 gatgaattct accgcagtgg ctgggccctg aacatgaagg aactgaagct gctacagacg 600 ataggaaagg gggagtttgg agatgtgatg ctgggggatt accgaggcaa caaagttgca 660 gtcaagtgca ttaagaatga tgctacagcc caggccttcc tggctgaagc ctctgtcatg 720 acgcagcttc ggcacagcaa cctagtccag ctactgggtg tgattgtgga ggagaagggt 780 gggctctaca tcgtcacaga gtacatggcc aaggggagtt tggtggacta tcttcgatca 840 cgtggtcgtt cggtgctagg cggagactgt ctcctcaaat tctcactaga cgtctgtgaa 900 gccatggagt acctggaggg taacaatttt gtgcaccggg acttggctgc ccggaatgtg 960 ctggtgtctg aggacaacgt ggccaaagtc agtgactttg gcctcactaa ggaagcttcc 1020 agcactcagg acacaggcaa actgccagtc aagtggacag ctcctgaagc cttgagagag 1080 aagaaatttt ccaccaagtc tgatgtgtgg agtttcggaa tccttctctg ggaaatctat 1140 tccttcgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggaa 1200 aagggctata agatggacgc tccggatggc tgcccacccg cagtctatga tgttatgaag 1260 aactgctggc acctggatgc tgccacgcgg cccacctttc tgcagcttcg agagcagctc 1320 gagcacatca gaacccatga gctgcacctg tga 1353 SEQ ID NO: 32 Rattus norvegicus (rat) c-src tyrosine kinase (CSK) cDNA, transcript variant X1 (XM_006243163)

atgtcggcta tacaggcctc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 catggcactg ccgagcaaga ccttcccttc tgcaaaggag atgtgctcac cattgtggct 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaaag tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgtgagggt gtgaaggcag gcaccaagct cagccttatg 240 ccctggttcc acggcaagat cacacgggag caggcggagc ggcttctcta cccaccagag 300 acaggcctgt tcctggtgcg ggaaagcacc aactaccctg gggactacac actgtgtgtg 360 agctgtgaag gcaaggtgga gcactaccgc atcatgtatc acgcgagcaa gctgagcatt 420 gatgaggagg tgtacttcga gaacctcatg cagctggtgg agcactacac cacagatgcc 480 gacggactct gcactcgcct catcaaacca aaggtcatgg agggcacagt ggcggcccaa 540 gatgaattct accgcagtgg ctgggccctg aacatgaagg aactgaagct gctacagacg 600 ataggaaagg gggagtttgg agatgtgatg ctgggggatt accgaggcaa caaagttgca 660 gtcaagtgca ttaagaatga tgctacagcc caggccttcc tggctgaagc ctctgtcatg 720 acgcagcttc ggcacagcaa cctagtccag ctactgggtg tgattgtgga ggagaagggt 780 gggctctaca tcgtcacaga gtacatggcc aaggggagtt tggtggacta tcttcgatca 840 cgtggtcgtt cggtgctagg cggagactgt ctcctcaaat tctcactaga cgtctgtgaa 900 gccatggagt acctggaggg taacaatttt gtgcaccggg acttggctgc ccggaatgtg 960 ctggtgtctg aggacaacgt ggccaaagtc agtgactttg gcctcactaa ggaagcttcc 1020 agcactcagg acacaggcaa actgccagtc aagtggacag ctcctgaagc cttgagagag 1080 aagaaatttt ccaccaagtc tgatgtgtgg agtttcggaa tccttctctg ggaaatctat 1140 tccttcgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggaa 1200 aagggctata agatggacgc tccggatggc tgcccacccg cagtctatga tgttatgaag 1260 aactgctggc acctggatgc tgccacgcgg cccacctttc tgcagcttcg agagcagctc 1320 gagcacatca gaacccatga gctgcacctg tga 1353 SEQ ID NO: 33 Rattus norvegicus (rat) c-src tyrosine kinase (CSK) cDNA, transcript variant X2 (XM_006243164)

atgtcggcta tacaggcctc ctggccatcc ggtacagaat gtattgccaa gtacaacttc 60 catggcactg ccgagcaaga ccttcccttc tgcaaaggag atgtgctcac cattgtggct 120 gtcaccaagg accccaactg gtacaaagcc aaaaacaaag tgggccgtga gggcatcatc 180 ccagccaact atgtccagaa gcgtgagggt gtgaaggcag gcaccaagct cagccttatg 240 ccctggttcc acggcaagat cacacgggag caggcggagc ggcttctcta cccaccagag 300 acaggcctgt tcctggtgcg ggaaagcacc aactaccctg gggactacac actgtgtgtg 360 agctgtgaag gcaaggtgga gcactaccgc atcatgtatc acgcgagcaa gctgagcatt 420 gatgaggagg tgtacttcga gaacctcatg cagctggtgg agcactacac cacagatgcc 480 gacggactct gcactcgcct catcaaacca aaggtcatgg agggcacagt ggcggcccaa 540 gatgaattct accgcagtgg ctgggccctg aacatgaagg aactgaagct gctacagacg 600 ataggaaagg gggagtttgg agatgtgatg ctgggggatt accgaggcaa caaagttgca 660 gtcaagtgca ttaagaatga tgctacagcc caggccttcc tggctgaagc ctctgtcatg 720 acgcagcttc ggcacagcaa cctagtccag ctactgggtg tgattgtgga ggagaagggt 780 gggctctaca tcgtcacaga gtacatggcc aaggggagtt tggtggacta tcttcgatca 840 cgtggtcgtt cggtgctagg cggagactgt ctcctcaaat tctcactaga cgtctgtgaa 900 gccatggagt acctggaggg taacaatttt gtgcaccggg acttggctgc ccggaatgtg 960 ctggtgtctg aggacaacgt ggccaaagtc agtgactttg gcctcactaa ggaagcttcc 1020 agcactcagg acacaggcaa actgccagtc aagtggacag ctcctgaagc cttgagagag 1080 aagaaatttt ccaccaagtc tgatgtgtgg agtttcggaa tccttctctg ggaaatctat 1140 tccttcgggc gagtgcctta cccaagaatt cccctgaagg acgtcgtccc tcgggtggaa 1200 aagggctata agatggacgc tccggatggc tgcccacccg cagtctatga tgttatgaag 1260 aactgctggc acctggatgc tgccacgcgg cccacctttc tgcagcttcg agagcagctc 1320 gagcacatca gaacccatga gctgcacctg tga 1353 SEQ ID NO: 34 Rattus norvegicus (rat) c-src tyrosine kinase (CSK) amino acid sequence (NP_001025210)

MSAIQASWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTTDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYDVMK 420 NCWHLDAATR PTFLQLREQL EHIRTHELHL 450 SEQ ID NO: 35 Rattus norvegicus (rat) c-src tyrosine kinase (CSK) amino acid sequence, isoform X1 (XP_006243225)

MSAIQASWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTTDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYDVMK 420 NCWHLDAATR PTFLQLREQL EHIRTHELHL 450 SEQ ID NO: 36 Rattus norvegicus (rat) c-src tyrosine kinase (CSK) amino acid sequence, isoform X1 (XP_006243226)

MSAIQASWPS GTECIAKYNF HGTAEQDLPF CKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IMYHASKLSI DEEVYFENLM QLVEHYTTDA DGLCTRLIKP KVMEGTVAAQ 180 DEFYRSGWAL NMKELKLLQT IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKG GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEGNNF VHRDLAARNV LVSEDNVAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDAPDG CPPAVYDVMK 420 NCWHLDAATR PTFLQLREQL EHIRTHELHL 450 SEQ ID NO: 37 Gallus gallus (chicken) c-src tyrosine kinase (CSK) cDNA (NM_205425)

atgtcaggga tgcaggccgt ttggccatcc ggtacagaat gtatcgccaa gtacaacttc 60 cacggtacgg ccgagcagga cctgccgttc agcaagggag acgtcctcac catcgtcgcc 120 gtcaccaagg accccaactg gtacaaggcg aagaacaagg tgggccggga gggcatcatc 180 cccgctaact acgtgcagaa gagggaagga gtgaaggctg gcatcaagct cagcctcatg 240 ccgtggttcc atgggaagat cacacgggag caggcagaga ggctgctgta cccacccgag 300 acggggctgt tcctggtgcg ggagagcacc aactaccccg gggactacac cctgtgtgtg 360 agctgtgagg gcaaggtgga gcactaccgc atcatttact cctccagcaa gctgagcatc 420 gacgaggagg tctacttcga gaacctgatg cagcttgtgg agcattacac cacggacgcc 480 gacggcctct gctcgcgcct catcaaaccg aaggtgatgg aggggacggt ggcagctcag 540 gatgagttct cccgcagtgg ctgggccctc aacatgaagg acctcaagct gctgcaaatc 600 attggcaaag gggaatttgg agatgtgatg ctgggtgatt accgggggaa caaagtcgcc 660 gtcaagtgca ttaaaaatga cgccacagcg caggctttcc tggcagaagc gtccgtgatg 720 acgcagctcc gacacagcaa cctggtgcag ctgctggggg tgatcgtgga ggagaagagc 780 ggcctctata ttgtcactga gtatatggcc aagggcagcc tagtagatta cctgcggtcg 840 cgtgggaggt cggtcctagg cggagactgc ctgctcaagt tttccttaga tgtctgtgaa 900 gccatggagt acctggaagc caacaacttc gtccaccggg acctggcggc gaggaatgtg 960 ttggtctcag aggacaacat tgccaaggtc agcgatttcg ggctgacaaa ggaagcgtcg 1020 tccactcagg acacggggaa gctgcctgtg aagtggacgg cacccgaagc acttagagaa 1080 aagaaattct ccaccaaatc ggacgtgtgg agcttcggga tcctcctctg ggaaatctac 1140 tccttcgggc gagtgcctta tccgagaatc cccctgaagg acgtggtgcc ccgggtggag 1200 aagggctata agatggaccc tccagacggc tgcccggcca tcgtctacga ggtgatgaag 1260 aagtgctgga cgctggaccc agggcaccgg ccgtccttcc accagctccg tgaacagcta 1320 gtgcatatca aagagaagga gctctacctg tga 1353 SEQ ID NO: 38 Gallus gallus (chicken) c-src tyrosine kinase (CSK) cDNA (XM_015278794)

atgtcaggga tgcaggccgt ttggccatcc ggtacagaat gtatcgccaa gtacaacttc 60 cacggtacgg ccgagcagga cctgccgttc agcaagggag acgtcctcac catcgtcgcc 120 gtcaccaagg accccaactg gtacaaggcg aagaacaagg tgggccggga gggcatcatc 180 cccgctaact acgtgcagaa gagggaagga gtgaaggctg gcatcaagct cagcctcatg 240 ccgtggttcc atgggaagat cacacgggag caggcagaga ggctgctgta cccacccgag 300 acggggctgt tcctggtgcg ggagagcacc aactaccctg gggactacac cctgtgtgtg 360 agctgtgagg gcaaggtgga gcactaccgc atcatttact cctccagcaa gctgagcatc 420 gatgaggagg tctacttcga gaacctgatg cagcttgtgg agcattacac cacggacgcc 480 gacgggctct gcacgcgcct catcaaaccg aaggtgatgg aggggacggt ggcagctcag 540 gacgagttct cccgcagtgg ctgggccctc aacatgaagg acctcaagct gctgcaaatc 600 attggcaaag gggaatttgg agatgtgatg ctgggtgatt accgggggaa caaagtcgcc 660 gtcaagtgca ttaaaaatga cgccacagcg caggctttcc tggcagaagc atccgtgatg 720 acgcagctcc gacacagcaa cctggtgcag ctgctggggg tgatcgtgga ggagaagagc 780 ggcctctaca ttgtcactga gtatatggcc aagggcagcc tagtagatta cctgcggtcg 840 cgtgggaggt cggtcctagg cgcagactgc ctgctcaagt tttccttaga tgtctgtgaa 900 gccatggagt acctggaagc caacaacttc gtccaccggg acctggcggc gaggaatgtg 960 ttggtctcag aggacaacat tgccaaggtc agcgatttcg ggctgacaaa ggaagcgtcg 1020 tccactcagg acacggggaa gctgcctgtg aagtggacgg cacccgaagc acttagagaa 1080 aagaaattct ccaccaaatc ggacgtgtgg agcttcggga tcctcctctg ggaaatctac 1140 tccttcgggc gagtgcctta tccgagaatc cccctgaagg acgtggtgcc ccgggtggag 1200 aagggctata agatggaccc tccagacggc tgcccggcca tcgtctacga ggtgatgaag 1260 aagtgctgga cgctggaccc agggcaccgg ccgtccttcc accagctccg tgaacagcta 1320 gtgcatatca aagagaagga gctctacctg tga 1353 SEQ ID NO: 39 Gallus gallus (chicken) c-src tyrosine kinase (CSK) amino acid sequence (XP_015134280)

MSGMQAVWPS GTECIAKYNF HGTAEQDLPF SKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGIKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IIYSSSKLSI DEEVYFENLM QLVEHYTTDA DGLCTRLIKP KVMEGTVAAQ 180 DEFSRSGWAL NMKDLKLLQI IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKS GLYIVTEYMA KGSLVDYLRS RGRSVLGADC LLKFSLDVCE 300 AMEYLEANNF VHRDLAARNV LVSEDNIAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDPPDG CPAIVYEVMK 420 KCWTLDPGHR PSFHQLREQL VHIKEKELYL 450 SEQ ID NO: 40 Gallus gallus (chicken) c-src tyrosine kinase (CSK) amino acid sequence (NP_990756)

MSGMQAVWPS GTECIAKYNF HGTAEQDLPF SKGDVLTIVA VTKDPNWYKA KNKVGREGII 60 PANYVQKREG VKAGIKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IIYSSSKLSI DEEVYFENLM QLVEHYTTDA DGLCSRLIKP KVMEGTVAAQ 180 DEFSRSGWAL NMKDLKLLQI IGKGEFGDVM LGDYRGNKVA VKCIKNDATA QAFLAEASVM 240 TQLRHSNLVQ LLGVIVEEKS GLYIVTEYMA KGSLVDYLRS RGRSVLGGDC LLKFSLDVCE 300 AMEYLEANNF VHRDLAARNV LVSEDNIAKV SDFGLTKEAS STQDTGKLPV KWTAPEALRE 360 KKFSTKSDVW SFGILLWEIY SFGRVPYPRI PLKDVVPRVE KGYKMDPPDG CPAIVYEVMK 420 KCWTLDPGHR PSFHQLREQL VHIKEKELYL 450 SEQ ID NO: 41 Xenopus tropicalis (frog) c-src tyrosine kinase (CSK) cDNA (NM_001142143)

atgtcagtgg tgcaggcccc ttggcaagct ggcacagaat gcattgctaa ctatgacttc 60 cagggtaaag ctgagcagga cctgcatttt agtaaaggtg aagtgctgac cattgtggct 120 gtgacaaagg atccaaattg gtacaaggca aaaaacaaag tagggagagt gggattcatc 180 cctgcaaact atgtccaaaa gagagaagga gtgaaatctg gaaccaaact cagccttatg 240 ccgtggtttc atggcaagat aacccgagag caggctgagc gtctcttgta tccacctgaa 300 acgggcttat tccttgtacg ggagagtaca aactaccctg gagattatac tctgtgtgtg 360 agctgtgaag ggaaagtgga gcattaccgc attatctatt cttctggcaa gctgagcatt 420 gatgaagagg aatactttga aaatctcatg cagctggtgg agcactatac caatgatgca 480 gatggcctgt gcacaaattt gatgaagccc aaattggtgg agggaactgt agctgcccag 540 gatgaattct cccggagtgg ctgggccctc aagatgagag atctcaaact gctgcacacc 600 attggcaagg gggaatttgg agatgtcatg cttggtgaac atcaaggagt gaaagtagct 660 gtgaaatgta tcaagaacga tgccacggca caagcatttg tagcagaagc tatggtgatg 720 acgcaattgc aacataacaa tcttgtgcag ctacttggag tgattgttga agataaaagt 780 ggtttgttta tcgtcacaga atttatggca aagggaagcc tagtggatta tttgaggtct 840 cggggaaggt cagtgctagg tggcgaatgt ctactaaagt tctcactgga tgtatcagaa 900 ggtatggcat atcttgagag taataacttt gtgcacagag atctagcggc acgcaatgtg 960 ttggtatcag aagaaaatat tgctaaggtc agtgactttg gactcaccaa ggaagcatcc 1020 gccatacagg acacaagcaa actgcctgtt aagtggacag caccagaagc gttgcgggat 1080 aagctatttt caaccaagtc tgatgtttgg agctttggaa ttctgttatg ggagatctat 1140 tcctttgggc gagtgcctta tccacgcatt gcccttaaag atgtggtacc aaaggtggag 1200 aatgggtata aaatggacgc acccgatgga tgtcctcctg ttgtatatga tttgatgaag 1260 cagtgttggc atctggaccc aaaacagcga cccactttta ggaatctgcg agaacagcta 1320 gagcatatca aagcgaagga actgtttcac tga 1353 SEQ ID NO: 42 Xenopus tropicalis (frog) c-src tyrosine kinase (CSK) amino acid sequence (NP_001135615)

MSVVQAPWQA GTECIANYDF QGKAEQDLHF SKGEVLTIVA VTKDPNWYKA KNKVGRVGFI 60 PANYVQKREG VKSGTKLSLM PWFHGKITRE QAERLLYPPE TGLFLVREST NYPGDYTLCV 120 SCEGKVEHYR IIYSSGKLSI DEEEYFENLM QLVEHYTNDA DGLCTNLMKP KLVEGTVAAQ 180 DEFSRSGWAL KMRDLKLLHT IGKGEFGDVM LGEHQGVKVA VKCIKNDATA QAFVAEAMVM 240 TQLQHNNLVQ LLGVIVEDKS GLFIVTEFMA KGSLVDYLRS RGRSVLGGEC LLKFSLDVSE 300 GMAYLESNNF VHRDLAARNV LVSEENIAKV SDFGLTKEAS AIQDTSKLPV KWTAPEALRD 360 KLFSTKSDVW SFGILLWEIY SFGRVPYPRI ALKDVVPKVE NGYKMDAPDG CPPVVYDLMK 420 QCWHLDPKQR PTFRNLREQL EHIKAKELFH 450 * Included in Table 1 are RNA nucleic acid molecules (e.g., thymines replaced with uridines), nucleic acid molecules encoding orthologs of the encoded proteins, as well as DNA or RNA nucleic acid sequences comprising a nucleic acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity across their full length with the nucleic acid sequence of any SEQ ID NO listed in Table 1, or a portion thereof. Such nucleic acid molecules can have a function of the full-length nucleic acid as described further herein. * Included in Table 1 are orthologs of the proteins, as well as polypeptide molecules comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity across their full length with an amino acid sequence of any SEQ ID NO listed in Table 1, or a portion thereof. Such polypeptides can have a function of the full-length polypeptide as described further herein. * Included in Table 1 are CSK null mutations, missense mutations, nonsense mutations, frameshift mutations, insertion mutation, deletion mutations, and rearrangement mutations. Human PAK2 nucleic acid (NM_002577) and amino acid (NP_002568) sequences are publicly available on the GenBank database maintained by the U.S. National Center for Biotechnology Information. Nucleic acid and polypeptide sequences of PAK2 orthologs in species other than humans are also well known and include, for example, mouse PAK2 (NM_177326, NP_796300), chimpanzee PAK2 (XM_016940213, XP_016795702), monkey PAK2 (XP_014988061, NP_001252864), dog PAK2 (XM_844339, XP_849432), cow PAK2 (NM_001206727, NP_001193656), rat PAK2 (XM_003751066,

XP_008767000), and chicken PAK2 (XM_003751066, XP_008767000).

Representative sequences of PAK2 orthologs are presented below in Table 2. Anti- PAK2 agents, including antibodies, nucleic acids, and the like are well-known in the art. It is to be noted that the term can further be used to refer to any combination of features described herein regarding PAK2 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an PAK2 molecule of the present invention.

Human CRK nucleic acid (NM_005206, NM_016823) and amino acid

(NP_058431, NP_005197) sequences are publicly available on the GenBank database maintained by the U.S. National Center for Biotechnology Information. Nucleic acid and polypeptide sequences of CRK orthologs in species other than humans are also well known and include, for example, mouse CRK (NM_001277219, NP_001264148), chimpanzee CRK (XM_016931122, XP_016786611), monkey CRK (XM_002808109,

XP_002808155), dog CRK (XM_003435202, XP_003435250), cow CRK

(NM_001192334, NP_001179263), rat CRK (NM_019302, NP_062175), and chicken CRK (NM_001007846; NP_001007847).

Representative sequences of CRK orthologs are presented below in Table 2. Anti- CRK agents, including antibodies, nucleic acids, and the like are well-known in the art. It is to be noted that the term can further be used to refer to any combination of features described herein regarding CRK molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an CRK molecule of the present invention. Table 2

SEQ ID NO: 43 Homo sapiens p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant 1 (NM_002577)

atgtctgata acggagaact ggaagataag cctccagcac ctcctgtgcg aatgagcagc 60 accatcttta gcactggagg caaagaccct ttgtcagcca atcacagttt gaaacctttg 120 ccctctgttc cagaagagaa aaagcccagg cataaaatca tctccatatt ctcaggcaca 180 gagaaaggaa gtaaaaagaa agaaaaggaa cggccagaaa tttctcctcc atctgatttt 240 gagcacacca tccatgttgg ctttgatgct gttactggag aattcactgg catgccagaa 300 cagtgggctc gattactaca gacctccaat atcaccaaac tagagcaaaa gaagaatcct 360 caggctgtgc tggatgtcct aaagttctac gactccaaca cagtgaagca gaaatatctg 420 agctttactc ctcctgagaa agatggcttt ccttctggaa caccagcact gaatgccaag 480 ggaacagaag cacccgcagt agtgacagag gaggaggatg atgatgaaga gactgctcct 540 cccgttattg ccccgcgacc ggatcatacg aaatcaattt acacacggtc tgtaattgac 600 cctgttcctg caccagttgg tgattcacat gttgatggtg ctgccaagtc tttagacaaa 660 cagaaaaaga agactaagat gacagatgaa gagattatgg agaaattaag aactatcgtg 720 agcataggtg accctaagaa aaaatataca agatatgaaa aaattggaca aggggcttct 780 ggtacagttt tcactgctac tgacgttgca ctgggacagg aggttgctat caaacaaatt 840 aatttacaga aacagccaaa gaaggaactg atcattaacg agattctggt gatgaaagaa 900 ttgaaaaatc ccaacatcgt taactttttg gacagttacc tggtaggaga tgaattgttt 960 gtggtcatgg aataccttgc tggggggtca ctcactgatg tggtaacaga aacgtgcatg 1020 gatgaagcac agattgctgc tgtatgcaga gagtgtttac aggcattgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tacttttggg aatggaagga 1140 tctgttaagc tcactgactt tggtttctgt gcccagatca cccctgagca gagcaaacgc 1200 agtaccatgg tcggaacgcc atactggatg gcaccagagg tggttacacg gaaagcttat 1260 ggccctaaag tcgacatatg gtctctgggt atcatggcta ttgagatggt agaaggagag 1320 cctccatacc tcaatgaaaa tcccttgagg gccttgtacc taatagcaac taatggaacc 1380 ccagaacttc agaatccaga gaaactttcc ccaatatttc gggatttctt aaatcgatgt 1440 ttggaaatgg atgtggaaaa aaggggttca gccaaagaat tattacagca tcctttcctg 1500 aaactggcca aaccgttatc tagcttgaca ccactgatca tggcagctaa agaagcaatg 1560 aagagtaacc gttaa 1575 SEQ ID NO: 44 Homo sapiens p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X1 (XM_011512870)

atgtctgata acggagaact ggaagataag cctccagcac ctcctgtgcg aatgagcagc 60 accatcttta gcactggagg caaagaccct ttgtcagcca atcacagttt gaaacctttg 120 ccctctgttc cagaagagaa aaagcccagg cataaaatca tctccatatt ctcaggcaca 180 gagaaaggaa gtaaaaagaa agaaaaggaa cggccagaaa tttctcctcc atctgatttt 240 gagcacacca tccatgttgg ctttgatgct gttactggag aattcactgg catgccagaa 300 cagtgggctc gattactaca gacctccaat atcaccaaac tagagcaaaa gaagaatcct 360 caggctgtgc tggatgtcct aaagttctac gactccaaca cagtgaagca gaaatatctg 420 agctttactc ctcctgagaa agatggcttt ccttctggaa caccagcact gaatgccaag 480 ggaacagaag cacccgcagt agtgacagag gaggaggatg atgatgaaga gactgctcct 540 cccgttattg ccccgcgacc ggatcatacg aaatcaattt acacacggtc tgtaattgac 600 cctgttcctg caccagttgg tgattcacat gttgatggtg ctgccaagtc tttagacaaa 660 cagaaaaaga agactaagat gacagatgaa gagattatgg agaaattaag aactatcgtg 720 agcataggtg accctaagaa aaaatataca agatatgaaa aaattggaca aggggcttct 780 ggtacagttt tcactgctac tgacgttgca ctgggacagg aggttgctat caaacaaatt 840 aatttacaga aacagccaaa gaaggaactg atcattaacg agattctggt gatgaaagaa 900 ttgaaaaatc ccaacatcgt taactttttg gacagttacc tggtaggaga tgaattgttt 960 gtggtcatgg aataccttgc tggggggtca ctcactgatg tggtaacaga aacgtgcatg 1020 gatgaagcac agattgctgc tgtatgcaga gagtgtttac aggcattgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tacttttggg aatggaagga 1140 tctgttaagc tcactgactt tggtttctgt gcccagatca cccctgagca gagcaaacgc 1200 agtaccatgg tcggaacgcc atactggatg gcaccagagg tggttacacg gaaagcttat 1260 ggccctaaag tcgacatatg gtctctgggt atcatggcta ttgagatggt agaaggagag 1320 cctccatacc tcaatgaaaa tcccttgagg gccttgtacc taatagcaac taatggaacc 1380 ccagaacttc agaatccaga gaaactttcc ccaatatttc gggatttctt aaatcgatgt 1440 ttggaaatgg atgtggaaaa aaggggttca gccaaagaat tattacagca tcctttcctg 1500 aaactggcca aaccgttatc tagcttgaca ccactgatca tggcagctaa agaagcaatg 1560 aagagtaacc gttaa 1575 SEQ ID NO: 45 Homo sapiens p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X2 (XM_017006501)

atgtctgata acggagaact ggaagataag cctccagcac ctcctgtgcg aatgagcagc 60 accatcttta gcactggagg caaagaccct ttgtcagcca atcacagttt gaaacctttg 120 ccctctgttc cagaagagaa aaagcccagg cataaaatca tctccatatt ctcaggcaca 180 gagaaaggaa gtaaaaagaa agaaaaggaa cggccagaaa tttctcctcc atctgatttt 240 gagcacacca tccatgttgg ctttgatgct gttactggag aattcactgg catgccagaa 300 cagtgggctc gattactaca gacctccaat atcaccaaac tagagcaaaa gaagaatcct 360 caggctgtgc tggatgtcct aaagttctac gactccaaca cagtgaagca gaaatatctg 420 agctttactc ctcctgagaa agatggcttt ccttctggaa caccagcact gaatgccaag 480 ggaacagaag cacccgcagt agtgacagag gaggaggatg atgatgaaga gactgctcct 540 cccgttattg ccccgcgacc ggatcatacg aaatcaattt acacacggtc tgtaattgac 600 cctgttcctg caccagttgg tgattcacat gttgatggtg ctgccaagtc tttagacaaa 660 cagaaaaaga agactaagat gacagatgaa gagattatgg agaaattaag aactatcgtg 720 agcataggtg accctaagaa aaaatataca agatatgaaa aaattggaca aggggcttct 780 ggtacagttt tcactgctac tgacgttgca ctgggacagg aggttgctat caaacaaatt 840 aatttacaga aacagccaaa gaaggaactg atcattaacg agattctggt gatgaaagaa 900 ttgaaaaatc ccaacatcgt taactttttg gacagttacc tggtaggaga tgaattgttt 960 gtggtcatgg aataccttgc tggggggtca ctcactgatg tggtaacaga aacgtgcatg 1020 gatgaagcac agattgctgc tgtatgcaga gagtgtttac aggcattgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tacttttggg aatggaagga 1140 tctgttaagc tcactgactt tggtttctgt gcccagatca cccctgagca gagcaaacgc 1200 agtaccatgg tcggaacgcc atactggatg gcaccagagg tggttacacg gaaagcttat 1260 ggccctaaag tcgacatatg gtctctgggt atcatggcta ttgagatggt agaaggagag 1320 cctccatacc tcaatgaaaa tcccttgagg gccttgtacc taatagcaac taatggaacc 1380 ccagaacttc agaatccaga gaaactttcc ccaatatttc gggatttctt aaatcgatgt 1440 ttggaaatgg atgtggaaaa aaggggttca gccaaagaat tattacagca tcctttcctg 1500 aaactggcca aaccgttatc tagcttgaca ccactgatca tggcagctaa agaagcaatg 1560 aagagtaacc gttaa 1575 SEQ ID NO: 46 Homo sapiens p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (NP_002568)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR HKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNAK GTEAPAVVTE EEDDDEETAP 180 PVIAPRPDHT KSIYTRSVID PVPAPVGDSH VDGAAKSLDK QKKKTKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLIMAAKEAM KSNR 524

SEQ ID NO: 47 Homo sapiens p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence, isoform X1 (XP_011511172)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR HKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNAK GTEAPAVVTE EEDDDEETAP 180 PVIAPRPDHT KSIYTRSVID PVPAPVGDSH VDGAAKSLDK QKKKTKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLIMAAKEAM KSNR 524 SEQ ID NO: 48 Homo sapiens p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence, isoform X1 (XP_016861990)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR HKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNAK GTEAPAVVTE EEDDDEETAP 180 PVIAPRPDHT KSIYTRSVID PVPAPVGDSH VDGAAKSLDK QKKKTKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLIMAAKEAM KSNR 524 SEQ ID NO: 49 Pan troglodytes (chimpanzee) p21 (RAC1) activated kinase 2 (PAK2) cDNA (XM_016940213)

atgtctgata acggagaact ggaagacaag cctccagcac ctcctgtgcg aatgagcagc 60 accatcttta gcactggagg caaagaccct ttgtcagcca atcacagttt gaaacctttg 120 ccctctgttc cagaagagaa aaagcccagg cataaaatca tctccatatt ctcaggcaca 180 gagaaaggaa gtaaaaagaa agaaaaggaa cggccagaaa tttctcctcc atctgatttt 240 gagcacacca tccatgttgg ctttgatgct gttactggag aattcactgg catgccagaa 300 cagtgggctc gattactaca gacctccaat atcaccaaac tagagcaaaa gaagaatcct 360 caggctgtgc tggatgtcct aaagttctac gactccaaca cagtgaagca gaaatatctg 420 agctttactc ctcctgagaa agatggcttt ccttctggaa caccagcact gaatgccaag 480 ggaacagaag cacccgcagt agtgacagag gaggaggatg atgatgaaga gactgctcct 540 cccgttattg ccccgcgacc ggatcatacg aaatcaattt acacacggtc tgtaattgac 600 cctgttcctg caccagttgg tgattcacat gttgatggtg ctgccaagtc tttagacaaa 660 cagaaaaaga agactaagat gacagatgaa gagattatgg agaaattaag aactatcgtg 720 agcataggtg accctaagaa aaaatataca agatatgaaa aaattggaca aggggcttct 780 ggtacagttt tcactgctac tgacgttgca ttgggacagg aggttgctat caaacaaatt 840 ttt t t tt tt t t t 900 ttgaaaaatc ccaacatcgt taactttttg gacagttacc tggtaggaga tgaattgttt 960 gtggtcatgg aataccttgc tggggggtca ctcactgatg tggtaacaga aacctgcatg 1020 gatgaagcac agattgctgc tgtatgcaga gagtgtttac aggcattgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tacttttggg aatggaagga 1140 tcggttaaac tcactgactt tggtttctgt gcccagatca cccctgagca gagcaaacgc 1200 agtaccatgg tcggaacgcc atactggatg gcaccagagg tggttacacg gaaagcgtat 1260 ggccctaaag tcgacatatg gtctctgggt atcatggcta ttgagatggt agaaggagag 1320 cctccatacc tcaatgaaaa tcccttgagg gccttgtacc taatagcaac taatggaacc 1380 ccagaacttc agaatccaga gaaactttcc ccaatatttc gggatttctt aaatcgatgt 1440 ttggaaatgg atgtggaaaa aaggggttca gccaaagaat tattacagca tcctttcctg 1500 aaactggcca aaccgttatc tagcttgaca ccactgatca tggcagctaa agaagcaatg 1560 aagagtaacc gttaa 1575 SEQ ID NO: 50 Pan troglodytes (chimpanzee) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_016795702)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR HKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNAK GTEAPAVVTE EEDDDEETAP 180 PVIAPRPDHT KSIYTRSVID PVPAPVGDSH VDGAAKSLDK QKKKTKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLIMAAKEAM KSNR 524 SEQ ID NO: 51 Macaca mulatta (Rhesus macaque) p21 (RAC1) activated kinase 2 (PAK2) cDNA (NM_001265935)

atgtctgata acggagaact ggaagacaag cccccagcac ctcctgtgcg aatgagcagc 60 accatcttta gcactggagg caaagacccc ttgtcagcca atcacagttt gaaacctttg 120 ccctctgttc cggaggagaa gaagcccagg cacaaaatca tctccatatt ctcaggcaca 180 gagaaaggaa gtaaaaagaa agaaaaggaa cggccagaaa tttctcctcc atctgatttt 240 gaacacacca tccatgttgg ctttgatgct gttactggag aattcactgg catgccagaa 300 cagtgggctc gattactaca gacctccaac atcaccaaac tagagcaaaa gaagaatcct 360 caggctgtgc tggatgtcct caagttctac gactccaaca cagtgaagca gaagtatctg 420 agctttactc ctccggagaa agatggcttc ccttctggaa caccagcact gaacgccaag 480 ggaacagaaa cacccgcagt agtgacagag gaagatgatg atgatgaaga gactgctcct 540 cctgttattg ccccacgacc agatcatacg aaatcaattt acacacggtc tgtaattgac 600 cccgttcctg caccagttgg tgattcaagt gttgatggtg gtgccaagtc ttcagacaaa 660 cagaaaaaga agactaaaat gacagatgaa gaaattatgg agaaattaag aactattgtg 720 agcataggtg accctaagaa aaaatataca agatatgaaa aaattggaca aggggcttct 780 ggtacagttt tcactgctac tgacgttgca ttgggacagg aggttgctat caaacagatt 840 aatttacaga aacagccaaa gaaggaattg atcattaatg agattctggt gatgaaagaa 900 ttaaaaaatc ccaacatagt taacttcttg gacagttacc tggtaggaga tgaattgttt 960 gtggtcatgg aataccttgc tggtggatcg ctcactgatg tggtaacaga aacctgcatg 1020 gatgaagcac agattgctgc tgtatgcaga gagtgcttgc aggcgttgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agcgacaatg tccttttggg aatggaagga 1140 tcggttaagc tcactgactt tggtttctgt gcccagatca cccccgagca gagcaaacgc 1200 agtaccatgg tcggaacccc atactggatg gcaccagagg tggttacacg gaaagcttat 1260 ggccccaaag tcgacatatg gtctctgggt atcatggcta ttgagatggt agaaggagag 1320 cctccatacc tcaatgaaaa tcccttgagg gccttgtacc taatagcaac taatggaacc 1380 ccagagcttc agaatccaga gaaactttcc ccaatatttc gagatttctt aaatcgatgt 1440 ttggaaatgg atgtggaaaa aaggggttca gccaaagaat tattacagca tcctttcttg 1500 aaactggcca aaccattatc tagcttgaca ccactgatca tggcagctaa agaagcgatg 1560 aagagtaacc gttaa 1575 SEQ ID NO: 52 Macaca mulatta (Rhesus macaque) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X1 (XM_015132575)

atgtctgata acggagaact ggaagacaag cccccagcac ctcctgtgcg aatgagcagc 60 accatcttta gcactggagg caaagacccc ttgtcagcca atcacagttt gaaacctttg 120 ccctctgttc cggaggagaa gaagcccagg cacaaaatca tctccatatt ctcaggcaca 180 gagaaaggaa gtaaaaagaa agaaaaggaa cggccagaaa tttctcctcc atctgatttt 240 gaacacacca tccatgttgg ctttgatgct gttactggag aattcactgg catgccagaa 300 cagtgggctc gattactaca gacctccaac atcaccaaac tagagcaaaa gaagaatcct 360 caggctgtgc tggatgtcct caagttctac gactccaaca cagtgaagca gaagtatctg 420 agctttactc ctccggagaa agatggcttc ccttctggaa caccagcact gaacgccaag 480 ggaacagaaa cacccgcagt agtgacagag gaagatgatg atgatgaaga gactgctcct 540 cctgttattg ccccacgacc agatcatacg aaatcaattt acacacggtc tgtaattgac 600 cccgttcctg caccagttgg tgattcaagt gttgatggtg gtgccaagtc ttcagacaaa 660 cagaaaaaga agactaaaat gacagatgaa gaaattatgg agaaattaag aactattgtg 720 agcataggtg accctaagaa aaaatataca agatatgaaa aaattggaca aggggcttct 780 ggtacagttt tcactgctac tgacgttgca ttgggacagg aggttgctat caaacagatt 840 aatttacaga aacagccaaa gaaggaattg atcattaatg agattctggt gatgaaagaa 900 ttaaaaaatc caaacatagt taacttcttg gacagttacc tggtaggaga tgaattgttt 960 gtggtcatgg aataccttgc tggtggatcg ctcactgatg tggtaacaga aacctgcatg 1020 gatgaagcac agattgctgc tgtatgcaga gagtgtctgc aggcgttgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agcgacaatg tccttttggg aatggaagga 1140 tcggttaagc tcactgactt tggtttctgt gcccagatca cccccgagca gagcaaacgc 1200 agtaccatgg tcggaacccc atactggatg gcaccagagg tggttacacg gaaagcttat 1260 ggccccaaag tcgacatatg gtctctgggt atcatggcta ttgagatggt agaaggagag 1320 cctccatacc tcaatgaaaa tcccttgagg gccttgtacc taatagcaac taatggaacc 1380 ccagagcttc agaatccaga gaaactttcc ccaatatttc gagatttctt aaatcgatgt 1440 ttggaaatgg atgtggaaaa aaggggttca gccaaagaat tattacagca tcctttcttg 1500 aaactggcca aaccattatc tagcttgaca ccactgatca tggcagctaa agaagcgatg 1560 aagagtaacc gttaa 1575 SEQ ID NO: 53 Macaca mulatta (Rhesus macaque) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_014988061)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR HKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNAK GTETPAVVTE EDDDDEETAP 180 PVIAPRPDHT KSIYTRSVID PVPAPVGDSS VDGGAKSSDK QKKKTKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLIMAAKEAM KSNR 524 SEQ ID NO: 54 Macaca mulatta (Rhesus macaque) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence, transcript variant X1 (NP_001252864)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR HKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNAK GTETPAVVTE EDDDDEETAP 180 PVIAPRPDHT KSIYTRSVID PVPAPVGDSS VDGGAKSSDK QKKKTKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLIMAAKEAM KSNR 524 SEQ ID NO: 55 Canis lupus familiaris (dog) p21 (RAC1) activated kinase 2 (PAK2) cDNA (XM_844339)

atgtccgata acggagaact ggaagacaag cctccagcac ctcctgtgcg aatgagcagt 60 accattttta gcactggagg caaagatcct ttgtcagcca atcacagttt gaaacctttg 120 ccctccgttc cagaggaaaa aaagcccagg aataaaatca tctctatatt ctccggcaca 180 gagaaaggaa gtaagaagaa agaaaaggaa cggccagaaa tttctcctcc atctgatttt 240 gagcatacca tccatgttgg ctttgatgcg gttacgggag aatttactgg catgccagaa 300 cagtgggctc gattattaca gacctccaat atcaccaaac tagagcaaaa gaagaatcct 360 caggctgtgc tggatgtctt aaagttctat gactccaaca cagtgaagca gaaatacctg 420 agctttactc ctactgagaa agatggcttc ccttctggaa cacccacact gagtgccaag 480 ggttcagaaa cagcagcagt agtagcagag gaagatgatg atgatgaaga ggctgctcct 540 cctgttattg ccccacgacc ggatcataca aaatcaattt atacacggtc tgtaattgac 600 cctattcctg caccagttgg tgattctaat gttgatagcg gtgccaagtc ttctgacaaa 660 cagaaaaaga agaccaaaat gacagatgaa gagattatgg aaaaattaag aactattgtg 720 agcataggtg accctaagaa aaaatacaca agatacgaaa aaattgggca aggggcttct 780 ggtacagttt tcactgctac tgatgtggca ttgggacagg aggttgctat caaacagatt 840 aatttacaga aacagccaaa gaaggaatta atcattaatg agattctggt gatgaaagaa 900 ttaaagaatc ccaacatagt taacttcttg gacagttacc tgatgggaga cgaattgttt 960 gtagtaatgg agtaccttgc cgggggatca cttactgatg ttgtaacaga aacctgcatg 1020 gatgaagcac agattgctgc tgtatgcaga gagtgtttac aggcattgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaacg tgcttttggg gatggaagga 1140 tcagttaaac ttactgactt tgggttctgt gcccagatca cccctgagca gagcaagaga 1200 agtaccatgg ttggaacgcc atactggatg gcaccagagg tggttacacg gaaagcttat 1260 ggccctaaag tggacatatg gtctctgggt atcatggcta ttgagatgat agaaggagag 1320 ccgccatacc tcaatgaaaa tcccttgagg gccttgtacc tgatagcaac taatggaact 1380 ccagaacttc agaatccaga gaagctttcc ccaatatttc gggatttctt aaaccgttgt 1440 ttggagatgg atgtggagaa aaggggttcg gccaaagaat tattacagca tcccttcctg 1500 aaactggcca aacctttgtc cagcttgaca ccactgatca tggcagctaa agaagcaatg 1560 aagagtaacc gttag 1575 SEQ ID NO: 56 Canis lupus familiaris (dog) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_849432)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR NKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPTEKDGF PSGTPTLSAK GSETAAVVAE EDDDDEEAAP 180 PVIAPRPDHT KSIYTRSVID PIPAPVGDSN VDSGAKSSDK QKKKTKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLMGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMIEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLIMAAKEAM KSNR 524 SEQ ID NO: 57 Bos taurus (cow) p21 (RAC1) activated kinase 2 (PAK2) cDNA (NM_001206727)

atgtctgata acggagaact ggaagacaag cctccggcgc ccccagtgcg aatgagcagt 60 actattttta gcactggagg caaagaccct ttatcagcca atcacagttt gaaacctttg 120 ccttccgttc cagaggaaaa aaagcccagg aataaaatca tctctatatt ttcaagcaca 180 gagaaaggaa gtaagaagaa agagaaggaa aggccagaaa tttctcctcc gtctgatttt 240 gagcatacca tccatgttgg ctttgatgct gttactggag aattcactgg catgccagaa 300 cagtgggctc gattactgca gacctccaat atcaccaaac tagagcaaaa gaagaatcct 360 caggcagtgc tggacgtctt gaagttctat gactctaata cagtgaagca gaaatatctg 420 agctttactc ctcctgagaa agatggcttc ccttctggaa caccagcact gaataccaag 480 ggatcggaaa catcagcagt agtaacagag gaagatgacg atgatgaaga ggctcttcct 540 cctgttattg ctccacgacc agatcataca aaatcaattt atacacgatc tgtaattgat 600 cctattcctg caccagttgg tgattctaat gttgatggtg gtgccaagac ttcagacaaa 660 cagaaaaaga aggccaaaat gacagatgaa gagattatgg agaaattaag aactattgta 720 agcataggtg accctaagaa aaaatacaca agatatgaaa aaattgggca aggggcttct 780 ggcacagttt tcactgctac agatgtggca ttgggacaag aggttgctat taagcagatt 840 aatttacaga aacagccaaa gaaggaattg atcattaatg agattctggt gatgaaagaa 900 ttaaagaatc ccaacatagt taatttcttg gacagttacc tggtgggaga tgaattgttt 960 gtggtcatgg agtacctggc cggaggatcc cttactgatg ttgtcacaga gacatgcatg 1020 gatgaagccc agatagctgc tgtgtgcaga gagtgtttac aggcattgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tgcttttggg catggaagga 1140 tctgttaaac ttactgactt tggtttctgt gcccagatca cccctgagca gagtaagcgg 1200 agtaccatgg ttggaacgcc atactggatg gcaccagagg tggttacacg gaaagcttat 1260 ggccccaaag tagacatctg gtctctgggt atcatggcta ttgaaatggt agaaggagag 1320 cctccatacc tcaatgaaaa tcctttgagg gccttgtacc tgatagcaac taatggaacc 1380 ccagaacttc agaatccaga gaagctttcc ccaatatttc gggatttctt aaatcgatgt 1440 ttggagatgg atgtggagaa aaggggttca gccagagaat tgttacagca tcccttcctg 1500 aaactggcca agccgttatc cagcttgaca ccactgatta tggcagctaa agaagcaatg 1560 aagagtaacc gttaa 1575 SEQ ID NO: 58 Bos taurus (cow) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (NP_001193656)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR NKIISIFSST 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNTK GSETSAVVTE EDDDDEEALP 180 PVIAPRPDHT KSIYTRSVID PIPAPVGDSN VDGGAKTSDK QKKKAKMTDE EIMEKLRTIV 240 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS ARELLQHPFL KLAKPLSSLT PLIMAAKEAM KSNR 524 SEQ ID NO: 59 Mus musculus p21 (RAC1) activated kinase 2 (PAK2) cDNA (NM_177326)

atgtctgata acggagagct agaagacaag cccccagcac ctccagttcg gatgagcagt 60 accattttta gcaccggagg aaaagatcct ttatcagcca atcacagttt gaaacctttg 120 ccttctgttc cagaggaaaa aaaacccagg aacaaaatca tctccatatt ctctggcaca 180 gaaaaaggaa gtaaaaagaa agaaaaagaa cggccagaga tttctccccc atctgatttt 240 gagcacacca tccatgttgg ctttgatgct gttacgggag agttcactgg catgccagaa 300 cagtgggcgc ggctgttgca gacctccaac attaccaaac tcgagcagaa gaagaaccct 360 caggcagtgc tggatgtctt gaagttctac gactccaaca ctgtgaaaca gaagtacctg 420 agtttcactc ctcctgagaa agatggcttc ccttctggaa caccagcact gaacaccaag 480 gggtcagaga catcagctgt agtgacagag gaagatgatg atgatgaaga cgctgctcct 540 cccgtcattg cccctcggcc agatcataca aaatcaattt acacacggtc tgtcatcgac 600 cccattcctg ctccagttgg tgattctaat gttgacagtg gtgccaagtc ttcagacaaa 660 cagaaaaaga aagccaagat gaccgatgaa gagattatgg agaaattaag aactattgtg 720 agcatagggg acccaaagaa aaaatacaca agatatgaaa aaattgggca aggggcttct 780 ggaacagttt ttactgccac tgatgtggcc ctggggcaag aggttgctat caagcagatt 840 aatttacaga aacaaccaaa gaaggaattg atcattaatg aaattctggt gatgaaagag 900 ttaaagaatc ccaacatagt taacttcttg gacagttacc tggtaggaga tgagttgttt 960 gtggtaatgg agtacctcgc tggtgggtcc ctcactgatg ttgtaacaga aacctgcatg 1020 gacgaagcgc agattgccgc cgtgtgcaga gagtgtttac aggcgttgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tgcttttggg aatggaaggc 1140 tcagttaaac ttactgactt cggcttctgt gcccagatca ctcctgaaca gagcaaacgc 1200 agtactatgg ttggaacacc gtactggatg gcaccagagg tggtgacacg gaaagcctat 1260 ggtcccaaag ttgacatatg gtctctgggc atcatggcta tcgagatggt tgaaggagag 1320 cctccatacc tcaacgaaaa tcctctgcgg gcattatacc tgatagctac aaatggaact 1380 cctgaacttc agaatccaga aaaactttcc ccaatatttc gggatttctt aaatcggtgt 1440 ttggaaatgg atgtggagaa aaggggttcg gccaaggaac tgttacagca tcctttcctg 1500 aaactggcca aaccattgtc tagcttgacg ccactgatcc tggcagctaa agaagcaatg 1560 aagagtaacc gctaa 1575 SEQ ID NO: 60 Mus musculus p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X1 (XM_006522072)

atgtctgata acggagagct agaagacaag cccccagcac ctccagttcg gatgagcagt 60 accattttta gcaccggagg aaaagatcct ttatcagcca atcacagttt gaaacctttg 120 ccttctgttc cagaggaaaa aaaacccagg aacaaaatca tctccatatt ctctggcaca 180 gaaaaaggaa gtaaaaagaa agaaaaagaa cggccagaga tttctccccc atctgatttt 240 gagcacacca tccatgttgg ctttgatgct gttacgggag agttcactgg catgccagaa 300 cagtgggcgc ggctgttgca gacctccaac attaccaaac tcgagcagaa gaagaaccct 360 caggcagtgc tggatgtctt gaagttctac gactccaaca ctgtgaaaca gaagtacctg 420 agtttcactc ctcctgagaa agatggcttc ccttctggaa caccagcact gaacaccaag 480 gggtcagaga catcagctgt agtgacagag gaagatgatg atgatgaaga cgctgctcct 540 cccgtcattg cccctcggcc agatcataca aaatcaattt acacacggtc tgtcatcgac 600 cccattcctg ctccagttgg tgattctaat gttgacagtg gtgccaagtc ttcagacaaa 660 cagaaaaaga aagccaagat gaccgatgaa gagattatgg agaaattaag aactattgtg 720 agcatagggg acccaaagaa aaaatacaca agatatgaaa aaattgggca aggggcttct 780 ggaacagttt ttactgccac tgatgtggcc ctggggcaag aggttgctat caagcagatt 840 aatttacaga aacaaccaaa gaaggaattg atcattaatg aaattctggt gatgaaagag 900 ttaaagaatc ccaacatagt taacttcttg gacagttacc tggtaggaga tgagttgttt 960 gtggtaatgg agtacctcgc tggtgggtcc ctcactgatg ttgtaacaga aacctgcatg 1020 gacgaagcgc agattgccgc cgtgtgcaga gagtgtttac aggcgttgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tgcttttggg aatggaaggc 1140 tcagttaaac ttactgactt cggcttctgt gcccagatca ctcctgaaca gagcaaacgc 1200 agtactatgg ttggaacacc gtactggatg gcaccagagg tggtgacacg gaaagcctat 1260 ggtcccaaag ttgacatatg gtctctgggc atcatggcta tcgagatggt tgaaggagag 1320 cctccatacc tcaacgaaaa tcctctgcgg gcattatacc tgatagctac aaatggaact 1380 cctgaacttc agaatccaga aaaactttcc ccaatatttc gggatttctt aaatcggtgt 1440 ttggaaatgg atgtggagaa aaggggttcg gccaaggaac tgttacagca tcctttcctg 1500 aaactggcca aaccattgtc tagcttgacg ccactgatcc tggcagctaa agaagcaatg 1560 aagagtaacc gctaacatcg tcaccgaggc ctcctattcc cttatccatt ttttaaaaga 1620 agtctttta 1629

SEQ ID NO: 61 Mus musculus p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (NP_796300)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR NKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNTK GSETSAVVTE EDDDDEDAAP 180 PVIAPRPDHT KSIYTRSVID PIPAPVGDSN VDSGAKSSDK QKKKAKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLILAAKEAM KSNR 524

SEQ ID NO: 62 Mus musculus p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence, isoform X1 (XP_006522135)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR NKIISIFSGT 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNTK GSETSAVVTE EDDDDEDAAP 180 PVIAPRPDHT KSIYTRSVID PIPAPVGDSN VDSGAKSSDK QKKKAKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLILAAKEAM KSNR 524 SEQ ID NO: 63 Rattus norvegicus (rat) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X1 (XM_003751066)

atgtctgata acggggagct agaggacaag cccccagcac ctccagtgcg gatgagcagc 60 accattttta gcactggagg aaaggatcct ttatcagcca atcacagttt gaagcctttg 120 ccttctgttc cagaggaaaa aaaaccgagg aacaaaatca tctccatatt ctcaagcaca 180 gaaaaaggaa gtaaaaagaa agaaaaagaa cggccagaga tttctccgcc gtctgatttt 240 gagcatacca tccatgttgg ctttgatgct gttacgggag agttcactgg catgccagag 300 cagtgggcac ggctgttgca gacctccaac attaccaaac tggagcagaa gaagaacccg 360 caggctgtgc tggatgtctt gaagttctac gactccaaca ctgtgaagca gaagtacctg 420 agcttcactc ctcctgagaa agatggcttt ccttctggaa caccagcact gaacaccaag 480 gggtcagaga catcagctgt ggtgacagag gaagacgatg acgatgaaga tgctgctcct 540 cccgtcattg cccctcggcc agatcataca aaatcaatct acacaaggtc tgtcatcgac 600 cctattcctg ctccagttgg tgactctaat gtcgacagtg gtgccaagtc ttcagacaaa 660 cagaaaaaga aagccaagat gaccgatgaa gagattatgg agaaattaag aactattgtg 720 agcataggtg accctaagaa aaaatacaca agatatgaaa aaatcgggca aggggcttct 780 ggtacagttt ttactgcaac tgatgtggcc ctggggcaag aggttgctat caagcagatt 840 aatttacaga aacaaccaaa gaaggaattg atcattaatg aaattctggt gatgaaagag 900 ttaaagaatc ccaacatagt taacttcttg gacagttacc tggtaggaga cgagttgttt 960 gtggtaatgg agtaccttgc tggtgggtcc ctcactgatg tcgtgacaga aacctgcatg 1020 gatgaagcgc agatcgcagc tgtgtgcaga gagtgtttac aggcgttgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tgcttttggg aatggaaggc 1140 tcagttaaac tcactgattt tggcttctgt gcccagatca cccctgaaca gagcaaacgc 1200 agtactatgg ttggaacacc atactggatg gcaccggagg tagtcacgcg gaaagcctat 1260 ggccccaaag ttgacatatg gtctctgggc atcatggcta tcgaaatggt ggaaggagag 1320 cctccatacc tcaatgaaaa tcctttacgg gcattatacc tgatagcaac gaatggaaca 1380 cctgagctcc agaatccaga aaaactttcc cccatatttc gggatttctt aaatcggtgt 1440 ttggaaatgg atgtggagaa gaggggttca gccaaagaac tattacagca tcctttcctg 1500 aaactggcca aaccattatc cagcttgacg cctctgatcc tggcagctaa agaagcaatg 1560 aagagtaacc gctaa 1575

SEQ ID NO: 64 Rattus norvegicus (rat) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X2 (XM_008768778)

atgtctgata acggggagct agaggacaag cccccagcac ctccagtgcg gatgagcagc 60 accattttta gcactggagg aaaggatcct ttatcagcca atcacagttt gaagcctttg 120 ccttctgttc cagaggaaaa aaaaccgagg aacaaaatca tctccatatt ctcaagcaca 180 gaaaaaggaa gtaaaaagaa agaaaaagaa cggccagaga tttctccgcc gtctgatttt 240 gagcatacca tccatgttgg ctttgatgct gttacgggag agttcactgg catgccagag 300 cagtgggcac ggctgttgca gacctccaac attaccaaac tggagcagaa gaagaacccg 360 caggctgtgc tggatgtctt gaagttctac gactccaaca ctgtgaagca gaagtacctg 420 agcttcactc ctcctgagaa agatggcttt ccttctggaa caccagcact gaacaccaag 480 gggtcagaga catcagctgt ggtgacagag gaagacgatg acgatgaaga tgctgctcct 540 cccgtcattg cccctcggcc agatcataca aaatcaatct acacaaggtc tgtcatcgac 600 cctattcctg ctccagttgg tgactctaat gtcgacagtg gtgccaagtc ttcagacaaa 660 cagaaaaaga aagccaagat gaccgatgaa gagattatgg agaaattaag aactattgtg 720 agcataggtg accctaagaa aaaatacaca agatatgaaa aaatcgggca aggggcttct 780 ggtacagttt ttactgcaac tgatgtggcc ctggggcaag aggttgctat caagcagatt 840 aatttacaga aacaaccaaa gaaggaattg atcattaatg aaattctggt gatgaaagag 900 ttaaagaatc ccaacatagt taacttcttg gacagttacc tggtaggaga cgagttgttt 960 gtggtaatgg agtaccttgc tggtgggtcc ctcactgatg tcgtgacaga aacctgcatg 1020 gatgaagcgc agatcgcagc tgtgtgcaga gagtgtttac aggcgttgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tgcttttggg aatggaaggc 1140 tcagttaaac tcactgattt tggcttctgt gcccagatca cccctgaaca gagcaaacgc 1200 agtactatgg ttggaacacc atactggatg gcaccggagg tagtcacgcg gaaagcctat 1260 ggccccaaag ttgacatatg gtctctgggc atcatggcta tcgaaatggt ggaaggagag 1320 cctccatacc tcaatgaaaa tcctttacgg gcattatacc tgatagcaac gaatggaaca 1380 cctgagctcc agaatccaga aaaactttcc cccatatttc gggatttctt aaatcggtgt 1440 ttggaaatgg atgtggagaa gaggggttca gccaaagaac tattacagca tcctttcctg 1500 aaactggcca aaccattatc cagcttgacg cctctgatcc tggcagctaa agaagcaatg 1560 aagagtaacc gctaa 1575 SEQ ID NO: 65 Rattus norvegicus (rat) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X3 (XM_006248473)

atgtctgata acggggagct agaggacaag cccccagcac ctccagtgcg gatgagcagc 60 accattttta gcactggagg aaaggatcct ttatcagcca atcacagttt gaagcctttg 120 ccttctgttc cagaggaaaa aaaaccgagg aacaaaatca tctccatatt ctcaagcaca 180 gaaaaaggaa gtaaaaagaa agaaaaagaa cggccagaga tttctccgcc gtctgatttt 240 gagcatacca tccatgttgg ctttgatgct gttacgggag agttcactgg catgccagag 300 cagtgggcac ggctgttgca gacctccaac attaccaaac tggagcagaa gaagaacccg 360 caggctgtgc tggatgtctt gaagttctac gactccaaca ctgtgaagca gaagtacctg 420 agcttcactc ctcctgagaa agatggcttt ccttctggaa caccagcact gaacaccaag 480 gggtcagaga catcagctgt ggtgacagag gaagacgatg acgatgaaga tgctgctcct 540 cccgtcattg cccctcggcc agatcataca aaatcaatct acacaaggtc tgtcatcgac 600 cctattcctg ctccagttgg tgactctaat gtcgacagtg gtgccaagtc ttcagacaaa 660 cagaaaaaga aagccaagat gaccgatgaa gagattatgg agaaattaag aactattgtg 720 agcataggtg accctaagaa aaaatacaca agatatgaaa aaatcgggca aggggcttct 780 ggtacagttt ttactgcaac tgatgtggcc ctggggcaag aggttgctat caagcagatt 840 aatttacaga aacaaccaaa gaaggaattg atcattaatg aaattctggt gatgaaagag 900 ttaaagaatc ccaacatagt taacttcttg gacagttacc tggtaggaga cgagttgttt 960 gtggtaatgg agtaccttgc tggtgggtcc ctcactgatg tcgtgacaga aacctgcatg 1020 gatgaagcgc agatcgcagc tgtgtgcaga gagtgtttac aggcgttgga gtttttacat 1080 gctaatcaag tgatccacag agacatcaaa agtgacaatg tgcttttggg aatggaaggc 1140 tcagttaaac tcactgattt tggcttctgt gcccagatca cccctgaaca gagcaaacgc 1200 agtactatgg ttggaacacc atactggatg gcaccggagg tagtcacgcg gaaagcctat 1260 ggccccaaag ttgacatatg gtctctgggc atcatggcta tcgaaatggt ggaaggagag 1320 cctccatacc tcaatgaaaa tcctttacgg gcattatacc tgatagcaac gaatggaaca 1380 cctgagctcc agaatccaga aaaactttcc cccatatttc gggatttctt aaatcggtgt 1440 ttggaaatgg atgtggagaa gaggggttca gccaaagaac tattacagca tcctttcctg 1500 aaactggcca aaccattatc cagcttgacg cctctgatcc tggcagctaa agaagcaatg 1560 aagagtaacc gctaa 1575 SEQ ID NO: 66 Rattus norvegicus (rat) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_008767000)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR NKIISIFSST 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNTK GSETSAVVTE EDDDDEDAAP 180 PVIAPRPDHT KSIYTRSVID PIPAPVGDSN VDSGAKSSDK QKKKAKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLILAAKEAM KSNR 524 SEQ ID NO: 67 Rattus norvegicus (rat) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_006248535)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR NKIISIFSST 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNTK GSETSAVVTE EDDDDEDAAP 180 PVIAPRPDHT KSIYTRSVID PIPAPVGDSN VDSGAKSSDK QKKKAKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLILAAKEAM KSNR 524 SEQ ID NO: 68 Rattus norvegicus (rat) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_003751114)

MSDNGELEDK PPAPPVRMSS TIFSTGGKDP LSANHSLKPL PSVPEEKKPR NKIISIFSST 60 EKGSKKKEKE RPEISPPSDF EHTIHVGFDA VTGEFTGMPE QWARLLQTSN ITKLEQKKNP 120 QAVLDVLKFY DSNTVKQKYL SFTPPEKDGF PSGTPALNTK GSETSAVVTE EDDDDEDAAP 180 PVIAPRPDHT KSIYTRSVID PIPAPVGDSN VDSGAKSSDK QKKKAKMTDE EIMEKLRTIV 240 SIGDPKKKYT RYEKIGQGAS GTVFTATDVA LGQEVAIKQI NLQKQPKKEL IINEILVMKE 300 LKNPNIVNFL DSYLVGDELF VVMEYLAGGS LTDVVTETCM DEAQIAAVCR ECLQALEFLH 360 ANQVIHRDIK SDNVLLGMEG SVKLTDFGFC AQITPEQSKR STMVGTPYWM APEVVTRKAY 420 GPKVDIWSLG IMAIEMVEGE PPYLNENPLR ALYLIATNGT PELQNPEKLS PIFRDFLNRC 480 LEMDVEKRGS AKELLQHPFL KLAKPLSSLT PLILAAKEAM KSNR 524 SEQ ID NO: 69 Gallus gallus (chicken) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X1 (XM_422671)

atgtctgaca acggagaact ggaagacaag ccaccagctc ctcctgtgcg gatgagcagt 60 tatgggggaa aggacccgtt gtctgccaac cacagcttga aacctctgcc ctccgtacca 120 gaagagagaa aacctaggaa taaaatcatc tccatattct ctagcactga aaaaggaagc 180 aagaagaagg aaaaggaacg accagaaatc tccccgccgt cagactttga gcatactatc 240 catgttggct ttgatgctgt cactggagag ttcactggaa tgccagagca atgggctcgg 300 ttgctacaga cctcaaacat caccaagtta gaacagaaga aaaaccctca ggcggtacta 360 gatgtgctga aattctacga ctccaaagac acagcaaaac agaaatatct gagcttttct 420 gctccagaaa aagatggctt cccttcagga acaccaacga ccaatgccaa aggttcagag 480 ccatcaacag ctgtggcaga tgacgatgac gatgatgaag aagcacctcc tcctattatt 540 gctccgcggc cagatcacac gaaatcgatt tatacacggt ctgtaattga ccccatccct 600 gcaccagctg gtgacgcttc tgttgatggt gggacaaagt caggtgataa gcagaaaaag 660 aagaccaaaa tgtcagatga agagatcatg gaaaaactac gtaccattgt gagcataggt 720 gatcccaaga aaaaatacac cagatatgaa aaaattgggc agggggcttc aggtacagtt 780 ttcacagcta ttgacgtggc tactgggcag gaggttgcta tcaaacagat aaacctgcag 840 aaacagccca agaaggagtt gattattaat gagatcttgg taatgaagga actaaagaac 900 cccaacatag tcaacttcct ggacagttac ctcgtaggag atgaactgtt tgtggtgatg 960 gagtatctag ctggaggctc actaacagat gtggttacgg aaacatgtat ggatgaagca 1020 cagattgctg ctgtttgcag ggagtgcttg caagcgcttg agttcctcca tgccaaccag 1080 gtcatccaca gagatataaa gagcgacaac gtgctgctag gaatggatgg atcagttaaa 1140 ctaaccgact ttggtttctg tgctcagatc accccagagc agagcaagcg cagcactatg 1200 gttggaacac cttactggat ggctcctgaa gtcgtcacac ggaaagccta tggccctaaa 1260 gtggatatct ggtccctagg catcatggct attgagatgg tggaaggaga acccccgtac 1320 ctcaatgaaa accccctgag ggcgttatat ttgatagcaa ctaacggcac accagagctt 1380 cagaaccctg agaaactgtc cccaatattc cgggatttct taaaccgatg tttggagatg 1440 gatgttgaga aaagaggatc agccaaagaa ttgctacagc atcccttctt gaaattggcc 1500 aaacctctgt ctagcttgac gccactgatc ctggcagcca aagaagcaat gaagagtaac 1560 cgctaa 1566 SEQ ID NO: 70 Gallus gallus (chicken) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X2 (XM_004936995)

atgtctgaca acggagaact ggaagacaag ccaccagctc ctcctgtgcg gatgagcagt 60 tatgggggaa aggacccgtt gtctgccaac cacagcttga aacctctgcc ctccgtacca 120 gaagagagaa aacctaggaa taaaatcatc tccatattct ctagcactga aaaaggaagc 180 aagaagaagg aaaaggaacg accagaaatc tccccgccgt cagactttga gcatactatc 240 catgttggct ttgatgctgt cactggagag ttcactggaa tgccagagca atgggctcgg 300 tt t t t tt t t t 360 gatgtgctga aattctacga ctccaaagac acagcaaaac agaaatatct gagcttttct 420 gctccagaaa aagatggctt cccttcagga acaccaacga ccaatgccaa aggttcagag 480 ccatcaacag ctgtggcaga tgacgatgac gatgatgaag aagcacctcc tcctattatt 540 gctccgcggc cagatcacac gaaatcgatt tatacacggt ctgtaattga ccccatccct 600 gcaccagctg gtgacgcttc tgttgatggt gggacaaagt caggtgataa gcagaaaaag 660 aagaccaaaa tgtcagatga agagatcatg gaaaaactac gtaccattgt gagcataggt 720 gatcccaaga aaaaatacac cagatatgaa aaaattgggc agggggcttc aggtacagtt 780 ttcacagcta ttgacgtggc tactgggcag gaggttgcta tcaaacagat aaacctgcag 840 aaacagccca agaaggagtt gattattaat gagatcttgg taatgaagga actaaagaac 900 cccaacatag tcaacttcct ggacagttac ctcgtaggag atgaactgtt tgtggtgatg 960 gagtatctag ctggaggctc actaacagat gtggttacgg aaacatgtat ggatgaagca 1020 cagattgctg ctgtttgcag ggagtgcttg caagcgcttg agttcctcca tgccaaccag 1080 gtcatccaca gagatataaa gagcgacaac gtgctgctag gaatggatgg atcagttaaa 1140 ctaaccgact ttggtttctg tgctcagatc accccagagc agagcaagcg cagcactatg 1200 gttggaacac cttactggat ggctcctgaa gtcgtcacac ggaaagccta tggccctaaa 1260 gtggatatct ggtccctagg catcatggct attgagatgg tggaaggaga acccccgtac 1320 ctcaatgaaa accccctgag ggcgttatat ttgatagcaa ctaacggcac accagagctt 1380 cagaaccctg agaaactgtc cccaatattc cgggatttct taaaccgatg tttggagatg 1440 gatgttgaga aaagaggatc agccaaagaa ttgctacagc atcccttctt gaaattggcc 1500 aaacctctgt ctagcttgac gccactgatc ctggcagcca aagaagcaat gaagagtaac 1560 cgctaa 1566

SEQ ID NO: 71 Gallus gallus (chicken) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_422671)

MSDNGELEDK PPAPPVRMSS YGGKDPLSAN HSLKPLPSVP EERKPRNKII SIFSSTEKGS 60 KKKEKERPEI SPPSDFEHTI HVGFDAVTGE FTGMPEQWAR LLQTSNITKL EQKKNPQAVL 120 DVLKFYDSKD TAKQKYLSFS APEKDGFPSG TPTTNAKGSE PSTAVADDDD DDEEAPPPII 180 APRPDHTKSI YTRSVIDPIP APAGDASVDG GTKSGDKQKK KTKMSDEEIM EKLRTIVSIG 240 DPKKKYTRYE KIGQGASGTV FTAIDVATGQ EVAIKQINLQ KQPKKELIIN EILVMKELKN 300 PNIVNFLDSY LVGDELFVVM EYLAGGSLTD VVTETCMDEA QIAAVCRECL QALEFLHANQ 360 VIHRDIKSDN VLLGMDGSVK LTDFGFCAQI TPEQSKRSTM VGTPYWMAPE VVTRKAYGPK 420 VDIWSLGIMA IEMVEGEPPY LNENPLRALY LIATNGTPEL QNPEKLSPIF RDFLNRCLEM 480 DVEKRGSAKE LLQHPFLKLA KPLSSLTPLI LAAKEAMKSN R 521 SEQ ID NO: 72 Gallus gallus (chicken) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_004937052)

MSDNGELEDK PPAPPVRMSS YGGKDPLSAN HSLKPLPSVP EERKPRNKII SIFSSTEKGS 60 KKKEKERPEI SPPSDFEHTI HVGFDAVTGE FTGMPEQWAR LLQTSNITKL EQKKNPQAVL 120 DVLKFYDSKD TAKQKYLSFS APEKDGFPSG TPTTNAKGSE PSTAVADDDD DDEEAPPPII 180 APRPDHTKSI YTRSVIDPIP APAGDASVDG GTKSGDKQKK KTKMSDEEIM EKLRTIVSIG 240 DPKKKYTRYE KIGQGASGTV FTAIDVATGQ EVAIKQINLQ KQPKKELIIN EILVMKELKN 300 PNIVNFLDSY LVGDELFVVM EYLAGGSLTD VVTETCMDEA QIAAVCRECL QALEFLHANQ 360 VIHRDIKSDN VLLGMDGSVK LTDFGFCAQI TPEQSKRSTM VGTPYWMAPE VVTRKAYGPK 420 VDIWSLGIMA IEMVEGEPPY LNENPLRALY LIATNGTPEL QNPEKLSPIF RDFLNRCLEM 480 DVEKRGSAKE LLQHPFLKLA KPLSSLTPLI LAAKEAMKSN R 521 SEQ ID NO: 73 Xenopus tropicalis (frog) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X1 (XM_002935099)

atgtctgata acggggagct tgaagataag ccgccagctc ctccagctcg gattagcagc 60 acagggacaa aagatcctct gaccagcaac cacagtcata aacctttacc tttaatccct 120 gaaaaaccca ggaataaaat tatttcaatg ttttctggca cagaaaaagg aagcagaaaa 180 aaagaaaggg aaaggccaga gatttcacca ccgtcagatt ttgagcacac tattcatgtg 240 ggctttgatg ctgtcactgg agaattcact ggaatgccag agcaatgggc acggttactg 300 cagacctcaa acattactaa actcgaacag aagaaaaatc cacaagctgt cctggatgtt 360 ttaaagtttt atgactccaa acacacagac aagcagaaat atctaagctt ctctgcacca 420 gataaagatg ggcttccctc tggtgtttcc tctgcaccta atgcaaaagg ctctgaacct 480 tcaacagcag caacagatga tgatagcgat gatgataagg ctcctcctcc tgttattgct 540 ccaaggccag aacacaccaa atcaatgtat acacggtctg taattgaccc aatacctcca 600 ccccctggag attcagacag tgctgcaaag gctggagacc ggcagaaaaa gaaaacaaag 660 atgagcgatg aagagattat ggaaaaactt agaactatag taagcatagg agaccccaag 720 aaaaaatata ctagatatga aaaaattgga caaggggcct ctggaactgt atttactgct 780 attgatgtag ctaccggaca ggaggttgca atcaaacaga taaatcttca gaagcagccc 840 aagaaagaac tgataatcaa tgagattcta gtgatgaaag aattgaagaa ccccaatata 900 gctggaggat cccttacaga cgtagtcaca gaaacctgta tggatgaggc acagatagca 1020 gctgtctgca gagagtgtct gcaagctttg gaattcctac atgcgaacca ggtcattcac 1080 agagacataa agagtgacaa tgttctcctt ggaatggatg gttctgtcaa actgaccgac 1140 tttggcttct gtgcacaaat taccccagaa cagagcaagc gaagcaccat ggtgggaaca 1200 ccatactgga tggcaccaga agtggttaca aggaaagcat atggccccaa ggtggatatc 1260 tggtcacttg gaattatggc tattgaaatg gtggaagggg aaccacctta tctcaacgaa 1320 aatcctttaa gggctttgta tttgattgct actaatggaa ctccggaact tcagaaacct 1380 gaaaaacttt caccgatatt ccgggatttc ttaaaccgct cacttgagat ggatgtagaa 1440 aagagagggt ccgctagaga gctcttacag cacccattcc tgaaactcgc aaaaccactg 1500 tccagcctca caccgctaat cctggctgcc aaagaagcga tgaagggaaa ccgctaa 1557

SEQ ID NO: 74 Xenopus tropicalis (frog) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X2 (XM_012971043)

atgtctgata acggggagct tgaagataag ccgccagctc ctccagctcg gattagcagc 60 acagggacaa aagatcctct gaccagcaac cacagtcata aacctttacc tttaatccct 120 gaaaaaccca ggaataaaat tatttcaatg ttttctggca cagaaaaagg aagcagaaaa 180 aaagaaaggg aaaggccaga gatttcacca ccgtcagatt ttgagcacac tattcatgtg 240 ggctttgatg ctgtcactgg agaattcact ggaatgccag agcaatgggc acggttactg 300 cagacctcaa acattactaa actcgaacag aagaaaaatc cacaagctgt cctggatgtt 360 ttaaagtttt atgactccaa acacacagac aagcagaaat atctaagctt ctctgcacca 420 gataaagatg ggcttccctc tggtgtttcc tctgcaccta atgcaaaagg ctctgaacct 480 tcaacagcag caacagatga tgatagcgat gatgataagg ctcctcctcc tgttattgct 540 ccaaggccag aacacaccaa atcaatgtat acacggtctg taattgaccc aatacctcca 600 ccccctggag attcagacag tgctgcaaag gctggagacc ggcagaaaaa gaaaacaaag 660 atgagcgatg aagagattat ggaaaaactt agaactatag taagcatagg agaccccaag 720 aaaaaatata ctagatatga aaaaattgga caaggggcct ctggaactgt atttactgct 780 attgatgtag ctaccggaca ggaggttgca atcaaacaga taaatcttca gaagcagccc 840 aagaaagaac tgataatcaa tgagattcta gtgatgaaag aattgaagaa ccccaatata 900 gtaaatttcc tggacagttt cttggtgagt gacgagctgt atgttgtaat ggagtatttg 960 gctggaggat cccttacaga cgtagtcaca gaaacctgta tggatgaggc acagatagca 1020 gctgtctgca gagagtgtct gcaagctttg gaattcctac atgcgaacca ggtcattcac 1080 agagacataa agagtgacaa tgttctcctt ggaatggatg gttctgtcaa actgaccgac 1140 tttggcttct gtgcacaaat taccccagaa cagagcaagc gaagcaccat ggtgggaaca 1200 ccatactgga tggcaccaga agtggttaca aggaaagcat atggccccaa ggtggatatc 1260 tggtcacttg gaattatggc tattgaaatg gtggaagggg aaccacctta tctcaacgaa 1320 aatcctttaa gggctttgta tttgattgct actaatggaa ctccggaact tcagaaacct 1380 gaaaaacttt caccgatatt ccgggatttc ttaaaccgct cacttgagat ggatgtagaa 1440 aagagagggt ccgctagaga gctcttacag cacccattcc tgaaactcgc aaaaccactg 1500 tccagcctca caccgctaat cctggctgcc aaagaagcga tgaagggaaa ccgctaa 1557

SEQ ID NO: 75 Xenopus tropicalis (frog) p21 (RAC1) activated kinase 2 (PAK2) cDNA, transcript variant X3 (XM_012971044)

atgtctgata acggggagct tgaagataag ccgccagctc ctccagctcg gattagcagc 60 acagggacaa aagatcctct gaccagcaac cacagtcata aacctttacc tttaatccct 120 gaaaaaccca ggaataaaat tatttcaatg ttttctggca cagaaaaagg aagcagaaaa 180 aaagaaaggg aaaggccaga gatttcacca ccgtcagatt ttgagcacac tattcatgtg 240 ggctttgatg ctgtcactgg agaattcact ggaatgccag agcaatgggc acggttactg 300 cagacctcaa acattactaa actcgaacag aagaaaaatc cacaagctgt cctggatgtt 360 ttaaagtttt atgactccaa acacacagac aagcagaaat atctaagctt ctctgcacca 420 gataaagatg ggcttccctc tggtgtttcc tctgcaccta atgcaaaagg ctctgaacct 480 tcaacagcag caacagatga tgatagcgat gatgataagg ctcctcctcc tgttattgct 540 ccaaggccag aacacaccaa atcaatgtat acacggtctg taattgaccc aatacctcca 600 ccccctggag attcagacag tgctgcaaag gctggagacc ggcagaaaaa gaaaacaaag 660 atgagcgatg aagagattat ggaaaaactt agaactatag taagcatagg agaccccaag 720 aaaaaatata ctagatatga aaaaattgga caaggggcct ctggaactgt atttactgct 780 attgatgtag ctaccggaca ggaggttgca atcaaacaga taaatcttca gaagcagccc 840 aagaaagaac tgataatcaa tgagattcta gtgatgaaag aattgaagaa ccccaatata 900 gtaaatttcc tggacagttt cttggtgagt gacgagctgt atgttgtaat ggagtatttg 960 gctggaggat cccttacaga cgtagtcaca gaaacctgta tggatgaggc acagatagca 1020 gctgtctgca gagagtgtct gcaagctttg gaattcctac atgcgaacca ggtcattcac 1080 agagacataa agagtgacaa tgttctcctt ggaatggatg gttctgtcaa actgaccgac 1140 tttggcttct gtgcacaaat taccccagaa cagagcaagc gaagcaccat ggtgggaaca 1200 ccatactgga tggcaccaga agtggttaca aggaaagcat atggccccaa ggtggatatc 1260 tggtcacttg gaattatggc tattgaaatg gtggaagggg aaccacctta tctcaacgaa 1320 aatcctttaa gggctttgta tttgattgct actaatggaa ctccggaact tcagaaacct 1380 gaaaaacttt caccgatatt ccgggatttc ttaaaccgct cacttgagat ggatgtagaa 1440 aagagagggt ccgctagaga gctcttacag cacccattcc tgaaactcgc aaaaccactg 1500 tccagcctca caccgctaat cctggctgcc aaagaagcga tgaagggaaa ccgctaa 1557

SEQ ID NO: 76 Xenopus tropicalis (frog) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_012826498)

MSDNGELEDK PPAPPARISS TGTKDPLTSN HSHKPLPLIP EKPRNKIISM FSGTEKGSRK 60 KERERPEISP PSDFEHTIHV GFDAVTGEFT GMPEQWARLL QTSNITKLEQ KKNPQAVLDV 120 LKFYDSKHTD KQKYLSFSAP DKDGLPSGVS SAPNAKGSEP STAATDDDSD DDKAPPPVIA 180 PRPEHTKSMY TRSVIDPIPP PPGDSDSAAK AGDRQKKKTK MSDEEIMEKL RTIVSIGDPK 240 KKYTRYEKIG QGASGTVFTA IDVATGQEVA IKQINLQKQP KKELIINEIL VMKELKNPNI 300 VNFLDSFLVS DELYVVMEYL AGGSLTDVVT ETCMDEAQIA AVCRECLQAL EFLHANQVIH 360 RDIKSDNVLL GMDGSVKLTD FGFCAQITPE QSKRSTMVGT PYWMAPEVVT RKAYGPKVDI 420 WSLGIMAIEM VEGEPPYLNE NPLRALYLIA TNGTPELQKP EKLSPIFRDF LNRSLEMDVE 480 KRGSARELLQ HPFLKLAKPL SSLTPLILAA KEAMKGNR 518 SEQ ID NO: 77 Xenopus tropicalis (frog) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_012826497)

MSDNGELEDK PPAPPARISS TGTKDPLTSN HSHKPLPLIP EKPRNKIISM FSGTEKGSRK 60 KERERPEISP PSDFEHTIHV GFDAVTGEFT GMPEQWARLL QTSNITKLEQ KKNPQAVLDV 120 LKFYDSKHTD KQKYLSFSAP DKDGLPSGVS SAPNAKGSEP STAATDDDSD DDKAPPPVIA 180 PRPEHTKSMY TRSVIDPIPP PPGDSDSAAK AGDRQKKKTK MSDEEIMEKL RTIVSIGDPK 240 KKYTRYEKIG QGASGTVFTA IDVATGQEVA IKQINLQKQP KKELIINEIL VMKELKNPNI 300 VNFLDSFLVS DELYVVMEYL AGGSLTDVVT ETCMDEAQIA AVCRECLQAL EFLHANQVIH 360 RDIKSDNVLL GMDGSVKLTD FGFCAQITPE QSKRSTMVGT PYWMAPEVVT RKAYGPKVDI 420 WSLGIMAIEM VEGEPPYLNE NPLRALYLIA TNGTPELQKP EKLSPIFRDF LNRSLEMDVE 480 KRGSARELLQ HPFLKLAKPL SSLTPLILAA KEAMKGNR 518 SEQ ID NO: 78 Xenopus tropicalis (frog) p21 (RAC1) activated kinase 2 (PAK2) amino acid sequence (XP_002935145)

MSDNGELEDK PPAPPARISS TGTKDPLTSN HSHKPLPLIP EKPRNKIISM FSGTEKGSRK 60 KERERPEISP PSDFEHTIHV GFDAVTGEFT GMPEQWARLL QTSNITKLEQ KKNPQAVLDV 120 LKFYDSKHTD KQKYLSFSAP DKDGLPSGVS SAPNAKGSEP STAATDDDSD DDKAPPPVIA 180 PRPEHTKSMY TRSVIDPIPP PPGDSDSAAK AGDRQKKKTK MSDEEIMEKL RTIVSIGDPK 240 KKYTRYEKIG QGASGTVFTA IDVATGQEVA IKQINLQKQP KKELIINEIL VMKELKNPNI 300 VNFLDSFLVS DELYVVMEYL AGGSLTDVVT ETCMDEAQIA AVCRECLQAL EFLHANQVIH 360 RDIKSDNVLL GMDGSVKLTD FGFCAQITPE QSKRSTMVGT PYWMAPEVVT RKAYGPKVDI 420 WSLGIMAIEM VEGEPPYLNE NPLRALYLIA TNGTPELQKP EKLSPIFRDF LNRSLEMDVE 480 KRGSARELLQ HPFLKLAKPL SSLTPLILAA KEAMKGNR 518

SEQ ID NO: 79 Homo sapiens CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant I (NM_005206)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggag gttgagtcgg 60 caggaggcgg tggcgctgct gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctcagaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgccg gtgccaccgt cgcccgccca gcctccgccc 240 ggggtgagcc cctccagact ccgaatagga gatcaagagt ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacgt tgatagaacc agtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaggagg cggagtatgt gcgagccctc 420 tttgacttta atgggaatga tgaggaagat cttcccttta agaaaggaga catcttgaga 480 atccgggaca agcctgaaga gcagtggtgg aatgcggagg acagcgaagg caagagaggg 540 atgattccag tcccttacgt cgagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggtc ggtga 615

SEQ ID NO: 80 Homo sapiens CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant II (NM_016823)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggag gttgagtcgg 60 caggaggcgg tggcgctgct gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctcagaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgccg gtgccaccgt cgcccgccca gcctccgccc 240 ggggtgagcc cctccagact ccgaatagga gatcaagagt ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacgt tgatagaacc agtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaggagg cggagtatgt gcgagccctc 420 tttgacttta atgggaatga tgaggaagat cttcccttta agaaaggaga catcttgaga 480 atccgggaca agcctgaaga gcagtggtgg aatgcggagg acagcgaagg caagagaggg 540 atgattccag tcccttacgt cgagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggta accaggaggg ttcccaccca cagccactgg gtgggccgga gcctgggccc 660 tatgcccaac ccagcgtcaa cactccgctc cctaacctcc agaatgggcc catatatgcc 720 agggttatcc agaagcgagt ccccaatgcc tacgacaaga cagccttggc tttggaggtc 780 ggtgagctgg taaaggttac gaagattaat gtgagtggtc agtgggaagg ggagtgtaat 840 ggcaaacgag gtcacttccc attcacacat gtccgtctgc tggatcaaca gaatcccgat 900 gaggacttca gctga 915 SEQ ID NO: 81 Homo sapiens CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform A (NP_058431)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGNQEGSHP QPLGGPEPGP YAQPSVNTPL PNLQNGPIYA 240 RVIQKRVPNA YDKTALALEV GELVKVTKIN VSGQWEGECN GKRGHFPFTH VRLLDQQNPD 300 EDFS 304 SEQ ID NO: 82 Homo sapiens CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform B (NP_005197)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGR 204 SEQ ID NO: 83 Pan troglodytes (chimpanzee) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X1 (XM_016931122)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggcg gttgagtcgg 60 caggaggcgg tggcgctgct gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctcagaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgccg gtgccaccgt cgcccgctca gcctccgccc 240 ggggtgagcc cctccagact ccgaatagga gatcaagagt ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacgt tgatagaacc agtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaggagg cggagtatgt gcgagccctc 420 tttgacttta atgggaatga tgaggaagat cttcccttta agaaaggaga catcttgaga 480 atccgggaca agcctgaaga gcagtggtgg aatgcggagg acagcgaagg caagagaggg 540 atgattccag tcccttacgt cgagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggta accaggaggg ttcccaccca cagccactgg gtgggccgga gcctgggccc 660 tatgcccaac ccagcgtcaa cactccgctc cctaacctcc agaatgggcc catatatgcc 720 agggttatcc agaagcgagt ccccaatgcc tacgacaaga cagccttggc tttggaggtc 780 ggtgagctgg taaaggttac gaagattaat gtgagtggtc agtgggaagg ggagtgtaat 840 ggcaaacgag gtcacttccc attcacacat gtccgtctgc tggatcaaca gaatcccgat 900 gaggacttca gctga 915 SEQ ID NO: 84 Pan troglodytes (chimpanzee) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X2 (XM_016931123)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggcg gttgagtcgg 60 caggaggcgg tggcgctgct gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctcagaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgccg gtgccaccgt cgcccgctca gcctccgccc 240 ggggtgagcc cctccagact ccgaatagga gatcaagagt ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacgt tgatagaacc agtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaggagg cggagtatgt gcgagccctc 420 tttgacttta atgggaatga tgaggaagat cttcccttta agaaaggaga catcttgaga 480 atccgggaca agcctgaaga gcagtggtgg aatgcggagg acagcgaagg caagagaggg 540 atgattccag tcccttacgt cgagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggtc ggtga 615 SEQ ID NO: 85 Pan troglodytes (chimpanzee) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X1 (XP_016786611)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGNQEGSHP QPLGGPEPGP YAQPSVNTPL PNLQNGPIYA 240 RVIQKRVPNA YDKTALALEV GELVKVTKIN VSGQWEGECN GKRGHFPFTH VRLLDQQNPD 300 EDFS 304 SEQ ID NO: 86 Pan troglodytes (chimpanzee) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X2 (XP_016786612)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGR 204 SEQ ID NO: 87 Macaca mulatta (Rhesus macaque) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X1 (XM_002808109)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggcg gttgagtcgg 60 caggaggcgg tggcgctgct gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctcagaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgcca gtgccgccgt cgcccgccca acctccgccg 240 ggggtgagcc cctccagact ccgaatagga gatcaagagt ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacgt tgatagaacc ggtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaggagg cggagtatgt gcgagccctc 420 tttgacttta atgggaatga tgaggaagat cttcccttta agaaaggaga catcttgaga 480 atccgggaca agcctgaaga gcagtggtgg aatgcggagg acagcgaagg caagagaggg 540 atgattccag tcccttacgt cgagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggta accaggaggg ttcccaccca cagccactgg gtgggccgga gcctgggccc 660 tatgcccaac ccagcgtcaa cactccgctc cctaacctcc agaatgggcc catatatgcc 720 agggttatcc agaagcgagt ccccaatgcc tacgacaaga cagccttggc tttggaggtc 780 ggtgagctgg taaaggttac gaagattaat gtgagtggtc agtgggaagg ggagtgtaat 840 ggcaaacgag gtcacttccc attcacacat gtccgtctgc tggatcaaca gaatcccgat 900 gaggacttca gctga 915 SEQ ID NO: 88 Macaca mulatta (Rhesus macaque) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X2 (XM_015118183)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggcg gttgagtcgg 60 caggaggcgg tggcgctgct gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctcagaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgcca gtgccgccgt cgcccgccca acctccgccg 240 ggggtgagcc cctccagact ccgaatagga gatcaagagt ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacgt tgatagaacc ggtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaggagg cggagtatgt gcgagccctc 420 tttgacttta atgggaatga tgaggaagat cttcccttta agaaaggaga catcttgaga 480 atccgggaca agcctgaaga gcagtggtgg aatgcggagg acagcgaagg caagagaggg 540 atgattccag tcccttacgt cgagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggtc ggtga 615 SEQ ID NO: 89 Macaca mulatta (Rhesus macaque) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X1 (XP_002808155)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGNQEGSHP QPLGGPEPGP YAQPSVNTPL PNLQNGPIYA 240 RVIQKRVPNA YDKTALALEV GELVKVTKIN VSGQWEGECN GKRGHFPFTH VRLLDQQNPD 300 EDFS 304 SEQ ID NO: 90 Macaca mulatta (Rhesus macaque) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X2 (XP_014973669)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGR 204 SEQ ID NO: 91 Canis lupus familiaris (dog) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X1 (XM_003435202)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggcg gttgagccgg 60 caggaggcgg tggcgctgtt gcagggccag cggcacgggg tgtttctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctcggaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgtct gtgccaccgt cgcccgccca gcctccgccc 240 ggggtgagcc cctccagact ccgaatagga gatcaagagt ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ttatttggac actacaacat tgatagaacc agtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaggagg cagagtatgt gcgagccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgagata agcctgaaga gcagtggtgg aatgcagagg acagcgaagg caagaggggg 540 atgattccag tcccttacgt cgagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggta accaggaggg ttcccaccca cagccactgg gtgggccgga gcctgggccc 660 tatgcccaac ccagcgtcaa cactccgctc cctaacctcc agaatgggcc catttatgcc 720 agggtaatcc agaagcgagt ccctaatgcc tacgacaaga cagccttggc tttggaggtc 780 ggtgagctgg taaaggttac gaagattaat gtgagtggtc agtgggaagg ggaatgtaat 840 ggcaaacgag gtcacttccc attcacacat gtccgtctgc tggatcaaca gaatcctgat 900 gaggacttca gctga 915 SEQ ID NO: 92 Canis lupus familiaris (dog) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X2 (XM_003435203)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggcg gttgagccgg 60 caggaggcgg tggcgctgtt gcagggccag cggcacgggg tgtttctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctcggaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgtct gtgccaccgt cgcccgccca gcctccgccc 240 ggggtgagcc cctccagact ccgaatagga gatcaagagt ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ttatttggac actacaacat tgatagaacc agtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaggagg cagagtatgt gcgagccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgagata agcctgaaga gcagtggtgg aatgcagagg acagcgaagg caagaggggg 540 atgattccag tcccttacgt cgagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggtc ggtga 615 SEQ ID NO: 93 Canis lupus familiaris (dog) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X1 (XP_003435250)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPS VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGNQEGSHP QPLGGPEPGP YAQPSVNTPL PNLQNGPIYA 240 RVIQKRVPNA YDKTALALEV GELVKVTKIN VSGQWEGECN GKRGHFPFTH VRLLDQQNPD 300 EDFS 304 SEQ ID NO: 94 Canis lupus familiaris (dog) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X2 (XP_003435251)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPS VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGR 204 SEQ ID NO: 95 Bos taurus (cow) CRK proto-oncogene, adaptor protein (CRK) cDNA (NM_001192334)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggcg gctgagtcgg 60 caggaggcgg tggcgctgtt gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcactagcc ccggggacta tgtgctcagc gtctccgaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgccg gtgccaccgt cgcccgccca gcctccgccc 240 ggggtgagtc cctccagact ccgaatagga gatcaagaat ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacgt tgatagaacc agtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaagagg cagagtatgt acgagccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgggata agcctgaaga gcagtggtgg aatgcggagg acagcgaagg caagagaggg 540 atgattccag tcccttacgt ggagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggta accaggaggg ttcccaccca cagccactgg gtgggccgga gcctgggccc 660 tatgcccaac ccagcgtcaa cactccgctc cctaacctcc agaatgggcc catttatgcc 720 agggtaatcc agaagcgagt ccctaatgcc tacgacaaga cagccttggc tttggaggtc 780 ggtgagctgg taaaggttac gaagattaat gtgagtggtc agtgggaagg ggagtgtaat 840 ggcaaacgag gtcacttccc attcacacat gtccgtctgc tggatcaaca gaatcccgat 900 gaggacttca gctga 915 SEQ ID NO: 96 Bos taurus (cow) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X1 (XM_005220095)

atggcgggca acttcgactc ggaggagcgg agtagctggt actgggggcg gctgagtcgg 60 caggaggcgg tggcgctgtt gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcactagcc ccggggacta tgtgctcagc gtctccgaga actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgcccgccg gtgccaccgt cgcccgccca gcctccgccc 240 ggggtgagtc cctccagact ccgaatagga gatcaagaat ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacgt tgatagaacc agtttccaga 360 tccaggcagg gtagtggagt gattctcagg caggaagagg cagagtatgt acgagccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgggata agcctgaaga gcagtggtgg aatgcggagg acagcgaagg caagagaggg 540 atgattccag tcccttacgt ggagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggtc ggtga 615 SEQ ID NO: 97 Bos taurus (cow) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence (NP_001179263)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGNQEGSHP QPLGGPEPGP YAQPSVNTPL PNLQNGPIYA 240 RVIQKRVPNA YDKTALALEV GELVKVTKIN VSGQWEGECN GKRGHFPFTH VRLLDQQNPD 300 EDFS 304 SEQ ID NO: 98 Bos taurus (cow) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X1 (XP_005220152)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGR 204 SEQ ID NO: 99 Mus musculus CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X1 (XM_006532124)

atggcgggca acttcgactc ggaggagcgg agtagctggt actggggccg cctgagccgg 60 caggaggcgg tggcgctatt gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgcttagc gtctccgaaa actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgccctcca gtgcctccgt cgcccgctca gcctccgccg 240 ggagtgagtc cctccaggct ccgaatagga gatcaagaat ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacat tgatagaacc agtggccaga 360 tcaaggcagg gtagtggagt gattctcagg caggaggagg cagagtatgt gcgggccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgggata agcctgaaga gcagtggtgg aatgcagagg acagcgaagg aaagaggggg 540 atgattcctg tcccttacgt ggagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggta accaggaggg ttcccaccca cagccactgg gtgggccgga gcctgggccc 660 tatgcccaac ccagcgtcaa cactccgctc cctaacctcc agaatgggcc catttatgcc 720 tt t t t t t tt ttt t 780 ctgatggttt ga 792 SEQ ID NO: 100 Mus musculus CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X2 (XM_006532125)

atggcgggca acttcgactc ggaggagcgg agtagctggt actggggccg cctgagccgg 60 caggaggcgg tggcgctatt gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgcttagc gtctccgaaa actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgccctcca gtgcctccgt cgcccgctca gcctccgccg 240 ggagtgagtc cctccaggct ccgaatagga gatcaagaat ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacat tgatagaacc agtggccaga 360 tcaaggcagg gtagtggagt gattctcagg caggaggagg cagagtatgt gcgggccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgggata agcctgaaga gcagtggtgg aatgcagagg acagcgaagg aaagaggggg 540 atgattcctg tcccttacgt ggagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggagctc ctgatggttt gatctctcta ctaaggactt acgagtttaa aaagcaaatt 660 ttatatttaa gatactgttc ttcttgggct ggacagatgg ctcagcggtt aagagcattg 720 actgctcttc cgaaggccct gagttcaaat cccagcaacc acatggtggc tcacaaccat 780 ctgtaa 786 SEQ ID NO: 101 Mus musculus CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant 1 (NM_001277219)

atggcgggca acttcgactc ggaggagcgg agtagctggt actggggccg cctgagccgg 60 caggaggcgg tggcgctatt gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgcttagc gtctccgaaa actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgccctcca gtgcctccgt cgcccgctca gcctccgccg 240 ggagtgagtc cctccaggct ccgaatagga gatcaagaat ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacat tgatagaacc agtggccaga 360 tcaaggcagg gtagtggagt gattctcagg caggaggagg cagagtatgt gcgggccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgggata agcctgaaga gcagtggtgg aatgcagagg acagcgaagg aaagaggggg 540 atgattcctg tcccttacgt ggagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggtc ggtga 615 SEQ ID NO: 102 Mus musculus CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant 2 (NM_133656)

atggcgggca acttcgactc ggaggagcgg agtagctggt actggggccg cctgagccgg 60 caggaggcgg tggcgctatt gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgcttagc gtctccgaaa actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgccctcca gtgcctccgt cgcccgctca gcctccgccg 240 ggagtgagtc cctccaggct ccgaatagga gatcaagaat ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacat tgatagaacc agtggccaga 360 tcaaggcagg gtagtggagt gattctcagg caggaggagg cagagtatgt gcgggccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgggata agcctgaaga gcagtggtgg aatgcagagg acagcgaagg aaagaggggg 540 atgattcctg tcccttacgt ggagaagtat agacctgcct ccgcctcagt atcggctctg 600 attggaggta accaggaggg ttcccaccca cagccactgg gtgggccgga gcctgggccc 660 tatgcccaac ccagcgtcaa cactccgctc cctaacctcc agaatgggcc catttatgcc 720 agggttatcc agaagcgagt ccctaatgcc tacgacaaga cagccttggc tttggaggtc 780 ggtgagctgg taaaggttac gaagattaat gtgagtggtc agtgggaagg ggagtgtaat 840 ggcaaacgag gtcacttccc attcacacat gtccgtctgc tggatcaaca gaatcccgat 900 gaggacttca gctga 915 SEQ ID NO: 103 Mus musculus CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant 3 (NM_001277221)

atggcgggca acttcgactc ggaggagcgg agtagctggt actggggccg cctgagccgg 60 caggaggcgg tggcgctatt gcagggccag cggcacgggg tgttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgcttagc gtctccgaaa actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgccctcca gtgcctccgt cgcccgctca gcctccgccg 240 ggtcggtga 249 SEQ ID NO: 104 Mus musculus CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X1 (XP_006532187)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVAR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGNQEGSHP QPLGGPEPGP YAQPSVNTPL PNLQNGPIYA 240 RVIQKRVPNA YDKTALALEL LMV 263 SEQ ID NO: 105 Mus musculus CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X2 (XP_006532188)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVAR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGAPDGLISL LRTYEFKKQI LYLRYCSSWA GQMAQRLRAL 240 TALPKALSSN PSNHMVAHNH L 261 SEQ ID NO: 106 Mus musculus CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform 1 (NP_001264148)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVAR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGR 204 SEQ ID NO: 107 Mus musculus CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform 2 (NP_598417)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVAR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGNQEGSHP QPLGGPEPGP YAQPSVNTPL PNLQNGPIYA 240 RVIQKRVPNA YDKTALALEV GELVKVTKIN VSGQWEGECN GKRGHFPFTH VRLLDQQNPD 300 EDFS 304 SEQ ID NO: 108 Mus musculus CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform 3 (NP_001264150)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GR 82

SEQ ID NO: 109 Rattus norvegicus (rat) CRK proto-oncogene, adaptor protein (CRK) cDNA (NM_019302)

atggcaggca acttcgactc ggaggagcgg agtagctggt actggggccg cttgagccgg 60 caggaggcgg tggcgctatt gcagggccag cggcacgggg ttttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctccgaaa actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgccctcca gtgcctccgt cgcccgctca gcctccgccg 240 ggagtgagtc cctccaggct ccgaatagga gatcaagaat ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacac tgatagaacc agtttccaga 360 tcaaggcagg gtagtggagt gattctcagg caggaggagg cagagtatgt gcgggccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgggata agcctgaaga gcagtggtgg aatgcagagg acagcgaagg aaagaggggg 540 atgattcctg tcccttacgt ggagaagtat agacccgcct ccgcctcagt atcggctctg 600 attggaggta accaggaggg ttcccaccca cagccactgg gtgggccgga gcctgggccc 660 tatgcccaac ccagcgtcaa cactccgctc cctaacctcc agaatgggcc catttatgcc 720 agggttatcc agaagcgagt ccctaatgcc tacgacaaga cagccttggc tttggaggtc 780 ggtgagctgg taaaggttac gaagattaat gtgagtggtc agtgggaagg ggagtgtaat 840 ggcaaacgag gtcacttccc attcacacat gtccgtctgc tggatcaaca gaatcccgag 900 gaggacttca gctga 915 SEQ ID NO: 110 Rattus norvegicus (rat) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X1 (XM_006246913) atggcaggca acttcgactc ggaggagcgg agtagctggt actggggccg cttgagccgg 60 caggaggcgg tggcgctatt gcagggccag cggcacgggg ttttcctggt gcgggactcg 120 agcaccagcc ccggggacta tgtgctcagc gtctccgaaa actcgcgcgt ctcccactac 180 atcatcaaca gcagcggccc gcgccctcca gtgcctccgt cgcccgctca gcctccgccg 240 ggagtgagtc cctccaggct ccgaatagga gatcaagaat ttgattcatt gcctgcttta 300 ctggaattct acaaaataca ctatttggac actacaacac tgatagaacc agtttccaga 360 tcaaggcagg gtagtggagt gattctcagg caggaggagg cagagtatgt gcgggccctc 420 tttgacttta atgggaatga tgaagaagat cttcccttta agaaaggaga catcctgaga 480 atccgggata agcctgaaga gcagtggtgg aatgcagagg acagcgaagg aaagaggggg 540 atgattcctg tcccttacgt ggagaagtat agacccgcct ccgcctcagt atcggctctg 600 attggaggtc ggtga 615 SEQ ID NO: 111 Rattus norvegicus (rat) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence (NP_062175)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGNQEGSHP QPLGGPEPGP YAQPSVNTPL PNLQNGPIYA 240 RVIQKRVPNA YDKTALALEV GELVKVTKIN VSGQWEGECN GKRGHFPFTH VRLLDQQNPE 300 EDFS 304 SEQ ID NO: 112 Rattus norvegicus (rat) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X1 (XP_006246975)

MAGNFDSEER SSWYWGRLSR QEAVALLQGQ RHGVFLVRDS STSPGDYVLS VSENSRVSHY 60 IINSSGPRPP VPPSPAQPPP GVSPSRLRIG DQEFDSLPAL LEFYKIHYLD TTTLIEPVSR 120 SRQGSGVILR QEEAEYVRAL FDFNGNDEED LPFKKGDILR IRDKPEEQWW NAEDSEGKRG 180 MIPVPYVEKY RPASASVSAL IGGR 204 SEQ ID NO: 113 Gallus gallus (chicken) CRK proto-oncogene, adaptor protein (CRK) cDNA (NM_001007846)

atggccgggc agttcgactc cgaggaccgg gggagctggt actgggggcg gctgagccgg 60 ggcgacgcgg tgtcgctgct gcaggggcaa cgccacggga ccttcctggt gcgcgactcg 120 ggctccatcc ccggcgactt cgtgctctcg gtgtccgaga gctcccgcgt ctcgcactac 180 atcgtcaaca gcctggggcc ggcgggaggc cggagggccg gcggcgaggg ccctggggcc 240 ccggggttga atcccaccag atttcgaata ggtgaccagg agtttgattc tttgccatct 300 ttactggaat tctacaaaat acactatttg gacactacaa ccttgataga accagtttcc 360 cgatccaggc agaacagtgg cgttatcctc aggcaggagg aagttgaata tgtgcgagct 420 ctctttgact ttaatggaaa cgatgacgaa gatcttccat ttaagaaagg agacatactg 480 aaaatccggg ataaacctga agagcaatgg tggaatgcag aagacatgga tggaaagagg 540 ggaatgatac ctgttcctta cgtcgagaag tgtagacctt cctctgcttc agtatctact 600 ctgactggag gtaaccagga tagttcccac ccacaaccac tgggtgggcc ggagccaggg 660 ccctatgccc agcccagcat caacactccg ctccctaacc ttcagaatgg ccctttttat 720 gcccgggtta tccagaagcg agtccctaat gcctacgaca agacagcctt ggctttggag 780 gtcggtgagc tggtaaaggt cacgaagatt aacatgagtg gtcagtggga aggagaatgt 840 aatggcaaac gtggtcactt tccattcaca catgtccgcc tgctggatca acagaatcct 900 gatgaggact tcagctga 918 SEQ ID NO: 114 Gallus gallus (chicken) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence (NP_001007847)

MAGQFDSEDR GSWYWGRLSR GDAVSLLQGQ RHGTFLVRDS GSIPGDFVLS VSESSRVSHY 60 IVNSLGPAGG RRAGGEGPGA PGLNPTRFRI GDQEFDSLPS LLEFYKIHYL DTTTLIEPVS 120 RSRQNSGVIL RQEEVEYVRA LFDFNGNDDE DLPFKKGDIL KIRDKPEEQW WNAEDMDGKR 180 GMIPVPYVEK CRPSSASVST LTGGNQDSSH PQPLGGPEPG PYAQPSINTP LPNLQNGPFY 240 ARVIQKRVPN AYDKTALALE VGELVKVTKI NMSGQWEGEC NGKRGHFPFT HVRLLDQQNP 300 DEDFS 305 SEQ ID NO: 115 Xenopus tropicalis (frog) CRK proto-oncogene, adaptor protein (CRK) cDNA (NM_001006107)

atggcgggca acttcgactc cgaggaccgg gcgagctggt actggggcaa gctgaacaga 60 caagaggcgg tcaatcttct gcagggccag cggcacggtg tgtttttagt tcgagactcc 120 acaactatac ctggtgacta cgtattgtct gtctctgaga actccaaggt ttcccactat 180 atcatcaaca gcgtcagcaa caaccggcag agtgggactg gaatgatcca gtcccgattc 240 agaataggtg accaagagtt tgattcctta ccatctcttt tggaatttta taagatccat 300 tacctggaca ctacaacttt aatagaacca gtttccaagt ctaaacaatc tggtgtaatc 360 caaagacaag aagaagttga atacgtgcga gctctctttg actttaatgg caatgatgat 420 gaagatcttc catttaagaa aggagacatc ctgagaattc gagataagcc cgaggagcag 480 tggtggaatg ctgaggacaa cgatggaaga cggggcatga tacctgtgcc ttacgtcgag 540 aagtacaggc ctccctcttc agcagggtca gccctgattg gaggtaacca ggaaaactcg 600 cacccgcaac cactgggtgg gccggagcca gggccctatg cccagcccag cgtcaacact 660 ccgctgccta accttcagaa tgggcccatt tttgccaggg ttatccagaa gcgcgtccct 720 aatgcctacg acaagacagc cttggctttg gaggttggtg atctagtaaa ggtaacaaag 780 attaatgtca gtggccagtg ggaaggagag tgcaacggga aatatggtca ttttccattt 840 acacatgtgc gtctgctgga tcaacagaac ccagaggagg actttagctg a 891 SEQ ID NO: 116 Xenopus tropicalis (frog) CRK proto-oncogene, adaptor protein (CRK) cDNA, transcript variant X1 (XM_012956700)

atggcgggca acttcgactc cgaggaccgg gcgagctggt actggggcaa gctgaacaga 60 caagaggcgg tcaatcttct gcagggccag cggcacggtg tgtttttagt tcgagactcc 120 acaactatac ctggtgacta cgtattgtct gtctctgaga actccaaggt ttcccactat 180 atcatcaaca gcgtcagcaa caaccggcag agtgggactg gaatgatcca gtcccgattc 240 agaataggtg accaagagtt tgattcctta ccatctcttt tggaatttta taagatacat 300 tacctggaca ctacaacttt aatagaacca gtttccaagt ctaaacaatc tggtgtaatc 360 caaagacaag aagaagttga atacgtgcga gctctctttg actttaatgg caatgatgat 420 gaagatcttc catttaagaa aggagacatc ctgagaattc gagataagcc cgaggagcag 480 tggtggaatg ctgaggacaa cgatggaaga cggggcatga tacctgtgcc ttacgtcgag 540 aagtacaggc ctccctcttc agcagggtca gccctgattg gaggttggtg a 591 SEQ ID NO: 117 Xenopus tropicalis (frog) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence (NP_001006107)

MAGNFDSEDR ASWYWGKLNR QEAVNLLQGQ RHGVFLVRDS TTIPGDYVLS VSENSKVSHY 60 IINSVSNNRQ SGTGMIQSRF RIGDQEFDSL PSLLEFYKIH YLDTTTLIEP VSKSKQSGVI 120 QRQEEVEYVR ALFDFNGNDD EDLPFKKGDI LRIRDKPEEQ WWNAEDNDGR RGMIPVPYVE 180 KYRPPSSAGS ALIGGNQENS HPQPLGGPEP GPYAQPSVNT PLPNLQNGPI FARVIQKRVP 240 NAYDKTALAL EVGDLVKVTK INVSGQWEGE CNGKYGHFPF THVRLLDQQN PEEDFS 296

SEQ ID NO: 118 Xenopus tropicalis (frog) CRK proto-oncogene, adaptor protein (CRK) amino acid sequence, isoform X1 (XP_012812154)

MAGNFDSEDR ASWYWGKLNR QEAVNLLQGQ RHGVFLVRDS TTIPGDYVLS VSENSKVSHY 60 IINSVSNNRQ SGTGMIQSRF RIGDQEFDSL PSLLEFYKIH YLDTTTLIEP VSKSKQSGVI 120 QRQEEVEYVR ALFDFNGNDD EDLPFKKGDI LRIRDKPEEQ WWNAEDNDGR RGMIPVPYVE 180 KYRPPSSAGS ALIGGW 196

SEQ ID NO: 119 Homo Sapiens killer cell lectin-like receptor subfamily F member 1 (KLRF1) cDNA sequence, transcript variant KLRF1-s3 (NM_001291823.1)

atgcaagatg aagaaagata catgacattg aatgtacagt caaagaaaag gagttctgcc 60 caaacatctc aacttacatt taaagattat tcagtgacgt tgcactggta taaaatctta 120 ctgggaatat ctggaaccgt gaatggtatt ctcactttga ctttgatctc cttgatcctg 180 ttggattctt cataa 195

SEQ ID NO: 120 Homo Sapiens killer cell lectin-like receptor subfamily F member 1 (KLRF1) cDNA sequence, transcript variant KLRF1-s (NM_001291822.1)

atgcaagatg aagaaagata catgacattg aatgtacagt caaagaaaag gagttctgcc 60 caaacatctc aacttacatt taaagattat tcagtgacgt tgcactggta taaaatctta 120 ctgggaatat ctggaaccgt gaatggtatt ctcactttga ctttgatctc cttgatcctg 180 ttggtactat gccaatcaga atggctcaaa taccaaggga agtgttattg gttctctaat 240 gagatgaaaa gctggagtga cagttatgtg tattgtttgg aaagaaaatc tcatctacta 300 atcatacatg accaacttga aatggctttt atacagaaaa acctaagaca attaaactac 360 gtatggattg ggcttaactt tacctccttg aaaatgacat ggacttgggt ggatggttct 420 ccaatagatt caaagatatt cttcataaag ggaccagcta aagaaaacag ctgtgctgcc 480 attaaggaaa gcaaaatttt ctctgaaacc tgcagcagtg ttttcaaatg gatttgtcag 540 tattag 546

SEQ ID NO: 121 Homo Sapiens killer cell lectin-like receptor subfamily F member 1 (KLRF1) cDNA sequence, transcript variant 1 (NM_016523.2)

atgcaagatg aagaaagata catgacattg aatgtacagt caaagaaaag gagttctgcc 60 caaacatctc aacttacatt taaagattat tcagtgacgt tgcactggta taaaatctta 120 ctgggaatat ctggaaccgt gaatggtatt ctcactttga ctttgatctc cttgatcctg 180 ttggtttctc agggagtatt gctaaaatgc caaaaaggaa gttgttcaaa tgccactcag 240 tatgaggaca ctggagatct aaaagtgaat aatggcacaa gaagaaatat aagtaataag 300 gacctttgtg cttcgagatc tgcagaccag acagtactat gccaatcaga atggctcaaa 360 taccaaggga agtgttattg gttctctaat gagatgaaaa gctggagtga cagttatgtg 420 tattgtttgg aaagaaaatc tcatctacta atcatacatg accaacttga aatggctttt 480 atacagaaaa acctaagaca attaaactac gtatggattg ggcttaactt tacctccttg 540 aaaatgacat ggacttgggt ggatggttct ccaatagatt caaagatatt cttcataaag 600 ggaccagcta aagaaaacag ctgtgctgcc attaaggaaa gcaaaatttt ctctgaaacc 660 tgcagcagtg ttttcaaatg gatttgtcag tattag 696

SEQ ID NO: 122 Homo Sapiens killer cell lectin-like receptor subfamily F member 1 (KLRF1) amino acid sequence, isoform 1 (NP_057607.1)

MQDEERYMTL NVQSKKRSSA QTSQLTFKDY SVTLHWYKIL LGISGTVNGI LTLTLISLIL 60 LVSQGVLLKC QKGSCSNATQ YEDTGDLKVN NGTRRNISNK DLCASRSADQ TVLCQSEWLK 120 YQGKCYWFSN EMKSWSDSYV YCLERKSHLL IIHDQLEMAF IQKNLRQLNY VWIGLNFTSL 180 KMTWTWVDGS PIDSKIFFIK GPAKENSCAA IKESKIFSET CSSVFKWICQ Y 231

SEQ ID NO: 123 Homo Sapiens killer cell lectin-like receptor subfamily F member 1 (KLRF1) amino acid sequence, isoform s3 (NP_001278752.1)

MQDEERYMTL NVQSKKRSSA QTSQLTFKDY SVTLHWYKIL LGISGTVNGI LTLTLISLIL 60 LDSS 64

SEQ ID NO: 124 Homo Sapiens killer cell lectin-like receptor subfamily F member 1 (KLRF1) amino acid sequence, isoform s (NP_001278751.1)

MQDEERYMTL NVQSKKRSSA QTSQLTFKDY SVTLHWYKIL LGISGTVNGI LTLTLISLIL 60 LVLCQSEWLK YQGKCYWFSN EMKSWSDSYV YCLERKSHLL IIHDQLEMAF IQKNLRQLNY 120 VWIGLNFTSL KMTWTWVDGS PIDSKIFFIK GPAKENSCAA IKESKIFSET CSSVFKWICQ 180 Y 181

SEQ ID NO: 125 Homo Sapiens Serine/Threonine Kinase 33 (STK33) cDNA sequence, transcript variant 1 (NM_030906.3)

atggctgata gtggcttaga taaaaaatcc acaaaatgcc ccgactgttc atctgcttct 60 cagaaagatg tactttgtgt atgttccagc aaaacaaggg ttcctccagt tttggtggtg 120 gaaatgtcac agacatcaag cattggtagt gcagaatctt taatttcact ggagagaaaa 180 aaagaaaaaa atatcaacag agatataacc tccaggaaag atttgccctc aagaacctca 240 aatgtagaga gaaaagcatc tcagcaacaa tggggtcggg gcaactttac agaaggaaaa 300 gttcctcaca taaggattga gaatggagct gctattgagg aaatctatac ctttggaaga 360 atattgggaa aagggagctt tggaatagtc attgaagcga cagacaagga aacagaaacg 420 aagtgggcaa ttaaaaaagt gaacaaagaa aaggctggaa gctctgctgt gaagttactt 480 gaacgagagg tgaacattct gaaaagtgta aaacatgaac acatcataca tctggaacaa 540 gtatttgaaa cgccaaagaa aatgtacctt gtgatggagc tttgtgagga tggagaactc 600 aaagaaattc tggataggaa agggcatttc tcagagaatg agacaaggtg gatcattcaa 660 agtctcgcat cagctatagc atatcttcac aataatgata ttgtacatag agatctgaaa 720 ctggaaaata taatggttaa aagcagtctt attgatgata acaatgaaat aaacttaaac 780 ataaaggtga ctgattttgg cttagcggtg aagaagcaaa gtaggagtga agccatgctg 840 caggccacat gtgggactcc tatctatatg gcccctgaag ttatcagtgc ccacgactat 900 agccagcagt gtgacatttg gagcataggc gtcgtaatgt acatgttatt acgtggagaa 960 ccaccctttt tggcaagctc agaagagaag ctttttgagt taataagaaa aggagaacta 1020 cattttgaaa atgcagtctg gaattccata agtgactgtg ctaaaagtgt tttgaaacaa 1080 cttatgaaag tagatcctgc tcacagaatc acagctaagg aactactaga taaccagtgg 1140 ttaacaggca ataaactttc ttcggtgaga ccaaccaatg tattagagat gatgaaggaa 1200 tggaaaaata acccagaaag tgttgaggaa aacacaacag aagagaagaa taagccgtcc 1260 actgaagaaa agttgaaaag ttaccaaccc tggggaaatg tccctgatgc caattacact 1320 tcagatgaag aggaggaaaa acagtctact gcttatgaaa agcaatttcc tgcaaccagt 1380 aaggacaact ttgatatgtg cagttcaagt ttcacatcta gcaaactcct tccagctgaa 1440 atcaagggag aaatggagaa aacccctgtg actccaagcc aaggaacagc aaccaagtac 1500 cctgctaaat ccggcgccct gtccagaacc aaaaagaaac tctaa 1545 SEQ ID NO: 126 Homo Sapiens Serine/Threonine Kinase 33 (STK33) cDNA sequence, transcript variant 2 (NM_001289058.1)

atgtcacaga catcaagcat tggtagtgca gaatctttaa tttcactgga gagaaaaaaa 60 gaaaaaaata tcaacagaga tataacctcc aggaaagatt tgccctcaag aacctcaaat 120 gtagagagaa aagcatctca gcaacaatgg ggtcggggca actttacaga aggaaaagtt 180 cctcacataa ggattgagaa tggagctgct attgaggaaa tctatacctt tggaagaata 240 ttgggaaaag ggagctttgg aatagtcatt gaagcgacag acaaggaaac agaaacgaag 300 tgggcaatta aaaaagtgaa caaagaaaag gctggaagct ctgctgtgaa gttacttgaa 360 cgagaggtga acattctgaa aagtgtaaaa catgaacaca tcatacatct ggaacaagta 420 tttgaaacgc caaagaaaat gtaccttgtg atggagcttt gtgaggatgg agaactcaaa 480 gaaattctgg ataggaaagg gcatttctca gagaatgaga caaggtggat cattcaaagt 540 ctcgcatcag ctatagcata tcttcacaat aatgatattg tacatagaga tctgaaactg 600 gaaaatataa tggttaaaag cagtcttatt gatgataaca atgaaataaa cttaaacata 660 aaggtgactg attttggctt agcggtgaag aagcaaagta ggagtgaagc catgctgcag 720 gccacatgtg ggactcctat ctatatggcc cctgaagtta tcagtgccca cgactatagc 780 cagcagtgtg acatttggag cataggcgtc gtaatgtaca tgttattacg tggagaacca 840 ccctttttgg caagctcaga agagaagctt tttgagttaa taagaaaagg agaactacat 900 tttgaaaatg cagtctggaa ttccataagt gactgtgcta aaagtgtttt gaaacaactt 960 atgaaagtag atcctgctca cagaatcaca gctaaggaac tactagataa ccagtggtta 1020 acaggcaata aactttcttc ggtgagacca accaatgtat tagagatgat gaaggaatgg 1080 aaaaataacc cagaaagtgt tgaggaaaac acaacagaag agaagaataa gccgtccact 1140 gaagaaaagt tgaaaagtta ccaaccctgg ggaaatgtcc ctgatgccaa ttacacttca 1200 gatgaagagg aggaaaaaca gtctactgct tatgaaaagc aatttcctgc aaccagtaag 1260 gacaactttg atatgtgcag ttcaagtttc acatctagca aactccttcc agctgaaatc 1320 aagggagaaa tggagaaaac ccctgtgact ccaagccaag gaacagcaac caagtaccct 1380 gctaaatccg gcgccctgtc cagaaccaaa aagaaactct aa 1422 SEQ ID NO: 127 Homo Sapiens Serine/Threonine Kinase 33 (STK33) cDNA sequence, transcript variant 3 (NM_001289059.1)

atgtaccttg tgatggagct ttgtgaggat ggagaactca aagaaattct ggataggaaa 60 gggcatttct cagagaatga gacaaggtgg atcattcaaa gtctcgcatc agctatagca 120 tatcttcaca ataatgatat tgtacataga gatctgaaac tggaaaatat aatggttaaa 180 agcagtctta ttgatgataa caatgaaata aacttaaaca taaaggtgac tgattttggc 240 ttagcggtga agaagcaaag taggagtgaa gccatgctgc aggccacatg tgggactcct 300 atctatatgg cccctgaagt tatcagtgcc cacgactata gccagcagtg tgacatttgg 360 agcataggcg tcgtaatgta catgttatta cgtggagaac cacccttttt ggcaagctca 420 gaagagaagc tttttgagtt aataagaaaa ggagaactac attttgaaaa tgcagtctgg 480 aattccataa gtgactgtgc taaaagtgtt ttgaaacaac ttatgaaagt agatcctgct 540 cacagaatca cagctaagga actactagat aaccagtggt taacaggcaa taaactttct 600 tcggtgagac caaccaatgt attagagatg atgaaggaat ggaaaaataa cccagaaagt 660 gttgaggaaa acacaacaga agagaagaat aagccgtcca ctgaagaaaa gttgaaaagt 720 taccaaccct ggggaaatgt ccctgatgcc aattacactt cagatgaaga ggaggaaaaa 780 cagtctactg cttatgaaaa gcaatttcct gcaaccagta aggacaactt tgatatgtgc 840 agttcaagtt tcacatctag caaactcctt ccagctgaaa tcaagggaga aatggagaaa 900 acccctgtga ctccaagcca aggaacagca accaagtacc ctgctaaatc cggcgccctg 960 tccagaacca aaaagaaact ctaa 984 SEQ ID NO: 128 Homo Sapiens Serine/Threonine Kinase 33 (STK33) cDNA sequence, transcript variant 4 (NM_001289061.1)

atggctgata gtggcttaga taaaaaatcc acaaaatgcc ccgactgttc atctgcttct 60 cagaaagatg tactttgtgt atgttccagc aaaacaaggg ttcctccagt tttggtggtg 120 gaaatgtcac agacatcaag cattggtagt gcagaatctt taatttcact ggagagaaaa 180 aaagaaaaaa atatcaacag agatataacc tccaggaaag atttgccctc aagaacctca 240 aatgtagaga gaaaagcatc tcagcaacaa tggggtcggg gcaactttac agaaggaaaa 300 gttcctcaca taaggattga gaatggagct gctattgagg aaatctatac ctttggaaga 360 atattgggaa aagggagctt tggaatagtc attgaagcga cagacaagga aacagaaacg 420 aagtgggcaa ttaaaaaagt gaacaaagaa aaggctggaa gctctgctgt gaagttactt 480 gaacgagagg tgaacattct gaaaagtgta aaacatgaac acatcataca tctggaacaa 540 gtatttgaaa cgccaaagaa aatgtacctt gtgatggagc tttgtgagga tggagaactc 600 aaagaaattc tggataggaa agggcatttc tcagagaatg agacaaggtg gatcattcaa 660 agtctcgcat cagctatagc atatcttcac aataatgata ttgtacatag agatctgaaa 720 ctggaaaata taatggttaa aagcagtctt attgatgata acaatgaaat aaacttaaac 780 ataaaggtga ctgattttgg cttagcggtg aagaagcaaa gtaggagtga agccatgctg 840 caggccacat gtgggactcc tatctatatg gcccctgaag ttatcagtgc ccacgactat 900 agccagcagt gtgacatttg gagcataggc gtcgtaatgt acatgttatt acgtggagaa 960 ccaccctttt tggcaagctc agaagagaag ctttttgagt taataagaaa aggagaacta 1020 cattttgaaa atgcagtctg gaattccata agtgactgtg ctaaaagtgt tttgaaacaa 1080 cttatgaaag tagatcctgc tcacagaatc acagctaagg aactactaga taaccagtgg 1140 ttaacaggca ataaactttc ttcggtgaga ccaaccaatg tattagagat gatgaaggaa 1200 tggaaaaata acccagaaag tgttgaggaa aacacaacag aagagaagaa taagccgtcc 1260 actgaagaaa agttgaaaag ttaccaaccc tggggaaatg tccctgatgc caattacact 1320 tcagatgaag aggaggaaaa acagtctact gcttatgaaa agcaatttcc tgcaaccagt 1380 aaggacaact ttgatatgtg cagttcaagt ttcacatcta gcaaactcct tccagctgaa 1440 atcaagggag aaatggagaa aacccctgtg actccaagcc aaggaacagc aaccaagtac 1500 cctgctaaat ccggcgccct gtccagaacc aaaaagaaac tctaa 1545 SEQ ID NO: 129 Homo Sapiens Serine/Threonine Kinase 33 (STK33) amino acid sequence, isoform a (NP_112168.1)

MADSGLDKKS TKCPDCSSAS QKDVLCVCSS KTRVPPVLVV EMSQTSSIGS AESLISLERK 60 KEKNINRDIT SRKDLPSRTS NVERKASQQQ WGRGNFTEGK VPHIRIENGA AIEEIYTFGR 120 ILGKGSFGIV IEATDKETET KWAIKKVNKE KAGSSAVKLL EREVNILKSV KHEHIIHLEQ 180 VFETPKKMYL VMELCEDGEL KEILDRKGHF SENETRWIIQ SLASAIAYLH NNDIVHRDLK 240 LENIMVKSSL IDDNNEINLN IKVTDFGLAV KKQSRSEAML QATCGTPIYM APEVISAHDY 300 SQQCDIWSIG VVMYMLLRGE PPFLASSEEK LFELIRKGEL HFENAVWNSI SDCAKSVLKQ 360 LMKVDPAHRI TAKELLDNQW LTGNKLSSVR PTNVLEMMKE WKNNPESVEE NTTEEKNKPS 420 TEEKLKSYQP WGNVPDANYT SDEEEEKQST AYEKQFPATS KDNFDMCSSS FTSSKLLPAE 480 IKGEMEKTPV TPSQGTATKY PAKSGALSRT KKKL 514 SEQ ID NO: 130 Homo Sapiens Serine/Threonine Kinase 33 (STK33) amino acid sequence, isoform a (NP_001275990.1)

MADSGLDKKS TKCPDCSSAS QKDVLCVCSS KTRVPPVLVV EMSQTSSIGS AESLISLERK 60 KEKNINRDIT SRKDLPSRTS NVERKASQQQ WGRGNFTEGK VPHIRIENGA AIEEIYTFGR 120 ILGKGSFGIV IEATDKETET KWAIKKVNKE KAGSSAVKLL EREVNILKSV KHEHIIHLEQ 180 VFETPKKMYL VMELCEDGEL KEILDRKGHF SENETRWIIQ SLASAIAYLH NNDIVHRDLK 240 LENIMVKSSL IDDNNEINLN IKVTDFGLAV KKQSRSEAML QATCGTPIYM APEVISAHDY 300 SQQCDIWSIG VVMYMLLRGE PPFLASSEEK LFELIRKGEL HFENAVWNSI SDCAKSVLKQ 360 LMKVDPAHRI TAKELLDNQW LTGNKLSSVR PTNVLEMMKE WKNNPESVEE NTTEEKNKPS 420 TEEKLKSYQP WGNVPDANYT SDEEEEKQST AYEKQFPATS KDNFDMCSSS FTSSKLLPAE 480 IKGEMEKTPV TPSQGTATKY PAKSGALSRT KKKL 514 SEQ ID NO: 131 Homo Sapiens Serine/Threonine Kinase 33 (STK33) amino acid sequence, isoform c (NP_001275988.1)

MYLVMELCED GELKEILDRK GHFSENETRW IIQSLASAIA YLHNNDIVHR DLKLENIMVK 60 SSLIDDNNEI NLNIKVTDFG LAVKKQSRSE AMLQATCGTP IYMAPEVISA HDYSQQCDIW 120 SIGVVMYMLL RGEPPFLASS EEKLFELIRK GELHFENAVW NSISDCAKSV LKQLMKVDPA 180 HRITAKELLD NQWLTGNKLS SVRPTNVLEM MKEWKNNPES VEENTTEEKN KPSTEEKLKS 240 YQPWGNVPDA NYTSDEEEEK QSTAYEKQFP ATSKDNFDMC SSSFTSSKLL PAEIKGEMEK 300 TPVTPSQGTA TKYPAKSGAL SRTKKKL 327 SEQ ID NO: 132 Homo Sapiens Serine/Threonine Kinase 33 (STK33) amino acid sequence, isoform b (NP_001275987.1)

MSQTSSIGSA ESLISLERKK EKNINRDITS RKDLPSRTSN VERKASQQQW GRGNFTEGKV 60 PHIRIENGAA IEEIYTFGRI LGKGSFGIVI EATDKETETK WAIKKVNKEK AGSSAVKLLE 120 REVNILKSVK HEHIIHLEQV FETPKKMYLV MELCEDGELK EILDRKGHFS ENETRWIIQS 180 LASAIAYLHN NDIVHRDLKL ENIMVKSSLI DDNNEINLNI KVTDFGLAVK KQSRSEAMLQ 240 ATCGTPIYMA PEVISAHDYS QQCDIWSIGV VMYMLLRGEP PFLASSEEKL FELIRKGELH 300 FENAVWNSIS DCAKSVLKQL MKVDPAHRIT AKELLDNQWL TGNKLSSVRP TNVLEMMKEW 360 KNNPESVEEN TTEEKNKPST EEKLKSYQPW GNVPDANYTS DEEEEKQSTA YEKQFPATSK 420 DNFDMCSSSF TSSKLLPAEI KGEMEKTPVT PSQGTATKYP AKSGALSRTK KKL 473 SEQ ID NO: 133 Mouse Serine/Threonine Kinase 33 (STK33) cDNA sequence (NM_054103.1) atggctgacc ccagcttgaa tgacaaccct acagcatgcc ctcactgtgc atcctctcag 60 gctggcctac tgtgtgtatg tccagcaggc aagtctccag tcctggtggt ggaaatgtca 120 cagacatcga gtattggtag tacagaattt tttgcttcac aagaaagaaa aaaggaaaga 180 aataccagca gagaatcttc tctaaaagat ttgtccataa gaacttcaaa tgtggagaga 240 aaacctcagg cacaatggag tcggagcaat gtcacagtag gaaaaatccc acacataaga 300 atggacgatg gagcaggtat cgaggaattc tatacctttg gaagaatatt gggacagggg 360 agctttggaa tggtctttga agctatagac aaggaaacag gagctaagtg ggcaattaaa 420 aaagtgaata aagaaaaggc tggaagttct gcaatgaagc tactggagcg ggaggtgagc 480 atcctgaaga ctgtcaacca tcaacacatc atccacctgg aacaagtgtt tgagtcgcct 540 cagaaaatgt atctcgtgat ggagctttgt gaggatggag aactcaaagc agttatggat 600 caaagagggc acttctcaga gaacgagaca aggctgataa ttcaaagtct tgcatcagcc 660 atcgcatatc ttcataacaa ggatatagtg cacagagatc taaagctgga aaacataatg 720 gttaaaagca gctttataga tgataacaat gaaatgaact taaacataaa ggtgactgat 780 tttggcttgt ctgtgcagaa gcatggctcc aggagtgaag gcatgatgca gactacatgt 840 gggactccta tctatatggc accagaggtc atcaatgccc atgactacag ccagcagtgt 900 gacatttgga gcataggtgt cataatgttc attttactgt gtggagagcc accctttttg 960 gcaaattcag aagaaaagct ctatgaatta ataaaaaagg gagaactacg atttgaaaat 1020 ccagtctggg aatctgtaag tgattctgca aaaaatactt tgaaacaact catgaaagta 1080 gatcctgctc acagaatcac agctaaggaa cttctagata accaatggtt gacaggcaat 1140 accctttctt cagcaagacc aaccaatgta ttagaaatga tgaaagaatg gaaaaataac 1200 ccagaaagtg atgaggagac caacacagat gaggagactg agcagagcgc tgtctacagt 1260 ccatctgcaa acacagcaaa gcagcccacc aatgcagcca agaagcctgc tgcagagagt 1320 gttggcatga cctcttcaaa ctcatcgtcc agcaaactcc tgtctgctga aagcaaagca 1380 gaaccagaga aaagctccga gactgtaggc catgcatcag tggctaaaac cactctgaaa 1440 tccactacct tgtttcgagg caagaaaagg ctctaa 1476 SEQ ID NO: 134 Mouse Serine/Threonine Kinase 33 (STK33) amino acid sequence, isoform a ()

MADPSLNDNP TACPHCASSQ AGLLCVCPAG KSPVLVVEMS QTSSIGSTEF FASQERKKER 60 NTSRESSLKD LSIRTSNVER KPQAQWSRSN VTVGKIPHIR MDDGAGIEEF YTFGRILGQG 120 SFGMVFEAID KETGAKWAIK KVNKEKAGSS AMKLLEREVS ILKTVNHQHI IHLEQVFESP 180 QKMYLVMELC EDGELKAVMD QRGHFSENET RLIIQSLASA IAYLHNKDIV HRDLKLENIM 240 VKSSFIDDNN EMNLNIKVTD FGLSVQKHGS RSEGMMQTTC GTPIYMAPEV INAHDYSQQC 300 DIWSIGVIMF ILLCGEPPFL ANSEEKLYEL IKKGELRFEN PVWESVSDSA KNTLKQLMKV 360 DPAHRITAKE LLDNQWLTGN TLSSARPTNV LEMMKEWKNN PESDEETNTD EETEQSAVYS 420 PSANTAKQPT NAAKKPAAES VGMTSSNSSS SKLLSAESKA EPEKSSETVG HASVAKTTLK 480 STTLFRGKKR L 491 SEQ ID NO: 135 Human ephrin type-B receptor 2 (EPHB2) cDNA sequence, transcript variant 1 (NM_017449.4)

atggctctgc ggaggctggg ggccgcgctg ctgctgctgc cgctgctcgc cgccgtggaa 60 gaaacgctaa tggactccac tacagcgact gctgagctgg gctggatggt gcatcctcca 120 tcagggtggg aagaggtgag tggctacgat gagaacatga acacgatccg cacgtaccag 180 gtgtgcaacg tgtttgagtc aagccagaac aactggctac ggaccaagtt tatccggcgc 240 cgtggcgccc accgcatcca cgtggagatg aagttttcgg tgcgtgactg cagcagcatc 300 cccagcgtgc ctggctcctg caaggagacc ttcaacctct attactatga ggctgacttt 360 gactcggcca ccaagacctt ccccaactgg atggagaatc catgggtgaa ggtggatacc 420 attgcagccg acgagagctt ctcccaggtg gacctgggtg gccgcgtcat gaaaatcaac 480 accgaggtgc ggagcttcgg acctgtgtcc cgcagcggct tctacctggc cttccaggac 540 tatggcggct gcatgtccct catcgccgtg cgtgtcttct accgcaagtg cccccgcatc 600 atccagaatg gcgccatctt ccaggaaacc ctgtcggggg ctgagagcac atcgctggtg 660 gctgcccggg gcagctgcat cgccaatgcg gaagaggtgg atgtacccat caagctctac 720 tgtaacgggg acggcgagtg gctggtgccc atcgggcgct gcatgtgcaa agcaggcttc 780 gaggccgttg agaatggcac cgtctgccga ggttgtccat ctgggacttt caaggccaac 840 caaggggatg aggcctgtac ccactgtccc atcaacagcc ggaccacttc tgaaggggcc 900 accaactgtg tctgccgcaa tggctactac agagcagacc tggaccccct ggacatgccc 960 tgcacaacca tcccctccgc gccccaggct gtgatttcca gtgtcaatga gacctccctc 1020 atgctggagt ggacccctcc ccgcgactcc ggaggccgag aggacctcgt ctacaacatc 1080 atctgcaaga gctgtggctc gggccggggt gcctgcaccc gctgcgggga caatgtacag 1140 tacgcaccac gccagctagg cctgaccgag ccacgcattt acatcagtga cctgctggcc 1200 cacacccagt acaccttcga gatccaggct gtgaacggcg ttactgacca gagccccttc 1260 tcgcctcagt tcgcctctgt gaacatcacc accaaccagg cagctccatc ggcagtgtcc 1320 atcatgcatc aggtgagccg caccgtggac agcattaccc tgtcgtggtc ccagccggac 1380 cagcccaatg gcgtgatcct ggactatgag ctgcagtact atgagaagga gctcagtgag 1440 tacaacgcca cagccataaa aagccccacc aacacggtca ccgtgcaggg cctcaaagcc 1500 ggcgccatct atgtcttcca ggtgcgggca cgcaccgtgg caggctacgg gcgctacagc 1560 taccggaagt tcacctcggc cagtgatgtg tggagctacg gcattgtcat gtgggaggtg 2460 atgtcctatg gggagcggcc ctactgggac atgaccaacc aggatgtaat caatgccatt 2520 gagcaggact atcggctgcc accgcccatg gactgcccga gcgccctgca ccaactcatg 2580 ctggactgtt ggcagaagga ccgcaaccac cggcccaagt tcggccaaat tgtcaacacg 2640 ctagacaaga tgatccgcaa tcccaacagc ctcaaagcca tggcgcccct ctcctctggc 2700 atcaacctgc cgctgctgga ccgcacgatc cccgactaca ccagctttaa cacggtggac 2760 gagtggctgg aggccatcaa gatggggcag tacaaggaga gcttcgccaa tgccggcttc 2820 acctcctttg acgtcgtgtc tcagatgatg atggaggaca ttctccgggt tggggtcact 2880 ttggctggcc accagaaaaa aatcctgaac agtatccagg tgatgcgggc gcagatgaac 2940 cagattcagt ctgtggaggt ttga 2964 SEQ ID NO: 137 Human ephrin type-B receptor 2 (EPHB2) cDNA sequence, transcript variant 3 (NM_001309192.1)

atggctctgc ggaggctggg ggccgcgctg ctgctgctgc cgctgctcgc cgccgtggaa 60 gaaacgctaa tggactccac tacagcgact gctgagctgg gctggatggt gcatcctcca 120 tcagggtggg aagaggtgag tggctacgat gagaacatga acacgatccg cacgtaccag 180 gtgtgcaacg tgtttgagtc aagccagaac aactggctac ggaccaagtt tatccggcgc 240 cgtggcgccc accgcatcca cgtggagatg aagttttcgg tgcgtgactg cagcagcatc 300 cccagcgtgc ctggctcctg caaggagacc ttcaacctct attactatga ggctgacttt 360 gactcggcca ccaagacctt ccccaactgg atggagaatc catgggtgaa ggtggatacc 420 attgcagccg acgagagctt ctcccaggtg gacctgggtg gccgcgtcat gaaaatcaac 480 accgaggtgc ggagcttcgg acctgtgtcc cgcagcggct tctacctggc cttccaggac 540 tatggcggct gcatgtccct catcgccgtg cgtgtcttct accgcaagtg cccccgcatc 600 atccagaatg gcgccatctt ccaggaaacc ctgtcggggg ctgagagcac atcgctggtg 660 gctgcccggg gcagctgcat cgccaatgcg gaagaggtgg atgtacccat caagctctac 720 tgtaacgggg acggcgagtg gctggtgccc atcgggcgct gcatgtgcaa agcaggcttc 780 gaggccgttg agaatggcac cgtctgccga ggttgtccat ctgggacttt caaggccaac 840 caaggggatg aggcctgtac ccactgtccc atcaacagcc ggaccacttc tgaaggggcc 900 accaactgtg tctgccgcaa tggctactac agagcagacc tggaccccct ggacatgccc 960 tgcacaacca tcccctccgc gccccaggct gtgatttcca gtgtcaatga gacctccctc 1020 atgctggagt ggacccctcc ccgcgactcc ggaggccgag aggacctcgt ctacaacatc 1080 atctgcaaga gctgtggctc gggccggggt gcctgcaccc gctgcgggga caatgtacag 1140 tacgcaccac gccagctagg cctgaccgag ccacgcattt acatcagtga cctgctggcc 1200 cacacccagt acaccttcga gatccaggct gtgaacggcg ttactgacca gagccccttc 1260 tcgcctcagt tcgcctctgt gaacatcacc accaaccagg cagctccatc ggcagtgtcc 1320 atcatgcatc aggtgagccg caccgtggac agcattaccc tgtcgtggtc ccagccggac 1380 cagcccaatg gcgtgatcct ggactatgag ctgcagtact atgagaagga gctcagtgag 1440 tacaacgcca cagccataaa aagccccacc aacacggtca ccgtgcaggg cctcaaagcc 1500 ggcgccatct atgtcttcca ggtgcgggca cgcaccgtgg caggctacgg gcgctacagc 1560 ggcaagatgt acttccagac catgacagaa gtgaccccag gcatgaagat ctacatcgat 1620 cctttcacct acgaggaccc caacgaggca gtgcgggagt ttgccaagga aattgacatc 1680 tcctgtgtca aaattgagca ggtgatcgga gcaggggagt ttggcgaggt ctgcagtggc 1740 cacctgaagc tgccaggcaa gagagagatc tttgtggcca tcaagacgct caagtcgggc 1800 tacacggaga agcagcgccg ggacttcctg agcgaagcct ccatcatggg ccagttcgac 1860 catcccaacg tcatccacct ggagggtgtc gtgaccaaga gcacacctgt gatgatcatc 1920 accgagttca tggagaatgg ctccctggac tcctttctcc ggcaaaacga tgggcagttc 1980 acagtcatcc agctggtggg catgcttcgg ggcatcgcag ctggcatgaa gtacctggca 2040 gacatgaact atgttcaccg tgacctggct gcccgcaaca tcctcgtcaa cagcaacctg 2100 gtctgcaagg tgtcggactt tgggctctca cgctttctag aggacgatac ctcagacccc 2160 acctacacca gtgccctggg cggaaagatc cccatccgct ggacagcccc ggaagccatc 2220 cagtaccgga agttcacctc ggccagtgat gtgtggagct acggcattgt catgtgggag 2280 gtgatgtcct atggggagcg gccctactgg gacatgacca accaggatgt aatcaatgcc 2340 attgagcagg actatcggct gccaccgccc atggactgcc cgagcgccct gcaccaactc 2400 atgctggact gttggcagaa ggaccgcaac caccggccca agttcggcca aattgtcaac 2460 acgctagaca agatgatccg caatcccaac agcctcaaag ccatggcgcc cctctcctct 2520 ggcatcaacc tgccgctgct ggaccgcacg atccccgact acaccagctt taacacggtg 2580 gacgagtggc tggaggccat caagatgggg cagtacaagg agagcttcgc caatgccggc 2640 ttcacctcct ttgacgtcgt gtctcagatg atgatggagg acattctccg ggttggggtc 2700 actttggctg gccaccagaa aaaaatcctg aacagtatcc aggtgatgcg ggcgcagatg 2760 aaccagattc agtctgtgga ggtttga 2787 SEQ ID NO: 138 Human ephrin type-B receptor 2 (EPHB2) cDNA sequence, transcript variant 4 (NM_001309193.1)

atggctctgc ggaggctggg ggccgcgctg ctgctgctgc cgctgctcgc cgccgtggaa 60 gaaacgctaa tggactccac tacagcgact gctgagctgg gctggatggt gcatcctcca 120 gtgtgcaacg tgtttgagtc aagccagaac aactggctac ggaccaagtt tatccggcgc 240 cgtggcgccc accgcatcca cgtggagatg aagttttcgg tgcgtgactg cagcagcatc 300 cccagcgtgc ctggctcctg caaggagacc ttcaacctct attactatga ggctgacttt 360 gactcggcca ccaagacctt ccccaactgg atggagaatc catgggtgaa ggtggatacc 420 attgcagccg acgagagctt ctcccaggtg gacctgggtg gccgcgtcat gaaaatcaac 480 accgaggtgc ggagcttcgg acctgtgtcc cgcagcggct tctacctggc cttccaggac 540 tatggcggct gcatgtccct catcgccgtg cgtgtcttct accgcaagtg cccccgcatc 600 atccagaatg gcgccatctt ccaggaaacc ctgtcggggg ctgagagcac atcgctggtg 660 gctgcccggg gcagctgcat cgccaatgcg gaagaggtgg atgtacccat caagctctac 720 tgtaacgggg acggcgagtg gctggtgccc atcgggcgct gcatgtgcaa agcaggcttc 780 gaggccgttg agaatggcac cgtctgccga ggttgtccat ctgggacttt caaggccaac 840 caaggggatg aggcctgtac ccactgtccc atcaacagcc ggaccacttc tgaaggggcc 900 accaactgtg tctgccgcaa tggctactac agagcagacc tggaccccct ggacatgccc 960 tgcacaacca tcccctccgc gccccaggct gtgatttcca gtgtcaatga gacctccctc 1020 atgctggagt ggacccctcc ccgcgactcc ggaggccgag aggacctcgt ctacaacatc 1080 atctgcaaga gctgtggctc gggccggggt gcctgcaccc gctgcgggga caatgtacag 1140 tacgcaccac gccagctagg cctgaccgag ccacgcattt acatcagtga cctgctggcc 1200 cacacccagt acaccttcga gatccaggct gtgaacggcg ttactgacca gagccccttc 1260 tcgcctcagt tcgcctctgt gaacatcacc accaaccagg cagctccatc ggcagtgtcc 1320 atcatgcatc aggtgagccg caccgtggac agcattaccc tgtcgtggtc ccagccggac 1380 cagcccaatg gcgtgatcct ggactatgag ctgcagtact atgagaagga gctcagtgag 1440 tacaacgcca cagccataaa aagccccacc aacacggtca ccgtgcaggg cctcaaagcc 1500 ggcgccatct atgtcttcca ggtgcgggca cgcaccgtgg caggctacgg gcgctacagc 1560 ggcaagatgt acttccagac catgacagaa gccgagtacc agacaagcat ccaggagaag 1620 ttgccactca tcatcggctc ctcggccgct ggcctggtct tcctcattgc tgtggttgtc 1680 atcgccatcg tgtgtaacag acgggggttt gagcgtgctg actcggagta cacggacaag 1740 ctgcaacact acaccagtgg ccacatgacc ccaggcatga agatctacat cgatcctttc 1800 acctacgagg accccaacga ggcagtgcgg gagtttgcca aggaaattga catctcctgt 1860 gtcaaaattg agcaggtgat cggagcaggg gagtttggcg aggtctgcag tggccacctg 1920 aagctgccag gcaagagaga gatctttgtg gccatcaaga cgctcaagtc gggctacacg 1980 gagaagcagc gccgggactt cctgagcgaa gcctccatca tgggccagtt cgaccatccc 2040 aacgtcatcc acctggaggg tgtcgtgacc aagagcacac ctgtgatgat catcaccgag 2100 ttcatggaga atggctccct ggactccttt ctccggcaaa acgatgggca gttcacagtc 2160 atccagctgg tgggcatgct tcggggcatc gcagctggca tgaagtacct ggcagacatg 2220 aactatgttc accgtgacct ggctgcccgc aacatcctcg tcaacagcaa cctggtctgc 2280 aaggtgtcgg actttgggct ctcacgcttt ctagaggacg atacctcaga ccccacctac 2340 accagtgccc tgggcggaaa gatccccatc cgctggacag ccccggaagc catccagtac 2400 cggaagttca cctcggccag tgatgtgtgg agctacggca ttgtcatgtg ggaggtgatg 2460 tcctatgggg agcggcccta ctgggacatg accaaccagg atgtaatcaa tgccattgag 2520 caggactatc ggctgccacc gcccatggac tgcccgagcg ccctgcacca actcatgctg 2580 gactgttggc agaaggaccg caaccaccgg cccaagttcg gccaaattgt caacacgcta 2640 gacaagatga tccgcaatcc caacagcctc aaagccatgg cgcccctctc ctctggcatc 2700 aacctgccgc tgctggaccg cacgatcccc gactacacca gctttaacac ggtggacgag 2760 tggctggagg ccatcaagat ggggcagtac aaggagagct tcgccaatgc cggcttcacc 2820 tcctttgacg tcgtgtctca gatgatgatg gaggacattc tccgggttgg ggtcactttg 2880 gctggccacc agaaaaaaat cctgaacagt atccaggtga tgcgggcgca gatgaaccag 2940 attcagtctg tggagggcca gccactcgcc aggaggccac gggccacggg aagaaccaag 3000 cggtgccagc cacgagacgt caccaagaaa acatgcaact caaacgacgg aaaaaaaaag 3060 ggaatgggaa aaaagaaaac agatcctggg agggggcggg aaatacaagg aatatttttt 3120 aaagaggatt ctcataagga aagcaatgac tgttcttgcg ggggataa 3168

SEQ ID NO: 139 Human ephrin type-B receptor 2 (EPHB2) amino acid sequence, isoform 1 (NP_059145.2)

MALRRLGAAL LLLPLLAAVE ETLMDSTTAT AELGWMVHPP SGWEEVSGYD ENMNTIRTYQ 60 VCNVFESSQN NWLRTKFIRR RGAHRIHVEM KFSVRDCSSI PSVPGSCKET FNLYYYEADF 120 DSATKTFPNW MENPWVKVDT IAADESFSQV DLGGRVMKIN TEVRSFGPVS RSGFYLAFQD 180 YGGCMSLIAV RVFYRKCPRI IQNGAIFQET LSGAESTSLV AARGSCIANA EEVDVPIKLY 240 CNGDGEWLVP IGRCMCKAGF EAVENGTVCR GCPSGTFKAN QGDEACTHCP INSRTTSEGA 300 TNCVCRNGYY RADLDPLDMP CTTIPSAPQA VISSVNETSL MLEWTPPRDS GGREDLVYNI 360 ICKSCGSGRG ACTRCGDNVQ YAPRQLGLTE PRIYISDLLA HTQYTFEIQA VNGVTDQSPF 420 SPQFASVNIT TNQAAPSAVS IMHQVSRTVD SITLSWSQPD QPNGVILDYE LQYYEKELSE 480 YNATAIKSPT NTVTVQGLKA GAIYVFQVRA RTVAGYGRYS GKMYFQTMTE AEYQTSIQEK 540 LPLIIGSSAA GLVFLIAVVV IAIVCNRRGF ERADSEYTDK LQHYTSGHMT PGMKIYIDPF 600 TYEDPNEAVR EFAKEIDISC VKIEQVIGAG EFGEVCSGHL KLPGKREIFV AIKTLKSGYT 660 EKQRRDFLSE ASIMGQFDHP NVIHLEGVVT KSTPVMIITE FMENGSLDSF LRQNDGQFTV 720 IQLVGMLRGI AAGMKYLADM NYVHRDLAAR NILVNSNLVC KVSDFGLSRF LEDDTSDPTY 780

8 0 QDYRLPPPMD CPSALHQLML DCWQKDRNHR PKFGQIVNTL DKMIRNPNSL KAMAPLSSGI 900 NLPLLDRTIP DYTSFNTVDE WLEAIKMGQY KESFANAGFT SFDVVSQMMM EDILRVGVTL 960 AGHQKKILNS IQVMRAQMNQ IQSVEV 986

SEQ ID NO: 140 Human ephrin type-B receptor 2 (EPHB2) amino acid sequence, isoform 2 (NP_004433.2)

MALRRLGAAL LLLPLLAAVE ETLMDSTTAT AELGWMVHPP SGWEEVSGYD ENMNTIRTYQ 60 VCNVFESSQN NWLRTKFIRR RGAHRIHVEM KFSVRDCSSI PSVPGSCKET FNLYYYEADF 120 DSATKTFPNW MENPWVKVDT IAADESFSQV DLGGRVMKIN TEVRSFGPVS RSGFYLAFQD 180 YGGCMSLIAV RVFYRKCPRI IQNGAIFQET LSGAESTSLV AARGSCIANA EEVDVPIKLY 240 CNGDGEWLVP IGRCMCKAGF EAVENGTVCR GCPSGTFKAN QGDEACTHCP INSRTTSEGA 300 TNCVCRNGYY RADLDPLDMP CTTIPSAPQA VISSVNETSL MLEWTPPRDS GGREDLVYNI 360 ICKSCGSGRG ACTRCGDNVQ YAPRQLGLTE PRIYISDLLA HTQYTFEIQA VNGVTDQSPF 420 SPQFASVNIT TNQAAPSAVS IMHQVSRTVD SITLSWSQPD QPNGVILDYE LQYYEKELSE 480 YNATAIKSPT NTVTVQGLKA GAIYVFQVRA RTVAGYGRYS GKMYFQTMTE AEYQTSIQEK 540 LPLIIGSSAA GLVFLIAVVV IAIVCNRRRG FERADSEYTD KLQHYTSGHM TPGMKIYIDP 600 FTYEDPNEAV REFAKEIDIS CVKIEQVIGA GEFGEVCSGH LKLPGKREIF VAIKTLKSGY 660 TEKQRRDFLS EASIMGQFDH PNVIHLEGVV TKSTPVMIIT EFMENGSLDS FLRQNDGQFT 720 VIQLVGMLRG IAAGMKYLAD MNYVHRDLAA RNILVNSNLV CKVSDFGLSR FLEDDTSDPT 780 YTSALGGKIP IRWTAPEAIQ YRKFTSASDV WSYGIVMWEV MSYGERPYWD MTNQDVINAI 840 EQDYRLPPPM DCPSALHQLM LDCWQKDRNH RPKFGQIVNT LDKMIRNPNS LKAMAPLSSG 900 INLPLLDRTI PDYTSFNTVD EWLEAIKMGQ YKESFANAGF TSFDVVSQMM MEDILRVGVT 960 LAGHQKKILN SIQVMRAQMN QIQSVEV 987

SEQ ID NO: 141 Human ephrin type-B receptor 2 (EPHB2) amino acid sequence, isoform 3 (NP_001296121.1)

MALRRLGAAL LLLPLLAAVE ETLMDSTTAT AELGWMVHPP SGWEEVSGYD ENMNTIRTYQ 60 VCNVFESSQN NWLRTKFIRR RGAHRIHVEM KFSVRDCSSI PSVPGSCKET FNLYYYEADF 120 DSATKTFPNW MENPWVKVDT IAADESFSQV DLGGRVMKIN TEVRSFGPVS RSGFYLAFQD 180 YGGCMSLIAV RVFYRKCPRI IQNGAIFQET LSGAESTSLV AARGSCIANA EEVDVPIKLY 240 CNGDGEWLVP IGRCMCKAGF EAVENGTVCR GCPSGTFKAN QGDEACTHCP INSRTTSEGA 300 TNCVCRNGYY RADLDPLDMP CTTIPSAPQA VISSVNETSL MLEWTPPRDS GGREDLVYNI 360 ICKSCGSGRG ACTRCGDNVQ YAPRQLGLTE PRIYISDLLA HTQYTFEIQA VNGVTDQSPF 420 SPQFASVNIT TNQAAPSAVS IMHQVSRTVD SITLSWSQPD QPNGVILDYE LQYYEKELSE 480 YNATAIKSPT NTVTVQGLKA GAIYVFQVRA RTVAGYGRYS GKMYFQTMTE VTPGMKIYID 540 PFTYEDPNEA VREFAKEIDI SCVKIEQVIG AGEFGEVCSG HLKLPGKREI FVAIKTLKSG 600 YTEKQRRDFL SEASIMGQFD HPNVIHLEGV VTKSTPVMII TEFMENGSLD SFLRQNDGQF 660 TVIQLVGMLR GIAAGMKYLA DMNYVHRDLA ARNILVNSNL VCKVSDFGLS RFLEDDTSDP 720 TYTSALGGKI PIRWTAPEAI QYRKFTSASD VWSYGIVMWE VMSYGERPYW DMTNQDVINA 780 IEQDYRLPPP MDCPSALHQL MLDCWQKDRN HRPKFGQIVN TLDKMIRNPN SLKAMAPLSS 840 GINLPLLDRT IPDYTSFNTV DEWLEAIKMG QYKESFANAG FTSFDVVSQM MMEDILRVGV 900 TLAGHQKKIL NSIQVMRAQM NQIQSVEV 928

SEQ ID NO: 142 Human ephrin type-B receptor 2 (EPHB2) amino acid sequence, isoform 4 (NP_001296122.1)

MALRRLGAAL LLLPLLAAVE ETLMDSTTAT AELGWMVHPP SGWEEVSGYD ENMNTIRTYQ 60 VCNVFESSQN NWLRTKFIRR RGAHRIHVEM KFSVRDCSSI PSVPGSCKET FNLYYYEADF 120 DSATKTFPNW MENPWVKVDT IAADESFSQV DLGGRVMKIN TEVRSFGPVS RSGFYLAFQD 180 YGGCMSLIAV RVFYRKCPRI IQNGAIFQET LSGAESTSLV AARGSCIANA EEVDVPIKLY 240 CNGDGEWLVP IGRCMCKAGF EAVENGTVCR GCPSGTFKAN QGDEACTHCP INSRTTSEGA 300 TNCVCRNGYY RADLDPLDMP CTTIPSAPQA VISSVNETSL MLEWTPPRDS GGREDLVYNI 360 ICKSCGSGRG ACTRCGDNVQ YAPRQLGLTE PRIYISDLLA HTQYTFEIQA VNGVTDQSPF 420 SPQFASVNIT TNQAAPSAVS IMHQVSRTVD SITLSWSQPD QPNGVILDYE LQYYEKELSE 480 YNATAIKSPT NTVTVQGLKA GAIYVFQVRA RTVAGYGRYS GKMYFQTMTE AEYQTSIQEK 540 LPLIIGSSAA GLVFLIAVVV IAIVCNRRGF ERADSEYTDK LQHYTSGHMT PGMKIYIDPF 600 TYEDPNEAVR EFAKEIDISC VKIEQVIGAG EFGEVCSGHL KLPGKREIFV AIKTLKSGYT 660 EKQRRDFLSE ASIMGQFDHP NVIHLEGVVT KSTPVMIITE FMENGSLDSF LRQNDGQFTV 720 IQLVGMLRGI AAGMKYLADM NYVHRDLAAR NILVNSNLVC KVSDFGLSRF LEDDTSDPTY 780 TSALGGKIPI RWTAPEAIQY RKFTSASDVW SYGIVMWEVM SYGERPYWDM TNQDVINAIE 840 QDYRLPPPMD CPSALHQLML DCWQKDRNHR PKFGQIVNTL DKMIRNPNSL KAMAPLSSGI 900 NLPLLDRTIP DYTSFNTVDE WLEAIKMGQY KESFANAGFT SFDVVSQMMM EDILRVGVTL 960 AGHQKKILNS IQVMRAQMNQ IQSVEGQPLA RRPRATGRTK RCQPRDVTKK TCNSNDGKKK 1020 GMGKKKTDPG RGREIQGIFF KEDSHKESND CSCGG 1055 SEQ ID NO: 143 Mouse ephrin type-B receptor 2 (EPHB2) cDNA sequence, transcript variant 1 (NM_001290753.2)

atggccgtgc gcaggctggg ggccgcgctg ctgctgctgc cgctgctagc cgccgtggaa 60 gaaaccctga tggactctac gacagcaacg gctgagctgg gctggatggt acatccccca 120 tcagggtggg aagaggtgag cggctacgac gagaacatga acactatccg tacctaccag 180 gtgtgcaatg tctttgagtc aagccagaac aactggctgc ggaccaaatt catccggcgc 240 cgcggcgccc accgcatcca cgtggagatg aagttctcgg tgcgtgactg cagcagcatt 300 cccagcgtgc cgggctcctg caaggagacc ttcaacctct actactatga ggctgatttt 360 gacttagcca ccaaaacctt tcccaactgg atggagaatc cgtgggtgaa ggtggacacc 420 atcgcggccg atgagagctt ctctcaggtg gacctgggtg gccgcgtcat gaaaatcaac 480 actgaggtgc gaagcttcgg tcccgtgtcc cgcaatggtt tctacctggc cttccaggac 540 tatggcggct gtatgtccct cattgctgtg cgcgtcttct accggaagtg cccccgaatc 600 atccagaatg gtgccatctt ccaggagaca ctgtcggggg ctgagagcac ttcgctggtg 660 gcagctcggg gcagctgcat cgccaatgct gaagaagtgg atgtgcccat caaactctac 720 tgtaacgggg acggcgaatg gctggtgccc ataggtcgct gcatgtgcaa ggcgggcttc 780 gaggctgtgg agaacggcac cgtctgccga ggttgtccat caggaacctt caaggccaac 840 caaggggacg aagcctgcac ccactgtccc atcaacagcc gcaccacctc cgagggtgcc 900 accaactgtg tatgccgcaa cggctactac agggccgacc tggacccctt agacatgcct 960 tgcacaacca tcccctctgc gccccaggct gtgatctcca gcgtcaacga gacgtccctc 1020 atgctagagt ggaccccacc ccgagactcg gggggtcgcg aggatcttgt ttacaacatc 1080 atctgcaaga gctgtggctc cggccggggc gcatgcacgc gctgcgggga caacgtgcag 1140 tacgcgcccc gccagctggg cctgactgag ccgcgcatct acatcagtga cctgctggca 1200 cacacgcagt acaccttcga gatccaggcc gtgaacggtg tgactgacca gagtcccttc 1260 tcacctcagt tcgcctctgt gaacatcacc accaaccaag cagcaccatc ggccgtgtcc 1320 atcatgcacc aggtgagccg cactgtggac agcatcaccc tgtcgtggtc ccagccagac 1380 cagcccaacg gtgtgatcct ggactacgag ctgcagtact atgagaagca ggagctcagt 1440 gagtacaacg ccacggccat aaaaagcccc accaacacag tcactgtgca gggcctcaaa 1500 gccggcgcca tctatgtctt ccaggtgcgg gcacgcaccg ttgcaggcta tgggcgctac 1560 agtggcaaga tgtacttcca aaccatgaca gaagccgagt accagaccag catcaaggaa 1620 aagctacccc tcatcgttgg ctcctccgcc gccggcttag tcttcctcat cgctgtggtc 1680 gtcattgcca tcgtatgtaa cagacggggg tttgagcgtg ccgactcaga gtacacggac 1740 aagctacaac actacaccag cggacacatg accccaggca tgaagatcta tatagaccct 1800 ttcacctatg aagatcctaa tgaggcagtg cgggagtttg ccaaggaaat tgacatctcc 1860 tgtgtcaaga ttgagcaggt gatcggagca ggggaatttg gtgaggtctg cagtggccat 1920 ttgaagctgc caggcaagag agagatcttt gtagccatca agaccctcaa gtcaggatac 1980 acggagaaac agcgccggga cttcctgagt gaggcatcca tcatgggcca gttcgaccac 2040 cccaatgtca tccatctgga aggggttgtc accaagagca cacctgtcat gatcatcact 2100 gaattcatgg agaacggatc tctggactcc ttcctccggc aaaacgatgg gcagttcaca 2160 gtcatccaac tggtgggcat gctgaggggc attgcagccg gcatgaagta cctggcggac 2220 atgaactacg tgcaccgtga ccttgctgct cgaaacatcc tcgtcaacag caacctggtg 2280 tgtaaggtgt ctgattttgg gctctcacgc ttcctggagg atgacacgtc tgaccccacc 2340 tataccagcg ctctgggtgg gaagatcccc atccgttgga cggcaccgga agccatccag 2400 taccggaaat tcacctcggc cagtgatgtg tggagctatg gcatcgtcat gtgggaggtg 2460 atgtcctacg gggaacgacc ctactgggac atgaccaatc aagacgtaat caacgccatt 2520 gaacaggact acagactacc tccgcccatg gactgcccta gtgccctgca ccagctcatg 2580 ctggactgct ggcagaagga ccgcaaccac cggcccaagt tcggccagat tgtcaacacg 2640 ctggacaaga tgatccgaaa ccccaacagc ctcaaagcca tggcacccct gtcctctggc 2700 atcaacctgc cactgctgga ccgcacgata ccggactaca ccagctttaa cacggtggat 2760 gagtggctag aggccatcaa gatgggccag tacaaggaga gctttgccaa cgccggcttt 2820 acctctttcg acgttgtatc tcagatgatg atggaggaca ttctccgcgt tggggtcact 2880 ctagctggcc accagaaaaa aatcctgaac agtatccagg tgatgcgggc ccagatgaac 2940 cagatccagt ctgtagaggt ttga 2964 SEQ ID NO: 144 Mouse ephrin type-B receptor 2 (EPHB2) cDNA sequence, transcript variant 2 (NM_010142.4)

atggccgtgc gcaggctggg ggccgcgctg ctgctgctgc cgctgctagc cgccgtggaa 60 gaaaccctga tggactctac gacagcaacg gctgagctgg gctggatggt acatccccca 120 tcagggtggg aagaggtgag cggctacgac gagaacatga acactatccg tacctaccag 180 gtgtgcaatg tctttgagtc aagccagaac aactggctgc ggaccaaatt catccggcgc 240 cgcggcgccc accgcatcca cgtggagatg aagttctcgg tgcgtgactg cagcagcatt 300 cccagcgtgc cgggctcctg caaggagacc ttcaacctct actactatga ggctgatttt 360 gacttagcca ccaaaacctt tcccaactgg atggagaatc cgtgggtgaa ggtggacacc 420 atcgcggccg atgagagctt ctctcaggtg gacctgggtg gccgcgtcat gaaaatcaac 480 actgaggtgc gaagcttcgg tcccgtgtcc cgcaatggtt tctacctggc cttccaggac 540 tatggcggct gtatgtccct cattgctgtg cgcgtcttct accggaagtg cccccgaatc 600 atccagaatg gtgccatctt ccaggagaca ctgtcggggg ctgagagcac ttcgctggtg 660 gcagctcggg gcagctgcat cgccaatgct gaagaagtgg atgtgcccat caaactctac 720 tgtaacgggg acggcgaatg gctggtgccc ataggtcgct gcatgtgcaa ggcgggcttc 780 gaggctgtgg agaacggcac cgtctgccga ggttgtccat caggaacctt caaggccaac 840 caaggggacg aagcctgcac ccactgtccc atcaacagcc gcaccacctc cgagggtgcc 900 accaactgtg tatgccgcaa cggctactac agggccgacc tggacccctt agacatgcct 960 tgcacaacca tcccctctgc gccccaggct gtgatctcca gcgtcaacga gacgtccctc 1020 atgctagagt ggaccccacc ccgagactcg gggggtcgcg aggatcttgt ttacaacatc 1080 atctgcaaga gctgtggctc cggccggggc gcatgcacgc gctgcgggga caacgtgcag 1140 tacgcgcccc gccagctggg cctgactgag ccgcgcatct acatcagtga cctgctggca 1200 cacacgcagt acaccttcga gatccaggcc gtgaacggtg tgactgacca gagtcccttc 1260 tcacctcagt tcgcctctgt gaacatcacc accaaccaag cagcaccatc ggccgtgtcc 1320 atcatgcacc aggtgagccg cactgtggac agcatcaccc tgtcgtggtc ccagccagac 1380 cagcccaacg gtgtgatcct ggactacgag ctgcagtact atgagaagga gctcagtgag 1440 tacaacgcca cggccataaa aagccccacc aacacagtca ctgtgcaggg cctcaaagcc 1500 ggcgccatct atgtcttcca ggtgcgggca cgcaccgttg caggctatgg gcgctacagt 1560 ggcaagatgt acttccaaac catgacagaa gccgagtacc agaccagcat caaggaaaag 1620 ctacccctca tcgttggctc ctccgccgcc ggcttagtct tcctcatcgc tgtggtcgtc 1680 attgccatcg tatgtaacag acgggggttt gagcgtgccg actcagagta cacggacaag 1740 ctacaacact acaccagcgg acacatgacc ccaggcatga agatctatat agaccctttc 1800 acctatgaag atcctaatga ggcagtgcgg gagtttgcca aggaaattga catctcctgt 1860 gtcaagattg agcaggtgat cggagcaggg gaatttggtg aggtctgcag tggccatttg 1920 aagctgccag gcaagagaga gatctttgta gccatcaaga ccctcaagtc aggatacacg 1980 gagaaacagc gccgggactt cctgagtgag gcatccatca tgggccagtt cgaccacccc 2040 aatgtcatcc atctggaagg ggttgtcacc aagagcacac ctgtcatgat catcactgaa 2100 ttcatggaga acggatctct ggactccttc ctccggcaaa acgatgggca gttcacagtc 2160 atccaactgg tgggcatgct gaggggcatt gcagccggca tgaagtacct ggcggacatg 2220 aactacgtgc accgtgacct tgctgctcga aacatcctcg tcaacagcaa cctggtgtgt 2280 aaggtgtctg attttgggct ctcacgcttc ctggaggatg acacgtctga ccccacctat 2340 accagcgctc tgggtgggaa gatccccatc cgttggacgg caccggaagc catccagtac 2400 cggaaattca cctcggccag tgatgtgtgg agctatggca tcgtcatgtg ggaggtgatg 2460 tcctacgggg aacgacccta ctgggacatg accaatcaag acgtaatcaa cgccattgaa 2520 caggactaca gactacctcc gcccatggac tgccctagtg ccctgcacca gctcatgctg 2580 gactgctggc agaaggaccg caaccaccgg cccaagttcg gccagattgt caacacgctg 2640 gacaagatga tccgaaaccc caacagcctc aaagccatgg cacccctgtc ctctggcatc 2700 aacctgccac tgctggaccg cacgataccg gactacacca gctttaacac ggtggatgag 2760 tggctagagg ccatcaagat gggccagtac aaggagagct ttgccaacgc cggctttacc 2820 tctttcgacg ttgtatctca gatgatgatg gaggacattc tccgcgttgg ggtcactcta 2880 gctggccacc agaaaaaaat cctgaacagt atccaggtga tgcgggccca gatgaaccag 2940 atccagtctg tagaggtttg a 2961

SEQ ID NO: 145 Mouse ephrin type-B receptor 2 (EPHB2) amino acid sequence, isoform 1 (NP_001277682.1)

MAVRRLGAAL LLLPLLAAVE ETLMDSTTAT AELGWMVHPP SGWEEVSGYD ENMNTIRTYQ 60 VCNVFESSQN NWLRTKFIRR RGAHRIHVEM KFSVRDCSSI PSVPGSCKET FNLYYYEADF 120 DLATKTFPNW MENPWVKVDT IAADESFSQV DLGGRVMKIN TEVRSFGPVS RNGFYLAFQD 180 YGGCMSLIAV RVFYRKCPRI IQNGAIFQET LSGAESTSLV AARGSCIANA EEVDVPIKLY 240 CNGDGEWLVP IGRCMCKAGF EAVENGTVCR GCPSGTFKAN QGDEACTHCP INSRTTSEGA 300 TNCVCRNGYY RADLDPLDMP CTTIPSAPQA VISSVNETSL MLEWTPPRDS GGREDLVYNI 360 ICKSCGSGRG ACTRCGDNVQ YAPRQLGLTE PRIYISDLLA HTQYTFEIQA VNGVTDQSPF 420 SPQFASVNIT TNQAAPSAVS IMHQVSRTVD SITLSWSQPD QPNGVILDYE LQYYEKQELS 480 EYNATAIKSP TNTVTVQGLK AGAIYVFQVR ARTVAGYGRY SGKMYFQTMT EAEYQTSIKE 540 KLPLIVGSSA AGLVFLIAVV VIAIVCNRRG FERADSEYTD KLQHYTSGHM TPGMKIYIDP 600 FTYEDPNEAV REFAKEIDIS CVKIEQVIGA GEFGEVCSGH LKLPGKREIF VAIKTLKSGY 660 TEKQRRDFLS EASIMGQFDH PNVIHLEGVV TKSTPVMIIT EFMENGSLDS FLRQNDGQFT 720 VIQLVGMLRG IAAGMKYLAD MNYVHRDLAA RNILVNSNLV CKVSDFGLSR FLEDDTSDPT 780 YTSALGGKIP IRWTAPEAIQ YRKFTSASDV WSYGIVMWEV MSYGERPYWD MTNQDVINAI 840 EQDYRLPPPM DCPSALHQLM LDCWQKDRNH RPKFGQIVNT LDKMIRNPNS LKAMAPLSSG 900 INLPLLDRTI PDYTSFNTVD EWLEAIKMGQ YKESFANAGF TSFDVVSQMM MEDILRVGVT 960 LAGHQKKILN SIQVMRAQMN QIQSVEV 987

SEQ ID NO: 146 Mouse ephrin type-B receptor 2 (EPHB2) amino acid sequence, isoform 2 (NP_034272.1)

MAVRRLGAAL LLLPLLAAVE ETLMDSTTAT AELGWMVHPP SGWEEVSGYD ENMNTIRTYQ 60 VCNVFESSQN NWLRTKFIRR RGAHRIHVEM KFSVRDCSSI PSVPGSCKET FNLYYYEADF 120 DLATKTFPNW MENPWVKVDT IAADESFSQV DLGGRVMKIN TEVRSFGPVS RNGFYLAFQD 180 CNGDGEWLVP IGRCMCKAGF EAVENGTVCR GCPSGTFKAN QGDEACTHCP INSRTTSEGA 300 TNCVCRNGYY RADLDPLDMP CTTIPSAPQA VISSVNETSL MLEWTPPRDS GGREDLVYNI 360 ICKSCGSGRG ACTRCGDNVQ YAPRQLGLTE PRIYISDLLA HTQYTFEIQA VNGVTDQSPF 420 SPQFASVNIT TNQAAPSAVS IMHQVSRTVD SITLSWSQPD QPNGVILDYE LQYYEKELSE 480 YNATAIKSPT NTVTVQGLKA GAIYVFQVRA RTVAGYGRYS GKMYFQTMTE AEYQTSIKEK 540 LPLIVGSSAA GLVFLIAVVV IAIVCNRRGF ERADSEYTDK LQHYTSGHMT PGMKIYIDPF 600 TYEDPNEAVR EFAKEIDISC VKIEQVIGAG EFGEVCSGHL KLPGKREIFV AIKTLKSGYT 660 EKQRRDFLSE ASIMGQFDHP NVIHLEGVVT KSTPVMIITE FMENGSLDSF LRQNDGQFTV 720 IQLVGMLRGI AAGMKYLADM NYVHRDLAAR NILVNSNLVC KVSDFGLSRF LEDDTSDPTY 780 TSALGGKIPI RWTAPEAIQY RKFTSASDVW SYGIVMWEVM SYGERPYWDM TNQDVINAIE 840 QDYRLPPPMD CPSALHQLML DCWQKDRNHR PKFGQIVNTL DKMIRNPNSL KAMAPLSSGI 900 NLPLLDRTIP DYTSFNTVDE WLEAIKMGQY KESFANAGFT SFDVVSQMMM EDILRVGVTL 960 AGHQKKILNS IQVMRAQMNQ IQSVEV 986 SEQ ID NO: 147 Human gamma-aminobutyric acid type A receptor alpha4 subunit (GABRA4) cDNA, transcript variant 1 (NM_000809.3)

atggtttctg ccaagaaggt acccgcgatc gctctgtccg ccggggtcag tttcgccctc 60 ctgcgcttcc tgtgcctggc ggtttgttta aacgaatccc caggacagaa ccaaaaggag 120 gagaaattgt gcacagaaaa tttcacccgc atcctggaca gtttgctcga tggttatgac 180 aacaggctgc gtcctggatt tgggggtcct gttacagaag tgaaaactga catatatgtc 240 accagctttg gacctgtttc tgatgttgaa atggaataca caatggatgt gttcttcagg 300 cagacatgga ttgacaaaag attaaaatat gacggcccca ttgaaatttt gagattgaac 360 aatatgatgg taacgaaagt gtggacccct gatactttct tcaggaatgg aaagaaatct 420 gtctcacata atatgacagc tccaaataag ctttttagaa ttatgagaaa tggtactatt 480 ttatacacaa tgagactcac cataagtgcg gagtgtccca tgagattggt ggattttccc 540 atggatggtc atgcatgccc tttgaaattc gggagttatg cctatccaaa gagtgagatg 600 atctatacct ggacaaaagg tcctgagaaa tcagttgaag ttccgaagga gtcttccagc 660 ttagttcaat atgatttgat tgggcaaacc gtatcaagtg aaaccatcaa atcaattacg 720 ggtgaatata ttgttatgac ggtttacttc cacctcagac ggaagatggg ttattttatg 780 attcagacct atattccgtg cattatgaca gtgattcttt ctcaagtttc attttggata 840 aataaagaat cagttcccgc taggactgta tttggaataa caactgtcct caccatgacc 900 acactaagca tcagtgcacg acattctttg cccaaagtgt cctatgctac cgccatggac 960 tggttcatag ctgtctgctt tgcttttgta ttttcggccc ttatcgagtt tgctgctgtc 1020 aactatttca ccaatattca aatggaaaaa gccaaaagga agacatcaaa gccccctcag 1080 gaagttcccg ctgctccagt gcagagagag aagcatcctg aagcccctct gcagaataca 1140 aatgccaatt tgaacatgag aaaaagaaca aatgctttgg ttcactctga atctgatgtt 1200 ggcaacagaa ctgaggtggg aaaccattca agcaaatctt ccacagttgt tcaagaatct 1260 tctaaaggca cacctcggtc ttacttagct tccagtccaa acccattcag ccgtgcaaat 1320 gcagctgaaa ccatatctgc agcaagagca cttccatctg cttctcctac ttctatccga 1380 actggatata tgcctcgaaa ggcttcagtt ggatctgctt ctactcgtca cgtgtttgga 1440 tcaagactgc agaggataaa gaccacagtt aataccatag gggctactgg gaagttgtca 1500 gctactcctc ctccatcggc tccaccacct tctggatctg gcacaagtaa aatagacaaa 1560 tatgcccgta ttctctttcc agtcacattt ggggcattta acatggttta ttgggttgtt 1620 tatttatcta aggacactat ggagaaatca gaaagtctaa tgtaa 1665 SEQ ID NO: 148 Human gamma-aminobutyric acid type A receptor alpha4 subunit (GABRA4) cDNA, transcript variant 2 (NM_001204266.1)

atgttgcaaa gatggtttct gccaagaagt ttaaacgaat ccccaggaca gaaccaaaag 60 gaggagaaat tgtgcacaga aaatttcacc cgcatcctgg acagtttgct cgatggttat 120 gacaacaggc tgcgtcctgg atttgggggt cctgttacag aagtgaaaac tgacatatat 180 gtcaccagct ttggacctgt ttctgatgtt gaaatggaat acacaatgga tgtgttcttc 240 aggcagacat ggattgacaa aagattaaaa tatgacggcc ccattgaaat tttgagattg 300 aacaatatga tggtaacgaa agtgtggacc cctgatactt tcttcaggaa tggaaagaaa 360 tctgtctcac ataatatgac agctccaaat aagcttttta gaattatgag aaatggtact 420 attttataca caatgagact caccataagt gcggagtgtc ccatgagatt ggtggatttt 480 cccatggatg gtcatgcatg ccctttgaaa ttcgggagtt atgcctatcc aaagagtgag 540 atgatctata cctggacaaa aggtcctgag aaatcagttg aagttccgaa ggagtcttcc 600 agcttagttc aatatgattt gattgggcaa accgtatcaa gtgaaaccat caaatcaatt 660 acgggtgaat atattgttat gacggtttac ttccacctca gacggaagat gggttatttt 720 atgattcaga cctatattcc gtgcattatg acagtgattc tttctcaagt ttcattttgg 780 ataaataaag aatcagttcc cgctaggact gtatttggaa taacaactgt cctcaccatg 840 accacactaa gcatcagtgc acgacattct ttgcccaaag tgtcctatgc taccgccatg 900 gactggttca tagctgtctg ctttgctttt gtattttcgg cccttatcga gtttgctgct 960 gtcaactatt tcaccaatat tcaaatggaa aaagccaaaa ggaagacatc aaagccccct 1020 caggaagttc ccgctgctcc agtgcagaga gagaagcatc ctgaagcccc tctgcagaat 1080 acaaatgcca atttgaacat gagaaaaaga acaaatgctt tggttcactc tgaatctgat 1140 gttggcaaca gaactgaggt gggaaaccat tcaagcaaat cttccacagt tgttcaagaa 1200 tcttctaaag gcacacctcg gtcttactta gcttccagtc caaacccatt cagccgtgca 1260 aatgcagctg aaaccatatc tgcagcaaga gcacttccat ctgcttctcc tacttctatc 1320 cgaactggat atatgcctcg aaaggcttca gttggatctg cttctactcg tcacgtgttt 1380 ggatcaagac tgcagaggat aaagaccaca gttaatacca taggggctac tgggaagttg 1440 tcagctactc ctcctccatc ggctccacca ccttctggat ctggcacaag taaaatagac 1500 aaatatgccc gtattctctt tccagtcaca tttggggcat ttaacatggt ttattgggtt 1560 gtttatttat ctaaggacac tatggagaaa tcagaaagtc taatgtaa 1608 SEQ ID NO: 149 Human gamma-aminobutyric acid type A receptor alpha4 subunit (GABRA4) cDNA, transcript variant 3 (NM_001204267.1)

atgttgcaaa gatggtttct gccaagaagt ttaaacgaat ccccaggaca gaaccaaaag 60 gaggagaaat tgtgcacaga aaatttcacc cgcatcctgg acagtttgct cgatggttat 120 gacaacaggc tgcgtcctgg atttgggggt cctgttacag aagtgaaaac tgacatatat 180 gtcaccagct ttggacctgt ttctgatgtt gaaatggaat acacaatgga tgtgttcttc 240 aggcagacat ggattgacaa aagattaaaa tatgacggcc ccattgaaat tttgagattg 300 aacaatatga tggtaacgaa agtgtggacc cctgatactt tcttcaggaa tggaaagaaa 360 tctgtctcac ataatatgac agctccaaat aagcttttta gaattatgag aaatggtact 420 attttataca caatgagact caccataagt gcggagtgtc ccatgagatt ggtggatttt 480 cccatggatg gtcatgcatg ccctttgaaa ttcgggagtt atgcctatcc aaagagtgag 540 atgatctata cctggacaaa aggtcctgag aaatcagttg aagttccgaa ggagtcttcc 600 agcttagttc aatatgattt gattgggcaa accgtatcaa gtgaaaccat caaatcaatt 660 acgggaataa caactgtcct caccatgacc acactaagca tcagtgcacg acattctttg 720 cccaaagtgt cctatgctac cgccatggac tggttcatag ctgtctgctt tgcttttgta 780 ttttcggccc ttatcgagtt tgctgctgtc aactatttca ccaatattca aatggaaaaa 840 gccaaaagga agacatcaaa gccccctcag gaagttcccg ctgctccagt gcagagagag 900 aagcatcctg aagcccctct gcagaataca aatgccaatt tgaacatgag aaaaagaaca 960 aatgctttgg ttcactctga atctgatgtt ggcaacagaa ctgaggtggg aaaccattca 1020 agcaaatctt ccacagttgt tcaagaatct tctaaaggca cacctcggtc ttacttagct 1080 tccagtccaa acccattcag ccgtgcaaat gcagctgaaa ccatatctgc agcaagagca 1140 cttccatctg cttctcctac ttctatccga actggatata tgcctcgaaa ggcttcagtt 1200 ggatctgctt ctactcgtca cgtgtttgga tcaagactgc agaggataaa gaccacagtt 1260 aataccatag gggctactgg gaagttgtca gctactcctc ctccatcggc tccaccacct 1320 tctggatctg gcacaagtaa aatagacaaa tatgcccgta ttctctttcc agtcacattt 1380 ggggcattta acatggttta ttgggttgtt tatttatcta aggacactat ggagaaatca 1440 gaaagtctaa tgtaa 1455 SEQ ID NO: 150 Human gamma-aminobutyric acid type A receptor alpha4 subunit (GABRA4) amino acid sequence, isoform 1 (NP_000800.2)

MVSAKKVPAI ALSAGVSFAL LRFLCLAVCL NESPGQNQKE EKLCTENFTR ILDSLLDGYD 60 NRLRPGFGGP VTEVKTDIYV TSFGPVSDVE MEYTMDVFFR QTWIDKRLKY DGPIEILRLN 120 NMMVTKVWTP DTFFRNGKKS VSHNMTAPNK LFRIMRNGTI LYTMRLTISA ECPMRLVDFP 180 MDGHACPLKF GSYAYPKSEM IYTWTKGPEK SVEVPKESSS LVQYDLIGQT VSSETIKSIT 240 GEYIVMTVYF HLRRKMGYFM IQTYIPCIMT VILSQVSFWI NKESVPARTV FGITTVLTMT 300 TLSISARHSL PKVSYATAMD WFIAVCFAFV FSALIEFAAV NYFTNIQMEK AKRKTSKPPQ 360 EVPAAPVQRE KHPEAPLQNT NANLNMRKRT NALVHSESDV GNRTEVGNHS SKSSTVVQES 420 SKGTPRSYLA SSPNPFSRAN AAETISAARA LPSASPTSIR TGYMPRKASV GSASTRHVFG 480 SRLQRIKTTV NTIGATGKLS ATPPPSAPPP SGSGTSKIDK YARILFPVTF GAFNMVYWVV 540 YLSKDTMEKS ESLM 554 SEQ ID NO: 151 Human gamma-aminobutyric acid type A receptor alpha4 subunit (GABRA4) amino acid sequence, isoform 2 (NP_001191195.1)

MLQRWFLPRS LNESPGQNQK EEKLCTENFT RILDSLLDGY DNRLRPGFGG PVTEVKTDIY 60 VTSFGPVSDV EMEYTMDVFF RQTWIDKRLK YDGPIEILRL NNMMVTKVWT PDTFFRNGKK 120 SVSHNMTAPN KLFRIMRNGT ILYTMRLTIS AECPMRLVDF PMDGHACPLK FGSYAYPKSE 180 MIYTWTKGPE KSVEVPKESS SLVQYDLIGQ TVSSETIKSI TGEYIVMTVY FHLRRKMGYF 240 MIQTYIPCIM TVILSQVSFW INKESVPART VFGITTVLTM TTLSISARHS LPKVSYATAM 300 DWFIAVCFAF VFSALIEFAA VNYFTNIQME KAKRKTSKPP QEVPAAPVQR EKHPEAPLQN 360 TNANLNMRKR TNALVHSESD VGNRTEVGNH SSKSSTVVQE SSKGTPRSYL ASSPNPFSRA 420 NAAETISAAR ALPSASPTSI RTGYMPRKAS VGSASTRHVF GSRLQRIKTT VNTIGATGKL 480 SATPPPSAPP PSGSGTSKID KYARILFPVT FGAFNMVYWV VYLSKDTMEK SESLM 535 SEQ ID NO: 152 Human gamma-aminobutyric acid type A receptor alpha4 subunit (GABRA4) amino acid sequence, isoform 3 (NP 001191196.1) MLQRWFLPRS LNESPGQNQK EEKLCTENFT RILDSLLDGY DNRLRPGFGG PVTEVKTDIY 60 VTSFGPVSDV EMEYTMDVFF RQTWIDKRLK YDGPIEILRL NNMMVTKVWT PDTFFRNGKK 120 SVSHNMTAPN KLFRIMRNGT ILYTMRLTIS AECPMRLVDF PMDGHACPLK FGSYAYPKSE 180 MIYTWTKGPE KSVEVPKESS SLVQYDLIGQ TVSSETIKSI TGITTVLTMT TLSISARHSL 240 PKVSYATAMD WFIAVCFAFV FSALIEFAAV NYFTNIQMEK AKRKTSKPPQ EVPAAPVQRE 300 KHPEAPLQNT NANLNMRKRT NALVHSESDV GNRTEVGNHS SKSSTVVQES SKGTPRSYLA 360 SSPNPFSRAN AAETISAARA LPSASPTSIR TGYMPRKASV GSASTRHVFG SRLQRIKTTV 420 NTIGATGKLS ATPPPSAPPP SGSGTSKIDK YARILFPVTF GAFNMVYWVV YLSKDTMEKS 480 ESLM 484 SEQ ID NO: 153 Mouse gamma-aminobutyric acid type A receptor alpha4 subunit (GABRA4) cDNA (NM_010251.2)

atggtttctg tccagaaggt acccgcgatt gcgctgtgct ccggggtcag cctcgccctc 60 ctgcacttcc tgtgcctggc ggcttgttta aacgaatccc caggacagaa ctcaaaggac 120 gagaaattgt gcccggaaaa ttttacccgt attctggaca gtttgctgga tggttatgac 180 aacaggctgc gtcctggatt tgggggtcct gttacagaag tgaaaactga tatatatgtc 240 accagctttg ggcccgtttc tgatgttgaa atggaataca ctatggatgt gttcttcaga 300 cagacatgga ttgacaaaag actaaaatat gacggcccaa ttgaaatctt gaggctgaat 360 aatatgatgg tcaccaaagt ttggacccct gatactttct tcaggaatgg aaagaaatct 420 gtctcacata acatgacagc tccaaataag ctttttagaa ttatgagaaa tggcactatt 480 ttatacacaa tgagactcac cataagtgcg gagtgcccca tgagactggt ggattttcct 540 atggatggtc atgcctgccc tttgaaattt gggagttatg catatcccaa aagtgagatg 600 atctacacct ggaccaaagg ccctgagaag tcagtggagg tgccaaagga gtcttctagc 660 ttagttcaat atgacctcat tgggcagact gtatcaagcg agactatcaa atctattaca 720 ggtgaataca ttgttatgac ggtttacttc cacctcagac ggaagatggg ctactttatg 780 attcagacgt atatcccatg catcatgaca gtgattcttt ctcaagtttc cttctggata 840 aacaaggagt ctgttccagc tagaactgta tttggaataa ccacagtcct cacgatgacc 900 accctaagca tcagtgctcg gcattctttg cccaaagtgt cctatgcgac tgccatggat 960 tggttcatag ctgtctgttt tgcttttgta ttttcggctc ttattgagtt tgctgctgtc 1020 aactatttca ccaacattca aatgcagaaa gccaaaaaga agatatcaaa gcctccccca 1080 gaagttccag ctgctcctgt gctgaaggag aaacacacag aaacatccct tcagaataca 1140 catgccaatt tgaacatgag gaaaagaaca aatgccttgg tccattcaga atcggatgtc 1200 aaaagcagaa ctgaggtggg aaatcactcc agcaagacca gcgctgtcca ggagtcttct 1260 gaagccacgc ctaaggctca cttagcttcc agtccaaatc cattcagcag ggcaaatgca 1320 gctgagacta tgtctgctgc agccagaggt ctttcatctg cagcatcccc ctctcctcat 1380 ggcacattgc ggccagcttc tttggggtca gcttccactc gccctgcatt tggatctaga 1440 cttgggcgaa ttaagacaac agttaataca acaggggctg ctgggaatgt gtcagccaca 1500 cctcctcccc ctgctccacc gccttctgga tctggcacaa gtaaaataga caaatatgct 1560 cgtattctct ttccagtcac atttggagca tttaacatgg tctactgggt tgtttattta 1620 tctaaggaca ccatggagaa atcagaaagt ctaatgtaa 1659 SEQ ID NO: 154 Mouse gamma-aminobutyric acid type A receptor alpha4 subunit (GABRA4) amino acid sequence (NP_034381.1)

MVSVQKVPAI ALCSGVSLAL LHFLCLAACL NESPGQNSKD EKLCPENFTR ILDSLLDGYD 60 NRLRPGFGGP VTEVKTDIYV TSFGPVSDVE MEYTMDVFFR QTWIDKRLKY DGPIEILRLN 120 NMMVTKVWTP DTFFRNGKKS VSHNMTAPNK LFRIMRNGTI LYTMRLTISA ECPMRLVDFP 180 MDGHACPLKF GSYAYPKSEM IYTWTKGPEK SVEVPKESSS LVQYDLIGQT VSSETIKSIT 240 GEYIVMTVYF HLRRKMGYFM IQTYIPCIMT VILSQVSFWI NKESVPARTV FGITTVLTMT 300 TLSISARHSL PKVSYATAMD WFIAVCFAFV FSALIEFAAV NYFTNIQMQK AKKKISKPPP 360 EVPAAPVLKE KHTETSLQNT HANLNMRKRT NALVHSESDV KSRTEVGNHS SKTSAVQESS 420 EATPKAHLAS SPNPFSRANA AETMSAAARG LSSAASPSPH GTLRPASLGS ASTRPAFGSR 480 LGRIKTTVNT TGAAGNVSAT PPPPAPPPSG SGTSKIDKYA RILFPVTFGA FNMVYWVVYL 540 SKDTMEKSES LM 552 SEQ ID NO: 155 Human phosphatidylinositol 4-kinase type 2 alpha (PI4K2A), cDNA (NM_018425.3)

atggacgaga cgagcccact agtgtccccc gagcgggccc aacccccgga ctacaccttc 60 ccgtcgggct cgggcgctca ctttccgcag gtgcccgggg gcgcggtccg agtggcggcg 120 gcggccggct cgggcccctc tccgccgggc tcgccgggcc acgaccgcga gcggcagcca 180 ctgttggatc gggcccgggg cgcggcggcc cagggccaga cccaaaccgt ggcggcgcag 240 gcccaggctc tggccgctca ggccgcggcg gcagcccacg ccgctcaggc ccaccgcgag 300 cggaacgagt tcccggagga tcctgagttc gaggcggtgg tgcggcaggc cgagctggcc 360 atcgagcgct gcatctttcc cgagcgcatc taccagggct ccagcggaag ctacttcgtc 420 aaggaccctc aggggaggat cattgctgtc ttcaaaccca agaatgaaga gccctatggg 480 catcttaatc ctaagtggac caagtggctg cagaagctgt gctgtccttg ctgctttggc 540 cgtgactgcc ttgtccttaa ccagggctat ctctcagaag caggggccag cctggtggac 600 caaaaactgg aactcaacat tgttccccgt acaaaggtag tatacctggc cagtgagacc 660 ttcaactata gtgccattga ccgagtgaag tccaggggca agcggcttgc actagagaaa 720 gtgccaaaag ttggacagcg gtttaaccgc atcgggctac caccaaaggt tggttcattc 780 cagctctttg ttgaaggcta caaagatgca gactattggc tgcggcgttt tgaagcagaa 840 cctcttcctg agaacactaa ccggcaacta ctgctccagt ttgagcggtt ggtggtgctg 900 gattacatca tccgcaacac tgatcgaggc aatgacaact ggctgattaa atatgactgt 960 ccaatggata gttctagctc tcgggacaca gactgggtgg tggtgaagga gcctgttatc 1020 aaggtggctg ccatagacaa tgggctggcc ttcccactga agcatcctga ctcctggagg 1080 gcatatcctt tttactgggc ctggttgccc caggcgaaag tcccattttc tcaggagatc 1140 aaagatctga tccttccaaa gatatcggac cctaacttcg tcaaggactt ggaagaggac 1200 ctatatgaac tcttcaagaa agatcctggt ttcgacaggg gccagttcca taagcagatt 1260 gctgtcatgc ggggccagat cttaaatctg acccaggcct tgaaagacaa caagagtccc 1320 ctgcacctcg tccagatgcc acctgtgatt gtcgagacgg cccgttccca ccagcggtct 1380 tctagcgagt cctacacaca gagctttcag agccggaagc ccttcttttc atggtggtag 1440 SEQ ID NO: 156 Human phosphatidylinositol 4-kinase type 2 alpha (PI4K2A) amino acid sequence (NP_060895.1)

MDETSPLVSP ERAQPPDYTF PSGSGAHFPQ VPGGAVRVAA AAGSGPSPPG SPGHDRERQP 60 LLDRARGAAA QGQTQTVAAQ AQALAAQAAA AAHAAQAHRE RNEFPEDPEF EAVVRQAELA 120 IERCIFPERI YQGSSGSYFV KDPQGRIIAV FKPKNEEPYG HLNPKWTKWL QKLCCPCCFG 180 RDCLVLNQGY LSEAGASLVD QKLELNIVPR TKVVYLASET FNYSAIDRVK SRGKRLALEK 240 VPKVGQRFNR IGLPPKVGSF QLFVEGYKDA DYWLRRFEAE PLPENTNRQL LLQFERLVVL 300 DYIIRNTDRG NDNWLIKYDC PMDSSSSRDT DWVVVKEPVI KVAAIDNGLA FPLKHPDSWR 360 AYPFYWAWLP QAKVPFSQEI KDLILPKISD PNFVKDLEED LYELFKKDPG FDRGQFHKQI 420 AVMRGQILNL TQALKDNKSP LHLVQMPPVI VETARSHQRS SSESYTQSFQ SRKPFFSWW 479 SEQ ID NO: 157 Mouse phosphatidylinositol 4-kinase type 2 alpha (PI4K2A) cDNA (NM_145501.2)

atggacgaga cgagcccgct agtgtccccc gagcgggccc aacccccgga gtacaccttc 60 ccgtcgggct ccggagctca ctttccgcaa gtaccggggg gcgcggtccg cgtggcggcg 120 gcggccggct ccggcccgtc accgccgtgc tcgcccggcc acgaccggga gcggcagccc 180 ctgctggacc gggcccgggg cgcggcggcg cagggccaga cccacacggt ggcggtgcag 240 gcccaggccc tggccgccca agcggccgtg gcggcgcacg ccgttcagac ccaccgcgag 300 cggaacgact tcccggagga ccccgagttc gaggtggtgg tgcggcaggc cgaggttgcc 360 atcgagtgca gcatctatcc cgagcgcatc taccagggct ccagtggaag ctacttcgtc 420 aaggactctc aggggagaat cgttgctgtc ttcaaaccca agaatgaaga gccatacggg 480 caccttaacc ctaagtggac caagtggctg cagaagctgt gctgcccctg ctgctttggc 540 cgagactgcc ttgttctcaa ccagggctat ctctcagagg caggggctag cctggtggac 600 caaaaactgg aactcaacat tgtaccacgt acaaaggtag tatacctggc cagtgaaacc 660 ttcaactaca gtgccattga tcgagtaaag tccaggggca agcggcttgc actagagaaa 720 gtgccaaaag ttgggcagcg gtttaaccga atcggcctgc caccaaaggt cgggtcattc 780 cagctcttcg ttgaaggcta caaagatgca gactattggc tgcggcgttt tgaagcagaa 840 cctctccctg agaacacgaa ccgacagctg ctattgcagt ttgagcggtt ggtggtcctg 900 gactacatca tccgcaacac tgaccgaggc aatgacaact ggttgatcaa atatgactgt 960 ccgatggata attctagctg tcgggacaca gattgggtga tggtgaggga gcctgttatc 1020 aaggtggctg ccatagacaa cgggctagct ttcccactga agcatcctga ctcctggagg 1080 gcatatcctt tttactgggc ctggctgcct caggcgaaag tcccgttctc tcaggagatc 1140 aaagatttga ttcttccaaa gatttcagac cctaacttca tcaaggactt ggaggaggac 1200 ctatatgaac tcttcaagag agatcctggc ttcgacaggg gccagttcca taagcagatt 1260 gctgtcatga gaggccagat cctaaatttg acccaggccc tgaaagacaa taagagcccc 1320 ctgcacctcg tccagatgcc acctgtgatt gtcgagacgg cccgctctca ccagcggtct 1380 gcaagcgaat cctacacaca gagctttcag agtcggaagc ccttcttttc atggtggtag 1440 SEQ ID NO: 158 Mouse phosphatidylinositol 4-kinase type 2 alpha (PI4K2A) amino acid sequence (NP_663476.1)

MDETSPLVSP ERAQPPEYTF PSGSGAHFPQ VPGGAVRVAA AAGSGPSPPC SPGHDRERQP 60 LLDRARGAAA QGQTHTVAVQ AQALAAQAAV AAHAVQTHRE RNDFPEDPEF EVVVRQAEVA 120 IECSIYPERI YQGSSGSYFV KDSQGRIVAV FKPKNEEPYG HLNPKWTKWL QKLCCPCCFG 180 RDCLVLNQGY LSEAGASLVD QKLELNIVPR TKVVYLASET FNYSAIDRVK SRGKRLALEK 240 VPKVGQRFNR IGLPPKVGSF QLFVEGYKDA DYWLRRFEAE PLPENTNRQL LLQFERLVVL 300 DYIIRNTDRG NDNWLIKYDC PMDNSSCRDT DWVMVREPVI KVAAIDNGLA FPLKHPDSWR 360 AYPFYWAWLP QAKVPFSQEI KDLILPKISD PNFIKDLEED LYELFKRDPG FDRGQFHKQI 420 AVMRGQILNL TQALKDNKSP LHLVQMPPVI VETARSHQRS ASESYTQSFQ SRKPFFSWW 479 SEQ ID NO: 159 Human phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2), cDNA (NM_005027.3)

atggcgggcc ctgagggctt ccagtaccgc gctctgtacc cgttccgccg ggagcggccg 60 gaggacctgg agctgctgcc cggcgacgtg ctggtagtga gccgggcggc cttgcaggcg 120 ctgggcgtgg ccgagggtgg cgagcgctgc ccacagagcg tgggctggat gcccggcctc 180 aacgagcgca cacggcagcg aggtgacttc cctggcacct atgtggagtt cctggggccc 240 gtggccctgg cccggcccgg ccctcgccca cggggccccc gcccactgcc cgccaggccc 300 cgtgatgggg cccctgagcc aggcctcaca ctccccgact tgcccgagca gttctcccca 360 cctgatgtgg ctccccctct tctggtgaag cttgtggagg ccattgaaag gacagggctg 420 gacagcgaat ctcactaccg cccggagctg cccgcaccgc gtacagactg gtccctgagc 480 gacgtggatc agtgggacac ggcagccctg gctgacggca ttaagagctt cctgctggca 540 ctgcccgcgc cgctcgtgac ccccgaggcc tcggccgagg cgcgccgggc cctgcgggag 600 gccgcggggc ccgtggggcc ggcgctggag ccaccgacgc tgccgctgca ccgcgcgctc 660 acgctgcgct tcctgctcca gcacctgggc cgcgtggccc gccgcgcccc ggccctgggt 720 cccgcggtcc gggccctggg cgccaccttt gggccgctgc tgctgcgcgc gccgccgccg 780 ccgtcctcgc cgccgccagg gggcgctccc gacgggagtg agcccagccc tgacttcccg 840 gcgctgctgg tggagaagct gcttcaggaa cacttggaag agcaggaggt tgcgccccca 900 gcgctgccgc ctaaaccccc caaggcaaag ccggccccca cagtcctggc caatggaggg 960 agcccaccct ccctgcagga tgctgagtgg tactgggggg acatttcaag ggaggaggtg 1020 aacgagaaac tccgggacac tcccgatggc accttcctag tccgagatgc ttctagcaag 1080 atccagggcg agtacacgct gaccctcagg aaaggcggga acaataagct gatcaaggtc 1140 ttccaccgag atgggcacta tggcttctca gagccactca ccttctgctc cgttgtggac 1200 ctcatcaatc actaccgcca cgagtctctg gcccagtaca atgccaagct ggacacacgg 1260 ctcctctacc ctgtgtccaa ataccagcag gaccagattg tcaaggagga cagcgtggag 1320 gcagtgggcg cccagcttaa ggtctatcac cagcagtacc aggacaagag ccgcgagtat 1380 gaccagcttt atgaagagta cacacggacc tcccaggagc tgcagatgaa gcgtactgca 1440 attgaggcct tcaatgagac tatcaagatc tttgaagagc agggccagac tcaagagaaa 1500 tgcagcaagg aatacctgga gcgcttccgg cgtgagggca acgagaaaga gatgcaaagg 1560 atcctgctga actccgagcg gctcaagtcc cgcattgccg agatccatga gagccgcacg 1620 aagctggagc agcagctgcg ggcccaggcc tcggacaaca gagagatcga caagcgcatg 1680 aacagcctca agccggacct catgcagctg cgcaagatcc gagaccagta cctcgtgtgg 1740 ctcacccaga aaggcgcccg gcagaagaaa atcaacgagt ggctggggat taaaaatgag 1800 actgaggacc agtacgcact catggaggac gaggacgatc tcccgcacca cgaggaacgc 1860 acttggtacg tgggcaagat caaccgcacg caggcagagg agatgctgag tggcaagcgg 1920 gatggcacct tcctcatccg cgagagcagc cagcggggct gctacgcctg ctccgtggta 1980 gtggacggcg acaccaagca ctgcgtcatc taccgcacgg ccaccggctt cggcttcgcg 2040 gagccctaca acctgtacgg gtcgctgaag gagctggtgc tgcactacca gcacgcctcg 2100 ctggtgcagc acaacgacgc gctcaccgtc accctggcgc acccagtgcg cgccccgggc 2160 cccggcccgc cgcctgccgc ccgctga 2187 SEQ ID NO: 160 Human phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2) amino acid sequence (NP_005018.1)

MAGPEGFQYR ALYPFRRERP EDLELLPGDV LVVSRAALQA LGVAEGGERC PQSVGWMPGL 60 NERTRQRGDF PGTYVEFLGP VALARPGPRP RGPRPLPARP RDGAPEPGLT LPDLPEQFSP 120 PDVAPPLLVK LVEAIERTGL DSESHYRPEL PAPRTDWSLS DVDQWDTAAL ADGIKSFLLA 180 LPAPLVTPEA SAEARRALRE AAGPVGPALE PPTLPLHRAL TLRFLLQHLG RVARRAPALG 240 PAVRALGATF GPLLLRAPPP PSSPPPGGAP DGSEPSPDFP ALLVEKLLQE HLEEQEVAPP 300 ALPPKPPKAK PAPTVLANGG SPPSLQDAEW YWGDISREEV NEKLRDTPDG TFLVRDASSK 360 IQGEYTLTLR KGGNNKLIKV FHRDGHYGFS EPLTFCSVVD LINHYRHESL AQYNAKLDTR 420 LLYPVSKYQQ DQIVKEDSVE AVGAQLKVYH QQYQDKSREY DQLYEEYTRT SQELQMKRTA 480 IEAFNETIKI FEEQGQTQEK CSKEYLERFR REGNEKEMQR ILLNSERLKS RIAEIHESRT 540 KLEQQLRAQA SDNREIDKRM NSLKPDLMQL RKIRDQYLVW LTQKGARQKK INEWLGIKNE 600 TEDQYALMED EDDLPHHEER TWYVGKINRT QAEEMLSGKR DGTFLIRESS QRGCYACSVV 660 VDGDTKHCVI YRTATGFGFA EPYNLYGSLK ELVLHYQHAS LVQHNDALTV TLAHPVRAPG 720 PGPPPAAR 728 SEQ ID NO: 161 Mouse phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2) cDNA (NM_008841.2)

atggcaggag ccgagggctt ccagtacagg gctgtgtacc cattccgccg ggagcggcct 60 gaagacctgg agctgctccc tggggacctc ctggtggtga gccgggtggc cctacaggca 120 cttggtgtgg ctgatggagg agagcgctgc ccacacaatg tgggctggat gcctggcttc 180 aacgagcgca cccgacagcg aggggacttc cccgggacat acgtggagtt cctaggaccc 240 gtggctctgg ctcgaccagg ccctcgccca cgggggcccc gtccgttgcc cgccaggccc 300 ttggatggat cttctgagtc aggccacata ctcccagacc tggcagagca gttctcccca 360 cctgaccctg ctcccccgat tctggtgaag ctggtggaag ccattgagca agcagagctg 420 gacagtgaat gctacagtaa gccggagctg cccgcaacac ggacagactg gtccctgagt 480 gacttggagc agtgggaccg caccgccttg tatgatgctg ttaagggctt cctgctggcg 540 ttgcctgcag ctgtggtgac ccctgaagct gcagcagagg cgtaccgggc acttcgagag 600 gttgcaggcc ccgtggggct ggtgctggaa cccccaacac tgccgctgca ccaggctctc 660 acactgcgtt tcctgctgca acacctgggt cgtgtggccc gcagagcacc ctcgccagat 720 acagctgtcc atgcactggc cagtgccttc gggccgctac tgctgcgcat acctccgtca 780 gggggcgagg gtgatgggag tgagcctgta cccgacttcc ctgtgctgct gctagagagg 840 ctggtgcagg agcatgtgga ggagcaagac gctgcccccc cagcgctacc acctaagccc 900 tctaaggcaa agccggcacc cacagctctg gccaatggag ggagcccgcc ctcgcttcag 960 gatgcagagt ggtactgggg ggacatctcc agggaagagg tgaatgagag actccgggac 1020 acacctgatg gtaccttctt agtcagagat gcatccagca agatccaagg agagtacacg 1080 ctcaccctca ggaaaggcgg gaacaacaag ttgatcaaag tcttccaccg ggatggtcac 1140 tatggcttct cagagcccct taccttctgc tccgtggtgg aactcatctc ccactaccgc 1200 cacgaatcac tggcccagta caacgccaag ctggacacac gccttctcta ccctgtgtcc 1260 aagtaccaac aagaccaggt ggtgaaggag gacagcatag aggctgtggg cgcccagctc 1320 aaggtctacc accagcagta ccaggacaag agccgcgaat atgaccagct gtatgaagaa 1380 tacacacgga cctcccagga gctgcagatg aagcgcacag ccatagaggc cttcaacgag 1440 accatcaaga tcttcgaaga gcagggccag acacaggaga aatgcagcaa ggagtatttg 1500 gagcgcttcc ggcgagaggg aaatgagaag gagatgcaga ggatcctgct gaactccgag 1560 cgactcaagt ctcgcatcgc ggagatacac gaaagccgca cgaagttgga gcaggatctg 1620 cgggcgcagg cctccgacaa ccgtgagatc gacaagcgca tgaacagcct caaacctgac 1680 ctcatgcagc tgcgcaagat cagggaccag tacctcgtgt ggctcaccca gaaaggtgcc 1740 cgacagagga agatcaacga atggctggga atcaagaacg agactgagga ccagtattca 1800 ctgatggagg atgaggacgc cctcccccac cacgaggagc gcacgtggta cgtgggcaag 1860 atcaaccgca cacaggcgga ggagatgctg agtggcaaac gagacgggac cttcctcatc 1920 cgggagagca gccagcgggg ctgttacgca tgctccgtgg tggtggacgg cgacacgaag 1980 cactgtgtca tctaccgcac agccaccggc ttcggcttcg cagagcccta taacctgtac 2040 gggtccctga aggagctggt gctgcactac cagcacgcat cactcgtgca gcacaatgac 2100 gcacttaccg tcaccctcgc acaccctgtg cgtgcccccg ggcctggccc accgtctgca 2160 gcacgctga 2169 SEQ ID NO: 162 Mouse phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2) amino acid sequence (NP_032867.2)

MAGAEGFQYR AVYPFRRERP EDLELLPGDL LVVSRVALQA LGVADGGERC PHNVGWMPGF 60 NERTRQRGDF PGTYVEFLGP VALARPGPRP RGPRPLPARP LDGSSESGHI LPDLAEQFSP 120 PDPAPPILVK LVEAIEQAEL DSECYSKPEL PATRTDWSLS DLEQWDRTAL YDAVKGFLLA 180 LPAAVVTPEA AAEAYRALRE VAGPVGLVLE PPTLPLHQAL TLRFLLQHLG RVARRAPSPD 240 TAVHALASAF GPLLLRIPPS GGEGDGSEPV PDFPVLLLER LVQEHVEEQD AAPPALPPKP 300 SKAKPAPTAL ANGGSPPSLQ DAEWYWGDIS REEVNERLRD TPDGTFLVRD ASSKIQGEYT 360 LTLRKGGNNK LIKVFHRDGH YGFSEPLTFC SVVELISHYR HESLAQYNAK LDTRLLYPVS 420 KYQQDQVVKE DSIEAVGAQL KVYHQQYQDK SREYDQLYEE YTRTSQELQM KRTAIEAFNE 480 TIKIFEEQGQ TQEKCSKEYL ERFRREGNEK EMQRILLNSE RLKSRIAEIH ESRTKLEQDL 540 RAQASDNREI DKRMNSLKPD LMQLRKIRDQ YLVWLTQKGA RQRKINEWLG IKNETEDQYS 600 LMEDEDALPH HEERTWYVGK INRTQAEEML SGKRDGTFLI RESSQRGCYA CSVVVDGDTK 660 HCVIYRTATG FGFAEPYNLY GSLKELVLHY QHASLVQHND ALTVTLAHPV RAPGPGPPSA 720 AR 722 SEQ ID NO: 163 Human cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) cDNA, transcript variant 1 (NM_001039523.2)

atggagccct ggcctctcct cctgctcttt agcctttgct cagctggcct cgtcctgggc 60 tccgaacatg agacccgtct ggtggcaaag ctatttaaag actacagcag cgtggtgcgg 120 ccagtggaag accaccgcca ggtcgtggag gtcaccgtgg gcctgcagct gatacagctc 180 atcaatgtgg atgaagtaaa tcagatcgtg acaaccaatg tgcgtctgaa acagggtgac 240 atggtagatc tgccacgccc cagctgcgtg actttgggag ttcctttgtt ttctcatctg 300 cagaatgagc aatgggtgga ttacaaccta aaatggaatc cagatgacta tggcggtgtg 360 aaaaaaattc acattccttc agaaaagatc tggcgcccag accttgttct ctataacaat 420 gcagatggtg actttgctat tgtcaagttc accaaagtgc tcctgcagta cactggccac 480 atcacgtgga cacctccagc catctttaaa agctactgtg agatcatcgt cacccacttt 540 ccctttgatg aacagaactg cagcatgaag ctgggcacct ggacctacga cggctctgtc 600 gtggccatca acccggaaag cgaccagcca gacctgagca acttcatgga gagcggggag 660 tgggtgatca aggagtcccg gggctggaag cactccgtga cctattcctg ctgccccgac 720 accccctacc tggacatcac ctaccacttc gtcatgcagc gcctgcccct ctacttcatc 780 gtcaacgtca tcatcccctg cctgctcttc tccttcttaa ctggcctggt attctacctg 840 cccacagact caggggagaa gatgactctg agcatctctg tcttactgtc tttgactgtg 900 ttccttctgg tcatcgtgga gctgatcccc tccacgtcca gtgctgtgcc cttgattgga 960 aaatacatgc tgttcaccat ggtgttcgtc attgcctcca tcatcatcac tgtcatcgtc 1020 atcaacacac accaccgctc acccagcacc catgtcatgc ccaactgggt gcggaaggtt 1080 tttatcgaca ctatcccaaa tatcatgttt ttctccacaa tgaaaagacc atccagagaa 1140 aagcaagaca aaaagatttt tacagaagac attgatatct ctgacatttc tggaaagcca 1200 gggcctccac ccatgggctt ccactctccc ctgatcaaac accccgaggt gaaaagtgcc 1260 atcgagggca tcaagtacat cgcagagacc atgaagtcag accaggagtc taacaatgcg 1320 gcggcagagt ggaagtacgt tgcaatggtg atggaccaca tactcctcgg agtcttcatg 1380 cttgtttgca tcatcggaac cctagccgtg tttgcaggtc gactcattga attaaatcag 1440 caaggatga 1449

SEQ ID NO: 164 Human cholinergic receptor nicotinic alpha 1 subunit

(CHRNA1) cDNA, transcript variant 2 (NM_000079.3)

atggagccct ggcctctcct cctgctcttt agcctttgct cagctggcct cgtcctgggc 60 tccgaacatg agacccgtct ggtggcaaag ctatttaaag actacagcag cgtggtgcgg 120 ccagtggaag accaccgcca ggtcgtggag gtcaccgtgg gcctgcagct gatacagctc 180 atcaatgtgg atgaagtaaa tcagatcgtg acaaccaatg tgcgtctgaa acagcaatgg 240 gtggattaca acctaaaatg gaatccagat gactatggcg gtgtgaaaaa aattcacatt 300 ccttcagaaa agatctggcg cccagacctt gttctctata acaatgcaga tggtgacttt 360 gctattgtca agttcaccaa agtgctcctg cagtacactg gccacatcac gtggacacct 420 ccagccatct ttaaaagcta ctgtgagatc atcgtcaccc actttccctt tgatgaacag 480 aactgcagca tgaagctggg cacctggacc tacgacggct ctgtcgtggc catcaacccg 540 gaaagcgacc agccagacct gagcaacttc atggagagcg gggagtgggt gatcaaggag 600 tcccggggct ggaagcactc cgtgacctat tcctgctgcc ccgacacccc ctacctggac 660 atcacctacc acttcgtcat gcagcgcctg cccctctact tcatcgtcaa cgtcatcatc 720 ccctgcctgc tcttctcctt cttaactggc ctggtattct acctgcccac agactcaggg 780 gagaagatga ctctgagcat ctctgtctta ctgtctttga ctgtgttcct tctggtcatc 840 gtggagctga tcccctccac gtccagtgct gtgcccttga ttggaaaata catgctgttc 900 accatggtgt tcgtcattgc ctccatcatc atcactgtca tcgtcatcaa cacacaccac 960 cgctcaccca gcacccatgt catgcccaac tgggtgcgga aggtttttat cgacactatc 1020 ccaaatatca tgtttttctc cacaatgaaa agaccatcca gagaaaagca agacaaaaag 1080 atttttacag aagacattga tatctctgac atttctggaa agccagggcc tccacccatg 1140 ggcttccact ctcccctgat caaacacccc gaggtgaaaa gtgccatcga gggcatcaag 1200 tacatcgcag agaccatgaa gtcagaccag gagtctaaca atgcggcggc agagtggaag 1260 tacgttgcaa tggtgatgga ccacatactc ctcggagtct tcatgcttgt ttgcatcatc 1320 ggaaccctag ccgtgtttgc aggtcgactc attgaattaa atcagcaagg atga 1374

SEQ ID NO: 165 Human cholinergic receptor nicotinic alpha 1 subunit

(CHRNA1) amino acid sequence, isoform a (NP_001034612.1)

MEPWPLLLLF SLCSAGLVLG SEHETRLVAK LFKDYSSVVR PVEDHRQVVE VTVGLQLIQL 60 INVDEVNQIV TTNVRLKQGD MVDLPRPSCV TLGVPLFSHL QNEQWVDYNL KWNPDDYGGV 120 KKIHIPSEKI WRPDLVLYNN ADGDFAIVKF TKVLLQYTGH ITWTPPAIFK SYCEIIVTHF 180 PFDEQNCSMK LGTWTYDGSV VAINPESDQP DLSNFMESGE WVIKESRGWK HSVTYSCCPD 240 TPYLDITYHF VMQRLPLYFI VNVIIPCLLF SFLTGLVFYL PTDSGEKMTL SISVLLSLTV 300 FLLVIVELIP STSSAVPLIG KYMLFTMVFV IASIIITVIV INTHHRSPST HVMPNWVRKV 360 FIDTIPNIMF FSTMKRPSRE KQDKKIFTED IDISDISGKP GPPPMGFHSP LIKHPEVKSA 420 IEGIKYIAET MKSDQESNNA AAEWKYVAMV MDHILLGVFM LVCIIGTLAV FAGRLIELNQ 480 QG 482

SEQ ID NO: 166 Human cholinergic receptor nicotinic alpha 1 subunit

(CHRNA1) amino acid sequence, isoform b (NP_000070.1)

MEPWPLLLLF SLCSAGLVLG SEHETRLVAK LFKDYSSVVR PVEDHRQVVE VTVGLQLIQL 60 INVDEVNQIV TTNVRLKQQW VDYNLKWNPD DYGGVKKIHI PSEKIWRPDL VLYNNADGDF 120 AIVKFTKVLL QYTGHITWTP PAIFKSYCEI IVTHFPFDEQ NCSMKLGTWT YDGSVVAINP 180 ESDQPDLSNF MESGEWVIKE SRGWKHSVTY SCCPDTPYLD ITYHFVMQRL PLYFIVNVII 240 PCLLFSFLTG LVFYLPTDSG EKMTLSISVL LSLTVFLLVI VELIPSTSSA VPLIGKYMLF 300 TMVFVIASII ITVIVINTHH RSPSTHVMPN WVRKVFIDTI PNIMFFSTMK RPSREKQDKK 360 IFTEDIDISD ISGKPGPPPM GFHSPLIKHP EVKSAIEGIK YIAETMKSDQ ESNNAAAEWK 420 YVAMVMDHIL LGVFMLVCII GTLAVFAGRL IELNQQG 457

SEQ ID NO: 167 Mouse cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) cDNA (NM_007389.5)

t t t t tt t t t t t t t t t t tt t 60 tccgaacatg agacgcgtct ggtggcaaag ctctttgaag actacagcag tgtagtccgg 120 ccagtggagg accaccgtga gattgtacaa gtcaccgtgg gtctacagct gatccagctt 180 atcaatgtgg atgaagtaaa tcagattgtg acaaccaatg tacgtctgaa acagcaatgg 240 gtcgattaca acttgaaatg gaatccagat gactatggag gagtgaaaaa aattcacatc 300 ccctcggaaa agatctggcg gccggacgtc gttctctata acaacgcaga cggcgacttt 360 gccattgtca aattcaccaa ggtgctcctg gactacaccg gccacatcac ctggacaccg 420 ccagccatct ttaaaagcta ctgtgagatc attgtcactc actttccctt cgatgagcag 480 aactgcagca tgaagctggg cacctggacc tatgacggct ctgtggtggc cattaacccg 540 gaaagtgacc agcccgacct gagtaacttc atggagagcg gggagtgggt gatcaaggaa 600 gctcggggct ggaagcactg ggtgttctac tcctgctgcc ccaccactcc ctacctggac 660 atcacctacc acttcgtcat gcagcgcctg cccctctact tcattgtcaa cgtcatcatt 720 ccctgcctgc tcttctcctt cttaaccagc ctggtgttct acctgcccac agactcaggg 780 gagaagatga cgctgagcat ctctgtctta ctgtccctga ccgtgttcct tctggtcatt 840 gtggagctaa tcccttccac ctccagcgct gtgcccctga tcgggaagta tatgttgttc 900 accatggtct ttgtcattgc gtccatcatc atcaccgtca tcgtcatcaa cacacaccac 960 cgttcgccca gcacccacat catgcccgag tgggtgcgga aggtttttat cgacactatc 1020 ccaaacatca tgtttttctc cacaatgaaa agaccatcca gagataaaca agagaaaagg 1080 atttttacag aagacataga tatatctgac atctctggga agccgggtcc tccacctatg 1140 ggctttcact ctccgctgat caagcaccct gaggtgaaaa gcgccatcga gggcgtgaag 1200 tacattgcag agaccatgaa gtcagaccag gagtccaata acgccgctga ggaatggaag 1260 tatgttgcca tggtgatgga tcacatcctc ctcggagtct ttatgctggt gtgtctcatc 1320 gggacgctgg ctgtgtttgc aggtcggctc attgagttac atcaacaagg atga 1374

SEQ ID NO: 168 Mouse cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) amino acid sequence (NP_031415.2)

MELSTVLLLL GLCSAGLVLG SEHETRLVAK LFEDYSSVVR PVEDHREIVQ VTVGLQLIQL 60 INVDEVNQIV TTNVRLKQQW VDYNLKWNPD DYGGVKKIHI PSEKIWRPDV VLYNNADGDF 120 AIVKFTKVLL DYTGHITWTP PAIFKSYCEI IVTHFPFDEQ NCSMKLGTWT YDGSVVAINP 180 ESDQPDLSNF MESGEWVIKE ARGWKHWVFY SCCPTTPYLD ITYHFVMQRL PLYFIVNVII 240 PCLLFSFLTS LVFYLPTDSG EKMTLSISVL LSLTVFLLVI VELIPSTSSA VPLIGKYMLF 300 TMVFVIASII ITVIVINTHH RSPSTHIMPE WVRKVFIDTI PNIMFFSTMK RPSRDKQEKR 360 IFTEDIDISD ISGKPGPPPM GFHSPLIKHP EVKSAIEGVK YIAETMKSDQ ESNNAAEEWK 420 YVAMVMDHIL LGVFMLVCLI GTLAVFAGRL IELHQQG 457

SEQ ID NO: 169 Human N-acetylglucosamine-1-phosphodiester alpha-N- acetylglucosaminidase (NAGPA), cDNA (NM_016256.3)

atggcgacct ccacgggtcg ctggcttctc ctccggcttg cactattcgg cttcctctgg 60 gaagcgtccg gcggcctcga ctcgggggcc tcccgcgacg acgacttgct actgccctat 120 ccacgcgcgc gcgcgcgcct cccccgggac tgcacacggg tgcgcgccgg caaccgcgag 180 cacgagagtt ggcctccgcc tcccgcgact cccggcgccg gcggtctggc cgtgcgcacc 240 ttcgtgtcgc acttcaggga ccgcgcggtg gccggccacc tgacgcgggc cgttgagccc 300 ctgcgcacct tctcggtgct ggagcccggt ggacccggcg gctgcgcggc gagacgacgc 360 gccaccgtgg aggagacggc gcgggcggcc gactgccgtg tcgcccagaa cggcggcttc 420 ttccgcatga actcgggcga gtgcctgggg aacgtggtga gcgacgagcg gcgggtgagc 480 agctccgggg ggctgcagaa cgcgcagttc gggatccgcc gcgacgggac cctggtcacc 540 gggtacctgt ctgaggagga ggtgctggac actgagaacc catttgtgca gctgctgagt 600 ggggtcgtgt ggctgattcg taatggaagc atctacatca acgagagcca agccacagag 660 tgtgacgaga cacaggagac aggttccttt agcaaatttg tgaatgtgat atcagccagg 720 acggccattg gccacgaccg gaaagggcag ctggtgctct ttcatgcaga cggccaaacg 780 gagcagcgtg gcatcaacct gtgggaaatg gcggagttcc tgctgaaaca ggacgtggtc 840 aacgccatca acctggatgg gggtggctct gccacctttg tgctcaacgg gaccttggcc 900 agttacccgt cagatcactg ccaggacaac atgtggcgct gtccccgcca agtgtccacc 960 gtggtgtgtg tgcacgaacc ccgctgccag ccgcctgact gccacggcca cgggacctgc 1020 gtggacgggc actgccaatg caccgggcac ttctggcggg gtcccggctg tgatgagctg 1080 gactgtggcc cctctaactg cagccagcac ggactgtgca cggagaccgg ctgccgctgt 1140 gatgccggat ggaccgggtc caactgcagt gaagagtgtc cccttggctg gcatgggccg 1200 ggctgccaga ggccttgtaa gtgtgagcac cattgtccct gtgaccccaa gactggcaac 1260 tgcagcgtct ccagagtaaa gcagtgtctc cagccacctg aagccaccct gagggcggga 1320 gaactctcct ttttcaccag gaccgcctgg ctagccctca ccctggcgct ggccttcctc 1380 ctgctgatca gcactgcagc aaacctgtcc ttgctcctgt ccagagcaga gaggaaccgg 1440 cgcctgcatg gggactatgc ataccacccg ctgcaggaga tgaacgggga gcctctggcc 1500 gcagagaagg agcagccagg gggcgcccac aaccccttca aggactga 1548

SEQ ID NO: 170 Human N-acetylglucosamine-1-phosphodiester alpha-N- acetylglucosaminidase (NAGPA), amino acid sequence (NP 057340.2) MATSTGRWLL LRLALFGFLW EASGGLDSGA SRDDDLLLPY PRARARLPRD CTRVRAGNRE 60 HESWPPPPAT PGAGGLAVRT FVSHFRDRAV AGHLTRAVEP LRTFSVLEPG GPGGCAARRR 120 ATVEETARAA DCRVAQNGGF FRMNSGECLG NVVSDERRVS SSGGLQNAQF GIRRDGTLVT 180 GYLSEEEVLD TENPFVQLLS GVVWLIRNGS IYINESQATE CDETQETGSF SKFVNVISAR 240 TAIGHDRKGQ LVLFHADGQT EQRGINLWEM AEFLLKQDVV NAINLDGGGS ATFVLNGTLA 300 SYPSDHCQDN MWRCPRQVST VVCVHEPRCQ PPDCHGHGTC VDGHCQCTGH FWRGPGCDEL 360 DCGPSNCSQH GLCTETGCRC DAGWTGSNCS EECPLGWHGP GCQRPCKCEH HCPCDPKTGN 420 CSVSRVKQCL QPPEATLRAG ELSFFTRTAW LALTLALAFL LLISTAANLS LLLSRAERNR 480 RLHGDYAYHP LQEMNGEPLA AEKEQPGGAH NPFKD 515 SEQ ID NO: 171 Mouse N-acetylglucosamine-1-phosphodiester alpha-N- acetylglucosaminidase (NAGPA), cDNA (NM_013796.)

atggcggcgc ccagggggcc cgggctgttc ctcatacccg cgctgctcgg cttactcggg 60 gtggcgtggt gcagcctaag cttcggggtt tcccgcgacg atgacctgct gctgccttac 120 ccactagcgc gcagacgtcc ctcgcgagac tgcgcccggg tgcgctcagg tagcccagag 180 caggagagct ggcctccgcc acccacgaac cccggcgcca gccaccacgc ggccgtgcgc 240 accttcgtgt cgcacttcga ggggcgcgcg gtggccggcc acctgacgcg ggtcgccgat 300 cccctacgca ctttctcggt gctggagccc ggaggagccg ggggctgcgc gcagaagcgc 360 cgcgctactg tggaggacac agccgtcccg gccggttgcc gcatcgctca gaacggtggc 420 ttcttccgca tgagcactgg cgagtgcttg gggaacgtgg tgagcgacgg gcggctggtg 480 agcagctcag ggggactgca gaacgcgcag ttcggtatcc gacgcgatgg aaccatagtc 540 accgggtacc tgtctgagga ggaggttctg gatcccgtga atccgttcgt gcagctgctg 600 agcggagtcg tgtggctcat ccgcaatgga aacatctaca tcaacgagag ccaagccatc 660 gagtgtgacg agacacagga gacaggttct tttagcaaat ttgtgaatgt gatgtcagcc 720 aggacagccg tgggtcatga ccgtgagggg cagcttatcc tcttccatgc tgatggacag 780 acggaacagc gtggccttaa cctatgggag atggcagagt tcctgcgtca acaagatgtc 840 gtcaatgcca tcaacctgga tggaggcggt tctgctactt ttgtgctcaa tgggaccctg 900 gccagttacc cttcagatca ctgccaggac aacatgtggc gctgtccccg ccaagtgtcc 960 actgtggtgt gtgtgcatga accgcgctgc cagccacccg actgcagtgg ccatgggacc 1020 tgtgtggatg gccactgtga atgcaccagc cacttctggc ggggcgaggc ctgcagcgag 1080 ctggactgtg gcccctccaa ctgcagccag catgggctgt gcacagagac tggctgccac 1140 tgtgatgctg ggtggacagg atccaactgc agtgaagagt gtcctctggg ctggtatggg 1200 ccaggttgcc agaggccctg ccagtgtgag caccagtgtt cctgtgaccc gcagactggc 1260 aactgcagca tctcccaagt gaggcagtgt ctccagccaa ctgaggctac gccgagggca 1320 ggagagctgg cctctttcac caggaccacc tggctagccc tcaccctgac actaattttc 1380 ctgctgctga tcagcactgg ggtcaacgtg tccttgttcc tgggctccag ggccgagagg 1440 aaccggcacc tcgacgggga ctatgtgtat cacccactgc aggaggtgaa cggggaagcg 1500 ctgactgcag agaaggagca catggaggaa actagcaacc ccttcaagga ctga 1554 SEQ ID NO: 172 Mouse N-acetylglucosamine-1-phosphodiester alpha-N- acetylglucosaminidase (NAGPA), amino acid sequence (NP_038824.2)

MAAPRGPGLF LIPALLGLLG VAWCSLSFGV SRDDDLLLPY PLARRRPSRD CARVRSGSPE 60 QESWPPPPTN PGASHHAAVR TFVSHFEGRA VAGHLTRVAD PLRTFSVLEP GGAGGCAQKR 120 RATVEDTAVP AGCRIAQNGG FFRMSTGECL GNVVSDGRLV SSSGGLQNAQ FGIRRDGTIV 180 TGYLSEEEVL DPVNPFVQLL SGVVWLIRNG NIYINESQAI ECDETQETGS FSKFVNVMSA 240 RTAVGHDREG QLILFHADGQ TEQRGLNLWE MAEFLRQQDV VNAINLDGGG SATFVLNGTL 300 ASYPSDHCQD NMWRCPRQVS TVVCVHEPRC QPPDCSGHGT CVDGHCECTS HFWRGEACSE 360 LDCGPSNCSQ HGLCTETGCH CDAGWTGSNC SEECPLGWYG PGCQRPCQCE HQCSCDPQTG 420 NCSISQVRQC LQPTEATPRA GELASFTRTT WLALTLTLIF LLLISTGVNV SLFLGSRAER 480 NRHLDGDYVY HPLQEVNGEA LTAEKEHMEE TSNPFKD 517 SEQ ID NO: 173 Human protocadherin beta-15 (PCDHB15) cDNA

(NM_018935.3)

atggagcctg caggggagcg ctttcccgaa caaaggcaag tcctgattct ccttctttta 60 ctggaagtga ctctggcagg ctgggaaccc cgtcgctatt ctgtgatgga ggaaacagag 120 agaggttctt ttgtagccaa cctggccaat gacctagggc tgggagtggg ggagctagcc 180 gagcggggag cccgggtagt ttctgaggat aacgaacaag gcttgcagct tgatctgcag 240 accgggcagt tgatattaaa tgagaagctg gaccgggaga agctgtgtgg ccctactgag 300 ccctgtataa tgcatttcca agtgttactg aaaaaacctt tggaagtatt tcgagctgaa 360 ctactagtga cagacataaa cgatcattct cctgagtttc ctgaaagaga aatgaccctg 420 aaaatcccag aaactagctc ccttgggact gtgtttcctc tgaaaaaagc tcgggacttg 480 gacgtgggca gcaataatgt tcaaaactac aatatttctc ccaattctca tttccatgtt 540 tccactcgca cccgagggga tggcaggaaa tacccagagc tggtgctgga cacagaactg 600 gatcgcgagg agcaggccga gctcagatta accttgacag cggtggacgg tggctctcca 660 t t t t t t tt t tt t t 720 gagtttgtgc aggcgctcta cgaggtgcag gtcccagaga acagcccagt aggctcccta 780 gttgtcaagg tctctgctag ggatttagac actgggacaa atggagagat atcatactcc 840 ctttattaca gctctcagga gatagacaaa ccttttgagc taagcagcct ttcaggagaa 900 attcgactaa ttaaaaaact agattttgag acaatgtctt cgtatgatct agatatagag 960 gcatctgatg gcgggggact ttctggaaaa tgctctgtct ctgttaaggt gctggatgtt 1020 aacgataact tcccggaact aagtatttca tcacttacca gccctattcc cgagaattct 1080 ccagagacag aagtggccct gtttaggatt agagaccgag actctgggga aaatggaaaa 1140 atgatttgct caattcagga tgatgttcct tttaagctaa aaccttctgt tgagaatttc 1200 tacaggctgg taacagaagg ggcgctggac agagagacca gagccgagta caacatcacc 1260 atcaccatca cagacttggg gactccaagg ctgaaaaccg agcagagcat aaccgtgctg 1320 gtgtcggacg tcaatgacaa cgcccccgcc ttcacccaaa cctcctacac cctgttcgtc 1380 cgcgagaaca acagccccgc cctgcacatc ggcagtgtca gcgccacaga cagagactcg 1440 ggcaccaacg cccaggtcac ctactcgctg ctgccgcccc gggacccgca cctgcccctc 1500 acctccctgg tctccattaa cacggacaac ggccacctgt tcgctctcca gtcgctggac 1560 tacgaggccc tgcaggcttt cgagttccgc gtgggcgcca cagaccgcgg cttcccggcg 1620 ctgagcagcg aggcgctggt gcgagtgctg gtgctggacg ccaacgacaa ctcgcccttc 1680 gtgctgtacc cgctgcagaa cggctccgcg ccctgcaccg agctggtgcc ccgggcggcc 1740 gagccgggct acctggtgac caaggtggtg gcggtggacg gcgactcggg ccagaacgcc 1800 tggctgtcgt accagctgct caaggccacg gagcccgggc tgttcggcgt gtgggcgcac 1860 aatggcgagg tgcgcaccgc caggctgctg agcgagcgcg acgtggccaa gcacaggcta 1920 gtggtgctgg tcaaggacaa tggcgagcct ccgcgctcgg ccaccgccac gctgcaagtg 1980 ctcctggtgg acggcttctc tcagccctac ctgccgctcc cagaggcggc cccggcccaa 2040 gcccaggccg actcgcttac cgtctacctg gtggtggcat tggcctcggt gtcttcgctc 2100 ttcctcttct cggtgttcct gttcgtggca gtgcggctgt gcaggaggag cagggcggcc 2160 tcagtgggtc gctgctcggt gcccgagggc ccctttccag ggcatctggt ggacgtgagc 2220 ggcaccggga ccctttccca gagctaccag tacgaggtgt gtctgacggg aggctctgaa 2280 agtaatgatt tcaagttctt gaagcctata ttcccaaata ttgtaagcca ggactctagg 2340 aggaaatcag aatttctaga ataa 2364

SEQ ID NO: 174 Human protocadherin beta-15 (PCDHB15), amino acid sequence (NP_061758.1)

MEPAGERFPE QRQVLILLLL LEVTLAGWEP RRYSVMEETE RGSFVANLAN DLGLGVGELA 60 ERGARVVSED NEQGLQLDLQ TGQLILNEKL DREKLCGPTE PCIMHFQVLL KKPLEVFRAE 120 LLVTDINDHS PEFPEREMTL KIPETSSLGT VFPLKKARDL DVGSNNVQNY NISPNSHFHV 180 STRTRGDGRK YPELVLDTEL DREEQAELRL TLTAVDGGSP PRSGTVQILI LVLDANDNAP 240 EFVQALYEVQ VPENSPVGSL VVKVSARDLD TGTNGEISYS LYYSSQEIDK PFELSSLSGE 300 IRLIKKLDFE TMSSYDLDIE ASDGGGLSGK CSVSVKVLDV NDNFPELSIS SLTSPIPENS 360 PETEVALFRI RDRDSGENGK MICSIQDDVP FKLKPSVENF YRLVTEGALD RETRAEYNIT 420 ITITDLGTPR LKTEQSITVL VSDVNDNAPA FTQTSYTLFV RENNSPALHI GSVSATDRDS 480 GTNAQVTYSL LPPRDPHLPL TSLVSINTDN GHLFALQSLD YEALQAFEFR VGATDRGFPA 540 LSSEALVRVL VLDANDNSPF VLYPLQNGSA PCTELVPRAA EPGYLVTKVV AVDGDSGQNA 600 WLSYQLLKAT EPGLFGVWAH NGEVRTARLL SERDVAKHRL VVLVKDNGEP PRSATATLQV 660 LLVDGFSQPY LPLPEAAPAQ AQADSLTVYL VVALASVSSL FLFSVFLFVA VRLCRRSRAA 720 SVGRCSVPEG PFPGHLVDVS GTGTLSQSYQ YEVCLTGGSE SNDFKFLKPI FPNIVSQDSR 780 RKSEFLE 787

SEQ ID NO: 175 Mouse protocadherin beta-15 (PCDHB15) cDNA (NM_053147.3) atgaagattg gaagggaaca cagaaaaagg caagttctgt tgatctttct cttgctggga 60 gtggttgggg cgggctcgga accccgccgc tactttgtga tggaggaaac acccagtggc 120 actgttttgg cagatctagt ccaggaccta gggctgggag ttgcggagct agctgctcga 180 ggagcccagg tagtctctga ggaaaaggaa tcccgcttgc agctggatct acagactggg 240 aagctaatct taaatgaaaa actggaccgc gaggagctgt gcggctccac tgagccctgt 300 gtcactcatt tccaagtgtt actgaaaaaa ccactggaaa tatttcaagc tgagctacga 360 gtaggagaca ttaatgatca ttctcctgag tttcctgaaa gagaaatggc cgtgaaaatc 420 atagagaata gccctgttgg cactgcgttt ctactcaaaa cagctcagga tttggatgtg 480 ggaaataaca gcgttcagaa ctataagatt ggtaccaatt ctcatttcca tgtttccatc 540 cgcaaccgag gtgatggaag aaaataccca gagctggtgc tggacaagga gctcgatcgc 600 gaggtgcagg cagcgttcag attaactctg acagcgctag atggcggttc tccgcccagg 660 actggcacct cgcaaatccg cattgttgtc ttggatgtca atgacaatgc ccctgagttt 720 gcacaggctt tctaccgggt gcaaattcca gagaacagtc cctcgggttc catggttgct 780 aaggtctctg ctaaggattt agacactggg acaaatggag aggtatcata ctctcttttt 840 cacagttctc aggaaatgag caaaactttt gagctaaacg ccctgtcagg agaagttcga 900 ctaatcaaaa cactggactt tgagacaaca ccttcatatg aactagacat agaggcaact 960 gatggcgggg gtctttctgg aaaatgctct gtttctattc aggtggtgga tgtcaacgat 1020 aattacccag aactaattat atcatcgctc accaatccaa tcccagaaaa ttcaccagag 1080 acagaggtgg ctctgtttcg gattcgagac cgagactctg gagagaatgg aaggacaatt 1140 tgttccatcc aggatggtgt tccctttaca ctggaacctt ccgttgagaa cttctataga 1200 ctggtgacag atggagctct ggacagagag atcagagctg agtacaacat tactatctcc 1260 gtcaccgacc tgggcatacc caagctcaca acccagcaca ccataacagt gcaggtgtcc 1320 gacatcaacg acaatgcccc cgcctttacc caagtctcct acaccatgct cgtccacgag 1380 aacaacagcc cagccctgca cataggcacc atcagcgcca cagactcaga ctcaggctcc 1440 aatgcccaca tcacctactc gttgctgccg gcccaggagc cacagctggc cctcaactca 1500 ctcatctcca tcaacgctga caacgggcag ctgttcgcgc tcagggcgct ggactacgag 1560 gccctgcagg ccttcgagtt ccacgtgagt gccacagacc gaggctcacc agcgctcagc 1620 agccaggctc tggtgcgcat agtggtgctg gacgacaatg acaatgcgcc cttcgtgctc 1680 tacccgatgc agaatgcctc tgcgccctgc acagagctgc tgcccagggc ggcagagccc 1740 ggctacctgg tcaccaaggt ggtggctgtg gatcgcgact ctggccagaa tgcctggctg 1800 tcgttccagc tgctcaaggc tacagagccc gggttgttca gcgtgtgggc gcacaatggt 1860 gaggtgcgca ccaccaggct gttgagtgag cgagatgtac ccaagcacag gctgctgctg 1920 gtggtcaagg acaatggaga gcctccgcgc tctgctagcg tcacactgca ggtgctaatg 1980 gtggatggct tctctcagcc ctacctgcct ctgccagagg tggtgcgcga ccccagtcac 2040 caggaaggtg atgtgctcac gctgtacctg gtcatagcct tggcttctgt gtcttctctc 2100 ttcctcttgt ctgtgctgct gtttgtgggg gtgaggctgt gcaggagggc cagggaggtc 2160 tctctgggtg gctgctctgt gcctgaggga cactttcctg gccacctggt ggatgtcagc 2220 ggggcaggga ccctgtctca gagctaccag tatgaggtgt gtcttacagg agattctcag 2280 agtaatgagt tcaaattctt gaagcctgtg ttttctggta ttgtagacca aaactatggt 2340 aggcaaccag atgatcagtc cttctcaagt gttttaggta tgtga 2385

SEQ ID NO: 176 Mouse protocadherin beta-15 (PCDHB15), amino acid sequence (NP_444377.3)

MKIGREHRKR QVLLIFLLLG VVGAGSEPRR YFVMEETPSG TVLADLVQDL GLGVAELAAR 60 GAQVVSEEKE SRLQLDLQTG KLILNEKLDR EELCGSTEPC VTHFQVLLKK PLEIFQAELR 120 VGDINDHSPE FPEREMAVKI IENSPVGTAF LLKTAQDLDV GNNSVQNYKI GTNSHFHVSI 180 RNRGDGRKYP ELVLDKELDR EVQAAFRLTL TALDGGSPPR TGTSQIRIVV LDVNDNAPEF 240 AQAFYRVQIP ENSPSGSMVA KVSAKDLDTG TNGEVSYSLF HSSQEMSKTF ELNALSGEVR 300 LIKTLDFETT PSYELDIEAT DGGGLSGKCS VSIQVVDVND NYPELIISSL TNPIPENSPE 360 TEVALFRIRD RDSGENGRTI CSIQDGVPFT LEPSVENFYR LVTDGALDRE IRAEYNITIS 420 VTDLGIPKLT TQHTITVQVS DINDNAPAFT QVSYTMLVHE NNSPALHIGT ISATDSDSGS 480 NAHITYSLLP AQEPQLALNS LISINADNGQ LFALRALDYE ALQAFEFHVS ATDRGSPALS 540 SQALVRIVVL DDNDNAPFVL YPMQNASAPC TELLPRAAEP GYLVTKVVAV DRDSGQNAWL 600 SFQLLKATEP GLFSVWAHNG EVRTTRLLSE RDVPKHRLLL VVKDNGEPPR SASVTLQVLM 660 VDGFSQPYLP LPEVVRDPSH QEGDVLTLYL VIALASVSSL FLLSVLLFVG VRLCRRAREV 720 SLGGCSVPEG HFPGHLVDVS GAGTLSQSYQ YEVCLTGDSQ SNEFKFLKPV FSGIVDQNYG 780 RQPDDQSFSS VLGM 794

SEQ ID NO: 177 Human uracil phosphoribosyltransferase (UPRT) cDNA, transcript variant 1 (NM_145052.3)

atggccacgg agttacagtg tccggactcc atgccctgtc acaaccagca agtaaactct 60 gcctcaaccc caagtcccga gcagctgcga cctggcgatc tgatcctgga ccacgcaggg 120 ggaaacagag cctccagggc caaggtgatt ctcctcacgg ggtacgccca ttctagcctg 180 ccggccgagc tggactctgg ggcctgcggc ggctccagcc tcaactcaga gggcaacagt 240 ggtagtggtg acagtagcag ctatgacgca ccagctggca actccttcct agaggactgc 300 gaactctccc ggcagatcgg ggcgcagctt aagctgctgc ctatgaatga tcagatacgg 360 gagctacaga ccatcatccg tgacaagaca gccagtagag gtgacttcat gttttctgcg 420 gatcgtttga tcagacttgt tgtggaagag ggattgaatc agctgccata taaagaatgc 480 atggtgacca ctccaacagg gtacaagtat gaaggagtga aatttgagaa gggaaattgt 540 ggggtcagca taatgagaag cggtgaggca atggaacaag gtttacgaga ctgctgtcga 600 tccatacgaa ttggaaagat cctgattcag agtgatgagg agacacaaag agccaaagta 660 tattatgcca aattcccccc agacatttac cggagaaaag tccttctgat gtatccaatt 720 ctcagcactg gaaatactgt aattgaagct gtaaaggttc ttatagaaca tggagttcaa 780 cccagtgtta tcatcctact cagtctgttc tccactcctc atggtgccaa atcaatcatt 840 caggagtttc cagagatcac aattttaact actgaagttc atcctgttgc acctacacat 900 tttggacaga aatactttgg aacagactaa 930

SEQ ID NO: 178 Human uracil phosphoribosyltransferase (UPRT) cDNA, transcript variant 3 (NM_001307944.1)

atggccacgg agttacagtg tccggactcc atgccctgtc acaaccagca agtaaactct 60 gcctcaaccc caagtcccga gcagctgcga cctggcgatc tgatcctgga ccacgcaggg 120 ggaaacagag cctccagggc caaggtgatt ctcctcacgg ggtacgccca ttctagcctg 180 ccggccgagc tggactctgg ggcctgcggc ggctccagcc tcaactcaga gggcaacagt 240 t t t t t t t t tt t t 300 gaactctccc ggcagatcgg ggcgcagctt aagctgctgc ctatgaatga tcagatacgg 360 gagctacaga ccatcatccg tgacaagaca gccagtagag gtgacttcat gttttctgcg 420 gatcgtttga tcagacttgt tgtggaagag ggattgaatc agctgccata taaagaatgc 480 atggtgacca ctccaacagg gtacaagtat gaaggagtga aatttgagaa gggaaattgt 540 ggggtcagca taatgagaag cggtgaggca atggaacaag gtttacgaga ctgctgtcga 600 tccatacgaa ttggaaagat cctgattcag agtgatgagg agacacaaag agccaaagta 660 tattatgcca aattcccccc agacatttac cggagaaaag tccttctgat gtatccaatt 720 ctcagcactg gaaatactgt aattgaagct gtaaaggttc ttatagaaca tggagttcaa 780 cccagtgtta tcatcctact cagtctgttc tccactcctc atggtgagtt cagcatgagg 840 cagtaa 846 SEQ ID NO: 179 Human uracil phosphoribosyltransferase (UPRT) amino acid sequence, isoform 1 (NP_659489.1)

MATELQCPDS MPCHNQQVNS ASTPSPEQLR PGDLILDHAG GNRASRAKVI LLTGYAHSSL 60 PAELDSGACG GSSLNSEGNS GSGDSSSYDA PAGNSFLEDC ELSRQIGAQL KLLPMNDQIR 120 ELQTIIRDKT ASRGDFMFSA DRLIRLVVEE GLNQLPYKEC MVTTPTGYKY EGVKFEKGNC 180 GVSIMRSGEA MEQGLRDCCR SIRIGKILIQ SDEETQRAKV YYAKFPPDIY RRKVLLMYPI 240 LSTGNTVIEA VKVLIEHGVQ PSVIILLSLF STPHGAKSII QEFPEITILT TEVHPVAPTH 300 FGQKYFGTD 309 SEQ ID NO: 180 Human uracil phosphoribosyltransferase (UPRT) amino acid sequence, isoform 2 (NP_001294873.1)

MATELQCPDS MPCHNQQVNS ASTPSPEQLR PGDLILDHAG GNRASRAKVI LLTGYAHSSL 60 PAELDSGACG GSSLNSEGNS GSGDSSSYDA PAGNSFLEDC ELSRQIGAQL KLLPMNDQIR 120 ELQTIIRDKT ASRGDFMFSA DRLIRLVVEE GLNQLPYKEC MVTTPTGYKY EGVKFEKGNC 180 GVSIMRSGEA MEQGLRDCCR SIRIGKILIQ SDEETQRAKV YYAKFPPDIY RRKVLLMYPI 240 LSTGNTVIEA VKVLIEHGVQ PSVIILLSLF STPHGEFSMR Q 281 SEQ ID NO: 181 Mouse uracil phosphoribosyltransferase (UPRT) cDNA

(NM_001081189.1)

atggcctcgg agttacagcg tccggactcc atgccctgtc acaatcggca agtaaactct 60 acttctagcc caagtcccga gcatctgcta gccgaggacc gggtcctgga tcatgcagag 120 gaaaataacg ctgctatggc taagctgact ctcctccctg ggcacgccca ttctagcgtg 180 ctttcggagc gggactctcc ggcctgctgc agcactaatc ttcactctga gaaccacagt 240 gacagtagtg acagtggcaa ctacgatgca cctgtcggcg gcgactccct gctaggggac 300 tgtgaactct cccgacagat tggggctcag cttaagttgc tgcctatgaa tgatcagatc 360 cgggagcttc agactatcat ccgggacaag acagccagta gaggggactt catgttttct 420 gcagatcgct tgatcagact tgttgtagaa gagggactga atcagctgcc atataaagaa 480 tgtatggtga ccactccgac agggcacaag tatgaaggag tgaaatttga gaaaggaaat 540 tgtggggtca gcataatgag aagtggtgag gcaatggaac aaggtttgcg agactgctgt 600 cgatccatac ggattgggaa gatcctgatt cagagtgatg aggagacaca aagggccaaa 660 gtatattatg ccaagttccc cccagacatt catcgcagaa aagtccttct gatgtatcca 720 attctcagta ctggaaatac tgtaattgaa gctgtaaagg ttcttataga acatggtgtt 780 caacccagtg ttattatcct actcagtctc ttctccaccc cacatggtgc caaatcaatc 840 attcaagaat ttccagagat cacaatttta actacagaag tccatcctgt tgcacctaca 900 cattttggac agaaatactt tggaacagac taa 933 SEQ ID NO: 182 Mouse uracil phosphoribosyltransferase (UPRT) amino acid sequence (NP_001074658.1)

MASELQRPDS MPCHNRQVNS TSSPSPEHLL AEDRVLDHAE ENNAAMAKLT LLPGHAHSSV 60 LSERDSPACC STNLHSENHS DSSDSGNYDA PVGGDSLLGD CELSRQIGAQ LKLLPMNDQI 120 RELQTIIRDK TASRGDFMFS ADRLIRLVVE EGLNQLPYKE CMVTTPTGHK YEGVKFEKGN 180 CGVSIMRSGE AMEQGLRDCC RSIRIGKILI QSDEETQRAK VYYAKFPPDI HRRKVLLMYP 240 ILSTGNTVIE AVKVLIEHGV QPSVIILLSL FSTPHGAKSI IQEFPEITIL TTEVHPVAPT 300 HFGQKYFGTD 310 SEQ ID NO: 183 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) cDNA, transcript variant 1a (NM_007327.3)

atgagcacca tgcgcctgct gacgctcgcc ctgctgttct cctgctccgt cgcccgtgcc 60 gcgtgcgacc ccaagatcgt caacattggc gcggtgctga gcacgcggaa gcacgagcag 120 atgttccgcg aggccgtgaa ccaggccaac aagcggcacg gctcctggaa gattcagctc 180 aatgccacct ccgtcacgca caagcccaac gccatccaga tggctctgtc ggtgtgcgag 240 gacctcatct ccagccaggt ctacgccatc ctagttagcc atccacctac ccccaacgac 300 cacttcactc ccacccctgt ctcctacaca gccggcttct accgcatacc cgtgctgggg 360 ctgaccaccc gcatgtccat ctactcggac aagagcatcc acctgagctt cctgcgcacc 420 gtgccgccct actcccacca gtccagcgtg tggtttgaga tgatgcgtgt ctacagctgg 480 aaccacatca tcctgctggt cagcgacgac cacgagggcc gggcggctca gaaacgcctg 540 gagacgctgc tggaggagcg tgagtccaag gcagagaagg tgctgcagtt tgacccaggg 600 accaagaacg tgacggccct gctgatggag gcgaaagagc tggaggcccg ggtcatcatc 660 ctttctgcca gcgaggacga tgctgccact gtataccgcg cagccgcgat gctgaacatg 720 acgggctccg ggtacgtgtg gctggtcggc gagcgcgaga tctcggggaa cgccctgcgc 780 tacgccccag acggcatcct cgggctgcag ctcatcaacg gcaagaacga gtcggcccac 840 atcagcgacg ccgtgggcgt ggtggcccag gccgtgcacg agctcctcga gaaggagaac 900 atcaccgacc cgccgcgggg ctgcgtgggc aacaccaaca tctggaagac cgggccgctc 960 ttcaagagag tgctgatgtc ttccaagtat gcggatgggg tgactggtcg cgtggagttc 1020 aatgaggatg gggaccggaa gttcgccaac tacagcatca tgaacctgca gaaccgcaag 1080 ctggtgcaag tgggcatcta caatggcacc cacgtcatcc ctaatgacag gaagatcatc 1140 tggccaggcg gagagacaga gaagcctcga gggtaccaga tgtccaccag actgaagatt 1200 gtgacgatcc accaggagcc cttcgtgtac gtcaagccca cgctgagtga tgggacatgc 1260 aaggaggagt tcacagtcaa cggcgaccca gtcaagaagg tgatctgcac cgggcccaac 1320 gacacgtcgc cgggcagccc ccgccacacg gtgcctcagt gttgctacgg cttttgcatc 1380 gacctgctca tcaagctggc acggaccatg aacttcacct acgaggtgca cctggtggca 1440 gatggcaagt tcggcacaca ggagcgggtg aacaacagca acaagaagga gtggaatggg 1500 atgatgggcg agctgctcag cgggcaggca gacatgatcg tggcgccgct aaccataaac 1560 aacgagcgcg cgcagtacat cgagttttcc aagcccttca agtaccaggg cctgactatt 1620 ctggtcaaga aggagattcc ccggagcacg ctggactcgt tcatgcagcc gttccagagc 1680 acactgtggc tgctggtggg gctgtcggtg cacgtggtgg ccgtgatgct gtacctgctg 1740 gaccgcttca gccccttcgg ccggttcaag gtgaacagcg aggaggagga ggaggacgca 1800 ctgaccctgt cctcggccat gtggttctcc tggggcgtcc tgctcaactc cggcatcggg 1860 gaaggcgccc ccagaagctt ctcagcgcgc atcctgggca tggtgtgggc cggctttgcc 1920 atgatcatcg tggcctccta caccgccaac ctggcggcct tcctggtgct ggaccggccg 1980 gaggagcgca tcacgggcat caacgaccct cggctgagga acccctcgga caagtttatc 2040 tacgccacgg tgaagcagag ctccgtggat atctacttcc ggcgccaggt ggagctgagc 2100 accatgtacc ggcatatgga gaagcacaac tacgagagtg cggcggaggc catccaggcc 2160 gtgagagaca acaagctgca tgccttcatc tgggactcgg cggtgctgga gttcgaggcc 2220 tcgcagaagt gcgacctggt gacgactgga gagctgtttt tccgctcggg cttcggcata 2280 ggcatgcgca aagacagccc ctggaagcag aacgtctccc tgtccatcct caagtcccac 2340 gagaatggct tcatggaaga cctggacaag acgtgggttc ggtatcagga atgtgactcg 2400 cgcagcaacg cccctgcgac ccttactttt gagaacatgg ccggggtctt catgctggta 2460 gctgggggca tcgtggccgg gatcttcctg attttcatcg agattgccta caagcggcac 2520 aaggatgctc gccggaagca gatgcagctg gcctttgccg ccgttaacgt gtggcggaag 2580 aacctgcagg atagaaagag tggtagagca gagcctgacc ctaaaaagaa agccacattt 2640 agggctatca cctccaccct ggcttccagc ttcaagaggc gtaggtcctc caaagacacg 2700 agcaccgggg gtggacgcgg cgctttgcaa aaccaaaaag acacagtgct gccgcgacgc 2760 gctattgaga gggaggaggg ccagctgcag ctgtgttccc gtcataggga gagctga 2817 SEQ ID NO: 184 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) cDNA, transcript variant 2a (NM_021569.3)

atgagcacca tgcgcctgct gacgctcgcc ctgctgttct cctgctccgt cgcccgtgcc 60 gcgtgcgacc ccaagatcgt caacattggc gcggtgctga gcacgcggaa gcacgagcag 120 atgttccgcg aggccgtgaa ccaggccaac aagcggcacg gctcctggaa gattcagctc 180 aatgccacct ccgtcacgca caagcccaac gccatccaga tggctctgtc ggtgtgcgag 240 gacctcatct ccagccaggt ctacgccatc ctagttagcc atccacctac ccccaacgac 300 cacttcactc ccacccctgt ctcctacaca gccggcttct accgcatacc cgtgctgggg 360 ctgaccaccc gcatgtccat ctactcggac aagagcatcc acctgagctt cctgcgcacc 420 gtgccgccct actcccacca gtccagcgtg tggtttgaga tgatgcgtgt ctacagctgg 480 aaccacatca tcctgctggt cagcgacgac cacgagggcc gggcggctca gaaacgcctg 540 gagacgctgc tggaggagcg tgagtccaag gcagagaagg tgctgcagtt tgacccaggg 600 accaagaacg tgacggccct gctgatggag gcgaaagagc tggaggcccg ggtcatcatc 660 ctttctgcca gcgaggacga tgctgccact gtataccgcg cagccgcgat gctgaacatg 720 acgggctccg ggtacgtgtg gctggtcggc gagcgcgaga tctcggggaa cgccctgcgc 780 tacgccccag acggcatcct cgggctgcag ctcatcaacg gcaagaacga gtcggcccac 840 atcagcgacg ccgtgggcgt ggtggcccag gccgtgcacg agctcctcga gaaggagaac 900 atcaccgacc cgccgcgggg ctgcgtgggc aacaccaaca tctggaagac cgggccgctc 960 ttcaagagag tgctgatgtc ttccaagtat gcggatgggg tgactggtcg cgtggagttc 1020 aatgaggatg gggaccggaa gttcgccaac tacagcatca tgaacctgca gaaccgcaag 1080 ctggtgcaag tgggcatcta caatggcacc cacgtcatcc ctaatgacag gaagatcatc 1140 tggccaggcg gagagacaga gaagcctcga gggtaccaga tgtccaccag actgaagatt 1200 gtgacgatcc accaggagcc cttcgtgtac gtcaagccca cgctgagtga tgggacatgc 1260 aaggaggagt tcacagtcaa cggcgaccca gtcaagaagg tgatctgcac cgggcccaac 1320 gacacgtcgc cgggcagccc ccgccacacg gtgcctcagt gttgctacgg cttttgcatc 1380 gacctgctca tcaagctggc acggaccatg aacttcacct acgaggtgca cctggtggca 1440 gatggcaagt tcggcacaca ggagcgggtg aacaacagca acaagaagga gtggaatggg 1500 atgatgggcg agctgctcag cgggcaggca gacatgatcg tggcgccgct aaccataaac 1560 aacgagcgcg cgcagtacat cgagttttcc aagcccttca agtaccaggg cctgactatt 1620 ctggtcaaga aggagattcc ccggagcacg ctggactcgt tcatgcagcc gttccagagc 1680 acactgtggc tgctggtggg gctgtcggtg cacgtggtgg ccgtgatgct gtacctgctg 1740 gaccgcttca gccccttcgg ccggttcaag gtgaacagcg aggaggagga ggaggacgca 1800 ctgaccctgt cctcggccat gtggttctcc tggggcgtcc tgctcaactc cggcatcggg 1860 gaaggcgccc ccagaagctt ctcagcgcgc atcctgggca tggtgtgggc cggctttgcc 1920 atgatcatcg tggcctccta caccgccaac ctggcggcct tcctggtgct ggaccggccg 1980 gaggagcgca tcacgggcat caacgaccct cggctgagga acccctcgga caagtttatc 2040 tacgccacgg tgaagcagag ctccgtggat atctacttcc ggcgccaggt ggagctgagc 2100 accatgtacc ggcatatgga gaagcacaac tacgagagtg cggcggaggc catccaggcc 2160 gtgagagaca acaagctgca tgccttcatc tgggactcgg cggtgctgga gttcgaggcc 2220 tcgcagaagt gcgacctggt gacgactgga gagctgtttt tccgctcggg cttcggcata 2280 ggcatgcgca aagacagccc ctggaagcag aacgtctccc tgtccatcct caagtcccac 2340 gagaatggct tcatggaaga cctggacaag acgtgggttc ggtatcagga atgtgactcg 2400 cgcagcaacg cccctgcgac ccttactttt gagaacatgg ccggggtctt catgctggta 2460 gctgggggca tcgtggccgg gatcttcctg attttcatcg agattgccta caagcggcac 2520 aaggatgctc gccggaagca gatgcagctg gcctttgccg ccgttaacgt gtggcggaag 2580 aacctgcaga gcaccggggg tggacgcggc gctttgcaaa accaaaaaga cacagtgctg 2640 ccgcgacgcg ctattgagag ggaggagggc cagctgcagc tgtgttcccg tcatagggag 2700 agctga 2706 SEQ ID NO: 185 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) cDNA, transcript variant 3b (NM_001185090.1)

atgagcacca tgcgcctgct gacgctcgcc ctgctgttct cctgctccgt cgcccgtgcc 60 gcgtgcgacc ccaagatcgt caacattggc gcggtgctga gcacgcggaa gcacgagcag 120 atgttccgcg aggccgtgaa ccaggccaac aagcggcacg gctcctggaa gattcagctc 180 aatgccacct ccgtcacgca caagcccaac gccatccaga tggctctgtc ggtgtgcgag 240 gacctcatct ccagccaggt ctacgccatc ctagttagcc atccacctac ccccaacgac 300 cacttcactc ccacccctgt ctcctacaca gccggcttct accgcatacc cgtgctgggg 360 ctgaccaccc gcatgtccat ctactcggac aagagcatcc acctgagctt cctgcgcacc 420 gtgccgccct actcccacca gtccagcgtg tggtttgaga tgatgcgtgt ctacagctgg 480 aaccacatca tcctgctggt cagcgacgac cacgagggcc gggcggctca gaaacgcctg 540 gagacgctgc tggaggagcg tgagtccaag agtaaaaaaa ggaactatga aaacctcgac 600 caactgtcct atgacaacaa gcgcggaccc aaggcagaga aggtgctgca gtttgaccca 660 gggaccaaga acgtgacggc cctgctgatg gaggcgaaag agctggaggc ccgggtcatc 720 atcctttctg ccagcgagga cgatgctgcc actgtatacc gcgcagccgc gatgctgaac 780 atgacgggct ccgggtacgt gtggctggtc ggcgagcgcg agatctcggg gaacgccctg 840 cgctacgccc cagacggcat cctcgggctg cagctcatca acggcaagaa cgagtcggcc 900 cacatcagcg acgccgtggg cgtggtggcc caggccgtgc acgagctcct cgagaaggag 960 aacatcaccg acccgccgcg gggctgcgtg ggcaacacca acatctggaa gaccgggccg 1020 ctcttcaaga gagtgctgat gtcttccaag tatgcggatg gggtgactgg tcgcgtggag 1080 ttcaatgagg atggggaccg gaagttcgcc aactacagca tcatgaacct gcagaaccgc 1140 aagctggtgc aagtgggcat ctacaatggc acccacgtca tccctaatga caggaagatc 1200 atctggccag gcggagagac agagaagcct cgagggtacc agatgtccac cagactgaag 1260 attgtgacga tccaccagga gcccttcgtg tacgtcaagc ccacgctgag tgatgggaca 1320 tgcaaggagg agttcacagt caacggcgac ccagtcaaga aggtgatctg caccgggccc 1380 aacgacacgt cgccgggcag cccccgccac acggtgcctc agtgttgcta cggcttttgc 1440 atcgacctgc tcatcaagct ggcacggacc atgaacttca cctacgaggt gcacctggtg 1500 gcagatggca agttcggcac acaggagcgg gtgaacaaca gcaacaagaa ggagtggaat 1560 gggatgatgg gcgagctgct cagcgggcag gcagacatga tcgtggcgcc gctaaccata 1620 aacaacgagc gcgcgcagta catcgagttt tccaagccct tcaagtacca gggcctgact 1680 attctggtca agaaggagat tccccggagc acgctggact cgttcatgca gccgttccag 1740 agcacactgt ggctgctggt ggggctgtcg gtgcacgtgg tggccgtgat gctgtacctg 1800 ctggaccgct tcagcccctt cggccggttc aaggtgaaca gcgaggagga ggaggaggac 1860 gcactgaccc tgtcctcggc catgtggttc tcctggggcg tcctgctcaa ctccggcatc 1920 ggggaaggcg cccccagaag cttctcagcg cgcatcctgg gcatggtgtg ggccggcttt 1980 gccatgatca tcgtggcctc ctacaccgcc aacctggcgg ccttcctggt gctggaccgg 2040 ccggaggagc gcatcacggg catcaacgac cctcggctga ggaacccctc ggacaagttt 2100 atctacgcca cggtgaagca gagctccgtg gatatctact tccggcgcca ggtggagctg 2160 agcaccatgt accggcatat ggagaagcac aactacgaga gtgcggcgga ggccatccag 2220 gccgtgagag acaacaagct gcatgccttc atctgggact cggcggtgct ggagttcgag 2280

23 0 ataggcatgc gcaaagacag cccctggaag cagaacgtct ccctgtccat cctcaagtcc 2400 cacgagaatg gcttcatgga agacctggac aagacgtggg ttcggtatca ggaatgtgac 2460 tcgcgcagca acgcccctgc gacccttact tttgagaaca tggccggggt cttcatgctg 2520 gtagctgggg gcatcgtggc cgggatcttc ctgattttca tcgagattgc ctacaagcgg 2580 cacaaggatg ctcgccggaa gcagatgcag ctggcctttg ccgccgttaa cgtgtggcgg 2640 aagaacctgc aggatagaaa gagtggtaga gcagagcctg accctaaaaa gaaagccaca 2700 tttagggcta tcacctccac cctggcttcc agcttcaaga ggcgtaggtc ctccaaagac 2760 acgcagtacc atcccactga tatcacgggc ccgctcaacc tctcagatcc ctcggtcagc 2820 accgtggtgt ga 2832 SEQ ID NO: 186 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) cDNA, transcript variant 4a (NM_000832.6)

atgagcacca tgcgcctgct gacgctcgcc ctgctgttct cctgctccgt cgcccgtgcc 60 gcgtgcgacc ccaagatcgt caacattggc gcggtgctga gcacgcggaa gcacgagcag 120 atgttccgcg aggccgtgaa ccaggccaac aagcggcacg gctcctggaa gattcagctc 180 aatgccacct ccgtcacgca caagcccaac gccatccaga tggctctgtc ggtgtgcgag 240 gacctcatct ccagccaggt ctacgccatc ctagttagcc atccacctac ccccaacgac 300 cacttcactc ccacccctgt ctcctacaca gccggcttct accgcatacc cgtgctgggg 360 ctgaccaccc gcatgtccat ctactcggac aagagcatcc acctgagctt cctgcgcacc 420 gtgccgccct actcccacca gtccagcgtg tggtttgaga tgatgcgtgt ctacagctgg 480 aaccacatca tcctgctggt cagcgacgac cacgagggcc gggcggctca gaaacgcctg 540 gagacgctgc tggaggagcg tgagtccaag gcagagaagg tgctgcagtt tgacccaggg 600 accaagaacg tgacggccct gctgatggag gcgaaagagc tggaggcccg ggtcatcatc 660 ctttctgcca gcgaggacga tgctgccact gtataccgcg cagccgcgat gctgaacatg 720 acgggctccg ggtacgtgtg gctggtcggc gagcgcgaga tctcggggaa cgccctgcgc 780 tacgccccag acggcatcct cgggctgcag ctcatcaacg gcaagaacga gtcggcccac 840 atcagcgacg ccgtgggcgt ggtggcccag gccgtgcacg agctcctcga gaaggagaac 900 atcaccgacc cgccgcgggg ctgcgtgggc aacaccaaca tctggaagac cgggccgctc 960 ttcaagagag tgctgatgtc ttccaagtat gcggatgggg tgactggtcg cgtggagttc 1020 aatgaggatg gggaccggaa gttcgccaac tacagcatca tgaacctgca gaaccgcaag 1080 ctggtgcaag tgggcatcta caatggcacc cacgtcatcc ctaatgacag gaagatcatc 1140 tggccaggcg gagagacaga gaagcctcga gggtaccaga tgtccaccag actgaagatt 1200 gtgacgatcc accaggagcc cttcgtgtac gtcaagccca cgctgagtga tgggacatgc 1260 aaggaggagt tcacagtcaa cggcgaccca gtcaagaagg tgatctgcac cgggcccaac 1320 gacacgtcgc cgggcagccc ccgccacacg gtgcctcagt gttgctacgg cttttgcatc 1380 gacctgctca tcaagctggc acggaccatg aacttcacct acgaggtgca cctggtggca 1440 gatggcaagt tcggcacaca ggagcgggtg aacaacagca acaagaagga gtggaatggg 1500 atgatgggcg agctgctcag cgggcaggca gacatgatcg tggcgccgct aaccataaac 1560 aacgagcgcg cgcagtacat cgagttttcc aagcccttca agtaccaggg cctgactatt 1620 ctggtcaaga aggagattcc ccggagcacg ctggactcgt tcatgcagcc gttccagagc 1680 acactgtggc tgctggtggg gctgtcggtg cacgtggtgg ccgtgatgct gtacctgctg 1740 gaccgcttca gccccttcgg ccggttcaag gtgaacagcg aggaggagga ggaggacgca 1800 ctgaccctgt cctcggccat gtggttctcc tggggcgtcc tgctcaactc cggcatcggg 1860 gaaggcgccc ccagaagctt ctcagcgcgc atcctgggca tggtgtgggc cggctttgcc 1920 atgatcatcg tggcctccta caccgccaac ctggcggcct tcctggtgct ggaccggccg 1980 gaggagcgca tcacgggcat caacgaccct cggctgagga acccctcgga caagtttatc 2040 tacgccacgg tgaagcagag ctccgtggat atctacttcc ggcgccaggt ggagctgagc 2100 accatgtacc ggcatatgga gaagcacaac tacgagagtg cggcggaggc catccaggcc 2160 gtgagagaca acaagctgca tgccttcatc tgggactcgg cggtgctgga gttcgaggcc 2220 tcgcagaagt gcgacctggt gacgactgga gagctgtttt tccgctcggg cttcggcata 2280 ggcatgcgca aagacagccc ctggaagcag aacgtctccc tgtccatcct caagtcccac 2340 gagaatggct tcatggaaga cctggacaag acgtgggttc ggtatcagga atgtgactcg 2400 cgcagcaacg cccctgcgac ccttactttt gagaacatgg ccggggtctt catgctggta 2460 gctgggggca tcgtggccgg gatcttcctg attttcatcg agattgccta caagcggcac 2520 aaggatgctc gccggaagca gatgcagctg gcctttgccg ccgttaacgt gtggcggaag 2580 aacctgcagc agtaccatcc cactgatatc acgggcccgc tcaacctctc agatccctcg 2640 gtcagcaccg tggtgtga 2658 SEQ ID NO: 187 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) cDNA, transcript variant 5b (NM_001185091.1)

atgagcacca tgcgcctgct gacgctcgcc ctgctgttct cctgctccgt cgcccgtgcc 60 gcgtgcgacc ccaagatcgt caacattggc gcggtgctga gcacgcggaa gcacgagcag 120 atgttccgcg aggccgtgaa ccaggccaac aagcggcacg gctcctggaa gattcagctc 180 aatgccacct ccgtcacgca caagcccaac gccatccaga tggctctgtc ggtgtgcgag 240 gacctcatct ccagccaggt ctacgccatc ctagttagcc atccacctac ccccaacgac 300 ctgaccaccc gcatgtccat ctactcggac aagagcatcc acctgagctt cctgcgcacc 420 gtgccgccct actcccacca gtccagcgtg tggtttgaga tgatgcgtgt ctacagctgg 480 aaccacatca tcctgctggt cagcgacgac cacgagggcc gggcggctca gaaacgcctg 540 gagacgctgc tggaggagcg tgagtccaag agtaaaaaaa ggaactatga aaacctcgac 600 caactgtcct atgacaacaa gcgcggaccc aaggcagaga aggtgctgca gtttgaccca 660 gggaccaaga acgtgacggc cctgctgatg gaggcgaaag agctggaggc ccgggtcatc 720 atcctttctg ccagcgagga cgatgctgcc actgtatacc gcgcagccgc gatgctgaac 780 atgacgggct ccgggtacgt gtggctggtc ggcgagcgcg agatctcggg gaacgccctg 840 cgctacgccc cagacggcat cctcgggctg cagctcatca acggcaagaa cgagtcggcc 900 cacatcagcg acgccgtggg cgtggtggcc caggccgtgc acgagctcct cgagaaggag 960 aacatcaccg acccgccgcg gggctgcgtg ggcaacacca acatctggaa gaccgggccg 1020 ctcttcaaga gagtgctgat gtcttccaag tatgcggatg gggtgactgg tcgcgtggag 1080 ttcaatgagg atggggaccg gaagttcgcc aactacagca tcatgaacct gcagaaccgc 1140 aagctggtgc aagtgggcat ctacaatggc acccacgtca tccctaatga caggaagatc 1200 atctggccag gcggagagac agagaagcct cgagggtacc agatgtccac cagactgaag 1260 attgtgacga tccaccagga gcccttcgtg tacgtcaagc ccacgctgag tgatgggaca 1320 tgcaaggagg agttcacagt caacggcgac ccagtcaaga aggtgatctg caccgggccc 1380 aacgacacgt cgccgggcag cccccgccac acggtgcctc agtgttgcta cggcttttgc 1440 atcgacctgc tcatcaagct ggcacggacc atgaacttca cctacgaggt gcacctggtg 1500 gcagatggca agttcggcac acaggagcgg gtgaacaaca gcaacaagaa ggagtggaat 1560 gggatgatgg gcgagctgct cagcgggcag gcagacatga tcgtggcgcc gctaaccata 1620 aacaacgagc gcgcgcagta catcgagttt tccaagccct tcaagtacca gggcctgact 1680 attctggtca agaaggagat tccccggagc acgctggact cgttcatgca gccgttccag 1740 agcacactgt ggctgctggt ggggctgtcg gtgcacgtgg tggccgtgat gctgtacctg 1800 ctggaccgct tcagcccctt cggccggttc aaggtgaaca gcgaggagga ggaggaggac 1860 gcactgaccc tgtcctcggc catgtggttc tcctggggcg tcctgctcaa ctccggcatc 1920 ggggaaggcg cccccagaag cttctcagcg cgcatcctgg gcatggtgtg ggccggcttt 1980 gccatgatca tcgtggcctc ctacaccgcc aacctggcgg ccttcctggt gctggaccgg 2040 ccggaggagc gcatcacggg catcaacgac cctcggctga ggaacccctc ggacaagttt 2100 atctacgcca cggtgaagca gagctccgtg gatatctact tccggcgcca ggtggagctg 2160 agcaccatgt accggcatat ggagaagcac aactacgaga gtgcggcgga ggccatccag 2220 gccgtgagag acaacaagct gcatgccttc atctgggact cggcggtgct ggagttcgag 2280 gcctcgcaga agtgcgacct ggtgacgact ggagagctgt ttttccgctc gggcttcggc 2340 ataggcatgc gcaaagacag cccctggaag cagaacgtct ccctgtccat cctcaagtcc 2400 cacgagaatg gcttcatgga agacctggac aagacgtggg ttcggtatca ggaatgtgac 2460 tcgcgcagca acgcccctgc gacccttact tttgagaaca tggccggggt cttcatgctg 2520 gtagctgggg gcatcgtggc cgggatcttc ctgattttca tcgagattgc ctacaagcgg 2580 cacaaggatg ctcgccggaa gcagatgcag ctggcctttg ccgccgttaa cgtgtggcgg 2640 aagaacctgc agcagtacca tcccactgat atcacgggcc cgctcaacct ctcagatccc 2700 tcggtcagca ccgtggtgtg a 2721 SEQ ID NO: 188 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) amino acid, isoform GluN1-1a (NP_015566.1)

MSTMRLLTLA LLFSCSVARA ACDPKIVNIG AVLSTRKHEQ MFREAVNQAN KRHGSWKIQL 60 NATSVTHKPN AIQMALSVCE DLISSQVYAI LVSHPPTPND HFTPTPVSYT AGFYRIPVLG 120 LTTRMSIYSD KSIHLSFLRT VPPYSHQSSV WFEMMRVYSW NHIILLVSDD HEGRAAQKRL 180 ETLLEERESK AEKVLQFDPG TKNVTALLME AKELEARVII LSASEDDAAT VYRAAAMLNM 240 TGSGYVWLVG EREISGNALR YAPDGILGLQ LINGKNESAH ISDAVGVVAQ AVHELLEKEN 300 ITDPPRGCVG NTNIWKTGPL FKRVLMSSKY ADGVTGRVEF NEDGDRKFAN YSIMNLQNRK 360 LVQVGIYNGT HVIPNDRKII WPGGETEKPR GYQMSTRLKI VTIHQEPFVY VKPTLSDGTC 420 KEEFTVNGDP VKKVICTGPN DTSPGSPRHT VPQCCYGFCI DLLIKLARTM NFTYEVHLVA 480 DGKFGTQERV NNSNKKEWNG MMGELLSGQA DMIVAPLTIN NERAQYIEFS KPFKYQGLTI 540 LVKKEIPRST LDSFMQPFQS TLWLLVGLSV HVVAVMLYLL DRFSPFGRFK VNSEEEEEDA 600 LTLSSAMWFS WGVLLNSGIG EGAPRSFSAR ILGMVWAGFA MIIVASYTAN LAAFLVLDRP 660 EERITGINDP RLRNPSDKFI YATVKQSSVD IYFRRQVELS TMYRHMEKHN YESAAEAIQA 720 VRDNKLHAFI WDSAVLEFEA SQKCDLVTTG ELFFRSGFGI GMRKDSPWKQ NVSLSILKSH 780 ENGFMEDLDK TWVRYQECDS RSNAPATLTF ENMAGVFMLV AGGIVAGIFL IFIEIAYKRH 840 KDARRKQMQL AFAAVNVWRK NLQDRKSGRA EPDPKKKATF RAITSTLASS FKRRRSSKDT 900 STGGGRGALQ NQKDTVLPRR AIEREEGQLQ LCSRHRES 938 SEQ ID NO: 189 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) amino acid, isoform GluN1-2a (NP_067544.1)

MSTMRLLTLA LLFSCSVARA ACDPKIVNIG AVLSTRKHEQ MFREAVNQAN KRHGSWKIQL 60 NATSVTHKPN AIQMALSVCE DLISSQVYAI LVSHPPTPND HFTPTPVSYT AGFYRIPVLG 120 LTTRMSIYSD KSIHLSFLRT VPPYSHQSSV WFEMMRVYSW NHIILLVSDD HEGRAAQKRL 180 ETLLEERESK AEKVLQFDPG TKNVTALLME AKELEARVII LSASEDDAAT VYRAAAMLNM 240 TGSGYVWLVG EREISGNALR YAPDGILGLQ LINGKNESAH ISDAVGVVAQ AVHELLEKEN 300 ITDPPRGCVG NTNIWKTGPL FKRVLMSSKY ADGVTGRVEF NEDGDRKFAN YSIMNLQNRK 360 LVQVGIYNGT HVIPNDRKII WPGGETEKPR GYQMSTRLKI VTIHQEPFVY VKPTLSDGTC 420 KEEFTVNGDP VKKVICTGPN DTSPGSPRHT VPQCCYGFCI DLLIKLARTM NFTYEVHLVA 480 DGKFGTQERV NNSNKKEWNG MMGELLSGQA DMIVAPLTIN NERAQYIEFS KPFKYQGLTI 540 LVKKEIPRST LDSFMQPFQS TLWLLVGLSV HVVAVMLYLL DRFSPFGRFK VNSEEEEEDA 600 LTLSSAMWFS WGVLLNSGIG EGAPRSFSAR ILGMVWAGFA MIIVASYTAN LAAFLVLDRP 660 EERITGINDP RLRNPSDKFI YATVKQSSVD IYFRRQVELS TMYRHMEKHN YESAAEAIQA 720 VRDNKLHAFI WDSAVLEFEA SQKCDLVTTG ELFFRSGFGI GMRKDSPWKQ NVSLSILKSH 780 ENGFMEDLDK TWVRYQECDS RSNAPATLTF ENMAGVFMLV AGGIVAGIFL IFIEIAYKRH 840 KDARRKQMQL AFAAVNVWRK NLQSTGGGRG ALQNQKDTVL PRRAIEREEG QLQLCSRHRE 900 S 901 SEQ ID NO: 190 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) amino acid, isoform GluN1-3b (NP_001172019.1)

MSTMRLLTLA LLFSCSVARA ACDPKIVNIG AVLSTRKHEQ MFREAVNQAN KRHGSWKIQL 60 NATSVTHKPN AIQMALSVCE DLISSQVYAI LVSHPPTPND HFTPTPVSYT AGFYRIPVLG 120 LTTRMSIYSD KSIHLSFLRT VPPYSHQSSV WFEMMRVYSW NHIILLVSDD HEGRAAQKRL 180 ETLLEERESK SKKRNYENLD QLSYDNKRGP KAEKVLQFDP GTKNVTALLM EAKELEARVI 240 ILSASEDDAA TVYRAAAMLN MTGSGYVWLV GEREISGNAL RYAPDGILGL QLINGKNESA 300 HISDAVGVVA QAVHELLEKE NITDPPRGCV GNTNIWKTGP LFKRVLMSSK YADGVTGRVE 360 FNEDGDRKFA NYSIMNLQNR KLVQVGIYNG THVIPNDRKI IWPGGETEKP RGYQMSTRLK 420 IVTIHQEPFV YVKPTLSDGT CKEEFTVNGD PVKKVICTGP NDTSPGSPRH TVPQCCYGFC 480 IDLLIKLART MNFTYEVHLV ADGKFGTQER VNNSNKKEWN GMMGELLSGQ ADMIVAPLTI 540 NNERAQYIEF SKPFKYQGLT ILVKKEIPRS TLDSFMQPFQ STLWLLVGLS VHVVAVMLYL 600 LDRFSPFGRF KVNSEEEEED ALTLSSAMWF SWGVLLNSGI GEGAPRSFSA RILGMVWAGF 660 AMIIVASYTA NLAAFLVLDR PEERITGIND PRLRNPSDKF IYATVKQSSV DIYFRRQVEL 720 STMYRHMEKH NYESAAEAIQ AVRDNKLHAF IWDSAVLEFE ASQKCDLVTT GELFFRSGFG 780 IGMRKDSPWK QNVSLSILKS HENGFMEDLD KTWVRYQECD SRSNAPATLT FENMAGVFML 840 VAGGIVAGIF LIFIEIAYKR HKDARRKQMQ LAFAAVNVWR KNLQDRKSGR AEPDPKKKAT 900 FRAITSTLAS SFKRRRSSKD TQYHPTDITG PLNLSDPSVS TVV 943 SEQ ID NO: 191 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) amino acid, isoform GluN1-4a (NP_000823.4)

MSTMRLLTLA LLFSCSVARA ACDPKIVNIG AVLSTRKHEQ MFREAVNQAN KRHGSWKIQL 60 NATSVTHKPN AIQMALSVCE DLISSQVYAI LVSHPPTPND HFTPTPVSYT AGFYRIPVLG 120 LTTRMSIYSD KSIHLSFLRT VPPYSHQSSV WFEMMRVYSW NHIILLVSDD HEGRAAQKRL 180 ETLLEERESK AEKVLQFDPG TKNVTALLME AKELEARVII LSASEDDAAT VYRAAAMLNM 240 TGSGYVWLVG EREISGNALR YAPDGILGLQ LINGKNESAH ISDAVGVVAQ AVHELLEKEN 300 ITDPPRGCVG NTNIWKTGPL FKRVLMSSKY ADGVTGRVEF NEDGDRKFAN YSIMNLQNRK 360 LVQVGIYNGT HVIPNDRKII WPGGETEKPR GYQMSTRLKI VTIHQEPFVY VKPTLSDGTC 420 KEEFTVNGDP VKKVICTGPN DTSPGSPRHT VPQCCYGFCI DLLIKLARTM NFTYEVHLVA 480 DGKFGTQERV NNSNKKEWNG MMGELLSGQA DMIVAPLTIN NERAQYIEFS KPFKYQGLTI 540 LVKKEIPRST LDSFMQPFQS TLWLLVGLSV HVVAVMLYLL DRFSPFGRFK VNSEEEEEDA 600 LTLSSAMWFS WGVLLNSGIG EGAPRSFSAR ILGMVWAGFA MIIVASYTAN LAAFLVLDRP 660 EERITGINDP RLRNPSDKFI YATVKQSSVD IYFRRQVELS TMYRHMEKHN YESAAEAIQA 720 VRDNKLHAFI WDSAVLEFEA SQKCDLVTTG ELFFRSGFGI GMRKDSPWKQ NVSLSILKSH 780 ENGFMEDLDK TWVRYQECDS RSNAPATLTF ENMAGVFMLV AGGIVAGIFL IFIEIAYKRH 840 KDARRKQMQL AFAAVNVWRK NLQQYHPTDI TGPLNLSDPS VSTVV 885 SEQ ID NO: 192 Human Glutamate Ionotropic Receptor NMDA Type Subunit 1 (GRIN1) amino acid, isoform GluN1-5b (NP_001172020.1)

MSTMRLLTLA LLFSCSVARA ACDPKIVNIG AVLSTRKHEQ MFREAVNQAN KRHGSWKIQL 60 NATSVTHKPN AIQMALSVCE DLISSQVYAI LVSHPPTPND HFTPTPVSYT AGFYRIPVLG 120 LTTRMSIYSD KSIHLSFLRT VPPYSHQSSV WFEMMRVYSW NHIILLVSDD HEGRAAQKRL 180 ETLLEERESK SKKRNYENLD QLSYDNKRGP KAEKVLQFDP GTKNVTALLM EAKELEARVI 240 ILSASEDDAA TVYRAAAMLN MTGSGYVWLV GEREISGNAL RYAPDGILGL QLINGKNESA 300 HISDAVGVVA QAVHELLEKE NITDPPRGCV GNTNIWKTGP LFKRVLMSSK YADGVTGRVE 360 FNEDGDRKFA NYSIMNLQNR KLVQVGIYNG THVIPNDRKI IWPGGETEKP RGYQMSTRLK 420 IVTIHQEPFV YVKPTLSDGT CKEEFTVNGD PVKKVICTGP NDTSPGSPRH TVPQCCYGFC 480 IDLLIKLART MNFTYEVHLV ADGKFGTQER VNNSNKKEWN GMMGELLSGQ ADMIVAPLTI 540 NNERAQYIEF SKPFKYQGLT ILVKKEIPRS TLDSFMQPFQ STLWLLVGLS VHVVAVMLYL 600 LDRFSPFGRF KVNSEEEEED ALTLSSAMWF SWGVLLNSGI GEGAPRSFSA RILGMVWAGF 660 AMIIVASYTA NLAAFLVLDR PEERITGIND PRLRNPSDKF IYATVKQSSV DIYFRRQVEL 720 STMYRHMEKH NYESAAEAIQ AVRDNKLHAF IWDSAVLEFE ASQKCDLVTT GELFFRSGFG 780 IGMRKDSPWK QNVSLSILKS HENGFMEDLD KTWVRYQECD SRSNAPATLT FENMAGVFML 840 VAGGIVAGIF LIFIEIAYKR HKDARRKQMQ LAFAAVNVWR KNLQQYHPTD ITGPLNLSDP 900 SVSTVV 906 SEQ ID NO: 193 Human FRK tyrosine-protein kinase cDNA (NM_002031.2) atgagcaaca tctgtcagag gctctgggag tacctagaac cctatctccc ctgtttgtcc 60 acggaggcag acaagtcaac cgtgattgaa aatccagggg ccctttgctc tccccagtca 120 cagaggcatg gccactactt tgtggctttg tttgattacc aggctcggac tgctgaggac 180 ttgagcttcc gagcaggtga caaacttcaa gttctggaca ctttgcatga gggctggtgg 240 tttgccagac acttggagaa aagacgagat ggctccagtc agcaactaca aggctatatt 300 ccttctaact acgtggctga ggacagaagc ctacaggcag agccgtggtt ctttggagca 360 atcggaagat cagatgcaga gaaacaacta ttatattcag aaaacaagac cggttccttt 420 ctaatcagag aaagtgaaag ccaaaaagga gaattctctc tttcagtttt agatggagca 480 gttgtaaaac actacagaat taaaagactg gatgaagggg gattttttct cacgcgaaga 540 agaatctttt caacactgaa cgaatttgtg agccactaca ccaagacaag tgacggcctg 600 tgtgtcaagc tggggaaacc atgcttaaag atccaggtcc cagctccatt tgatttgtcg 660 tataaaaccg tggaccaatg ggagatagac cgcaactcca tacagcttct gaagcgattg 720 ggatctggtc agtttggcga agtatgggaa ggtctgtgga acaataccac tccagtagca 780 gtgaaaacat taaaaccagg ttcaatggat ccaaatgact tcctgaggga ggcacagata 840 atgaagaacc taagacatcc aaagcttatc cagctttatg ctgtttgcac tttagaagat 900 ccaatttata ttattacaga gttgatgaga catggaagtc tgcaagaata tctccaaaat 960 gacactggat caaaaatcca tctgactcaa caggtagaca tggcggcaca ggttgcctct 1020 ggaatggcct atctggagtc tcggaactac attcacagag atctggctgc cagaaatgtc 1080 ctcgttggtg aacataatat ctacaaagta gcagattttg gacttgccag agtttttaag 1140 gtagataatg aagacatcta tgaatctaga cacgaaataa agctgccggt gaagtggact 1200 gcgcccgaag ccattcgtag taataaattc agcattaagt ccgatgtatg gtcatttgga 1260 atccttcttt atgaaatcat tacttatggc aaaatgcctt acagtggtat gacaggtgcc 1320 caggtaatcc agatgttggc tcaaaactat agacttccgc aaccatccaa ctgtccacag 1380 caattttaca acatcatgtt ggagtgctgg aatgcagagc ctaaggaacg acctacattt 1440 gagacactgc gttggaaact tgaagactat tttgaaacag actcttcata ttcagatgca 1500 aataacttca taagatga 1518 SEQ ID NO: 194 Human FRK tyrosine-protein kinase amino acid sequence (NP_002022.1)

MSNICQRLWE YLEPYLPCLS TEADKSTVIE NPGALCSPQS QRHGHYFVAL FDYQARTAED 60 LSFRAGDKLQ VLDTLHEGWW FARHLEKRRD GSSQQLQGYI PSNYVAEDRS LQAEPWFFGA 120 IGRSDAEKQL LYSENKTGSF LIRESESQKG EFSLSVLDGA VVKHYRIKRL DEGGFFLTRR 180 RIFSTLNEFV SHYTKTSDGL CVKLGKPCLK IQVPAPFDLS YKTVDQWEID RNSIQLLKRL 240 GSGQFGEVWE GLWNNTTPVA VKTLKPGSMD PNDFLREAQI MKNLRHPKLI QLYAVCTLED 300 PIYIITELMR HGSLQEYLQN DTGSKIHLTQ QVDMAAQVAS GMAYLESRNY IHRDLAARNV 360 LVGEHNIYKV ADFGLARVFK VDNEDIYESR HEIKLPVKWT APEAIRSNKF SIKSDVWSFG 420 ILLYEIITYG KMPYSGMTGA QVIQMLAQNY RLPQPSNCPQ QFYNIMLECW NAEPKERPTF 480 ETLRWKLEDY FETDSSYSDA NNFIR 505 SEQ ID NO: 195 Mouse FRK tyrosine-protein kinase cDNA, transcript variant 1 (NM_001159544.1)

atgggcagcg tctgtgtgag actctgggca tacctgcagc cttttctccc gtgctggtct 60 caagaggcag acaagtcagt agtaattgag aatccagggg ccttctgtcc cccagaggct 120 cccaggtcac aagagcccga gagaagccat ggccagtatt ttgtggctct gtttgattac 180 caagcacgta ctgcagagga cctgagcttc cgtgccggcg acaaactcca agtcttggac 240 acttcgcatg agggctggtg gttggccaga catttggaga agaagggaac cggcttaggt 300 cagcagctac agggctacat tccttccaat tacgtggcgg aggaccggag tctccaggca 360 gagccgtggt tttttggagc aatcaaaaga gcagatgcag aaaaacaact tctgtattca 420 gaaaaccaga cgggcgcctt tctaatcaga gagagtgaga gccagaaggg tgacttttcc 480 ctctcagttt tagatgaagg tgttgtaaaa cactacagaa taagaaggtt ggatgaaggt 540 ggcttcttcc tcaccaggag gaaagtcttt tcaaccctga atgaattcgt gaactactac 600 accacaacaa gtgacgggct gtgtgtcaag ctggagaagc catgcttaaa gatccaggta 660 ccaacccctt ttgatttgtc atataaaact gcagaccagt gggagataga ccgcaactcc 720 atacagcttt tgaagcgact gggatctggt cagtttggag aagtttggga aggtctgtgg 780 aataatacca ctccagtggc cgtaaaaacg ttaaaaccag gttcaatgga tccaaatgac 840 ttcctgaggg aggcacagat aatgaagagc ctaagacacc caaaactcat ccagctctat 900 gctgtttgca ctttagaaga tcccatttat attattacag agttgatgag acatggaagc 960 ctgcaagaat atctccaaaa tgatggtggg tcaaaaatcc atttgattca acaggtagac 1020 atggcggcac aggtggcttc tggaatggcc tatcttgagt cgcagaacta tattcacaga 1080 gatctggctg caagaaatgt ccttgttggt gaacataata tctacaaagt agcagatttt 1140 ggacttgcaa gagtttttaa ggtagataat gaagacatct atgaatctaa acacgaaata 1200 aagctgccag tgaagtggac tgcacccgaa gccattcgta ctaataaatt cagcattaag 1260 tctgatgtgt ggtcttttgg aatcctgctc tatgaaatca ttacttatgg caaaatgcct 1320 tacagtggta tgacaggtgc tcaagtaatt caaatgttga gtcaaaacta cagacttcca 1380 cagccatcta actgcccaca gcaattctac agcatcatgc tagagtgctg gaatgttgag 1440 cctaagcaac ggccaacatt tgagaccctg cattggaaac ttgaagacta ctttgaaaca 1500 gactgttcct attcagatac aaataacttc ataaactaa 1539 SEQ ID NO: 196 Mouse FRK tyrosine-protein kinase cDNA, transcript variant 2 (NM_010237.3)

atgggcagcg tctgtgtgag actctgggca tacctgcagc cttttctccc gtgctggtct 60 caagaggcag acaagtcagt agtaattgag aatccagggg ccttctgtcc cccagaggct 120 cccaggtcac aagagcccga gagaagccat ggccagtatt ttgtggctct gtttgattac 180 caagcacgta ctgcagagga cctgagcttc cgtgccggcg acaaactcca agtcttggac 240 acttcgcatg agggctggtg gttggccaga catttggaga agaagggaac cggcttaggt 300 cagcagctac agggctacat tccttccaat tacgtggcgg aggaccggag tctccaggca 360 gagccgtggt tttttggagc aatcaaaaga gcagatgcag aaaaacaact tctgtattca 420 gaaaaccaga cgggcgcctt tctaatcaga gagagtgaga gccagaaggg tgacttttcc 480 ctctcagttt tagatgaagg tgttgtaaaa cactacagaa taagaaggtt ggatgaaggt 540 ggcttcttcc tcaccaggag gaaagtcttt tcaaccctga atgaattcgt gaactactac 600 accacaacaa gtgacgggct gtgtgtcaag ctggagaagc catgcttaaa gatccaggta 660 ccaacccctt ttgatttgtc atataaaact gcagaccagt gggagataga ccgcaactcc 720 atacagcttt tgaagcgact gggatctggt cagtttggag aagtttggga aggtctgtgg 780 aataatacca ctccagtggc cgtaaaaacg ttaaaaccag gttcaatgga tccaaatgac 840 ttcctgaggg aggcacagat aatgaagagc ctaagacacc caaaactcat ccagctctat 900 gctgtttgca ctttagaaga tcccatttat attattacag agttgatgag acatggaagc 960 ctgcaagaat atctccaaaa tgatggtggg tcaaaaatcc atttgattca acaggtagac 1020 atggcggcac aggtggcttc tggaatggcc tatcttgagt cgcagaacta tattcacaga 1080 gatctggctg caagaaatgt ccttgttggt gaacataata tctacaaagt agcagatttt 1140 ggacttgcaa gagtttttaa ggtagataat gaagacatct atgaatctaa acacgaaata 1200 aagctgccag tgaagtggac tgcacccgaa gccattcgta ctaataaatt cagcattaag 1260 tctgatgtgt ggtcttttgg aatcctgctc tatgaaatca ttacttatgg caaaatgcct 1320 tacagtggta tgacaggtgc tcaagtaatt caaatgttga gtcaaaacta cagacttcca 1380 cagccatcta actgcccaca gcaattctac agcatcatgc tagagtgctg gaatgttgag 1440 cctaagcaac ggccaacatt tgagaccctg cattggaaac ttgaagacta ctttgaaaca 1500 gactgttcct attcagatac aaataacttc ataaactaa 1539 SEQ ID NO: 197 Mouse FRK tyrosine-protein kinase amino acid sequence (NP_034367.2)

MGSVCVRLWA YLQPFLPCWS QEADKSVVIE NPGAFCPPEA PRSQEPERSH GQYFVALFDY 60 QARTAEDLSF RAGDKLQVLD TSHEGWWLAR HLEKKGTGLG QQLQGYIPSN YVAEDRSLQA 120 EPWFFGAIKR ADAEKQLLYS ENQTGAFLIR ESESQKGDFS LSVLDEGVVK HYRIRRLDEG 180 GFFLTRRKVF STLNEFVNYY TTTSDGLCVK LEKPCLKIQV PTPFDLSYKT ADQWEIDRNS 240 IQLLKRLGSG QFGEVWEGLW NNTTPVAVKT LKPGSMDPND FLREAQIMKS LRHPKLIQLY 300 AVCTLEDPIY IITELMRHGS LQEYLQNDGG SKIHLIQQVD MAAQVASGMA YLESQNYIHR 360 DLAARNVLVG EHNIYKVADF GLARVFKVDN EDIYESKHEI KLPVKWTAPE AIRTNKFSIK 420 SDVWSFGILL YEIITYGKMP YSGMTGAQVI QMLSQNYRLP QPSNCPQQFY SIMLECWNVE 480 PKQRPTFETL HWKLEDYFET DCSYSDTNNF IN 512 SEQ ID NO: 198 Mouse FRK tyrosine-protein kinase amino acid sequence (NP_001153016.1)

MGSVCVRLWA YLQPFLPCWS QEADKSVVIE NPGAFCPPEA PRSQEPERSH GQYFVALFDY 60 QARTAEDLSF RAGDKLQVLD TSHEGWWLAR HLEKKGTGLG QQLQGYIPSN YVAEDRSLQA 120 EPWFFGAIKR ADAEKQLLYS ENQTGAFLIR ESESQKGDFS LSVLDEGVVK HYRIRRLDEG 180 GFFLTRRKVF STLNEFVNYY TTTSDGLCVK LEKPCLKIQV PTPFDLSYKT ADQWEIDRNS 240 IQLLKRLGSG QFGEVWEGLW NNTTPVAVKT LKPGSMDPND FLREAQIMKS LRHPKLIQLY 300 AVCTLEDPIY IITELMRHGS LQEYLQNDGG SKIHLIQQVD MAAQVASGMA YLESQNYIHR 360 DLAARNVLVG EHNIYKVADF GLARVFKVDN EDIYESKHEI KLPVKWTAPE AIRTNKFSIK 420 SDVWSFGILL YEIITYGKMP YSGMTGAQVI QMLSQNYRLP QPSNCPQQFY SIMLECWNVE 480 PKQRPTFETL HWKLEDYFET DCSYSDTNNF IN 512 SEQ ID NO: 199 Human BLK proto-oncogene cDNA (NM_001715.2)

atggggctgg taagtagcaa aaagccggac aaggaaaagc cgatcaaaga gaaggacaag 60 ggccaatgga gccccctgaa ggtcagcgcc caagacaagg acgccccgcc actgccgccc 120 ctggttgtct tcaaccacct tactcctcca ccgcccgatg aacacctgga tgaagacaag 180 catttcgtgg tggctctgta tgactacacc gctatgaatg atcgggacct gcagatgctg 240 aagggggaga agctacaggt cctgaaggga actggagact ggtggctggc caggtcactc 300 gtcacaggaa gagaaggcta tgtgcccagt aactttgtgg cccgagtgga gagcctggaa 360 atggaaaggt ggttctttag atcacagggt cggaaggagg ctgagaggca gcttcttgct 420 ccaatcaaca aggccggctc ctttcttatc agagagagtg aaaccaacaa aggtgccttc 480 tccctgtctg tgaaggatgt caccacccag ggggagctga tcaagcacta taagatccgc 540 tgcctggatg aagggggcta ctacatctcc ccccggatca ccttcccctc gctccaggcc 600 ctggtgcagc actattctaa gaagggggat ggtctatgcc agaggctgac cctgccctgt 660 gtgcgcccgg ccccgcagaa tccctgggcc caggatgaat gggagatccc ccggcagtct 720 ctcaggctgg tcaggaaact cgggtctgga caattcggcg aagtctggat gggttactac 780 aaaaacaaca tgaaggtggc cattaagacg ctgaaggagg gaaccatgtc tccagaagcc 840 tttctgggtg aggccaacgt gatgaaggct ctgcagcacg agcggctggt ccgactctac 900 gcagtggtca ccaaggagcc catctacatt gtcaccgagt acatggccag aggatgcctg 960 ctggatttcc tgaagacaga tgaagggagc agattgtcac tcccaaggct gattgacatg 1020 tcggcgcaga ttgctgaagg gatggcatac attgagcgca tgaattccat ccaccgcgac 1080 ctgcgggcgg ccaacatcct ggtgtctgag gccttgtgct gcaaaattgc tgattttggc 1140 ttggctcgaa tcatcgacag tgaatacacg gcccaagagg gggccaagtt ccccatcaag 1200 tggacagccc cggaagccat ccacttcggg gtcttcacca tcaaagcaga cgtgtggtcg 1260 tttggagtcc tcctgatgga agttgtcact tatgggcggg tgccataccc agggatgagc 1320 aaccccgagg tcatccgcaa cctggagcgc ggctaccgca tgccgcgccc cgacacctgc 1380 ccgcccgagc tgtaccgcgg cgtcatcgcc gagtgctggc gcagccggcc cgaggagcgg 1440 cccaccttcg agttcctgca gtcggtgctg gaggacttct acacggccac cgagcggcag 1500 tacgagctgc agccctag 1518 SEQ ID NO: 200 Human BLK proto-oncogene amino acid sequence

(NP_001706.2)

MGLVSSKKPD KEKPIKEKDK GQWSPLKVSA QDKDAPPLPP LVVFNHLTPP PPDEHLDEDK 60 HFVVALYDYT AMNDRDLQML KGEKLQVLKG TGDWWLARSL VTGREGYVPS NFVARVESLE 120 MERWFFRSQG RKEAERQLLA PINKAGSFLI RESETNKGAF SLSVKDVTTQ GELIKHYKIR 180 CLDEGGYYIS PRITFPSLQA LVQHYSKKGD GLCQRLTLPC VRPAPQNPWA QDEWEIPRQS 240 LRLVRKLGSG QFGEVWMGYY KNNMKVAIKT LKEGTMSPEA FLGEANVMKA LQHERLVRLY 300 AVVTKEPIYI VTEYMARGCL LDFLKTDEGS RLSLPRLIDM SAQIAEGMAY IERMNSIHRD 360 LRAANILVSE ALCCKIADFG LARIIDSEYT AQEGAKFPIK WTAPEAIHFG VFTIKADVWS 420 FGVLLMEVVT YGRVPYPGMS NPEVIRNLER GYRMPRPDTC PPELYRGVIA ECWRSRPEER 480 PTFEFLQSVL EDFYTATERQ YELQP 505 SEQ ID NO: 201 Mouse BLK proto-oncogene cDNA (NM_007549.2)

atggggctgc tgagcagcaa gaggcaggtc agtgagaagg gcaagggctg gagccccgtg 60 aagatccgca cccaggacaa ggctccccca cccctgccac ccctggttgt cttcaaccac 120 cttgccccac catctcctaa ccaggaccca gatgaagagg agcgttttgt ggtggctctg 180 tttgactatg ccgctgtgaa tgacagggac cttcaggtgc tgaagggtga gaagctccag 240 gtcttgagga gcactggaga ctggtggttg gccaggtcac tcgtcacagg aagagaaggt 300 tatgtgccca gcaactttgt ggccccagta gagactctgg aagtagaaaa atggttcttc 360 aggaccatca gccggaagga tgctgagagg cagttgctgg ctccgatgaa caaggccggc 420 tcctttctca tcagagagag tgagagcaat aaaggtgcct tttccctgtc cgtgaaagat 480 atcaccaccc agggggaggt ggtcaagcac tataagatcc gatcactgga caatggaggc 540 tattacatct ccccccggat cacctttccc accctccagg ccctggtgca gcactattca 600 aagaaagggg atggtttgtg tcagaagttg actctgccct gtgtgaacct ggccccgaag 660 aacctttggg cccaagatga atgggaaatc cccaggcagt ctctcaagtt ggtccggaaa 720 cttgggtctg ggcagtttgg cgaagtctgg atgggttatt acaaaaataa catgaaggtg 780 gccatcaaga ccctgaagga gggaaccatg tcaccggaag ctttcctggg cgaggccaac 840 gtgatgaaaa ccctgcagca tgagaggctg gttcgtctct acgctgtggt caccagagag 900 cccatttaca tcgtcactga atacatggcc agaggatgct tgctggattt tctgaagacc 960 gatgaaggta gcaggttgtc ccttccaagg ctgattgaca tgtcagccca ggttgcagag 1020 gggatggctt acatagagcg catgaattcc atccaccgtg acctgcgggc agccaacatc 1080 ctggtgtctg agacgttgtg ctgcaaaatc gctgacttcg gcttggccag gatcattgac 1140 agtgaataca ctgcccaaga gggggccaag ttccccatca agtggaccgc cccggaggcc 1200 atccacttcg gggtgtttac catcaaggct gatgtgtggt ccttcggagt cttgctgatg 1260 gagattgtca cctatgggcg cgttccctac ccaggaatga gcaaccctga ggtcatccgt 1320 agcctggagc acggctaccg aatgccatgc ccggagacat gtccaccgga gttgtacaat 1380 t t t t t t t tt t tt t 1440 cagtcggtgt tggaggactt ctacacagcc acggagggcc aatatgagct gcagccctag 1500

SEQ ID NO: 202 Mouse BLK proto-oncogene amino acid sequence (NP_031575.2) MGLLSSKRQV SEKGKGWSPV KIRTQDKAPP PLPPLVVFNH LAPPSPNQDP DEEERFVVAL 60 FDYAAVNDRD LQVLKGEKLQ VLRSTGDWWL ARSLVTGREG YVPSNFVAPV ETLEVEKWFF 120 RTISRKDAER QLLAPMNKAG SFLIRESESN KGAFSLSVKD ITTQGEVVKH YKIRSLDNGG 180 YYISPRITFP TLQALVQHYS KKGDGLCQKL TLPCVNLAPK NLWAQDEWEI PRQSLKLVRK 240 LGSGQFGEVW MGYYKNNMKV AIKTLKEGTM SPEAFLGEAN VMKTLQHERL VRLYAVVTRE 300 PIYIVTEYMA RGCLLDFLKT DEGSRLSLPR LIDMSAQVAE GMAYIERMNS IHRDLRAANI 360 LVSETLCCKI ADFGLARIID SEYTAQEGAK FPIKWTAPEA IHFGVFTIKA DVWSFGVLLM 420 EIVTYGRVPY PGMSNPEVIR SLEHGYRMPC PETCPPELYN DIITECWRGR PEERPTFEFL 480 QSVLEDFYTA TEGQYELQP 499 SEQ ID NO: 203 Human FYN proto-oncogene cDNA, transcript variant 1

(NM_002037.5)

atgggctgtg tgcaatgtaa ggataaagaa gcaacaaaac tgacggagga gagggacggc 60 agcctgaacc agagctctgg gtaccgctat ggcacagacc ccacccctca gcactacccc 120 agcttcggtg tgacctccat ccccaactac aacaacttcc acgcagccgg gggccaagga 180 ctcaccgtct ttggaggtgt gaactcttcg tctcatacgg ggaccttgcg tacgagagga 240 ggaacaggag tgacactctt tgtggccctt tatgactatg aagcacggac agaagatgac 300 ctgagttttc acaaaggaga aaaatttcaa atattgaaca gctcggaagg agattggtgg 360 gaagcccgct ccttgacaac tggagagaca ggttacattc ccagcaatta tgtggctcca 420 gttgactcta tccaggcaga agagtggtac tttggaaaac ttggccgaaa agatgctgag 480 cgacagctat tgtcctttgg aaacccaaga ggtacctttc ttatccgcga gagtgaaacc 540 accaaaggtg cctattcact ttctatccgt gattgggatg atatgaaagg agaccatgtc 600 aaacattata aaattcgcaa acttgacaat ggtggatact acattaccac ccgggcccag 660 tttgaaacac ttcagcagct tgtacaacat tactcagaga gagctgcagg tctctgctgc 720 cgcctagtag ttccctgtca caaagggatg ccaaggctta ccgatctgtc tgtcaaaacc 780 aaagatgtct gggaaatccc tcgagaatcc ctgcagttga tcaagagact gggaaatggg 840 cagtttgggg aagtatggat gggtacctgg aatggaaaca caaaagtagc cataaagact 900 cttaaaccag gcacaatgtc ccccgaatca ttccttgagg aagcgcagat catgaagaag 960 ctgaagcacg acaagctggt ccagctctat gcagtggtgt ctgaggagcc catctacatc 1020 gtcaccgagt atatgaacaa aggaagttta ctggatttct taaaagatgg agaaggaaga 1080 gctctgaaat taccaaatct tgtggacatg gcagcacagg tggctgcagg aatggcttac 1140 atcgagcgca tgaattatat ccatagagat ctgcgatcag caaacattct agtggggaat 1200 ggactcatat gcaagattgc tgacttcgga ttggcccgat tgatagaaga caatgagtac 1260 acagcaagac aaggtgcaaa gttccccatc aagtggacgg cccccgaggc agccctgtac 1320 gggaggttca caatcaagtc tgacgtgtgg tcttttggaa tcttactcac agagctggtc 1380 accaaaggaa gagtgccata cccaggcatg aacaaccggg aggtgctgga gcaggtggag 1440 cgaggctaca ggatgccctg cccgcaggac tgccccatct ctctgcatga gctcatgatc 1500 cactgctgga aaaaggaccc tgaagaacgc cccacttttg agtacttgca gagcttcctg 1560 gaagactact ttaccgcgac agagccccag taccaacctg gtgaaaacct gtaa 1614 SEQ ID NO: 204 Human FYN proto-oncogene cDNA, transcript variant 2

(NM_153047.3)

atgggctgtg tgcaatgtaa ggataaagaa gcaacaaaac tgacggagga gagggacggc 60 agcctgaacc agagctctgg gtaccgctat ggcacagacc ccacccctca gcactacccc 120 agcttcggtg tgacctccat ccccaactac aacaacttcc acgcagccgg gggccaagga 180 ctcaccgtct ttggaggtgt gaactcttcg tctcatacgg ggaccttgcg tacgagagga 240 ggaacaggag tgacactctt tgtggccctt tatgactatg aagcacggac agaagatgac 300 ctgagttttc acaaaggaga aaaatttcaa atattgaaca gctcggaagg agattggtgg 360 gaagcccgct ccttgacaac tggagagaca ggttacattc ccagcaatta tgtggctcca 420 gttgactcta tccaggcaga agagtggtac tttggaaaac ttggccgaaa agatgctgag 480 cgacagctat tgtcctttgg aaacccaaga ggtacctttc ttatccgcga gagtgaaacc 540 accaaaggtg cctattcact ttctatccgt gattgggatg atatgaaagg agaccatgtc 600 aaacattata aaattcgcaa acttgacaat ggtggatact acattaccac ccgggcccag 660 tttgaaacac ttcagcagct tgtacaacat tactcagaga aagctgatgg tttgtgtttt 720 aacttaactg tgattgcatc gagttgtacc ccacaaactt ctggattggc taaagatgct 780 tgggaagttg cacgtcgttc gttgtgtctg gagaagaagc tgggtcaggg gtgtttcgct 840 gaagtgtggc ttggtacctg gaatggaaac acaaaagtag ccataaagac tcttaaacca 900 ggcacaatgt cccccgaatc attccttgag gaagcgcaga tcatgaagaa gctgaagcac 960 gacaagctgg tccagctcta tgcagtggtg tctgaggagc ccatctacat cgtcaccgag 1020 tatatgaaca aaggaagttt actggatttc ttaaaagatg gagaaggaag agctctgaaa 1080 ttaccaaatc ttgtggacat ggcagcacag gtggctgcag gaatggctta catcgagcgc 1140 atgaattata tccatagaga tctgcgatca gcaaacattc tagtggggaa tggactcata 1200 tgcaagattg ctgacttcgg attggcccga ttgatagaag acaatgagta cacagcaaga 1260 caaggtgcaa agttccccat caagtggacg gcccccgagg cagccctgta cgggaggttc 1320 acaatcaagt ctgacgtgtg gtcttttgga atcttactca cagagctggt caccaaagga 1380 agagtgccat acccaggcat gaacaaccgg gaggtgctgg agcaggtgga gcgaggctac 1440 aggatgccct gcccgcagga ctgccccatc tctctgcatg agctcatgat ccactgctgg 1500 aaaaaggacc ctgaagaacg ccccactttt gagtacttgc agagcttcct ggaagactac 1560 tttaccgcga cagagcccca gtaccaacct ggtgaaaacc tgtaa 1605 SEQ ID NO: 205 Human FYN proto-oncogene cDNA, transcript variant 3 (NM_153048.3)

atgggctgtg tgcaatgtaa ggataaagaa gcaacaaaac tgacggagga gagggacggc 60 agcctgaacc agagctctgg gtaccgctat ggcacagacc ccacccctca gcactacccc 120 agcttcggtg tgacctccat ccccaactac aacaacttcc acgcagccgg gggccaagga 180 ctcaccgtct ttggaggtgt gaactcttcg tctcatacgg ggaccttgcg tacgagagga 240 ggaacaggag tgacactctt tgtggccctt tatgactatg aagcacggac agaagatgac 300 ctgagttttc acaaaggaga aaaatttcaa atattgaaca gctcggaagg agattggtgg 360 gaagcccgct ccttgacaac tggagagaca ggttacattc ccagcaatta tgtggctcca 420 gttgactcta tccaggcaga agagtggtac tttggaaaac ttggccgaaa agatgctgag 480 cgacagctat tgtcctttgg aaacccaaga ggtacctttc ttatccgcga gagtgaaacc 540 accaaaggtg cctattcact ttctatccgt gattgggatg atatgaaagg agaccatgtc 600 aaacattata aaattcgcaa acttgacaat ggtggatact acattaccac ccgggcccag 660 tttgaaacac ttcagcagct tgtacaacat tactcaggta cctggaatgg aaacacaaaa 720 gtagccataa agactcttaa accaggcaca atgtcccccg aatcattcct tgaggaagcg 780 cagatcatga agaagctgaa gcacgacaag ctggtccagc tctatgcagt ggtgtctgag 840 gagcccatct acatcgtcac cgagtatatg aacaaaggaa gtttactgga tttcttaaaa 900 gatggagaag gaagagctct gaaattacca aatcttgtgg acatggcagc acaggtggct 960 gcaggaatgg cttacatcga gcgcatgaat tatatccata gagatctgcg atcagcaaac 1020 attctagtgg ggaatggact catatgcaag attgctgact tcggattggc ccgattgata 1080 gaagacaatg agtacacagc aagacaaggt gcaaagttcc ccatcaagtg gacggccccc 1140 gaggcagccc tgtacgggag gttcacaatc aagtctgacg tgtggtcttt tggaatctta 1200 ctcacagagc tggtcaccaa aggaagagtg ccatacccag gcatgaacaa ccgggaggtg 1260 ctggagcagg tggagcgagg ctacaggatg ccctgcccgc aggactgccc catctctctg 1320 catgagctca tgatccactg ctggaaaaag gaccctgaag aacgccccac ttttgagtac 1380 ttgcagagct tcctggaaga ctactttacc gcgacagagc cccagtacca acctggtgaa 1440 aacctgtaa 1449 SEQ ID NO: 206 Human FYN proto-oncogene amino acid sequence, isoform a (NP_002028.1)

MGCVQCKDKE ATKLTEERDG SLNQSSGYRY GTDPTPQHYP SFGVTSIPNY NNFHAAGGQG 60 LTVFGGVNSS SHTGTLRTRG GTGVTLFVAL YDYEARTEDD LSFHKGEKFQ ILNSSEGDWW 120 EARSLTTGET GYIPSNYVAP VDSIQAEEWY FGKLGRKDAE RQLLSFGNPR GTFLIRESET 180 TKGAYSLSIR DWDDMKGDHV KHYKIRKLDN GGYYITTRAQ FETLQQLVQH YSERAAGLCC 240 RLVVPCHKGM PRLTDLSVKT KDVWEIPRES LQLIKRLGNG QFGEVWMGTW NGNTKVAIKT 300 LKPGTMSPES FLEEAQIMKK LKHDKLVQLY AVVSEEPIYI VTEYMNKGSL LDFLKDGEGR 360 ALKLPNLVDM AAQVAAGMAY IERMNYIHRD LRSANILVGN GLICKIADFG LARLIEDNEY 420 TARQGAKFPI KWTAPEAALY GRFTIKSDVW SFGILLTELV TKGRVPYPGM NNREVLEQVE 480 RGYRMPCPQD CPISLHELMI HCWKKDPEER PTFEYLQSFL EDYFTATEPQ YQPGENL 537 SEQ ID NO: 207 Human FYN proto-oncogene amino acid sequence, isoform b (NP_694592.1)

MGCVQCKDKE ATKLTEERDG SLNQSSGYRY GTDPTPQHYP SFGVTSIPNY NNFHAAGGQG 60 LTVFGGVNSS SHTGTLRTRG GTGVTLFVAL YDYEARTEDD LSFHKGEKFQ ILNSSEGDWW 120 EARSLTTGET GYIPSNYVAP VDSIQAEEWY FGKLGRKDAE RQLLSFGNPR GTFLIRESET 180 TKGAYSLSIR DWDDMKGDHV KHYKIRKLDN GGYYITTRAQ FETLQQLVQH YSEKADGLCF 240 NLTVIASSCT PQTSGLAKDA WEVARRSLCL EKKLGQGCFA EVWLGTWNGN TKVAIKTLKP 300 GTMSPESFLE EAQIMKKLKH DKLVQLYAVV SEEPIYIVTE YMNKGSLLDF LKDGEGRALK 360 LPNLVDMAAQ VAAGMAYIER MNYIHRDLRS ANILVGNGLI CKIADFGLAR LIEDNEYTAR 420 QGAKFPIKWT APEAALYGRF TIKSDVWSFG ILLTELVTKG RVPYPGMNNR EVLEQVERGY 480 RMPCPQDCPI SLHELMIHCW KKDPEERPTF EYLQSFLEDY FTATEPQYQP GENL 534 SEQ ID NO: 208 Human FYN proto-oncogene amino acid sequence, isoform c (NP_694593.1) LTVFGGVNSS SHTGTLRTRG GTGVTLFVAL YDYEARTEDD LSFHKGEKFQ ILNSSEGDWW 120 EARSLTTGET GYIPSNYVAP VDSIQAEEWY FGKLGRKDAE RQLLSFGNPR GTFLIRESET 180 TKGAYSLSIR DWDDMKGDHV KHYKIRKLDN GGYYITTRAQ FETLQQLVQH YSGTWNGNTK 240 VAIKTLKPGT MSPESFLEEA QIMKKLKHDK LVQLYAVVSE EPIYIVTEYM NKGSLLDFLK 300 DGEGRALKLP NLVDMAAQVA AGMAYIERMN YIHRDLRSAN ILVGNGLICK IADFGLARLI 360 EDNEYTARQG AKFPIKWTAP EAALYGRFTI KSDVWSFGIL LTELVTKGRV PYPGMNNREV 420 LEQVERGYRM PCPQDCPISL HELMIHCWKK DPEERPTFEY LQSFLEDYFT ATEPQYQPGE 480 NL 482 SEQ ID NO: 209 Mouse FYN proto-oncogene cDNA, transcript variant 1 (NM_001122893.1)

atgggctgtg tgcaatgtaa ggataaagaa gcagcgaaac tgacagagga gagggacggc 60 agcctgaacc agagctctgg gtaccgctat ggcacagacc ccacccctca gcactacccc 120 agcttcggcg tgacctccat cccgaactac aacaacttcc acgcagctgg gggccaggga 180 ctcaccgtct ttgggggtgt gaactcctcc tctcacactg ggaccctacg cacgagagga 240 gggacaggag tgacactgtt tgtggcgctt tatgactatg aagcacggac ggaagatgac 300 ctgagttttc acaaaggaga aaaatttcaa atattgaaca gctcggaagg agactggtgg 360 gaagcccgct ccttgacaac cggggaaact ggttacattc ccagcaatta cgtggctcca 420 gttgactcca tccaggcaga agagtggtac tttggaaaac ttggccgcaa agatgctgag 480 agacagctcc tgtcctttgg aaacccaaga ggtacctttc ttatccgcga gagcgaaacc 540 accaaaggtg cctactcact ttccatccgt gattgggatg atatgaaagg ggaccacgtc 600 aaacattata aaatccgcaa gcttgacaat ggtggatact atatcacaac gcgggcccag 660 tttgaaacac ttcagcaact ggtacagcat tactcagaga gagccgcagg tctctgctgc 720 cgcctagtag ttccctgtca caaagggatg ccaaggctta ccgatctgtc tgtcaaaacc 780 aaagatgtct gggaaatccc tcgagaatcc ctgcagttga tcaagagact gggaaatggg 840 cagtttgggg aagtatggat gggtacctgg aatggaaata caaaagtagc cataaagacc 900 cttaagccag gcaccatgtc tccggagtcc ttcctggagg aggcgcagat catgaagaag 960 ctgaagcatg acaagctggt gcagctctac gcggtcgtgt ctgaggagcc catttacatc 1020 gtcacggagt acatgagcaa aggaagtttg cttgacttct taaaagatgg tgaaggaaga 1080 gctctgaagt tgccaaacct tgtggacatg gcggcacagg ttgctgcagg aatggcttac 1140 atcgagcgca tgaattatat ccacagagat ctgcgatcag caaacattct agtggggaat 1200 ggactaattt gcaagattgc tgactttgga ttggctcggt tgattgaaga caatgaatac 1260 acagcaagac aaggtgcgaa gtttcccatt aagtggacag cccccgaagc ggccctgtat 1320 ggaaggttca caatcaagtc tgacgtatgg tcttttggaa tcttactcac agagctggtc 1380 accaaaggaa gagtgccata cccaggcatg aacaaccggg aggtgctgga gcaggtggag 1440 agaggctata ggatgccctg cccacaggac tgcccgatct ccctgcacga gctcatgatc 1500 cactgctgga aaaaggatcc ggaagagcgc ccgaccttcg agtacttgca gggcttcctg 1560 gaggactact ttacggccac agagccccag tatcagcccg gtgaaaacct gtga 1614 SEQ ID NO: 210 Mouse FYN proto-oncogene cDNA, transcript variant 2 (NM_001122892.1)

atgggctgtg tgcaatgtaa ggataaagaa gcagcgaaac tgacagagga gagggacggc 60 agcctgaacc agagctctgg gtaccgctat ggcacagacc ccacccctca gcactacccc 120 agcttcggcg tgacctccat cccgaactac aacaacttcc acgcagctgg gggccaggga 180 ctcaccgtct ttgggggtgt gaactcctcc tctcacactg ggaccctacg cacgagagga 240 gggacaggag tgacactgtt tgtggcgctt tatgactatg aagcacggac ggaagatgac 300 ctgagttttc acaaaggaga aaaatttcaa atattgaaca gctcggaagg agactggtgg 360 gaagcccgct ccttgacaac cggggaaact ggttacattc ccagcaatta cgtggctcca 420 gttgactcca tccaggcaga agagtggtac tttggaaaac ttggccgcaa agatgctgag 480 agacagctcc tgtcctttgg aaacccaaga ggtacctttc ttatccgcga gagcgaaacc 540 accaaaggtg cctactcact ttccatccgt gattgggatg atatgaaagg ggaccacgtc 600 aaacattata aaatccgcaa gcttgacaat ggtggatact atatcacaac gcgggcccag 660 tttgaaacac ttcagcaact ggtacagcat tactcagaga aagctgatgg tttgtgtttt 720 aacttaactg tggtttcatc aagttgtacc ccacaaactt ctggattggc taaagatgct 780 tgggaagttg cacgtgactc gttgtttctg gagaagaagc tggggcaggg gtgtttcgct 840 gaagtgtggc ttggtacctg gaatggaaat acaaaagtag ccataaagac ccttaagcca 900 ggcaccatgt ctccggagtc cttcctggag gaggcgcaga tcatgaagaa gctgaagcat 960 gacaagctgg tgcagctcta cgcggtcgtg tctgaggagc ccatttacat cgtcacggag 1020 tacatgagca aaggaagttt gcttgacttc ttaaaagatg gtgaaggaag agctctgaag 1080 ttgccaaacc ttgtggacat ggcggcacag gttgctgcag gaatggctta catcgagcgc 1140 atgaattata tccacagaga tctgcgatca gcaaacattc tagtggggaa tggactaatt 1200 tgcaagattg ctgactttgg attggctcgg ttgattgaag acaatgaata cacagcaaga 1260 caaggtgcga agtttcccat taagtggaca gcccccgaag cggccctgta tggaaggttc 1320 acaatcaagt ctgacgtatg gtcttttgga atcttactca cagagctggt caccaaagga 1380 agagtgccat acccaggcat gaacaaccgg gaggtgctgg agcaggtgga gagaggctat 1440 aggatgccct gcccacagga ctgcccgatc tccctgcacg agctcatgat ccactgctgg 1500 aaaaaggatc cggaagagcg cccgaccttc gagtacttgc agggcttcct ggaggactac 1560 tttacggcca cagagcccca gtatcagccc ggtgaaaacc tgtga 1605 SEQ ID NO: 211 Mouse FYN proto-oncogene cDNA, transcript variant 3 (NM_008054.2)

atgggctgtg tgcaatgtaa ggataaagaa gcagcgaaac tgacagagga gagggacggc 60 agcctgaacc agagctctgg gtaccgctat ggcacagacc ccacccctca gcactacccc 120 agcttcggcg tgacctccat cccgaactac aacaacttcc acgcagctgg gggccaggga 180 ctcaccgtct ttgggggtgt gaactcctcc tctcacactg ggaccctacg cacgagagga 240 gggacaggag tgacactgtt tgtggcgctt tatgactatg aagcacggac ggaagatgac 300 ctgagttttc acaaaggaga aaaatttcaa atattgaaca gctcggaagg agactggtgg 360 gaagcccgct ccttgacaac cggggaaact ggttacattc ccagcaatta cgtggctcca 420 gttgactcca tccaggcaga agagtggtac tttggaaaac ttggccgcaa agatgctgag 480 agacagctcc tgtcctttgg aaacccaaga ggtacctttc ttatccgcga gagcgaaacc 540 accaaaggtg cctactcact ttccatccgt gattgggatg atatgaaagg ggaccacgtc 600 aaacattata aaatccgcaa gcttgacaat ggtggatact atatcacaac gcgggcccag 660 tttgaaacac ttcagcaact ggtacagcat tactcagaga aagctgatgg tttgtgtttt 720 aacttaactg tggtttcatc aagttgtacc ccacaaactt ctggattggc taaagatgct 780 tgggaagttg cacgtgactc gttgtttctg gagaagaagc tggggcaggg gtgtttcgct 840 gaagtgtggc ttggtacctg gaatggaaat acaaaagtag ccataaagac ccttaagcca 900 ggcaccatgt ctccggagtc cttcctggag gaggcgcaga tcatgaagaa gctgaagcat 960 gacaagctgg tgcagctcta cgcggtcgtg tctgaggagc ccatttacat cgtcacggag 1020 tacatgagca aaggaagttt gcttgacttc ttaaaagatg gtgaaggaag agctctgaag 1080 ttgccaaacc ttgtggacat ggcggcacag gttgctgcag gaatggctta catcgagcgc 1140 atgaattata tccacagaga tctgcgatca gcaaacattc tagtggggaa tggactaatt 1200 tgcaagattg ctgactttgg attggctcgg ttgattgaag acaatgaata cacagcaaga 1260 caaggtgcga agtttcccat taagtggaca gcccccgaag cggccctgta tggaaggttc 1320 acaatcaagt ctgacgtatg gtcttttgga atcttactca cagagctggt caccaaagga 1380 agagtgccat acccaggcat gaacaaccgg gaggtgctgg agcaggtgga gagaggctat 1440 aggatgccct gcccacagga ctgcccgatc tccctgcacg agctcatgat ccactgctgg 1500 aaaaaggatc cggaagagcg cccgaccttc gagtacttgc agggcttcct ggaggactac 1560 tttacggcca cagagcccca gtatcagccc ggtgaaaacc tgtga 1605 SEQ ID NO: 212 Mouse FYN proto-oncogene amino acid sequence, isoform a (NP_001116365.1)

MGCVQCKDKE AAKLTEERDG SLNQSSGYRY GTDPTPQHYP SFGVTSIPNY NNFHAAGGQG 60 LTVFGGVNSS SHTGTLRTRG GTGVTLFVAL YDYEARTEDD LSFHKGEKFQ ILNSSEGDWW 120 EARSLTTGET GYIPSNYVAP VDSIQAEEWY FGKLGRKDAE RQLLSFGNPR GTFLIRESET 180 TKGAYSLSIR DWDDMKGDHV KHYKIRKLDN GGYYITTRAQ FETLQQLVQH YSERAAGLCC 240 RLVVPCHKGM PRLTDLSVKT KDVWEIPRES LQLIKRLGNG QFGEVWMGTW NGNTKVAIKT 300 LKPGTMSPES FLEEAQIMKK LKHDKLVQLY AVVSEEPIYI VTEYMSKGSL LDFLKDGEGR 360 ALKLPNLVDM AAQVAAGMAY IERMNYIHRD LRSANILVGN GLICKIADFG LARLIEDNEY 420 TARQGAKFPI KWTAPEAALY GRFTIKSDVW SFGILLTELV TKGRVPYPGM NNREVLEQVE 480 RGYRMPCPQD CPISLHELMI HCWKKDPEER PTFEYLQGFL EDYFTATEPQ YQPGENL 537 SEQ ID NO: 213 Mouse FYN proto-oncogene amino acid sequence, isoform b (NP_001116364.1)

MGCVQCKDKE AAKLTEERDG SLNQSSGYRY GTDPTPQHYP SFGVTSIPNY NNFHAAGGQG 60 LTVFGGVNSS SHTGTLRTRG GTGVTLFVAL YDYEARTEDD LSFHKGEKFQ ILNSSEGDWW 120 EARSLTTGET GYIPSNYVAP VDSIQAEEWY FGKLGRKDAE RQLLSFGNPR GTFLIRESET 180 TKGAYSLSIR DWDDMKGDHV KHYKIRKLDN GGYYITTRAQ FETLQQLVQH YSEKADGLCF 240 NLTVVSSSCT PQTSGLAKDA WEVARDSLFL EKKLGQGCFA EVWLGTWNGN TKVAIKTLKP 300 GTMSPESFLE EAQIMKKLKH DKLVQLYAVV SEEPIYIVTE YMSKGSLLDF LKDGEGRALK 360 LPNLVDMAAQ VAAGMAYIER MNYIHRDLRS ANILVGNGLI CKIADFGLAR LIEDNEYTAR 420 QGAKFPIKWT APEAALYGRF TIKSDVWSFG ILLTELVTKG RVPYPGMNNR EVLEQVERGY 480 RMPCPQDCPI SLHELMIHCW KKDPEERPTF EYLQGFLEDY FTATEPQYQP GENL 534 SEQ ID NO: 214 Mouse FYN proto-oncogene amino acid sequence, isoform b (NP_032080.2)

MGCVQCKDKE AAKLTEERDG SLNQSSGYRY GTDPTPQHYP SFGVTSIPNY NNFHAAGGQG 60 LTVFGGVNSS SHTGTLRTRG GTGVTLFVAL YDYEARTEDD LSFHKGEKFQ ILNSSEGDWW 120 EARSLTTGET GYIPSNYVAP VDSIQAEEWY FGKLGRKDAE RQLLSFGNPR GTFLIRESET 180 TKGAYSLSIR DWDDMKGDHV KHYKIRKLDN GGYYITTRAQ FETLQQLVQH YSEKADGLCF 240 NLTVVSSSCT PQTSGLAKDA WEVARDSLFL EKKLGQGCFA EVWLGTWNGN TKVAIKTLKP 300 GTMSPESFLE EAQIMKKLKH DKLVQLYAVV SEEPIYIVTE YMSKGSLLDF LKDGEGRALK 360 LPNLVDMAAQ VAAGMAYIER MNYIHRDLRS ANILVGNGLI CKIADFGLAR LIEDNEYTAR 420 QGAKFPIKWT APEAALYGRF TIKSDVWSFG ILLTELVTKG RVPYPGMNNR EVLEQVERGY 480 RMPCPQDCPI SLHELMIHCW KKDPEERPTF EYLQGFLEDY FTATEPQYQP GENL 534

SEQ ID NO: 215 House LCK proto-oncogene cDNA, transcript variant 1

(NM_001042771.2)

atgggctgtg gctgcagctc acacccggaa gatgactgga tggaaaacat cgatgtgtgt 60 gagaactgcc attatcccat agtcccactg gatggcaagg gcacgctgct catccgaaat 120 ggctctgagg tgcgggaccc actggttacc tacgaaggct ccaatccgcc ggcttcccca 180 ctgcaagaca acctggttat cgctctgcac agctatgagc cctctcacga cggagatctg 240 ggctttgaga agggggaaca gctccgcatc ctggagcaga gcggcgagtg gtggaaggcg 300 cagtccctga ccacgggcca ggaaggcttc atccccttca attttgtggc caaagcgaac 360 agcctggagc ccgaaccctg gttcttcaag aacctgagcc gcaaggacgc ggagcggcag 420 ctcctggcgc ccgggaacac tcacggctcc ttcctcatcc gggagagcga gagcaccgcg 480 ggatcgtttt cactgtcggt ccgggacttc gaccagaacc agggagaggt ggtgaaacat 540 tacaagatcc gtaatctgga caacggtggc ttctacatct cccctcgaat cacttttccc 600 ggcctgcatg aactggtccg ccattacacc aatgcttcag atgggctgtg cacacggttg 660 agccgcccct gccagaccca gaagccccag aagccgtggt gggaggacga gtgggaggtt 720 cccagggaga cgctgaagct ggtggagcgg ctgggggctg gacagttcgg ggaggtgtgg 780 atggggtact acaacgggca cacgaaggtg gcggtgaaga gcctgaagca gggcagcatg 840 tccccggacg ccttcctggc cgaggccaac ctcatgaagc agctgcaaca ccagcggctg 900 gttcggctct acgctgtggt cacccaggag cccatctaca tcatcactga atacatggag 960 aatgggagtc tagtggattt tctcaagacc ccttcaggca tcaagttgac catcaacaaa 1020 ctcctggaca tggcagccca aattgcagaa ggcatggcat tcattgaaga gcggaattat 1080 attcatcgtg accttcgggc tgccaacatt ctggtgtctg acaccctgag ctgcaagatt 1140 gcagactttg gcctagcacg cctcattgag gacaacgagt acacagccag ggagggggcc 1200 aagtttccca ttaagtggac agcgccagaa gccattaact acgggacatt caccatcaag 1260 tcagatgtgt ggtcttttgg gatcctgctg acggaaattg tcacccacgg ccgcatccct 1320 tacccaggga tgaccaaccc ggaggtgatt cagaacctgg agcgaggcta ccgcatggtg 1380 cgccctgaca actgtccaga ggagctgtac caactcatga ggctgtgctg gaaggagcgc 1440 ccagaggacc ggcccacctt tgactacctg cgcagtgtgc tggaggactt cttcacggcc 1500 acagagggcc agtaccagcc tcagccttga 1530

SEQ ID NO: 216 House LCK proto-oncogene cDNA, transcript variant 2

(NM_005356.4)

atgggctgtg gctgcagctc acacccggaa gatgactgga tggaaaacat cgatgtgtgt 60 gagaactgcc attatcccat agtcccactg gatggcaagg gcacgctgct catccgaaat 120 ggctctgagg tgcgggaccc actggttacc tacgaaggct ccaatccgcc ggcttcccca 180 ctgcaagaca acctggttat cgctctgcac agctatgagc cctctcacga cggagatctg 240 ggctttgaga agggggaaca gctccgcatc ctggagcaga gcggcgagtg gtggaaggcg 300 cagtccctga ccacgggcca ggaaggcttc atccccttca attttgtggc caaagcgaac 360 agcctggagc ccgaaccctg gttcttcaag aacctgagcc gcaaggacgc ggagcggcag 420 ctcctggcgc ccgggaacac tcacggctcc ttcctcatcc gggagagcga gagcaccgcg 480 ggatcgtttt cactgtcggt ccgggacttc gaccagaacc agggagaggt ggtgaaacat 540 tacaagatcc gtaatctgga caacggtggc ttctacatct cccctcgaat cacttttccc 600 ggcctgcatg aactggtccg ccattacacc aatgcttcag atgggctgtg cacacggttg 660 agccgcccct gccagaccca gaagccccag aagccgtggt gggaggacga gtgggaggtt 720 cccagggaga cgctgaagct ggtggagcgg ctgggggctg gacagttcgg ggaggtgtgg 780 atggggtact acaacgggca cacgaaggtg gcggtgaaga gcctgaagca gggcagcatg 840 tccccggacg ccttcctggc cgaggccaac ctcatgaagc agctgcaaca ccagcggctg 900 gttcggctct acgctgtggt cacccaggag cccatctaca tcatcactga atacatggag 960 aatgggagtc tagtggattt tctcaagacc ccttcaggca tcaagttgac catcaacaaa 1020 ctcctggaca tggcagccca aattgcagaa ggcatggcat tcattgaaga gcggaattat 1080 attcatcgtg accttcgggc tgccaacatt ctggtgtctg acaccctgag ctgcaagatt 1140 gcagactttg gcctagcacg cctcattgag gacaacgagt acacagccag ggagggggcc 1200 aagtttccca ttaagtggac agcgccagaa gccattaact acgggacatt caccatcaag 1260 tcagatgtgt ggtcttttgg gatcctgctg acggaaattg tcacccacgg ccgcatccct 1320 tacccaggga tgaccaaccc ggaggtgatt cagaacctgg agcgaggcta ccgcatggtg 1380 cgccctgaca actgtccaga ggagctgtac caactcatga ggctgtgctg gaaggagcgc 1440 ccagaggacc ggcccacctt tgactacctg cgcagtgtgc tggaggactt cttcacggcc 1500 acagagggcc agtaccagcc tcagccttga 1530

SEQ ID NO: 217 House LCK proto-oncogene amino acid sequence (NP_005347.3) MGCGCSSHPE DDWMENIDVC ENCHYPIVPL DGKGTLLIRN GSEVRDPLVT YEGSNPPASP 60 LQDNLVIALH SYEPSHDGDL GFEKGEQLRI LEQSGEWWKA QSLTTGQEGF IPFNFVAKAN 120 SLEPEPWFFK NLSRKDAERQ LLAPGNTHGS FLIRESESTA GSFSLSVRDF DQNQGEVVKH 180 YKIRNLDNGG FYISPRITFP GLHELVRHYT NASDGLCTRL SRPCQTQKPQ KPWWEDEWEV 240 PRETLKLVER LGAGQFGEVW MGYYNGHTKV AVKSLKQGSM SPDAFLAEAN LMKQLQHQRL 300 VRLYAVVTQE PIYIITEYME NGSLVDFLKT PSGIKLTINK LLDMAAQIAE GMAFIEERNY 360 IHRDLRAANI LVSDTLSCKI ADFGLARLIE DNEYTAREGA KFPIKWTAPE AINYGTFTIK 420 SDVWSFGILL TEIVTHGRIP YPGMTNPEVI QNLERGYRMV RPDNCPEELY QLMRLCWKER 480 PEDRPTFDYL RSVLEDFFTA TEGQYQPQP 509 SEQ ID NO: 218 House LCK proto-oncogene amino acid sequence

(NP_001036236.1)

MGCGCSSHPE DDWMENIDVC ENCHYPIVPL DGKGTLLIRN GSEVRDPLVT YEGSNPPASP 60 LQDNLVIALH SYEPSHDGDL GFEKGEQLRI LEQSGEWWKA QSLTTGQEGF IPFNFVAKAN 120 SLEPEPWFFK NLSRKDAERQ LLAPGNTHGS FLIRESESTA GSFSLSVRDF DQNQGEVVKH 180 YKIRNLDNGG FYISPRITFP GLHELVRHYT NASDGLCTRL SRPCQTQKPQ KPWWEDEWEV 240 PRETLKLVER LGAGQFGEVW MGYYNGHTKV AVKSLKQGSM SPDAFLAEAN LMKQLQHQRL 300 VRLYAVVTQE PIYIITEYME NGSLVDFLKT PSGIKLTINK LLDMAAQIAE GMAFIEERNY 360 IHRDLRAANI LVSDTLSCKI ADFGLARLIE DNEYTAREGA KFPIKWTAPE AINYGTFTIK 420 SDVWSFGILL TEIVTHGRIP YPGMTNPEVI QNLERGYRMV RPDNCPEELY QLMRLCWKER 480 PEDRPTFDYL RSVLEDFFTA TEGQYQPQP 509 SEQ ID NO: 219 Mouse LCK proto-oncogene cDNA, transcript variant 1 (NM_001162432.1)

atgggggcct ctgagctgac gatctcgggg atcatgggct gtgtctgcag ctcaaaccct 60 gaagatgact ggatggagaa cattgacgtg tgtgaaaact gccactatcc catagtccca 120 ctggacagca agatctcgct gcccatccgg aatggctctg aagtgcggga cccactggtc 180 acctatgagg gatctctccc accagcatcc ccgctgcaag acaacctggt tatcgccctg 240 cacagttatg agccctccca tgatggagac ttgggctttg agaagggtga acagctccga 300 atcctggagc agagcggtga gtggtggaag gctcagtccc tgacgactgg ccaagaaggc 360 ttcattccct tcaacttcgt ggcgaaagca aacagcctgg agcctgaacc ttggttcttc 420 aagaatctga gccgtaagga cgccgagcgg cagcttttgg cgcccgggaa cacgcatgga 480 tccttcctga tccgggaaag cgaaagcact gcggggtcct tttccctgtc ggtcagagac 540 ttcgaccaga accagggaga agtggtgaaa cattacaaga tccgtaacct agacaacggt 600 ggcttctaca tctcccctcg tatcactttt cccggattgc acgatctagt ccgccattac 660 accaacgcct ctgatgggct gtgcacaaag ttgagccgtc cttgccagac ccagaagccc 720 cagaaaccat ggtgggagga cgaatgggaa gttcccaggg aaacactgaa gttggtggag 780 cggctgggag ctggccagtt cggggaagtg tggatggggt actacaacgg acacacgaag 840 gtggcggtga agagtctgaa acaagggagc atgtcccccg acgccttcct ggctgaggct 900 aacctcatga agcagctgca gcacccgcgg ctagtccggc tttatgcagt ggtcacccag 960 gaacccatct acatcatcac ggaatacatg gagaacggga gcctagtaga ttttctcaag 1020 actccctcgg gcatcaagtt gaatgtcaac aaacttttgg acatggcagc ccagattgca 1080 gagggcatgg cgttcatcga agaacagaat tacatccatc gggacctgcg cgccgccaac 1140 atcctggtgt ctgacacgct gagctgcaag attgcagact ttggcctggc gcgcctcatt 1200 gaggacaatg agtacacggc ccgggagggg gccaaatttc ccattaagtg gacagcacca 1260 gaagccatta actatgggac cttcaccatc aagtcagacg tgtggtcctt cgggatcttg 1320 cttacagaga tcgtcaccca cggtcgaatc ccttacccag gaatgaccaa ccctgaagtc 1380 attcagaacc tggagagagg ctaccgcatg gtgagacctg acaactgtcc ggaagagctg 1440 taccacctca tgatgctgtg ctggaaggag cgcccagagg accggcccac gtttgactac 1500 cttcggagtg ttctggatga cttcttcaca gccacagagg gccagtacca gccccagcct 1560 tga 1563 SEQ ID NO: 220 Mouse LCK proto-oncogene cDNA, transcript variant 2 (NM_010693.3)

atgggctgtg tctgcagctc aaaccctgaa gatgactgga tggagaacat tgacgtgtgt 60 gaaaactgcc actatcccat agtcccactg gacagcaaga tctcgctgcc catccggaat 120 ggctctgaag tgcgggaccc actggtcacc tatgagggat ctctcccacc agcatccccg 180 ctgcaagaca acctggttat cgccctgcac agttatgagc cctcccatga tggagacttg 240 ggctttgaga agggtgaaca gctccgaatc ctggagcaga gcggtgagtg gtggaaggct 300 cagtccctga cgactggcca agaaggcttc attcccttca acttcgtggc gaaagcaaac 360 agcctggagc ctgaaccttg gttcttcaag aatctgagcc gtaaggacgc cgagcggcag 420 cttttggcgc ccgggaacac gcatggatcc ttcctgatcc gggaaagcga aagcactgcg 480 gggtcctttt ccctgtcggt cagagacttc gaccagaacc agggagaagt ggtgaaacat 540 tacaagatcc gtaacctaga caacggtggc ttctacatct cccctcgtat cacttttccc 600 ggattgcacg atctagtccg ccattacacc aacgcctctg atgggctgtg cacaaagttg 660 agccgtcctt gccagaccca gaagccccag aaaccatggt gggaggacga atgggaagtt 720 cccagggaaa cactgaagtt ggtggagcgg ctgggagctg gccagttcgg ggaagtgtgg 780 atggggtact acaacggaca cacgaaggtg gcggtgaaga gtctgaaaca agggagcatg 840 tcccccgacg ccttcctggc tgaggctaac ctcatgaagc agctgcagca cccgcggcta 900 gtccggcttt atgcagtggt cacccaggaa cccatctaca tcatcacgga atacatggag 960 aacgggagcc tagtagattt tctcaagact ccctcgggca tcaagttgaa tgtcaacaaa 1020 cttttggaca tggcagccca gattgcagag ggcatggcgt tcatcgaaga acagaattac 1080 atccatcggg acctgcgcgc cgccaacatc ctggtgtctg acacgctgag ctgcaagatt 1140 gcagactttg gcctggcgcg cctcattgag gacaatgagt acacggcccg ggagggggcc 1200 aaatttccca ttaagtggac agcaccagaa gccattaact atgggacctt caccatcaag 1260 tcagacgtgt ggtccttcgg gatcttgctt acagagatcg tcacccacgg tcgaatccct 1320 tacccaggaa tgaccaaccc tgaagtcatt cagaacctgg agagaggcta ccgcatggtg 1380 agacctgaca actgtccgga agagctgtac cacctcatga tgctgtgctg gaaggagcgc 1440 ccagaggacc ggcccacgtt tgactacctt cggagtgttc tggatgactt cttcacagcc 1500 acagagggcc agtaccagcc ccagccttga 1530 SEQ ID NO: 221 Mouse LCK proto-oncogene cDNA, transcript variant 3 (NM_001162433.1)

atgggctgtg tctgcagctc aaaccctgaa gatgactgga tggagaacat tgacgtgtgt 60 gaaaactgcc actatcccat agtcccactg gacagcaaga tctcgctgcc catccggaat 120 ggctctgaag tgcgggaccc actggtcacc tatgagggat ctctcccacc agcatccccg 180 ctgcaagaca acctggttat cgccctgcac agttatgagc cctcccatga tggagacttg 240 ggctttgaga agggtgaaca gctccgaatc ctggagcaga gcggtgagtg gtggaaggct 300 cagtccctga cgactggcca agaaggcttc attcccttca acttcgtggc gaaagcaaac 360 agcctggagc ctgaaccttg gttcttcaag aatctgagcc gtaaggacgc cgagcggcag 420 cttttggcgc ccgggaacac gcatggatcc ttcctgatcc gggaaagcga aagcactgcg 480 gggtcctttt ccctgtcggt cagagacttc gaccagaacc agggagaagt ggtgaaacat 540 tacaagatcc gtaacctaga caacggtggc ttctacatct cccctcgtat cacttttccc 600 ggattgcacg atctagtccg ccattacacc aacgcctctg atgggctgtg cacaaagttg 660 agccgtcctt gccagaccca gaagccccag aaaccatggt gggaggacga atgggaagtt 720 cccagggaaa cactgaagtt ggtggagcgg ctgggagctg gccagttcgg ggaagtgtgg 780 atggggtact acaacggaca cacgaaggtg gcggtgaaga gtctgaaaca agggagcatg 840 tcccccgacg ccttcctggc tgaggctaac ctcatgaagc agctgcagca cccgcggcta 900 gtccggcttt atgcagtggt cacccaggaa cccatctaca tcatcacgga atacatggag 960 aacgggagcc tagtagattt tctcaagact ccctcgggca tcaagttgaa tgtcaacaaa 1020 cttttggaca tggcagccca gattgcagag ggcatggcgt tcatcgaaga acagaattac 1080 atccatcggg acctgcgcgc cgccaacatc ctggtgtctg acacgctgag ctgcaagatt 1140 gcagactttg gcctggcgcg cctcattgag gacaatgagt acacggcccg ggagggggcc 1200 aaatttccca ttaagtggac agcaccagaa gccattaact atgggacctt caccatcaag 1260 tcagacgtgt ggtccttcgg gatcttgctt acagagatcg tcacccacgg tcgaatccct 1320 tacccaggaa tgaccaaccc tgaagtcatt cagaacctgg agagaggcta ccgcatggtg 1380 agacctgaca actgtccgga agagctgtac cacctcatga tgctgtgctg gaaggagcgc 1440 ccagaggacc ggcccacgtt tgactacctt cggagtgttc tggatgactt cttcacagcc 1500 acagagggcc agtaccagcc ccagccttga 1530 SEQ ID NO: 222 Mouse LCK proto-oncogene amino acid sequence, isoform a (NP_001155904.1)

MGASELTISG IMGCVCSSNP EDDWMENIDV CENCHYPIVP LDSKISLPIR NGSEVRDPLV 60 TYEGSLPPAS PLQDNLVIAL HSYEPSHDGD LGFEKGEQLR ILEQSGEWWK AQSLTTGQEG 120 FIPFNFVAKA NSLEPEPWFF KNLSRKDAER QLLAPGNTHG SFLIRESEST AGSFSLSVRD 180 FDQNQGEVVK HYKIRNLDNG GFYISPRITF PGLHDLVRHY TNASDGLCTK LSRPCQTQKP 240 QKPWWEDEWE VPRETLKLVE RLGAGQFGEV WMGYYNGHTK VAVKSLKQGS MSPDAFLAEA 300 NLMKQLQHPR LVRLYAVVTQ EPIYIITEYM ENGSLVDFLK TPSGIKLNVN KLLDMAAQIA 360 EGMAFIEEQN YIHRDLRAAN ILVSDTLSCK IADFGLARLI EDNEYTAREG AKFPIKWTAP 420 EAINYGTFTI KSDVWSFGIL LTEIVTHGRI PYPGMTNPEV IQNLERGYRM VRPDNCPEEL 480 YHLMMLCWKE RPEDRPTFDY LRSVLDDFFT ATEGQYQPQP 520 SEQ ID NO: 223 Mouse LCK proto-oncogene amino acid sequence, isoform b (NP_001155905.1)

MGCVCSSNPE DDWMENIDVC ENCHYPIVPL DSKISLPIRN GSEVRDPLVT YEGSLPPASP 60 LQDNLVIALH SYEPSHDGDL GFEKGEQLRI LEQSGEWWKA QSLTTGQEGF IPFNFVAKAN 120 SLEPEPWFFK NLSRKDAERQ LLAPGNTHGS FLIRESESTA GSFSLSVRDF DQNQGEVVKH 180 YKIRNLDNGG FYISPRITFP GLHDLVRHYT NASDGLCTKL SRPCQTQKPQ KPWWEDEWEV 240 PRETLKLVER LGAGQFGEVW MGYYNGHTKV AVKSLKQGSM SPDAFLAEAN LMKQLQHPRL 300 VRLYAVVTQE PIYIITEYME NGSLVDFLKT PSGIKLNVNK LLDMAAQIAE GMAFIEEQNY 360 IHRDLRAANI LVSDTLSCKI ADFGLARLIE DNEYTAREGA KFPIKWTAPE AINYGTFTIK 420 SDVWSFGILL TEIVTHGRIP YPGMTNPEVI QNLERGYRMV RPDNCPEELY HLMMLCWKER 480 PEDRPTFDYL RSVLDDFFTA TEGQYQPQP 509 SEQ ID NO: 224 Mouse LCK proto-oncogene amino acid sequence, isoform b (NP_034823.1)

MGCVCSSNPE DDWMENIDVC ENCHYPIVPL DSKISLPIRN GSEVRDPLVT YEGSLPPASP 60 LQDNLVIALH SYEPSHDGDL GFEKGEQLRI LEQSGEWWKA QSLTTGQEGF IPFNFVAKAN 120 SLEPEPWFFK NLSRKDAERQ LLAPGNTHGS FLIRESESTA GSFSLSVRDF DQNQGEVVKH 180 YKIRNLDNGG FYISPRITFP GLHDLVRHYT NASDGLCTKL SRPCQTQKPQ KPWWEDEWEV 240 PRETLKLVER LGAGQFGEVW MGYYNGHTKV AVKSLKQGSM SPDAFLAEAN LMKQLQHPRL 300 VRLYAVVTQE PIYIITEYME NGSLVDFLKT PSGIKLNVNK LLDMAAQIAE GMAFIEEQNY 360 IHRDLRAANI LVSDTLSCKI ADFGLARLIE DNEYTAREGA KFPIKWTAPE AINYGTFTIK 420 SDVWSFGILL TEIVTHGRIP YPGMTNPEVI QNLERGYRMV RPDNCPEELY HLMMLCWKER 480 PEDRPTFDYL RSVLDDFFTA TEGQYQPQP 509 SEQ ID NO: 225 Human Yes-1 proto-oncogene cDNA (NM_005433.3) atgggctgca ttaaaagtaa agaaaacaaa agtccagcca ttaaatacag acctgaaaat 60 actccagagc ctgtcagtac aagtgtgagc cattatggag cagaacccac tacagtgtca 120 ccatgtccgt catcttcagc aaagggaaca gcagttaatt tcagcagtct ttccatgaca 180 ccatttggag gatcctcagg ggtaacgcct tttggaggtg catcttcctc attttcagtg 240 gtgccaagtt catatcctgc tggtttaaca ggtggtgtta ctatatttgt ggccttatat 300 gattatgaag ctagaactac agaagacctt tcatttaaga agggtgaaag atttcaaata 360 attaacaata cggaaggaga ttggtgggaa gcaagatcaa tcgctacagg aaagaatggt 420 tatatcccga gcaattatgt agcgcctgca gattccattc aggcagaaga atggtatttt 480 ggcaaaatgg ggagaaaaga tgctgaaaga ttacttttga atcctggaaa tcaacgaggt 540 attttcttag taagagagag tgaaacaact aaaggtgctt attccctttc tattcgtgat 600 tgggatgaga taaggggtga caatgtgaaa cactacaaaa ttaggaaact tgacaatggt 660 ggatactata tcacaaccag agcacaattt gatactctgc agaaattggt gaaacactac 720 acagaacatg ctgatggttt atgccacaag ttgacaactg tgtgtccaac tgtgaaacct 780 cagactcaag gtctagcaaa agatgcttgg gaaatccctc gagaatcttt gcgactagag 840 gttaaactag gacaaggatg tttcggcgaa gtgtggatgg gaacatggaa tggaaccacg 900 aaagtagcaa tcaaaacact aaaaccaggt acaatgatgc cagaagcttt ccttcaagaa 960 gctcagataa tgaaaaaatt aagacatgat aaacttgttc cactatatgc tgttgtttct 1020 gaagaaccaa tttacattgt cactgaattt atgtcaaaag gaagcttatt agatttcctt 1080 aaggaaggag atggaaagta tttgaagctt ccacagctgg ttgatatggc tgctcagatt 1140 gctgatggta tggcatatat tgaaagaatg aactatattc accgagatct tcgggctgct 1200 aatattcttg taggagaaaa tcttgtgtgc aaaatagcag actttggttt agcaaggtta 1260 attgaagaca atgaatacac agcaagacaa ggtgcaaaat ttccaatcaa atggacagct 1320 cctgaagctg cactgtatgg tcggtttaca ataaagtctg atgtctggtc atttggaatt 1380 ctgcaaacag aactagtaac aaagggccga gtgccatatc caggtatggt gaaccgtgaa 1440 gtactagaac aagtggagcg aggatacagg atgccgtgcc ctcagggctg tccagaatcc 1500 ctccatgaat tgatgaatct gtgttggaag aaggaccctg atgaaagacc aacatttgaa 1560 tatattcagt ccttcttgga agactacttc actgctacag agccacagta ccagccagga 1620 gaaaatttat aa 1632 SEQ ID NO: 226 Human Yes-1 proto-oncogene amino acid sequence

(NP_005424.1)

MGCIKSKENK SPAIKYRPEN TPEPVSTSVS HYGAEPTTVS PCPSSSAKGT AVNFSSLSMT 60 PFGGSSGVTP FGGASSSFSV VPSSYPAGLT GGVTIFVALY DYEARTTEDL SFKKGERFQI 120 INNTEGDWWE ARSIATGKNG YIPSNYVAPA DSIQAEEWYF GKMGRKDAER LLLNPGNQRG 180 IFLVRESETT KGAYSLSIRD WDEIRGDNVK HYKIRKLDNG GYYITTRAQF DTLQKLVKHY 240 TEHADGLCHK LTTVCPTVKP QTQGLAKDAW EIPRESLRLE VKLGQGCFGE VWMGTWNGTT 300 KVAIKTLKPG TMMPEAFLQE AQIMKKLRHD KLVPLYAVVS EEPIYIVTEF MSKGSLLDFL 360 KEGDGKYLKL PQLVDMAAQI ADGMAYIERM NYIHRDLRAA NILVGENLVC KIADFGLARL 420 IEDNEYTARQ GAKFPIKWTA PEAALYGRFT IKSDVWSFGI LQTELVTKGR VPYPGMVNRE 480 VLEQVERGYR MPCPQGCPES LHELMNLCWK KDPDERPTFE YIQSFLEDYF TATEPQYQPG 540 ENL 543 SEQ ID NO: 227 Mouse Yes-1 proto-oncogene cDNA, transcript variant 1 (NM_009535.3)

atgggctgca ttaaaagtaa agaaaacaaa agtccagcca taaaatacac accggaaaat 60 cttacagagc ctgtaagccc aagtgccagt cattatggag tggaacatgc tacagttgcc 120 ccgacctctt ccacaaaggg agcatcagtt aattttaaca gtctttccat gacacccttt 180 ggagggtcct caggggtgac tccttttgga ggagcgtctt cctcattctc agtggtgtca 240 agttcatatc ctacaggttt aacaggtggt gtcactatat ttgtggcctt gtatgattat 300 gaagctagaa ctacagaaga cctttccttt aagaagggtg aacgatttca aataattaac 360 aatacggaag gagactggtg ggaagcaaga tcaattgcta ccggaaagag tggttatatc 420 cctagcaatt acgtagtgcc tgcagattcc attcaggcag aagaatggta ttttggcaaa 480 atggggagaa aagatgcgga aagattactt ctgaatcctg ggaatcagcg aggtattttc 540 ttagtaagag aaagtgaaac tactaaaggt gcttactccc tctcaatccg tgattgggat 600 gaggtgaggg gtgacaatgt gaagcattac aagatcagaa aacttgacaa tggtggctac 660 tacatcacga ccagagctca gtttgataca ctgcagaagc tggtgaagca ctacacagaa 720 catgctgatg gattatgcca caagttaaca actgtgtgtc ctactgtgaa accccagact 780 caaggtctgg caaaagatgc ttgggaaatc cctcgagaat cattgcgact agaggtgaaa 840 ctaggtcaag gatgctttgg ggaagtgtgg atgggaacat ggaatggaac tacaaaagta 900 gcaatcaaaa cactaaagcc aggtacaatg atgccagaag cattccttca agaagctcag 960 ataatgaaaa agctaagaca cgataaactt gttccactct atgcagttgt ttctgaagag 1020 cccatttata ttgtcaccga gtttatgtca aaaggaagct tgttagattt ccttaaagaa 1080 ggagatggaa agtatttgaa gcttccacag ctggttgata tggctgctca gatcgctgat 1140 ggcatggcgt atattgaaag aatgaactat attcaccgag atctccgagc tgctaatatt 1200 cttgtaggag aaaatcttat atgcaaaata gcagattttg gcttagcaag attaattgaa 1260 gacaatgaat acacggcaag acaaggtgca aaatttccaa tcaagtggac agctcctgag 1320 gctgctctgt atggtcgatt tacaataaag tcagatgtgt ggtcatttgg aattctacag 1380 acagagctgg taacaaaagg aagagtgcca tatccaggta tggtaaaccg tgaagtattg 1440 gaacaagtag agcggggata cagaatgcct tgcccccagg gctgtcccga atccctccat 1500 gaattgatga atctttgctg gaagaaggat cctgatgaaa gaccaacatt tgaatatatt 1560 cagtccttct tggaagacta cttcactgct acagagccac agtaccaacc aggagaaaat 1620 ttataa 1626 SEQ ID NO: 228 Mouse Yes-1 proto-oncogene cDNA, transcript variant 2 (NM_001205132.1)

atgggctgca ttaaaagtaa agaaaacaaa agtccagcca taaaatacac accggaaaat 60 cttacagagc ctgtaagccc aagtgccagt cattatggag tggaacatgc tacagttgcc 120 ccgacctctt ccacaaaggg agcatcagtt aattttaaca gtctttccat gacacccttt 180 ggagggtcct caggggtgac tccttttgga ggagcgtctt cctcattctc agtggtgtca 240 agttcatatc ctacaggttt aacaggtggt gtcactatat ttgtggcctt gtatgattat 300 gaagctagaa ctacagaaga cctttccttt aagaagggtg aacgatttca aataattaac 360 aatacggaag gagactggtg ggaagcaaga tcaattgcta ccggaaagag tggttatatc 420 cctagcaatt acgtagtgcc tgcagattcc attcaggcag aagaatggta ttttggcaaa 480 atggggagaa aagatgcgga aagattactt ctgaatcctg ggaatcagcg aggtattttc 540 ttagtaagag aaagtgaaac tactaaaggt gcttactccc tctcaatccg tgattgggat 600 gaggtgaggg gtgacaatgt gaagcattac aagatcagaa aacttgacaa tggtggctac 660 tacatcacga ccagagctca gtttgataca ctgcagaagc tggtgaagca ctacacagaa 720 catgctgatg gattatgcca caagttaaca actgtgtgtc ctactgtgaa accccagact 780 caaggtctgg caaaagatgc ttgggaaatc cctcgagaat cattgcgact agaggtgaaa 840 ctaggtcaag gatgctttgg ggaagtgtgg atgggaacat ggaatggaac tacaaaagta 900 gcaatcaaaa cactaaagcc aggtacaatg atgccagaag cattccttca agaagctcag 960 ataatgaaaa agctaagaca cgataaactt gttccactct atgcagttgt ttctgaagag 1020 cccatttata ttgtcaccga gtttatgtca aaaggaagct tgttagattt ccttaaagaa 1080 ggagatggaa agtatttgaa gcttccacag ctggttgata tggctgctca gatcgctgat 1140 ggcatggcgt atattgaaag aatgaactat attcaccgag atctccgagc tgctaatatt 1200 cttgtaggag aaaatcttat atgcaaaata gcagattttg gcttagcaag attaattgaa 1260 gacaatgaat acacggcaag acaaggtgca aaatttccaa tcaagtggac agctcctgag 1320 gctgctctgt atggtcgatt tacaataaag tcagatgtgt ggtcatttgg aattctacag 1380 acagagctgg taacaaaagg aagagtgcca tatccaggta tggtaaaccg tgaagtattg 1440 gaacaagtag agcggggata cagaatgcct tgcccccagg gctgtcccga atccctccat 1500 gaattgatga atctttgctg gaagaaggat cctgatgaaa gaccaacatt tgaatatatt 1560 cagtccttct tggaagacta cttcactgct acagagccac agtaccaacc aggagaaaat 1620 ttataa 1626 SEQ ID NO: 229 Mouse Yes-1 proto-oncogene cDNA, transcript variant 1 (NM_001205133.1)

atgggctgca ttaaaagtaa agaaaacaaa agtccagcca taaaatacac accggaaaat 60 cttacagagc ctgtaagccc aagtgccagt cattatggag tggaacatgc tacagttgcc 120 ccgacctctt ccacaaaggg agcatcagtt aattttaaca gtctttccat gacacccttt 180 ggagggtcct caggggtgac tccttttgga ggagcgtctt cctcattctc agtggtgtca 240 agttcatatc ctacaggttt aacaggtggt gtcactatat ttgtggcctt gtatgattat 300 gaagctagaa ctacagaaga cctttccttt aagaagggtg aacgatttca aataattaac 360 cctagcaatt acgtagtgcc tgcagattcc attcaggcag aagaatggta ttttggcaaa 480 atggggagaa aagatgcgga aagattactt ctgaatcctg ggaatcagcg aggtattttc 540 ttagtaagag aaagtgaaac tactaaaggt gcttactccc tctcaatccg tgattgggat 600 gaggtgaggg gtgacaatgt gaagcattac aagatcagaa aacttgacaa tggtggctac 660 tacatcacga ccagagctca gtttgataca ctgcagaagc tggtgaagca ctacacagaa 720 catgctgatg gattatgcca caagttaaca actgtgtgtc ctactgtgaa accccagact 780 caaggtctgg caaaagatgc ttgggaaatc cctcgagaat cattgcgact agaggtgaaa 840 ctaggtcaag gatgctttgg ggaagtgtgg atgggaacat ggaatggaac tacaaaagta 900 gcaatcaaaa cactaaagcc aggtacaatg atgccagaag cattccttca agaagctcag 960 ataatgaaaa agctaagaca cgataaactt gttccactct atgcagttgt ttctgaagag 1020 cccatttata ttgtcaccga gtttatgtca aaaggaagct tgttagattt ccttaaagaa 1080 ggagatggaa agtatttgaa gcttccacag ctggttgata tggctgctca gatcgctgat 1140 ggcatggcgt atattgaaag aatgaactat attcaccgag atctccgagc tgctaatatt 1200 cttgtaggag aaaatcttat atgcaaaata gcagattttg gcttagcaag attaattgaa 1260 gacaatgaat acacggcaag acaaggtgca aaatttccaa tcaagtggac agctcctgag 1320 gctgctctgt atggtcgatt tacaataaag tcagatgtgt ggtcatttgg aattctacag 1380 acagagctgg taacaaaagg aagagtgcca tatccaggta tggtaaaccg tgaagtattg 1440 gaacaagtag agcggggata cagaatgcct tgcccccagg gctgtcccga atccctccat 1500 gaattgatga atctttgctg gaagaaggat cctgatgaaa gaccaacatt tgaatatatt 1560 cagtccttct tggaagacta cttcactgct acagagccac agtaccaacc aggagaaaat 1620 ttataa 1626

SEQ ID NO: 230 Mouse Yes-1 proto-oncogene amino acid sequence (NP_033561.1) MGCIKSKENK SPAIKYTPEN LTEPVSPSAS HYGVEHATVA PTSSTKGASV NFNSLSMTPF 60 GGSSGVTPFG GASSSFSVVS SSYPTGLTGG VTIFVALYDY EARTTEDLSF KKGERFQIIN 120 NTEGDWWEAR SIATGKSGYI PSNYVVPADS IQAEEWYFGK MGRKDAERLL LNPGNQRGIF 180 LVRESETTKG AYSLSIRDWD EVRGDNVKHY KIRKLDNGGY YITTRAQFDT LQKLVKHYTE 240 HADGLCHKLT TVCPTVKPQT QGLAKDAWEI PRESLRLEVK LGQGCFGEVW MGTWNGTTKV 300 AIKTLKPGTM MPEAFLQEAQ IMKKLRHDKL VPLYAVVSEE PIYIVTEFMS KGSLLDFLKE 360 GDGKYLKLPQ LVDMAAQIAD GMAYIERMNY IHRDLRAANI LVGENLICKI ADFGLARLIE 420 DNEYTARQGA KFPIKWTAPE AALYGRFTIK SDVWSFGILQ TELVTKGRVP YPGMVNREVL 480 EQVERGYRMP CPQGCPESLH ELMNLCWKKD PDERPTFEYI QSFLEDYFTA TEPQYQPGEN 540 L 541

SEQ ID NO: 231 Mouse Yes-1 proto-oncogene amino acid sequence

(NP_001192061.1)

mgcikskenk spaikytpen ltepvspsas hygvehatva ptsstkgasv nfnslsmtpf 60 ggssgvtpfg gasssfsvvs ssyptgltgg vtifvalydy earttedlsf kkgerfqiin 120 ntegdwwear siatgksgyi psnyvvpads iqaeewyfgk mgrkdaerll lnpgnqrgif 180 lvresettkg ayslsirdwd evrgdnvkhy kirkldnggy yittraqfdt lqklvkhyte 240 hadglchklt tvcptvkpqt qglakdawei preslrlevk lgqgcfgevw mgtwngttkv 300 aiktlkpgtm mpeaflqeaq imkklrhdkl vplyavvsee piyivtefms kgslldflke 360 gdgkylklpq lvdmaaqiad gmayiermny ihrdlraani lvgenlicki adfglarlie 420 dneytarqga kfpikwtape aalygrftik sdvwsfgilq telvtkgrvp ypgmvnrevl 480 eqvergyrmp cpqgcpeslh elmnlcwkkd pderptfeyi qsfledyfta tepqyqpgen 540 l 541

SEQ ID NO: 232 Mouse Yes-1 proto-oncogene amino acid sequence

(NP_001192062.1)

MGCIKSKENK SPAIKYTPEN LTEPVSPSAS HYGVEHATVA PTSSTKGASV NFNSLSMTPF 60 GGSSGVTPFG GASSSFSVVS SSYPTGLTGG VTIFVALYDY EARTTEDLSF KKGERFQIIN 120 NTEGDWWEAR SIATGKSGYI PSNYVVPADS IQAEEWYFGK MGRKDAERLL LNPGNQRGIF 180 LVRESETTKG AYSLSIRDWD EVRGDNVKHY KIRKLDNGGY YITTRAQFDT LQKLVKHYTE 240 HADGLCHKLT TVCPTVKPQT QGLAKDAWEI PRESLRLEVK LGQGCFGEVW MGTWNGTTKV 300 AIKTLKPGTM MPEAFLQEAQ IMKKLRHDKL VPLYAVVSEE PIYIVTEFMS KGSLLDFLKE 360 GDGKYLKLPQ LVDMAAQIAD GMAYIERMNY IHRDLRAANI LVGENLICKI ADFGLARLIE 420 DNEYTARQGA KFPIKWTAPE AALYGRFTIK SDVWSFGILQ TELVTKGRVP YPGMVNREVL 480 EQVERGYRMP CPQGCPESLH ELMNLCWKKD PDERPTFEYI QSFLEDYFTA TEPQYQPGEN 540 L 541

SEQ ID NO: 233 Human LYN proto-oncogene cDNA, transcript variant 1

(NM_002350.3)

atgggatgta taaaatcaaa agggaaagac agcttgagtg acgatggagt agatttgaag 60 actcaaccag tacgtaatac tgaaagaact atttatgtga gagatccaac gtccaataaa 120 cagcaaaggc cagttccaga atctcagctt ttacctggac agaggtttca aactaaagat 180 ccagaggaac aaggagacat tgtggtagcc ttgtacccct atgatggcat ccacccggac 240 gacttgtctt tcaagaaagg agagaagatg aaagtcctgg aggagcatgg agaatggtgg 300 aaagcaaagt cccttttaac aaaaaaagaa ggcttcatcc ccagcaacta tgtggccaaa 360 ctcaacacct tagaaacaga agagtggttt ttcaaggata taaccaggaa ggacgcagaa 420 aggcagcttt tggcaccagg aaatagcgct ggagctttcc ttattagaga aagtgaaaca 480 ttaaaaggaa gcttctctct gtctgtcaga gactttgacc ctgtgcatgg tgatgttatt 540 aagcactaca aaattagaag tctggataat gggggctatt acatctctcc acgaatcact 600 tttccctgta tcagcgacat gattaaacat taccaaaagc aggcagatgg cttgtgcaga 660 agattggaga aggcttgtat tagtcccaag ccacagaagc catgggataa agatgcctgg 720 gagatccccc gggagtccat caagttggtg aaaaggcttg gcgctgggca gtttggggaa 780 gtctggatgg gttactataa caacagtacc aaggtggctg tgaaaaccct gaagccagga 840 actatgtctg tgcaagcctt cctggaagaa gccaacctca tgaagaccct gcagcatgac 900 aagctcgtga ggctctacgc tgtggtcacc agggaggagc ccatttacat catcaccgag 960 tacatggcca agggcagttt gctggatttc ctgaagagcg atgaaggtgg caaagtgctg 1020 cttccaaagc tcattgactt ttctgctcag attgcagagg gaatggcata catcgagcgg 1080 aagaactaca ttcaccggga cctgcgagca gctaatgttc tggtctccga gtcactcatg 1140 tgcaaaattg cagattttgg ccttgctaga gtaattgaag ataatgagta cacagcaagg 1200 gaaggtgcta agttccctat taagtggacg gctccagaag caatcaactt tggatgtttc 1260 actattaagt ctgatgtgtg gtcctttgga atcctcctat acgaaattgt cacctatggg 1320 aaaattccct acccagggag aactaatgcc gacgtgatga ccgccctgtc ccagggctac 1380 aggatgcccc gtgtggagaa ctgcccagat gagctctatg acattatgaa aatgtgctgg 1440 aaagaaaagg cagaagagag accaacgttt gactacttac agagcgtcct ggatgatttc 1500 tacacagcca cggaagggca ataccagcag cagccttag 1539 SEQ ID NO: 234 Human LYN proto-oncogene cDNA, transcript variant 2 (NM_001111097.2)

atgggatgta taaaatcaaa agggaaagac agcttgagtg acgatggagt agatttgaag 60 actcaaccag ttccagaatc tcagctttta cctggacaga ggtttcaaac taaagatcca 120 gaggaacaag gagacattgt ggtagccttg tacccctatg atggcatcca cccggacgac 180 ttgtctttca agaaaggaga gaagatgaaa gtcctggagg agcatggaga atggtggaaa 240 gcaaagtccc ttttaacaaa aaaagaaggc ttcatcccca gcaactatgt ggccaaactc 300 aacaccttag aaacagaaga gtggtttttc aaggatataa ccaggaagga cgcagaaagg 360 cagcttttgg caccaggaaa tagcgctgga gctttcctta ttagagaaag tgaaacatta 420 aaaggaagct tctctctgtc tgtcagagac tttgaccctg tgcatggtga tgttattaag 480 cactacaaaa ttagaagtct ggataatggg ggctattaca tctctccacg aatcactttt 540 ccctgtatca gcgacatgat taaacattac caaaagcagg cagatggctt gtgcagaaga 600 ttggagaagg cttgtattag tcccaagcca cagaagccat gggataaaga tgcctgggag 660 atcccccggg agtccatcaa gttggtgaaa aggcttggcg ctgggcagtt tggggaagtc 720 tggatgggtt actataacaa cagtaccaag gtggctgtga aaaccctgaa gccaggaact 780 atgtctgtgc aagccttcct ggaagaagcc aacctcatga agaccctgca gcatgacaag 840 ctcgtgaggc tctacgctgt ggtcaccagg gaggagccca tttacatcat caccgagtac 900 atggccaagg gcagtttgct ggatttcctg aagagcgatg aaggtggcaa agtgctgctt 960 ccaaagctca ttgacttttc tgctcagatt gcagagggaa tggcatacat cgagcggaag 1020 aactacattc accgggacct gcgagcagct aatgttctgg tctccgagtc actcatgtgc 1080 aaaattgcag attttggcct tgctagagta attgaagata atgagtacac agcaagggaa 1140 ggtgctaagt tccctattaa gtggacggct ccagaagcaa tcaactttgg atgtttcact 1200 attaagtctg atgtgtggtc ctttggaatc ctcctatacg aaattgtcac ctatgggaaa 1260 attccctacc cagggagaac taatgccgac gtgatgaccg ccctgtccca gggctacagg 1320 atgccccgtg tggagaactg cccagatgag ctctatgaca ttatgaaaat gtgctggaaa 1380 gaaaaggcag aagagagacc aacgtttgac tacttacaga gcgtcctgga tgatttctac 1440 acagccacgg aagggcaata ccagcagcag ccttag 1476 SEQ ID NO: 235 Human LYN proto-oncogene amino acid sequence, isoform a (NP_002341.1)

MGCIKSKGKD SLSDDGVDLK TQPVRNTERT IYVRDPTSNK QQRPVPESQL LPGQRFQTKD 60 PEEQGDIVVA LYPYDGIHPD DLSFKKGEKM KVLEEHGEWW KAKSLLTKKE GFIPSNYVAK 120 LNTLETEEWF FKDITRKDAE RQLLAPGNSA GAFLIRESET LKGSFSLSVR DFDPVHGDVI 180 KHYKIRSLDN GGYYISPRIT FPCISDMIKH YQKQADGLCR RLEKACISPK PQKPWDKDAW 240 EIPRESIKLV KRLGAGQFGE VWMGYYNNST KVAVKTLKPG TMSVQAFLEE ANLMKTLQHD 300 KLVRLYAVVT REEPIYIITE YMAKGSLLDF LKSDEGGKVL LPKLIDFSAQ IAEGMAYIER 360 KNYIHRDLRA ANVLVSESLM CKIADFGLAR VIEDNEYTAR EGAKFPIKWT APEAINFGCF 420 TIKSDVWSFG ILLYEIVTYG KIPYPGRTNA DVMTALSQGY RMPRVENCPD ELYDIMKMCW 480 KEKAEERPTF DYLQSVLDDF YTATEGQYQQ QP 512 SEQ ID NO: 236 Human LYN proto-oncogene amino acid sequence, isoform b (NP_001104567.1)

MGCIKSKGKD SLSDDGVDLK TQPVPESQLL PGQRFQTKDP EEQGDIVVAL YPYDGIHPDD 60 LSFKKGEKMK VLEEHGEWWK AKSLLTKKEG FIPSNYVAKL NTLETEEWFF KDITRKDAER 120 QLLAPGNSAG AFLIRESETL KGSFSLSVRD FDPVHGDVIK HYKIRSLDNG GYYISPRITF 180 PCISDMIKHY QKQADGLCRR LEKACISPKP QKPWDKDAWE IPRESIKLVK RLGAGQFGEV 240 WMGYYNNSTK VAVKTLKPGT MSVQAFLEEA NLMKTLQHDK LVRLYAVVTR EEPIYIITEY 300 MAKGSLLDFL KSDEGGKVLL PKLIDFSAQI AEGMAYIERK NYIHRDLRAA NVLVSESLMC 360 KIADFGLARV IEDNEYTARE GAKFPIKWTA PEAINFGCFT IKSDVWSFGI LLYEIVTYGK 420 IPYPGRTNAD VMTALSQGYR MPRVENCPDE LYDIMKMCWK EKAEERPTFD YLQSVLDDFY 480 TATEGQYQQQ P 491 SEQ ID NO: 237 Mouse LYN proto-oncogene cDNA, transcript variant 1 (NM_001111096.1)

atgggatgta ttaaatcaaa aaggaaagac aatctcaatg acgatgaagt agattcgaag 60 actcaaccag tacgtaatac tgaccgaact atttatgtga gagatccaac gtccaataaa 120 cagcaaaggc cagttcctga atttcatctt ttaccaggac agagatttca aacaaaagat 180 ccagaggaac aaggtgacat tgtggtggcc ttataccctt atgatggcat ccacccagat 240 gacttgtcct tcaagaaagg agaaaagatg aaagttctag aagagcatgg ggaatggtgg 300 aaagctaagt ccctttcatc aaagagagaa ggcttcatcc ccagcaacta cgtggccaag 360 gtcaacacct tagaaactga agagtggttc ttcaaggaca taacaaggaa agatgcagag 420 cgacagcttc tggcaccagg gaacagtgca ggagctttcc ttatcagaga aagcgaaact 480 ttaaagggaa gcttctctct ttctgtcaga gattatgacc ctatgcatgg tgatgtcatt 540 aagcactaca aaattagaag tctggacaat ggtggctatt acatctctcc tcgcatcact 600 tttccctgca tcagtgacat gattaagcat taccaaaagc agtctgatgg tctatgcaga 660 agactggaga aggcatgcat cagtcccaaa cctcagaagc catgggataa agatgcctgg 720 gagatccccc gggagtccat taagttggtg aaaaagcttg gcgcagggca gtttggggaa 780 gtctggatgg gttactataa caacagcaca aaggtggctg tgaagaccct caagcccggc 840 accatgtctg tgcaggcatt cctggaagag gccaacctca tgaagacctt gcaacatgac 900 aagctagtgc ggctgtacgc tgtggtcacc aaggaggagc ccatctacat catcaccgag 960 ttcatggcta agggtagttt gctggatttc ctcaagagtg atgaaggtgg caaggtgctg 1020 ctgcccaagc tcattgactt ctcggcccag attgcagaag gcatggcgta catcgagcgg 1080 aagaactaca tccaccgtga tctgcgagct gctaacgtcc tggtctctga gtcactcatg 1140 tgcaagattg cagactttgg cctcgcgaga gtcatcgaag ataacgagta cacagcaagg 1200 gaaggtgcga agttccctat caagtggaca gctccagagg ccatcaactt cggctgcttc 1260 actatcaaat ctgacgtgtg gtccttcgga attctcctgt atgagattgt cacctatggg 1320 aagattccct acccagggag aaccaacgca gatgtgatga gcgcactgtc acagggatat 1380 cgaatgccac gcatggagaa ctgcccagat gagctctatg acatcatgaa aatgtgttgg 1440 aaagaaaagg cagaggagag gccaactttt gactacttac agagtgtcct ggatgacttc 1500 tatacagcca cagaagggca gtatcagcag caaccgtag 1539 SEQ ID NO: 238 Mouse LYN proto-oncogene cDNA, transcript variant 2 (NM_010747.2)

atgggatgta ttaaatcaaa aaggaaagac aatctcaatg acgatgaagt agattcgaag 60 actcaaccag ttcctgaatt tcatctttta ccaggacaga gatttcaaac aaaagatcca 120 gaggaacaag gtgacattgt ggtggcctta tacccttatg atggcatcca cccagatgac 180 ttgtccttca agaaaggaga aaagatgaaa gttctagaag agcatgggga atggtggaaa 240 gctaagtccc tttcatcaaa gagagaaggc ttcatcccca gcaactacgt ggccaaggtc 300 aacaccttag aaactgaaga gtggttcttc aaggacataa caaggaaaga tgcagagcga 360 cagcttctgg caccagggaa cagtgcagga gctttcctta tcagagaaag cgaaacttta 420 aagggaagct tctctctttc tgtcagagat tatgacccta tgcatggtga tgtcattaag 480 cactacaaaa ttagaagtct ggacaatggt ggctattaca tctctcctcg catcactttt 540 ccctgcatca gtgacatgat taagcattac caaaagcagt ctgatggtct atgcagaaga 600 ctggagaagg catgcatcag tcccaaacct cagaagccat gggataaaga tgcctgggag 660 atcccccggg agtccattaa gttggtgaaa aagcttggcg cagggcagtt tggggaagtc 720 tggatgggtt actataacaa cagcacaaag gtggctgtga agaccctcaa gcccggcacc 780 atgtctgtgc aggcattcct ggaagaggcc aacctcatga agaccttgca acatgacaag 840 ctagtgcggc tgtacgctgt ggtcaccaag gaggagccca tctacatcat caccgagttc 900 atggctaagg gtagtttgct ggatttcctc aagagtgatg aaggtggcaa ggtgctgctg 960 cccaagctca ttgacttctc ggcccagatt gcagaaggca tggcgtacat cgagcggaag 1020 aactacatcc accgtgatct gcgagctgct aacgtcctgg tctctgagtc actcatgtgc 1080 aagattgcag actttggcct cgcgagagtc atcgaagata acgagtacac agcaagggaa 1140 ggtgcgaagt tccctatcaa gtggacagct ccagaggcca tcaacttcgg ctgcttcact 1200 atcaaatctg acgtgtggtc cttcggaatt ctcctgtatg agattgtcac ctatgggaag 1260 attccctacc cagggagaac caacgcagat gtgatgagcg cactgtcaca gggatatcga 1320 atgccacgca tggagaactg cccagatgag ctctatgaca tcatgaaaat gtgttggaaa 1380 gaaaaggcag aggagaggcc aacttttgac tacttacaga gtgtcctgga tgacttctat 1440 acagccacag aagggcagta tcagcagcaa ccgtag 1476 SEQ ID NO: 239 Mouse LYN proto-oncogene amino acid sequence, isoform a (NP_001104566.1)

MGCIKSKRKD NLNDDEVDSK TQPVRNTDRT IYVRDPTSNK QQRPVPEFHL LPGQRFQTKD 60 PEEQGDIVVA LYPYDGIHPD DLSFKKGEKM KVLEEHGEWW KAKSLSSKRE GFIPSNYVAK 120 VNTLETEEWF FKDITRKDAE RQLLAPGNSA GAFLIRESET LKGSFSLSVR DYDPMHGDVI 180 KHYKIRSLDN GGYYISPRIT FPCISDMIKH YQKQSDGLCR RLEKACISPK PQKPWDKDAW 240 EIPRESIKLV KKLGAGQF48GE VWMGYYNNST KVAVKTLKPG TMSVQAFLEE ANLMKTLQHD 300 KLVRLYAVVT KEEPIYIITE FMAKGSLLDF LKSDEGGKVL LPKLIDFSAQ IAEGMAYIER 360 KNYIHRDLRA ANVLVSESLM CKIADFGLAR VIEDNEYTAR EGAKFPIKWT APEAINFGCF 420 TIKSDVWSFG ILLYEIVTYG KIPYPGRTNA DVMSALSQGY RMPRMENCPD ELYDIMKMCW 480 KEKAEERPTF DYLQSVLDDF YTATEGQYQQ QP 512 SEQ ID NO: 240 Mouse LYN proto-oncogene amino acid sequence, isoform b (NP_034877.2)

MGCIKSKRKD NLNDDEVDSK TQPVPEFHLL PGQRFQTKDP EEQGDIVVAL YPYDGIHPDD 60 LSFKKGEKMK VLEEHGEWWK AKSLSSKREG FIPSNYVAKV NTLETEEWFF KDITRKDAER 120 QLLAPGNSAG AFLIRESETL KGSFSLSVRD YDPMHGDVIK HYKIRSLDNG GYYISPRITF 180 PCISDMIKHY QKQSDGLCRR LEKACISPKP QKPWDKDAWE IPRESIKLVK KLGAGQFGEV 240 WMGYYNNSTK VAVKTLKPGT MSVQAFLEEA NLMKTLQHDK LVRLYAVVTK EEPIYIITEF 300 MAKGSLLDFL KSDEGGKVLL PKLIDFSAQI AEGMAYIERK NYIHRDLRAA NVLVSESLMC 360 KIADFGLARV IEDNEYTARE GAKFPIKWTA PEAINFGCFT IKSDVWSFGI LLYEIVTYGK 420 IPYPGRTNAD VMSALSQGYR MPRMENCPDE LYDIMKMCWK EKAEERPTFD YLQSVLDDFY 480 TATEGQYQQQ P 491 SEQ ID NO: 241 Human FGR proto-oncogene cDNA, transcript variant 1 (NM_005248.2)

atgggctgtg tgttctgcaa gaaattggag ccggtggcca cggccaagga ggatgctggc 60 ctggaagggg acttcagaag ctacggggca gcagaccact atgggcctga ccccactaag 120 gcccggcctg catcctcatt tgcccacatc cccaactaca gcaacttctc ctctcaggcc 180 atcaaccctg gcttccttga tagtggcacc atcaggggtg tgtcagggat tggggtgacc 240 ctgttcattg ccctgtatga ctatgaggct cgaactgagg atgacctcac cttcaccaag 300 ggcgagaagt tccacatcct gaacaatact gaaggtgact ggtgggaggc tcggtctctc 360 agctccggaa aaactggctg cattcccagc aactacgtgg cccctgttga ctcaatccaa 420 gctgaagagt ggtactttgg aaagattggg agaaaggatg cagagaggca gctgctttca 480 ccaggcaacc cccagggggc ctttctcatt cgggaaagcg agaccaccaa aggtgcctac 540 tccctgtcca tccgggactg ggatcagacc agaggcgatc atgtgaagca ttacaagatc 600 cgcaaactgg acatgggcgg ctactacatc accacacggg ttcagttcaa ctcggtgcag 660 gagctggtgc agcactacat ggaggtgaat gacgggctgt gcaacctgct catcgcgccc 720 tgcaccatca tgaagccgca gacgctgggc ctggccaagg acgcctggga gatcagccgc 780 agctccatca cgctggagcg ccggctgggc accggctgct tcggggatgt gtggctgggc 840 acgtggaacg gcagcactaa ggtggcggtg aagacgctga agccgggcac catgtccccg 900 aaggccttcc tggaggaggc gcaggtcatg aagctgctgc ggcacgacaa gctggtgcag 960 ctgtacgccg tggtgtcgga ggagcccatc tacatcgtga ccgagttcat gtgtcacggc 1020 agcttgctgg attttctcaa gaacccagag ggccaggatt tgaggctgcc ccaattggtg 1080 gacatggcag cccaggtagc tgagggcatg gcctacatgg aacgcatgaa ctacattcac 1140 cgcgacctga gggcagccaa catcctggtt ggggagcggc tggcgtgcaa gatcgcagac 1200 tttggcttgg cgcgtctcat caaggacgat gagtacaacc cctgccaagg ttccaagttc 1260 cccatcaagt ggacagcccc agaagctgcc ctctttggca gattcaccat caagtcagac 1320 gtgtggtcct ttgggatcct gctcactgag ctcatcacca agggccgaat cccctaccca 1380 ggcatgaata aacgggaagt gttggaacag gtggagcagg gctaccacat gccgtgccct 1440 ccaggctgcc cagcatccct gtacgaggcc atggaacaga cctggcgtct ggacccggag 1500 gagaggccta ccttcgagta cctgcagtcc ttcctggagg actacttcac ctccgctgaa 1560 ccacagtacc agcccgggga tcagacatag 1590 SEQ ID NO: 242 Human FGR proto-oncogene cDNA, transcript variant 2 (NM_001042747.1)

atgggctgtg tgttctgcaa gaaattggag ccggtggcca cggccaagga ggatgctggc 60 ctggaagggg acttcagaag ctacggggca gcagaccact atgggcctga ccccactaag 120 gcccggcctg catcctcatt tgcccacatc cccaactaca gcaacttctc ctctcaggcc 180 t t tt tt t t t t t t t t t 240 ctgttcattg ccctgtatga ctatgaggct cgaactgagg atgacctcac cttcaccaag 300 ggcgagaagt tccacatcct gaacaatact gaaggtgact ggtgggaggc tcggtctctc 360 agctccggaa aaactggctg cattcccagc aactacgtgg cccctgttga ctcaatccaa 420 gctgaagagt ggtactttgg aaagattggg agaaaggatg cagagaggca gctgctttca 480 ccaggcaacc cccagggggc ctttctcatt cgggaaagcg agaccaccaa aggtgcctac 540 tccctgtcca tccgggactg ggatcagacc agaggcgatc atgtgaagca ttacaagatc 600 cgcaaactgg acatgggcgg ctactacatc accacacggg ttcagttcaa ctcggtgcag 660 gagctggtgc agcactacat ggaggtgaat gacgggctgt gcaacctgct catcgcgccc 720 tgcaccatca tgaagccgca gacgctgggc ctggccaagg acgcctggga gatcagccgc 780 agctccatca cgctggagcg ccggctgggc accggctgct tcggggatgt gtggctgggc 840 acgtggaacg gcagcactaa ggtggcggtg aagacgctga agccgggcac catgtccccg 900 aaggccttcc tggaggaggc gcaggtcatg aagctgctgc ggcacgacaa gctggtgcag 960 ctgtacgccg tggtgtcgga ggagcccatc tacatcgtga ccgagttcat gtgtcacggc 1020 agcttgctgg attttctcaa gaacccagag ggccaggatt tgaggctgcc ccaattggtg 1080 gacatggcag cccaggtagc tgagggcatg gcctacatgg aacgcatgaa ctacattcac 1140 cgcgacctga gggcagccaa catcctggtt ggggagcggc tggcgtgcaa gatcgcagac 1200 tttggcttgg cgcgtctcat caaggacgat gagtacaacc cctgccaagg ttccaagttc 1260 cccatcaagt ggacagcccc agaagctgcc ctctttggca gattcaccat caagtcagac 1320 gtgtggtcct ttgggatcct gctcactgag ctcatcacca agggccgaat cccctaccca 1380 ggcatgaata aacgggaagt gttggaacag gtggagcagg gctaccacat gccgtgccct 1440 ccaggctgcc cagcatccct gtacgaggcc atggaacaga cctggcgtct ggacccggag 1500 gagaggccta ccttcgagta cctgcagtcc ttcctggagg actacttcac ctccgctgaa 1560 ccacagtacc agcccgggga tcagacatag 1590 SEQ ID NO: 243 Human FGR proto-oncogene cDNA, transcript variant 3 (NM_001042729.1)

atgggctgtg tgttctgcaa gaaattggag ccggtggcca cggccaagga ggatgctggc 60 ctggaagggg acttcagaag ctacggggca gcagaccact atgggcctga ccccactaag 120 gcccggcctg catcctcatt tgcccacatc cccaactaca gcaacttctc ctctcaggcc 180 atcaaccctg gcttccttga tagtggcacc atcaggggtg tgtcagggat tggggtgacc 240 ctgttcattg ccctgtatga ctatgaggct cgaactgagg atgacctcac cttcaccaag 300 ggcgagaagt tccacatcct gaacaatact gaaggtgact ggtgggaggc tcggtctctc 360 agctccggaa aaactggctg cattcccagc aactacgtgg cccctgttga ctcaatccaa 420 gctgaagagt ggtactttgg aaagattggg agaaaggatg cagagaggca gctgctttca 480 ccaggcaacc cccagggggc ctttctcatt cgggaaagcg agaccaccaa aggtgcctac 540 tccctgtcca tccgggactg ggatcagacc agaggcgatc atgtgaagca ttacaagatc 600 cgcaaactgg acatgggcgg ctactacatc accacacggg ttcagttcaa ctcggtgcag 660 gagctggtgc agcactacat ggaggtgaat gacgggctgt gcaacctgct catcgcgccc 720 tgcaccatca tgaagccgca gacgctgggc ctggccaagg acgcctggga gatcagccgc 780 agctccatca cgctggagcg ccggctgggc accggctgct tcggggatgt gtggctgggc 840 acgtggaacg gcagcactaa ggtggcggtg aagacgctga agccgggcac catgtccccg 900 aaggccttcc tggaggaggc gcaggtcatg aagctgctgc ggcacgacaa gctggtgcag 960 ctgtacgccg tggtgtcgga ggagcccatc tacatcgtga ccgagttcat gtgtcacggc 1020 agcttgctgg attttctcaa gaacccagag ggccaggatt tgaggctgcc ccaattggtg 1080 gacatggcag cccaggtagc tgagggcatg gcctacatgg aacgcatgaa ctacattcac 1140 cgcgacctga gggcagccaa catcctggtt ggggagcggc tggcgtgcaa gatcgcagac 1200 tttggcttgg cgcgtctcat caaggacgat gagtacaacc cctgccaagg ttccaagttc 1260 cccatcaagt ggacagcccc agaagctgcc ctctttggca gattcaccat caagtcagac 1320 gtgtggtcct ttgggatcct gctcactgag ctcatcacca agggccgaat cccctaccca 1380 ggcatgaata aacgggaagt gttggaacag gtggagcagg gctaccacat gccgtgccct 1440 ccaggctgcc cagcatccct gtacgaggcc atggaacaga cctggcgtct ggacccggag 1500 gagaggccta ccttcgagta cctgcagtcc ttcctggagg actacttcac ctccgctgaa 1560 ccacagtacc agcccgggga tcagacatag 1590 SEQ ID NO: 244 Human FGR proto-oncogene amino acid sequence (NP_005239.1)

MGCVFCKKLE PVATAKEDAG LEGDFRSYGA ADHYGPDPTK ARPASSFAHI PNYSNFSSQA 60 INPGFLDSGT IRGVSGIGVT LFIALYDYEA RTEDDLTFTK GEKFHILNNT EGDWWEARSL 120 SSGKTGCIPS NYVAPVDSIQ AEEWYFGKIG RKDAERQLLS PGNPQGAFLI RESETTKGAY 180 SLSIRDWDQT RGDHVKHYKI RKLDMGGYYI TTRVQFNSVQ ELVQHYMEVN DGLCNLLIAP 240 CTIMKPQTLG LAKDAWEISR SSITLERRLG TGCFGDVWLG TWNGSTKVAV KTLKPGTMSP 300 KAFLEEAQVM KLLRHDKLVQ LYAVVSEEPI YIVTEFMCHG SLLDFLKNPE GQDLRLPQLV 360 DMAAQVAEGM AYMERMNYIH RDLRAANILV GERLACKIAD FGLARLIKDD EYNPCQGSKF 420 PIKWTAPEAA LFGRFTIKSD VWSFGILLTE LITKGRIPYP GMNKREVLEQ VEQGYHMPCP 480 PGCPASLYEA MEQTWRLDPE ERPTFEYLQS FLEDYFTSAE PQYQPGDQT 529 SEQ ID NO: 245 Human FGR proto-oncogene amino acid sequence

(NP_001036194.1)

MGCVFCKKLE PVATAKEDAG LEGDFRSYGA ADHYGPDPTK ARPASSFAHI PNYSNFSSQA 60 INPGFLDSGT IRGVSGIGVT LFIALYDYEA RTEDDLTFTK GEKFHILNNT EGDWWEARSL 120 SSGKTGCIPS NYVAPVDSIQ AEEWYFGKIG RKDAERQLLS PGNPQGAFLI RESETTKGAY 180 SLSIRDWDQT RGDHVKHYKI RKLDMGGYYI TTRVQFNSVQ ELVQHYMEVN DGLCNLLIAP 240 CTIMKPQTLG LAKDAWEISR SSITLERRLG TGCFGDVWLG TWNGSTKVAV KTLKPGTMSP 300 KAFLEEAQVM KLLRHDKLVQ LYAVVSEEPI YIVTEFMCHG SLLDFLKNPE GQDLRLPQLV 360 DMAAQVAEGM AYMERMNYIH RDLRAANILV GERLACKIAD FGLARLIKDD EYNPCQGSKF 420 PIKWTAPEAA LFGRFTIKSD VWSFGILLTE LITKGRIPYP GMNKREVLEQ VEQGYHMPCP 480 PGCPASLYEA MEQTWRLDPE ERPTFEYLQS FLEDYFTSAE PQYQPGDQT 529

SEQ ID NO: 246 Human FGR proto-oncogene amino acid sequence

(NP_001036212.1)

MGCVFCKKLE PVATAKEDAG LEGDFRSYGA ADHYGPDPTK ARPASSFAHI PNYSNFSSQA 60 INPGFLDSGT IRGVSGIGVT LFIALYDYEA RTEDDLTFTK GEKFHILNNT EGDWWEARSL 120 SSGKTGCIPS NYVAPVDSIQ AEEWYFGKIG RKDAERQLLS PGNPQGAFLI RESETTKGAY 180 SLSIRDWDQT RGDHVKHYKI RKLDMGGYYI TTRVQFNSVQ ELVQHYMEVN DGLCNLLIAP 240 CTIMKPQTLG LAKDAWEISR SSITLERRLG TGCFGDVWLG TWNGSTKVAV KTLKPGTMSP 300 KAFLEEAQVM KLLRHDKLVQ LYAVVSEEPI YIVTEFMCHG SLLDFLKNPE GQDLRLPQLV 360 DMAAQVAEGM AYMERMNYIH RDLRAANILV GERLACKIAD FGLARLIKDD EYNPCQGSKF 420 PIKWTAPEAA LFGRFTIKSD VWSFGILLTE LITKGRIPYP GMNKREVLEQ VEQGYHMPCP 480 PGCPASLYEA MEQTWRLDPE ERPTFEYLQS FLEDYFTSAE PQYQPGDQT 529

SEQ ID NO: 247 Mouse FGR proto-oncogene cDNA (NM_010208.4)

atgggctgtg tgttctgcaa gaagttggag cctgcatcca aggaggatgt gggcctggaa 60 ggggacttcc ggagccaaac ggctgaagaa cgctatttcc ctgaccccac tcaaggccgg 120 acttcgtccg tctttcctca gcccaccagc cctgctttcc tcaacactgg caacatgaga 180 agcatctcag ggaccggagt gaccatattc gtcgccctgt acgactatga ggccaggaca 240 ggggatgacc tcaccttcac caaaggcgag aagttccaca tcctgaacaa tacggagtat 300 gactggtggg aggctcgctc cctgagctcc ggacacagag gctatgttcc cagcaactat 360 gttgctcctg tggattccat ccaggctgaa gagtggtact tcggaaagat cagtagaaag 420 gatgcagaga ggcagcttct gtcctctggt aacccccagg gggcctttct cattcgggaa 480 agcgagacca ccaaaggggc ctactccctg tccatccgtg actgggacca gaacagaggc 540 gatcacataa agcattataa gatccgaaag ctggacacgg gcggctacta catcaccaca 600 cgggcccagt ttgactccat acaggaccta gtgcggcact acatggaagt gaatgatggt 660 ctgtgctact tgcttacggc gccttgtacc accactaagc cccagactct aggcctggcc 720 aaggatgcct gggagatcga ccggaactcc atagcactgg aacgcaggct gggcaccggc 780 tgctttggag atgtgtggct gggcacatgg aactgcagca caaaggtggc agtgaagacg 840 ctgaagccgg gcaccatgtc cccgaaggca ttcctggagg aggcacagat catgaagctg 900 ctgaggcacg acaagctggt gcagctgtat gcggtggtgt cggaggaacc catttatatt 960 gtgacagagt tcatgtgcta tggtagcttg ctggatttcc taaaggatcg agaaggtcag 1020 aacttgatgc tgccccatct agtggacatg gctgcccagg tagccgaggg catggcctac 1080 atggaacgca tgaactatat ccaccgagac ttgagggcag ccaacatcct ggtgggggaa 1140 tacctaatat gcaagatcgc tgacttcggg ctggcacgcc tcatagagga caatgagtat 1200 aacccccaac aaggaaccaa gttccccatc aagtggacag ccccagaggc cgccctcttt 1260 ggcagattca ctgtcaaatc agacgtgtgg tcctttggga ttctgctcac tgaactgatc 1320 accaagggca gagttcccta cccaggtatg aacaaccggg aagtgttgga acaggtggag 1380 catggctacc acatgccgtg ccctccagga tgtcctgcat ccctgtatga ggtcatggag 1440 caggcgtggc gcctggatcc agaggagagg cccacctttg agtacctgca gtctttcctg 1500 gaagactatt tcacctccac agaaccacag taccagcctg gagaccagac atag 1554

SEQ ID NO: 248 Mouse FGR proto-oncogene amino acid sequence (NP_034338.3) MGCVFCKKLE PASKEDVGLE GDFRSQTAEE RYFPDPTQGR TSSVFPQPTS PAFLNTGNMR 60 SISGTGVTIF VALYDYEART GDDLTFTKGE KFHILNNTEY DWWEARSLSS GHRGYVPSNY 120 VAPVDSIQAE EWYFGKISRK DAERQLLSSG NPQGAFLIRE SETTKGAYSL SIRDWDQNRG 180 DHIKHYKIRK LDTGGYYITT RAQFDSIQDL VRHYMEVNDG LCYLLTAPCT TTKPQTLGLA 240 KDAWEIDRNS IALERRLGTG CFGDVWLGTW NCSTKVAVKT LKPGTMSPKA FLEEAQIMKL 300 LRHDKLVQLY AVVSEEPIYI VTEFMCYGSL LDFLKDREGQ NLMLPHLVDM AAQVAEGMAY 360 MERMNYIHRD LRAANILVGE YLICKIADFG LARLIEDNEY NPQQGTKFPI KWTAPEAALF 420 GRFTVKSDVW SFGILLTELI TKGRVPYPGM NNREVLEQVE HGYHMPCPPG CPASLYEVME 480 QAWRLDPEER PTFEYLQSFL EDYFTSTEPQ YQPGDQT 517 SEQ ID NO: 249 Human HCK proto-oncogene cDNA, transcript variant 1 (NM_002110.3)

atggggtgca tgaagtccaa gttcctccag gtcggaggca atacattctc aaaaactgaa 60 accagcgcca gcccacactg tcctgtgtac gtgccggatc ccacatccac catcaagccg 120 gggcctaata gccacaacag caacacacca ggaatcaggg aggcaggctc tgaggacatc 180 atcgtggttg ccctgtatga ttacgaggcc attcaccacg aagacctcag cttccagaag 240 ggggaccaga tggtggtcct agaggaatcc ggggagtggt ggaaggctcg atccctggcc 300 acccggaagg agggctacat cccaagcaac tatgtcgccc gcgttgactc tctggagaca 360 gaggagtggt ttttcaaggg catcagccgg aaggacgcag agcgccaact gctggctccc 420 ggcaacatgc tgggctcctt catgatccgg gatagcgaga ccactaaagg aagctactct 480 ttgtccgtgc gagactacga ccctcggcag ggagataccg tgaaacatta caagatccgg 540 accctggaca acgggggctt ctacatatcc ccccgaagca ccttcagcac tctgcaggag 600 ctggtggacc actacaagaa ggggaacgac gggctctgcc agaaactgtc ggtgccctgc 660 atgtcttcca agccccagaa gccttgggag aaagatgcct gggagatccc tcgggaatcc 720 ctcaagctgg agaagaaact tggagctggg cagtttgggg aagtctggat ggccacctac 780 aacaagcaca ccaaggtggc agtgaagacg atgaagccag ggagcatgtc ggtggaggcc 840 ttcctggcag aggccaacgt gatgaaaact ctgcagcatg acaagctggt caaacttcat 900 gcggtggtca ccaaggagcc catctacatc atcacggagt tcatggccaa aggaagcttg 960 ctggactttc tgaaaagtga tgagggcagc aagcagccat tgccaaaact cattgacttc 1020 tcagcccaga ttgcagaagg catggccttc atcgagcaga ggaactacat ccaccgagac 1080 ctccgagctg ccaacatctt ggtctctgca tccctggtgt gtaagattgc tgactttggc 1140 ctggcccggg tcattgagga caacgagtac acggctcggg aaggggccaa gttccccatc 1200 aagtggacag ctcctgaagc catcaacttt ggctccttca ccatcaagtc agacgtctgg 1260 tcctttggta tcctgctgat ggagatcgtc acctacggcc ggatccctta cccagggatg 1320 tcaaaccctg aagtgatccg agctctggag cgtggatacc ggatgcctcg cccagagaac 1380 tgcccagagg agctctacaa catcatgatg cgctgctgga aaaaccgtcc ggaggagcgg 1440 ccgaccttcg aatacatcca gagtgtgctg gatgacttct acacggccac agagagccag 1500 taccaacagc agccatga 1518 SEQ ID NO: 250 Human HCK proto-oncogene cDNA, transcript variant 1 (NM_001172129.1)

atggggtgca tgaagtccaa gttcctccag gtcggaggca atacattctc aaaaactgaa 60 accagcgcca gcccacactg tcctgtgtac gtgccggatc ccacatccac catcaagccg 120 gggcctaata gccacaacag caacacacca ggaatcaggg aggcaggctc tgaggacatc 180 atcgtggttg ccctgtatga ttacgaggcc attcaccacg aagacctcag cttccagaag 240 ggggaccaga tggtggtcct agaggaatcc ggggagtggt ggaaggctcg atccctggcc 300 acccggaagg agggctacat cccaagcaac tatgtcgccc gcgttgactc tctggagaca 360 gaggagtggt ttttcaaggg catcagccgg aaggacgcag agcgccaact gctggctccc 420 ggcaacatgc tgggctcctt catgatccgg gatagcgaga ccactaaagg aagctactct 480 ttgtccgtgc gagactacga ccctcggcag ggagataccg tgaaacatta caagatccgg 540 accctggaca acgggggctt ctacatatcc ccccgaagca ccttcagcac tctgcaggag 600 ctggtggacc actacaagaa ggggaacgac gggctctgcc agaaactgtc ggtgccctgc 660 atgtcttcca agccccagaa gccttgggag aaagatgcct gggagatccc tcgggaatcc 720 ctcaagctgg agaagaaact tggagctggg cagtttgggg aagtctggat ggccacctac 780 aacaagcaca ccaaggtggc agtgaagacg atgaagccag ggagcatgtc ggtggaggcc 840 ttcctggcag aggccaacgt gatgaaaact ctgcagcatg acaagctggt caaacttcat 900 gcggtggtca ccaaggagcc catctacatc atcacggagt tcatggccaa aggaagcttg 960 ctggactttc tgaaaagtga tgagggcagc aagcagccat tgccaaaact cattgacttc 1020 tcagcccaga ttgcagaagg catggccttc atcgagcaga ggaactacat ccaccgagac 1080 ctccgagctg ccaacatctt ggtctctgca tccctggtgt gtaagattgc tgactttggc 1140 ctggcccggg tcattgagga caacgagtac acggctcggg aaggggccaa gttccccatc 1200 aagtggacag ctcctgaagc catcaacttt ggctccttca ccatcaagtc agacgtctgg 1260 tcctttggta tcctgctgat ggagatcgtc acctacggcc ggatccctta cccagggatg 1320 tcaaaccctg aagtgatccg agctctggag cgtggatacc ggatgcctcg cccagagaac 1380 tgcccagagg agctctacaa catcatgatg cgctgctgga aaaaccgtcc ggaggagcgg 1440 ccgaccttcg aatacatcca gagtgtgctg gatgacttct acacggccac agagagccag 1500 taccaacagc agccatga 1518 SEQ ID NO: 251 Human HCK proto-oncogene cDNA, transcript variant 2 (NM_001172130.1)

atggggtgca tgaagtccaa gttcctccag gtcggaggca atacattctc aaaaactgaa 60 accagcgcca gcccacactg tcctgtgtac gtgccggatc ccacatccac catcaagccg 120 gggcctaata gccacaacag caacacacca ggaatcaggg agggctctga ggacatcatc 180 gtggttgccc tgtatgatta cgaggccatt caccacgaag acctcagctt ccagaagggg 240 gaccagatgg tggtcctaga ggaatccggg gagtggtgga aggctcgatc cctggccacc 300 cggaaggagg gctacatccc aagcaactat gtcgcccgcg ttgactctct ggagacagag 360 gagtggtttt tcaagggcat cagccggaag gacgcagagc gccaactgct ggctcccggc 420 aacatgctgg gctccttcat gatccgggat agcgagacca ctaaaggaag ctactctttg 480 tccgtgcgag actacgaccc tcggcaggga gataccgtga aacattacaa gatccggacc 540 ctggacaacg ggggcttcta catatccccc cgaagcacct tcagcactct gcaggagctg 600 gtggaccact acaagaaggg gaacgacggg ctctgccaga aactgtcggt gccctgcatg 660 tcttccaagc cccagaagcc ttgggagaaa gatgcctggg agatccctcg ggaatccctc 720 aagctggaga agaaacttgg agctgggcag tttggggaag tctggatggc cacctacaac 780 aagcacacca aggtggcagt gaagacgatg aagccaggga gcatgtcggt ggaggccttc 840 ctggcagagg ccaacgtgat gaaaactctg cagcatgaca agctggtcaa acttcatgcg 900 gtggtcacca aggagcccat ctacatcatc acggagttca tggccaaagg aagcttgctg 960 gactttctga aaagtgatga gggcagcaag cagccattgc caaaactcat tgacttctca 1020 gcccagattg cagaaggcat ggccttcatc gagcagagga actacatcca ccgagacctc 1080 cgagctgcca acatcttggt ctctgcatcc ctggtgtgta agattgctga ctttggcctg 1140 gcccgggtca ttgaggacaa cgagtacacg gctcgggaag gggccaagtt ccccatcaag 1200 tggacagctc ctgaagccat caactttggc tccttcacca tcaagtcaga cgtctggtcc 1260 tttggtatcc tgctgatgga gatcgtcacc tacggccgga tcccttaccc agggatgtca 1320 aaccctgaag tgatccgagc tctggagcgt ggataccgga tgcctcgccc agagaactgc 1380 ccagaggagc tctacaacat catgatgcgc tgctggaaaa accgtccgga ggagcggccg 1440 accttcgaat acatccagag tgtgctggat gacttctaca cggccacaga gagccagtac 1500 caacagcagc catga 1515 SEQ ID NO: 252 Human HCK proto-oncogene cDNA, transcript variant 2 (NM_001172131.1)

atggggtgca tgaagtccaa gttcctccag gtcggaggca atacattctc aaaaactgaa 60 accagcgcca gcccacactg tcctgtgtac gtgccggatc ccacatccac catcaagccg 120 gggcctaata gccacaacag caacacacca ggaatcaggg agggctctga ggacatcatc 180 gtggttgccc tgtatgatta cgaggccatt caccacgaag acctcagctt ccagaagggg 240 gaccagatgg tggtcctaga ggaatccggg gagtggtgga aggctcgatc cctggccacc 300 cggaaggagg gctacatccc aagcaactat gtcgcccgcg ttgactctct ggagacagag 360 gagtggtttt tcaagggcat cagccggaag gacgcagagc gccaactgct ggctcccggc 420 aacatgctgg gctccttcat gatccgggat agcgagacca ctaaaggaag ctactctttg 480 tccgtgcgag actacgaccc tcggcaggga gataccgtga aacattacaa gatccggacc 540 ctggacaacg ggggcttcta catatccccc cgaagcacct tcagcactct gcaggagctg 600 gtggaccact acaagaaggg gaacgacggg ctctgccaga aactgtcggt gccctgcatg 660 tcttccaagc cccagaagcc ttgggagaaa gatgcctggg agatccctcg ggaatccctc 720 aagctggaga agaaacttgg agctgggcag tttggggaag tctggatggc cacctacaac 780 aagcacacca aggtggcagt gaagacgatg aagccaggga gcatgtcggt ggaggccttc 840 ctggcagagg ccaacgtgat gaaaactctg cagcatgaca agctggtcaa acttcatgcg 900 gtggtcacca aggagcccat ctacatcatc acggagttca tggccaaagg aagcttgctg 960 gactttctga aaagtgatga gggcagcaag cagccattgc caaaactcat tgacttctca 1020 gcccagattg cagaaggcat ggccttcatc gagcagagga actacatcca ccgagacctc 1080 cgagctgcca acatcttggt ctctgcatcc ctggtgtgta agattgctga ctttggcctg 1140 gcccgggtca ttgaggacaa cgagtacacg gctcgggaag gggccaagtt ccccatcaag 1200 tggacagctc ctgaagccat caactttggc tccttcacca tcaagtcaga cgtctggtcc 1260 tttggtatcc tgctgatgga gatcgtcacc tacggccgga tcccttaccc agggatgtca 1320 aaccctgaag tgatccgagc tctggagcgt ggataccgga tgcctcgccc agagaactgc 1380 ccagaggagc tctacaacat catgatgcgc tgctggaaaa accgtccgga ggagcggccg 1440 accttcgaat acatccagag tgtgctggat gacttctaca cggccacaga gagccagtac 1500 caacagcagc catga 1515 SEQ ID NO: 253 Human HCK proto-oncogene cDNA, transcript variant 3 (NM_001172132.1)

atgatggggt gcatgaagtc caagttcctc caggtcggag gcaatacatt ctcaaaaact 60 gaaaccagcg ccagcccaca ctgtcctgtg tacgtgccgg atcccacatc caccatcaag 120 ccggggccta atagccacaa cagcaacaca ccaggaatca gggaggcagg ctctgaggac 180 atcatcgtgg ttgccctgta tgattacgag gccattcacc acgaagacct cagcttccag 240 aagggggacc agatggtggt cctagaggaa tccggggagt ggtggaaggc tcgatccctg 300 gccacccgga aggagggcta catcccaagc aactatgtcg cccgcgttga ctctctggag 360 acagaggagt ggtttttcaa gggcatcagc cggaaggacg cagagcgcca actgctggct 420 cccggcaaca tgctgggctc cttcatgatc cgggatagcg agaccactaa aggaagctac 480 tctttgtccg tgcgagacta cgaccctcgg cagggagata ccgtgaaaca ttacaagatc 540 cggaccctgg acaacggggg cttctacata tccccccgaa gcaccttcag cactctgcag 600 gagctggtgg accactacaa gaaggggaac gacgggctct gccagaaact gtcggtgccc 660 tgcatgtctt ccaagcccca gaagccttgg gagaaagatg cctgggagat ccctcgggaa 720 tacaacaagc acaccaaggt ggcagtgaag acgatgaagc cagggagcat gtcggtggag 840 gccttcctgg cagaggccaa cgtgatgaaa actctgcagc atgacaagct ggtcaaactt 900 catgcggtgg tcaccaagga gcccatctac atcatcacgg agttcatggc caaaggaagc 960 ttgctggact ttctgaaaag tgatgagggc agcaagcagc cattgccaaa actcattgac 1020 ttctcagccc agattgcaga aggcatggcc ttcatcgagc agaggaacta catccaccga 1080 gacctccgag ctgccaacat cttggtctct gcatccctgg tgtgtaagat tgctgacttt 1140 ggcctggccc gggtcattga ggacaacgag tacacggctc gggaaggggc caagttcccc 1200 atcaagtgga cagctcctga agccatcaac tttggctcct tcaccatcaa gtcagacgtc 1260 tggtcctttg gtatcctgct gatggagatc gtcacctacg gccggatccc ttacccaggg 1320 atgtcaaacc ctgaagtgat ccgagctctg gagcgtggat accggatgcc tcgcccagag 1380 aactgcccag aggagctcta caacatcatg atgcgctgct ggaaaaaccg tccggaggag 1440 cggccgacct tcgaatacat ccagagtgtg ctggatgact tctacacggc cacagagagc 1500 cagtaccaac agcagccatg a 1521 SEQ ID NO: 254 Human HCK proto-oncogene cDNA, transcript variant 4 (NM_001172133.1)

atggggtgca tgaagtccaa gttcctccag gtcggaggca atacattctc aaaaactgaa 60 accagcgcca gcccacactg tcctgtgtac gtgccggatc ccacatccac catcaagccg 120 gggcctaata gccacaacag caacacacca ggaatcaggg aggcaggctc tgaggacatc 180 atcgtggttg ccctgtatga ttacgaggcc attcaccacg aagacctcag cttccagaag 240 ggggaccaga tggtggtcct agaggaatcc ggggagtggt ggaaggctcg atccctggcc 300 acccggaagg agggctacat cccaagcaac tatgtcgccc gcgttgactc tctggagaca 360 gaggagtggt ttttcaaggg catcagccgg aaggacgcag agcgccaact gctggctccc 420 ggcaacatgc tgggctcctt catgatccgg gatagcgaga ccactaaagg aagctactct 480 ttgtccgtgc gagactacga ccctcggcag ggagataccg tgaaacatta caagatccgg 540 accctggaca acgggggctt ctacatatcc ccccgaagca ccttcagcac tctgcaggag 600 ctggtggacc actacaagaa ggggaacgac gggctctgcc agaaactgtc ggtgccctgc 660 atgtcttcca agccccagaa gccttgggag aaagatgcct gggagatccc tcgggaatcc 720 ctcaagctgg agaagaaact tggagctggg cagtttgggg aagtctggat ggccacctac 780 aacaagcaca ccaaggtggc agtgaagacg atgaagccag ggagcatgtc ggtggaggcc 840 ttcctggcag aggccaacgt gatgaaaact ctgcagcatg acaagctggt caaacttcat 900 gcggtggtca ccaaggagcc catctacatc atcacggagt tcatggccaa aggaagcttg 960 ctggactttc tgaaaagtga tgagggcagc aagcagccat tgccaaaact cattgacttc 1020 tcagcccaga ttgcagaagg catggccttc atcgagcaga ggaactacat ccaccgagac 1080 ctccgagctg ccaacatctt ggtctctgca tccctggtgt gtaagattgc tgactttggc 1140 ctggcccggg tcattgagga caacgagtac acggctcggg aaggggccaa gttccccatc 1200 aagtggacag ctcctgaagc catcaacttt ggctccttca ccatcaagtc agacgtctgg 1260 tcctttggta tcctgctgat ggagatcgtc acctacggcc ggatccctta cccagggatg 1320 tcaaaccctg aagtgatccg agctctggag cgtggatacc ggatgcctcg cccagagaac 1380 tgcccagagg agctctacaa catcatgatg cgctgctgga aaaaccgtcc ggaggagcgg 1440 ccgaccttcg aatacatcca gagtgtgctg gatgacttct acacggccac agagagccag 1500 taccaacagc agccatga 1518 SEQ ID NO: 255 Human HCK proto-oncogene amino acid sequence, isoform a (NP_002101.2)

MGGRSSCEDP GCPRDEERAP RMGCMKSKFL QVGGNTFSKT ETSASPHCPV YVPDPTSTIK 60 PGPNSHNSNT PGIREAGSED IIVVALYDYE AIHHEDLSFQ KGDQMVVLEE SGEWWKARSL 120 ATRKEGYIPS NYVARVDSLE TEEWFFKGIS RKDAERQLLA PGNMLGSFMI RDSETTKGSY 180 SLSVRDYDPR QGDTVKHYKI RTLDNGGFYI SPRSTFSTLQ ELVDHYKKGN DGLCQKLSVP 240 CMSSKPQKPW EKDAWEIPRE SLKLEKKLGA GQFGEVWMAT YNKHTKVAVK TMKPGSMSVE 300 AFLAEANVMK TLQHDKLVKL HAVVTKEPIY IITEFMAKGS LLDFLKSDEG SKQPLPKLID 360 FSAQIAEGMA FIEQRNYIHR DLRAANILVS ASLVCKIADF GLARVIEDNE YTAREGAKFP 420 IKWTAPEAIN FGSFTIKSDV WSFGILLMEI VTYGRIPYPG MSNPEVIRAL ERGYRMPRPE 480 NCPEELYNIM MRCWKNRPEE RPTFEYIQSV LDDFYTATES QYQQQP 526 SEQ ID NO: 256 Human HCK proto-oncogene amino acid sequence, isoform b (NP_001165600.1)

MGCMKSKFLQ VGGNTFSKTE TSASPHCPVY VPDPTSTIKP GPNSHNSNTP GIREAGSEDI 60 IVVALYDYEA IHHEDLSFQK GDQMVVLEES GEWWKARSLA TRKEGYIPSN YVARVDSLET 120 EEWFFKGISR KDAERQLLAP GNMLGSFMIR DSETTKGSYS LSVRDYDPRQ GDTVKHYKIR 180 TLDNGGFYIS PRSTFSTLQE LVDHYKKGND GLCQKLSVPC MSSKPQKPWE KDAWEIPRES 240 LKLEKKLGAG QFGEVWMATY NKHTKVAVKT MKPGSMSVEA FLAEANVMKT LQHDKLVKLH 300 AVVTKEPIYI ITEFMAKGSL LDFLKSDEGS KQPLPKLIDF SAQIAEGMAF IEQRNYIHRD 360 LRAANILVSA SLVCKIADFG LARVIEDNEY TAREGAKFPI KWTAPEAINF GSFTIKSDVW 420 SFGILLMEIV TYGRIPYPGM SNPEVIRALE RGYRMPRPEN CPEELYNIMM RCWKNRPEER 480 PTFEYIQSVL DDFYTATESQ YQQQP 505 SEQ ID NO: 257 Human HCK proto-oncogene amino acid sequence, isoform b (NP_001165604.1)

MGCMKSKFLQ VGGNTFSKTE TSASPHCPVY VPDPTSTIKP GPNSHNSNTP GIREAGSEDI 60 IVVALYDYEA IHHEDLSFQK GDQMVVLEES GEWWKARSLA TRKEGYIPSN YVARVDSLET 120 EEWFFKGISR KDAERQLLAP GNMLGSFMIR DSETTKGSYS LSVRDYDPRQ GDTVKHYKIR 180 TLDNGGFYIS PRSTFSTLQE LVDHYKKGND GLCQKLSVPC MSSKPQKPWE KDAWEIPRES 240 LKLEKKLGAG QFGEVWMATY NKHTKVAVKT MKPGSMSVEA FLAEANVMKT LQHDKLVKLH 300 AVVTKEPIYI ITEFMAKGSL LDFLKSDEGS KQPLPKLIDF SAQIAEGMAF IEQRNYIHRD 360 LRAANILVSA SLVCKIADFG LARVIEDNEY TAREGAKFPI KWTAPEAINF GSFTIKSDVW 420 SFGILLMEIV TYGRIPYPGM SNPEVIRALE RGYRMPRPEN CPEELYNIMM RCWKNRPEER 480 PTFEYIQSVL DDFYTATESQ YQQQP 505 SEQ ID NO: 258 Human HCK proto-oncogene amino acid sequence, isoform c (NP_001165601.1)

MGGRSSCEDP GCPRDEERAP RMGCMKSKFL QVGGNTFSKT ETSASPHCPV YVPDPTSTIK 60 PGPNSHNSNT PGIREGSEDI IVVALYDYEA IHHEDLSFQK GDQMVVLEES GEWWKARSLA 120 TRKEGYIPSN YVARVDSLET EEWFFKGISR KDAERQLLAP GNMLGSFMIR DSETTKGSYS 180 LSVRDYDPRQ GDTVKHYKIR TLDNGGFYIS PRSTFSTLQE LVDHYKKGND GLCQKLSVPC 240 MSSKPQKPWE KDAWEIPRES LKLEKKLGAG QFGEVWMATY NKHTKVAVKT MKPGSMSVEA 300 FLAEANVMKT LQHDKLVKLH AVVTKEPIYI ITEFMAKGSL LDFLKSDEGS KQPLPKLIDF 360 SAQIAEGMAF IEQRNYIHRD LRAANILVSA SLVCKIADFG LARVIEDNEY TAREGAKFPI 420 KWTAPEAINF GSFTIKSDVW SFGILLMEIV TYGRIPYPGM SNPEVI 466 SEQ ID NO: 259 Human HCK proto-oncogene amino acid sequence, isoform d (NP_001165602.1)

MGCMKSKFLQ VGGNTFSKTE TSASPHCPVY VPDPTSTIKP GPNSHNSNTP GIREGSEDII 60 VVALYDYEAI HHEDLSFQKG DQMVVLEESG EWWKARSLAT RKEGYIPSNY VARVDSLETE 120 EWFFKGISRK DAERQLLAPG NMLGSFMIRD SETTKGSYSL SVRDYDPRQG DTVKHYKIRT 180 LDNGGFYISP RSTFSTLQEL VDHYKKGNDG LCQKLSVPCM SSKPQKPWEK DAWEIPRESL 240 KLEKKLGAGQ FGEVWMATYN KHTKVAVKTM KPGSMSVEAF LAEANVMKTL QHDKLVKLHA 300 VVTKEPIYII TEFMAKGSLL DFLKSDEGSK QPLPKLIDFS AQIAEGMAFI EQRNYIHRDL 360 RAANILVSAS LVCKIADFGL ARVIEDNEYT AREGAKFPIK WTAPEAINFG SFTIKSDVWS 420 FGILLMEIVT YGRIPYPGMS NPEVIRALER GYRMPRPENC PEELYNIMMR CWKNRPEERP 480 TFEYIQSVLD DFYTATESQY QQQP 504 SEQ ID NO: 260 Human HCK proto-oncogene amino acid sequence, isoform e (NP_001165603.1)

MMGCMKSKFL QVGGNTFSKT ETSASPHCPV YVPDPTSTIK PGPNSHNSNT PGIREAGSED 60 IIVVALYDYE AIHHEDLSFQ KGDQMVVLEE SGEWWKARSL ATRKEGYIPS NYVARVDSLE 120 TEEWFFKGIS RKDAERQLLA PGNMLGSFMI RDSETTKGSY SLSVRDYDPR QGDTVKHYKI 180 RTLDNGGFYI SPRSTFSTLQ ELVDHYKKGN DGLCQKLSVP CMSSKPQKPW EKDAWEIPRE 240 SLKLEKKLGA GQFGEVWMAT YNKHTKVAVK TMKPGSMSVE AFLAEANVMK TLQHDKLVKL 300 HAVVTKEPIY IITEFMAKGS LLDFLKSDEG SKQPLPKLID FSAQIAEGMA FIEQRNYIHR 360 DLRAANILVS ASLVCKIADF GLARVIEDNE YTAREGAKFP IKWTAPEAIN FGSFTIKSDV 420 WSFGILLMEI VTYGRIPYPG MSNPEVIRAL ERGYRMPRPE NCPEELYNIM MRCWKNRPEE 480 RPTFEYIQSV LDDFYTATES QYQQQP 506 SEQ ID NO: 261 Mouse HCK proto-oncogene cDNA, transcript variant 1 (NM_010407.4)

atgcgtgaag tccaggttcc tccgagatgg aagcaaggcc tcaaaaacag agccaagtgc 60 caatcagaag ggccctgtgt atgtgccgga tcccacgtcc tccagcaagc tgggaccaaa 120 caacagcaac agcatgcccc cagggtttgt ggagggctct gaggatacca ttgtggtcgc 180 actgtacgac tatgaggcta ttcaccgtga agacctcagc ttccagaagg gagaccagat 240 ggtggttctg gaggaggctg gggagtggtg gaaggcacgg tccctggcta ccaagaagga 300 aggctacatc ccaagcaact atgtggctcg agttaactct ttggagacag aagagtggtt 360 cttcaagggg atcagccgga aggatgcaga gcgccacctc ctggctccag gcaacatgct 420 gggctccttc atgatccggg acagtgagac caccaaaggg agctactcgt tgtctgttcg 480 agactttgac ccccagcacg gagacaccgt gaagcactat aagatccgga cgctggacag 540 tggaggcttc tacatctctc caaggagcac cttcagcagc ctgcaggaac tcgtgctcca 600 t t t t t t t t t t t t 660 accccagaag ccatgggaga aagatgcttg ggagattcct cgagaatccc tccagatgga 720 gaagaaactt ggagctgggc agtttggaga agtgtggatg gccacctaca acaagcacac 780 caaagtggcg gtgaagacaa tgaagccagg gagcatgtcc gtggaggcct tcctggctga 840 ggccaacctg atgaagtcgc tgcagcatga caaactggtg aagctacacg ctgtggtctc 900 tcaggagccc atctttattg tcacggagtt catggccaaa ggaagcctgc tggactttct 960 caagagtgaa gaaggcagca agcagccact gccaaaactc attgacttct cagcccagat 1020 ctcagaaggc atggccttca ttgagcagag gaactacatc caccgagacc tgagggctgc 1080 caacatctta gtctctgcat cactggtgtg taagattgct gactttggac tggcacgaat 1140 catcgaggac aatgagtaca cagctcggga aggagccaag ttccccatca agtggacagc 1200 tcctgaagcc atcaactttg gttccttcac catcaagtca gatgtctggt cctttggtat 1260 cctgctgatg gaaattgtca cctatggccg gatcccttac ccaggtatgt caaacccaga 1320 ggtgattcgg gcactagagc atgggtaccg tatgcctcga ccagataact gtccagaaga 1380 gctctacaat atcatgatcc gctgctggaa gaaccgcccc gaggaacggc ccacctttga 1440 atacatccag agtgtgctgg atgacttcta cacggccact gagagccagt atcagcagca 1500 gccttga 1507 SEQ ID NO: 262 Mouse HCK proto-oncogene cDNA, transcript variant 1 (NM_001172117.1)

atgggatgcg tgaagtccag gttcctccga gatggaagca aggcctcaaa aacagagcca 60 agtgccaatc agaagggccc tgtgtatgtg ccggatccca cgtcctccag caagctggga 120 ccaaacaaca gcaacagcat gcccccaggg tttgtggagg gctctgagga taccattgtg 180 gtcgcactgt acgactatga ggctattcac cgtgaagacc tcagcttcca gaagggagac 240 cagatggtgg ttctggagga ggctggggag tggtggaagg cacggtccct ggctaccaag 300 aaggaaggct acatcccaag caactatgtg gctcgagtta actctttgga gacagaagag 360 tggttcttca aggggatcag ccggaaggat gcagagcgcc acctcctggc tccaggcaac 420 atgctgggct ccttcatgat ccgggacagt gagaccacca aagggagcta ctcgttgtct 480 gttcgagact ttgaccccca gcacggagac accgtgaagc actataagat ccggacgctg 540 gacagtggag gcttctacat ctctccaagg agcaccttca gcagcctgca ggaactcgtg 600 ctccactaca agaaggggaa ggatgggctc tgccagaagc tgtcagtgcc ctgtgtgtct 660 cccaaacccc agaagccatg ggagaaagat gcttgggaga ttcctcgaga atccctccag 720 atggagaaga aacttggagc tgggcagttt ggagaagtgt ggatggccac ctacaacaag 780 cacaccaaag tggcggtgaa gacaatgaag ccagggagca tgtccgtgga ggccttcctg 840 gctgaggcca acctgatgaa gtcgctgcag catgacaaac tggtgaagct acacgctgtg 900 gtctctcagg agcccatctt tattgtcacg gagttcatgg ccaaaggaag cctgctggac 960 tttctcaaga gtgaagaagg cagcaagcag ccactgccaa aactcattga cttctcagcc 1020 cagatctcag aaggcatggc cttcattgag cagaggaact acatccaccg agacctgagg 1080 gctgccaaca tcttagtctc tgcatcactg gtgtgtaaga ttgctgactt tggactggca 1140 cgaatcatcg aggacaatga gtacacagct cgggaaggag ccaagttccc catcaagtgg 1200 acagctcctg aagccatcaa ctttggttcc ttcaccatca agtcagatgt ctggtccttt 1260 ggtatcctgc tgatggaaat tgtcacctat ggccggatcc cttacccagg tatgtcaaac 1320 ccagaggtga ttcgggcact agagcatggg taccgtatgc ctcgaccaga taactgtcca 1380 gaagagctct acaatatcat gatccgctgc tggaagaacc gccccgagga acggcccacc 1440 tttgaataca tccagagtgt gctggatgac ttctacacgg ccactgagag ccagtatcag 1500 cagcagcctt ga 1512 SEQ ID NO: 263 Mouse HCK proto-oncogene amino acid sequence, isoform p59Hck (NP_034537.2)

MGGRSSCEDP GCPRSEGRAP RMGCVKSRFL RDGSKASKTE PSANQKGPVY VPDPTSSSKL 60 GPNNSNSMPP GFVEGSEDTI VVALYDYEAI HREDLSFQKG DQMVVLEEAG EWWKARSLAT 120 KKEGYIPSNY VARVNSLETE EWFFKGISRK DAERHLLAPG NMLGSFMIRD SETTKGSYSL 180 SVRDFDPQHG DTVKHYKIRT LDSGGFYISP RSTFSSLQEL VLHYKKGKDG LCQKLSVPCV 240 SPKPQKPWEK DAWEIPRESL QMEKKLGAGQ FGEVWMATYN KHTKVAVKTM KPGSMSVEAF 300 LAEANLMKSL QHDKLVKLHA VVSQEPIFIV TEFMAKGSLL DFLKSEEGSK QPLPKLIDFS 360 AQISEGMAFI EQRNYIHRDL RAANILVSAS LVCKIADFGL ARIIEDNEYT AREGAKFPIK 420 WTAPEAINFG SFTIKSDVWS FGILLMEIVT YGRIPYPGMS NPEVIRALEH GYRMPRPDNC 480 PEELYNIMIR CWKNRPEERP TFEYIQSVLD DFYTATESQY QQQP 524 SEQ ID NO: 264 Mouse HCK proto-oncogene amino acid sequence, isoform p56Hck (NP_001165588.1)

MGCVKSRFLR DGSKASKTEP SANQKGPVYV PDPTSSSKLG PNNSNSMPPG FVEGSEDTIV 60 VALYDYEAIH REDLSFQKGD QMVVLEEAGE WWKARSLATK KEGYIPSNYV ARVNSLETEE 120 WFFKGISRKD AERHLLAPGN MLGSFMIRDS ETTKGSYSLS VRDFDPQHGD TVKHYKIRTL 180 DSGGFYISPR STFSSLQELV LHYKKGKDGL CQKLSVPCVS PKPQKPWEKD AWEIPRESLQ 240 MEKKLGAGQF GEVWMATYNK HTKVAVKTMK PGSMSVEAFL AEANLMKSLQ HDKLVKLHAV 300 VSQEPIFIVT EFMAKGSLLD FLKSEEGSKQ PLPKLIDFSA QISEGMAFIE QRNYIHRDLR 360 AANILVSASL VCKIADFGLA RIIEDNEYTA REGAKFPIKW TAPEAINFGS FTIKSDVWSF 420 GILLMEIVTY GRIPYPGMSN PEVIRALEHG YRMPRPDNCP EELYNIMIRC WKNRPEERPT 480 FEYIQSVLDD FYTATESQYQ QQP 503

SEQ ID NO: 265 Human SRC proto-oncogene cDNA, transcript variant 1

(NM_005417.4)

atgggtagca acaagagcaa gcccaaggat gccagccagc ggcgccgcag cctggagccc 60 gccgagaacg tgcacggcgc tggcgggggc gctttccccg cctcgcagac ccccagcaag 120 ccagcctcgg ccgacggcca ccgcggcccc agcgcggcct tcgcccccgc ggccgccgag 180 cccaagctgt tcggaggctt caactcctcg gacaccgtca cctccccgca gagggcgggc 240 ccgctggccg gtggagtgac cacctttgtg gccctctatg actatgagtc taggacggag 300 acagacctgt ccttcaagaa aggcgagcgg ctccagattg tcaacaacac agagggagac 360 tggtggctgg cccactcgct cagcacagga cagacaggct acatccccag caactacgtg 420 gcgccctccg actccatcca ggctgaggag tggtattttg gcaagatcac cagacgggag 480 tcagagcggt tactgctcaa tgcagagaac ccgagaggga ccttcctcgt gcgagaaagt 540 gagaccacga aaggtgccta ctgcctctca gtgtctgact tcgacaacgc caagggcctc 600 aacgtgaagc actacaagat ccgcaagctg gacagcggcg gcttctacat cacctcccgc 660 acccagttca acagcctgca gcagctggtg gcctactact ccaaacacgc cgatggcctg 720 tgccaccgcc tcaccaccgt gtgccccacg tccaagccgc agactcaggg cctggccaag 780 gatgcctggg agatccctcg ggagtcgctg cggctggagg tcaagctggg ccagggctgc 840 tttggcgagg tgtggatggg gacctggaac ggtaccacca gggtggccat caaaaccctg 900 aagcctggca cgatgtctcc agaggccttc ctgcaggagg cccaggtcat gaagaagctg 960 aggcatgaga agctggtgca gttgtatgct gtggtttcag aggagcccat ttacatcgtc 1020 acggagtaca tgagcaaggg gagtttgctg gactttctca agggggagac aggcaagtac 1080 ctgcggctgc ctcagctggt ggacatggct gctcagatcg cctcaggcat ggcgtacgtg 1140 gagcggatga actacgtcca ccgggacctt cgtgcagcca acatcctggt gggagagaac 1200 ctggtgtgca aagtggccga ctttgggctg gctcggctca ttgaagacaa tgagtacacg 1260 gcgcggcaag gtgccaaatt ccccatcaag tggacggctc cagaagctgc cctctatggc 1320 cgcttcacca tcaagtcgga cgtgtggtcc ttcgggatcc tgctgactga gctcaccaca 1380 aagggacggg tgccctaccc tgggatggtg aaccgcgagg tgctggacca ggtggagcgg 1440 ggctaccgga tgccctgccc gccggagtgt cccgagtccc tgcacgacct catgtgccag 1500 tgctggcgga aggagcctga ggagcggccc accttcgagt acctgcaggc cttcctggag 1560 gactacttca cgtccaccga gccccagtac cagcccgggg agaacctcta g 1611

SEQ ID NO: 266 Human SRC proto-oncogene cDNA, transcript variant 2

(NM_198291.2)

atgggtagca acaagagcaa gcccaaggat gccagccagc ggcgccgcag cctggagccc 60 gccgagaacg tgcacggcgc tggcgggggc gctttccccg cctcgcagac ccccagcaag 120 ccagcctcgg ccgacggcca ccgcggcccc agcgcggcct tcgcccccgc ggccgccgag 180 cccaagctgt tcggaggctt caactcctcg gacaccgtca cctccccgca gagggcgggc 240 ccgctggccg gtggagtgac cacctttgtg gccctctatg actatgagtc taggacggag 300 acagacctgt ccttcaagaa aggcgagcgg ctccagattg tcaacaacac agagggagac 360 tggtggctgg cccactcgct cagcacagga cagacaggct acatccccag caactacgtg 420 gcgccctccg actccatcca ggctgaggag tggtattttg gcaagatcac cagacgggag 480 tcagagcggt tactgctcaa tgcagagaac ccgagaggga ccttcctcgt gcgagaaagt 540 gagaccacga aaggtgccta ctgcctctca gtgtctgact tcgacaacgc caagggcctc 600 aacgtgaagc actacaagat ccgcaagctg gacagcggcg gcttctacat cacctcccgc 660 acccagttca acagcctgca gcagctggtg gcctactact ccaaacacgc cgatggcctg 720 tgccaccgcc tcaccaccgt gtgccccacg tccaagccgc agactcaggg cctggccaag 780 gatgcctggg agatccctcg ggagtcgctg cggctggagg tcaagctggg ccagggctgc 840 tttggcgagg tgtggatggg gacctggaac ggtaccacca gggtggccat caaaaccctg 900 aagcctggca cgatgtctcc agaggccttc ctgcaggagg cccaggtcat gaagaagctg 960 aggcatgaga agctggtgca gttgtatgct gtggtttcag aggagcccat ttacatcgtc 1020 acggagtaca tgagcaaggg gagtttgctg gactttctca agggggagac aggcaagtac 1080 ctgcggctgc ctcagctggt ggacatggct gctcagatcg cctcaggcat ggcgtacgtg 1140 gagcggatga actacgtcca ccgggacctt cgtgcagcca acatcctggt gggagagaac 1200 ctggtgtgca aagtggccga ctttgggctg gctcggctca ttgaagacaa tgagtacacg 1260 gcgcggcaag gtgccaaatt ccccatcaag tggacggctc cagaagctgc cctctatggc 1320 cgcttcacca tcaagtcgga cgtgtggtcc ttcgggatcc tgctgactga gctcaccaca 1380 aagggacggg tgccctaccc tgggatggtg aaccgcgagg tgctggacca ggtggagcgg 1440 ggctaccgga tgccctgccc gccggagtgt cccgagtccc tgcacgacct catgtgccag 1500 tgctggcgga aggagcctga ggagcggccc accttcgagt acctgcaggc cttcctggag 1560 gactacttca cgtccaccga gccccagtac cagcccgggg agaacctcta g 1611

SEQ ID NO: 267 Human SRC proto oncogene amino acid sequence (NP 0054081) MGSNKSKPKD ASQRRRSLEP AENVHGAGGG AFPASQTPSK PASADGHRGP SAAFAPAAAE 60 PKLFGGFNSS DTVTSPQRAG PLAGGVTTFV ALYDYESRTE TDLSFKKGER LQIVNNTEGD 120 WWLAHSLSTG QTGYIPSNYV APSDSIQAEE WYFGKITRRE SERLLLNAEN PRGTFLVRES 180 ETTKGAYCLS VSDFDNAKGL NVKHYKIRKL DSGGFYITSR TQFNSLQQLV AYYSKHADGL 240 CHRLTTVCPT SKPQTQGLAK DAWEIPRESL RLEVKLGQGC FGEVWMGTWN GTTRVAIKTL 300 KPGTMSPEAF LQEAQVMKKL RHEKLVQLYA VVSEEPIYIV TEYMSKGSLL DFLKGETGKY 360 LRLPQLVDMA AQIASGMAYV ERMNYVHRDL RAANILVGEN LVCKVADFGL ARLIEDNEYT 420 ARQGAKFPIK WTAPEAALYG RFTIKSDVWS FGILLTELTT KGRVPYPGMV NREVLDQVER 480 GYRMPCPPEC PESLHDLMCQ CWRKEPEERP TFEYLQAFLE DYFTSTEPQY QPGENL 536

SEQ ID NO: 268 Human SRC proto-oncogene amino acid sequence (NP_938033.1) MGSNKSKPKD ASQRRRSLEP AENVHGAGGG AFPASQTPSK PASADGHRGP SAAFAPAAAE 60 PKLFGGFNSS DTVTSPQRAG PLAGGVTTFV ALYDYESRTE TDLSFKKGER LQIVNNTEGD 120 WWLAHSLSTG QTGYIPSNYV APSDSIQAEE WYFGKITRRE SERLLLNAEN PRGTFLVRES 180 ETTKGAYCLS VSDFDNAKGL NVKHYKIRKL DSGGFYITSR TQFNSLQQLV AYYSKHADGL 240 CHRLTTVCPT SKPQTQGLAK DAWEIPRESL RLEVKLGQGC FGEVWMGTWN GTTRVAIKTL 300 KPGTMSPEAF LQEAQVMKKL RHEKLVQLYA VVSEEPIYIV TEYMSKGSLL DFLKGETGKY 360 LRLPQLVDMA AQIASGMAYV ERMNYVHRDL RAANILVGEN LVCKVADFGL ARLIEDNEYT 420 ARQGAKFPIK WTAPEAALYG RFTIKSDVWS FGILLTELTT KGRVPYPGMV NREVLDQVER 480 GYRMPCPPEC PESLHDLMCQ CWRKEPEERP TFEYLQAFLE DYFTSTEPQY QPGENL 536

SEQ ID NO: 268 Mouse SRC proto-oncogene cDNA, transcript variant 1

(NM_009271.3)

atgggcagca acaagagcaa gcccaaggac gccagccagc ggcgccgcag cctggagccc 60 tcggaaaacg tgcacggggc agggggcgcc ttcccggcct cacagacacc gagcaagccc 120 gcctccgccg acggccaccg cgggcccagc gccgccttcg tgccgcccgc ggccgagccc 180 aagctcttcg gaggcttcaa ctcctcggac accgtcacct ccccgcagag ggcggggcct 240 ctggcaggtg gggtgaccac ctttgtggcc ctctatgact atgagtcacg gacagagact 300 gacctgtcct tcaagaaagg ggagcggctg cagattgtca ataacacgag gaaggtggat 360 gtcagagagg gagactggtg gctggcacac tcgctgagca cgggacagac cggttacatc 420 cccagcaact atgtggcgcc ctccgactcc atccaggctg aggagtggta ctttggcaag 480 atcactagac gggaatcaga gcggctgctg ctcaacgccg agaacccgag agggaccttc 540 ctcgtgaggg agagtgagac cacaaaaggt gcctactgcc tctctgtatc cgacttcgac 600 aatgccaagg gcctaaatgt gaaacactac aagatccgca agctggacag cggcggtttc 660 tacatcacct cccgcaccca gttcaacagc ctgcagcagc tcgtggctta ctactccaaa 720 catgctgatg gcctgtgtca ccgcctcact accgtatgtc ccacatccaa gcctcagacc 780 cagggattgg ccaaggatgc gtgggagatc ccccgggagt ccctgcggct ggaggtcaag 840 ctgggccagg gttgcttcgg agaggtgtgg atggggacct ggaacggcac cacgagggtt 900 gccatcaaaa ctctgaagcc aggcaccatg tccccagagg ccttcctgca ggaggcccaa 960 gtcatgaaga aactgaggca cgagaaactg gtgcagctgt atgctgtggt gtcggaagaa 1020 cccatttaca ttgtgacaga gtacatgaac aaggggagtc tgctggactt tctcaagggg 1080 gaaacgggca aatatttgcg gctaccccag ctggtggaca tgtctgctca gatcgcttca 1140 ggcatggcct atgtggagcg gatgaactat gtgcaccggg accttcgagc cgccaatatc 1200 ctagtagggg agaacctggt gtgcaaagtg gccgactttg ggttggcccg gctcatagaa 1260 gacaacgaat acacagcccg gcaaggtgcc aaattcccca tcaagtggac cgcccctgaa 1320 gctgctctgt acggcaggtt caccatcaag tcggatgtgt ggtcctttgg gattctgctg 1380 accgagctca ccactaaggg aagagtgccc tatcctggga tggtgaaccg tgaggttctg 1440 gaccaggtgg agcggggcta ccggatgcct tgtccccccg agtgccccga gtccctgcat 1500 gaccttatgt gccagtgctg gcggaaggag cccgaggagc ggcccacctt cgagtacctg 1560 caggccttcc tggaagacta ctttacgtcc actgagccac agtaccagcc cggggagaac 1620 ctatag 1626

SEQ ID NO: 270 Mouse SRC proto-oncogene cDNA, transcript variant 2

(NM_001025395.2)

atgggcagca acaagagcaa gcccaaggac gccagccagc ggcgccgcag cctggagccc 60 tcggaaaacg tgcacggggc agggggcgcc ttcccggcct cacagacacc gagcaagccc 120 gcctccgccg acggccaccg cgggcccagc gccgccttcg tgccgcccgc ggccgagccc 180 aagctcttcg gaggcttcaa ctcctcggac accgtcacct ccccgcagag ggcggggcct 240 ctggcaggtg gggtgaccac ctttgtggcc ctctatgact atgagtcacg gacagagact 300 gacctgtcct tcaagaaagg ggagcggctg cagattgtca ataacacaga gggagactgg 360 tggctggcac actcgctgag cacgggacag accggttaca tccccagcaa ctatgtggcg 420 ccctccgact ccatccaggc tgaggagtgg tactttggca agatcactag acgggaatca 480 gagcggctgc tgctcaacgc cgagaacccg agagggacct tcctcgtgag ggagagtgag 540 accacaaaag gtgcctactg cctctctgta tccgacttcg acaatgccaa gggcctaaat 600 gtgaaacact acaagatccg caagctggac agcggcggtt tctacatcac ctcccgcacc 660 cagttcaaca gcctgcagca gctcgtggct tactactcca aacatgctga tggcctgtgt 720 caccgcctca ctaccgtatg tcccacatcc aagcctcaga cccagggatt ggccaaggat 780 gcgtgggaga tcccccggga gtccctgcgg ctggaggtca agctgggcca gggttgcttc 840 ggagaggtgt ggatggggac ctggaacggc accacgaggg ttgccatcaa aactctgaag 900 ccaggcacca tgtccccaga ggccttcctg caggaggccc aagtcatgaa gaaactgagg 960 cacgagaaac tggtgcagct gtatgctgtg gtgtcggaag aacccattta cattgtgaca 1020 gagtacatga acaaggggag tctgctggac tttctcaagg gggaaacggg caaatatttg 1080 cggctacccc agctggtgga catgtctgct cagatcgctt caggcatggc ctatgtggag 1140 cggatgaact atgtgcaccg ggaccttcga gccgccaata tcctagtagg ggagaacctg 1200 gtgtgcaaag tggccgactt tgggttggcc cggctcatag aagacaacga atacacagcc 1260 cggcaaggtg ccaaattccc catcaagtgg accgcccctg aagctgctct gtacggcagg 1320 ttcaccatca agtcggatgt gtggtccttt gggattctgc tgaccgagct caccactaag 1380 ggaagagtgc cctatcctgg gatggtgaac cgtgaggttc tggaccaggt ggagcggggc 1440 taccggatgc cttgtccccc cgagtgcccc gagtccctgc atgaccttat gtgccagtgc 1500 tggcggaagg agcccgagga gcggcccacc ttcgagtacc tgcaggcctt cctggaagac 1560 tactttacgt ccactgagcc acagtaccag cccggggaga acctatag 1608

SEQ ID NO: 271 Mouse SRC proto-oncogene amino acid sequence, isoform 1 (NP_033297.2)

MGSNKSKPKD ASQRRRSLEP SENVHGAGGA FPASQTPSKP ASADGHRGPS AAFVPPAAEP 60 KLFGGFNSSD TVTSPQRAGP LAGGVTTFVA LYDYESRTET DLSFKKGERL QIVNNTRKVD 120 VREGDWWLAH SLSTGQTGYI PSNYVAPSDS IQAEEWYFGK ITRRESERLL LNAENPRGTF 180 LVRESETTKG AYCLSVSDFD NAKGLNVKHY KIRKLDSGGF YITSRTQFNS LQQLVAYYSK 240 HADGLCHRLT TVCPTSKPQT QGLAKDAWEI PRESLRLEVK LGQGCFGEVW MGTWNGTTRV 300 AIKTLKPGTM SPEAFLQEAQ VMKKLRHEKL VQLYAVVSEE PIYIVTEYMN KGSLLDFLKG 360 ETGKYLRLPQ LVDMSAQIAS GMAYVERMNY VHRDLRAANI LVGENLVCKV ADFGLARLIE 420 DNEYTARQGA KFPIKWTAPE AALYGRFTIK SDVWSFGILL TELTTKGRVP YPGMVNREVL 480 DQVERGYRMP CPPECPESLH DLMCQCWRKE PEERPTFEYL QAFLEDYFTS TEPQYQPGEN 540 L 541

SEQ ID NO: 272 Mouse SRC proto-oncogene amino acid sequence isoform 2 (NP_001020566.1

MGSNKSKPKD ASQRRRSLEP SENVHGAGGA FPASQTPSKP ASADGHRGPS AAFVPPAAEP 60 KLFGGFNSSD TVTSPQRAGP LAGGVTTFVA LYDYESRTET DLSFKKGERL QIVNNTEGDW 120 WLAHSLSTGQ TGYIPSNYVA PSDSIQAEEW YFGKITRRES ERLLLNAENP RGTFLVRESE 180 TTKGAYCLSV SDFDNAKGLN VKHYKIRKLD SGGFYITSRT QFNSLQQLVA YYSKHADGLC 240 HRLTTVCPTS KPQTQGLAKD AWEIPRESLR LEVKLGQGCF GEVWMGTWNG TTRVAIKTLK 300 PGTMSPEAFL QEAQVMKKLR HEKLVQLYAV VSEEPIYIVT EYMNKGSLLD FLKGETGKYL 360 RLPQLVDMSA QIASGMAYVE RMNYVHRDLR AANILVGENL VCKVADFGLA RLIEDNEYTA 420 RQGAKFPIKW TAPEAALYGR FTIKSDVWSF GILLTELTTK GRVPYPGMVN REVLDQVERG 480 YRMPCPPECP ESLHDLMCQC WRKEPEERPT FEYLQAFLED YFTSTEPQYQ PGENL 535 * Included in Table 2 are RNA nucleic acid molecules (e.g., thymines replaced with uredines), nucleic acid molecules encoding orthologs of the encoded proteins, as well as DNA or RNA nucleic acid sequences comprising a nucleic acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity across their full length with the nucleic acid sequence of any SEQ ID NO listed in Table 2, or a portion thereof. Such nucleic acid molecules can have a function of the full-length nucleic acid as described further herein. * Included in Table 2 are orthologs of the proteins, as well as polypeptide molecules comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity across their full length with an amino acid sequence of any SEQ ID NO listed in Table 2, or a portion thereof. Such polypeptides can have a function of the full-length polypeptide as described further herein. * Included in Table 2 are modified human PAK2 proteins and nucleic acids encoding same, such as autophosphorylated PAK2 at Serine 141 (S141), phosphorylated PAK2 at Tyrosine 130 (Y130), phosphorylated PAK2 at Tyrosine 139 (Y139), phosphorylated PAK2 at Tyrosine 194 (Y194), phosphorylation defective PAK2 Tyrosine at amino acid residue 130 mutated to a Phenylalanine (Y130P), phosphorylation defective PAK2 Tyrosine at amino acid residue 139 mutated to a Phenylalanine (Y139P), phosphorylation defective PAK2 Tyrosine at amino acid residue 194 mutated to a Phenylalanine (Y194P), as well as corresponding modifications of such amino acid residues and phosphorylation status thereof in orthologs of human PAK2. II. Subjects

In one embodiment, the subject for whom predicted likelihood of efficacy of a SFKSP therapy is determined, is a mammal (e.g., mouse, rat, primate, non-human mammal, domestic animal, such as a dog, cat, cow, horse, and the like), and is preferably a human. In one embodiment, the subject for whom therapy is administered, is a mammal (e.g., mouse, rat, primate, non-human mammal, domestic animal, such as a dog, cat, cow, horse, and the like), and is preferably a human. In another embodiment, the subject is an animal model of a breast cancer, such as an ER+ breast cancer and/or estrogen therapy-resistant cancer. For example, the animal model can be an orthotopic xenograft animal model of a human-derived breast cancer, such as an ER+ breast cancer and/or estrogen therapy- resistant cancer.

In another embodiment of the methods of the present invention, the subject has not undergone treatment, such as endocrine therapy, chemotherapy, radiation therapy, targeted therapy, and/or SFKSP therapy. In still another embodiment, the subject has undergone treatment, such as endocrine therapy, chemotherapy, radiation therapy, targeted therapy, and/or SFKSP therapy.

In certain embodiments, the subject has had surgery to remove cancerous or precancerous tissue. In other embodiments, the cancerous tissue has not been removed, e.g., the cancerous tissue may be located in an inoperable region of the body, such as in a tissue that is essential for life, or in a region where a surgical procedure would cause considerable risk of harm to the patient.

The methods of the present invention can be used to determine the responsiveness to SFKSP therapies of many different endocrine resistant breast cancers in subjects such as those described herein. III. Sample Collection, Preparation and Separation

In some embodiments, biomarker amount and/or activity measurement(s) in a sample from a subject is compared to a predetermined control (standard) sample. The sample from the subject is typically from a diseased tissue, such as cancer cells or tissues. The control sample can be from the same subject or from a different subject. The control sample is typically a normal, non-diseased sample. However, in some embodiments, such as for staging of disease or for evaluating the efficacy of treatment, the control sample can be from a diseased tissue. The control sample can be a combination of samples from several different subjects. In some embodiments, the biomarker amount and/or activity measurement(s) from a subject is compared to a pre-determined level. This pre-determined level is typically obtained from normal samples. As described herein, a“pre-determined” biomarker amount and/or activity measurement(s) may be a biomarker amount and/or activity measurement(s) used to, by way of example only, evaluate a subject that may be selected for treatment, evaluate a response to a SFKSP therapy, and/or evaluate a response to a combination SFKSP therapy (e.g., one or more SFKSP inhibitors alone, or in combination with one or more additional CSK activator). A pre-determined biomarker amount and/or activity measurement(s) may be determined in populations of patients with or without cancer. The pre-determined biomarker amount and/or activity measurement(s) can be a single number, equally applicable to every patient, or the pre-determined biomarker amount and/or activity measurement(s) can vary according to specific subpopulations of patients. Age, weight, height, and other factors of a subject may affect the pre-determined biomarker amount and/or activity measurement(s) of the individual. Furthermore, the pre-determined biomarker amount and/or activity can be determined for each subject individually. In one embodiment, the amounts determined and/or compared in a method described herein are based on absolute measurements.

In another embodiment, the amounts determined and/or compared in a method described herein are based on relative measurements, such as ratios (e.g., biomarker copy numbers, level, and/or activity before a treatment vs. after a treatment, such biomarker measurements relative to a spiked or man-made control, such biomarker measurements relative to the expression of a housekeeping gene, and the like). For example, the relative analysis can be based on the ratio of pre-treatment biomarker measurement as compared to post-treatment biomarker measurement. Pre-treatment biomarker measurement can be made at any time prior to initiation of anti-cancer therapy. Post-treatment biomarker measurement can be made at any time after initiation of anti-cancer therapy. In some embodiments, post-treatment biomarker measurements are made 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 weeks or more after initiation of anti-cancer therapy, and even longer toward indefinitely for continued monitoring. Treatment can comprise anti-cancer therapy, such as a therapeutic regimen comprising one or more SFKSP inhibitors alone or in combination with other anti-cancer agents, such as CSK activators.

The pre-determined biomarker amount and/or activity measurement(s) can be any suitable standard. For example, the pre-determined biomarker amount and/or activity measurement(s) can be obtained from the same or a different human for whom a patient selection is being assessed. In one embodiment, the pre-determined biomarker amount and/or activity measurement(s) can be obtained from a previous assessment of the same patient. In such a manner, the progress of the selection of the patient can be monitored over time. In addition, the control can be obtained from an assessment of another human or multiple humans, e.g., selected groups of humans, if the subject is a human. In such a manner, the extent of the selection of the human for whom selection is being assessed can be compared to suitable other humans, e.g., other humans who are in a similar situation to the human of interest, such as those suffering from similar or the same condition(s) and/or of the same ethnic group.

In some embodiments of the present invention the change of biomarker amount and/or activity measurement(s) from the pre-determined level is about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 fold or greater, or any range in between, inclusive. Such cutoff values apply equally when the measurement is based on relative changes, such as based on the ratio of pre-treatment biomarker measurement as compared to post-treatment biomarker measurement. In some embodiments of the present invention the change of biomarker amount and/or activity measurement(s) from the pre- determined level is about 0.5 fold, about 1.0 fold, about 1.5 fold, about 2.0 fold, about 2.5 fold, about 3.0 fold, about 3.5 fold, about 4.0 fold, about 4.5 fold, or about 5.0 fold or greater. In some embodiments, the fold change is less than about 1, less than about 5, less than about 10, less than about 20, less than about 30, less than about 40, or less than about 50. In other embodiments, the fold change in biomarker amount and/or activity

measurement(s) compared to a predetermined level is more than about 1, more than about 5, more than about 10, more than about 20, more than about 30, more than about 40, or more than about 50.

Biological samples can be collected from a variety of sources from a patient including a body fluid sample, cell sample, or a tissue sample comprising nucleic acids and/or proteins.“Body fluids” refer to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g., amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper’s fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit). In a preferred embodiment, the subject and/or control sample is selected from the group consisting of cells, cell lines, histological slides, paraffin embedded tissues, biopsies, whole blood, nipple aspirate, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, and bone marrow. In one embodiment, the sample is serum, plasma, or urine. IN another

embodiment, the sample is serum.

The samples can be collected from individuals repeatedly over a longitudinal period of time (e.g., once or more on the order of days, weeks, months, annually, biannually, etc.). Obtaining numerous samples from an individual over a period of time can be used to verify results from earlier detections and/or to identify an alteration in biological pattern as a result of, for example, disease progression, drug treatment, etc. For example, subject samples can be taken and monitored every month, every two months, or combinations of one, two, or three month intervals according to the present invention. In addition, the biomarker amount and/or activity measurements of the subject obtained over time can be conveniently compared with each other, as well as with those of normal controls during the monitoring period, thereby providing the subject’s own values, as an internal, or personal, control for long-term monitoring.

Sample preparation and separation can involve any of the procedures, depending on the type of sample collected and/or analysis of biomarker measurement(s). Such procedures include, by way of example only, concentration, dilution, adjustment of pH, removal of high abundance polypeptides (e.g., albumin, gamma globulin, and transferrin, etc.), addition of preservatives and calibrants, addition of protease inhibitors, addition of denaturants, desalting of samples, concentration of sample proteins, extraction and purification of lipids.

The sample preparation can also isolate molecules that are bound in non-covalent complexes to other protein (e.g., carrier proteins). This process may isolate those molecules bound to a specific carrier protein (e.g., albumin), or use a more general process, such as the release of bound molecules from all carrier proteins via protein denaturation, for example using an acid, followed by removal of the carrier proteins.

Removal of undesired proteins (e.g., high abundance, uninformative, or

undetectable proteins) from a sample can be achieved using high affinity reagents, high molecular weight filters, ultracentrifugation and/or electrodialysis. High affinity reagents include antibodies or other reagents (e.g., aptamers) that selectively bind to high abundance proteins. Sample preparation could also include ion exchange chromatography, metal ion affinity chromatography, gel filtration, hydrophobic chromatography, chromatofocusing, adsorption chromatography, isoelectric focusing and related techniques. Molecular weight filters include membranes that separate molecules on the basis of size and molecular weight. Such filters may further employ reverse osmosis, nanofiltration, ultrafiltration and microfiltration.

Ultracentrifugation is a method for removing undesired polypeptides from a sample. Ultracentrifugation is the centrifugation of a sample at about 15,000-60,000 rpm while monitoring with an optical system the sedimentation (or lack thereof) of particles.

Electrodialysis is a procedure which uses an electromembrane or semipermable membrane in a process in which ions are transported through semi-permeable membranes from one solution to another under the influence of a potential gradient. Since the membranes used in electrodialysis may have the ability to selectively transport ions having positive or negative charge, reject ions of the opposite charge, or to allow species to migrate through a semipermable membrane based on size and charge, it renders electrodialysis useful for concentration, removal, or separation of electrolytes.

Separation and purification in the present invention may include any procedure known in the art, such as capillary electrophoresis (e.g., in capillary or on-chip) or chromatography (e.g., in capillary, column or on a chip). Electrophoresis is a method which can be used to separate ionic molecules under the influence of an electric field.

Electrophoresis can be conducted in a gel, capillary, or in a microchannel on a chip. Examples of gels used for electrophoresis include starch, acrylamide, polyethylene oxides, agarose, or combinations thereof. A gel can be modified by its cross-linking, addition of detergents, or denaturants, immobilization of enzymes or antibodies (affinity

electrophoresis) or substrates (zymography) and incorporation of a pH gradient. Examples of capillaries used for electrophoresis include capillaries that interface with an electrospray.

Capillary electrophoresis (CE) is preferred for separating complex hydrophilic molecules and highly charged solutes. CE technology can also be implemented on microfluidic chips. Depending on the types of capillary and buffers used, CE can be further segmented into separation techniques such as capillary zone electrophoresis (CZE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (cITP) and capillary electrochromatography (CEC). An embodiment to couple CE techniques to electrospray ionization involves the use of volatile solutions, for example, aqueous mixtures containing a volatile acid and/or base and an organic such as an alcohol or acetonitrile.

Capillary isotachophoresis (cITP) is a technique in which the analytes move through the capillary at a constant speed but are nevertheless separated by their respective mobilities. Capillary zone electrophoresis (CZE), also known as free-solution CE (FSCE), is based on differences in the electrophoretic mobility of the species, determined by the charge on the molecule, and the frictional resistance the molecule encounters during migration which is often directly proportional to the size of the molecule. Capillary isoelectric focusing (CIEF) allows weakly-ionizable amphoteric molecules, to be separated by electrophoresis in a pH gradient. CEC is a hybrid technique between traditional high performance liquid chromatography (HPLC) and CE.

Separation and purification techniques used in the present invention include any chromatography procedures known in the art. Chromatography can be based on the differential adsorption and elution of certain analytes or partitioning of analytes between mobile and stationary phases. Different examples of chromatography include, but not limited to, liquid chromatography (LC), gas chromatography (GC), high performance liquid chromatography (HPLC), etc. IV. Biomarker Nucleic Acids and Polypeptides

One aspect of the present invention pertains to the use of isolated nucleic acid molecules that correspond to biomarker nucleic acids that encode a biomarker polypeptide or a portion of such a polypeptide. As used herein, the term“nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double- stranded DNA.

An“isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule.

Preferably, an“isolated” nucleic acid molecule is free of sequences (preferably protein- encoding sequences) which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an“isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

A biomarker nucleic acid molecule of the present invention can be isolated using standard molecular biology techniques and the sequence information in the database records described herein. Using all or a portion of such nucleic acid sequences, nucleic acid molecules of the present invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., ed., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

A nucleic acid molecule of the present invention can be amplified using cDNA, mRNA, or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid molecules so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.

Furthermore, oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the present invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

Moreover, a nucleic acid molecule of the present invention can comprise only a portion of a nucleic acid sequence, wherein the full length nucleic acid sequence comprises a marker of the present invention or which encodes a polypeptide corresponding to a marker of the present invention. Such nucleic acid molecules can be used, for example, as a probe or primer. The probe/primer typically is used as one or more substantially purified oligonucleotides. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 7, preferably about 15, more preferably about 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 or more consecutive nucleotides of a biomarker nucleic acid sequence. Probes based on the sequence of a biomarker nucleic acid molecule can be used to detect transcripts or genomic sequences corresponding to one or more markers of the present invention. The probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.

A biomarker nucleic acid molecules that differ, due to degeneracy of the genetic code, from the nucleotide sequence of nucleic acid molecules encoding a protein which corresponds to the biomarker, and thus encode the same protein, are also contemplated.

In addition, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence can exist within a population (e.g., the human population). Such genetic polymorphisms can exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes which occur alternatively at a given genetic locus. In addition, it will be appreciated that DNA polymorphisms that affect RNA expression levels can also exist that may affect the overall expression level of that gene (e.g., by affecting regulation or degradation).

The term“allele,” which is used interchangeably herein with“allelic variant,” refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene or allele. For example, biomarker alleles can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and insertions of nucleotides. An allele of a gene can also be a form of a gene containing one or more mutations.

The term“allelic variant of a polymorphic region of gene” or“allelic variant”, used interchangeably herein, refers to an alternative form of a gene having one of several possible nucleotide sequences found in that region of the gene in the population. As used herein, allelic variant is meant to encompass functional allelic variants, non-functional allelic variants, SNPs, mutations and polymorphisms.

The term“single nucleotide polymorphism” (SNP) refers to a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences. The site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of a population). A SNP usually arises due to substitution of one nucleotide for another at the polymorphic site. SNPs can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele. Typically the polymorphic site is occupied by a base other than the reference base. For example, where the reference allele contains the base“T” (thymidine) at the polymorphic site, the altered allele can contain a“C” (cytidine),“G” (guanine), or “A” (adenine) at the polymorphic site. SNP’s may occur in protein-coding nucleic acid sequences, in which case they may give rise to a defective or otherwise variant protein, or genetic disease. Such a SNP may alter the coding sequence of the gene and therefore specify another amino acid (a“missense” SNP) or a SNP may introduce a stop codon (a “nonsense” SNP). When a SNP does not alter the amino acid sequence of a protein, the SNP is called“silent.” SNP’s may also occur in noncoding regions of the nucleotide sequence. This may result in defective protein expression, e.g., as a result of alternative spicing, or it may have no effect on the function of the protein.

As used herein, the terms“gene” and“recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide corresponding to a marker of the present invention. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid

polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the present invention.

In another embodiment, a biomarker nucleic acid molecule is at least 7, 15, 20, 25, 30, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or more nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule corresponding to a marker of the present invention or to a nucleic acid molecule encoding a protein corresponding to a marker of the present invention. As used herein, the term“hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, 75%, 80%, preferably 85%) identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in sections 6.3.1-6.3.6 of Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989). A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45 o C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50-65 o C.

In addition to naturally-occurring allelic variants of a nucleic acid molecule of the present invention that can exist in the population, the skilled artisan will further appreciate that sequence changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein encoded thereby. For example, one can make nucleotide substitutions leading to amino acid substitutions at“non-essential” amino acid residues. A“non-essential” amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity, whereas an“essential” amino acid residue is required for biological activity. For example, amino acid residues that are not conserved or only semi-conserved among homologs of various species may be non-essential for activity and thus would be likely targets for alteration. Alternatively, amino acid residues that are conserved among the homologs of various species (e.g., murine and human) may be essential for activity and thus would not be likely targets for alteration.

Accordingly, another aspect of the present invention pertains to nucleic acid molecules encoding a polypeptide of the present invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from the naturally-occurring proteins which correspond to the markers of the present invention, yet retain biological activity. In one embodiment, a biomarker protein has an amino acid sequence that is at least about 40% identical, 50%, 60%, 70%, 75%, 80%, 83%, 85%, 87.5%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or identical to the amino acid sequence of a biomarker protein described herein.

An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of nucleic acids of the present invention, such that one or more amino acid residue substitutions, additions, or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A“conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non-polar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.

In some embodiments, the present invention further contemplates the use of anti- biomarker antisense nucleic acid molecules, i.e., molecules which are complementary to a sense nucleic acid of the present invention, e.g., complementary to the coding strand of a double-stranded cDNA molecule corresponding to a marker of the present invention or complementary to an mRNA sequence corresponding to a marker of the present invention. Accordingly, an antisense nucleic acid molecule of the present invention can hydrogen bond to (i.e. anneal with) a sense nucleic acid of the present invention. The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame). An antisense nucleic acid molecule can also be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the present invention. The non- coding regions (“5' and 3' untranslated regions”) are the 5' and 3' sequences which flank the coding region and are not translated into amino acids.

An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides in length. An antisense nucleic acid can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5- fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4- acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2- thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2- methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7- methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D- mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6- isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2- thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5- oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino- 3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been sub-cloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the present invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a polypeptide corresponding to a selected marker of the present invention to thereby inhibit expression of the marker, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. Examples of a route of administration of antisense nucleic acid molecules of the present invention includes direct injection at a tissue site or infusion of the antisense nucleic acid into a blood- or bone marrow-associated body fluid. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

An antisense nucleic acid molecule of the present invention can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double- stranded hybrids with complementary RNA in which, contrary to the usual α-units, the strands run parallel to each other (Gaultier et al., 1987, Nucleic Acids Res.15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al., 1987, Nucleic Acids Res.15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett.215:327-330).

The present invention also encompasses ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach, 1988, Nature 334:585-591) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a nucleic acid molecule encoding a polypeptide corresponding to a marker of the present invention can be designed based upon the nucleotide sequence of a cDNA corresponding to the marker. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved (see Cech et al. U.S. Patent No.4,987,071; and Cech et al. U.S. Patent No.5,116,742). Alternatively, an mRNA encoding a polypeptide of the present invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (see, e.g., Bartel and Szostak, 1993, Science 261:1411-1418).

The present invention also encompasses nucleic acid molecules which form triple helical structures. For example, expression of a biomarker protein can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene (1991) Anticancer Drug Des.6(6):569-84; Helene (1992) Ann. N.Y. Acad. Sci.660:27-36; and Maher (1992) Bioassays 14(12):807-15.

In various embodiments, the nucleic acid molecules of the present invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acid molecules (see Hyrup et al., 1996, Bioorganic & Medicinal Chemistry 4(1): 5- 23). As used herein, the terms“peptide nucleic acids” or“PNAs” refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93:14670-675.

PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup, 1996, supra; Perry-O'Keefe et al., 1996, Proc. Natl. Acad. Sci. USA 93:14670-675).

In another embodiment, PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which can combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNASE H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup, 1996, supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res.24(17):3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5'-(4-methoxytrityl)amino-5'-deoxy- thymidine phosphoramidite can be used as a link between the PNA and the 5' end of DNA (Mag et al., 1989, Nucleic Acids Res.17:5973-88). PNA monomers are then coupled in a step-wise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al., 1996, Nucleic Acids Res.24(17):3357-63). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al., 1975, Bioorganic Med. Chem. Lett.5:1119-11124).

In other embodiments, the oligonucleotide can include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. USA 84:648-652; PCT

Publication No. WO 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., 1988, Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988, Pharm. Res.5:539-549). To this end, the oligonucleotide can be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

Another aspect of the present invention pertains to the use of biomarker proteins and biologically active portions thereof. In one embodiment, the native polypeptide

corresponding to a marker can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, polypeptides corresponding to a marker of the present invention are produced by recombinant DNA techniques. Alternative to recombinant expression, a polypeptide corresponding to a marker of the present invention can be synthesized chemically using standard peptide synthesis techniques.

An“isolated” or“purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language“substantially free of cellular material” includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a“contaminating protein”). When the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.

Biologically active portions of a biomarker polypeptide include polypeptides comprising amino acid sequences sufficiently identical to or derived from a biomarker protein amino acid sequence described herein, but which includes fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the corresponding protein. A biologically active portion of a protein of the present invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the present invention.

Preferred polypeptides have an amino acid sequence of a biomarker protein encoded by a nucleic acid molecule described herein. Other useful proteins are substantially identical (e.g., at least about 40%, preferably 50%, 60%, 70%, 75%, 80%, 83%, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) to one of these sequences and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.

To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions (e.g., overlapping positions) x100). In one embodiment the two sequences are the same length.

The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J. Mol. Biol.215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the present invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the present invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res.25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) Comput Appl Biosci, 4:11-7. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448. When using the FASTA algorithm for comparing nucleotide or amino acid sequences, a PAM120 weight residue table can, for example, be used with a k-tuple value of 2. The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.

The present invention also provides chimeric or fusion proteins corresponding to a biomarker protein. As used herein, a“chimeric protein” or“fusion protein” comprises all or part (preferably a biologically active part) of a polypeptide corresponding to a marker of the present invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the polypeptide corresponding to the marker). Within the fusion protein, the term“operably linked” is intended to indicate that the polypeptide of the present invention and the heterologous polypeptide are fused in-frame to each other. The heterologous polypeptide can be fused to the amino-terminus or the carboxyl-terminus of the polypeptide of the present invention.

One useful fusion protein is a GST fusion protein in which a polypeptide corresponding to a marker of the present invention is fused to the carboxyl terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the present invention.

In another embodiment, the fusion protein contains a heterologous signal sequence, immunoglobulin fusion protein, toxin, or other useful protein sequence. Chimeric and fusion proteins of the present invention can be produced by standard recombinant DNA techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the present invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide of the present invention.

A signal sequence can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway. Thus, the present invention pertains to the described polypeptides having a signal sequence, as well as to polypeptides from which the signal sequence has been proteolytically cleaved (i.e., the cleavage products). In one embodiment, a nucleic acid sequence encoding a signal sequence can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by art recognized methods. Alternatively, the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.

The present invention also pertains to variants of the biomarker polypeptides described herein. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists. Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation. An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein. An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein.

Variants of a biomarker protein which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the present invention for agonist or antagonist activity. In one embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display). There are a variety of methods which can be used to produce libraries of potential variants of the polypeptides of the present invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, 1983, Tetrahedron 39:3; Itakura et al., 1984, Annu. Rev. Biochem.53:323; Itakura et al., 1984, Science 198:1056; Ike et al., 1983 Nucleic Acid Res.11:477).

In addition, libraries of fragments of the coding sequence of a polypeptide corresponding to a marker of the present invention can be used to generate a variegated population of polypeptides for screening and subsequent selection of variants. For example, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes amino terminal and internal fragments of various sizes of the protein of interest.

Several techniques are known in the art for screening gene products of

combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of a protein of the present invention (Arkin and Yourvan, 1992, Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al., 1993, Protein Engineering 6(3):327- 331).

The production and use of biomarker nucleic acid and/or biomarker polypeptide molecules described herein can be facilitated by using standard recombinant techniques. In some embodiments, such techniques use vectors, preferably expression vectors, containing a nucleic acid encoding a biomarker polypeptide or a portion of such a polypeptide. As used herein, the term“vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a“plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, namely expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the present invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the present invention comprise a nucleic acid of the present invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector,“operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term“regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in

Goeddel, Methods in Enzymology: Gene Expression Technology vol.185, Academic Press, San Diego, CA (1991). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the present invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.

The recombinant expression vectors for use in the present invention can be designed for expression of a polypeptide corresponding to a marker of the present invention in prokaryotic (e.g., E. coli) or eukaryotic cells (e.g., insect cells {using baculovirus expression vectors}, yeast cells or mammalian cells). Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988, Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., 1988, Gene 69:301-315) and pET 11d (Studier et al., p.60-89, In Gene Expression Technology: Methods in Enzymology vol.185, Academic Press, San Diego, CA, 1991). Target biomarker nucleic acid expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target biomarker nucleic acid expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a co-expressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21 (DE3) or HMS174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacterium with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, p.119-128, In Gene Expression Technology: Methods in Enzymology vol.185, Academic Press, San Diego, CA, 1990. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., 1992, Nucleic Acids Res.20:2111-2118). Such alteration of nucleic acid sequences of the present invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the expression vector is a yeast expression vector.

Examples of vectors for expression in yeast S. cerevisiae include pYepSec1 (Baldari et al., 1987, EMBO J.6:229-234), pMFa (Kurjan and Herskowitz, 1982, Cell 30:933-943), pJRY88 (Schultz et al., 1987, Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).

Alternatively, the expression vector is a baculovirus expression vector. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., 1983, Mol. Cell Biol.3:2156-2165) and the pVL series

(Lucklow and Summers, 1989, Virology 170:31-39).

In yet another embodiment, a nucleic acid of the present invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987, Nature 329:840) and pMT2PC (Kaufman et al., 1987, EMBO J.6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., supra.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue- specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al., 1987, Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton, 1988, Adv. Immunol.43:235- 275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989, EMBO J. 8:729-733) and immunoglobulins (Banerji et al., 1983, Cell 33:729-740; Queen and Baltimore, 1983, Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989, Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas- specific promoters (Edlund et al., 1985, Science 230:912-916), and mammary gland- specific promoters (e.g., milk whey promoter; U.S. Patent No.4,873,316 and European Application Publication No.264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss, 1990, Science 249:374-379) and the ^-fetoprotein promoter (Camper and Tilghman, 1989, Genes Dev. 3:537-546).

The present invention further provides a recombinant expression vector comprising a DNA molecule cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a polypeptide of the present invention. Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue-specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes (see Weintraub et al., 1986, Trends in Genetics, Vol.1(1)).

Another aspect of the present invention pertains to host cells into which a recombinant expression vector of the present invention has been introduced. The terms “host cell” and“recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic (e.g., E. coli) or eukaryotic cell (e.g., insect cells, yeast or mammalian cells). Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms“transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co- precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation.

Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die). V. Analyzing Biomarker Nucleic Acids and Polypeptides

Biomarker nucleic acids and/or biomarker polypeptides can be analyzed according to the methods described herein and techniques known to the skilled artisan to identify such genetic or expression alterations useful for the present invention including, but not limited to, 1) an alteration in the level of a biomarker transcript or polypeptide, 2) a deletion or addition of one or more nucleotides from a biomarker gene, 4) a substitution of one or more nucleotides of a biomarker gene, 5) aberrant modification of a biomarker gene, such as an expression regulatory region, and the like.

a. Methods for Detection of Copy Number

Methods of evaluating the copy number of a biomarker nucleic acid are well known to those of skill in the art. The presence or absence of chromosomal gain or loss can be evaluated simply by a determination of copy number of the regions or markers identified herein.

In one embodiment, a biological sample is tested for the presence of copy number changes in genomic loci containing the genomic marker. A copy number of at least 3, 4, 5, 6, 7, 8, 9, or 10 is predictive of poorer outcome of SFKSP treatment. In one embodiment, a biological sample is tested for the presence of copy number changes in genomic loci containing the genomic marker. The absence of at least one biomarker listed in Table 1 is predictive of poorer outcome of endocrine therapy. A copy number of at least 3, 4, 5, 6, 7, 8, 9, or 10 of at least one biomarker listed in Table 1 is predictive of likely responsive to endocrine therapy. A copy number of at least 3, 4, 5, 6, 7, 8, 9, or 10 of at least one biomarker listed in Table 2 is predictive of poorer outcome of endocrine therapy.

Methods of evaluating the copy number of a biomarker locus include, but are not limited to, hybridization-based assays. Hybridization-based assays include, but are not limited to, traditional“direct probe” methods, such as Southern blots, in situ hybridization (e.g., FISH and FISH plus SKY) methods, and“comparative probe” methods, such as comparative genomic hybridization (CGH), e.g., cDNA-based or oligonucleotide-based CGH. The methods can be used in a wide variety of formats including, but not limited to, substrate (e.g. membrane or glass) bound methods or array-based approaches.

In one embodiment, evaluating the biomarker gene copy number in a sample involves a Southern Blot. In a Southern Blot, the genomic DNA (typically fragmented and separated on an electrophoretic gel) is hybridized to a probe specific for the target region. Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal genomic DNA (e.g., a non-amplified portion of the same or related cell, tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid. Alternatively, a Northern blot may be utilized for evaluating the copy number of encoding nucleic acid in a sample. In a Northern blot, mRNA is hybridized to a probe specific for the target region. Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal RNA (e.g., a non-amplified portion of the same or related cell, tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid. Alternatively, other methods well known in the art to detect RNA can be used, such that higher or lower expression relative to an appropriate control (e.g., a non-amplified portion of the same or related cell tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid.

An alternative means for determining genomic copy number is in situ hybridization (e.g., Angerer (1987) Meth. Enzymol 152: 649). Generally, in situ hybridization comprises the following steps: (1) fixation of tissue or biological structure to be analyzed; (2) prehybridization treatment of the biological structure to increase accessibility of target DNA, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization and (5) detection of the hybridized nucleic acid fragments. The reagent used in each of these steps and the conditions for use vary depending on the particular application. In a typical in situ hybridization assay, cells are fixed to a solid support, typically a glass slide. If a nucleic acid is to be probed, the cells are typically denatured with heat or alkali. The cells are then contacted with a hybridization solution at a moderate temperature to permit annealing of labeled probes specific to the nucleic acid sequence encoding the protein. The targets (e.g., cells) are then typically washed at a predetermined stringency or at an increasing stringency until an appropriate signal to noise ratio is obtained. The probes are typically labeled, e.g., with radioisotopes or fluorescent reporters. In one embodiment, probes are sufficiently long so as to specifically hybridize with the target nucleic acid(s) under stringent conditions. Probes generally range in length from about 200 bases to about 1000 bases. In some applications it is necessary to block the hybridization capacity of repetitive sequences. Thus, in some embodiments, tRNA, human genomic DNA, or Cot-I DNA is used to block non-specific hybridization.

An alternative means for determining genomic copy number is comparative genomic hybridization. In general, genomic DNA is isolated from normal reference cells, as well as from test cells (e.g., tumor cells) and amplified, if necessary. The two nucleic acids are differentially labeled and then hybridized in situ to metaphase chromosomes of a reference cell. The repetitive sequences in both the reference and test DNAs are either removed or their hybridization capacity is reduced by some means, for example by prehybridization with appropriate blocking nucleic acids and/or including such blocking nucleic acid sequences for said repetitive sequences during said hybridization. The bound, labeled DNA sequences are then rendered in a visualizable form, if necessary.

Chromosomal regions in the test cells which are at increased or decreased copy number can be identified by detecting regions where the ratio of signal from the two DNAs is altered. For example, those regions that have decreased in copy number in the test cells will show relatively lower signal from the test DNA than the reference compared to other regions of the genome. Regions that have been increased in copy number in the test cells will show relatively higher signal from the test DNA. Where there are chromosomal deletions or multiplications, differences in the ratio of the signals from the two labels will be detected and the ratio will provide a measure of the copy number. In another embodiment of CGH, array CGH (aCGH), the immobilized chromosome element is replaced with a collection of solid support bound target nucleic acids on an array, allowing for a large or complete percentage of the genome to be represented in the collection of solid support bound targets. Target nucleic acids may comprise cDNAs, genomic DNAs, oligonucleotides (e.g., to detect single nucleotide polymorphisms) and the like. Array-based CGH may also be performed with single-color labeling (as opposed to labeling the control and the possible tumor sample with two different dyes and mixing them prior to hybridization, which will yield a ratio due to competitive hybridization of probes on the arrays). In single color CGH, the control is labeled and hybridized to one array and absolute signals are read, and the possible tumor sample is labeled and hybridized to a second array (with identical content) and absolute signals are read. Copy number difference is calculated based on absolute signals from the two arrays. Methods of preparing immobilized chromosomes or arrays and performing comparative genomic hybridization are well known in the art (see, e.g., U.S. Pat. Nos: 6,335,167; 6,197,501; 5,830,645; and 5,665,549 and Albertson (1984) EMBO J.3: 1227-1234; Pinkel (1988) Proc. Natl. Acad. Sci. USA 85: 9138-9142; EPO Pub. No.430,402; Methods in Molecular Biology, Vol.33: In situ Hybridization Protocols, Choo, ed., Humana Press, Totowa, N.J. (1994), etc.) In another embodiment, the hybridization protocol of Pinkel, et al. (1998) Nature Genetics 20: 207-211, or of

Kallioniemi (1992) Proc. Natl Acad Sci USA 89:5321-5325 (1992) is used.

In still another embodiment, amplification-based assays can be used to measure copy number. In such amplification-based assays, the nucleic acid sequences act as a template in an amplification reaction (e.g., Polymerase Chain Reaction (PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls, e.g. healthy tissue, provides a measure of the copy number.

Methods of“quantitative” amplification are well known to those of skill in the art. For example, quantitative PCR involves simultaneously co-amplifying a known quantity of a control sequence using the same primers. This provides an internal standard that may be used to calibrate the PCR reaction. Detailed protocols for quantitative PCR are provided in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.). Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis is described in Ginzonger, et al. (2000) Cancer Research 60:5405-5409. The known nucleic acid sequence for the genes is sufficient to enable one of skill in the art to routinely select primers to amplify any portion of the gene. Fluorogenic quantitative PCR may also be used in the methods of the present invention. In fluorogenic quantitative PCR, quantitation is based on amount of fluorescence signals, e.g., TaqMan and SYBR green.

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4: 560, Landegren, et al. (1988) Science 241:1077, and Barringer et al. (1990) Gene 89: 117), transcription amplification (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat. Acad. Sci. USA 87: 1874), dot PCR, and linker adapter PCR, etc.

Loss of heterozygosity (LOH) and major copy proportion (MCP) mapping (Wang, Z.C., et al. (2004) Cancer Res 64(1):64-71; Seymour, A. B., et al. (1994) Cancer Res 54, 2761-4; Hahn, S. A., et al. (1995) Cancer Res 55, 4670-5; Kimura, M., et al. (1996) Genes Chromosomes Cancer 17, 88-93; Li et al., (2008) MBC Bioinform.9, 204-219) may also be used to identify regions of amplification or deletion.

b. Methods for Detection of Biomarker Nucleic Acid Expression

Biomarker expression may be assessed by any of a wide variety of well known methods for detecting expression of a transcribed molecule or protein. Non-limiting examples of such methods include immunological methods for detection of secreted, cell- surface, cytoplasmic, or nuclear proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods, and nucleic acid amplification methods.

In preferred embodiments, activity of a particular gene is characterized by a measure of gene transcript (e.g. mRNA), by a measure of the quantity of translated protein, or by a measure of gene product activity. Marker expression can be monitored in a variety of ways, including by detecting mRNA levels, protein levels, or protein activity, any of which can be measured using standard techniques. Detection can involve quantification of the level of gene expression (e.g., genomic DNA, cDNA, mRNA, protein, or enzyme activity), or, alternatively, can be a qualitative assessment of the level of gene expression, in particular in comparison with a control level. The type of level being detected will be clear from the context.

In another embodiment, detecting or determining expression levels of a biomarker and functionally similar homologs thereof, including a fragment or genetic alteration thereof (e.g., in regulatory or promoter regions thereof) comprises detecting or determining RNA levels for the marker of interest. In one embodiment, one or more cells from the subject to be tested are obtained and RNA is isolated from the cells. In a preferred embodiment, a sample of breast tissue cells is obtained from the subject.

In one embodiment, RNA is obtained from a single cell. For example, a cell can be isolated from a tissue sample by laser capture microdissection (LCM). Using this technique, a cell can be isolated from a tissue section, including a stained tissue section, thereby assuring that the desired cell is isolated (see, e.g., Bonner et al. (1997) Science 278: 1481; Emmert-Buck et al. (1996) Science 274:998; Fend et al. (1999) Am. J. Path.154: 61 and Murakami et al. (2000) Kidney Int.58:1346). For example, Murakami et al., supra, describe isolation of a cell from a previously immunostained tissue section.

It is also be possible to obtain cells from a subject and culture the cells in vitro, such as to obtain a larger population of cells from which RNA can be extracted. Methods for establishing cultures of non-transformed cells, i.e., primary cell cultures, are known in the art.

When isolating RNA from tissue samples or cells from individuals, it may be important to prevent any further changes in gene expression after the tissue or cells has been removed from the subject. Changes in expression levels are known to change rapidly following perturbations, e.g., heat shock or activation with lipopolysaccharide (LPS) or other reagents. In addition, the RNA in the tissue and cells may quickly become degraded. Accordingly, in a preferred embodiment, the tissue or cells obtained from a subject is snap frozen as soon as possible.

RNA can be extracted from the tissue sample by a variety of methods, e.g., the guanidium thiocyanate lysis followed by CsCl centrifugation (Chirgwin et al., 1979, Biochemistry 18:5294-5299). RNA from single cells can be obtained as described in methods for preparing cDNA libraries from single cells, such as those described in Dulac, C. (1998) Curr. Top. Dev. Biol.36, 245 and Jena et al. (1996) J. Immunol. Methods 190:199. Care to avoid RNA degradation must be taken, e.g., by inclusion of RNAsin.

The RNA sample can then be enriched in particular species. In one embodiment, poly(A)+ RNA is isolated from the RNA sample. In general, such purification takes advantage of the poly-A tails on mRNA. In particular and as noted above, poly-T oligonucleotides may be immobilized within on a solid support to serve as affinity ligands for mRNA. Kits for this purpose are commercially available, e.g., the MessageMaker kit (Life Technologies, Grand Island, NY).

In a preferred embodiment, the RNA population is enriched in marker sequences. Enrichment can be undertaken, e.g., by primer-specific cDNA synthesis, or multiple rounds of linear amplification based on cDNA synthesis and template-directed in vitro

transcription (see, e.g., Wang et al. (1989) PNAS 86, 9717; Dulac et al., supra, and Jena et al., supra).

The population of RNA, enriched or not in particular species or sequences, can further be amplified. As defined herein, an“amplification process” is designed to strengthen, increase, or augment a molecule within the RNA. For example, where RNA is mRNA, an amplification process such as RT-PCR can be utilized to amplify the mRNA, such that a signal is detectable or detection is enhanced. Such an amplification process is beneficial particularly when the biological, tissue, or tumor sample is of a small size or volume.

Various amplification and detection methods can be used. For example, it is within the scope of the present invention to reverse transcribe mRNA into cDNA followed by polymerase chain reaction (RT-PCR); or, to use a single enzyme for both steps as described in U.S. Pat. No.5,322,770, or reverse transcribe mRNA into cDNA followed by symmetric gap ligase chain reaction (RT-AGLCR) as described by R. L. Marshall, et al., PCR

Methods and Applications 4: 80-84 (1994). Real time PCR may also be used.

Other known amplification methods which can be utilized herein include but are not limited to the so-called“NASBA” or“3SR” technique described in PNAS USA 87: 1874- 1878 (1990) and also described in Nature 350 (No.6313): 91-92 (1991); Q-beta

amplification as described in published European Patent Application (EPA) No.4544610; strand displacement amplification (as described in G. T. Walker et al., Clin. Chem.42: 9-13 (1996) and European Patent Application No.684315; target mediated amplification, as described by PCT Publication WO9322461; PCR; ligase chain reaction (LCR) (see, e.g., Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988)); self-sustained sequence replication (SSR) (see, e.g., Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990)); and transcription amplification (see, e.g., Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)).

Many techniques are known in the state of the art for determining absolute and relative levels of gene expression, commonly used techniques suitable for use in the present invention include Northern analysis, RNase protection assays (RPA), microarrays and PCR- based techniques, such as quantitative PCR and differential display PCR. For example, Northern blotting involves running a preparation of RNA on a denaturing agarose gel, and transferring it to a suitable support, such as activated cellulose, nitrocellulose or glass or nylon membranes. Radiolabeled cDNA or RNA is then hybridized to the preparation, washed and analyzed by autoradiography.

In situ hybridization visualization may also be employed, wherein a radioactively labeled antisense RNA probe is hybridized with a thin section of a biopsy sample, washed, cleaved with RNase and exposed to a sensitive emulsion for autoradiography. The samples may be stained with hematoxylin to demonstrate the histological composition of the sample, and dark field imaging with a suitable light filter shows the developed emulsion. Non-radioactive labels such as digoxigenin may also be used.

Alternatively, mRNA expression can be detected on a DNA array, chip or a microarray. Labeled nucleic acids of a test sample obtained from a subject may be hybridized to a solid surface comprising biomarker DNA. Positive hybridization signal is obtained with the sample containing biomarker transcripts. Methods of preparing DNA arrays and their use are well known in the art (see, e.g., U.S. Pat. Nos: 6,618,6796;

6,379,897; 6,664,377; 6,451,536; 548,257; U.S.20030157485 and Schena et al. (1995) Science 20, 467-470; Gerhold et al. (1999) Trends In Biochem. Sci.24, 168-173; and Lennon et al. (2000) Drug Discovery Today 5, 59-65, which are herein incorporated by reference in their entirety). Serial Analysis of Gene Expression (SAGE) can also be performed (See for example U.S. Patent Application 20030215858).

To monitor mRNA levels, for example, mRNA is extracted from the biological sample to be tested, reverse transcribed, and fluorescently-labeled cDNA probes are generated. The microarrays capable of hybridizing to marker cDNA are then probed with the labeled cDNA probes, the slides scanned and fluorescence intensity measured. This intensity correlates with the hybridization intensity and expression levels.

Types of probes that can be used in the methods described herein include cDNA, riboprobes, synthetic oligonucleotides and genomic probes. The type of probe used will generally be dictated by the particular situation, such as riboprobes for in situ hybridization, and cDNA for Northern blotting, for example. In one embodiment, the probe is directed to nucleotide regions unique to the RNA. The probes may be as short as is required to differentially recognize marker mRNA transcripts, and may be as short as, for example, 15 bases; however, probes of at least 17, 18, 19 or 20 or more bases can be used. In one embodiment, the primers and probes hybridize specifically under stringent conditions to a DNA fragment having the nucleotide sequence corresponding to the marker. As herein used, the term“stringent conditions” means hybridization will occur only if there is at least 95% identity in nucleotide sequences. In another embodiment, hybridization under “stringent conditions” occurs when there is at least 97% identity between the sequences.

The form of labeling of the probes may be any that is appropriate, such as the use of radioisotopes, for example, 32 P and 35 S. Labeling with radioisotopes may be achieved, whether the probe is synthesized chemically or biologically, by the use of suitably labeled bases.

In one embodiment, the biological sample contains polypeptide molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.

In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting marker polypeptide, mRNA, genomic DNA, or fragments thereof, such that the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof, is detected in the biological sample, and comparing the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof, in the control sample with the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof in the test sample.

c. Methods for Detection of Biomarker Protein Expression

The activity or level of a biomarker protein can be detected and/or quantified by detecting or quantifying the expressed polypeptide. The polypeptide can be detected and quantified by any of a number of means well known to those of skill in the art. Aberrant levels of polypeptide expression of the polypeptides encoded by a biomarker nucleic acid and functionally similar homologs thereof, including a fragment or genetic alteration thereof (e.g., in regulatory or promoter regions thereof) are associated with the likelihood of response of a cancer to SFKSP therapy. Any method known in the art for detecting polypeptides can be used. Such methods include, but are not limited to, immunodiffusion, immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, Western blotting, binder-ligand assays,

immunohistochemical techniques, agglutination, complement assays, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, and the like (e.g., Basic and Clinical Immunology, Sites and Terr, eds., Appleton and Lange, Norwalk, Conn. pp 217-262, 1991 which is incorporated by reference). Preferred are binder-ligand immunoassay methods including reacting antibodies with an epitope or epitopes and competitively displacing a labeled polypeptide or derivative thereof.

For example, ELISA and RIA procedures may be conducted such that a desired biomarker protein standard is labeled (with a radioisotope such as 125 I or 35 S, or an assayable enzyme, such as horseradish peroxidase or alkaline phosphatase), and, together with the unlabelled sample, brought into contact with the corresponding antibody, whereon a second antibody is used to bind the first, and radioactivity or the immobilized enzyme assayed (competitive assay). Alternatively, the biomarker protein in the sample is allowed to react with the corresponding immobilized antibody, radioisotope- or enzyme-labeled anti-biomarker proteinantibody is allowed to react with the system, and radioactivity or the enzyme assayed (ELISA-sandwich assay). Other conventional methods may also be employed as suitable.

The above techniques may be conducted essentially as a“one-step” or“two-step” assay. A“one-step” assay involves contacting antigen with immobilized antibody and, without washing, contacting the mixture with labeled antibody. A“two-step” assay involves washing before contacting, the mixture with labeled antibody. Other conventional methods may also be employed as suitable.

In one embodiment, a method for measuring biomarker protein levels comprises the steps of: contacting a biological specimen with an antibody or variant (e.g., fragment) thereof which selectively binds the biomarker protein, and detecting whether said antibody or variant thereof is bound to said sample and thereby measuring the levels of the biomarker protein.

Enzymatic and radiolabeling of biomarker protein and/or the antibodies may be effected by conventional means. Such means will generally include covalent linking of the enzyme to the antigen or the antibody in question, such as by glutaraldehyde, specifically so as not to adversely affect the activity of the enzyme, by which is meant that the enzyme must still be capable of interacting with its substrate, although it is not necessary for all of the enzyme to be active, provided that enough remains active to permit the assay to be effected. Indeed, some techniques for binding enzyme are non-specific (such as using formaldehyde), and will only yield a proportion of active enzyme. It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed without laborious and time-consuming labor. It is possible for a second phase to be immobilized away from the first, but one phase is usually sufficient.

It is possible to immobilize the enzyme itself on a support, but if solid-phase enzyme is required, then this is generally best achieved by binding to antibody and affixing the antibody to a support, models and systems for which are well-known in the art. Simple polyethylene may provide a suitable support.

Enzymes employable for labeling are not particularly limited, but may be selected from the members of the oxidase group, for example. These catalyze production of hydrogen peroxide by reaction with their substrates, and glucose oxidase is often used for its good stability, ease of availability and cheapness, as well as the ready availability of its substrate (glucose). Activity of the oxidase may be assayed by measuring the concentration of hydrogen peroxide formed after reaction of the enzyme-labeled antibody with the substrate under controlled conditions well-known in the art.

Other techniques may be used to detect biomarker protein according to a practitioner's preference based upon the present disclosure. One such technique is Western blotting (Towbin et at., Proc. Nat. Acad. Sci.76:4350 (1979)), wherein a suitably treated sample is run on an SDS-PAGE gel before being transferred to a solid support, such as a nitrocellulose filter. Anti-biomarker protein antibodies (unlabeled) are then brought into contact with the support and assayed by a secondary immunological reagent, such as labeled protein A or anti-immunoglobulin (suitable labels including 125 I, horseradish peroxidase and alkaline phosphatase). Chromatographic detection may also be used.

Immunohistochemistry may be used to detect expression of biomarker protein, e.g., in a biopsy sample. A suitable antibody is brought into contact with, for example, a thin layer of cells, washed, and then contacted with a second, labeled antibody. Labeling may be by fluorescent markers, enzymes, such as peroxidase, avidin, or radiolabelling. The assay is scored visually, using microscopy.

Anti-biomarker protein antibodies, such as intrabodies, may also be used for imaging purposes, for example, to detect the presence of biomarker protein in cells and tissues of a subject. Suitable labels include radioisotopes, iodine ( 125 I, 121 I), carbon ( 14 C), sulphur ( 35 S), tritium ( 3 H), indium ( 112 In), and technetium ( 99 mTc), fluorescent labels, such as fluorescein and rhodamine, and biotin.

For in vivo imaging purposes, antibodies are not detectable, as such, from outside the body, and so must be labeled, or otherwise modified, to permit detection. Markers for this purpose may be any that do not substantially interfere with the antibody binding, but which allow external detection. Suitable markers may include those that may be detected by X-radiography, NMR or MRI. For X-radiographic techniques, suitable markers include any radioisotope that emits detectable radiation but that is not overtly harmful to the subject, such as barium or cesium, for example. Suitable markers for NMR and MRI generally include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by suitable labeling of nutrients for the relevant hybridoma, for example.

The size of the subject, and the imaging system used, will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of technetium-99. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain biomarker protein. The labeled antibody or antibody fragment can then be detected using known techniques.

Antibodies that may be used to detect biomarker protein include any antibody, whether natural or synthetic, full length or a fragment thereof, monoclonal or polyclonal, that binds sufficiently strongly and specifically to the biomarker protein to be detected. An antibody may have a Kd of at most about 10 -6 M, 10 -7 M, 10 -8 M, 10 -9 M, 10 -10 M, 10 -11 M, 10- 12 M. The phrase“specifically binds” refers to binding of, for example, an antibody to an epitope or antigen or antigenic determinant in such a manner that binding can be displaced or competed with a second preparation of identical or similar epitope, antigen or antigenic determinant. An antibody may bind preferentially to the biomarker protein relative to other proteins, such as related proteins.

Antibodies are commercially available or may be prepared according to methods known in the art.

Antibodies and derivatives thereof that may be used encompass polyclonal or monoclonal antibodies, chimeric, human, humanized, primatized (CDR-grafted), veneered or single-chain antibodies as well as functional fragments, i.e., biomarker protein binding fragments, of antibodies. For example, antibody fragments capable of binding to a biomarker protein or portions thereof, including, but not limited to, Fv, Fab, Fab' and F(ab') 2 fragments can be used. Such fragments can be produced by enzymatic cleavage or by recombinant techniques. For example, papain or pepsin cleavage can generate Fab or F(ab') 2 fragments, respectively. Other proteases with the requisite substrate specificity can also be used to generate Fab or F(ab') 2 fragments. Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons have been introduced upstream of the natural stop site. For example, a chimeric gene encoding a F(ab') 2 heavy chain portion can be designed to include DNA sequences encoding the CH, domain and hinge region of the heavy chain.

Synthetic and engineered antibodies are described in, e.g., Cabilly et al., U.S. Pat. No.4,816,567 Cabilly et al., European Patent No.0,125,023 B1; Boss et al., U.S. Pat. No. 4,816,397; Boss et al., European Patent No.0,120,694 B1; Neuberger, M. S. et al., WO 86/01533; Neuberger, M. S. et al., European Patent No.0,194,276 B1; Winter, U.S. Pat. No.5,225,539; Winter, European Patent No.0,239,400 B1; Queen et al., European Patent No.0451216 B1; and Padlan, E. A. et al., EP 0519596 A1. See also, Newman, R. et al., BioTechnology, 10: 1455-1460 (1992), regarding primatized antibody, and Ladner et al., U.S. Pat. No.4,946,778 and Bird, R. E. et al., Science, 242: 423-426 (1988)) regarding single-chain antibodies. Antibodies produced from a library, e.g., phage display library, may also be used.

In some embodiments, agents that specifically bind to a biomarker protein other than antibodies are used, such as peptides. Peptides that specifically bind to a biomarker protein can be identified by any means known in the art. For example, specific peptide binders of a biomarker protein can be screened for using peptide phage display libraries. d. Methods for Detection of Biomarker Structural Alterations

The following illustrative methods can be used to identify the presence of a structural alteration in a biomarker nucleic acid and/or biomarker polypeptide molecule in order to, for example, identify PAK2, CRK, and/or SFK proteins that are both

overexpressed and functional.

The following illustrative methods can be used to identify the presence of a structural alteration in a biomarker nucleic acid and/or biomarker polypeptide molecule in order to, for example, identify SFKSP pathway proteins that are overexpressed, overfunctional, and the like.

In certain embodiments, detection of the alteration involves the use of a

probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos.4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in a biomarker nucleic acid such as a biomarker gene (see Abravaya et al. (1995) Nucleic Acids Res.23:675-682). This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a biomarker gene under conditions such that hybridization and amplification of the biomarker gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al. (1988) Bio-Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in a biomarker nucleic acid from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Pat. No.5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations in biomarker nucleic acid can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotide probes (Cronin, M. T. et al. (1996) Hum. Mutat.7:244-255; Kozal, M. J. et al. (1996) Nat. Med.2:753-759). For example, biomarker genetic mutations can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin et al. (1996) supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential, overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene. Such biomarker genetic mutations can be identified in a variety of contexts, including, for example, germline and somatic mutations.

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence a biomarker gene and detect mutations by comparing the sequence of the sample biomarker with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxam and Gilbert (1977) Proc. Natl. Acad. Sci. USA 74:560 or Sanger (1977) Proc. Natl. Acad Sci. USA 74:5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve (1995)

Biotechniques 19:448-53), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr.36:127- 162; and Griffin et al. (1993) Appl. Biochem. Biotechnol.38:147-159).

Other methods for detecting mutations in a biomarker gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). In general, the art technique of“mismatch cleavage” starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type biomarker sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with SI nuclease to enzymatically digest the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example, Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397 and Saleeba et al. (1992) Methods Enzymol.217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.

In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called“DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in biomarker cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662). According to an exemplary embodiment, a probe based on a biomarker sequence, e.g., a wild-type biomarker treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like (e.g., U.S. Pat. No.5,459,039.) In other embodiments, alterations in electrophoretic mobility can be used to identify mutations in biomarker genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc Natl. Acad. Sci USA 86:2766; see also Cotton (1993) Mutat. Res.285:125-144 and Hayashi (1992) Genet. Anal. Tech. Appl.9:73- 79). Single-stranded DNA fragments of sample and control biomarker nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet.7:5).

In yet another embodiment the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to ensure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high- melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem.265:12753).

Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163; Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res.17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification. 3. Anti-Cancer Therapies

The efficacy of SFKSP therapy is predicted according to biomarker amount and/or activity associated with a cancer in a subject according to the methods described herein. In one embodiment, such SFKSP therapy or combinations of therapies (e.g., one or more SFKSP inhibitors in combination with one or more additional CSK activators) can be administered once a subject is indicated as being a likely responder to a SFKSP inhibitor. In another embodiment, such SFKSP therapy can be avoided once a subject is indicated as not being a likely responder to a PD-1 pathway inhibitor and an alternative treatment regimen, such as targeted and/or untargeted anti-cancer therapies can be administered. Combination therapies are also contemplated and can comprise, for example, one or more chemotherapeutic agents and radiation, one or more chemotherapeutic agents and immunotherapy, or one or more chemotherapeutic agents, radiation and chemotherapy, each combination of which can be with SFKSP therapy. The SFKSP and exemplary agents useful for inhibiting the SFKSP, or other biomarkers described herein, have been described above.

The iron-sulfur cluster biosynthesis pathway and exemplary agents useful for inhibiting the iron-sulfur cluster biosynthesis pathway, or other biomarkers described herein, have been described above.

The term“targeted therapy” refers to administration of agents that selectively interact with a chosen biomolecule to thereby treat cancer. For example, SFKSP pathway agents, such as therapeutic monoclonal or polyclonal blocking antibodies or small molecule inhibitors (e.g., Dastinib, Saracatinib, FRAX597 and the like), can be used to target tumor microenvironments and cells expressing unwanted components of the SFKSP pathway, such as PAK2 or CRK.

Immunotherapy is one form of targeted therapy that may comprise, for example, the use of cancer vaccines and/or sensitized antigen presenting cells. For example, an oncolytic virus is a virus that is able to infect and lyse cancer cells, while leaving normal cells unharmed, making them potentially useful in cancer therapy. Replication of oncolytic viruses both facilitates tumor cell destruction and also produces dose amplification at the tumor site. They may also act as vectors for anticancer genes, allowing them to be specifically delivered to the tumor site. The immunotherapy can involve passive immunity for short-term protection of a host, achieved by the administration of pre-formed antibody directed against a cancer antigen or disease antigen (e.g., administration of a monoclonal antibody, optionally linked to a chemotherapeutic agent or toxin, to a tumor antigen).

Immunotherapy can also focus on using the cytotoxic lymphocyte-recognized epitopes of cancer cell lines. Alternatively, antisense polynucleotides, ribozymes, RNA interference molecules, triple helix polynucleotides and the like, can be used to selectively modulate biomolecules that are linked to the initiation, progression, and/or pathology of a tumor or cancer. The term“untargeted therapy” referes to administration of agents that do not selectively interact with a chosen biomolecule yet treat cancer. Representative examples of untargeted therapies include, without limitation, chemotherapy, gene therapy, and radiation therapy.

In one embodiment, mitochondrial cofactor therapy is useful. For example, vitamin E is known to block cell death via ferroptosis such that mitochondrial cofactor therapy can alleviate or improve any toxicity associated with ISC biosynthesis pathway inhibition. Mitochondrial cofactor therapies are well known in the art and include, for example, coenzyme Q10 (ubiquinone), riboflavin, thiamin, niacin, vitamin K (phylloquinone and menadione), creatine, carnitine, and other antioxidants such as ascorbic acid and lipoic acid (see, for example, Marriage et al. (2003) J. Am. Diet. Assoc.103:1029-1038 and Parikh et al. (2009) Curr. Treat. Options Neurol.11:414-430).

In one embodiment, chemotherapy is used. Chemotherapy includes the

administration of a chemotherapeutic agent. Such a chemotherapeutic agent may be, but is not limited to, those selected from among the following groups of compounds: platinum compounds, cytotoxic antibiotics, antimetabolities, anti-mitotic agents, alkylating agents, arsenic compounds, DNA topoisomerase inhibitors, taxanes, nucleoside analogues, plant alkaloids, and toxins; and synthetic derivatives thereof. Exemplary compounds include, but are not limited to, alkylating agents: cisplatin, treosulfan, and trofosfamide; plant alkaloids: vinblastine, paclitaxel, docetaxol; DNA topoisomerase inhibitors: teniposide, crisnatol, and mitomycin; anti-folates: methotrexate, mycophenolic acid, and hydroxyurea; pyrimidine analogs: 5-fluorouracil, doxifluridine, and cytosine arabinoside; purine analogs:

mercaptopurine and thioguanine; DNA antimetabolites: 2'-deoxy-5-fluorouridine, aphidicolin glycinate, and pyrazoloimidazole; and antimitotic agents: halichondrin, colchicine, and rhizoxin. Compositions comprising one or more chemotherapeutic agents (e.g., FLAG, CHOP) may also be used. FLAG comprises fludarabine, cytosine arabinoside (Ara-C) and G-CSF. CHOP comprises cyclophosphamide, vincristine, doxorubicin, and prednisone. In another embodiments, PARP (e.g., PARP-1 and/or PARP-2) inhibitors are used and such inhibitors are well known in the art (e.g., Olaparib, ABT-888, BSI-201, BGP-15 (N-Gene Research Laboratories, Inc.); INO-1001 (Inotek Pharmaceuticals Inc.); PJ34 (Soriano et al., 2001; Pacher et al., 2002b); 3-aminobenzamide (Trevigen); 4-amino- 1,8-naphthalimide; (Trevigen); 6(5H)-phenanthridinone (Trevigen); benzamide (U.S. Pat. Re.36,397); and NU1025 (Bowman et al.). The mechanism of action is generally related to the ability of PARP inhibitors to bind PARP and decrease its activity. PARP catalyzes the conversion of β-nicotinamide adenine dinucleotide (NAD+) into nicotinamide and poly- ADP-ribose (PAR). Both poly (ADP-ribose) and PARP have been linked to regulation of transcription, cell proliferation, genomic stability, and carcinogenesis (Bouchard V. J. et.al. Experimental Hematology, Volume 31, Number 6, June 2003, pp.446-454(9); Herceg Z.; Wang Z.-Q. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Volume 477, Number 1, 2 Jun.2001, pp.97-110(14)). Poly(ADP-ribose) polymerase 1 (PARP1) is a key molecule in the repair of DNA single-strand breaks (SSBs) (de Murcia J. et al.1997. Proc Natl Acad Sci USA 94:7303-7307; Schreiber V, Dantzer F, Ame J C, de Murcia G (2006) Nat Rev Mol Cell Biol 7:517-528; Wang Z Q, et al. (1997) Genes Dev 11:2347-2358). Knockout of SSB repair by inhibition of PARP1 function induces DNA double-strand breaks (DSBs) that can trigger synthetic lethality in cancer cells with defective homology-directed DSB repair (Bryant H E, et al. (2005) Nature 434:913-917; Farmer H, et al. (2005) Nature 434:917-921). The foregoing examples of chemotherapeutic agents are illustrative, and are not intended to be limiting.

In another embodiment, radiation therapy is used. The radiation used in radiation therapy can be ionizing radiation. Radiation therapy can also be gamma rays, X-rays, or proton beams. Examples of radiation therapy include, but are not limited to, external-beam radiation therapy, interstitial implantation of radioisotopes (I-125, palladium, iridium), radioisotopes such as strontium-89, thoracic radiation therapy, intraperitoneal P-32 radiation therapy, and/or total abdominal and pelvic radiation therapy. For a general overview of radiation therapy, see Hellman, Chapter 16: Principles of Cancer Management: Radiation Therapy, 6th edition, 2001, DeVita et al., eds., J. B. Lippencott Company, Philadelphia. The radiation therapy can be administered as external beam radiation or teletherapy wherein the radiation is directed from a remote source. The radiation treatment can also be administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells or a tumor mass. Also encompassed is the use of photodynamic therapy comprising the administration of photosensitizers, such as hematoporphyrin and its derivatives, Vertoporfin (BPD-MA), phthalocyanine,

photosensitizer Pc4, demethoxy-hypocrellin A; and 2BA-2-DMHA.

In another embodiment, hormone therapy is used. Hormonal therapeutic treatments can comprise, for example, hormonal agonists, hormonal antagonists (e.g., flutamide, bicalutamide, tamoxifen, raloxifene, leuprolide acetate (LUPRON), LH-RH antagonists), inhibitors of hormone biosynthesis and processing, and steroids (e.g., dexamethasone, retinoids, deltoids, betamethasone, cortisol, cortisone, prednisone, dehydrotestosterone, glucocorticoids, mineralocorticoids, estrogen, testosterone, progestins), vitamin A derivatives (e.g., all-trans retinoic acid (ATRA)); vitamin D3 analogs; antigestagens (e.g., mifepristone, onapristone), or antiandrogens (e.g., cyproterone acetate).

In another embodiment, hyperthermia, a procedure in which body tissue is exposed to high temperatures (up to 106°F.) is used. Heat may help shrink tumors by damaging cells or depriving them of substances they need to live. Hyperthermia therapy can be local, regional, and whole-body hyperthermia, using external and internal heating devices.

Hyperthermia is almost always used with other forms of therapy (e.g., radiation therapy, chemotherapy, and biological therapy) to try to increase their effectiveness. Local hyperthermia refers to heat that is applied to a very small area, such as a tumor. The area may be heated externally with high-frequency waves aimed at a tumor from a device outside the body. To achieve internal heating, one of several types of sterile probes may be used, including thin, heated wires or hollow tubes filled with warm water; implanted microwave antennae; and radiofrequency electrodes. In regional hyperthermia, an organ or a limb is heated. Magnets and devices that produce high energy are placed over the region to be heated. In another approach, called perfusion, some of the patient's blood is removed, heated, and then pumped (perfused) into the region that is to be heated internally. Whole- body heating is used to treat metastatic cancer that has spread throughout the body. It can be accomplished using warm-water blankets, hot wax, inductive coils (like those in electric blankets), or thermal chambers (similar to large incubators). Hyperthermia does not cause any marked increase in radiation side effects or complications. Heat applied directly to the skin, however, can cause discomfort or even significant local pain in about half the patients treated. It can also cause blisters, which generally heal rapidly.

In still another embodiment, photodynamic therapy (also called PDT, photoradiation therapy, phototherapy, or photochemotherapy) is used for the treatment of some types of cancer. It is based on the discovery that certain chemicals known as photosensitizing agents can kill one-celled organisms when the organisms are exposed to a particular type of light. PDT destroys cancer cells through the use of a fixed-frequency laser light in combination with a photosensitizing agent. In PDT, the photosensitizing agent is injected into the bloodstream and absorbed by cells all over the body. The agent remains in cancer cells for a longer time than it does in normal cells. When the treated cancer cells are exposed to laser light, the photosensitizing agent absorbs the light and produces an active form of oxygen that destroys the treated cancer cells. Light exposure must be timed carefully so that it occurs when most of the photosensitizing agent has left healthy cells but is still present in the cancer cells. The laser light used in PDT can be directed through a fiber- optic (a very thin glass strand). The fiber-optic is placed close to the cancer to deliver the proper amount of light. The fiber-optic can be directed through a bronchoscope into the lungs for the treatment of lung cancer or through an endoscope into the esophagus for the treatment of esophageal cancer. An advantage of PDT is that it causes minimal damage to healthy tissue. However, because the laser light currently in use cannot pass through more than about 3 centimeters of tissue (a little more than one and an eighth inch), PDT is mainly used to treat tumors on or just under the skin or on the lining of internal organs.

Photodynamic therapy makes the skin and eyes sensitive to light for 6 weeks or more after treatment. Patients are advised to avoid direct sunlight and bright indoor light for at least 6 weeks. If patients must go outdoors, they need to wear protective clothing, including sunglasses. Other temporary side effects of PDT are related to the treatment of specific areas and can include coughing, trouble swallowing, abdominal pain, and painful breathing or shortness of breath. In December 1995, the U.S. Food and Drug Administration (FDA) approved a photosensitizing agent called porfimer sodium, or Photofrin®, to relieve symptoms of esophageal cancer that is causing an obstruction and for esophageal cancer that cannot be satisfactorily treated with lasers alone. In January 1998, the FDA approved porfimer sodium for the treatment of early nonsmall cell lung cancer in patients for whom the usual treatments for lung cancer are not appropriate. The National Cancer Institute and other institutions are supporting clinical trials (research studies) to evaluate the use of photodynamic therapy for several types of cancer, including cancers of the bladder, brain, larynx, and oral cavity.

In yet another embodiment, laser therapy is used to harness high-intensity light to destroy cancer cells. This technique is often used to relieve symptoms of cancer such as bleeding or obstruction, especially when the cancer cannot be cured by other treatments. It may also be used to treat cancer by shrinking or destroying tumors. The term“laser” stands for light amplification by stimulated emission of radiation. Ordinary light, such as that from a light bulb, has many wavelengths and spreads in all directions. Laser light, on the other hand, has a specific wavelength and is focused in a narrow beam. This type of high- intensity light contains a lot of energy. Lasers are very powerful and may be used to cut through steel or to shape diamonds. Lasers also can be used for very precise surgical work, such as repairing a damaged retina in the eye or cutting through tissue (in place of a scalpel). Although there are several different kinds of lasers, only three kinds have gained wide use in medicine: Carbon dioxide (CO 2 ) laser--This type of laser can remove thin layers from the skin's surface without penetrating the deeper layers. This technique is particularly useful in treating tumors that have not spread deep into the skin and certain precancerous conditions. As an alternative to traditional scalpel surgery, the CO 2 laser is also able to cut the skin. The laser is used in this way to remove skin cancers.

Neodymium:yttrium-aluminum-garnet (Nd:YAG) laser-- Light from this laser can penetrate deeper into tissue than light from the other types of lasers, and it can cause blood to clot quickly. It can be carried through optical fibers to less accessible parts of the body. This type of laser is sometimes used to treat throat cancers. Argon laser--This laser can pass through only superficial layers of tissue and is therefore useful in dermatology and in eye surgery. It also is used with light-sensitive dyes to treat tumors in a procedure known as photodynamic therapy (PDT). Lasers have several advantages over standard surgical tools, including: Lasers are more precise than scalpels. Tissue near an incision is protected, since there is little contact with surrounding skin or other tissue. The heat produced by lasers sterilizes the surgery site, thus reducing the risk of infection. Less operating time may be needed because the precision of the laser allows for a smaller incision. Healing time is often shortened; since laser heat seals blood vessels, there is less bleeding, swelling, or scarring. Laser surgery may be less complicated. For example, with fiber optics, laser light can be directed to parts of the body without making a large incision. More procedures may be done on an outpatient basis. Lasers can be used in two ways to treat cancer: by shrinking or destroying a tumor with heat, or by activating a chemical--known as a photosensitizing agent--that destroys cancer cells. In PDT, a photosensitizing agent is retained in cancer cells and can be stimulated by light to cause a reaction that kills cancer cells. CO 2 and Nd:YAG lasers are used to shrink or destroy tumors. They may be used with endoscopes, tubes that allow physicians to see into certain areas of the body, such as the bladder. The light from some lasers can be transmitted through a flexible endoscope fitted with fiber optics. This allows physicians to see and work in parts of the body that could not otherwise be reached except by surgery and therefore allows very precise aiming of the laser beam. Lasers also may be used with low-power microscopes, giving the doctor a clear view of the site being treated. Used with other instruments, laser systems can produce a cutting area as small as 200 microns in diameter--less than the width of a very fine thread. Lasers are used to treat many types of cancer. In addition to its use to destroy the cancer, laser surgery is also used to help relieve symptoms caused by cancer (palliative care). It is also sometimes used for palliation in colorectal and anal cancer. Laser-induced interstitial thermotherapy (LITT) is one of the most recent developments in laser therapy. LITT uses the same idea as a cancer treatment called hyperthermia; that heat may help shrink tumors by damaging cells or depriving them of substances they need to live. In this treatment, lasers are directed to interstitial areas (areas between organs) in the body. The laser light then raises the temperature of the tumor, which damages or destroys cancer cells.

The duration and/or dose of treatment with SFKSP therapies may vary according to the particular SFKSP agent or combination thereof. An appropriate treatment time for a particular cancer therapeutic agent will be appreciated by the skilled artisan. The present invention contemplates the continued assessment of optimal treatment schedules for each cancer therapeutic agent, where the phenotype of the cancer of the subject as determined by the methods of the present invention is a factor in determining optimal treatment doses and schedules.

Any means for the introduction of a polynucleotide into mammals, human or non- human, or cells thereof may be adapted to the practice of this invention for the delivery of the various constructs of the present invention into the intended recipient. In one embodiment of the present invention, the DNA constructs are delivered to cells by transfection, i.e., by delivery of“naked” DNA or in a complex with a colloidal dispersion system. A colloidal system includes macromolecule complexes, nanocapsules,

microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a lipid- complexed or liposome-formulated DNA. In the former approach, prior to formulation of DNA, e.g., with lipid, a plasmid containing a transgene bearing the desired DNA constructs may first be experimentally optimized for expression (e.g., inclusion of an intron in the 5' untranslated region and elimination of unnecessary sequences (Felgner, et al., Ann NY Acad Sci 126-139, 1995). Formulation of DNA, e.g. with various lipid or liposome materials, may then be effected using known methods and materials and delivered to the recipient mammal. See, e.g., Canonico et al, Am J Respir Cell Mol Biol 10:24-29, 1994; Tsan et al, Am J Physiol 268; Alton et al., Nat Genet.5:135-142, 1993 and U.S. patent No. 5,679,647 by Carson et al. The targeting of liposomes can be classified based on anatomical and mechanistic factors. Anatomical classification is based on the level of selectivity, for example, organ- specific, cell-specific, and organelle-specific. Mechanistic targeting can be distinguished based upon whether it is passive or active. Passive targeting utilizes the natural tendency of liposomes to distribute to cells of the reticulo-endothelial system (RES) in organs, which contain sinusoidal capillaries. Active targeting, on the other hand, involves alteration of the liposome by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein, or by changing the composition or size of the liposome in order to achieve targeting to organs and cell types other than the naturally occurring sites of localization.

The surface of the targeted delivery system may be modified in a variety of ways. In the case of a liposomal targeted delivery system, lipid groups can be incorporated into the lipid bilayer of the liposome in order to maintain the targeting ligand in stable association with the liposomal bilayer. Various linking groups can be used for joining the lipid chains to the targeting ligand. Naked DNA or DNA associated with a delivery vehicle, e.g., liposomes, can be administered to several sites in a subject (see below).

Nucleic acids can be delivered in any desired vector. These include viral or non- viral vectors, including adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, and plasmid vectors. Exemplary types of viruses include HSV (herpes simplex virus), AAV (adeno associated virus), HIV (human immunodeficiency virus), BIV (bovine immunodeficiency virus), and MLV (murine leukemia virus). Nucleic acids can be administered in any desired format that provides sufficiently efficient delivery levels, including in virus particles, in liposomes, in nanoparticles, and complexed to polymers.

The nucleic acids encoding a protein or nucleic acid of interest may be in a plasmid or viral vector, or other vector as is known in the art. Such vectors are well known and any can be selected for a particular application. In one embodiment of the present invention, the gene delivery vehicle comprises a promoter and a demethylase coding sequence.

Preferred promoters are tissue-specific promoters and promoters which are activated by cellular proliferation, such as the thymidine kinase and thymidylate synthase promoters. Other preferred promoters include promoters which are activatable by infection with a virus, such as the α- and β-interferon promoters, and promoters which are activatable by a hormone, such as estrogen. Other promoters which can be used include the Moloney virus LTR, the CMV promoter, and the mouse albumin promoter. A promoter may be constitutive or inducible.

In another embodiment, naked polynucleotide molecules are used as gene delivery vehicles, as described in WO 90/11092 and U.S. Patent 5,580,859. Such gene delivery vehicles can be either growth factor DNA or RNA and, in certain embodiments, are linked to killed adenovirus. Curiel et al., Hum. Gene. Ther.3:147-154, 1992. Other vehicles which can optionally be used include DNA-ligand (Wu et al., J. Biol. Chem.

264:16985-16987, 1989), lipid-DNA combinations (Felgner et al., Proc. Natl. Acad. Sci. USA 84:74137417, 1989), liposomes (Wang et al., Proc. Natl. Acad. Sci.84:7851-7855, 1987) and microprojectiles (Williams et al., Proc. Natl. Acad. Sci.88:2726-2730, 1991).

A gene delivery vehicle can optionally comprise viral sequences such as a viral origin of replication or packaging signal. These viral sequences can be selected from viruses such as astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, retrovirus, togavirus or adenovirus. In a preferred embodiment, the growth factor gene delivery vehicle is a recombinant retroviral vector. Recombinant retroviruses and various uses thereof have been described in numerous references including, for example, Mann et al., Cell 33:153, 1983, Cane and Mulligan, Proc. Nat'l. Acad. Sci. USA 81:6349, 1984, Miller et al., Human Gene Therapy 1:5-14, 1990, U.S. Patent Nos.4,405,712, 4,861,719, and 4,980,289, and PCT Application Nos. WO 89/02,468, WO 89/05,349, and WO 90/02,806. Numerous retroviral gene delivery vehicles can be utilized in the present invention, including for example those described in EP 0,415,731; WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Patent No.5,219,740; WO 9311230; WO 9310218; Vile and Hart, Cancer Res.53:3860-3864, 1993; Vile and Hart, Cancer Res.53:962-967, 1993; Ram et al., Cancer Res.53:83-88, 1993; Takamiya et al., J. Neurosci. Res.33:493-503, 1992; Baba et al., J. Neurosurg.

79:729-735, 1993 (U.S. Patent No.4,777,127, GB 2,200,651, EP 0,345,242 and

WO91/02805).

Other viral vector systems that can be used to deliver a polynucleotide of the present invention have been derived from herpes virus, e.g., Herpes Simplex Virus (U.S. Patent No. 5,631,236 by Woo et al., issued May 20, 1997 and WO 00/08191 by Neurovex), vaccinia virus (Ridgeway (1988) Ridgeway,“Mammalian expression vectors,” In: Rodriguez R L, Denhardt D T, ed. Vectors: A survey of molecular cloning vectors and their uses.

Stoneham: Butterworth,; Baichwal and Sugden (1986)“Vectors for gene transfer derived from animal DNA viruses: Transient and stable expression of transferred genes,” In:

Kucherlapati R, ed. Gene transfer. New York: Plenum Press; Coupar et al. (1988) Gene, 68:1-10), and several RNA viruses. Preferred viruses include an alphavirus, a poxivirus, an arena virus, a vaccinia virus, a polio virus, and the like. They offer several attractive features for various mammalian cells (Friedmann (1989) Science, 244:1275-1281;

Ridgeway, 1988, supra; Baichwal and Sugden, 1986, supra; Coupar et al., 1988; Horwich et al.(1990) J.Virol., 64:642-650).

In other embodiments, target DNA in the genome can be manipulated using well- known methods in the art. For example, the target DNA in the genome can be manipulated by deletion, insertion, and/or mutation are retroviral insertion, artificial chromosome techniques, gene insertion, random insertion with tissue specific promoters, gene targeting, transposable elements and/or any other method for introducing foreign DNA or producing modified DNA/modified nuclear DNA. Other modification techniques include deleting DNA sequences from a genome and/or altering nuclear DNA sequences. Nuclear DNA sequences, for example, may be altered by site-directed mutagenesis.

In other embodiments, recombinant biomarker polypeptides, and fragments thereof, can be administered to subjects. In some embodiments, fusion proteins can be constructed and administered which have enhanced biological properties. In addition, the biomarker polypeptides, and fragment thereof, can be modified according to well-known

pharmacological methods in the art (e.g., pegylation, glycosylation, oligomerization, etc.) in order to further enhance desirable biological activities, such as increased bioavailability and decreased proteolytic degradation. 4. Clincal Efficacy

Clinical efficacy can be measured by any method known in the art. For example, the response to a therapy, such as SFKSP therapies, relates to any response of the cancer, e.g., a tumor, to the therapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant chemotherapy. Tumor response may be assessed in a neoadjuvant or adjuvant situation where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation and the cellularity of a tumor can be estimated histologically and compared to the cellularity of a tumor biopsy taken before initiation of treatment. Response may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection. Response may be recorded in a quantitative fashion like percentage change in tumor volume or cellularity or using a semi-quantitative scoring system such as residual cancer burden (Symmans et al., J. Clin. Oncol. (2007) 25:4414- 4422) or Miller-Payne score (Ogston et al., (2003) Breast (Edinburgh, Scotland) 12:320- 327) in a qualitative fashion like“pathological complete response” (pCR),“clinical complete remission” (cCR),“clinical partial remission” (cPR),“clinical stable disease” (cSD),“clinical progressive disease” (cPD) or other qualitative criteria. Assessment of tumor response may be performed early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months. A typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed.

In some embodiments, clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR). The clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy. The shorthand for this formula is CBR=CR+PR+SD over 6 months. In some embodiments, the CBR for a particular SFKSP therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more.

Additional criteria for evaluating the response to SFKSP therapies are related to “survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related);“recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.

For example, in order to determine appropriate threshold values, a particular SFKSP therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to biomarker measurements that were determined prior to administration of any SFKSP therapy. The outcome measurement may be pathologic response to therapy given in the neoadjuvant setting. Alternatively, outcome measures, such as overall survival and disease-free survival can be monitored over a period of time for subjects following SFKSP therapy for whom biomarker measurement values are known. In certain embodiments, the same doses of SFKSP agents and/or inhibitors are administered to each subject. In related embodiments, the doses administered are standard doses known in the art for SFKSP agents and/or inhibitors. The period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months. Biomarker measurement threshold values that correlate to outcome of a SFKSP therapy can be determined using methods such as those described in the Examples section. 5. Further Uses and Methods of the Present Invention

The methods described herein can be used in a variety of diagnostic, prognostic, and therapeutic applications. In any method described herein, such as a diagnostic method, prognostic method, therapeutic method, or combination thereof, all steps of the method can be performed by a single actor or, alternatively, by more than one actor. For example, diagnosis can be performed directly by the actor providing therapeutic treatment.

Alternatively, a person providing a therapeutic agent can request that a diagnostic assay be performed. The diagnostician and/or the therapeutic interventionist can interpret the diagnostic assay results to determine a therapeutic strategy. Similarly, such alternative processes can apply to other assays, such as prognostic assays. The compositions described herein can be used in a variety of diagnostic, prognostic, and therapeutic applications regarding biomarkers described herein, such as those listed in Table 1 or 2. Moreover, any method of diagnosis, prognosis, prevention, and the like described herein can be be applied to a therapy or test agent of interest, such as SFKSP therapies, endocrine therapies, and the like.

a. Screening Methods

One aspect of the present invention relates to screening assays, including non-cell based assays. In one embodiment, the assays provide a method for identifying whether a cancer is likely to respond to anti-cancer therapy (e.g., SFKSP inhibitor therapy) and/or whether an agent can inhibit the growth of or kill a cancer cell that is unlikely to respond to anti-cancer therapy (e.g., SFKSP inhibitor therapy). In one embodiment, the invention relates to assays for screening test agents which bind to, or modulate the biological activity of, at least one biomarker listed in Table 1 or 2. In one embodiment, a method for identifying such an agent entails determining the ability of the agent to modulate, e.g. downregulate, the at least one biomarker listed in Table 2 or upregulate, the at least one biomarker listed in Table 1.

In one embodiment, an assay is a cell-free or cell-based assay, comprising contacting at least one biomarker listed in Table 2, with a test agent, and determining the ability of the test agent to modulate (e.g. inhibit or downregualte) the enzymatic activity of the biomarker, such as by measuring direct binding of substrates or by measuring indirect parameters as described below.

In one embodiment, an assay is a cell-free or cell-based assay, comprising contacting at least one biomarker listed in Table 1, with a test agent, and determining the ability of the test agent to modulate (e.g. upregulate) the enzymatic activity of the biomarker, such as by measuring direct binding of substrates or by measuring indirect parameters as described below.

In another embodiment, an assay is a cell-free or cell-based assay, comprising contacting at least one biomarker listed in Table 2, with a test agent, and determining the ability of the test agent to modulate (e.g. inhibit or downregualte) the ability of the biomarker to regulate translation of the biomarker, such as by measuring direct binding of substrates or by measuring indirect parameters as described below.

In another embodiment, an assay is a cell-free or cell-based assay, comprising contacting at least one biomarker listed in Table 1, with a test agent, and determining the ability of the test agent to modulate (e.g. upregulate) the ability of the biomarker to regulate translation of the biomarker, such as by measuring direct binding of substrates or by measuring indirect parameters as described below.

For example, in a direct binding assay, biomarker protein (or their respective target polypeptides or molecules) can be coupled with a radioisotope or enzymatic label such that binding can be determined by detecting the labeled protein or molecule in a complex. For example, the targets can be labeled with 125 I, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, the targets can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. Determining the interaction between biomarker and substrate can also be accomplished using standard binding or enzymatic analysis assays. In one or more embodiments of the above described assay methods, it may be desirable to immobilize polypeptides or molecules to facilitate separation of complexed from uncomplexed forms of one or both of the proteins or molecules, as well as to accommodate automation of the assay.

Binding of a test agent to a target can be accomplished in any vessel suitable for containing the reactants. Non-limiting examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. Immobilized forms of the antibodies of the present invention can also include antibodies bound to a solid phase like a porous, microporous (with an average pore diameter less than about one micron) or macroporous (with an average pore diameter of more than about 10 microns) material, such as a membrane, cellulose, nitrocellulose, or glass fibers; a bead, such as that made of agarose or polyacrylamide or latex; or a surface of a dish, plate, or well, such as one made of polystyrene.

In an alternative embodiment, determining the ability of the agent to modulate the interaction between the biomarker and its natural binding partner can be accomplished by determining the ability of the test agent to modulate the activity of a polypeptide or other product that functions downstream or upstream of its position within the SFKSP.

The present invention further pertains to novel agents identified by the above- described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an antibody identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.

a. Predictive Medicine

The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining the amount and/or activity level of a biomarker listed in Table 1 in the context of a biological sample (e.g., blood, serum, cells, or tissue) to thereby determine whether an individual afflicted with a cancer is likely to respond to SFKSP therapy, whether in an original or recurrent cancer. Such assays can be used for prognostic or predictive purpose to thereby

prophylactically treat an individual prior to the onset or after recurrence of a disorder characterized by or associated with biomarker polypeptide, nucleic acid expression or activity. The skilled artisan will appreciate that any method can use one or more (e.g., combinations) of biomarkers listed in Table 1.

Another aspect of the present invention pertains to monitoring the influence of agents (e.g., drugs, compounds, and small nucleic acid-based molecules) on the expression or activity of a biomarker listed in Table 1. These and other agents are described in further detail in the following sections.

The skilled artisan will also appreciated that, in certain embodiments, the methods of the present invention implement a computer program and computer system. For example, a computer program can be used to perform the algorithms described herein. A computer system can also store and manipulate data generated by the methods of the present invention which comprises a plurality of biomarker signal changes/profiles which can be used by a computer system in implementing the methods of this invention. In certain embodiments, a computer system receives biomarker expression data; (ii) stores the data; and (iii) compares the data in any number of ways described herein (e.g., analysis relative to appropriate controls) to determine the state of informative biomarkers from cancerous or pre-cancerous tissue. In other embodiments, a computer system (i) compares the determined expression biomarker level to a threshold value; and (ii) outputs an indication of whether said biomarker level is significantly modulated (e.g., above or below) the threshold value, or a phenotype based on said indication.

In certain embodiments, such computer systems are also considered part of the present invention. Numerous types of computer systems can be used to implement the analytic methods of this invention according to knowledge possessed by a skilled artisan in the bioinformatics and/or computer arts. Several software components can be loaded into memory during operation of such a computer system. The software components can comprise both software components that are standard in the art and components that are special to the present invention (e.g., dCHIP software described in Lin et al. (2004) Bioinformatics 20, 1233-1240; radial basis machine learning algorithms (RBM) known in the art).

The methods of the present invention can also be programmed or modeled in mathematical software packages that allow symbolic entry of equations and high-level specification of processing, including specific algorithms to be used, thereby freeing a user of the need to procedurally program individual equations and algorithms. Such packages include, e.g., Matlab from Mathworks (Natick, Mass.), Mathematica from Wolfram

Research (Champaign, Ill.) or S-Plus from MathSoft (Seattle, Wash.).

In certain embodiments, the computer comprises a database for storage of biomarker data. Such stored profiles can be accessed and used to perform comparisons of interest at a later point in time. For example, biomarker expression profiles of a sample derived from the non-cancerous tissue of a subject and/or profiles generated from population-based distributions of informative loci of interest in relevant populations of the same species can be stored and later compared to that of a sample derived from the cancerous tissue of the subject or tissue suspected of being cancerous of the subject.

In addition to the exemplary program structures and computer systems described herein, other, alternative program structures and computer systems will be readily apparent to the skilled artisan. Such alternative systems, which do not depart from the above described computer system and programs structures either in spirit or in scope, are therefore intended to be comprehended within the accompanying claims.

b. Diagnostic Assays

The present invention provides, in part, methods, systems, and code for accurately classifying whether a biological sample is associated with a cancer that is likely to respond to SFKSP therapy. In some embodiments, the present invention is useful for classifying a sample (e.g., from a subject) as associated with or at risk for responding to or not responding to SFKSP therapy using a statistical algorithm and/or empirical data (e.g., the amount or activity of a biomarker listed in Table 1).

An exemplary method for detecting the amount or activity of a biomarker listed in Table 1, and thus useful for classifying whether a sample is likely or unlikely to respond to SFKSP therapy involves obtaining a biological sample from a test subject and contacting the biological sample with an agent, such as a protein-binding agent like an antibody or antigen-binding fragment thereof, or a nucleic acid-binding agent like an oligonucleotide, capable of detecting the amount or activity of the biomarker in the biological sample. In some embodiments, at least one antibody or antigen-binding fragment thereof is used, wherein two, three, four, five, six, seven, eight, nine, ten, or more such antibodies or antibody fragments can be used in combination (e.g., in sandwich ELISAs) or in serial. In certain instances, the statistical algorithm is a single learning statistical classifier system. For example, a single learning statistical classifier system can be used to classify a sample as a based upon a prediction or probability value and the presence or level of the biomarker. The use of a single learning statistical classifier system typically classifies the sample as, for example, a likely SFKSP therapy responder or progressor sample with a sensitivity, specificity, positive predictive value, negative predictive value, and/or overall accuracy of at least about 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.

Other suitable statistical algorithms are well known to those of skill in the art. For example, learning statistical classifier systems include a machine learning algorithmic technique capable of adapting to complex data sets (e.g., panel of markers of interest) and making decisions based upon such data sets. In some embodiments, a single learning statistical classifier system such as a classification tree (e.g., random forest) is used. In other embodiments, a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10, or more learning statistical classifier systems are used, preferably in tandem. Examples of learning statistical classifier systems include, but are not limited to, those using inductive learning (e.g.,

decision/classification trees such as random forests, classification and regression trees (C&RT), boosted trees, etc.), Probably Approximately Correct (PAC) learning,

connectionist learning (e.g., neural networks (NN), artificial neural networks (ANN), neuro fuzzy networks (NFN), network structures, perceptrons such as multi-layer perceptrons, multi-layer feed-forward networks, applications of neural networks, Bayesian learning in belief networks, etc.), reinforcement learning (e.g., passive learning in a known

environment such as naive learning, adaptive dynamic learning, and temporal difference learning, passive learning in an unknown environment, active learning in an unknown environment, learning action-value functions, applications of reinforcement learning, etc.), and genetic algorithms and evolutionary programming. Other learning statistical classifier systems include support vector machines (e.g., Kernel methods), multivariate adaptive regression splines (MARS), Levenberg-Marquardt algorithms, Gauss-Newton algorithms, mixtures of Gaussians, gradient descent algorithms, and learning vector quantization (LVQ). In certain embodiments, the method of the present invention further comprises sending the sample classification results to a clinician, e.g., an oncologist.

In another embodiment, the diagnosis of a subject is followed by administering to the individual a therapeutically effective amount of a defined treatment based upon the diagnosis. In one embodiment, the methods further involve obtaining a control biological sample (e.g., biological sample from a subject who does not have a cancer or whose cancer is susceptible to SFKSP therapy), a biological sample from the subject during remission, or a biological sample from the subject during treatment for developing a cancer progressing despite SFKSP therapy.

c. Prognostic Assays

The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a cancer that is likely or unlikely to be responsive to SFKSP therapy. The assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with a misregulation of the amount or activity of at least one biomarker described in Table 1, such as in cancer. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disorder associated with a misregulation of the at least one biomarker described in Table 1, such as in cancer.

Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, polypeptide, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with the aberrant biomarker expression or activity.

e. Treatment Methods

The compositions described herein (including dual binding antibodies and derivatives and conjugates thereof) can be used in a variety of in vitro and in vivo therapeutic applications using the formulations and/or combinations described herein. In one embodiment, SFKSP therapy can be used to treat cancers determined to be responsive thereto. For example, agents that inhibit PAK2 and/or SFK (e.g., Dasatinib, Saracatinib, FRAX597, and the like) can be used to treat cancer in subjects identified as likely responders thereto.

Another aspect of the invention pertains to methods of modulating the expression or activity of one or more biomarkers described herein (e.g., those listed in Tables 1 or 2 and the Examples or fragments thereof,) for therapeutic purposes. The biomarkers of the present invention have been demonstrated to correlate with c-MYC-dependent cancers. Accordingly, the activity and/or expression of the biomarker, as well as the interaction between one or more biomarkers or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof, can be modulated in order to treat c-MYC-dependent cancers. Another aspect of the invention pertains to methods of modulating the expression or activity of one or more biomarkers described herein (e.g., those listed in Table 1 and the Examples or fragments thereof,) for therapeutic purposes. The biomarkers of the present invention have been demonstrated to correlate with cancers. Accordingly, the activity and/or expression of the biomarker, as well as the interaction between one or more biomarkers or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof, can be modulated in order to treat cancers.

Modulatory methods of the invention involve contacting a cell with one or more biomarkers of the invention, including one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 or 2 and the Examples or a fragment thereof or agent that modulates one or more of the activities of biomarker activity associated with the cell. An agent that modulates biomarker activity can be an agent as described herein, such as a nucleic acid or a polypeptide, a naturally-occurring binding partner of the biomarker, an antibody against the biomarker, a combination of antibodies against the biomarker and antibodies against other immune related targets, one or more biomarkers agonist or antagonist, a peptidomimetic of one or more biomarkers agonist or antagonist, one or more biomarkers peptidomimetic, other small molecule, or small RNA directed against or a mimic of one or more biomarkers nucleic acid gene expression product.

An agent that modulates the expression of one or more biomarkers of the present invention, including one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 or 2 and the Examples or a fragment thereof is, e.g., an antisense nucleic acid molecule, RNAi molecule, shRNA, mature miRNA, pre-miRNA, pri- miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, or other small RNA molecule, triplex oligonucleotide, ribozyme, or recombinant vector for expression of one or more biomarkers polypeptide. For example, an oligonucleotide complementary to the area around one or more biomarkers polypeptide translation initiation site can be synthesized. One or more antisense oligonucleotides can be added to cell media, typically at 200 μg/ml, or administered to a patient to prevent the synthesis of one or more biomarkers polypeptide. The antisense oligonucleotide is taken up by cells and hybridizes to one or more biomarkers mRNA to prevent translation. Alternatively, an oligonucleotide which binds double-stranded DNA to form a triplex construct to prevent DNA unwinding and transcription can be used. As a result of either, synthesis of biomarker polypeptide is blocked. When biomarker expression is modulated, preferably, such modulation occurs by a means other than by knocking out the biomarker gene.

Agents which modulate expression, by virtue of the fact that they control the amount of biomarker in a cell, also modulate the total amount of biomarker activity in a cell.

In one embodiment, the agent stimulates one or more activities of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 or 2 and the Examples or a fragment thereof. Examples of such stimulatory agents include active biomarker polypeptide or a fragment thereof and a nucleic acid molecule encoding the biomarker or a fragment thereof that has been introduced into the cell (e.g., cDNA, mRNA, shRNAs, siRNAs, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti- miRNA, or a miRNA binding site, or a variant thereof, or other functionally equivalent molecule known to a skilled artisan). In another embodiment, the agent inhibits one or more biomarker activities. In one embodiment, the agent inhibits or enhances the interaction of the biomarker with its natural binding partner(s). Examples of such inhibitory agents include antisense nucleic acid molecules, anti-biomarker antibodies, biomarker inhibitors, and compounds identified in the screening assays described herein.

These modulatory methods can be performed in vitro (e.g., by contacting the cell with the agent) or, alternatively, by contacting an agent with cells in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a condition or disorder that would benefit from up- or down-modulation of one or more biomarkers of the present invention listed in Table 1 or 2 and the Examples or a fragment thereof, e.g., a disorder characterized by unwanted, insufficient, or aberrant expression or activity of the biomarker or fragments thereof. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) biomarker expression or activity. In another embodiment, the method involves administering one or more biomarkers polypeptide or nucleic acid molecule as therapy to compensate for reduced, aberrant, or unwanted biomarker expression or activity.

Stimulation of biomarker activity is desirable in situations in which the biomarker is abnormally downregulated and/or in which increased biomarker activity is likely to have a beneficial effect. Likewise, inhibition of biomarker activity is desirable in situations in which biomarker is abnormally upregulated and/or in which decreased biomarker activity is likely to have a beneficial effect.

In addition, these modulatory agents can also be administered in combination therapy with, e.g., chemotherapeutic agents, hormones, antiangiogens, radiolabelled, compounds, or with surgery, cryotherapy, and/or radiotherapy. The preceding treatment methods can be administered in conjunction with other forms of conventional therapy (e.g., standard-of-care treatments for cancer well known to the skilled artisan), either

consecutively with, pre- or post-conventional therapy. For example, these modulatory agents can be administered with a therapeutically effective dose of chemotherapeutic agent. In another embodiment, these modulatory agents are administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent. The Physicians’ Desk Reference (PDR) discloses dosages of chemotherapeutic agents that have been used in the treatment of various cancers. The dosing regimen and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on the particular melanoma, being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician. 6. Pharmaceutical Compositions

In another aspect, the present invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of an agent that modulates (e.g., decreases) biomarker expression and/or activity, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. As described in detail below, the pharmaceutical compositions of the present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension; (3) topical application, for example, as a cream, ointment or spray applied to the skin; (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; or (5) aerosol, for example, as an aqueous aerosol, liposomal preparation or solid particles containing the compound.

The phrase“therapeutically-effective amount” as used herein means that amount of an agent that modulates (e.g., inhibits) biomarker expression and/or activity, or expression and/or activity of the complex, or composition comprising an agent that modulates (e.g., inhibits) biomarker expression and/or activity, or expression and/or activity of the complex, which is effective for producing some desired therapeutic effect, e.g., cancer treatment, at a reasonable benefit/risk ratio.

The phrase“pharmaceutically acceptable” is employed herein to refer to those agents, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

The phrase“pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject chemical from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be“acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and

polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.

The term“pharmaceutically-acceptable salts” refers to the relatively non-toxic, inorganic and organic acid addition salts of the agents that modulates (e.g., inhibits) biomarker expression and/or activity, or expression and/or activity of the complex encompassed by the present invention. These salts can be prepared in situ during the final isolation and purification of the therapeutic agents, or by separately reacting a purified therapeutic agent in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide,

hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like (See, for example, Berge et al. (1977)“Pharmaceutical Salts”, J. Pharm. Sci.66:1- 19).

In other cases, the agents useful in the methods of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically- acceptable salts with pharmaceutically-acceptable bases. The term“pharmaceutically- acceptable salts” in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of agents that modulates (e.g., inhibits) biomarker expression and/or activity, or expression and/or activity of the complex. These salts can likewise be prepared in situ during the final isolation and purification of the therapeutic agents, or by separately reacting the purified therapeutic agent in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like (see, for example, Berge et al., supra).

Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.

Examples of pharmaceutically-acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like. Formulations useful in the methods of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient, which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred per cent, this amount will range from about 1 per cent to about ninety-nine percent of active ingredient, preferably from about 5 per cent to about 70 per cent, most preferably from about 10 per cent to about 30 per cent.

Methods of preparing these formulations or compositions include the step of bringing into association an agent that modulates (e.g., inhibits) biomarker expression and/or activity, with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a therapeutic agent with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non- aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a therapeutic agent as an active ingredient. A compound may also be administered as a bolus, electuary or paste.

In solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more

pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the

pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidomimetic moistened with an inert liquid diluent.

Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions, which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the

gastrointestinal tract, optionally, in a delayed manner. Examples of embedding

compositions, which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients. Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.

Suspensions, in addition to the active agent may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.

Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more therapeutic agents with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent.

Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.

Dosage forms for the topical or transdermal administration of an agent that modulates (e.g., inhibits) biomarker expression and/or activity include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active component may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any preservatives, buffers, or propellants which may be required.

The ointments, pastes, creams and gels may contain, in addition to a therapeutic agent, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof. Powders and sprays can contain, in addition to an agent that modulates (e.g., inhibits) biomarker expression and/or activity, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as

chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

The agent that modulates (e.g., inhibits) biomarker expression and/or activity, can be alternatively administered by aerosol. This is accomplished by preparing an aqueous aerosol, liposomal preparation or solid particles containing the compound. A nonaqueous (e.g., fluorocarbon propellant) suspension could be used. Sonic nebulizers are preferred because they minimize exposing the agent to shear, which can result in degradation of the compound.

Ordinarily, an aqueous aerosol is made by formulating an aqueous solution or suspension of the agent together with conventional pharmaceutically acceptable carriers and stabilizers. The carriers and stabilizers vary with the requirements of the particular compound, but typically include nonionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols. Aerosols generally are prepared from isotonic solutions.

Transdermal patches have the added advantage of providing controlled delivery of a therapeutic agent to the body. Such dosage forms can be made by dissolving or dispersing the agent in the proper medium. Absorption enhancers can also be used to increase the flux of the peptidomimetic across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the peptidomimetic in a polymer matrix or gel.

Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.

Pharmaceutical compositions of this invention suitable for parenteral administration comprise one or more therapeutic agents in combination with one or more

pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.

Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the present invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of

microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.

In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form.

Alternatively, delayed absorption of a parenterally-administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.

Injectable depot forms are made by forming microencapsule matrices of an agent that modulates (e.g., inhibits) biomarker expression and/or activity, in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions, which are compatible with body tissue.

When the therapeutic agents of the present invention are administered as

pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.

Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be determined by the methods of the present invention so as to obtain an amount of the active ingredient, which is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject.

The nucleic acid molecules of the present invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No.5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054 3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

The present invention also encompasses kits for detecting and/or modulating biomarkers described herein. A kit of the present invention may also include instructional materials disclosing or describing the use of the kit or an antibody of the disclosed invention in a method of the disclosed invention as provided herein. A kit may also include additional components to facilitate the particular application for which the kit is designed. For example, a kit may additionally contain means of detecting the label (e.g., enzyme substrates for enzymatic labels, filter sets to detect fluorescent labels, appropriate secondary labels such as a sheep anti-mouse-HRP, etc.) and reagents necessary for controls (e.g., control biological samples or standards). A kit may additionally include buffers and other reagents recognized for use in a method of the disclosed invention. Non-limiting examples include agents to reduce non-specific binding, such as a carrier protein or a detergent.

Other embodiments of the present invention are described in the following Examples. The present invention is further illustrated by the following examples which should not be construed as further limiting. Exemplification

Example 1: Materials and Methods for Examples 2-6 a. Breast cancer cell culture

The MCF-7, and T47D, human cell lines were grown as described previously (Neve et al. (2006) Cancer Cell 10:515–527). Tam-R and Flu-R cells were derived by long-term exposure to tamoxifen and Fluvestrant grown under the same conditions as wild-type MCF- 7 and T47D cells (Knowlden et al. (2003) Endocrinology 144:1032–1044). T47D/LTED and MCF-7/LTED cells were generated through culture in phenol red-free RPMI1640 and DMEM supplemented with 10% dextran-charcoaltreated FBS [DCC-FBS (Hyclone)] (Miller et al. (2010) J. Clin. Invest.120:2406–2413).

b. Plasmids and inhibitors

The lentiviral gCSK, gAAVS1, gPAK-2 and gCSK_enhancer vectors were generated by ligation of hybridized oligos (Table 10) into LentiCRISPR-v2 vector

(Addgene) linearized with BsmBI using quick ligase (NEB).

Table 10:

For enhancer deletion by pairs of gRNA, the LentiCRIPSR V2 vector was modified by substituting blasticidin resistant gene for puromycin resistant gene. Then

CSK_eh_gRNA1, CSK_eh_gRNA2, CSK_eh_gRNA3, and CSK_eh_gRNA5 was cloned into LentiCRISPR_puro vector, and CSK_eh_gRNA3, CSK_eh_gRNA4, CSK_eh_gRNA3, and CSK_eh_gRNA6 into LentiCRISPR_blast vector. After a pair of gRNA

(gRNA1+gRNA3) was delivered into cells by lentivirus, the cell was selected by both puromycin and blasticidin.

The pLX-gRNA vector (Addgene) was used to generate lentiviral gCSK_1, gCSK_3, gAAVS1_1, gAAVS_2 vectors for the secondary CRISPR screens by the protocol from Addgene.

The vectors of inducible overexpression of CSK and PAK2 were generated by cloning the ORFs of CSK and PAK2 genes into the pCW-Cas9 vectors. The CSK or PAK2 genes were substituted for Cas9 by double restriction enzyme digestion (NheI and BamHI). The primers were used in Table 11 as follows:

Table 11:

The gCSK resistant CSK cDNAs were generated by introducing a mutation (NGG- >NTG) at PAM without changing the amino acid. And the Q5® Site-Directed Mutagenesis Kit (NEB) was used with the primers (Table 12):

Table 12:

The gPAK2_3 targets the intron-exon boundary of PAK2 in human genome, thus it will not affect the PAK2 cDNA. Amino-acid substitution mutants of PAK2 (Y130F, Y139F, Y194F) were generated by the Q5® Site-Directed Mutagenesis Kit (NEB) with the following primers (Table 13): Table 13:

Inhibitors used in this work include: Dasatinib, Saracatinib, and FRAX597 were purchased from Selleck Chemicals. Tamoxifen and Fulvestrant were purchased.

c. CRISPR screens

GeCKO v2 library (Sanjana et al. (2014) Nat. Methods 11:783–784) from Addgene was used for the genome-wide CRISPR screens. Cells of interest are infected at a low MOI (0.3〜0.5) to ensure that most cells receive only 1 viral construct with high probability. To find optimal virus volumes for achieving an MOI of 0.3–0.5, each new cell type and new virus lots will be tested by spinfecting 3x10 6 cells with several different volumes of virus. Briefly, 3x10 6 cells per well are plated into a 12 well plate in the appropriate standard media for the cell type (see below) supplemented with 8 ug/ml polybrene. For T47D cells, standard media is RPMI 1640 supplemented with 10 % FBS. Each well receives a different titrated virus amount (usually between 5 and 50 µl) along with a no-transduction control. The 12-well plate is centrifuged at 2,000 rpm for 2 h at 37°C. After the spin, media is aspirated and fresh media (without polybrene) is added. Cells are incubated overnight and then enzymatically detached using trypsin. Cells are counted and each well is split into duplicate wells. One replicate receives 2 µg/mL puromycin for MCF7 cells or 4 µg/ml puromycin for T47D cells. After 3 days (or as soon as no surviving cells remained in the no-transduction control under puromycin selection), cells are counted to calculate a percent transduction. Percent transduction is calculated as cell count from the replicate with puromycin divided by cell count from the replicate without puromycin multiplied by 100. The virus volume yielding a MOI closest to 0.4 will be chosen for large-scale screening.

For each cell lines, large-scale spin-infection of 2x10 8 cells will be carried out using four of 12-well plates with 4x10 6 cells per well. Wells are pooled together into larger flasks on the day after spinfection. For most cell types, 0.5-4 µg/ml puromycin works well, although the minimum dose that kills all cells without any viral transduction will be determined in advance and the minimum concentration will be used for selection. After three days of puromycin selection, the surviving cells (T47D and MCF7) will be divided into three groups (0 day control, vehicle, and with hormone) and cultured for four weeks before genomic DNA extraction and analysis. Two round of PCR will be performed after gDNA has been extracted, and 300 µg DNA per sample will be used for library construction. Each library will be sequenced at 30~40 million reads to achieve ~300X average coverage over the CRISPR library. The 0 day sample library of each screen could serve as controls to identify positively or negatively selected genes or pathways.

For the second round of Genome-wide CRISPR screens, T47D cells were first transfected with lentiviral gCSK_1, gCSK_3, gAAVS1_1, gAAVS_2 cloned by pLX- gRNA vector. After blasticidin selection, the following four types of T47D cells were generated with stable expression of gCSK_1, gCSK_3, gAAVS1_1, gAAVS_2

respectively. Then the Genome-wide CRISPR screens were performed in these four cell types by the above method.

PCR primers for library construction:

The first round of PCR (Table 14):

Table 14:

The second round of PCR (Table 15):

Table 15:

( enotes t e samp e arco e

Sequencing primer (read1):

CTCTTCCGATCTTCTTGTGGAAAGGACGAAACACCG

Indexing primer:

CATCGCCCACAGGTACAGTGCAGGGGAAAGAATAGTAGA

d. Computational analysis of the screens

The CRISPR/Cas9 screening data were processed and analyzed using the MAGeCK and MAGeCK-VISPR algorithms as previously developed (Li, W et al. (2014) Genome Biol.15:554; Li, W et al. (2015) Genome Biol.16:281). The MAGeCK-VISPR algorithm (Li, W et al. (2015) Genome Biol.16:281) was used to compare the gene selections across different conditions and different studies (Figure 1, Panel D, Figures 7, 10-11, and 18), as well as CSK-null specific essential genes (Figure 19). MAGeCK-VISPR uses a metric,“β score”, to measure gene selections. The definition of β score is similar to the term of‘log fold change’ in differential expression analysis, and β>0 (or <0) means the corresponding gene is positively (or negatively) selected, respectively. MAGeCK-VISPR models the gRNA read counts as an NB variable, whose mean value is determined by the sequencing depth of the sample, the efficiency of the gRNA, and a linear combination of β scores of the genes. MAGeCK-VISPR then builds a maximum likelihood (MLE) model to model all gRNA read counts of all samples, and iteratively estimate the gRNA efficiency and gene β scores using the Expectation-Maximization (EM) algorithm. A detailed description of the MAGeCK-MLE algorithm can be found in the original study (Li, W et al. (2015) Genome Biol.16:281).

To identify breast cancer specific essential genes (Figure 1, Panels C and D, Figure 18), three public genome-wide CRISPR screening datasets recently published were used (Shalem et al. (2014) Science 343:84–87; Wang et al. (2015) Science 350:1096–1101; Hart et al. (2015) Cell 163:1515–1526). The first dataset (Hart et al. (2015) Cell 163:1515– 1526) includes screens of cells from colorectal carcinoma (DLD1 and HCT116), patient- derived glioblastoma (GBM), cervical carcinoma (HELA) and retinal epithelium (HELA). The second dataset performs screens on leukemia cell lines (KBM7, K562, JIYOYE, RAJI) (Wang et al. (2015) Science 350:1096–1101), and the third dataset is based on one melanoma cell line (A375) (Shalem et al. (2014) Science 343:84–87). For each dataset, MAGeCK-VISPR was used to calculate the β scores of all genes. Breast cancer specific essential genes are those that (1) are negatively selected in breast cancer cell lines and (2) have stronger negative selection values in breast cancer cell lines compared with non-breast cancer cell lines. Therefore, for each gene, its breast cancer specific essential score ^^ ^ was defined as

^ ^^ ൌ log൫^^^^ ^ ^^ ^ ൯ ^ log^^^^^^൫^^^^ ^ ^^^ ^ ൯^ where ts is the t-statistics tested on the β scores of two-groups: breast cancer cells (BC) and non-breast cancer cells (NBC), ^^^^^∙^ is the rank function (converted to uniform distributed values between [0,1]). A lower ^^ score indicates this gene is an essential gene in breast cancer cells (smaller ^^^^^^ ^^ ^), and is more essential in breast cancer cell lines compared with non-breast cancer cell lines (smaller ^^). The p values are calculated from the null distribution of rank product statistics as described before (Breitling et al. (2004) FEBS Lett.573:83–92; Eisinga et al. (2013) FEBS Lett.587:677–682). Multiple comparison correction of the p values is performed using the Benjamini-Hochberg method (Benjamini et al. (2001) Behav. Brain Res.125:279–284).

MAGeCK (Li, W et al. (2014) Genome Biol.15:554) was used to identify genes whose knockout lead to stronger positive selection in vehicle compared with E2 conditions in T47D and MCF7 cells (Figure 2, Panel A, Table 5). The MAGeCK algorithm works as follows. It first collects read counts of all gRNAs in all conditions from fastq files, and then normalizes the read counts of control and treatment conditions using median normalization. After that, MAGeCK builds a linear model to estimate the variance of gRNA read counts, evaluate the gRNA abundance changes between control and treatment conditions, and assigns a p-value using the Negative Binomial (NB) model. Finally, the selection of genes is evaluated from the rankings of gRNAs (by their p-values) using the α- RRA (α-Robust Rank Aggregation) algorithm. For each gene, α-RRA evaluates the rankings of all its gRNAs, and assigns a lower score (RRA score) if the distribution is more skewed compared with uniform distribution. The statistical significance of the RRA score is evaluated by permutation, and the Benjamini-Hochberg method is used for multiple comparison adjustments. To increase the statistical power, genes that have fewer than 4 gRNAs, or genes that have fewer than 2 significant gRNAs are excluded from the comparison. A detailed description of the MAGeCK algorithm can be found in the original study(Li, W et al. (2014) Genome Biol.15:554).

e. Lentivirus production and purification

T-225 flasks of 293FT cells were cultured at 40%~50% confluence the day before transfection. Transfection was performed using Lipofectamine 2000 (Life Technologies). For each flask, 20 µg of lentivectors, 5 µg of pMD2.G, and 15 µg of psPAX2 (Addgene) were added into 4 ml OptiMEM (Life Technologies).100 µl of Lipofectamine 2000 was diluted in 4 ml OptiMEM and, after 5 min, it was added to the plasmid mixture. The complete mixture was incubated for 20 min before being added to cells. After 6 h, the media was changed to 30 ml DMEM + 10% FBS. After 60 h, the media was removed and centrifuged at 3,000 rpm at 4 °C for 10 min to pellet cell debris. The supernatant was filtered through a 0.45 µm low protein binding membrane. The virus was ultracentrifuged at 24,000 rpm for 2 h at 4 °C and then resuspended overnight at 4°C in DMEM + 10% FBS. Aliquots were stored at–80°C.

f. Real-time RT-PCR

Real-time RT-PCR was performed as described before (Xiao et al. (2012) RNA 18:626–639). Data are presented as mean ± standard deviation (SD). Primers used for RT- PCR are listed as follows (Table 16):

Table 16

g. Immunoblot

The western blotting was performed as described before (Xiao et al. (2015) Stem Cell Reports 5:856–865). Specific antibodies used include: anti-CSK (sc-286), anti-c-Src (sc-18), anti-p-c-Src Tyr530 (sc-101803), anti-p-c-Src Tyr 419 (sc-101802), anti-GAPDH (sc-25778) from Santa Cruz Biotechnology, anti-PAK2 (A301-264A) from Bethyl Lab, anti-p-PAK2 Ser141 (2606) from Cell Signaling technology.

h. Cell proliferation assays

The breast cancer cells were plated in 24-well plates (4-5x10 4 cells/well) and kept under indicated conditions. the cells were trypsinized and collected. The number of viable cells was determined by Trypan blue exclusion and directly counted using a

hemocytometer. Data represent means ± SD from three independent replicates. P-values were calculated using unpaired Student's t-test.

i. ChIP-seq

ChIP experiments for H3K27ac in T47D cells were performed as previously described (He et al. (2010) Nat. Genet.42:343–347), and the antibody for H3K27ac was ab4729 (Abcam). Library construction was performed using the ChIP-seq DNA sample Prep Kit (Illumina) according to the manufacture’s instruction; followed by high-througput sequencing with Illumina Hi-Seq.

j. RNA-seq

The total RNAs were isolated by TRIzol (Invitrogen), followed by library construction using the TruSeq RNA Library Prep Kit (Illumina) for Illumina Hi-Seq.

k Copy number gene expression and epigenetics profiling analysis The copy number variation (CNV) data from both T47D and MCF7 cells were downloaded from the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. (2012) Nature 483:603–607) project.

The gene expressions of CSK null and AAVS1 knockout T47D cells were quantified and analyzed from RNA-seq reads using Kallisto (Bray et al. (2016) Nat Biotechnol.34(5):525-7) and DESeq2 (Love et al. (2014) Genome Biol.15:550). The expression profiles in Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. (2012) Nature 483:603–607) were used to compare between breast cancer and non-breast cancer cell lines (Figure 1, Panel F). The processed gene expression values are downloaded directly from the CCLE website.

Several public epigenetics profiles in T47D cells in Figures 2D-2E were used, including genomic DNase-I footprints (Neph et al. (2012) Nature 489:83–90), ER ChIP-seq (Ross-Innes et al. (2012) Nature 481:389–393), FOXA1 ChIP-seq (Hurtado et al. (2011) Nat. Genet.43:27–33) and GATA3 ChIP-seq (Gertz et al. (2013) Mol. Cell 52:25–36). The data from FOXA1 and GATA3 ChIP-seq are not shown (in Figure 2) since there are no FOXA1/GATA3 bindings in the putative CSK enhancer. The raw reads of these studies (together with reads from H3K27ac ChIP-seq experiments) are first mapped to human hg38 reference genome using Bowtie2 (Langmead et al. (2012) Nat. Methods 9:357–359), and the peaks are identified using MACS2 (Zhang et al. (2008) Genome Biol.9:R137).

l. Survival analysis

The processed copy number variation (CNV) and gene expression data were downloaded directly from the METABRIC study (Curtis et al. (2012) Nature 486:346– 352). Besides, the gene expressions of breast cancer patients from two other cohorts were used (Symmans et al. (2010) Journal of clinical oncology 28:4111–4119; Ma et al. (2004) Cancer Cell 5:607–616). The R“survival” package was used for the survival analysis. m. Network analysis

GeneMania (Warde-Farley et al. (2010) Nucleic Acids Res.38:W214–20) was used to construct the network of primary screens (Figure 1, Panel C, Figure 10) and CSK synthetic lethal gene network (Figure 4, Panel A, Figures 18 and 19). In GeneMania, different networks collected from public datasets, including co-localization, genetic interaction, pathway, physical interaction, and shared protein domain networks are used to connect genes. Network construction was performed through GeneMania CytoScape plugin (Montojo et al. (2010) Bioinformatics 26:2927–2928), while the networks are visualized using Cytoscape (Shannon et al. (2003) Genome Res.13:2498–2504). Example 2: Genome-wide CRISPR screens identified ER+ breast cancer specific essential genes

To systematically investigate genes whose loss affects cell viability or potentiates the estrogen-independent growth of ER+ breast cancer cells, genome-wide CRISPR/Cas9 knockout screens were performed in ER+ breast cancer cell lines MCF7 and T47D using the GeCKO v2 library (Sanjana et al. (2014) Nat. Methods 11:783–784). After infection with the lentiviral guide RNA (gRNA) library and selection by puromycin, the cells were cultured in hormone-depleted medium and treated with either estrogen (17β estradiol or E2) or vehicle control (Veh) over four weeks (Figure 1, Panel A). The sequences encoding the gRNA were PCR amplified from the transduced cells at Day 0 and after 4 weeks of culture and quantified by high-throughput sequencing (Figure 6). Negatively and positively selected genes were identified by calculating the gene essentiality score using MAGeCK- VISPR, a statistical algorithm previously developed for CRISPR screen analyses (Li, W et al. (2014) Genome Biol.15:554; Li, W et al. (2015) Genome Biol.16:281). MAGeCK- VISPR compared the gRNA abundance of all the gRNAs targeting a gene across different conditions and assigned each gene a“β” score of essentiality in each condition compared with the controls. A positive (or negative) β score indicated the corresponding gene was under positive (or negative) selection in the CRISPR screen. Overall, a high correlation was found between the sets of positively or negatively selected genes in the two cell lines (Figure 1, Panel B). Consistent with recent work from others, it was found that some of the differences between the two cell lines may be due to cell-line specific copy number variations(Wang et al. (2015) Science 350:1096–1101) (Figure 7, Panels A-B). For example, three genes (BRIP1, PECAM1 and PPM1D) were strongly negative selected in MCF7 cells, but not in T47D cells. These genes were all transcribed from a Ch17q23.2 locus, which was amplified more than 17 fold in MCF7 cells, but not in T47D (Figure 7, Panels C and D). Overall, gRNAs for known driver genes for ER+ breast cancers (Mehra et al. (2005) Cancer Res.65:11259–11264; Lupien et al. (2008) Cell 132:958–970), such as ER (or ESR1), GATA3, FOXA1, and MYC, are strongly depleted (Figure 1, Panels B and C), while gRNAs for tumor suppressors, such as such as NF1, TSC1, TSC2, and PTEN, are strongly enriched (Figure 1, Panel B). The essential genes are enriched in many fundamental biological processes, such as gene expression, RNA processing, and translation (Figure 1, Panel C, Figure 8).

It was next sought to identify genes that are specifically essential in ER+ breast cancer cells, as these genes may serve as therapeutic targets. Public genome-wide CRISPR screen data were collected from 10 cell lines representing 6 different cell types (colorectal carcinoma, glioblastoma, cervical carcinoma, retinal epithelium, melanoma and leukemia) (Shalem et al. (2014) Science 343:84–87; Wang et al. (2015) Science 350:1096–1101; Hart et al. (2015) Cell 163:1515–1526). A score was derived to identify breast cancer specific essential genes with stronger negative selection in breast cancer cells compared with the other cell types (see Materials and Methods for details). This approach identified approximately 150 statistically significant genes using a rank-product algorithm with specific essentiality in ER+ breast cancers (false discovery rate FDR≤ 0.05; Figure1, Panels D and E; Table 3). Overall, the ER+ breast cancer-specific essential genes tend to have higher expression in T47D and MCF7 cells compared with the other cell lines (Figure 1, Panel F), are amplified or up-regulated in breast cancer patient samples (Figure 9, Panels A and B), and are enriched in breast cancer related pathways (Table 4). Many of these genes have physical or genetic interactions with ER (Figure 10), confirming the central role of ER in ER+ breast cancer cells. Interestingly, eight of the top twenty specific essential genes are transcription factors (GATA3, FOXA1, SPDEF, TRPS1, TFAP2C, GRHL2, TBX4, PHF12). Among these, FOXA1, GATA3, SPDEF and TFAP2C are known to interact with ER and exert critical functions in breast cancer (Carroll et al. (2005) Cell 122:33–43; Eeckhoute et al. (2007) Cancer Res.67:6477–6483; Buchwalter et al. (2013) Cancer Cell 23:753–767; Kang et al. (2014) Cancer Res.74: 1484–1494). TRPS1 and GRHL2 are also associated with breast cancer progression and have been implicated as oncogenes in ER+ breast cancers (Chen et al. (2011) Horm Cancer 2:132–143; Werner et al. (2013) J. Biol. Chem.288:22993–23008; Xiang et al. (2012) PLoS ONE 7, e50781) (Figure 9, Panel B). The identification of ER and the known components of the ER signaling pathway as well as other previously identified breast cancer oncogenes validate the robust nature of the screen.

Example 3: The ER regulated C-Src Tyrosine Kinase (CSK) mediates endocrine resistance Key genes were next searched that drive estrogen-independent growth by finding genes with a stronger positive selection in the Veh compared with the E2 condition (see Materials and Methods). The hit list (Table 5) includes several known tumor suppressor genes, including NF2, TSC2, LATS2, PTEN, as well as NF1 whose silencing has been previously reported to cause tamoxifen resistance (Mendes-Pereira et al. (2012) Proc Natl Acad Sci U S A 109:2730–2735) (Figure 2, Panel A). The strongest hit in both T47D and MCF7 cells is c-src tyrosine kinase (CSK), a negative regulator of Src family kinases (SFKs, Figure 2, Panel A, Figure 11, Panel A). All six CSK-targeting gRNAs in the GeCKO2 library are dramatically enriched in both MCF7 and T47D cells in the Veh versus E2 condition (Figure 11, Panel B). Given its very significant positive CRISPR selection in both cell lines and its role in inhibiting the function of SRC and other oncogenic SFK (Okada et al. (2012) Int. J. Biol. Sci.8:1385–1397), CSK was focused on for further analysis.

First, to validate that CSK knockout confers hormone independent growth, three different gRNAs were introduced targeting CSK (one from the GeCKO2 library and two newly designed) and a control gRNA targeting the AAVS1 safe-harbor locus into T47D and MCF7 cells. All three CSK-targeting gRNAs suppressed CSK protein expression and stimulated cell growth in the absence of E2 (Figure 2, Panel B). This estrogen independent growth could be fully reversed by the overexpression of a human CSK cDNA containing a PAM sequence mutation specific to each of the three CSK targeting gRNA to escape CRISPR/Cas9 cutting (Figure 2, Panel B). In addition to E2 independent growth, deletion of CSK induced a striking sickle-like morphology in both cell lines suggesting a more invasive phenotype (Yin, Z et al. (2013) Nat. Cell Biol.15:860–871) (Figure 12). The phenotypic changes in these CSK-null cells could likewise be fully reversed by the overexpression of the CRISPR/Cas9 resistant CSK cDNAs (Figure 12).

As CSK was differentially selected between Veh and E2 conditions, it was next asked whether ER regulated CSK expression. Examination of ER and H3K27ac ChIP-seq and DNase-seq data revealed a putative ER bound enhancer approximately 10kb upstream of CSK transcription start site (Figure 2, Panel C). This region contains an ER binding site as well as an ER DNA binding motif. To test whether ER activates CSK through this putative enhancer, three pairs of gRNAs were introduced together with Cas9 to fully or partially delete the putative enhancer, and one pair of gRNAs together with Cas9 targeting a flanking region away from the enhancer as a control (Figure 2, Panels D and E). In the absence of Cas9/gRNA transfection, CSK expression is strongly up-regulated upon E2 treatment. This activation is abrogated when the enhancer is disrupted, while deletion of the flanking region did not affect CSK expression (Figure 2, Panel E, Figure 13, Panel A). Moreover, the deleted enhancer but not the flanking region confers hormone independent growth of the cells, indicating that this enhancer region is required for the ER regulation of CSK (Figure 13, Panel B). Example 4: Growth factor and ER signaling changes induced by CSK loss

To understand how CSK loss leads to estrogen-independent growth of ER+ breast cancer cells, RNA-seq analysis was performed to find differentially expressed genes and pathways upon CSK loss in T47D cells. Loss of CSK led to global changes in gene expression (Figure 14, Panel A, Table 6). Gene Set Enrichment Analysis (GSEA) showed EGFR signature genes, as well as other oncogenic pathways such as metastasis, cell cycle, epithelial-mesenchymal transition (EMT), to be significantly up-regulated after CSK loss (Figure 3, Panel A, Figure 15, Table 7). The expression of EGFR, whose over-expression can elicit tamoxifen resistance (Musgrove et al.. (2009) Nat. Rev. Cancer 9:631–643), was also increased (Figure 14, Panel B). These results suggest that CSK deletion activates several cancer-related pathways, which might contribute to the hormone independent growth of breast cancer cells. Interestingly, ER and several of its co-regulators and collaborating transcription factors were also found to be dramatically up-regulated upon CSK deletion (Figure 14, Panel B), including GATA3, FOXA1, EZH2 and NCOA1/2/3 (Anzick et al. (1997) Science 277:965–968) suggesting the potential for ER to continue to play a role in CSK null cells. In order to probe the function of ER in this setting, the CSK- null T47D and MCF7 cells were treated with tamoxifen and fulvestrant, two ER antagonists approved for the treatment of ER+ breast cancer. Interestingly, the CSK-null cells were completely resistant to tamoxifen but remained partially sensitive to fulvestrant (Figure 3, Panels B and C). It was previously shown that while tamoxifen is unable to prevent growth factor stimulated ER signaling, fulvestrant is able to fully inhibit ER action (Lupien et al. (2010) Genes Dev.24:2219–2227). These results demonstrate that ER remains essential for estrogen independent growth induced by loss of CSK. Example 5: Genome-wide CRISPR screen for genes synthetically lethal with CSK loss To identify the key genes that drive hormone independent growth upon CSK loss, a second round of genome-wide CRISPR screening was performed in the T47D-CSK null cells using cells infected with gRNAs targeting AAVS1 as control (Figures 16 and 17). Using the same approach to compare public screening datasets of non-breast cancer cell lines, 649 specific essential genes were identified in T47D-CSK null cells with statistical significance (FDR≤ 0.05; Figure 18, Table 8). These genes include genes in the HER2 (ERBB2), PI3K-AKT (PIK3R1, AKT1), as well as MAPK signaling pathways (MAPK8, PAK2) that are known to be activated in endocrine resistant breast tumors (Musgrove et al.. (2009) Nat. Rev. Cancer 9:631–643) (Figure 4, Panel A). Interestingly, ER remains essential in the absence of CSK, albeit to a lesser extent compared with CSK wild-type cells (β=-0.43 and -0.28, ranking=23 and 629 in CSK wild-type and null cells, respectively). The essentiality of ER and genes in HER2/EGFR signaling pathway in CSK null cells is further supported by the up-regulated ER expression in CSK-null cells (Figure 14), and the fact that CSK-null cells were sensitive to fulvestrant, but not tamoxifen (Figure 3, Panels B and C).

It was next sought to identify genes that are specifically essential in CSK-null cells as these would be potential therapeutic targets in endocrine resistant breast cancer induced by the loss of CSK function. These genes should be essential in CSK-null cells (treated with vehicle) but not in CSK wild-type cells (treated with E2). Applying the same method to compare screening results between CSK wild-type and null cells, over 60 genes were discovered that are selectively required in CSK null cells (Figure 19 and Table 9). Several top hits such as EPHB2, CRK, PAK2 and PIK3R2 are in the pathways of Src Family Kinases (SFKs) (Figure 4, Panel A). However none of the nine SFK members could be identified as essential gene in CSK null cells (Figure 19), indicating that paralogs of the SFKs may provide functional redundancy (Wang et al. (2015) Science 350:1096–1101).

Two particularly interesting genes, PAK2 and CRK (Figure 20), are significantly up-regulated upon CSK loss (adjusted p-value=0.0014 for PAK2, and 1.83e-13 for CRK, respectively; Figure 14). PAK2 (p21 protein-activated kinase 2) is a serine/threonine kinase whose activity can be stimulated by small GTPases CDC42 and RAC1 (Knaus et al. (1995) Science 269:221–223) and regulated by the Src Family Kinases (SFKs) (Renkema et al. (2002) Mol. Cell. Biol.22:6719–6725; Koh et al. (2009) J. Cell. Sci.122:1812–1822). CRK (proto-oncogene c-crk) is a member of an adapter protein family that binds to several tyrosine-phosphorylated proteins and involved in activating SFKs (Sabe et al. (1992) Mol. Cell. Biol.12:4706–4713). It was decided to focus first on PAK2 among the top synthetic lethal candidates of CSK because it is known to be downstream of CSK signaling and it is a potential therapeutic target with existing small molecule inhibitors. To confirm the specific requirement of PAK2 in the CSK null cells, PAK2 was knocked out in the CSK null cells and control cells using three different gRNAs targeting PAK2 (Figure 4, Panel B). As expected, PAK2 is essential only in the CSK null cells cultured in the Veh condition, but not in the control cells in the E2 condition and the degree of essentiality is correlated with the knockout efficiency (Figure 4, Panels B and C). In addition, the cell growth inhibition in the CSK null cells upon PAK2 loss could be rescued by the doxycycline-inducible overexpression of a gPAK2/Cas9-resistant PAK2 cDNA (Figure 4, Panel D), confirming the essential role of PAK2 in hormone-independent cells induced by CSK loss.

To further understand how CSK loss leads to PAK2 activation, the

autophosphorylation patterns of PAK2 and SFK was investigated. The autophosphorylation site (Serine141) of PAK2, an important marker of PAK2 activation (Jung et al. (2005) J. Biol. Chem.280:40025–40031), could be distinctly detected in the CSK null cells but not in the control or the CSK-rescued cells (Figure 4, Panel E). Importantly, this differential phosphorylation pattern of PAK2 is well correlated with the differential phosphorylation pattern of the SFKs (Figure 4, Panel E), suggesting PAK2 and SFKs could be

simultaneously activated upon CSK loss. To understand whether the activation of PAK2 is SFKs dependent, CSK null cells were treated with two SFK inhibitors Dasatinib and Saracatinib. The phosphorylation of PAK2S141 was abrogated upon the inhibitor treatment (Figure 4, Panel F), suggesting SFKs are involved in PAK2 activation by tyrosine phosphorylation. To uncover the specific tyrosine on PAK2 that is important for PAK2 function, three Y-to-F mutations (Y130F, Y139F, Y194F) were generated of PAK2 previously implicated in PAK2 function (Renkema et al. (2002) Mol. Cell. Biol.22:6719– 6725). As PAK2 is essential in CSK-null cells, vectors were first introduced to allow inducible overexpression of WT PAK2 and the PAK2 mutants in CSK null cells. The endogenous PAK2 was then deleted using a specific gRNA and the cell viability was assayed in the presence or absence of the inducible PAK2 alleles. While the Y139F and Y194F mutants could rescue PAK2 function to similar levels as wild-type PAK2, the Y130F mutant failed to rescue PAK2 function (Figure 4, Panel D), indicating the critical role of Y130 in SFK-mediated phosphorylation and activation of PAK2. Example 6: Clinical relevance and potential therapeutic strategies

In order to extend the potential relevance of CSK loss as a mechanism of endocrine resistance, CSK expression was examined in other models including long-term estradiol deprivation (LTED) cells derived from MCF7 or T47D, as well as tamoxifen- or fulvestrant-resistent cell MCF7 or T47D cells (Figure 21). CSK is significantly down- regulated in all of these models suggesting that down-regulation of CSK may be a general mechanism of acquired endocrine resistance. To explore the clinical importance of CSK in ER+ breast cancers, we analyzed the expression and copy number variation (CNV) profiles of CSK from public datasets (Figure 22). In the METABRIC dataset (Curtis et al. (2012) Nature 486:346–352), CSK loss is associated with high-grade ER+ tumors (Figure 22, Panel A) and worse survival rates in ER+ breast cancer patients (Figure 5, Panel A). In two studies including patients treated with over 5 years of tamoxifen treatment (Symmans et al. (2010) Journal of clinical oncology 28:4111–4119; Ma et al. (2004) Cancer Cell 5:607– 616), lower CSK expression corresponds to shortened survival rate (Figure 22, Panels B and C), and the higher expression of PAK2 is significantly associated with worse relapse- free survival (Figure 5, Panel B). To test PAK2 as a potential therapeutic target for endocrine resistant breast cancer, CSK null cells were treated as well as T47D and MCF7 derived LTED cells with a PAK2 inhibitor (FRAX597) and an SFK inhibitor (Saracatinib, Figure 5, Panel C, Figure 23). All of the CSK null cells are sensitive to either of the two inhibitors in the estrogen-depleted medium, indicating that a combined treatment of an aromatase inhibitor with PAK2 or SFK inhibitors could be useful for treating endocrine resistant tumors.

In conclusion, the mechanism and potential therapeutic targets of endocrine resistance were investigated in breast cancer using genome-wide CRISPR screens (Figure 5, Panel D). CSK was found as an estrogen-stimulated tumor suppressor whose loss drives hormone-independent cell growth. From a second round of genome-wide CRISPR screening, synthetic lethal interactions were uncovered between CSK and PAK2 in endocrine resistant breast cancer cells. In the presence of estrogen, ER activates CSK whose expression represses SFK and PAK2 activity. These findings suggest a feedback loop by which endocrine therapies that inhibit ER activity repress CSK expression leading to activation of Src kinases and PAK2. Deletion of CSK disrupts this feedback loop, allowing the activation of SFK and PAK2 independent of ER regulation. Activation of SFK and PAK2 turns on oncogenic signaling pathways, promoting estrogen independent growth and an invasive phenotype. The CRISPR screen results, combined with clinical observation of CSK and PAK2 expression on patient survival as well as cell growth upon inhibitor treatments, support PAK2 as a potential therapeutic target for treating endocrine resistance in ER+ breast cancer patients. In addition, the demonstration of the use of two rounds of genome-wide CRISPR screens to systematically identify synthetic lethal interactions is an approach that can be applied to discover novel therapeutic strategies in other settings. Example 7: Further validation of CSK and PAK2 as potential therapeutic targets Further experiments were performed to validate the role of CSK and RAK2 in cancer. For example, similarly to procedures described previously (e.g., for Figure 2), MCF7 xenografts were prepared after infection with AAVS1_gRNA (control) or

CSK_gRNA, further treated with or without estrogen (E2). As the result, CSK loss led to endocrine-independent tumor growth in mouse (Figure 24).

For testing PAK2 and SFK as potential therapeutic targets in endocrine resistant breast cancer, the CSK-null tumors in ovariectomized mice were treated with FRAX597 or saracatinib. As the result, the tumors were more sensitive to both inhibitors in the absence of estrogen than in the presence of estrogen (Figure 25A). While fulvestrant alone inhibited the growth of CSK null tumors to some extent, the combination of fulvestrant with either the PAK2 or SFK inhibitor substantially blocked the growth of CSK null tumors with or without E2 (Figure 25B).

In order to further investigate the potential relevance of CSK loss as a mechanism of endocrine resistance, CSK expression was examined in 47 matched pairs of primary and tamoxifen resistant tumor samples by immunohistochemistry. It was found that CSK expression in the tumor cells was significantly down-regulated in 63.8% (30/47) of tamoxifen resistant tumors (Figure 26). The tissue sections were reviewed and scored in a blinded manner for staining intensity (0–3) and proportion (0–100%) of CSK expression in tumor cells by an expert breast cancer pathologist.

The gene expression profiles from two pre-surgical endocrine-therapy clinical trials were analyzed. Inhibition of estrogen-mediated ER signaling with an aromatase inhibitor led to decreased expression of CSK signature genes (affecting ~15-20% patients). In addition, tumors with decreased CSK expression had less reduction in Ki67 expression, the only validated biomarker of outcome in ER+ breast cancer pre-surgical trials (Figure 27). These clinical findings support the conclusion that inhibition of CSK expression limits the efficacy of current endocrine therapy.

Data from a biobank of breast cancer pharmacogenomics studies (available at the World Wide Web site of caldaslab.cruk.cam.ac.uk/bcape) were analyzed. One-third of breast cancer PDX models harbor copy number loss of the CSK gene. Compared with samples without CSK loss, these PDX models are associated with resistance to tamoxifen or fulvestrant (Figure 28).

In order to support the finding that PAK2 loss is synthetically lethal with CSK loss and to demonstrate that PAK2 is therapeutically targetable to increase the efficacy of endocrine therapy, effects of treatments with a PAK2 inhibitor alone (FRAX597) or in combination with fulvestrant were compared using a commercially available ER+ PDX model (TM00386, avilable at the Jackson Laboratory World Wide Web site of

tumor.informatics.jax.org/mtbwi/pdxDetails.do?modelID=TM0 0386). This model was confirmed at Jackson Lab on mice grown in the absence of supplemental estrogen. As a result, treatments with FRAX597 or fulvestrant alone only partially reduced growth of PDX, while the combination treatment showed strong synergy and completely inhibited tumor growth (Figure 29).

In addition, a summary of a public dataset of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) (Ross-Innes et al. (2012) Nature 481:389-393) shows that more than 86% of ER+ breast cancer patients have strong ER binding signals at the CSK enhancer (Figure 30). Incorporation by Reference

All publications, patents, and patent applications mentioned herein are hereby incorporated by reference in their entirety as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.

Also incorporated by reference in their entirety are any polynucleotide and polypeptide sequences which reference an accession number correlating to an entry in a public database, such as those maintained by The Institute for Genomic Research (TIGR) on the world wide web and/or the National Center for Biotechnology Information (NCBI) on the world wide web. Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the present invention described herein. Such equivalents are intended to be encompassed by the following claims.

')6^^^^^^^

3 e b l T a ')6^^^^^^^

t . ) o n ( c 3 l e a b T

')6^^^^^^^ e^

l u

a 6 6 4 4

v - - - 4 3

^ e e6 - - - 4 e e - e - 3

e - 3

e - e

q e e

R6 6 5 5 6 2 8 9

D . 3 . 3 . 9 . 3 . 4 . 4 . 7 . 5 . 7 . 8

F 2 2 5 1 2 2 5 1 2 3

0 0

^ 1 1 9 7

e - - - 7 - 7 6

u e e e 7 - - e e - e - 6

e - 6

e - e

a l 2 9 5 e 9 1 3 7 9 3

^ v . 2 . 9 . 7 . 1 . 5 . 1 . 5 . 5 . 2 . 2

p 6 9 3 1 2 3 8 2 5 8

o

d 2

h ]

c l 9 1 B

i a 9 R B

h t 0 S R

E E

wn

e

) r s 2 r

r a r = . o . d

e r f r s n

d e p

c k D e

r I c e o a

n n e a e n i v 1

a n a t m

l a h

g c t m e c i u R

s t S

t o

y 0 [ G t o E

r s t 5 s p v e

i g

a e a d 5 1 e a s t n

r e f R r e i R

. m b r

a o S b l a s A

p g

s m ( p t E f e e s d

e a s e y o m n r n

s a p a

. n l l m

) o m e o

c c l b e s 1 x

a s s

B e l .

e p r R e 1

R

C k a 5

m l . a e S s

i l c E r S

D . i t 8 ] )

l r d t p r s

e n o E

( s - 2

l e n - 9

p m o r a e f

l e a b a 2 9

o a n h m o

i c t

a n u

t o p 4 X0

2 u s

e s m

u a t t

c m M h r t r s o

u e y g k T = t e )

c - b a t t u

e s t

d ik h

l c n e D

i e

r i n e I m n (

i n r d a t a

d l - n u w o a R b r e e

n a e d n d n r c E a r s

e

i

a s s e e f t d

e n p b h

i t

) a e d e t s s s t

e a v m n

l a d o o

B b m e e a G .

t w l [ o

n e ) u t e c e t

C e e a u 1 d

l t

e g h e r g a ] c g

M t h t h u b e R c g b ( +

e l 9 n n

n ( o g r S i

d g R r u

- g 9 t a i

o t t o e t - E h

e n E 0 i s r d

i i c r n n t t i : n e 2 s o

t t d d - e s w

l l a a o n w r

p s p w s s

o e l o p - = r e c c

i a r e r e u m u i n i D a

r l p d r e

g s d u I y

c p a s o e m s s e p r

s t a p p a

e l s p x c

e e 7 r i e e e s

e e mm n e

e v n F

e t - c r r n a e

p s p e n e n e r c

n

D o o C

m c o c G d e G n M U d i e x G G G e

[ t h c a 4 ] ]

1 0

[ 1 5

^ [ 4

N ^

D P ]

_ U 5

L ] _ 8

A 0 L [

T 8 A

C [ 3 ] N ] ]

8 6

U ^ M 1 D 2 2

D P Y 7 ] _ 5 3

[ [

_ U H 2

S _ C [ 7 N ^ L ^

1

D L N P 6 I _ A

_ A E 1 A E I N

S S S U [ R 2] C

V A E _ P B 1 NM

_ B K

C _ M U _ 1 A U

I S S _ W _ N [ T L

S _

T V 5 ] 1 I I S

S V

] S _ V

_ 1 R _ P

E _

) A L _

L A A L 4 8 S E U

R E K P _ 7 E S _ _

( A I N I N T [ _ P 1 Y I N

s T MM S R A R

L S P R

e E U A N E E E A C

E D

n M L U

_ L C R _ R O

E P

e _ R _

A R _

B S N_ R H A

A R E T _

GM E R C C E _ T R

L E C E C E _ E

# O N _ C N

[ N A G I C

I A N T R T N A N S A C R N

e C C A

R A

R _ C

E T A C _ C A

m A T _

S S T B _ E _ T O C

a C A U 1 R T S D T _

S A NS N T _ E A

R E P R B A E E A

t S B R _ S _

E R _ E

e A E _ B N E

E _ R

E R B NR S R F F A _ E

Y I T E B _ O B 4 e B A A R G V _ E T _

H R e E l n _ R R B Z T D N

N A A I A G b

I

e E C O N

A M O E M G L I C H C H M G V S D R R a

C A T F

') ^^^^^^^

p

1 5 3 1 0 9 0 7 7 5

^ 1 1 9

^ ^ 0 6 6 6

^ 0 0 6 0 6 6 0 5 5 5

^ 0 0 5 0 5 5 0 5 5 5

e E ^ E ^ 0

E ^ ^ 0 ^ 0 0 5

E ^ ^ ^ ^ 0 0 5

^ ^ 0 0 5 0 5 5 u 5 9 E E 9 E ^

5 E E ^ E ^ ^ 0

2 E E E ^ 0

E ^ 0 ^ 0 0 E ^ E

1 2 9 E

4 0 E ^

7 E 0 E

7 1 1 E 9 E E ^ E ^ ^ l 8 7 1 5 7 E

7 7 1 2 3 4 E

. . 4 5 2 1 1 E E

3 1 a . 5 . 2 7 0

1 8 .

v 4 . . 2 3 . 0

7 8 . 2 4 . 9

5 . . . . 4 6 4 7

7 8 9 1 . . 6 . 9 1

1 1 . 1

1 2 . . 7 0 7

2 2 . . 3

3 3 . 5 4 . 0

3 4 5 . . 1 3 . 5 6 . o _

l

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 s

A R N

s g

7D 4 B A 1 0 T

1 : s P P B 2

e A 2 A 2 3 2

X 7 C A 2 A

n G 1 G 2

L 4 2 2 6 S L

9 2 3 7 B 5 e K2 2

F C L D S T C R S C L T

P 1

D 2 1 P N 6 9 N D C 2 4 1 l e S P S

S 2 A MM H E E 5 S R M K N b G C S N T S A E R M A R L A D R A 1 O 7

F F C R A L R L G N A MN S R U H U A P N L S G D Y K M T R P P T S N S A B D a

R C T

') ^^^^^^^

1 2 2 3 4 0

. 1 2 1 3 1 7 8 2 1 1 1 2 2 1

. 2 1

0 . 1

0 0 . . 1 3

0 . 1

0 0 . . 1 7 1 9

0 . 1

0 0 . . 1 9

0 . 1

0 0 . . 2 1

. 2 1

. 2 1 2 1 1

0 . 2

0 0 0 . 2

0 0 . 0 . 0 0 . . 2

0 0 . 3 9 7 8 8 1

3 4 8 6 9 6 9 2 3 5 3 8

1 2 3 4 4 3

3 3 3 1 6

8 1 5 1 8 4 2 3

3 2 3 6 6 0

2 5 5 3 6 8 9

6 8 0 8 9 6

8 0 9 2 3 0 3 2 3 6 1

4 9 3 5 8 3

6 7 9 8 8 9

5 3 8 0 2 0 0 3 0 3 7

0 4 5 0 0 8

0 7 7 7 2 3

8 6 8 0 5 0 0 0 0 0 0 3

0 0 0 0 6 1

0 0 0 7 0 8 4

0 8 8 9 0

. 0 0 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 8

0 0 8 0 9

0 . 0

0 0 . . 0 0

0 0 . 0 . . 0 0 . 0 0

0 0 . 0 . 0 . 0 0

0 0 . . 0 0 0 0 0

. . 0 0 0 0 0

0 0 . 0 . . 0 0 0

0 0 0 . 0 0 0 0

0 . 0

0 0 . . 0

0 0 . 0 5 5 5 5 0 5 3 3 2 2 4

^ 0 0 0 5 5 0 8 8 5

^ 5 1 6 4 6 4 9 8 5

5 2 1 0 8 6

E ^

5 E ^ E ^ 0

E ^ ^ E 2 0 4 8 5

3 2 6 4 7 7 8

8 0 1 8 4

4 6 0 1 E E 9 0 1 1 3 5

. 6 7 5 3 4 7 1 6 1 6 2 5 7 9 4 5 7 6 6 . 6 . . 5 6

7 7 . 7 . . 1 1 1 2 2

8 0 0 0 0 1 1 0 1 0 1 7 7 1 7 8 8 6 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 8

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 . . 0 0

0 0 . 0 . . 0

0 . . 0 0 0 0 0 0 0 0

0 0 . 0 0

0 0 . 0 . . 0

0 . 0 0

0 0 . 0 . 0

0 0 .

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7D 4 : T t .) n 1 o A ^ 2 c 3 1 1

0 2 1 1 7 P 2 1 1 1 B 2 1 2 ( 1 1 L 7 8 A

K 7 7 P P 1 P A 1 T

X W F 6 N A 3 I 2 L 5 R M D D 1

C B 1 E X I K R D R S

A F 8 L l B T R C U A P 1 A e b P E P R D C V G Z O X B a F A F F T C C D C F Z N N K R B U T B T A T O A P P R R M G N B R A M A S A 3 T

') ^^^^^^^

6 4 5 6 4 5 6 4 4 2 5

na

r

s g

o d

g o

14 6 8 8

7 4 0 8 8 0 6 6 6

7 2 0 0 0 0 5 5 5 6 6

1 7 0 0 0 0 5 5 5 5 3

7 4 5 0 0 5 1 1 1 5 6

2 9 7 5 5 7 9 9 9 1 9

0 4 2 7 7

2 2 2 2 1 1 1 9 8

2 5 5 5 1 0

R 0 0 1 1 2 2 1 1 1 1 1 5 2

. 1 . 1 1

D . . 0 0 0 0 . . .

0 0 . 0 0 . . 8

0

F 0 . 0

0 7 6 5 5

^ 0 0 5 5 0 5 9 5

E ^ ^ 0 0 ^ ^ 0 8 8 8 5

7 E E ^ ^ E 1 7 6 2

2 0 3 E E 0 1 7 2 7

5 4 1 E

1 5 6 5

. . . . . 1 7

. . 8 1

3 4 5 6 9 0 1 1 6

2 2 0 0 0 1

0 0 0 0

. 0 0 0

. . 0

p 0 0 0 0 . 1 3 7 0 6 0 0 6 0 5 5 5

^ ^ 0 5 5

^ ^ ^ 0 5 0 5

e E E E ^ 0

E ^ 0 ^ 0

u 5 3 E 6 E ^

7 E ^ E ^

l 4 6 6 7 5 E

9 5 E 1 E

a . . 0 . 1 9 0 5

1 1 . . 1 . 3 5 0

v 9 3 7 . 8 . 2

2 2 . . 4

2 3 .

_

l o

6 6 6 6 6 6 6 6 6 6 6 s

A R N

g 7 s F

C

: M t. ) o n ( c s 2 B 4 5 e 8 1 6 1 R e l n 1 P T 1 b e K B R D 4 1 M 3

A 3

C S 1

X S 2

G C S U S I H B O C E P G S A N V P Z F G A a

R T T

')6^^^^^^^ e 0 6 0 7 n 0 6 3 6 1 e 0 8 1 5 3 3 g 8 7 3 e z 2 t r

n A A

e N N

p

01 7 3 5

1 9 6 9 9 8 4 3 0

^ ^ 9 ^ 8 8

^ 8 3 8 0 0 8 8 7 6

E E ^ E ^ 8

E ^ 8 ^ 8 8 ^ 7 7 6 7 5 2 5 E 9 E ^

9 E ^ E ^ ^ E ^ ^ 7 ^ 7 5 4 7 2 1 2 E

7 2 8 E 0 E E 4 E E ^ E ^ 7 . . 3 . 3 9

. 5 0 4 2 3 8 5 0 E 6 E ^ 7 7 5 . 2 . 0

7 1 . 4 3 . 1 . . 2 7

5 1 . 1 . . 8 2 3

. . 0 5 6 E 1 3 2 2 . . 6 4

7 . 0 1 4 . 9 9 6 3 3 4

6 5 3 1 8 5 9 8 6 9 8 8 4 7 8 3 3

6 9 7 2 6 4 9 1

4 8 1 9 5 5

1 3 6 9 2 7 2 4 1

2 2 7 3 8 1 2 2

6 9 5 8 8 9 9

7 0 2 3 6 2 0 9 6 1 1 7 5 4 4 4 6 1 9 9

2 7 6 2 4 7 5

3 2 9 7 8 6 7

6 6 9 0 8 4 1 4 8 6 8 1 4

2 8 3 4 2 0 5

2 3 8 6 8 8 4

3 3 7 5 8 5 4 5 3 5

0 4 3 8 1 1 5

0 0 3 0 5 9 2 1 9 8 9

7 1 8 0 9 5 5

4 0 2 9 7 3 9

3 0 3 9 0 7 5 4 8 9 7 9 0

1 2 9 9 3 7 t . . 9 2

4 . 0 3 5

. 3 8 9 4 8 6

. 4 3 2 1 9 6

9 . 9 7 6 0 2 7 9

8 8 3 3 . . 0 4 a 9 6 . .

2 3 . . 8

t 2 2 2 2 2 3 2 .

2 2 1 1 . . . 7 .

2 1 0 0 . 1 9 . 9 . . 0 9 9

1 1 9

^ 1 9 .

1 9 . 9 8 5

1 8 .

1 8 1 . . 3 3 1 8 1 8 . . ^ 1 8 1 8 8 s ^ ^ ^ ^ 2 2 0

^ 2 2 9 9

1 ^ ^ 1 1 2 9 8 4 7 7 5

1 0 7 5 5 3 3 6 7 2 9 8 8 7 9 2

9 9 7 0 6 6 6 5

6 3 6 6 1 9 5

8 2 8 4 7 6

9 4 3 3

4 3 4 0 9 8 2 1

8 3 3 9 8 4 1 8 7 4

0 7 0 9 5 3 1 5 6 3 6 5

1 5 9 5 7 4 4 9 0 9 5 6 9 2

4 0 0 2 5 4 9

6 1 3 6 6 4

4 3 8 8 6 5 0 2 5 3 6 9 9 3 6 3 1

7 0 4 4 8 7 1 9 1 7 7 4 6 8

1 8 9 3 1 0 1 1 3 0 4 8 6 7 0 8 9 6 9 8

1 4 3 1 8

0 6 8 2 4 8 0 9 5 7 E 1

S . 2 9 5

1 2 3 1 6

1 2 9 7 1 0 9 2 4 5

3 1 6 5 2 1 2 1 2 5

c 0 2 7 2 0 7

. . 1 2 8 2 0

1 6 6 0 0 1

2

0 0 . 0 . . .

0 0 . 1

0 . 1 7

0 . 2 2 8 8

0 0 . . 1 1 2 2 0 0

2 8 0 6 6 1 . .

l 0 0 0 . 1 2

0 . . .

f 0 0 . 0 0 0 . 2 9

0 . 1

0 0 . . 1 2 1 1 9 2 5 0 . 2

0 0 . 0 . 0 . 0 .

6 9 1 5 7 4 7 5 4 3

2 6 0 3 7

2 4 2 1 8 7 0 7 3 1

8 9 2 3 1 2 1 2 1 5 6 0 7 3 4

. 1 6 5 2 0 6 4 6 5 8 1

8 6 5 6 6 6 1 . 1 6 8 1 0 4 . 3 5 2 9

0 4 0 0 6 1 8 7 . 5 6 . 0 8 6 1 5

2 5 4 7 4 9 0 9 6 . . 4 . . 8 . 0 6

. 3 5 7 2 0 0 8 5 9 9 7 2 2 5 8 1 6

7 . . . 3 3 4 4 9 8 7 6

2 3 2 8 4 8

6 2 5 9 9 . .

5 4 4 7 . . 4 7 5

2 1 8 4 3

2 0 9

8 3 7 5 6 5 8 0 4 5 7 2 7 5 6 1 4

2 2 7 2 3 5 3 9 7 4 6 8

6 9 4 2 2 3 0 0 1 3 1 7 1 3 0

7 0 7 7 7 7 1 5

7 1 7 0 1 9

0 6 9 9 3 6 6 7 9

2 1 3 1 6 6 0 1 2 7 6 4 7 8

5 4 7 4 3 2 7 2 9 4 4 0

8 2 2 5 2 1 0 4

7 1 1

6 5 4 5 5 3 5 9 0

6 1 8 7 8 2 2 4 1 7

0 1 3 1 1 1 0 3 1 3 6 7 2 9 9

1 0 4 9 0 2 3

7 2

6 5 7 0 5

1 5 3 3 8

0 0 0 0 0 0 1 1 0 0 9 3

0 1 5 1 0 0 1 7 0 6 9 8 0 0 0 0 0 0 0 1 2

0 0 0 0 1 1 7

0 0 2 0 1 0 0 1 1 1 1 3 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 6

0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E T

')6^^^^^^^ 03 8 8 0 1

6 3 9 5 3 4 1 7 7 0 7 9 4 0

9 8 3 5 0 9 1

6 6 1 9 6 0

4 3 2 9 3

0 8 1 9 9 6 7 6 8 4 3 5 8

2

7 3 8 6 2 8 8 2

1 7 0 5 2 5

7 1

1 8 3 3

5 4 3 6 8 0 2 9

3 7 6 3 3 0 2 3 7 6 9 3 0 1

2 9 0

2 2 3 7 6 3 9 6 9 3 2 3 2 3 8 7 7 9

7 4 9 4 1 3

A A N N 2 M

D

M 7 2 0 9 8 6

^ 7 9 6 8 8 6 8 7 6 6 6 5 4

E ^ 6 ^ 6 6 8

^ 6 7 6 7 6

^ 6 6 6 6 4 4 6 4 3 3

7 E ^ E ^ ^ 6

E ^ 6 ^ 6 6 6

E ^ ^ 6 ^ 6 6 4

^ 6 6 6 3 2 3 3 E 1 E E ^

3 E ^ E ^ ^ 6

0 E E ^ E ^ ^ 6

E ^ ^ ^ 6 6 1 . 8 4 5 1 2 E

5 9 E 0 E E ^

1 5 2 E 8 E E ^

7 E E E ^ ^ 6 8 . 7

2 1 . . 0 5 6 E

3 7 3 4 7 6 1 . . 5

1 1 . . 9 3

5 5 . 2

1 . . 7

4 7 . 0 . 0

1 1 . . 2 . 5 6

. 3 8 8 1 E

2 3

. 0 8 0 E E ^ 1 1 5 9 . . 0 2 0

7 1 . . 9

1 1 . . 6 . 2 8 5 E

3 3 8 1 . 6

2 . 4

2 1 . 1 . 7 4 3 2 1 9 9 9 6 8 6 6 7 7 6 6 6 6 6 5 4 ^ 7 2 7 1 1

E ^ 7 ^ 7 1

E ^ ^ 7 7 1

^ 7 0 0 6 9 8 7 7

E ^ 7

E ^ E E ^ 7 ^ 7 9

^ 6 6

E ^ 6

E ^ ^ ^ 6 6 7

^ 6 6 6 6 ^ ^ 6 6 0 6 2 9 2 E E E ^ ^ 6

E E ^

. 7 3 6 3 E E ^ 6

1 5 6 3 0 6 2 8 E

0 2 9 E 2 E E ^ ^ E ^ ^

1 E E ^ E

1 . . . 4 7 1 4 4 E E ^

3 2 9 . 2

1 2 . 2 . 8 . 7

9 . . 3

2 . 3 6 8

7 1 . . 9

1 1 . . 4 0 8 6 7 9 E

3 3 0 E 5 E ^ 2 2 . . 8

1 1 . . 2 5 5

1 2 . . 1

2 4 . . 8 9 1 4 5 E 7 1 . . 2

3 5 . . 5 2 6 . 4 3 3 . 7 2 4 6 2 8 2

9 6 9 2 2 4 7 2 9 4 9 9 1 4 4

4 0 6 5 3 0 7

2 8 4 1 7 8

0 0 2 4 8 9 6 6 7 2 3

3 5 3 5 7 2 6

1 3 4 1 7 0 5

6 5 7 0 1 6 1 2

5 2 1 6 0 4 6 1 3 2 3 7 3

2 1 4 5 5 0 8

9 7 6 1 3 0 4 2

4 7 0 6 0 4 1 8 9 9 4 8 6 7

8 2 0 4 8 6 0

3 4 6 6 8 8 3 1 9 9 8 6 0

7 1 0 0 6 7 2 3 7 2

8 3 6 5 1 8 7 5 8 8

0 2 0 8 1 8 2 4 8 5 1 2

6 1 5 3 1 8 3 0

3 4 3 7 7 0 8 4 1 8

9 6 . . 8 3

7 . . 7 . 8 6

7 . 8 7 8 7 6 3 6 2

. 4

. . 7 6 . 6 . 0 1 4 4 2

7 . 7

7 7 ^ . 6 7 6 . 5 8

. 4 6 1

. . 3 0 7 1

2 2 7 6 1

. 2 1 . 4 1 8 1 1 1 ^ 1 7 .

1 7 1 7 7 .

^ 1 1 1 7 .

1 1 7 7

^ 1 7 1 1 7 1 7 .

1 1 1 7 . 3

1 7 .

1 1 7 7 . . 1 7 0 1 1 1 1 1 7 1 . 9

7 . 1 1 6 8 9 9 7 5 6 4

6 8 9 4 1 1 4 2 8 7 4 3 8 6 6

1 0 4 9 3 1 2

3 9 4 5 9 2

7 9 7 3 8 8 9 4 2 2 6

7 5 6 0 9 4 4

4 8 3 7 7 9 2 5 2

4 8 9 5 2 9 4

2 5 9 6 7 9 1 5 4 2 6 7 1

0 2 8 1 4 0 8

5 7 2 3 5 6 9

7 1 1 8 2 2 4 5 1 5 3 7 8 6

6 3 8 7 8 1 5

8 8 8 1 5 7 3 5 5

8 8 0 0 4 3 1 5 6 2 6 8 8 7 2

9 0 2 9 3 9 5

2 1 9 0 4 4

3 4 0 5 6 4 6 4 3 3 1 1 9 0 2 3 2

. 2 9 9 1 8 1 8 1 2 8 0 3 2 6 2

9 0 8 6 0 2 0 3 8 5 6 6 2 9 5 8

0 . 1

0 0 . 0 . . 1 . 0 9 1 3 6 9

1 2 5 1 8 8 6 2 2 6 2 8 7 1 0 5 0 . 0 . 2 1 8 2 7

0 0 . 0 . 1

0 0 . . 1 5

0 . 2

0 0 . 0 . . . 1 1 2 9 1 2 4 1 6 6 3 3

0 0 . 2

0 0 . . 1

0 . 2

0 0 . . 2 2 1 2 9 7 0 0 . . .

0 0 . 1 . 1 0 0 0 . 2 7 8 6 3 9 5

7 1 2 1 2 7 8 2 4 2 0 4 2

8 0 5 2 5 3 7

7 8 0 4 4 0 3 4 2 8 6

3 5 4 0 4 0 5

2 0 5 9 8 2 5 6 7 2 7 4 5 6 0 7 3 2 5 8 4

6 2 3 5 0 9 8 2 8 1 8 5 9 4 2 3 6 7 2 1 8

2 9 2 6 1 9 9 2 5 3 1 7 8 3 0 6 5 7 0 1 1

7 5 7 0 4 8 3 7 1 7 9 4 4 9 . 7 1 2 5 3 6

8 2 7 7 5 2 4 9 4 5 0 9 7 3 ^ 3 . 4 7 5 4 8 . 3

4 9 1 9 1 3 7 3 7 5 2 9 0 8 3 . 5

3 3 . . 2

3 . 3

3 . 5 5 9 1

3 3 . . 1

3 . . . 6 6 7 7 7 7 2 5

1 . 7

3 8

3 . . 4 2 9 9 3

4 4 . 2 . . . ^ ^ 3 4 3 . 4 3 2 08 8 6 7 8 1

4 3 5 8 6 8 7 8 3 4 2 6 6 7 1

0 9 2 4 7 5 8

0 5 3 4 0 2 7

8 9 4 4 9 3 8 4 3 3 7

3 6 0 9 1 0 5

0 9 1 3 4 0 7 3

0 8 2 6 0 5 4

6 2 6 6 3 8 1 4 6 8 7 4 2 6 4 0

9 8 0 4 9 0 7 8

7 8 7 0 7 2 7 2 8 2 2 6 6 . 4 5 6 9 7 9 5 8 3 8 0 2 9 3

. 0 4 8 8 9 7 8 1 9 3 4 6 3 . . 1 6 . 1

. . . . 7 0 7 7 6 8

8 4 3 3 1 9 8 2

1 0 3

1 3 7 5 5 5 6 . 4 . 0 8 3 8 7 5 0 0 5 6 .

6 4 6 7 9 2 . 6

3 . . 3

0 . .

2 4 6 5 . . 2

5 . . . 8 0

2 . . 8 0 7

. 0 9 4 3 4 3 0 7

5 3 8 5 2 2 1

6 5 6 5 6 1 6 4 2 0 . 7

2 5 1 7 7

1 6 8 7

6 8 6

3 1 2 1 7 4 4 6 3 3 9 1 7 5 8 .

0 3 4 7 . . 5 8 8

2 4 8 5 0 4 3

1 4 0 4 1 8 0

6 0 6 2 1 4 1 6 7 2

1 7 2 8 9 0

4 2 3 4 5 6 1 1 6 4 2 4

6 8 8 1 7 6 6 3 0 5 5 1 6 3 1 1

0 4 4 5 6 4 9 3 7 2 9 7 9 7

9 8 3 0 2 2 7 7 4 2

. 9 2 4 6 4 3 1 5 6 1 1 5 6 5 1

1 4 8 9 2 0 0 0

1 1 2 1 3 9 0 8 2 4 4 4 8 5 2 8 4 0 5 0 0

5 8 5 2 5 8 1 0

5 0 4 9 6 7 3 7 0 1 1 6 1 1 0

0 0 8 9 4 4 3 9 8

1 5 4 7 1 6 5 8

1 2 6 5

1 2 1 6 9 1 6 7 6 0 0 0 0 0 1 0 0 1

0 0 1 0 1 8 8 6

0 0 1 0 1 1 6

0 2

0 0 1 0

0 1 1 0 0 1 5 9 5

1 6 5 ) 3 t 0 0 0 c 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 2 0 1 1 n 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 (

0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E N E T

')6^^^^^^^ 3 7 7 3 4 0

8 8 3 7 9 4 9 1 6 2 8 2 0 8

3 1 0

3 5 9 0 4 1

1 0 3 4 9 0 9 4 3 1 2

8 8 2 7 0 8 8 8 0 9

1 3 3

2 5 5 5 9 2 6 8 0 6

3

2 8 6 4 1 7 2 2

5 4 8 9 1 4 3 8 4 0 2 6 2

3 9 9 4 1 2 2 1 4 5 3 3 7 4 3

0 7 8 4 3 8 3 9 1 6 3 8

1 2 3 1 4 7 0 2 6 9 2 5 9

7 9 1 4 3

1 2 5 1

^ 6 6 6 6 5 5

E ^ 6 ^ 6 6 ^ 6 6 5

E ^ E ^ E ^ 5 ^ ^ 5 5 5 5

9 E ^ E ^ ^ E ^ ^ 5 ^ 5 5

E ^ ^ 5 ^ 5

3 E ^ ^ ^ 5 5 5

1 6 E 4 3 E E 3 E

4 8 7 E E 9 3 1 6 4 E E ^

7 E 7 3 E E ^ ^ 5 ^ 5 5 . 4 5 7 . 6 5

. 2 9 6 4 E 2 E E ^ E ^ ^ 5 4 6 E E ^ . . 2 . 1 9 0 E

1 2 E

2 . 3

2 3 3 4 . 4 . 7

7 . 2

8 . 6

7 1 . 3 . 3 . . 3

5 1 2 3 . . 2

3 4 . . 3 5

. 0 2

. . 3 3 6

. 0 6 9 7 8 E

2 2 8 . 2

2 4 6 6 6 1 . 1 . 2 . . 3

3 3 . 6 4 4 4 3 1

^ 6 4 6 3 3 6 3 2 2 6 0 0 0 9

E ^ 6 ^ 6 6 ^ 6 6 2 6 1 1

^ 6 6 0 6 0 9 5 9 9 9

7 E ^ E ^ ^ E ^ ^ 6 ^ 6 6 1

E ^ ^ 6 ^ 6 5 ^ 5 5 9 5 8 8 5 7 E 8 E E 8 E E ^ E ^ ^ 6

4 E E ^ E ^ ^ E ^ ^ 5 ^ 5 5 8 . 3 1 9 5 2 0 0 0 E 9 E E ^

. . 2 3 4 9 E 7 E E 8 E E ^ E ^ ^ 5 . . 1 2

5 . 8

6 8 9 1 . 1 . . 5 . 1 . 8 6 4 2 6 E

2 2 2 4 . . 0 5 3 0 2 0 8 0 5 0 4

. 1 4 E 3 E E ^ 9 1 1 4 . 8 . 1 . 4

1 1 . . 9

2 7 . 4

1 . 2 . . 2 2 0 9 2 E

. . 0 2 5 2 . 7

2 3 6 1 . . 2

1 1 . 2 7 9 9 5 3

9 9 8 0 5 3 9 4 2 1 1 3 1 6 6

1 8 6 1 6 6 9 8 6 1 5 8 7

7 5 8 3 4 9 8 9 1 2

4 0 1 3 1 2 8 8 5 5 9 2 1 8

5 9 4 7 2 9 7 3

5 5 3 2 9 6 7 5 3 9 2 2 3 6 2 5 5 6 8 5

3 2 2 5 9 7 7 8

2 9 8 6 0 6 2 8 9 0 2 6 9 9 5 8 4 4 2 2 8

0 0 1 5 2 5 6 7

5 1 3 0 7 0 4 8 7 6 5 4 0 0 8 1 6 1 9 4 0

5 7 4 7 5 3 3 1

2 7 5 0 5 5 5 8

. 8 . 8 4 4 8 9 7 1 8 6 1 4

4 3 2 8 7 1 6 3

5 9 7 9 4 5 7 6 . 6 . 8 8 . 7 6 2 5 7 5 1

. 4 4 1 3 3 7 4

2 4 1 8 8 2 5 0 1 1 6 1 6 .

1 6 .

1 1 6 6 . . 6 . 5 5 9

1 1 6 6 .

1 6 6 . . 4

6 . . 4 . . 2 5

. 2 2 1 5 4 4 ^ 1 1 1 6 6 .

1 1 6 1 1 6 6 .

1 1 6 6 6 . 2

1 1 6 .

1 1 6 6 . . . 1 1 4 1 6 6 6 . . 1 ^ 1 1 1 1 6 6 .

1 1 6 ^ 1 1 3 6 5 4 3 4 3 8 2 3 1 7 7 6 6 3 7

0 1 2 3 7 4 8 8 1

6 4 9 2 2 6 5

2 2 0 7 7 4 8 3

8 4 8 8 1 2 6 1

3 5 2

8 6 6 2 6 2 4 3 9

1 2 9 0 3 2 5 4 9 4 7 1 6 2 0 2

8 5 7 5 2 8 0 8 7 6

3 7 0 7 9

5 7 0 6 1 5 8 8 0 4

4 8 8 6 6

7 0 3 8 5 7

6 3

5 4 9 6 7 4 1 8 1 0 6 9 9 0 5

2 1 9 2

2 1 5 1 2

5 7 4 1

4 9 7 4

8 4 4 7 7 7 7

1 6 0 9 4 3 5 3 2 0

3 4 8 2 6

3 3 1 6 9 9 0 4 6 0 6 8 5 1 . 5 4 2 2 2 2 2 5 4 5 3 9 0 9 3

4 0 9 3 8 4 0 9 5 0 7 1 0 3 0 . 2

0 0 . . 2 2 8

0 0 . . 1

0 . 2 2 0 2

0 . 1 2

0 0 . 0 . 0 . 0 . . 2 . 2 8

. 1 7 1 5 9 9

2 1 0 9

2 0 3 9 1

2 0 2 8 1

0 0 0 0 . . 2

0 0 . 0 . 0 . . 1

0 0 . . 1 1 8 2 9 7 0 0 . . 1

0 0 . . 1 . 1 0 0 . 0 25 6 6 6

0 1 4 3 8 2

5 0 0 0 2 5 8

7 5 2 7 6 5 1

4 5 0 5 6 3 4

2 3 5 8 9 6 0

5 0 3 4 2 8 2

6 8 7 8 2 3 6

. 6 0 8 9 1 7

2 2 . 4 . . 1 9 8

3 4 . . 0

3 3 .

44 3 7 5 6 9 4

3 5 1 3 9 5 4 1 7 4 1 9 3 5

4 4 8 5 2 9 4

2 7 3 1 9 1

4 0 2 7 0 5 6 4 3 1 1

4 1 5 4 1 5 9

7 2 4 8 8 9 9

8 9 9 7 9 0 1 9

3 5 2 7 1 1 3 2 3 6 8 2 4 1

5 7 1 7 9 8 4

4 6 0 7 6 8 2 1

6 5 3 3 4 1 0 . 8 7 4 8 1 6

5 6 5 0 7 1 8 0

5 5 8 1 5 9 8 8

7 3 5 6 2 4 3 9 . . 7 . 8 4

. 2 0 1 1 9

. 8 2 0 9 0 2 9

. 0 0 6 5 1 3 2 7 4 . 4 . 8

4 . . 9 . 2 9

1 . . 7 . 0 8 9

7 7 9 1 0 3 9 9 5 2 8 4 8 .

0 8 7 . 9 . .

1 7 6 3 . 9 . . 5

1 . . 0 . . . 7 7 1 5 2

2 1 9 5 7 0

4 5 9

1 6 3 3 5 8 5 6 4 2

2 8 2 4 8

3 2 8 3 9

4 3 5

3 1 6 6 0 1 3 4 8 .

1 1 2 . 5 2 1 4 3 6 3 6

1 7 6 8 9 9 6 4 1 2 9 2 1 6

9 4

2 9 2 4 7 5 1 3 2 3

3 8 2 2 9 0 2 3 4 24 5 1 6 7 7

4 4 0 1 0 4 0 6 1 2 5 2 8 8 8

8 0 2 8 1 2 3

2 1 7 0 6 1

8 0 6 9 9 6 0 0 4 2 2

0 9 3 7 7 1 6

3 4 6 4 8 5 5 5

4 2 8 6 1 1 6 4

6 1 9 4 8 6 5 1 6 5 3 5 8 3

5 3 5 8 7 1 0

1 1 1 8 1 9 4 9 1 7

7 9 8 9 1 5 3

6 t 0 1 1 6 1 7 8

0 1 1 4 6 3 4 4 8

0 0 0 1 1 7 0 9 5 4 8 0

6 3 1 1 0 2 4 ) 0 0 0 1 0 0 9

0 1 1 6 1 2 0 1 9 6 5 2 9

0 1 1 1 0 1 3 9

0 1 1 1 9 8 8

1 0 3 . 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 n 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 o 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 ( c 0 0 0 0 0 0 0 0 0 0 6

0 0 0 e G l S S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E N E T

')6^^^^^^^ 7 9 5 0 2 4

2 6 6 5 4 9 5 5 9 6 9 8 5 6 5

9 5 8 3 1 7 4

7 1 1 8 9

1 0 0 0 3 3 7 9 6 7

1 0 1 3 5 2 2

5 2 0 5 3 3 8 3 1 1 2 1 3 7

1 5 2 3 2 6 7 9 1

4 9 2 4 9 2 0 7

2 5 8 6 3 1 9 2 8 3 9 1

6 1 2 2 5 2 0 5 5 5 3 1 3 8 0

5 8 5 1 7 2 2 5 1 8 8 0 9 5 4 5 9 8 6 2 5 4 A

N

5 8 8 8 7 6

^ 5 8 5 7 7 5 7 7 7 5 6 6 6 5

E ^ 5 ^ 5 5 7

^ 5 5 7 5 7

^ 5 5 6 5 6 6 5 5 4

5 E ^ E ^ ^ 5

E ^ ^ 5 ^ 5 6

E ^ ^ 5 ^ 5 5 5

^ 5 5 5 4 4 3 8 E 8 E E ^

4 E E ^ E ^ 5

1 E E ^ E ^ ^ 5 5

E ^ ^ ^ 5 5 4 2

. 6 0 4 1 7 E

1 6 4 E 0 E ^ E E ^ E

3 2 7

. 5 7 8 5 E

. . 7 4 1 1

. 1 6 7 8 3 E 7 E E ^

7 E ^ 5 E ^ 1 1 . 4 . . 3 3 6

8 1 . . 4

1 1 . . 7 0

. 3 . 0 3 8 E

3 5 6 7 . . 8 0

7 . 0

8 1 . 1 1 . 7

1 3 6 8 . . 5

9 1 . . 0 8 6 2 4 E 6 1 4 . 6 . . 2 . 8

1 3 . 8 4 6 . 1 7 9 4 1 5 7

8 9 3 5 8 6 2 4 2 6 3 4 1 2 1

5 6 3 7 1 5 4

3 5 1 3 7 3 2

0 6 5 6 8 2 3 0 8 4 5

5 7 7 7 5 4 3

1 0 7 1 1 5 5

9 9 6 0 7 5 3 4

8 3 1 4 1 7 9 5 7 4 3 8 5

0 4 5 8 4 4 1

2 7 9 2 0 1 9 4

3 7 1 3 0 0 2 3 2 1 5 8 7 0

4 9 9 3 1 8 3

4 9 3 0 1 6 1 5

6 7 5 3 7 8 9 1 1 7 2 9 5 7

4 5 9 7 1 8 1

5 4 5 7 1 2 7 2

8 7 6 0 1 0 4 . . 0 0 9 9 1

9 0 9 3 9 7 7

8 4 3 7 5 9 8 2

6 3 3 7 8 6 3 6 6 . . 5 . 9 9

. 9 8 9 8 8 8

. 8 8 8 7 3 2 0 4 8 1

. 6 0 4 0

1 1 1 6 1 6 1 . 9

5 .

1 1 5 5 . . 8 . . .

1 1 5 5 .

1 1 5 5 5 5

1 1 1 5 . . 7 . 7 7 0

5 . 6 5 7 6 1 1 5 5 .

1 1 5 5 . . 7

1 1 5 5 .

1 1 5 1 1 5 . 5

5 . . 4 5 1 1 5 5 . 4 1 5 . ^ 1 1 5 1 1 8 7 8 3 8

6 8 9 5 3 6 3 4 2 3 6 3 5 3

8 6 6 1 2 2 3

5 7 4 3 8 4 5

6 5 1 9 7 2 7 2 3 9

7 6 6 8 3 7 5

2 1 7 4 4 3 4 3

1 3 7 9 3 0 9

0 5 0 9 6 1 4 6 0 3 9 4 1

9 9 5 3 6 2 1 5

5 0 2 3 0 8 8

3 7 0 1 8 8 5 8 3 5 9 8 8 1

5 0 1 6 9 4 7 3

7 6 8 3 0 6 4

7 4 9 2 3 7 0 4 0 2 1 2 3 6

5 6 0 0 4 9 0 8

9 4 1 9 1 7 6

4 8 2 8 6 4 8 2 0 5 2 6 5 1

0 6 1 4 7 3 0 1

1 0 7 5 7 2 0

1 1 4 6 7 4 1 . 2 2 7 2 8 9

2 3 1 6 9 1 1 4

. 2 6 2 0 6 1

8 4 7 3 8 4 5 0 0 . . 1 . . 1 7 2 2 9

. . 1 . 8

0 0 0 . 1

0 0 . . . . 1 1 9 2 2

0 0 0 0 0 0 . 0 . 1

0 0 . 6

0 . 2 . 6 3 5

1 4 1 7 2 4 4 1 2 6

0 0 . 0 . 1

0 0 . . 2 2 7 2 2 3 0 0 . . 1

0 0 . . . 6 0 0 . 2 0 3 5 5 4 1 3 3 7 8 9

3 0 0 6 0 3 3 1

1 5 6 6 3 7 6 1 9 1 1 6 3 0 5 3 8 9 0 1

1 7 3 2 8 1 6 3 0 4

0 4 5 6

2 8 0 3

6 3 2 9 6

7 2

7 0 5 5 3 0 6

1 9 4 4 1 3 6 2 1 9 2 7

9 4 4 0 6 8

0 8 8 5 4 2 7 1 4 8 8 1 7 5 0

5 9 3 3

. 1 5 0 4 8 7 9 9 9 4 0 4 9 0 5

6 7 6 9 5 1 1

5 5 6 6 1 8 6 4 3 . 9 5 3 0 7 4 1 3 4 1 1 3

9 9 8 8 4 3 9

6 0 8 9 4 1 6 2 0 5 5 7 3 5 6 8 1 1 1

2 9 0 4 9 3 0

6 5 6 4 9 1 4 . 4 7 5 2 6 6 2 6 5 1 3 9 4 1

. 3 2

. 1 1 3 3 2

1 3 1 8 2 6 2

4 8 2 5 6 7 9 3 2 . . 9 . 8

4 2 2 . . 7

3 3 3 3 . . 0

3 . 3 9

3 3 . 8

2 . . 2 2 0 5 1 2

8 1 9 7 4 3 1 3 3 . 4 . . . 7 9

4 2 . 5

3 2 . . 8 . 3 5

. 7 5 8 7 2 3 3 2 . . 7 0

3 . . ^ 3 4 16 5 2 3 1 6 7 7 2 0 3 1 8 2 6 4 3 2 4 6

3 3 0 3

8 9 4 3 5 7 7 6 6 5

6 5 9 7 8 4 3 1

4 6 9 9 9 9 5 7 6 7 4 5 8 1

8 8 7 5 7

3 0 4 3

5 3 3 7

2 9 9 4

2 3

9 1 3 8 4 0 3 8 3 2 1 7 7 0

9 7 8 2 0 6 1

9 8 7 0 1 0 8 . 0 9 3 2 4 0 2

5 7 9 3 5 0 3

9 7 9 4 5 2 5

9 6 5 5 3 8 3 7 . . 0 . 3 0 0

. 9 3 4 0 4 4

2 5 1 . . 2 3 8 0 9 5

. 0 0 1 1 9 1 1 7 6 . 2 . . 7

0 . 5 . 1 5 5

3 . . 8 . 0 0

7 5 . 9 6 0 9 1 5 7 4 9 5 5 .

5 8 . 2 . . 8

6 0 0 2 8 3 9 . 2 . .

0 . 2 .

2 5 9 4 3 8 0 4

3 4 3 2 4 3 9

1 2 5 8 7

4 1 9 8 6 1 6 3 0 0 0 4

2 5 8 7 1

1 2 6 3 1 0 9 7 3 5

1 4 0 9 . . . 2 1 8 3 4

3 1 3 4 8 2

7 9 2

4 1 7 1 9 8 3 2 2 4 1 2 7 1 4 2 0 3 0 5

7 2 1 1 8 4 7 4 6 3 1

6 7 3 4 7 6 8 2 1 9 3 1 9 3 7

4 7 6 1 4 6 0 8

5 6 1 3 5 4

8 1 3 6 1 9 7 7 0 6 9

6 6 1 7 3 0 4 5

7 4 6 3 3 2 5

9 4 7 5 1 0 8 6 7 9 8 7 9 5 8 1 6 7 3 4 0 8 7

1 1 2 5 3 3 2

2 8 6 3 3 5 3 6 1 5 0 5 5 1 0 0 1 6 1 3 9 8

0 1 0 1 5 6 2 1 3 6

1 5 1 1

1 1 8 1 2 4 9 7 7 5 9 0 0 0 1 0 0 1 3

0 1 0 1

0 0 0 2 1

0 1 4 8

1 0 1 1 7 6 . ) t

1 9 4 1 6 0 9 1 9 1

0 1 1 1 8 4 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 n 0 0 0 0 0 ( 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0

0 0 0 0 0 0 0 0 6

0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 5 1 6 0 5

3 3 7 3 1 1 0 7 9 6 5 9 2 4 5

8 6 3

1 A A N N

A

N

4 8 E ^ 1 2 . 7 5 4 3 3 3 2 1

^ 5 5 3 5 3 3 5 2 2 1 5 1 0 0 0

E ^ ^ 5 ^ 5 5 5 3 3

^ 5 5 1 5 1 1 1

^ 5 5 0 5 5 0 0 5 5 0 0 0 2 E E ^ E E ^ ^ ^ 5 5 5 5 1

^ 5

E ^ ^ 5 ^ ^ E ^ E E E ^ ^ ^ 5

E ^ ^ 5

E ^ 5 9 6 7 E 7 4 6 E E ^

9 E E ^ E ^ ^ 5

8

. 0 6 4 9 9 7 E

6 4 8 7 E E 9 E E ^

6 9 3 5 0 E ^

3 E ^ 8 1 . 1 . . 7 . . 0 . 2 5 9 3 E

2 2 4 6 8 . 9 . . . 8 6

1 3 . 0 8 6 9 1 E 8 E 4 . 7

1 1 . . 9 . 0 7

. 1

4 6 . . 0 2 2

7 7 7 7 . 1 . . 3 4 6 E

. . 6 1 7

1 1 1 . 0

1 2 . . 0 9 2 . 4 3 4 .

t .) o n ( c 6 l e a b T

')6^^^^^^^ 62 8 2 4 2

7 5 7 5 2 8 7 0 5 5 6 1 2 1

0 3 6 1 2 3 2

2 7 6 2 5 7 2

1 9 5 5 0 8 8 7 7 1

1 2 3 5 8 9

6 1 3 3

2 5 3 0 3 1 6 2 7 9

2 3 0

2 8 0 3 7 3 6 5

2 8 0 0

1 0 0 4 6 1 9 7 4

4 4 4 5 1 3 1 3 0 1

0 5 5 4 6 7

6 4 8 3 0 9 0 4 7 4 5 7

4 5 5 5 2 5 7 2 9

2 0 0 0 7 1 2 3 7 2 2

47 6 1 5 2

0 1 0 2 2 6 9 9 4 5 3 3 9 3

0 7 5 8 4 6

4 3 5 9 2 1 6

5 2 3 9 5 8 4 7 4 4 2

1 7 2 1 8 4

4 7 1 4 8 0 6 3

3 7 1 6 4 0 5 1

5 4 4 1 0 3 8 7 7 3 8 7

1 9 6 0 8 3 9 3

4 0 5 6 1 9 8 7

9 4 1 1 8

5 4 5 6 5 0 6 8 1

7 8 9 4 4 9 6 3

6 5 7 5 1 7 2 2 8

6 1 7 2 9 7 6 1 5 1 0 2 9

8 7 7 3 5 2 0 0

9 1 1 5 5 3 2 9

4 0 2 4 1 9 8 2 8 5 0 4 8

5 7 5 0 2 3 5 1

2 2 1 3 9 0 3 9 8 6

3 8 5 0 4 6 4 5 5 7 4 4

0 7 0 7

2 2 7 1 . 2

0 . 2 3 9 3

2 6 0 6 2 2 2 7

. 8 5 7

2 1 7 5 6 4 1

0 0 . 0 . . 1

0 0 . . 2

0 . 2 2 2 4 0 8

0 . 2

0 0 . 0 . 0 . . 1 2 1 2 2 2 8 6

. 1

0 0 . 0 0 . 2

0 0 . . . 1 9

0 0 . 1

0 0 . . 1 2 7 2 0 6 0 0 . . 1

0 0 . . 3 1 0 0 . 0 . 1 3 1

6 9

3 5

1 2

4 3 9

2 4 . 2

. 2 4

3 94 9

4 0

7 2

1 2

9 6

. 1

7 .

7 8

3 0

1 1 3

00 2 8 7 6

0 0 4 3 9 6 1 3 9 1 0 0 9 4 3 1 2 9 6

3 4 2 8 2 9 0 5 1

4 5 4 0 3 3 0 4 5 0 0

9 2 0 0 6 8 5 9 8 4 0 5 0

8 9 4 8 7 1 8 9

0 9 4 0 0 9 5 t 0 6 2 8

6 6 6 8

0 9 3 1 9 1 7

3 5 5 1 6 3 7 5

6 7 7 1 2 7 2 0 1 1 0 9 3 2

0 0 7 9 0 5 4

1 9 8 8

1 6 4 2 1

1 7 7 5 8 8 3 0 3

1 1 8 1 8 0 n 0 0 0

0 0 0 1 6 9 7 7

0 1 1 0 0 0 0 1 3 0 3 3 0

1 0 1 6 9 3 .

2 7 8 ) 0 0

0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 o 0 0 c 0 0 0 0 1

0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 ( 0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E T

')6^^^^^^^ 7 8 2 6 9 0 5

8 3 5 2 0

5 8 2 3

A A N N

93 7 2 6 9

0 9 9 3 1 4 7 1 6 0 6 5 3 8 8 2

4 2 3 5 2 5 5

7 3 6 0 8 1 8

3 4 4 8 4 7 1 5 4 8 8 2 7 5 0 4 2

1 7 4 1 4 0 1 9

7 4 1 6 8 4 0 3 3 4 0 3 7 5 0 5

0 1 9 4 8 1 8

2 6 2 6 5 9 0 4 2 3

1 6 4 8 2 0 2 1 9

1 6 8 8 6 0 1 0 2 0 1 1

0 3 3 9 3 8 3 8 )

0 8 4 5 0 3 3 7 8 2 3 0 . 0 0 0 0 1 0 5

0 1 1 0 1 9 8 2

0 1 1 0 1 6 5 7

1 9 0 8 6 4 t 0 0 0 0 0 0 0

0 0 0 1 0 1 1 3

0 0 0 2 0 2 1 9

0 1 1 6 1 1 n 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0

0 0 1 o 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 c

0 0 0 ( 6 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G Gl e

S S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N N Na

E E E T

')6^^^^^^^ 13 7 6 1 7 9 2 3

7 3 3 3 3 5 7 3 9 8

9 1 3 9 1 6 0 5 1 8 4 9 9 0

7 0 5 1 4 8 2 4 4

2 2 6 8 7 2

8 5 2 5 4 1

7 3 5 1

9 8 1 6

5 5 6 8 5 1 5 3 3

2 6 0 5 2

2 7 6

1 5 2 5 3 5 1

2 9 9 2 6 5 5 9 6 1

9 6 5 5 3 8 9 6

3 1 1 9 5 8 0 1 4 7 1 2 5 5 1 5 1 2 3 5 9 7 A

N 2

2 P A 4

T P A 1 1 2 B 2 B 2

D A 7

N 0 B S V 1 1 1 2

F D 1 B 1 1 7 1 1 3

R 8

M Z S P M X 2 C M 6 F T C T A 2 A R 1

F C I D C A F 1 1 8 S 1 6 1 F 2

2 0 T L M N U A S D I P M P B F A U I A K W A P A N N C A T C M S D A I S 6

F P E S H E F A R B A A N C C 2

C Z N F P R P P R A 1 G

K L G A P B D R M O A P K I

4 4 4 3 3 3

^ 4 3 4 3 3 4 3 3 3 4 3 3 3 2

E ^ 4 ^ 4 4 3

^ 4 4 3 4 3

^ 4 4 3 4 3 3 4 2 2

5 E ^ E ^ ^ 4

E ^ ^ 4 ^ 4 3

E ^ ^ 4 ^ 4 4 2

^ 4 2 4 2 2 0 6 7 E 6 E E ^

4 E E ^ E ^ 4

1 E E ^ E ^ ^ ^ 4

E ^ ^ 4 ^ ^ 4 4 4 2 2 E E E E ^ E ^ . 3 0 1 2 9 E

9 6 4 E 7 E ^

0 E 3 1 E

. . 2 6 4

1 1 . . 8

1 1 . . 9 0 1 2 3 E

. 7 2

. 2 6 7 0 E 8 E

2 8 6

7 7 . 1 1 1 . . 1

2 2 . . 4 5

2 . 6

2 2 2 3 . . 8

6 6 . . 8 4 6

7 7 . . 1

9 1 . . 3 6 7 6 4 E 1 . 5

1 1 . . 0 1 2 1 2 . . 7 2 2 . 4 6 6 6 5 5 5 4 ^ 4 4 4 5 5 4 5 5 5 4 5 5 5 4

E ^ ^ ^ 4 4 5

^ 4 4 5 4 5

^ 4 4 5 4 5 5

^ 4 4 4 4 4 7 E E E ^ ^ 4 4 4 4 4 4

E ^ ^ 4 ^ 4 5

E ^ ^ 4 ^ 4 4 4

^ E ^ ^ 4 4

^ 4 2 8 4 5 E

. 5 6 0 1 E ^

4 E 8 E E ^ E E ^ 4

7 1 0 3 E ^ E ^

7 E E E E ^

6 E E ^

0 E ^ E ^

6 6 . 9 . . 1 5 8

1 1 . . 6

1 1 . . 8 9 7 1 9 1

1 1 . . 9

1 1 . . 2 5

2 . . 5 7 3

. 0

2 2 . 3 8

. 5 4 8 6 E

2 7 5 E 6 E E ^ 2 3 6 6 . . 5 2 4

7 7 . . 1

9 1 . . 3 5 7 6 5 E 1 1 . 1 . . 0 1 5

1 2 . . 7 2 2 . 6 3 9 5 1 9 8

3 8 5 3 6 6 4 8 1 8 7 8 7 7 5

2 8 3 8 9 7 1

8 8 7 2 0 9 1

7 1 5 9 1 5 2 4 5 9 8

5 9 5 1 4 9 2

9 1 8 1 9 6 9

3 7 3 5 2 1 1 2

2 2 1 3 6 1 6 1 4 6 8 7 4

2 4 1 4 6 1 1

4 9 2 0 8 0 8 0

6 2 7 3 8 6 5 2 3 6 0 6 3 0

3 1 9 4 8 6 9

7 8 9 4

1 2 4 7 1

4 3 2 4 9 5 9 3 6 2 1

2 2 2 9 9 8 6 3 4

.

1 1 1 6 7 5 5 2 8

1 1 4 6 0 4 5 2 4

1 1 3 1

6 2 1

5 1 9 4

6 0 8 2 3 3 7 7 9 . 4 . 4 . 4 . . . 1 4

^ . . 0 0 2 1 9 0 1 0 0 5 1 1 4 1 1 4 4 .

1 1 4 1 4 . 4 1

1 4 4 . 0 . . 0 0 9 8 7 9 4 . . . 1 5

. 1 1 4 1 3 1 0 6 0 5 3 2

1 0 0 0 9 0 7 6 1 4 1 4 4 .

1 ^ 1 ^ 1 ^ 1 1 4 .

1 1 4 4 . . 0

4 . . . 9 9 5 ^ 1 1 4 4 .

1 1 4 1 4 4 3 3 . . 9 ^ 1 1 1 1 3 .

1 1 3 5 3 3 2 2 4 1

7 5 8 8 4 7 2 1 1 1 8 5 8 6

8 9 2 8 5 8 6

4 6 2 7 0 7 4

3 9 9 3 2 5 3 4 1 1

0 1 4 1 8 5 1

3 7 5 8 0 3 5 8

6 6 7 8 7 0 8

3 0 4 3 4 5 3 1 1 2 2 2 2

8 8 6 7 0 1 6 4

8 7 2 1 1 5 9

2 9 7 5 7 6 1 7 7 3 2 1 6 2

2 5 7 4 1 0 9 0

7 9 7 7 2 8 8

4 8 4 5 4 9 3 4 9 0 9 6 3 1

2 9 7 2 6 5 8 4

0 7 3 0 4 1 4

3 9 6 4 9 3 4 2 4 9 7 1 9 3

1 4 0 5 0 7 4 1

4 7 2 5 0 9 2

4 3 0 5 2 1 6 . 2 1 5 2 3 4

2 7 2 7 1 1 4 0

2 0 2 7 4 7 4

6 4 5 1 1 6 3 0 0 . . 1

0 0 . . 2 7

0 . 1

0 0 . . 1 2 0 2 5 7 0

0 0 . . 2

0 0 . . 1 1 9

0 0 . . 1

0 0 . . 2 1 1 6 0 2

1 9 8 5 6 0 2 0 . 2

0 0 . . 2 2 2

0 0 . . 2 8 3 8 0 0 . . 1 . 1 7 2

0 0 . 1

0 0 . . 2

0 0 . 2 0 . 8 2 3 1 2 8 1

3 7 7 7 4 3 6 5 7 2 5 0 9 3 5

4 7 8 8 5 2 9 6 0 5 6 4 6 3

5 9 1 2 6 2 2 6 5 9 5

3 2 7 4 7 2 4 0 2 0 5 8 8 4 7

7 8 2 8 6 0 4

8 9 1 6 3 6 2 8 0 8 3 4 3 8 1 1 9 0 0 8 6 4

6 0 8 8 5 5 4

6 3 9 9 1 2 6 1 7 7 1 1 8 0 5 4 4 7 2 0 7 6

8 5 9 5 3 7 0

2 9 6 4 2 6 5 5 1 1 0 6 1 8 4 0 7 1 8 5 9 1

9 4 2 1 9 4 1

8 7 6 7 9 1 9 . 5 0 1 6 0 7 0 6 3 7 7 4 3 1

3 2 4 0 0 5 5

3 3 9 4 2 2 9 3 . 5 7 4 0 9 6 0 7 2 5 9 1 5 4

. 2 8 6 0 8 8

0 3 0 6 5 2 6 3 . 2

2 . . 3 4 . 4 1 3 . . 6 4

2 . 9

3 2 . 2 ^ 2 4 8

. 6

2 . 3 . 9 9 4 1 1 8

. . 1 3 2 9 0 6 9 5 3 2 . 3 . . . 7 9 1

. 5 5

. 4 3 ^ ^ 2 3 .

^ 2 2 2 ^ 2 3 2 3 . . 7

2 ^ 2 2 . . .

2 3 3 2

. 3 89 2 6 8 1 7

7 9 6 7 5 5 7 6 5 8 1 2 2 9 3 7 6

7 9 1 2 8 0 6 8 6 8 7 8 1

0 3 4 5 1 1 0 7 2 3

2 0 6 0 7 2 9 8 8 7 0 3 6 2

3 2 7 3 8 3 8 3

2 6 5 1 8 3 5 1 8 1 9 0 8 5 5

6 1 7 3 7 2 6

2 . 7 2 7 6 0

2 4 8 3 9 4 2 . . 0 8 . 5 4 6

8 1 7 6 6 2 3

7 7 6 7 9 3

9 1 0 8 3 2 3 6 7 . . 1 . 5 1

. . 6 9 1 1 8

. 5 4 5 0 8 7

. 5 7 5 5 2 8 5 0 7 0 5 7 . 7

3 6 1 . . 2 4

5 6 5 0 . . 9

6 8 3 2 6 9 2 2 5 3 9 7 0 3 .

3 0 . 8 6 . 4

7 3 . . 2 8 5

4 . . 3

6 . . 1 1 2 3 4

2 1 0 2 1 5 8 3

3 5

3 2 1 8 0 9 4 0 2 .

2 3 9 3

1 3 5

1 2 1 1 5 3

1 3 1 6 7 4 0 1 9 .

5 6 7 . 5 7 . 1 5 5

5 2 8 5 3 5

1 1 1 6

1 0 8 3 8 1 4 2 8 2 0 8 9

4 2 9 8 0 6 1 1 1 6 7 9 1 2 0 3 9

8 0 1 4 6 2 7 7 8 4 7 2 2 6 1

8 4 8 7 9 8 8 0

5 1 4 5 5 5

0 5 0 9 2 8 2 7 7 9

9 3 9 4 3 1 7 0

4 2 6 5 4 8 8

9 4 0 3 9 2 3

4 7 4 4 5 0 1 1 3 9 1 6 8 5 2

1 9 1 4 1 4 5

8 4 7 3 2 9 1

0 9 7 3 1 9 7 0 1 0 0 1 3 9 8

1 3 5 4 6 4 6

1 4 5 0 5 5 7

7 6 6 5 2 1 8 0 0 0 1 0 1 0 1

0 1 3 1 6 4 9

0 1 2 6 1 3 7

1 1 6 4 1 3 0 .) 0 0 0 0 0 0 0 1

0 0 1 0 1 1 5

0 0 0 0 0 0 3

0 1 1 0 1 4 7 t 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 1 1 n 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0

0 0 0 0 0 0 ( 0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 4 6 9 7 8 3 2 7 5 9 9 7 1 9 9

0 3 1 7 0 9 8 4 7 7 3 7 9

9 5 8 3 6 7 4 5 6 0 6 9 1

8 1 0 6

8 1 3

5 3 3

4 5 1 3 1 7 9 5

2 1 2

5 6 8

9 4 1 4 4 7 3

3 2 0 6 7 3 4 6 1 6 8 2 3 2

5 5 6 0 1 5

3 9 6 9

9 7

1 6 4 8 1 6 7 4

5 1 7

5 9 3 2 3

3 2 9 9 4 7 2 6 9 6 5 5 8 5

9

4 4 4 4 4 3

^ 4 4 4 4 4 4 4 4 3 3 4 3 3 3

E ^ 4 ^ 4 4 ^ 4 4 3 4 3 3

^ 4 3 4 3 3 4 3 3 3

4 E ^ E ^ ^ E ^ 4 ^ 4 ^ 4 4 3

E ^ 4 ^ 4 4 3

^ 4 4 4 3 2 9 1 E 2 E E 8 E ^ E ^ E ^ ^ 4

5 E ^ E ^ ^ 4

E ^ ^ ^ 4 4 2 . 0 3 E

5 3 1 5 2 0 0 E 1 E E ^

3 8 E 6 E E ^

7 E E E ^ ^ 4 9

. 0 . 0 0

8 9 . 1

1 . 2 2 7 9 E

2

2 . 1

4 4 . . 0 5

4 6 . 6 . . 4

6 1 1 . 1 . 1 . 3

1 . . 8 6 5 1 5 E

3 3 3 0 E E ^ 2 . 9

2 2 . . 9 9 7

3 3 . . 1

3 4 . . 7 . 3 . 5 9 0 E 5 5 6 . 8 0 2

6 9 . . 2 1 1 . 4 5 4 9 4

9 3 1 1 5 4 0

8 9 0 2 2 3 1

4 5 4 7 8 9

5 6 3 0 7 4

9 2 5 4 5 0 2

. 3 0 2 3 8 2

3 9 3 9 0 9 7

1 . 9

3 . . 9 8 9

1 3 3 . . 8

^ 1 1 3 3 .

^ 1 1 1 3

36 8 7 9 6

3 6 8 1 3 6 1 6 5 4 6 3 3 3 3

7 7 2 2 3 7 2

5 5 9 3 5 6 5

1 8 5 9 8 6 7 8 2 7

0 0 5 1 1 5 3

4 4 7 0 4 0 7 3

0 7 0 6 8 9 5

7 3 7 7 5 9

5 2 1 0 4 9 5 7

7 5 2 2 5 5 8 9

5 6 4 4 1 0 3

6 8 5 6 7 8 2 0 0 3 7 5 1 0

6 3 3 4 4 9 4 4 0 1 6

5 6 9 6 8 9 8

4 0 5 9 7

2 1 0

3 4 5 9 7 5 2

8 8 8 5 7

2 3 7 3 4

8 . 1 7 0 1 6 0 9 2 4 4

8 5 3 3 0 7 4 1 0

8 4 6 4 6 8 7 0

3 7 3 7 7 4 5

8 2 3 2

2 5 1 4

. 1 2 . 1 4

. 2 8 1

1 7 3 2 9 4 4 4

9 7 5 4

1 4

8 9 2 5 0 0 . 0 0 0 . 1

0 . 1

0 . . 1 2 1 1 1 2

0 . . 2

0 0 0 . . 0 2 6 1 3 1

0 . 1

0 0 . . . . 1 7 6 8

1 1 7 6 6 6 2 0 0 0 . 1

0 . 2

0 . 2

0 . 3 1 6

0 . . . 2 . 1 2 6

. . 0 0 0 0 0 0 2

0 . 8 3 8 2 2 3 3 9 6 0 6 4 5 4 2 3 5 5 8

0 2 2 7 5 3 4 2 3

9 5 7 7 6 3 9

4 6 4 9 0 8 1

6 7 8

4 3 3 8 1 4 2 1 8 6 3 6

1 9 3 0 7 4 2

8 2 9 2 6 8 7 9 4 7 9

4 2 5 3 8 1 8

7 1 5 6 6 7 6 0 8 5 1 4 7 7 9 8 4 5 7 6 7 1 5 3 0

5 2 2 1 0 5 5 5 8

6 0 7 1

3 3 8 0 2 2 6 2 7 6 0

1 5 0 8 0 7 8 2

8 8 0 0 5 2 2 4

6 6 9 2 3 1 1

6 8 2 6 2 3 5 2 4 6 0 3 2 6

1 5 0 0 1 1 4 3

9 2 0 8 4 1 6

9 7 8 4 0

8 3 8 . 1 9 . 0 2 5

6 2 8 5 8 3 5 7

1 7 3 5 4 1 7 6

9 . 7 8 . 0 0 0 0 2 5 7 5 0 3 2 . . 2 . 4 2 4 5 0 1 2

2 . 3 2 . . 6 0 4

2 . . 2 . 2 6 . 0 6 9 3 2 0 6 7 ^ 2 ^ . 4 5 1

3 . 5

2 2 . 2 .

^ ^ 2 3 2 . 3 2 . 6

4 2 . ^ 3 3 . . 2 4 6 3 9 0

2 . . 6 . 5 5 ^ 4 2 .

^ 3 2 3 . 3 . 7 8 6 8 3 3 9 4 0 5 4 0 8 5 3 4 7 3 5 4 1 3 6 9 2 7 5

6 8 6 4 4 4 6 0 5

4 5 5 0

. 6 3

1 5 9 1

6 0 2 0 8

5 3 6 2

8 5 0 5 9 0 4 2 7 8

. 3 2 0 1 0 7 5 1 9 7 6 6 9 1 7 1 6 . . 2 . 9 6 4 . 9 6 4 0 9 9 8 4 8 9 6 5 5 7 . 6 5 0 4 8 . 5 3 8 8 2 4 3 8 9 8 5 1 . . 7 5 . 1 . . 0 . 2 7 1 6 5 7 3

1 1 3 9 9 9 5 . 3 8 9 1 .

4 0 9 3 .

2 6 0 .

3 2 0 1 2 4 4 1

9 1 6 4 8 8 1

8 6 1 1 9 1 3 3

2 1 6 4 1 2 0 2 2 7 5 3

8 5 4 8 7 6 4

4 0 2 7 6 6 1

1 7 3 8 6

0 4 9 1 5 5 8 9 9 9

5 6 6 4 5 1 3 6 9 3 7 7 8 8

0 . 2 6 9 5 3 3 1

8 7 2 7 9 9 1 2

7 7 5 5 0 0 3 0 8 9 5 5 3 4 7 1 5 9 3 7 1 1

9 6 5 6 7 1 1 0 3

2 9 3 4 0 0 4 9 7 4 1 4 6 0 2 3 0 1 0 4 1 1 3

1 9 8 5 9 5 0 1 8 6 4

1 1 1 1 9 1

0 9 3 7 6 2

1 2 8 2 2 8

0 5 5 ) 1 5 4

0 0 0 0 1 0 0 1 1 4 7 0 0 0 0 0 0 1

0 0 0 1 0 1 6

0 1 9 8 3 t

0 1 0 1 0 1 n 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 8

0 0 0 0 0 0 1

0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 c

0 0 0

0 0 0 0 0 0 ( 0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 0 6 9 1 6 4

1 6 9 7 6 7 9 5 6 1 4 5 8

1 9 9 9 6 4

9 8 2 1 0 9 8 7 8

7 1 9 1 3 0 8 2 8 5 9 1 0 2 8 7 6

2 1 8

5 8 4 7 6

5 5 5 6 9 3 6 4 7 8 0 5

1 8 2 2 5 8 9 7 7 1 3 8 5 5 5 8

5 5 7 9 1 8 4 1 8 1 9 6 1 5 5 3 0 1 9

1 0 6

2 2 2 9 9 4 5

2 3 2 4 1 3 2 9

8 5 8

5 2 5 4 2 8

49 6 2 1 8

3 9 4 2 7 8 1 8 9

4 3 0 7 6 5 1 7 6 4

3

9 3 1 4 3 9 1 1 6 1

9

3 5 7 5 8 8 4 6 1 1

6 2 8 9 7 8

1 8 2 2 7

6 5 2 5 1 1 0 8 2 4

. 6 6 2 6 6 6 0 0 6 1

3 . . 6 . . . 6 6 9 6

1 1 3 3 . 3

1 1 3 1 3 3 . . 5 9

1 1 3 3 . 5

^ 1 1 3 .

^ 1 3

^ 1

05 7 6 7 5 3

8 4 8 1 4 4 9 4

9 1 9 3 6 2 2 6 9 4 6 3 4

4 2 7 7 5 6 2

4 5 4 1 1 7 8 2

9 6 3 2 1 9 1 5

2 8 5 1 8 2 0 7

9 6 3 4 5 9 7 8 1 7 9 9 3 8 6 8 5 6 4 4

4 0 5 0 0 1 0

0 6 3 0 3 8 1 7 0 1 4 8 6 8 8 0 9 2 5 9 1

2 9 0 0 0 0 2

3 1 1 5 9 1 5 8 3 9 2 9 4 4 3 1 8 8 4 7 0

9 4 8 2 7 4 8 8

8 0 1 2 1 0 8 9 0 3 2 3 5 3 3 7 8 3 9 0 4

7 7 6 1 1 1 3 2 2 1 0 3 5 1 6 7

8 8 4 8 3 1 0 8 9 0 6 . 2 8 2 5 1 0 7 5 9 2

1 8 8 8 2 2 1 1

. 8 8

2 3 1 6 5 9 3 9 3 6 9 0 . 1

0 0 . . 2

0 0 . . 2 2 1 1 3

0 0 . 0 . . 2 0

0 . 2

0 0 . 0 . . 2 1 7 2 2 9

0 0 . . 1

0 . 0 1 8

.

0 0 . 2

0 . 3 7 1 5 2 5 9 6 1 0 . 1

0 0 . . 1

0 0 . . 2 1 2 7 0 0 . 0 . . 1

0 0 . 9 2 2 9 4 2

9 6 4 9 8 2 8 1 5 1 7 2 2 8 6 5 3 1 9 7 1 1

2 5 3 7 4 9 3 0 4 9 8 4 7 2

1 0 3 8 1 5 8 4 1 7 6 1 3 7 8

6 1 3 0 2 0 8 0 7 0 6 0 2 4

3 0 0 7 5 7 9 6 2 3 9 7 9

6 7 3 0 7 7 9 0 5

4 6 8 8 2

3 6 0 6 2 2 0 . 3 . 5 1 5 8

8 2 6 7 3

4

3 2 . . 4 2

3 . 3

3 2 . . 7 1 9 6

. 9 3 ^ 2 3 . . . 7

2 2 .

^ ^ 2 2 3 . .

2 ^ 83 7 4 4 1 3 9 6 9 8 6 2 1 2 5 3 7 7 7

7 4 4

7 6 2 4 4 5 9 7 3

2 5

1 8 0 0 5 6 9 7

4 2 1 0 4

0 9 1 8 2 8 2 9 0 4 5 5 1

1 3 9 2 9

8 8 6 0 7 2 0

. 2 4 3 6 0

0 8 4 2 7

5 0 9 9 8 7 7

3 . . . 9 8

. 9 . 8 4

. 8 2 1 6 6 2

5 5 3 3 0 3

4 9 4 2 6

0 . . . 3 3 8

4 3 7 8 8 6 . .

2 . 9 0 . . 8 . 1

8 8 3 0 8

2 2 3 6 1 9

1 3 1

9 3 9 7 2 7 . 5

1 9 1 9 2 7

1 5 2 2 5 3 8 7 1 . 5

2 1 2 4 9

1 7 1 4 2 1

1 4 8 2 8

75 0 4 5 3 4 6

5 1 1 9 2 0 4 5 3 2 6 1 3 3 9 0 7 7

3 5 3 3 6 6 2 8

6 4 4 5 5 9 2 4 2 1 6 9 8 9

7 8 9 0 4 6

0 0 0 7 6 7 4 3 9 8

5 9 7 6 8 8 2 0 4 7 8

1 2 2 4 6 4 6 3 8 0 7

8 1 0 5 8 0 8 8 8 8 4 9

5 2 8 7 4

8 1 5 2 0 8 1 0 1 1 0

0 1 1 1 1 3 4 8 4 4 5 6

1

o 0 0 0 0 1 2

0 1 7 1 6

0 0 0 0 1 0 3 1 8 8 8

1 1 1 1 1 6

4 2 8 5 .) 0 0 0 0 0 0 1

0 0 1 0 1

0 0 0 1 0 1 1 7

0 0 0 1 6 0

1 7

0 1 9 0 9

0 0 1 0 t 1 3 n 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 c 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 ( 0 0 0 0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 06 9 5 4 2

0 8 2 0 3 6 1 2 7 5 5 1 8 7 3

9 6 8 4 9 0 0

7 8 6 5 4 3

0 9 3 2 1 7 9 7 8 5

7 5 7

5 8 9 3 4 3 9 0 4 0

8 9 8 2 9

1 9 8 3 3 9 0 7

2 9 3 6

2 2 9 2 5 7 1 2 9 2 2 7 9 5

8 9 4 5 5 2 0 4 3 9 7 6 6 9

2 9 0 2 6 6 6 1 3 5 8 1 3 9 5 4 1 8 0 6

2 1 6 0

A A 0

N N 1

^ 3 3 3 3 3 3

E ^ 3 ^ 3 3 ^ 3 3 3 ^ 3 3 3

2 E ^ E ^ ^ 3

E ^ ^ 3 ^ 3 3

E ^ 3 ^ 3 3 ^ 3 3 3

2 3 E 2 E E ^

2 E E ^ E ^ ^

5 E ^ E ^ ^ 3

E ^ ^ 3 ^ 3 . 3 0 6 2 5 E

. 6 0 9 7 2 E 7 E E ^

5 5 7 E 4 E E ^

0 E E ^ E ^ 3 3 . 5

3 3 . . 2

3 4 . 7

4 4 . . 8 5 9

4 5 . 3

6 . 5 1 E

. 8 . 0 2

8 . 0

1 1 . 4

1 . . 5 7 7 5 8 E

. . 9 0 2 1 E 4 E ^ 1 . 5

1 1 . . 7 8 9

1 1 1 1 . . 6 4

. 7 . 8 9 5 E 2 2 2 2 . . 0 0

2 . 2 3 3 . 4 1 1 1 1 1 0

^ 4 4 4 1 1 4 1 1 0 4 0 0 0

E ^ ^ ^ 4 4 1

^ 4 4 0 4 0 0

^ 4 0 4 0 0 4 0 0 0

9 E E E ^ ^ 4

E ^ ^ 4 ^ 4 4 0

E ^ 4 ^ 4 4 0

^ 4 4 0 4 0 0 4 8 5 E E ^

0 E E ^ E ^ ^ 4 ^

8 E E E ^ ^ 4 0

^ 4 4 2 4 6 3 1 9 E 1 4 E E ^ E ^ ^ 4

3 E E ^ E ^ . . 4 6 3 E

4 0 3 E E ^

0 0

4 4 . . . . 0

4 4 5 6 6 . . 6 5 0 1 4 6 E

6 . 1

7 . . . 3 3 3

8 1 1 1 . . 9

1 1 . . 1 1 3 7 5 E

7 9 3 E 7 E E ^ 3 5 1

. 9 0 3 2 5 2 2 . 2 . 2 . 2 . . 7

2 2 . . 5 7 1

2 3 . 3 3 . 4 . . 4

4 4 . 1 6 9 0 8 5 4 0 6 7 6 4 7 7 1 4 0 5 1 . 2 5 2 5 . 2 3 . 1 1 3 3

^ 1 11 4 7 7 5 1

7 8 0 6 8 5 0 2 7 7 5 7 5 8 2

1 3 6 0 5 4 7

0 6 7 8 8 8 6

0 1 9 5 3 8 4 5 6 3

1 4 2 4 4 9 7

1 2 2 4 7 5 0 8

2 7 2 1 3 4 1 8

2 5 3 9 2 9 8 2 8 1 9 8 8 6

8 2 9 7 2 8 0 3

2 1 3 7 2 6

2 0 7 5 7 2 6 7 9 1 6 2 1 9

5 0 7 0 7 4 6 8

0 1 1 5 2 9 3

4 0 6 1 2 7 8 7 9 5 2 5 5 7

1 5 8 9 7 5 9 1 4

6 4 1 0 6 5 4 2 5 7 8 0 8 5 6 3 3 6 6 4 1 3 5

4 8 6 4 0

2 0 2 8 5 1 1 4 9

6 2 6 6 7 3 4 1

7 6 7 0

9 5 3 3

2 3 7 7 2 7 1 4

. 1 . . 0 . 2 2 9 9

1 1

. 3 . 1 1 1 7 6 2 5 1 0 0

2 7 9 6 7

9 8

2 2

. . 2 1 3 . 1 1 5 . 6 9 0 0 0 . 1 1 .

0 0 . 0 0 0 . 1

0 0 . 0 . 0 . . 1 8 2 2

0 0 . . . 1

0 0 . 0 0 0 . .

0 0 0 . 0 . 1

0 0 . 0 . 1 1

0 0 . 3 9 9 6 9 5 1

8 4 4 6 9 2 7 1 1 5 7 3 2 7 9 1 6

3 6 1 6 1 0 3 0 6 8 0 3 4 1 2 3 6 1 3

2 3 7 7 0 0 4 1 9 6 0 5 8 8 4

7 4 4 8

7 9 1 2

1 4 3 7 9

7 1 3 0 2 4 5 4 5 8 5 2 0 2 8

1 8

7 0 9 8 3 8 2

6 3 5 2 2 1 6 1

4 0 7 0 9 3 0 4 5 0 9 6 9 5 8 7 5 8 0 0 9 8

7 6 6 0

0 4 3 3 7 4

6 5 6 1 0 9

5 0 2 6 8 4 6 4 5

1 3 2 7 5 1 3 2 7 2 9 7 0 3 3 1 7 1 8 6 7 8 5 1 7 3 0 0

0 0 6 0 0 8 8 6 4 6 8 2 1 9 . 4 3 9 8 0 7 4

1 6 3 0 9 5 1

7 7 5 4 8 3 1 1 8 2 0 4 6 7 2 2 . . 2 . 6 6 6

. 3 1 5 3 5 5

. 2 6 0

. . 1 9 0 4 2 1 5 5 4 0 .

^ 2 3 3 2 2 2 .

^ 2 4 . 4

2 2 . . 3 5 4

2 2 . . 0 .

^ 3 2 ^ 2 . . . 6

. 5 3

2 . 7

4 . . 6 . 0

2 2 . 0 1 6 6 2 ^ ^ 2 2 3 2 .

^ ^ 2 2 . . .

^ 3 2 ^ 2 97 1 9 7 6 5

8 5 7 8 1 4 4 1 2 9 7 8 8 5 1

9 3 5 6 7 5 9 5

6 3 2 3 4 5

7 2 0 2 3 1 9 0 8 5

4 2 9 8 5 0 4 5

0 4 2 7 9 8 8

3 3 8 3 9 1 6 1

0 1 2 1 6 1 4 0 3 3 4 7 6 1

2 4 3 0 6 1 2

6 1 4 8 7 6 5 0

3 4 3 6 3 4 . 7 4 5 6 6 6 3 2

9 1 7 7 0 6 5

1 3 8 1 7 1 0 6

9 1 9 8 1 8 6 . . 6 . 9 5 9

. 9 0 7 3 6 1

. 3 1 5 8 0 9 2

9 1 4 3 2 3 2 7 4 5 . 2 . . 1

2 . . . 0 0 9

5 . . 4 . 7 2 6

. 0 . 3 4 5 1 9 3 9 8 6 . . 8

2 . 4 .

9 6 4 0 8 8 4 8 6 6 8 9 2 1 2 . 7 . 0 5

8 . 9 . 8 2 3 2 1 4 8

1 1 1 2 3 3 4

2 8 8 1 0 2

2 4 5 0 5 7 9 0

6 1 2 3 6

9 9 3 1 8 6 6 8 5 . .

4 1 2 2 9 3 9 . . 1 1 8 3 8

2 1 1 6 7 6 3 6

8 7 5 3 0 4 3 2 7 7 2 5 8 0 7

2 1 2 1 3 3 1 5 6 0 2 1 7 2 7 5 0

2 7 2 7 0 1 4 1 7 3 2 2 6 4 9 4 1

9 1 6 7 8 9 7 7 3 8

3 8

0 3 6 9

5 6 8 8

7 8 6 0

9 7 8 4

7 1 1 9 5 3

0 1 9

7 5 5 6 9 1 1 3

6 4 4 5 3 2 1 6 8 0 3 6 2 0

3 3 6 3 6 5 1

2 7 8 8 3 1 2 8

7 5 1 4 4 0 0 1 1 0 1 6 1 7

1 5 3 3 6 7 8

1 0 7 0 0 8 3 7

5 9 9 6 5 0 3 ) 0 0 0 1 0 1 1 9

0 1 1 5 1 3 3

0 0 1 2 1 3 6 4

2 3 8 8 5 . 0 0 0 0 0 0 0 1

0 0 0 2 0 2 4

0 0 0 1 0 1 1 5

0 1 1 9 1 0 t 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 2 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ( c 0 0 0 0 0 0 0 6

0 0 0 e S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 08 2 1 3 3

4 8 4

5 6 7 1 7 7 3 6 0 9 6 9 1

4 1 3 9 8 9

9 9 4 4 3 8

1 8 8 7 5 1 1 8 2 7

0 5 3 5 5

6 7 7 1 0 8 9 9 7 6 1

1 9 5 3 6 8 5 5

4 6 6 3 4 4 5 2

7 0 8 1 5 8 9 1 5 9

2 5 6

8 7 9 7 8

5 3 5 1 4

0 5 5 2 0 3 9 4 9 9 3 8 2 5 6 7 2

5 1 3

1 9 7 0 4 4

1 7 6 3

3 2 A

N

^ 3 3 3 3 3

E ^ 3 ^ 3 ^ 3 3 3 3 ^ 3 3 3 3

E ^ 3 ^ 3 3 ^ 3 3 ^ 3

5 E ^ E ^ 3

E ^ ^ ^ 3 3

E ^

0 3 E E ^

9 E E E E ^ ^ 3 2 4 E 1 E ^

2 E E ^ E ^ ^

6 E ^

4 E ^ ^ 3

E ^ ^ 3 ^ 3 3 . 3 7 8 8 E

9 6 7 E 7 E E

4 8 E

3 3 . 3 . . 9 2

3 . 4

5 6 . . 9 . 0 . 0 7 2 4 4

6 6 7 7 . . 7

7 . 7 3

7 7 . 0

8 . . 5 9 4 1 6 E

1 1 5 8 E E ^ 9 9 . . 1

9 1 . . 1 6

1 . 1

1 1 . . 2 8 5 8 1 9 E 1 . 4 6 1 2 . 2 . . 9 . 0

2 2 . 1 3 3 . 4 0 0 9

^ 4 3 9

E ^ ^ 3 9 5 E E ^ 3 9 5 8 4 E ^ 3 . 6 3 9 E ^

8 4 4 . . 3 9 E

4 4 . 6 0 4 . 4 . 6 5 5 2 5 9 4 4 9 1 8 8 1 9 1 4 3 3 1 3

1 4 0 6 8 4 9 1

1 5 3

9 2 6 3 4 3 4 1

4 6 5

2 9

4 1 8 4 1 5

6 2 0 4 9 1 1 4 8

4 9 6 3 3 5 3 9

8 0 3 3 5 1 9 2 5 9 7 2 2 5 4 5 6 7 4 6

8 3 9 3 7 8 5 5

0 8 5 2 1 0 3

8 4 7 5 6 7 1 1 6 0 4 6 3 1 7

7 5 6 6 0 6 6 9 7

5 0 3 0 9 7 4 2 4 8 3 2 7 9 0 9 9 6 4 4 0

6 4 1 7 1 5 8 8

4 6 5 9 4 9 0 3 5

. 1 3 . . 2 3 2 0 9 1 9 8 8 8 1 1 4

3 . 2

3 . 2

3 . 1

3 . . 1 . 1 8

. 1 1 8 8 8

1 1 6 6 3 5 9 8 8

4 . 0 8 7 0 8 1 1 8 7 3 3 3 3 3 . 3 . . 1 . 1 . . . 1 1 5 1 4

. 0 7 ^ 1 1 ^ ^ 1 1 1 1 3 1 1 1 1 1 3 1 3 1 3 1 3 3 1 3 . 1

1 3 .

1 3 . 1 1 4

. 1

1 3 .

1 3 3 . . 3 0 3 0 7

3 1 .

^ ^ ^ 1 1 3

^ 1 1 3 1 3 . 0 ^ 1 1 3 .

1 3 ^ 1 57 9 8 7 3

7 3 5 7 9 4 9 8 5 8 6 4 7 1 6

4 4 9 4 3 5 4 0 0 5 5 7 4

6 2 2 4 9 1 6 9 1 2 1

1 1 7 1 7 6 6 3 6 2 6 5 6 5

0 2 4 2 6 7 7 4

4 8 3 6 1 7 1 0 8 2 7 0 3 8 5 2 6 9 9 1 7

3 9 3 4 5 2 6 0

9 8 7 1 9 0 8 3 1 8 0 3 0 1 5 2 3 4 3 3 6 3 9 2 0 6 3 1 8 4 4

3 4 9 5 2 9 4 7 3 9 5 8 9 3 3 1 5 0 2 8 4

6 5 2 6 3 2 4 6

9 0 3 1 3 4 4 1 5 6 2 1 7 3 1 6 3 6 1 3 3

2 2 1 8 5 9 3 8 5 4 2 7 4

3 6 5 4 6 6 0 8

. 1 1 2 2 2 2 9 7 4 2 8 2 6

1 3 5 6 6 9 0 5

6 8 3 8 6 4 5 . . 1 0 0 0 0 0 . . 2

0 0 . 2

0 . 1

0 . 1

0 0 . . . 2 . 1

0 0 0 . 1

0 0 . . 2 2 3 1 5 3 5 7

. . 2 2 1 1 3 2 9 9 3 3 0 0 . . 2

0 0 0 0 . 0 . 0 . . 2 8

0 . . . 1

0 0 0 . 2

0 0 . 2 0 . 8 6 4 7 2 1 8

9 7 2 8 5 9 9 5 5 1 2 8 5 7

5 1 6 0 5 9 8

0 0 9 1 4 6

4 6 6 4 9 7 2 2 7 7 8

4 8 2 3 3 1 2

0 9 7 4 2 6 8

5 7 7 0 2 0 9 7

0 8 2 5 9 4 5 3 2 8 6 4 2 5

1 8 2 0 2 0 2

3 4 4 1 6 9 5 3

8 4 3 5 1 0 0 2 2 3 2 6 7 5

4 8 7 4 7 8 8

8 6 8 5 2 9 7 8

6 9 5 1 3 6 5 9 9 5 9 2 6 1

2 8 7 8 8 6 0

5 0 1 8 0 3 3 8

0 2 8 4 8 4 5 . 4 9 6 1 7 0 8

5 5 7 9 5 2 8 2 2 7 7 2 7 0

5 2 8 0 1 0 3

. 0 4 9 8 0 6

. 2 0 8 5 4 7

^ 2 0 7 9 1 6 8 4 8

5 3 5 2 1 9 0 2 . . . 8 0 7

2 3 9

. 0 9 7 0 3

. 3 1 1 0 3 7

1 2 2 8 7 9 0 . . 0 . . 8 . 4 0

. 1

^ ^ 2 ^ 2 2 2 3 3 . 2 3 2 2 2 2 .

^ 3 . 1

3 3 . . 4 0 0

2 . . 3 . 1 9 4 5 5 6 ^ 3 3 .

^ 2 2 . . . . 6 6 ^ 3 2 2 2 2 . .

^ 2 89 8 9 5 1

8 5 6 7 1 6 0 7

1 5 2 4 5 7 5

0 4 9

1 6 7 9 3 6 4

7 7 1

0 4 6 9 9 2 7

7 0 0

. . 0 1 0 4

1 7 0

. 3 4 1

. 7 2 3 1 4

6 9 . .

6 5 7 3 6 2 .

6 0 9 . . .

1 5 7 8 3 0

1 3 2 8

2 3 5 1 2 4 2 0 8

1 1 1 1 9 8 3

3 1 6

86 9 8 7 1 6

4 9 3 7 0 4 6 8 6 3 0 7 9 6 4

7 4 8 1 8 1 9

9 2 3 1 1 3

1 3 8 4 3 1 2 5 4 4 1

3 5 4 7 1 5 4

4 7 6 3 9 1 7

6 9 8 0 8 5 4 5

0 2 8 6 2 7 5 1 8 0 3 9 3 2

6 5 8 4 9 8 5

. 1 1 6 6 0 0 7 5 4 9

4 8 9 9 6 4 6

5 8 2 0 1 0 1 8 4 2

1 8 5 6 6 1 0 6 2 5

1 1 3 0 9 6 6 0 0

0 0 6 7 9 0 4 6 0 7 4 2 ) 1

0 0 0 0 2 4 1

0 0 0 0 0 0 0 1 0 1 1 0 1

0 0 0 0 1 6 2

1 7

0 0 0 0 1 0 1

0 0 1 7

0 1 0 1

0 0 1 0

0 1 2 6 0 1 4 t 2 n 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (

0 6 0 0 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 19 2 0 7 5 6 3 6 4 6 7 6 8 1 9 2 7 5 5 8 6 8 1 2 6

5 3 2 9 3 9 4 6 9 9 7 7 1

5 5 8 1 6 8 8

5 1 3 4 9 2

1 9 4 8

0 6 2 1 1 3 1 1 8 4 2

5 7 5 9

2 4 9 3 7 0 4 4 2

6 0 0 5 6 0 5 9 2 6 6 0 2 1 6 9 1 2 5 8

5 1 7 5 1

5 1 0 3 5 8 3

9 3 0 0 9 5 8 2 1 2 2 0 0

1 7 A

N

3 7 7 7 7 6

^ 3 7 3 7 7 3 7 6 3 6 6 6

E ^ 3 ^ 3 3 7

^ 3 7 3 6 6

^ 3 6 3 6 6 3 6 6 6

1 E ^ E ^ ^ 3

E ^ 3 ^ 3 3 6

E ^ 3 ^ 3 3 6

^ 3 3 6 3 6 6 5 5 E 8 E E ^

4 E ^ E ^ ^ 3

4 E ^ E ^ ^ 3

E ^ ^ 3 ^ 3 3 6 . 6 4 9 8 3 E

. 4 . 7 8 2 0 E 4 E E ^

9 0 E

0 2 E E ^

3 9 6 E E ^

2 E ^ ^ 3 8 9 3 . 7

3 3 . . 9

5 5 . . 7 8 0 3 0 E

6 . 0

6 . 1

8 . . 8 . 8 . 4 7 2 E

. 5 2 3 2 E E ^

5 6 1 1 1 . 0 2

1 1 . . 2 3 4 E

2 2 . 2 . 2 2 . . 0

2 3 . 3 . 3

3 . 4 7 2 E 3 3 3 3 . 4 . . 0

4 5 . 3 9 9 9 9 8

^ 3 9 3 9 9 3 8 8 3 8 8 8

E ^ 3 ^ 3 3 9

^ 3 8 3 8 8

^ 3 8 3 8 8 3 8 8 8

6 E ^ E ^ ^ 3

E ^ 3 ^ 3 3 8

E ^ 3 ^ 3 3 8

^ 3 3 8 3 8 8 3 8 E 2 E E ^

0 E ^ E ^ ^ 3

7 E ^

1 E ^ ^ 3

E E ^ ^ 3

2 5 4 2 7 E ^ 3 3 8

9 0 1 9 E E ^ . 5 3 1 4 0 E

. . 9 7 4 E 4 E E ^

0 8 E 5 E E ^

4 E E ^ E ^ ^ 3 5 . 7

5 5 . . 1 4 7

6 6 8 8 . . 0 6 6 8 3 E

9 . 2

1 1 . . 7 8 7

1 1 . . 9

2 2 . . 1

3 . 3 3 . . 7

3 3 . 9 . 1

3 4 . . 3 4 1 5 8 9 E 4 5 . . 4

5 5 . . 4 5 8 5 7 . . 3 7 8 . 4 9 1 8 7

7 5 4

4 1 6 0 8

5 9 8

0 2 4 3 1 5 2 1 1 7 9

0 3 9 8 7

0 5 6

8 2 1 5 4

6 3 5 2 6 2 5 2 8 1 3 5 3 2 0 2 3 4 2 9 8 6 6 8

4 6 8 3 3

3 4 5 5

3 9

3 9 8 8 7 8 1 0 7 1 1

9 4 2 3 7 8 8 4

4 8 1 2 9 3 1 1 6 9 7 2 6 7 4

7 0 5 7 3 9 7

2 8 9 2 1 9 0

8 3 8 8 4 6 2 0 0 5 5 5 2 8 7

1 2 7 7 2 5 7

9 6 5 8 2 6 6

2 7 5 6 2 0 5 8 . 0 0 0 5 2 3

0 1 9 7 1 5 8

. 2 2 1 4 0 8

9 8 8 7 3 8 6 4 3 . . . 0 0 2

. 0 9 9 7 3 1

2 9 9 9 1 1 5

8 8 8 5 8 0 9 0 1 1 3 1 3 3 . . 0 9 9 3

3 3 . . 9

1 1 1 1 3 3 .

1 3 .

1 2 . 2 . 1 2 . . . 9 9 0

. . . 8 8 6 5 2 ^ 1 1 1 2 2 .

1 2

^ 1 1 1 2 2 . . 9

1 2 2 . 2 2 2 8 . 8 8 5

1 1 ^ 1 1 2 .

^ 1 1 2 1 2 . . 8

1 1 2 2 .

1 1 2 4 8 2 6 6 1 4

8 9 9 2 9 6 5 5 6 4 3 7 2 9 2

5 9 4 4 6 6 3

3 3 7 9 8 1

6 7 2 9 7 9 6 6 7 4

7 8 0 7 6 7 5

7 5 5 9 3 7 4 5

6 9 4 0 9 1 8 6 9 3

9 4 8 2 4 1 8 4 0 4 7 5 1 2

1 8 3 6 5 9 1

7 6 2 0 4 3 6 4

6 2 8 0 7 8 5 6 6 5 7 1 0 5 9 4 4 0 3

8 8 0 5 8 7 5

5 4 2 7 3 9

7 7 8 0 3 2 6 7 9

5 7 1 6 2 1

5 8 7 3

2 8 6 5 2 2 9 1 7 2 8 3 9 1

0 2 5 9 3 6 4

2 2 6 2 5 4 8 3

2 9 3 9 5 2 1 7

9 1

. 1 8 1 7 9 1 5 8 2 2 5

. 3

. . 2 2 0 6 1 6 0 4

2 2 4 1 6 2 0 4 0 0 . . 2

0 0 . . 2 9

0 . 1

0 0 . 0 . 2 2 1 5 5 4

0 0 . . 2 1 5

0 0 0 0 . . 3 2 . 2 6 2

2 5 3 0 6 4 3 9 0 0 . 0 . 0 . 2 3 6

0 . 2

0 0 . . 1 2 9

. 2 2

. 2 8 0 1 4 0 0 . . 2

0 0 0 0 . . 2

0 0 . 5 5 2 8 7 9 4

5 8 5 6 2 5 0 2 3 4 7 7 2 3 6

9 6 7 0 1 4 7

1 0 6 6 0 2 1

5 5 5 4 1 3 0 1 6 4

1 7 4 6 1 2 5

5 0 7 4 0 5

5 0 6 0 5 8 9

3 5 8 8 9 9 5 7 4 6 4 8 9 2

9 2 9 9 6 2 2

4 2 0 9 2 4 0 7

5 4 2 6 7 4 5 3 9 5 7 3 9 1 9

9 7 3 1 7 8 5

0 1 4 8 1 0

5 8 5 9 4 4 5 5 6 3 9 4 2 8 6

0 2 2 8 1 8 6

9 3 3 4 1 7 9

2 1 0 4 0 4 4 4 . 3 6 4 9 7 6

3 9 4 1 8 5 9

5 8 1 5 2 3 4

9 2 5 2 9

5 9 2 7 3 2 9 2 . 0 4 6 5 6 9

9 6 3 8 7 4 8

9 9 8 5 2 9 7

0 1 0

. 1 2 . 0 9 5 1 9 3 9 3 5 4 6 2 . 5

2 3 . . 3 7

2 . 5 0 4 8 1 9

. 9 4 0 . 9 . 6 3 9 6

. 9 0 7 8 5 6 3 2 . . 0

2 . 9

3 . 8 3

. 0 ^ 2 2 3 . 2

2 .

^ 3 2 3 . . 3 2 ^ 2 . .

4 3 2 1 . . . 4

^ 3 3 3 . .

2 2 3 . 7 5 4 4 6 5 6

4 6 4 7 1 8 0 1 8 3

5 8 3 3 1

1 8 7 8 7 2 7

9 5 3 9 8 1

3 7 5 2 9 0

6 1 5 2 1 6 0

4 0 7 8 1 7 9

3 4 7 0

0 3

3 6 5 5 7 1 0

9 8 8 4 7 0 6

2 6 9 2 6

. 2 . 4 9

2 1 . 1 2 8 2 6 8

. 0 . 3 0 9 9 7 7

9 3

. 3 9

. 2 4 9 9 2 2

6 . .

2 5 4 . 4 7

4 7 4 1 7 1 3 5 . . 3

4 7 4 6 .

1 8 . . 4

0 7 3 . .

4 . 7 6

1 2 7 5 3 9 1 3 6

5 1 1 2 7 1 4 5

4 2 0

1 4 9 5 .

2 1 4 2 5 3 8 0 2 6

1 6 1 9 2 0 0 6

1 4 1

1 1 4 1

06 6 4 8 0 3 7 9 9

9 4 2 2 7 1 1

4 1 5 5 8 1 6 2 2 5 8 9 6 2 5 1 8 9 4 4 2

9 5 8 2 9 7 0 2 8 8 0 0 8 8 5 6

8 5 2 4 9 8 1 3 4 7 1 9

1 7 2 3

3 9 0 2 5 5 0 2

1 3 5 7

0 2 3 5 6 8 4

1 1 5 8 8 2

5 6 1 9 1

1 8 9 7 7 2 6 1 8 1 1 0 1 1 4

0 0 0 1 4

0 1 0 1 0 1 4 1 0 3 0 0

1 1 7 1 8 8 0

0 0 7 7 2

7 8 7

8 8 0 0 6 4 .) 1 9 8 0 0 0 0 0

0 0 0 0 0 0 1 0 1 2 0 0 0 1 1 1 0 3

0 0 0 0 1 2 1 6

0 0 1 1 3 1 3 0 t 0 0 0 0 0 0 o 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 1 1 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 (

0 6 0 0 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E N E T

')6^^^^^^^ 4 5 4 6 6 4

4 2 9 6 4 8 3 0 8 0 0 3 1 8 1

1 0 5

0 6 2 0 1 9 6 5 6 2 4 8

1 9 1 1 8 5 8 2 2 0 1

9 9 1 0 1

5 7 5 7 5 2 2

2 1 7 2 8 5 8 4

1 7 9

5 9 2 3 4 3 5

4 4 1

9 5 8 5 9 1 3 8

3 6 8 4 2 1 2 5 9 5

7 0 1 6 0 9 7 6

9 4 4 9 6 3 7 7 9 4 1 9 5 7

5 5 4 3 3 1

2 8 4

^ 3 3 3 3 3

E ^ 3 ^ 3 3 ^ 3 3 3 ^ 3 3 3 3

5 E ^ E ^ ^ E ^ ^ 3 ^ 3 3

E ^ ^ 3 ^ 3 3 ^ 3 3 3

1 9 E 9 E E 0 E E ^ E ^ ^ 3

8 E E ^ E ^ ^ 3

E ^ ^ 3 ^ 3 . 2 3 5 2 0 1 0 4 E 7 E E ^

2 2 7 E 6 E E ^

6 E E ^ E ^ 3 5 . 4

6 6 . . 6

6 6 . 1

8 . . 8 3 0 6 9 3 E

8 8 . . 6

9 9 . . 0 2 7

9 1 . . 2

1 1 . . 3 3 3 6 3 0 E

0 6 1 E 5 E ^

5 E 1 1 . . 5 . . 7 8 1

1 1 1 1 . . 8

1 1 . . 2 3 5

. 1 . 1 0 2 2 . . 4

2 2 3 . 5

3 3 . 3 8 7 7 7 7

^ 3 7 3 7 7 3 3 7

E ^ 3 ^ 3 3 ^ ^ 3 7 0 E ^ E ^ ^ E E ^ 3 7 5 4 E 0 E E 6 1 E ^ 3 . 0 7

. 1 0

. 1 6 3 3 3 6 E ^ 8 . 0

1 1 1 1 . 1 . 1 . . 5 7 E

4 . 5 0 5 . 2 5 6 . 2 1 3 7 4 2 7

5 2 5 4 9 7 0 9 2 5 7 8 9 9

4 0 8 1 7 0 6 8 4 6 5 9

7 3 1 6 8 4 5 2 3 2 6

9 4 4 2 9 0 1

6 2 1 1 4 4 3

5 7 9 3 6 5 4 4

1 5 7 6 7 7 0 1 3 2 6 3 4

9 2 4 0 3 5 0

3 4 5 2 2 5 4 4

9 2 2 0 3 5 6 5 5 3 1 6 6 5

7 1 2 0 6 6 1

7 8 7 5 4 6 0 7

8 5 9 2 5 3 7 8 3 3 3 0 4 5

0 3 8 0 3 0 1

7 4 1 0 6 0 5 6

8 3 2 2 8 8 7 . 8 8 8 3 1 4

8 0 0 8 0 1 1

7 7 7 3

. 5 3 9 9

3 1 9 7 4 6 7 2 . 2 . 8 8 1

. 8 0 . 9 8 8

. 7 7 6 7 5 4 8

7 3 2 4 2

0 4 6 1 2 1 2 . . 8

2 . 8 2 7 7 7

2 . . 7 . 7 7 4

. 7 7 2 7 0 9 ^ ^ 1 1 1 2 2 .

^ 1 1 2 1 2 .

1 2 1 2 . . 7

2 . . 7

1 2 1 2 . 2 2 . . 7 . 7 6 ^ 1 1 2 .

1 2

^ 1 1 1 2 2 .

1 2

^ ^ 1 1 1 1 2 .

1 1 2 2 . . ^ 1 2

^ 1 1 2 2 ^ ^ 1 5 4 9 8 7 2 6

6 6 7 2 8 2 9 5 7 7 9 3 4 2

1 6 7 5 4 3 7

0 6 3 9 4 4 3

2 4 5 9 7 6 5 2 4 3 9

7 2 8 7 4 0 0

6 6 7 4 5 7 1

3 8 5 5 8 5 4 5

3 1 4 2 0 2 4 7 5 8 2 5 3 4

7 3 5 7 9 1 7

0 3 9 7 7 9 6 8

2 1 2 6 6 7 1 0 1 1 7 6 3 9

7 2 3 9 4 1 0

2 4 1 9 1 7 9 1 3 1 1 8 1

5 9 8 2 4 2 7 2 3 0 0 1 3 7

6 8 4 0 1 0 9 1

0 7

2 3 8 9

5 0 7 1

6 7 0 3

3 5 3

9 5 9 1 1 4 8 1

2 8 2 5 0 9 1 8 0 2 7 8 8 8 4 5 5 1

7 4 6 . 5

0 . 2 2 6 1 2 2 5 8 4 1 5 2 7

0 5 7 4 6 2 2 0 0 . . 1 1 0 1 1 1 6 7 4 7 0

0 0 . . 2

0 0 . . 2 1 1 2

. . 2 1 5 9

0 0 0 0 . 0 . 0 . 0 . 0 . 0 . . 2

0 0 . . 0 . 1 2 1 2 3 1 5 7 5

0 0 . 0 . . 2 3 1 2 6 7

0 0 . . .

0 0 . 1 1 0 0 . 0 . 7 4 5 7 8 6 5

8 2 9 6 4 4 8 8 9 1 8 4 9 9

3 9 2 0 4 0 8

2 0 9 7 8 1 4 9

6 8 7 6 3 4 2 3 1 6

5 4 6 7 0 6 5 2

8 3 6 3 1 7 0 8

7 5 4 3 9 4 9

0 3 9 2 8 6 1 3 . 2 2 6 3 3

9 6 7 7 8 0 4 6

7 2 2 3 0 1 7

2 5 7 5 1 1 5 9 3 4 7 8 0 3

7 7 3 0 9 8 4 4

1 4 4 0 6 5 6

8 5 9 0 7 1 6 6 ^ 2 0 7 6 8

0 7 9 5 3 2 9 0

0 6 0 2 2 6 6 6 1 2

0 0 1 2 0 5 3 6 8 2 6 0 6

0 6 8 0 6 8 0 0

4 3 0 2 8 3 9

9 8 6 0 8 6 8 . 0 0

. 0 0 4 9 9 6 7 4 2

. 9 8 2 1 9

. 4 7 1 3 2 5 8 2

2 3 3 3 0

1 4 8 4 2 7

6 0 6 2

4 0 1

2 . 6 . 4 9 5

2 . 5 7 7

. 2

^ 2 2 2 . . . 9 4 . . . ^ 3 3 ^ 2 2 2 1 . . . . . 2 0 1

^ 2 2 3 2 3 . . ^ . 0 0 7 5 9 3

^ ^ 2 2 . .

3 2 2 3 . . 9

4 1 . . 0 2 ^ 3 2 ^ ^ 2 9 6

1

3 3

. 7

5 2

1 4

53 1 7 6 5 9

6 3 1 9 6 0 7 6 4 6 3 6 8 9 5

3 5 2 7 6 6 5

5 5 8 9 6 8 1

9 7 1 2 4 0 1 1 3 4

0 4 4 2 7 6 8

4 3 6 5 1 7 0 6

3 7 9 2 6 4 6 0

8 7 1 9 5 9 6 1 5 0 6 7 3 9

8 5 3 1 2 8 6 8

6 7 6 0 3 5 2 0 7 4 7 0 0 2 2 2 6 6 8 0 9 8 4 0 0 0 0 0 0 0 0 1 1 1 1 7

0 1 2 5 3 2 0

1 1 1 4 4 5 9

0 1 1 3

0 1 3 5

1 4 1 3

1 0 1 6 0 7 .

1 0 7 7 4 9 ) 0 1 0 1 1 n 0 0 0 0 0 0 1

0 0 0 1 0 1 1 5

0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 9 0 8 6 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 ( 0 0 0 0 6 0 0 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G G l e

S S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 4 1 3 7 3 9

0 1 6 3 3 2 0 4 2 2 6 4 4 0 2

9 6 6 6 0 6 5

8 3 7 5 0 9

1 2 7 5 2 9 2 2 6 1 7 2

4 3 2 7 7 4 8 2

2 1 5 3 8 1

0 5 9 1

1 7 0 4

5 3 8

2 7 3 9 7 0

5 4 8 8

3 8 9 1 3 5 1 2 2 2 2 7 2 8 6 6

7 3 2 4 9 6

5 0 8 2

1 2 2 5 9 4 7 6 2 7 6 7 2 5 5 1 5

8 2 3 6 3 5

1 2 9 A

N

^ 3 3 3 3 ^ 3 3

E ^ 3 ^ 3 3 ^ 3 3 3 ^ 3 3 3

1 E ^

8 5 E E ^

9 E ^ 3

E ^ E ^ ^ E ^ ^ ^ 3 3 ^ 3 3 ^ 3 3 3 3 ^ ^ 3 3 E 1 E E E ^ ^ 3 ^ 3

6 E ^ ^ E 9 . . 5 7 3 8 6 9 8 E 2 E E ^

3 E E

1 5 2 E 5 E E E ^

2 E ^ 3

E ^ E

. 0 3 3 2

3 4 . 4 4 4 . . 9

5 5 . . 7 3 7 9 7 1 E

6 6 . . 4

9 9 . . 9 0 8

9 . . 2 3 4 5 5 8 9 8 6 E

9 0 4 E ^ 9 1 . 0

1 . 1 1 . . 3

1 1 . . 4 . 6

1 1 . 1 . 1 . . 1 2 7 2 2 1 1 2 . 2 . . 3

2 2 . 3 7 7 7 7 6 6

^ 3 3 7 3 6 6 3 6 6 6 3 6 6 6 6

E ^ ^ 3 ^ 3 3 ^ 3 3 6 3 6 6

^ 3 3 6 3 6 6 3 6 6 6

6 E E ^ E ^ ^ E ^ ^ 3 ^ 3 3 6

E ^ ^ 3 ^ 3 3 ^ 3 3 6 3 6 9 7 8 E 2 E E 0 E E ^ E ^ ^ 3

9 E E ^ E ^ ^ E ^ ^ 3 ^ 3 6 . 2 . 7 6

. 8 1 3 8 2 3 1 E 1 E E ^

8

. 8 . 9 0 0 4 E 9 E E

0 2 E E ^ E ^ 3 6 7 7 7 . . 0

8 1 . 1 . . 2

1 . 7 3 8 3 6 E

1 . 7

1 1 . . 8

1 1 1 1 . . 3 4 3 6 1 9 4 5 9 E 3 E ^

2 2 . . 5

2 2 . . 7

2 . 0

2 3 . . 5 7

. 6 . 9 2 0 E 3 3 3 3 . . 3 0

4 . 4 4 4 . 5 5 8 6 7 1 1

0 8 7 1 3 1 1 3 7 7 6 3 2 8 2

3 8 3 1 3 9 4 4

7 7 7 4 2 2

2 1 2 5 9 3 5 6 5 4 9

2 8 5 7 1 9 7 5

8 9 9 8 1 2 5

8 2 1 4 8 9 4 0 3 5 5 0 8 7 7 8 0 5 1 5 3

4 3 1 0 3 0 7

7 9 6 9 8 3 0 8 5 4 4 7 1 4 8 8 3 7 7 7 3 8 5

2 8 1 2 9 1 4

0 0 8 4 7 8 3 0 8 6 6 6 0 6 8 6 7 6 6 2 7

4 6 5 9 1 4 0 8

0 3 8 7 0 3 0 9 8 2 0 4 0 . 6 . 7 . 5 5 4

6 1 1 6 1 0 9

6 9 5 5 8 0 0 9

5 5 1 5 7 2 2 . 2 6 2 6 6 4

. 6 6 . 1 1 4

. 5 . 8 5 8 7 1

5 5 0 4 3 9 1 1 2 1 2 .

1 1 2 . . 6

1 2 .

1 1 2 2 . . 2 6 6 0

2 . 2 5 . 5 5 6

. 5 5 5 4 1 ^ 1 2 2 1 2 . . 6

^ 1 1 1 2 .

^ 1 2 . 2 . . 5

2 . 5

1 ^ 1 1 2 1 2 . 5 4 ^ 1 1 2 2 .

^ 1 1 1 2 1 2 .

1 1 2 2 . 5 1 2 .

1 2 ^ 1 88 7 5 9 2 9

0 6 3 9 5 7 3 8 7 3 4 0 7 2 4 3

8 2 7 2 1 7 3 6

9 5 4 4 6 3

0 9 2 1 2 8 4 3 3 9

6 4 2 6 9 2 2 9 6 6

4 3 2 0 0 0 7

6 2 4 2 6 0 8 8

4 1 3 6 3 7 5 3 2 4 8 8 3 8

0 1 0 3 3 1 6

5 0 5 3 9 9 3 7

0 6 6 4 1 6 0 3

3 2 4 7

4 9 6 3

0 9 0 4

4 6 4 8

6 6 9 1 5

0 6 5 3 2 3 9 6 3

7 0 7 6 1 1

7 1 0 8

5 2 5 5 5 1 1

3 7 2 2 6 2 0 0 .

2 9 3 1 2 1 2 6

1 3 8 2 1 8 5

4 5 0 0 0 4 6 3

5 3 4 1 1 6 8 6 9 4 7 1 6 0

0 5 1

7 0 9 5 1 1 . 1 . 2 . 5 3 9

. 4 8 1 7 8 9

0 0 . . 1 . 2 2 2 6 1 2

0 . 0

0 0 2 4

. 2 5

0 . 1

0 . 2 1 3 6

0 0 . 2 8 2

0 0 0 0 . 0 . . . 1 . 1 2

0 . 1 7

0 0 . 0 . . 2

0 . 2 1 9 1 5

. 1 6 8 0 0 0 0 . . 1

0 0 . 0 . 1

0 0 . 9 8 1 3 3 6 7 7

9 1 1 7 1 4 7 6 3 1 8 7 6 9 6

2 6 2 9 9 9 3 3

7 3 5 5 5 3 7

1 7 9 1 5 9 1 8 9

6 2 6 6 4 2 0 8

7 6 9 1 2 8 3

9 2 1 2 9 1 7

2 3 7 4 5 4 7 5 2 8 1 0 0 8

9 8 9 7 6 8 5 3

4 1 3 7 9 3 7

2 5 5 6 5 5 4 5 2 2 2 2 7 2

9 8 2 8 0 9 9 1

2 3 4 9 5 6 1

9 5 0 9 2 9 7 2 3 3

4 2 9 2 0 6 6 5 2

. 8 8 0 9

4 1 8 3 4 9 6 6 0 7 9

9 4 3

1 1 4 9 2 6

9 3 5 6 5

0 6 1 4 0 6 3 . 5

9 7 4 7 2 6

7 1 6 6

1 9 5 5

7 7 5 5 5 6 2 2 9 9 8 6

6 2 5 7 . 4 7 9 2 1 0

2 . . 2 . 9 0 8

2 3 2 . 2 . 2 . 0 1 4

. 3 . . 9 2 8 5

8 7 6 7

8 2 4 7 7 2 ^ ^ 3 2 2 2 .

^ . 3 .

^ . 1 0 2

3 3 3 . . 8 1

2 2 .

^ 2 . 1

2 . . 3

3 . 5 9

. 1

^ 2 2 2 . 3

2 2 . . 0 2 2 2 . .

^ 2 66 7 7 0 5 8

0 7 5 1 2 7 5 7 5 6 8 6 7 6 6 0 1 5 4

5 4 9 2 5 3 6 6 . 2 0 5 9 6 2 0

. 4 7 . 2 . 6

8 . 0 6 1 . 9 . 2 . 3 2 6

6 4 3 4 7 6 8 4 1 1 1 9 3 3 5

2 3 3 4 3 3 1 1 1 2 4 7 0 0 4 0 3 5

8 4 1 0 5 1 4 7 3 2 7 0 3 6 9 4

5 0 1 4 0 3 6 4

5 3 8 8 2 5 3

8 6 1 5 8 0 9 9 1 1 3

3 1 7 0 7 5 3 6

0 1 3 3 0 5 3 4

4 3 1 6 1 9

8 0 3 6 5 7 1 0 1 8 4 2 2 6

8 7 6 9 5 1 8 0

0 9 9 7 2 2 3

2 4 3 0 1 1 0 1 1 9 1 0 7 4

1 4 7 6 3 9 8 7

1 2 3 0 3 8 4

5 3 4 6 2 4 1 0 6 6 t 0 0 0 1 0 1 0 2

0 1 0 4 2 6 8 6

0 0 1 7 1 3 2

1 4 1 9 5 5 . ) 0 0 0 0 0 0 0 1

0 0 0 1 0 1 1 1

0 0 0 0 0 0 9

0 1

0 0 0 0 0 0

0 0 0 0

0 0 ( 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 1 1 n 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0

0 0 0 0 0 6 0 G e S S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l

S G S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E N E T

')6^^^^^^^ 83 9 1 8 1 3 1

3 6 6 6 6 5

^ 3 6 3 6 6 3 6 6 3 5 5

E ^ 3 ^ 3 3 ^ 3 3 6

^ 3 5 5 3 5 5 5 4 E ^ E ^ ^ E ^ ^ 3 3 3 5 3 5

E E ^ 3 3

E E ^ ^

2 3 E 3 E ^ E E 5 7 E ^

9 E

0 5

. 1 0 E 2 E

. 7 0 7 9 E

3 4 6 7 7 E ^ ^ E ^ 3 ^ 3 . 5 1 1 3 E ^

0 4 4 4 . 5 5 5 . 5 . . 6 . 6 . 4 5 . 5 1

6 6 . 6

1 . 6

1 . 6 6

. . 5 6 1 . 8

1 1 2 . 5

2 2 . . 9 2 2 .

66 7 1 3 9 5 1 3 2 1

6 8 6 4 6 7 3 3 3 9 4 2 2

7 1 3 0 7 2 3 3 8

4 6 3 7

3 7 9 3 4 1 7 1 4 9 2 4 3 3 0 0 9 3 2 4 5 2 4 7 6 6

6 2

9 9 4 0 3 6 4 9 1 1 2 6 4

4 6 1 2 5

4 2 2

8 9 2 7 4 7 0 0 0 3

6 7 3

5 7 1

7 4 8 0 3 3 3 3 7 4 0 8 8 7 1 2

0 7 4 1 5 0 0 1 4 2 0 1 8 1 3 0 3 4 3 3 6 0

3 7 3 5 1 4 4 5 5 5 9 4 4 3

9 2 9 5 5 8 8 8 5 5 6 9 0

7 3 7

8 4 9 0 7

1 6 4 9 1

4 3 0 3 3 1 6 6 3 4 7

0 1 6 0 4 0 5 . . 8 0 4

4 2 7 1 7 6 7 2 7 2 1 1 7 9

3

. 2 6 9 6 5 2 0 2 0

5 5 0 8 0 6

2 8 9 1 3 ^ 1 . 9

2 1 . .

^ 3 . 2 2 . . 0 9 4 2 2 8 9 5

. 1 6

^ 3 2 . . . 1 4 9 5 6

. . . . 3 . . 1 4 5 ^ ^ 1 3 4 . 2 .

^ 2 2 ^ 3 2 2 . 2 6 . 1 3 4

3 2 . . 2 3 2 3 . . . 6 1

3 2 . ^ ^ 2 ^

t . ) n c o ( 6 l e a b T

')6^^^^^^^ 5 5 8 2 4 9 9 3 5 5 3

1 1 9 6 5 6 5 7 6 1 9 8

0 2 9 1 3 3 2

5 1 3 0 5

5 9 7 1 8 1 9 1 2 6

4 9 9 9

7 2 0

2 1 5 3 1 1

5 0 0 6 8 1 4 5

5 4 3 6 1

4 2 4 4 1 8 1 1 6

3 7 1 6 6

1 5 2 5 7 4 3

2 3 0 6

6 9 9 2

7 3 4 3 2 5

0 2 5 1 0

1 2 1 4 2 2 2

5 6 3 5 5 3

0 0 1 5 1 0 A

N

3 3 3 3 3 3

^ 3 3 3 3 3 3 3 3 3 3 3 3 3 3

E ^ 3 ^ 3 3 3

^ 3 3 3 3 3

^ 3 3 3 3 3 3 3 3 3

1 E ^ E ^ ^ 3

E ^ ^ 3 ^ 3 3

E ^ ^ 3 ^ 3 3 3

^ 3 3 3 3 3 5 4 E 1 E E ^

9 E E ^ E ^ 3

8 E E ^ E ^ ^ 3

E ^ 3 ^ 3 3 3 6

. 7 8 0 4 5 E

2 2 8 E 9 E ^

. . 2 6 9 5 E 8 E E ^

4 E ^ E ^ ^ 3 1 1 . 1 . . 1 1 1

2 2 2 2 . . 4 4 6 5 9 E

2 2 . . 5

2 2 . . 5 4

2 . 6

2 2 . . 6 1 E 8 E E ^

9 8 5 0 3 E

. 7 2 8 7 9 0 7 9 E

1 9 2 2 . . 3

2 3 . . 6

3 . 6 . 7

3 3 3 . 8

3 . 3 3 . 3 . 4 . . 2

5 5 . 3 5 5 5 5 5 5

^ 3 3 3 5 5 3 5 5 5 3 5 5 5 5

E ^ ^ ^ 3 3 5

^ 3 3 5 3 5

^ 3 3 5 3 5 5 3 5 5 5

6 E E E ^ ^ 3

E ^ ^ 3 ^ 3 3 5

E ^ ^ 3 ^ 3 3 5

^ 3 3 3 5 4 0 4 0 0 E E ^

3 E E ^ E ^ ^

1 E E ^ E ^ ^ 3

E ^ ^ ^ 3 3 4 . 5 8 1 9 1 E

7 9 4 E 8 E E

6 4 1 E 7 E E ^

5 E E E ^ ^ 3 3 4 5 5 . 9 1 3 2

. . . 3 9 3 3

. 5

3 3 . 3 . 4 . 4 . 4 . 4 4 4 5 5 5 . 5 . 5 . . 6 2 1 5 2 0 E

9 5 0 1 E E ^ 5 5 . . 1

6 7 . . 6 7 7

7 7 . . 8

7 7 . . 1 3 5 5 2 E 7 8 . 8 . . 7 1 4

8 8 . . 1 1 1 . 4 4 7 1 1 4 2

4 4 2 8 5 5 3 3 5 8 6 5 1 5 7

8 2 9 6 2 1 1

3 7 2 2 5 3 7

4 2 8 4 0 2 3 8 9 1 2

3 0 8 4 4 5 8

6 5 9 3 4 1 8

7 5 7 6 5 4 8 6

3 0 9 2 9 9 7 6 9 8 8 3 0

3 1 2 9 0 6 4

6 0 4 6 1 9 8 8

1 7 3 5 3 7 2 8 5 6 7 5 9 3

2 0 7 6 0 4 5

8 2 0 1 5 9 0 4

5 1 6 0 4 5 4 3 7 3 3 3 7 4

5 8 5 9 2 8 8

3 3 8 3 5 4 9 1 1

0 5 0 0 8 3 8 8 0 5 0 3 4 1

. 3 . 6 . 5 5

3 4 4 2 4 1 9

. . 3 3 3 9 1 3 3 3

3 1 8 7 2 0 1 2 . 2 3 2 3 5

. 3 3 4 3 4 3

1 1 2 1 .

^ 1 2 1 . 3

^ 2 .

1 2 2 . . 3 3 0 3 3 8 1

1 1 2 . 3 3

1 1 2 2 . 2 . . 1

2 2 3 3 1 1 1

. . 3 0

2 2 . 3 . . 3

2 . 3 . . 2 8 2 2 . 2

^ 1 1 ^ ^ ^ 1 1 1 ^ 1 1 1 2 2 .

^ 1 1 1 2

^ ^ 1 1 1 2 2 . . 2 .

1 2

^ 1 2 1 2

^ 1 1 2

^ 61 6 8 5 1 7 5 9 6 1 3 1 3 9 3 1 5 6 5 8 5

7 7 1 9

8 9 6 7 5 6

8 6 8 7 7 5 0 7 4 5

7 0 0 6

1 5 3 5 3 2 4 8

1 3 7 7 2 6 5 6 1 7

9 5 9 1 9 6 3 0 6 5 7 3 7 6 7 3 1 2 0 5 5

4 4 4 0 0 2 1 4 6 3 1 4 2

3 4 5 5 8

7 2 0 2 4 7 9 4 3 7 8 4 9 9 0 6

5 4 4 1 0 3 3

9 0 5 8 7 4 9 4 5 6 9 1 5 6 0 2 4 2 0 2 6 8 0 9 2 1 1 4 6

5 1 9 9 0 2 2

3 7 2 2 7 0 5 6 0 4 4

7 2 5 3 1 . 2 3 7 5

1 8 5 8 1 5 6 4 9

4 5 2

1 6 9 8

1 1 7

. 5 8 9

2 5 0 2 4 9 1 6 7

2 3 3

. . . 2 2 2 2 6 5 1 9 8 5 6 5 5 4 4 0 . 1 2 6 2 7 8 6

0 . 0 0 . . 1

0 . 2 . 1

0 0 0 . 0 . 1

0 0 . . 1 1 8

. 1

0 0 0 0 0 . 0 0 . . 1 1 2

0 0 . . 2

0 0 . . 2 . 1 6

. 1 2 9 5 0 0 0 0 . . 1

0 . 1 0 0 . 6 6 7 4 1 9 3 5

5 7 6 3 5 6 7 1 8 1 1 6 7 5 6

9 0 2 1 7 7 8 6 1 8 8 3 6

2 5 6 7 8 8 8 4 5 3

8 7 3 2 9 3 7 1

3 6 3 2 4 3 3

4 6 5 3 8 2 4

3 7 1 6 5 6 9 8 6 0 9 3 4 6 3

4 1 2 5 7 0 8

6 9 6 6 7 4 7

0 6 0 1 3 6 3 2 3 2 9 1 0 1 2

4 0 3 0 1 4 4

1 0 0 8 5 4 9

4 9 5 2 1 5 7 0 7 9 0 8 4 1 9 6

9 9 6

2 4 7 9 0 0 7 8 3 6 8 7 8 7

4 5 8 4

4 4 5 3

2 5 1 4 2 0

1 4 6 4

4 7 8 2 2 6

7 6 6 3

8 5 8 2 5 3 6 2 0 4 3 1

2 1 . 8

2 . 0 9 9

. . . 3 . 8

3 . 8 3 9 3 8 7 8

3 2 8 0 2 0 2 1 8 8 7

4 6 5 3

7 0 1 2 7 0 8 0 4 9 9 6 . 8 1 9

2 . 2 . 2 . 8 7 0 1

. 2 . . 9

^ 2 ^ 1 ^ 2 .

^ 2 .

^ 2 ^ 2 2 2 .

^ 2 . 8

2 . . 8 3

. 4 0 0 1 9 9 ^ 2 1 . 7

1 .

^ 2 . . 0

^ 2 3 2 . 3 8

^ 2 .

^ 3 . 2 1 .

^

97 2 4 1 5 1

0 9 8 0 6 5 0 4 8 7 6 5 8 5 5

7 6 9 1 7 5 0 1

8 2 2 7 3 9

9 5 8 8 9 7 2 3 6 6

7 6 7 7 3 3 3 0

5 0 9 5 4 3 4

1 8 8 5 7 5 4

5 7 8 2 8 1 4 t 0 0 1 7 4 8 1 3

1 8 0 6 2 1 0

1 9 3 5 4 5 6 5

0 4 7 2 6 0 2 0 1 1 3 1 9 1 5 0

2 4 1 8 4 7 0

1 6 8 4 2 6 9 4 3 8 5 5 2 6 0 0 0 1 0 1 1 1

0 0 1 1 2 1 2

0 1 1 6 1 6 2 1 2 0 1 2 0 5 .) 0 0 0 0 0 2

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 1

0 0 1 6

0 1

0 0 0 2 0 1 1 0 1 1 4 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 n 0

0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0

0 0 0 0 0 0 0 ( 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 22 1 0 3 3

1 5 2 6 5 4 6 9 3 0 8 5 7 7 4

6 8 7 6 5 6 2 7 7 2 4 1 5

5 7 2 2 6 7 3 8 8 5

5 0 9

8 9 5 0 5 0

1 2 0 3 8 2 3 0 5 9

1 2 3 6 7

2 8 6 7 6 4

6 6 2 4 1 8 4 6 5 7 4 5 6 1 9

2 4 6 1 6 2 0 0 1 0 9 2 1 1 2 8 5 8 3 3 0 4 9 2 5 8 4

2 2 5 7 5 4 2 0 0

8 2 3 A A N N

3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 ^ 3 3

E ^ 3 ^ 3 3

1 E ^ E ^ ^

3 5 E 1 E E

. 3 6 7 3 0

5 . 5

5 5 . . 0 3

5 6 . 6 .

3 4 4 4 4 4

^ 3 4 3 4 4 3 4 4 4 3 4 4 4 4 4

E ^ 3 ^ 3 3 ^ 3 3 4 3 4 4

^ 3 3 4 3 4 4 3 4 4

5 E ^ E ^ ^ E ^ ^ 3 ^ 3 3 4

E ^ ^ 3 ^ 3 3 ^ 3 4 3 4 4 1 6 E 4 E E 8 1 E E ^ E ^ ^ 3

8 E E ^ E ^ ^ 3

E ^ 3 ^ 3 3 4 5 E 4 E E ^ . 1 0 2 1

. 3 7 3

1 . 1 . 3

1 . 4 6 E 9 E E ^

1 0 0 E 5 E E ^

4 5

. 8 . . 7 7 8 0 7 E ^ E ^ ^ 3 1 . 2

1 1 . 1 . 4 9 5 6 1 E

1 1 . 1 . 6 . 7

1 1 1 . 1 . . 2

2 . 2 5

. 5 5 3 4 E

2 2 2 2 . . 2

2 2 2 . . 4 2 9 9 6 4 E

2 8 3 . 9

3 3 . . . . 0 3 3 4 5 . 0 4 9 3 5 7 9 1 5 1 8 5 2 6 0 9 3 8 2 4

9 0 0 7 7 4 6 8

6 7 6 8 8 1

5 4 6 6 9 5 7 2 5 4

8 8 4 9 1 1 3

0 3 6 4 5 1 9

9 3 6 9 0 7 0 4

7 9 2 3 5 6 0 1 9 5 3 7 1

3 8 7 2 5 5 1

8 2 9 3 2 0 3 2

4 9 2 4 5 1 6 7 8 0 6 4 9 2 8

4 1 6 6 8 7 1

8 8 1 4 1 9 6 0

7 0 1 9 5 5 5 2 8 7 7 9 6 6

6 1 9 4 0 4 6

2 2 8 2 6 5 1 4

5 6 1 6 5 4 6 . 2 2 2 6 6 5

2 6 5 9 5 5 8 9

2 2 2 6 1 0 0 8

9 1 8 0 3 6 6

1 2 . . . 2 2 6

2 . 2 2 2 2 4 1

2 . . 2 1 2 1 1 0

1 9 1 8 0 4 9 1 1 2 2 2 . . 2

2 . . . . 2 4 2

2 2 .

1 2 1 1 2 . 2 2 . 2 . 2 2 2

. 1 . 1 8 7 9

2 2 . . . ^ 1 1 2 2 .

^ ^ 1 1 ^ ^ 1 1 1 ^ ^ ^ 1 1 2 1 1 2 . 2 . . .

2 . 2 . 1 1 5 ^ 1 1 2 1 1 2 2 2

1 1

^ 1 1 2 1

^ 1 1 2

^ 1 1 2 6 2 6 5 1 7 2

0 3 7 2 5 6 7 5 4 7 5 6 6 2 7

3 5 0 1 1 6 4

7 9 5 8 6 2

9 7 5 7 8 8 1 9 8 4 2

9 0 0 8 2 8 3

5 8 1 0 5 0 4

4 4 8 6 2 3 0 5 3

4 5 7 5 8 4 3 3 2 2 1 4 5

4 3 9 8 1 5 2

2 0 1 0

8 8 2 9 5

0 9 8 0 3 7 2 1 5 2

1 9 0 2 9 5 0

5 2 0 2

5 4 9 2 5 5 6 6 2 7 9 2 3 8 8 7 0 5 9 9

8 4 9 1 3 4 9 5 8 4 7 5 0 6 1 1 7 9 7 4

2 4 3 8 8 4

9 8 5

4 8 5 3 9 0 0 1

6 4 9 1 1 2 3 6 2 7 2 5 3 5

. 1 1 . . 9

0 1 4 0

. 1 7 2 7 6 7 6 4 2

1 8 0 0 6 9 6 8

0 7 7 7 4 7 5 0 0 . 0 0 . 1

0 0 . . 1 . 1 9

. 2 2 1 2

0 0 0 0 . . 2 1

0 . 2

0 0 . . 1 2 8 2 8 1 1

3 0 9 8 7 6 4 4 0 0 . . 1 1 1

0 0 . . 1 . 1

0 0 . 0 . 2

0 . 2 . 1 3

. 2 6 1 0 0 0 0 . 0 . . 2

0 0 . 5 8 2 2 4 9 1

9 7 5 3 8 1 5 9 3 4 2 1 2 5 2

3 6 6 1 3 9 9

9 1 3 6 4 7 7

7 3 8 2 9 2 8 0 6 9 5

8 3 9 4 5 2 4

6 4 9 4 2 0 2

4 1 7 4 0 8 6 4

5 3 0 2 0 2 9 1 2 6 4 4 7 8

9 3 9 7 0 8 1

6 1 4 5 8 8 1 5

4 0 8 6 6 4 9 4 9 4 1 6 6 5

5 4 2 0 0 3 3

9 0 1 5 4 2 6 4 8

1 1 5 3 3 2 4 2 2 8 0 9 8 2

5 6 2 1 6 3 6

6 2 7 9 7 0 8

5 7 4 6 7 5 4 8 5 6 6 1 3 2

9 8 5 8 6 3 1

0 1 6 8 9 5 9

2 7 1 9 2 3 4 . 9 3 0 0

9 0 7 4 8 1 9 8

1 8 6 8 7

3 9 7 2 1 1 . 2 . 4

1 . 8 . 0 7 3

. 1 0 2 3 8 9 9

3 5

. . 0 2 1 8 5 3 8

7 2 0 1 0 7 7 3 . 2 1 . . . 9

^ ^ ^ ^ ^ 2 2 2 . . 6 . 6 5 1

^ 2 .

^ 3 . . . 8

^ 3 2 2 1 .

^ 2 2 2

2 . 3 9 8

3 2 . . 5

1 . . 5 4 0 . 3 0

. 2 0 6 . ^ 2 3 2 2 2 ^ ^ . 2 2

27 7 9 2 1 3

3 3 8 6 9 6 5 4 0 0 0 4 7 1

0 1 7 4 6 3 7

1 1 8 8 7 5 9

0 3 6 4 6 1 4 0 5 7

2 5 4 7 9 7 9

4 8 0 2 9 8 7 2

6 1 1 8 2 9 2 9

7 7 8 2 5 0 7 1 7 2 7 6 1 7

6 8 4 8 6 4 7 0

7 4 3 6 4 5 6

7 6 2 2 0 6 8

. 1 1 3 7 6 1 ) 0 1 1 9 1 4 7

1 7 7 6 5 0 0 3

0 6 1 9 8 7 3

5 1 6 6 8 6 9 0 0 0 1 0 1 6

0 1 1 6 1 0 3 1

0 1 2 1 3 0 8

1 0 0 2 0 1 0 n 0 0 0 0 0 0 1

0 0 0 1 0 1 1 7

0 0 0 0 1 1 9

0 1 1 3 1 8 6 t 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0

0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 c 0 0 0 0 0

0 0 0 0 0 0 ( 0 0 0 0 6 0 0 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G G e

S S G S G l

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 89 7 3 2 9 3 2 4

9 9 8 7 7 9 1

5 8 3 8

7 1 0 8

5 0 7 9 8 4 7 7 4 1 3 3

5 5 8 8 4

4 7 7 5 5 9 6 9 9 0

6

2 5 9

7 3 1 1 5 6

2 2 7 1 1 6 4 0 6 3 7 3 0 5

2 2 3 2 9 1 2 3 1 5 7 7

2 2 5 5 5 5 9 7 7 9 9 9 0

2 5 7 6 2 4 6 8 9 2 1 2 2 5 1 2

0 A A A A A 0 N N N N N 1

2

^ 3 3 3 3 3

E ^ 3 ^ 3 3 ^ 3 3 ^ 3 3 3 3

3 E ^ E ^ ^ 3

E ^ 3 ^ 3 3

E ^ ^ ^ 3 3 ^ 3 3 3

2 0 E 2 E E ^

2 E ^ E ^ ^ 3

4 E E E ^ ^ 3

E ^ ^ 3 ^ 3 3 3 4 E

. 3 2

. 3 . 5 8 7 0 5 E 7 E E ^

9 3 6 2 E E ^

2 E E ^ E ^ ^ 3 2 . 3

2 2 2 2 . . 8

2 2 . . 0 1 7 9 2 E

3 . 4

3 3 . . 4 7 0

3 4 . . 9

4 4 . . 1 5 8 3 7 E

7 5 5 E 4 E E ^ 4 5 . 5 . . 9 0 5

5 5 . . 4

6 6 . . 0 0 4 9 5 6 E 6 7 . . 6

7 7 . . 0 2 3 4 7 8 . 8 . 8 . 3 4 4 4 4 3

^ 3 4 3 4 4 3 4 4 4 3 3 3 3 3

E ^ 3 ^ 3 3 4

^ 3 3 3 3 3

^ 3 3 3 3 3 3 3 3 3

1 E ^ E ^ ^ 3

E ^ ^ ^ 3 3 3

E ^ ^ ^ 3 3 3

^ 3 3 3 3 3 3 1 8 4 E 4 E E ^

5 5 1 8 E E E ^ E ^ 3

3 8 3

. 6 0 9 7 5 E ^

0 E 6 E

1 1 1 E E ^ ^ 3 ^

7 E ^ 3 3 3 3 E ^ E ^

0 E E ^ 3

E ^

3 3 2 5 E

5 6 8 8 E 0 E E ^ ^ 4 E

. . 0 9 9 1 . 2

5 5 5 . . 8

5 5 6 6 . 7 . 7 . 7 . . 0 5

. 1

1 . 1

8 1 1 . . 2 . 3 3 0

1 1 1 . . 4

1 . 4

1 1 . 1 . . 6 6 3 9 3 9 E

1 1 . . 8

1 1 . 1 . 1 . . 0

1 2 . 5 1 2 1 2 4 8

0 2 2 4 7 8 1 7 5 9 9 7 9 2 4

7 0 8 7 5 2 9

5 9 4 0 6 9

6 1 8 5 9 3 3 3 3 4

4 8 7 5 1 5 8

4 1 2 4 2 2 8

9 0 7 5 3 8 2

1 7 4 9 9 4 2 9 6 8 8 8 8 2

6 3 7 9 2 3 1

2 9 2 8 1 7 0

0 1 4 8 5 6 4 4 5 5 5 5 8 1 6

3 7 4 1 1 9 0

2 8 2 9 7 6 8

9 1 4 6 1 3 1 5 1 1 5 5 4 9 9

3 2 3 5 6 3 6

9 . 0 2 3 6 4 1

5 8 7 7 5 3 5 0 . . 1 1 1 3 7

1 3 2 1 0 6 1

0 8 8 7 7 5

6 1 1 8 0 3 0 4

. 0 8 1 2 2 . . . 1 3

. 1 1 1 0 9 3

. 2 0 7 0 0 9

. 0 6 6 4

1 1 2 2 2 . 1

2 . . . 1 0 9

1 1 2 2 1 . 0 . . 6

. 0 0 5 2 5 4 7 ^ 1 1 1 2 .

^ ^ 1 1 2 1 2 2 2 . . 0

^ 1 ^ ^ 1 2 .

1 2

^ ^ 1 1 2 . 2 2 0 1 0 . 0 4

1 2 .

1 2 . 0 ^

^ 1 1 2 1 1 2 1 2 .

1 2 2 . 0 ^ 1 1 2 .

1 2 ^ ^ 1 1 2 3 6 1 6 6

4 6 5 8 2 7 1 7 8 9 7 7 3 7 5 9 8

2 2 7 4 6 8 8 9 2

9 4 2 0 6 2 8 2 4 1

9 4 1 4 4 9 6 4 7 1

7 9 1 7 9 5 8

6 3 0 7

5 6 5 8 1 7 9 4 4

1 1 9 9 3 6 3 0 9 4 2 5 1

2 7 2 0 9 2 4 4 3 3

3 5 6 5 5 2 5

8 8 0 6 0 8 0 2 6 3 6

6 8 3 0 5 0 6 2 1 7 4

8 7 7 1 8

4 8 6 5 2 7 8 5 1 4 8

8 9

9 4 8 5

3 4 7 0

9 6 6 5

1 1 2 5 5 2

8 9 5 4 2 4 6 1 9

6 6 9 2 0

6 4 0 5

3 7 1 6 6 5 1 5 2 3 0 7

. 2 . . 2 1

0 . 1 6 5

2 6 6 6 2 7 3

1 8 8 3 4 7 1 2 4 4 8 5 5 3 0 0 0 0 . 1 2

0 . .

0 0 . 1 1 5 . 1 2

0 0 . . 1

0 0 . 0 . 7

0 . 1

0 . 1 1 6 2 4 2 2 6 5 5 7 4 7 6 0 0 . . 2 2

0 0 . . 2

0 0 . 0 . . 2 1 2 1 2 6 0

0 0 . . 2

0 0 . . . 1 6 0 0 . 1 0 0 . 4 6 6 6 7 5 8

2 9 7 4 8 8 8 7 5 7 0 2 5 7 1

7 9 8 7 7 4 5

4 5 2 6 0 3

3 5 6 8 0 5 9 1 8 6 8

7 5 8 7 0 6 2

5 8 0 7 3 4 1

4 4 1 3 7 5 4 7 7 7 7 3 7 4 9 7 9 3 4 1 6

9 4 3 2 4 5 2

7 9 8 9 9 7 3 2 5 6 0 1 2 4 1 1 0 0 1 0 6 1

9 1 5 8 5 4 0

1 4 8 4 4 7 9 9 6 8 1 1 9 8 1 2 7 7 5 7 9 8 8

8 5 0 0 0 5 4

0 5 0 4 5 7 3 7 4 0 6 0 8 0 7 3 2 5 3 4 4 4

2 8 9 0 9 8 9

1 2 2 7 1 8 3 8 2 1 0 6 9 0 0 7 3 0 6 4

7 1 0 1 9 2 4 7

3 2 1 5 8 2 5 8 9 4 1 5 5 1 4 . 6

2 . . . 2 5

. 0 6

. 9 6 9 9 2 7 8 0 . . . 2 1 9 9 8 6 1 6 2 1 5 5 6 3 ^ 2 2 2 ^ 2 . . 2 3 . . 2 . 6 3

2 . 7

2 2 . . 8 2 9 1 9 ^ 2 3 3 . . 8 . 0 0

^ 1 1 .

^ 1 . .

^ 3 2 ^ ^ 2 2 ^ 2 3 . 7 1

1 . . . 0 . ^ 2 ^ 2 2 2 . 1

^ ^ 73 8 6 7 1 1 3 7 2 8 1 8 2 1 7

0 9 9 3 2 4 7 3

8 0 5

8 2 7 1 3 0 4 5

3 5 9 5 7 8 8 6

1 7 6 9 4 4 6

0 8 2 8 5 6 8 5 4 5 2 3 4 4 4 9 5 8

5 0 9 0 9 9 5 6

2 . 0 4 2 0 3 4 9 8 7

7 7 4 8 5

7 8 3 0 8

8

4 3 9 4 4 4 2 1 8 6 6

3 3 4 7

. 0 8 4 1

6 8 9 4

4 9 9

. . . 6

2 9 2 9 . 3 2 8 3 9

4 . 4 . 3 . . . 0 1 . 1

6 6 . 9 . . 9 6 1 6

0

9 2 .

2 7 3 0 1 9 7 2 1 6 9

6 5 1 4 . . 1 .

5 4 6 . 8 9 .

1 1 2 3 3 2 1 0 1 1 3 6 9 3

3 3 5 7 4 0 7

6 1 6 4 1 1 3

0 7 .

1 9 3 .

8 1

8 3 8 2 0 1 5 8 4 2 8 9

1 1 3 1 6

8 1 0 1 6 8 2

38 6 0 2 9 1

1 4 5 8 8 8 3 2 3 1 6 1 0 8 3

5 1 2 1 9 9 7 9 8 2 9 0 9 2

4 3 0 6 1 2 6 6 5 9

2 8 3 5 7 3 3 5 9 8 8 5 0 6 3

8 7 9 1 8 7 5

9 5 9 0 3 5 7 2 9 5 5 9 9 4 3 3 5 2 8 8 9 9

6 8 0 3 1 2 2

5 7 6 1 2 4 4 4 2

3 9 .) 0 1 1 0 1 6 7

0 0 1 2 3 5 0 9 6 1

1 9 1 8 7 5 6 5 1

2 3 1 5 1 9 4 1 5 6 8 6

7 t 0 0 0 1 0 1 1 0 1

0 0 1 0 1 4 6 0

0 0 1 0 1 2 3

0 1 5 1 0

0 0 0 0 2 7 1 6 6 1 8 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 n 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 o 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 c 0 0 0

0 0 0 0 0 0 ( 0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G S G S G Gl e

S S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E N E T

')6^^^^^^^ 5 7 9 5 9 0

0 3 9 5 2 4 8 6 5 5 2 0 6

7 7 9

9 8 7 5 0 3

2 7 9 8 7 0 8 6 4 8

7 2 9 1 9 2 4

5 2 9 8 4 3

8 2 8 4 4 7 8

5 6 2 3 3 2 5 4 7

1 1 2 6 9 7 9 9 7 7 2 5 7 5 5 6 8 5

1 1 9

3 2 2 2 1 1

^ 3 2 3 2 2 3 1 1 1 3 1 1 1 1

E ^ 3 ^ 3 3 1

^ 3 3 1 3 1

^ 3 3 1 3 1 1 3 1 1 1

0 E 4 E ^ E ^ E ^ 3 ^

0 E 2 1 E ^ E E ^ 3

E ^ ^ 3 1

^ 3 1 1

E E ^ E ^ ^ 3 ^ 3 3 3 3 3 1 1

E E ^ ^ ^ 3 ^ 3 . 5 5 5 5 5 5 1 E

2 3 8 4 E ^ 3

E ^ ^

6

8 . 4 7 E 3 E

4 3 9 9 9 6 6 E 7 E E ^

6 E E ^ E ^ 3 8 . 7 9

9 9 . . 9 . 9 . 0

1 . 2 2 4 4

1 1 . 1 . 1 . . 6 6

1 1 . 1 . 1 . . 0 3 2 2 6

. . 5 6 6 E 6 E ^ 1 . 1

2 2 . . 4

2 2 2 2 . . 5 6 6 7 3 E

6 8 2 2 2 . . 2 2 . 2 . 2 . 0

3 . 3 3 3 3 3 3 3 3 3

^ 3 3 3 3 3 3 3 3 3 3 3 3 3 3

E ^ ^ ^ 3 3 3

^ 3 3 3 3 3 3

E ^ ^ ^ 3 3 3 3 3 3 3 3

^ 3 3 3 5 E E E ^ E ^ 3 ^ E ^ ^ 3 ^ 3 3 3

2 E E ^ E ^ 3

6 E E ^ ^ 3 3 3

^ 3 3 3 3 3 2 1 E E 5 E ^ E ^

2 E E ^ E ^ ^ 3 1 E E ^ ^

0 7

. 0 3 3 2 6 1 9 E

4 6 9 2 E ^

3 E

2 . 2 . 3 4

2 2 . 2 . 2 . 2 . . 0 . 1 5

. 5 6 3 0 8 E

2 3 3 3 . 3 . . 1 8

. 7 8

4 4 4 . . 1 3 6 0 6 E

4 4 0 E 7 E ^ 4 5 . . 6

5 5 . . 1 7

6 . 1

6 6 . . 4 7 2 9 7 E 6 6 . . 7

6 6 . . 1 6 6 . 6 7 7 . 6 4 1 8 2 2 5

1 1 9 7 4 2 3 9 4 4 3 1 7 9 6 4

0 4 6 6 0 9

3 7 4 9 0 6 2

0 0 6 3 3 2 5 3 3 6 2

4 2 6 9 1 3 5

8 1 7 3 0 1 1 6

8 9 2 6 3 8 0 8 9 9 6 1 2 5 8 4 8 8 0 7

0 0 9 1 6 6 5 7

9 9 9 8 9 8 8 2 2 0 2 9 1 1 4 4 5 2 3 2 2

5 4 3 8 5 0 5 1

3 7 6 3 8 7 0 9 2 1 2 4 7 9 0 4 3 5 3 3 2

1 3 0 1 8 6 6 1

7 9 6 4 5 3 2 0 7 4 1 0 1 0 4 . 0 0 3 0 0 9

0 1 1 0 9 9 8 4

9 6 6 1 5 4 4 5 0 7 7 4 7 2 2 . 2 . 0

2 . . . 2

. 0 0 0 9 8 9 5

. 9 9 6 9 5 5 9 5 4 4 4 1 6 0

2 2 .

1 1 1 1 2 1 1 2 2 . . 0 . 9 . 7

1 . . 9 . 9 9 . 9 9 9 9 4 3 2 2 .

^ 1 1 1 1 2 1 . 1 9

1 1 .

^ 1 1 1 ^ 1 1 1 1 1 . 1 . . 1 . . . . 9 9

1

^ 1 1 1 1 1

^ ^ 1 1

^ 1 1 1 1 1 1 . .

^ 1 1 1

^ 1 1 1 ^ 1 1 01 3 5 6 2 9

0 6 5 1 8 1 1 7 6 2

9 5 6 6 1 2

7 1 9 4 5 0 5

6 2 5 7 7 7 5

6 4 7 8 1 5 5 7 9 3 1 2

4 0 5 3 7 2 1

8 8 7 5 2 4 6 7

0 3 5 8 9 9 8 1 7 2 8 1 3 0 5 9 5 7 0 2

0 3 7 0 2 3 5 1

2 8 4 0 1 5 8 6 6 1 0

1 3 4 0

0 3 8 3 2 2 6 8

9 2 0 9 1 2 8

2 9 7 0

9 7 3 9

6 0 1 6

4 0 6 4 7 5

9 3 4 3 6 6 3 2 3

3 8 5 3 1 2 7 4

0 1 6 1 5 3 2 2 8 7 6 4 6 9 7 1 0 8 7 1 3

7 6 3 0 1 4 8 1

2 9 6 6 1 8 . . 1 1 1 3 1 1 5 6 0 1 1 2 7

1 8 9 6 2 8 2 9

6 7 9 4 2 6 0 0 . 2

0 . . 2 . 2

0 0 0 0 . . 2 1 0 . 2 8 9

. . 2 2 1 1

0 . . . 2 1 0 0 0 0 0 0 0 . . 1 1 6 . 5 7 5

2 6 9

2 5 7 0 0 0 . 0 . 0 . 0 . 1 1 6

0 . 1

0 0 . . 1 1 1 8 8 0 . 2

0 0 . . 1

0 0 . 0 . 1 3 6 3 1 6 5

3 2 5 8 2 8 8 7 7 8 7 3 4 9 3 6

5 6 9 4 3 8 8 1 4 7 3 6 4 4

3 5 7 1 6 3 7 3 1 9

4 9 2 8 7 3 9 5 5 0 6 7 7 7 3 1

3 4 9 6 3 8 5 2

9 1 9 7 2 4 6 9 8 6 5 0 5 1 0 9 3 1 4 3

4 7 0 4 5 7 6 5

1 7 7 0 3 4 4 3 2 4 1 8 5 8 5 8 0 9 3 1

9 1 6 8 4 5 2 3

2 5 3 1 5 9 5 7 5 4 1 2 5 3 0

1 8 8 4 7 3 4

2 4 5 3 8 2 6 4

5 1 6 8 1 0 6 9 8 0 0 6 3 1

9 7 5 0 8 0 0

7 6 1 1 2 8 6 3

1 1 9 7 7 7 . 5 2 2 0 1 0 1

0 3 0 4 8 3 4

0 3 3 2 3 3 6 8

3 6 7 6 6 6 2 3 . 2 . 6

2 . . 8 6 9

2 . . 3 . 9 0 2 5 8 1

. 2 . 8 5 9 0 2

^ 9 1 0 2 4 5 6 ^ 2 2 2 . 3 . 4

1 . . 6 1 3

^ 2 2 . 1

2 . 6

2 .

^ 2 2 . 2 . . 8 . 8

. 1 . 0 . 6 . 8 3

. 2 5 1 ^ 2 3 2 . 2

^ ^ 1 ^ 3 2 ^ 2 1 . .

^ 2 2 99 6 3 1 4 2 1 7 0 1 6 2 . 2 7 4 1 0 . 1 4 . 5 9 4 9 1 8

2 2 6 6 0 1 1 7 8 6 8

8 4 5 8 7 0 5 7 9 1 0 6 1 4 1

7 9 9 5 9 3 5 0

7 2 1 6 5 3

3 9 4 3 8 6 4 7 4 4 8

3 7 1 2 6 5 7 6

3 5 4 9 0 8 3

4 8 7 9 5 6 2 7

3 3 1 1 4 0 1 3 2 7 7 0 3 0

4 0 5 3 3 9 1 3

0 3 1 6 2 2 9 6

4 5 1 4 0 8

0 t 0 1 1 6 1 8 6 6

1 3 3 6 3 1 6

2 8 2 1 8 0 5 3

7 5 1 9 6 7 ) 0 1 4 6 . 0 0 0 0 0 0 0 1

0 0 1 9

0 1 1 1 7 6 5

0 0 0 0 1 5 1 7 3 3

1 2 1 4 6 0 0 0 0 0

0 0 1 2

0 0 0 2 0 1

0 0 0 0 0 0 0 0 0 1

0 0 0 1

0 0 1 4

0 1 0 1

0 0 0 0 1 0 0 1 n 0 0 0 6 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 c 0 0 0 0 0 0 0 (

0 0 0 G S S G S G S G S G S G S G S G S G G G G e S S G G S S S S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E T

')6^^^^^^^ 9 9 3 7 2 7

0 6 0 4 1 7 3 4 8 1 1 4 0

3 2 7 7 8 7

4 9 4 4 4 1 5 3

8 4 4 6 7 8 5 1 8 7 1

2 3 7 9 1 9

4 0 9 6 8

4 6 0 1 3 1 6

9 8 7 9 4 4 4 3

3 0 2 7 6 7 1 1 4

1 6 8 3 2 3 9 1 0

2 2 4 1 2 0

1 1 1 5 4 4 0 9 7 2

4 0 4 1 6 0 9 1 1 7 9 7 5 5

8 1 0 7

1 5 5 8 0 4

3 2 2 9 A

N

^ 3 3 3 3 3

E ^ 3 ^ 3 ^ 3 3 3 ^ 3 3 3 3

7 E ^ E ^ 3

E ^ ^ 3 ^ 3 3

E ^ ^ ^ ^ 3 3 ^ 3 3 3

0 9 E 4 E ^

5 E E ^ E ^ ^ 3

0 E E E ^ 3

E ^ ^ 3 ^ 3 3 . 2 9 4 1 E

8 1 4 E 1 E E ^

7

. . 6 3 3 6 E 3 E ^

3 E E ^ E ^ ^ 3 3 . 3

3 3 . . 8 3

3 . 8

3 3 . . 9 1 7 6 7 0 E

3 3 . . 1

4 4 4 . 7

4 . 2

4 5 . . 5 5 7 8 4 E

9 2 0 E 1 E E ^ 5 5 . . 6

5 5 . . 0 8

5 . 4

6 6 . . 0 . 1 1

. 2 3 4 9 E 6 7 7 7 . . 3 3 2

7 7 . . 5 7 7 . 3 3 3 3 3 2

^ 3 3 3 3 3 3 2 2 2 3 2 2 2 2

E ^ 3 ^ 3 3 ^ 3 3 2 3 2 2

^ 3 3 2 3 2 2 3 3 2 2 2

0 E ^ E ^ ^ E ^ ^ 3 ^ 3 3 2

E ^ ^ 3 ^ 3 3 ^ 3 2 3 2 2 8 7 E 7 E E 9 E E ^ E ^ ^ 3

8 E E ^ E ^ ^ E ^ 3 ^ 3 3 2 . 3 3 7 6 2 8 1 7 E 9 E E ^

3 4 5 E 3 E E ^ ^ E ^ ^ 3 6 5 E E

7 . . . 7 8

8 8 8 9 . 9 . . 0 0 8

. . 0 1 1 2 E

9 1 1 1 . . 2 2 7

1 1 . . 3

1 1 . . 4 4 8

. . 4 5 9 0 E

8 7 1 4 E E ^ 1 1 1 1 . . 5 7 2

1 1 . . 8

1 1 . . 8 . 9 . 9 5 6 E 1 1 1 . 9

1 . 9 0 1 . 0 1 2 . 9 3 7 3 9 7

3 3 1 0 8 2 3 9 9 4 9 5 3 4 8

6 2 4 1 2 4 5 2 1 2 8 5 9

1 4 5 8 2 8 6 9 6 9 3

7 2 7 4 1 0 6 9 3 4 7 5 1 5

1 5 9 7 1 3 8 9

6 9 8 1 0 9 1 4 8 0 9 9 4 9 3 2 3 7 9 3 1

2 7 2 1 8 8 8 5

7 9 7 8 5 4 2 3 8 3

2 4 6 0 5 5 4 5 6 4 4 2 7 9

7 5 9 9 6 4 2 6

6 7 6 6 8 8 2 9 2 6 2 9 9 1 3 8 9 9 2 4 8

8 3 2 1 8 5 6 7

2 5 0 8 2 6 6 6 8 5 5 7 . 9 . . 9 9 1 1

. . . 9 1

. 9 0 7

9 0 9 8 7 8 1 8

7 5 3

. 8 9 9 7

8 8 8

. 8 8 8 8 7 9 6 6 1

8 6 0 8 8 6 0 8 8 8 5 5 6 1 1 1 1 1 1 1 . . 9 . 8 8 8

1 . . 8

1 1 1 . 8 8 6

1 1 1 1 1 1 . . 8

1 1 1 . 1 .

^ 1 1 1 1 1 1 1 .

^ 1 1 1 1 1 1 . 1 . . 8

1 . . . . 8 8 ^ ^ 1 1 1

^ ^ 1 1 1

^ 1 1 1 ^ 1 1 1 1 1 .

1 ^ 1 1 1 .

1 1 1 1 ^ 95 4 8 4 9 2

0 4 3 6 9 9 3 2 6 2 4 1 2 4 4

7 0 6 7 5 9 6 9 9 5 4 7 8

9 8 4 6 5 9 4 7 5 1 3

1 2 8 5 8 9 7 6 3 7 6 3 1 5

9 7 2 0 5 9 8 4

1 1 4 9 1 1 5 1 7 8 2 8 8 1 1 3 8 3 9 8 0

1 6 6 1 1 4 7 2

1 2 6 4 7 9 1 5 5 7 8 7 9 4 1 2 7 6 5 4 1

6 6 7 5 3 7 4 7 1

3 6 9 7 0 9 4 8 5 5 8 1 7 8 7 5 6 6 8 7 0 6

7 3 5 8 8 2 1 1

3 2 0 4 5 4 3 1 7 3 9 0 8 0 0 9 2

1 7

1 4 6 1 7 6 8

1 9 0 9 6 7 1 5 2 0 8 0

1 2 4 1 5 8 3 . 2 2 . . 1 2 9 1 7 7 6 4 3 1 8

2 6 4 1

3 0 8 7 2

0 0 . 0 . . 2

0 . 3

0 0 . 0 . . 2 2 1 7 1 0

0 0 . 0 0 0 . . 2

0 0 . . 2 1 5 2 3 6 8

. 4 1 7 6 7 6 0 0 . . 1

0 0 . . . 2 7

0 0 . 1 2 2 1 1 4 9 0 0 . 0 . 0 . . 2 1

0 0 0 . 0 . 0 . 2 4 2 1 6 8 8 6 8 0 2 4 0 8 9 7 5 0 7 7

6 2 9 7 5 2 2 1

3 3 4 8 8 3 1 9

8 9 2 0 9 9 3 7

4 0 7 2 0 9 8 3

2 2 8 1 7 1 4 7

3 . 2 8 3 6 7 0

3 2 . . . 8 7 4

. ^ 3 2 2 2 . . 8

3 2 .

^ 2

50 5 5 5 0 2 7 7 8 1 1 9 3 5 0 3 9 9 3 4 1 1

3 1

8 4 4 4 1 9 3 9 8 0 6

9 8 0 8 5 5 1 3 2 8 1

6 6 5 4 8 1

2 5 7 0 7 6 5

9 4 9 4 9 1 1 0

7 0 0 3 8 5 6 1 0 7 8 2 0 3

7 7 4 2 7 9 7

7 8 4 1 9 3 7 4

0 8 0 1 5 0 9 0 1 1 9 1 1 9

1 9 1 5 6 2 0 .) 4 5

0 0 1 0 0 1 1 2 3 7 3

0 0 0 0 1 1 0 9

0 1 0 1 7 8 4 4

2 8 3 5

4 8 0 4

2 2 6 0 2 1 1 1 1

0 1 6 t 1 n 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0

0 0 0 1 7 9 7 6

0 1 1 0 1 0 4 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 2 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0

0 0 0 0 ( 0 0 0 0 6 0 0 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G S G S G Gl e

S S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 43 8 5 1 5

8 3 5 7 3 4 1 9 7 8 9 6 4 1 5

9 2 4 4 1 0 9

1 5 2 4 8 9

9 9 4 5 6 0 4 3 9 9 6 6

2 9 1 0 9 5

2 9 9 7 0 8 9 7 9 7 8

6 9 3 0 9 9 9 7 3 1 5 0 9 7 2 4 0

5 2 1 1 3 5 6

5 9 7 1

5 3

5 2 3 5 2 2 4 2

5 5 5 4 9 9

5 1 4 9 4 8 4 0 3 0 1 1 5 3 4

4 6 4 9 7 2 6 1 9 2 5 3 0 7 1 5 1 1 2

L 1 P

1 2 1 2 1 1 0 A

P A R K D C 5 1 1 2 1 4 4 C 1

4 A A S 1 1 1 C P N P G C P S D R K P P M P P 9 3 3 2

L 3 M 5 3 N P 8 D D 2 O 5 2

A T 6 H

X O R Q E T S F N S S Y O H S 8

R C N W E P A Y S D R D L A C N U A H P F C C Z C U C P F H S S T T T D Z N S S V A C A C B P 3

O Y P L A M F C Z Z F N M I T P O

3 1 1 1 0 0

^ 3 1 3 1 0 3 3 0 0 0 0 0 0 3 0 0 3 0 0 0 3 0 0 3 E ^ 3

E ^ ^ 3

E ^ ^ ^ 3 0

^ 3 0 0

E ^ ^ 3 3 ^ ^ 3 ^ 3 3 3 ^ 3 ^ 3 0 9 6 8 0 E E 8 E E E ^ ^ 3 ^ 3 3 0

^ 3 0 3 0 0 E

1 3 4 8

. 0 . 0 9 7 E 5 E E ^

4 E E ^ E ^ ^ 3

E ^ 3 ^ ^

3 E 8 E

0 3 E 4 7 E E ^ 3 . 8 . 1 1 . . 0 1 2 3 8 3 E

1 1 . . 2

1 1 . . 4 5 5 4 5 E

. 5 . 5 8 8 E E ^

6 E

6 0 5 6 8 0 0 3 8 8 . 9 . 9 1 . 5

1 1 . . 0

1 2 . . 1

2 . 1 . 2 5 6 E ^

0 E 1 1 . 1 . 1 2 2 . 2 2 . . 7 8 0

2 2 . . 9 2 2 . 3 2 2 2 2 2 2

^ 3 3 3 2 2 3 2 2 2 3 2 2 2 2

E ^ ^ ^ 3 3 2

^ 3 3 2 3 2 2

^ 3 3 2 3 2 2 3 2 2

6 E E E ^ ^ 3

E ^ ^ 3 ^ 3 3

E ^ ^ 3 ^ 3 3 2

^ 3 2 3 2 2 1 7 3 0 E E ^

1 E E ^ E ^ ^

9 E E ^ E ^ ^ 3

E ^ ^ 3 ^ 3 3 2 . 1 2 6 0 0 E

9 4 7 E 7 E E

. . 1 0 5 E 5 E E ^

9 E E E ^ ^ 3 2 2 . 2 . . 6 7 5

2 2 . . 8

2 2 . . 9 1 0 6 2 6

2 2 . . 3

3 3 . . 0 1

3 4 4 . 2 2 5 3 6 4 E

8 0 8 3 E E ^ 4 4 . . 3

4 4 . . 6 7 9

4 5 . . 7

5 5 . . 3 4 1 7 1 E 5 6 . 6 . . 6 8 8

7 7 . . 0 7 8 . 5 1 5 9 1 5 7

6 9 7 8 5 1 7 4 1 9 9 7 5 9 2

6 7 5 3 6 5 4

1 9 7 9 6 7 9

3 8 1 5 7 6 1 9 6 9 2

7 3 5 4 1 5 1

0 6 0 1 6 1 5

9 9 5 3 8 0 8 4

3 4 6 7 3 7 9 2 9 2 5 2 4

7 2 1 2 7 8 4

9 8 6 2 3 0 7 3 4

8 5 1 4 8 6 7 4 9 6 4 4 1 0 2

4 9 6 2 0 6 8

3 9 9 9 3 7 2

3 2 4 5 9 4 2 8 4 4 3 1 3

2 3 7 2 5 5 6

9 2 0 0 7 5 8

5 6 2 1 9 1 2 . 8 8 3 8 3 6

8 2 1 4 0 7 4

7 9 9 9 8 7 7

6 9 7 9 9 5 1 1 . . 8 . 8 2

. 8 8 1 8 9 9 3

. 7 7 7 6 6 6

7 5 5 4 2 1 6 1 1 1 1 . 1 . 8

1 . . 8 . 7 7 9

1 . . . 7 7 6

. 7 7 7 4 4 8 ^ 1 1

^ 1 1 1 .

^ 1 1 1 1 1 1 1 .

1 1 1 . . 7

^ ^ 1 1 1 1 1 .

1 1 1 1 1 1 1 . . 7

1 . . . 7 7 3 ^ 1 1

^ 1 1 1 .

^ ^ 1 1 1 1 1 1 . . 7

^ 1 1 1 1 1 1 1 .

^ 1 1 1 1 2 8 9 1 7 9 6

4 4 4 6 0 8 4 2 8 7 8 6 3 6

5 2 5 7 0 3 7

1 9 5 3 2 2 7

6 2 8 7 4 7 5 1 4 5 7 1 2 7 3 5 7

2 5 2 9 2 6 7 1

4 9 0 7 9 7 8

8 1 5 4 5 4 1 5 7 5 6 3 5

7 7 0 6 9 6 4 8

2 9 9 6 0 2 9

6 1 8 6 7 7 6 1 3 9 2 6 2 5

5 1 2 4 0 0 5 0

6 0 3 0 1 7 6

0 8 6 0 5 7 1 2 7 5 3 3 9 3

7 6 5 3 9 0 4 8

2 0 7 7 0 1 2

5 6 0 4 8 9 8 . 3 5 2 6 7 5

9 6 3 5 4 9 9 3

7 0 7 4 1 6 9

3 0 0 4 5 6 3 0 . 3 1 8 1 9 9

1 8 6 0 8 8 3 8

1 0 1 5 0 0 3

3 3 8 1 5 6 2 0 . 2

0 0 . . 1 7

0 . 1

0 0 . . 1 1 6 1 6 5 4

0 0 . . 1

0 0 . . 2 2 2

0 0 . . 2

0 0 . . 2 5 1 7 8 1

2 0 0 0 1 0 5 0 . 2

0 0 . . 1 2 0

0 0 . . 2

0 0 . . 2 2 9 2 6 7 0 0 . . 1

0 0 . . 2 5 0 . 3 0 0 . 7 1 9 9 2 2 2

7 1 9 2 4 8 3 3 6 2 6 8 1 2 7 4

8 2 7 6 8 2 2 7 7 5 3 0 6 1

0 9 0 4 1 5 1 3 6 2 3 5 9 0 2 4 9 1 7 7 5 6 9 0 6

3 0 4 4 5 1 5

8 2 8 4 8 8 2 5 9 2 1 8 5 3 2 8 2 7 8 8 7

1 2 9 3 0 5 6

7 9 6 2 4 7 6 9 3 7 1 8 3 4 2 5 1 9 6 3 6 9

9 0 4 3 5 4 0

9 4 8 0 3 9 5 0 7 7 1 6 6 2 6 5 4 5 8 7 0 8

5 7 6 1 7 8 4 3

2 0 5 2 2 7 4 5 9 4 1 3 1 3 3 6 2 6 2 3 2 3

3 8 8 4 8 1 4

7 0 5 3 6 5 3 . 9 8 4 9 4 2 3 0 3 9 8 2 5 7

0 5 6 2 1 2 7

4 8 4 0 1 6 8 3 . 3 . 3 . . 3

2 . 1 . 2 9 8 1 7 9 1

. 3 9 8 0 0 9

7 8 4 4 3 0 6 ^ 1 .

^ 3 1 . . . . .

^ 2 2 2 2 1 1 . 1 . 9 5

. 6 .

^ ^ 2 3 2 2 2 . . . 0 6

. . 3 3 . 3 2 5 6 9 ^ ^ 2 2 ^ 1 ^ 2 3 2 ^ 2 . 2 2 . 2 . 0 1

^ 2 3 . 4 . 0 3 7 7 4 8 8 4

6 2 7 2 2 1 6 9 3 2 1 3 3 8 3

3 6 2 5 3 5 2 8 2 7 2 2 3

9 1 5 7 8 5 2 2 4 5 9 3 5 4 3 3 5 0

8 5 0 8 1 3 5

9 2 2 1 8 0 3 4

7 1 2 4 6 1 8 3 1 4 7 4 6 0 9

5 3 1 4 8 2 3

3 2 6 3 6 8

7 6 6 3 5 2 8 . 4 7 1 3 8 3 2

6 9 0 3 1 4 1

6 9 6 9 8 6 7

9 7 5 9 0 9 2 2 6 . 5 . 7 6 2

. . 7 0 6 9 7

. 6 2 3 4 1 7

6 3 7 4 4 8 0 5 . 1 2 6 . . 8

8 5 0 . 5 1 4

5 0 6 5 . 1 3

2 3 3 0 8 3 2 1 1 8 . 8 4 9 .

8 5 . 5 . 7 6

3 . . . 1 5 3

. . . 7 . 9 2 1 1 4 1 7

4 7 8 5 2 2 4

2 3 6 1 4

3 2 0 8 1 6 3 0 . .

1 1 8

1 3 5 7 6 9 0 3 1

5 4 . 5 9 1 . 1 .

4 0 . 2 2 1 0 5 3 5 4 6 4 6 4 . 2

8 1 1 9 1 8 5

9 7 7 1 3 8

8 9 9

6 9 1 1 3 9 8

2 9 7 9 3 5 2 1 4 5 87 3 1 9 0 1

3 0 2 8 4 8 1 4 4 4 3 5 7 0 8

9 3 3 1 6 4 9 2

5 3 3 4 0 4

8 8 5 0 4 2 5 0 8 3 7 5 0 3 5 5 4 2

7 8 1 6 3 4 8

5 0 6 3 1 1 1

2 7 5 8 3 4 1 0 8 0 4 1 7 1 5

5 2 3 3 4 5 7 3

8 9 4 8 8 4 7

1 6 8 0 8 0 4 0 1 1 3 1 4 5 3

1 0 3 3 6 4 3

0 7 7 2 6 8 9

1 6 3 4 8 1 3 0 0 0 1 0 1 1 1

0 0 1 1 0 3 0

0 1 0 7 1 1 2

0 9 3 6 2 3 1 . ) 0 0 0 0 0 0 0 1

0 0 0 0 2 1 3

0 0 0 1 0 1 2

0 1 1 9 1 2 5 t 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 1 0 1 0 n 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0

0 0 0 0 0 0 ( 0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 01 6 1 7 9

8 3 5 3 4 6 7 8 7 8 8 8 2 6

9 4 1 5 9 2

2 2 7 5 0 5

2 6 3 2 9 5 4 4 2 1

7 2 7 4 2 3 7

6 6 0 4

7 4 0 8 7 2 2 1

4 6 8 3 5 9 2 5 4 6 4 6 4 2 1 5 8 8 3 8 4 9 0

8 8 8 3

2 2 0 2 6 1 6 4 5 0 4 5 6 2 1 9 5 5 5 5 5 5 6 2 7 0 3 6 2 6

1 5 2 5 6 7 4

2 2 9 1 A A N N B 3 9

1 1

P G 2 P 3 1 L

N 1 1 L 0 2 2 6 8 L B 4 P P I N 2 6

C L A 2 W L M M R 1 M

E L 2 T 8

S T 1 T C L L 1 2 5 9 1 M 2 3 1 L 2 H A C N L K A B F X L 1 1 C

F D E 1 B

S N E M N R T P W T O D Q R E R A B E C E A S K M H P I MM Z N A S I P P A K C E N N M P 3 S G

L T 1

B R S A T E K C E Z S O T P R A

3 0 0 0 0 0

^ 3 0 3 0 0 3 0 0 0 3 0 0 0 0

E ^ 3 ^ 3 3 0

^ 3 3 0 3 0

^ 3 3 0 3 0 0 3 0 0

6 E ^ E ^ ^ 3

E ^ ^ 3 ^ 3 0 0

^ ^ 3 ^ 3

3 4 E E ^

9 E E ^ E ^ 3

E ^

9 E E E ^ ^ 3 3 ^ 3 0 3 0 0 1 7 E E ^ 3 ^ 3 3 0 . 2 3 3 8 8 E

6 2 9 E 6 E ^

7 4 3 E 5 E E ^

6 E ^ E ^ ^ 3 3 3 . 3 . . 3 4 9

3 3 . . 6

3 3 . . 1 1 2 4 9 E

3 4 . . 4

4 4 . . 4 7 0

4 4 . 4 . . 8 9 1 6 2 2 E

3 0 E 3 E E ^ 4 4 . . 1

4 5 . . 4 5 0

5 6 . . 7

6 6 . . 4 3 9 8 4 E 7 . 3

7 8 . . 9 0

. 2 . 5 8 8 9 9 . 3 2 2 2 2 1 1

^ 3 3 3 2 2 3 1 1 1 3 1 1 1 1

E ^ ^ ^ 3 3 1

^ 3 3 1 3 1 1

^ 3 3 1 3 1 1 3 1 1

4 E E E E ^ ^ 3

E ^ ^ 3 ^ 3 3

E ^ ^ 3 ^ 3 3 1 1

^ 3 3 3 1 1 8 6 2 1 E ^

4 E E ^ E ^ ^

7 E E ^ E ^ ^ 3

E ^ ^ ^ 3 3 1 . 1 . 3 9

. 3 5 0 E

0 6 9 E 7 E E

3 8 1 E 2 E E ^

3 E E E ^ ^ 3 8 9 9 9 . . 8 4

9 . 0

9 1 . . 1 1 5

. . 2 . 2 8

. 2 4 3

1 1 1 1 1 1 . 1 . . 3 4 7 6 5 8 E

1 4 2 9 E E ^ 1 1 . . 4

1 1 . . 8 8 3

1 1 . . 9

1 1 . . 1 4 5 1 9 E 2 2 . 2 . . 6 6 7

2 2 . . 7 2 2 . 3 6 8 9 9 8 8

8 4 1 4 9 1 0 2 1 3 4 7 6 2 1

9 0 2 1 8 4 9

1 1 8 1 3 3 3

4 8 1 8 3 6 4 3 1 5 1 3

9 8 0 5 3 4 7

8 7 1 3 7 5 2

7 5 2 8 6 9 3

1 9 2 1 6 3 0 9 5 3 8 2 6

9 3 0 4 7 2 1

0 8 8 2 1 3 4

4 5 0 5 9 3 1 3 7 6 9 4 2 0

6 6 1 1 4 8 1

3 2 2 5 5 8 8

4 7 0 7 7 5 7 7 2 2 5 2 2 2

1 7 6 4 0 6 8 1

9 1 1 9 8 9 8

6 8 6 5 7 2 8 . 7 7 2 7 7 7

7 0 0 1 0 9 5 9

6 9 8 7 6 6 5

5 5 5 9 8 9 4 3 1 . . 7 . . 1

. 7 7 0 7 9 9 3

. 6 8 6 6 6 4

6 5 4 3 6 9 1 1 1 1 .

1 1 1 1 1 7

1 1 . 1 . . 7 . 6 6 9

1 . 6 . . 6 6

. 6 6 3 6 3 3 ^ ^ 1 1

^ 1 1 1 1 .

1 1 1 . . 6

^ ^ 1 1 1 1 .

^ 1 1 1 1 1 1 .

1 1 1 1 1 . 6

1 1 1 .

1 1 1 . . 6 . 6 3 ^ ^ 1 1 1 1 . 1 . 6 ^ 1 1 1 1 1 1 .

1 1 ^ 1 12 4 6 5 6 7

4 3 0 9 0 8 1 2 5 7 9 7 9 4 6

7 8 2 8 1 1 0 0 6 9 1 6 8 8

4 4 6 5 3 2 6 5 4 4

9 9 3 2 8 5 5 8 8 4 1 2 2 5 5

6 7 2 8 5 7 7

9 8 5 1 0 6 6 6 4 9 8 4 9 1 5 4 4 4 1 7 6

0 4 9 2 2 2 3

1 0 1 7 9 3 1 3 2 7 1 6 0 3 4 1 8 7 0 8 8 2

8 5 7 4 2 9 1

3 8 9 9 4 6 2 2 0 5 9 6 9 5 0 1 6 3 3 1 1 0

9 9 8 5 3 2 4

7 6 5 4 0 9 5 3 8 3 4 8 0 4 0 2 8 8 6 8 8 1

7 1 7 9 1 3 0

4 3 2 6 3 2 3 . 2 2 2 1 8 6 2 5 6 6 8 3 4 8

3 6 9 8 8 4 3

6 7 8 1 5 7 6 0 0 . . 2

0 0 . . 1 1

0 0 . 0 . . 2 1 6 1 7 6 3

0 0 . . 1

0 0 . . 2 . 1 5

. 2

0 0 0 0 . . 2 2 5 2 7 6 4

1 6 7 1 5 7 5 0 0 . 0 . . 2 1 7

0 0 . . 1

0 0 . . 2 2 4 2 6 7 2 0 0 . . 2

0 0 . . 1 0 0 . 2 0 . 0 8 7 7 6 2 2

8 4 2 8 7 8 8 1 3 9 6 2 9 3 4 4

3 1 2 9 9 1 5 2 5 9 2 7 4 4

8 4 9 5 5 3 6 5 8 5

9 9 3 9 7 9 3 4 0 8 7 8 6 8 4

6 8 5 0 7 7 3

4 3 6 7 1 3 8 2 9 4 8 8 6 3 9 1 7 6 8 1 0 3

0 7 4 4 0 9 2

8 2 8 9 8 8 9 7 9 4 8 8 0 4 2 8 3 3 4 5 9 5

1 8 3 2 9 6 0

8 9 4 7 8 3 2 9 6 4 3 8 6 9 8 6 6 3 8 8 8 5

1 5 4 7 3 2 6

1 0 9 7 4 3 7 7 8 6 7 8 0 7 4 1 4 2 9 5 6 3

4 2 6 1 5 2 8

0 4 4 5 1 7 8 5 7 2 7 3 7 0

. 2 7 3 1 2 2 3 9 4 6 3 8 4 7 1

2 6 0 0 7 7 9 3 3 . . 6

2 2 . . 1 9

2 . . . 9 5 1 0 2 8

. 0 0 3 2 1 3

9 1 4 7 9 1 0 ^ ^ 2 1 .

^ 2 2 . 9

1 . . 2 9 6

. . . 9 3

^ ^ 1 2 . . 9 .

^ 3 1 2 4 3 . 3 3 3 . 0

1 . 1 2 0

2 . 1 . . 8 . 5

2 9 7 . 1 ^ ^ ^ 3 3 2 . 1 .

^ 3 0 1 8 1 6 3 5

0 3 0 4 7 9 4 6 1 3 6 8 8 5 7

6 7 6 7 5 5 9 2

2 3 5 3 6 8

9 6 2 3 8 4 3 7 3 8 7

5 9 4 3 3 4 8 0

6 3 7 1 0 7 1

8 0 7 2 0 1

7 1 2 9 4 7 6 4 4 9 7 3 5 2 6

5 4 7 7 4 1 5

. 9 5 5

5 3 4 4 3 7 7

7 3 9 3 3 1 0 . 3 3 0 5 2 6 6

8 8 6

9 3 6 3 5 6 1

0 8 3 8 6 2 6 7 1 9 7 . 9 2 6

. . 9 7 5 0 5

2 5 9 6 4 0 5

. 1 4 3 9 7 1 2 2 4 . . . 6 . . 5

1 3 . 3 7 5 9

. 6 . 6 3 . 5 7 0 . 4 2 5 0 9 6 5 8 0 6 .

0 8 6 2 . . 7

3 . 0 9 . 1 .

8 . . 3 4 2 8 6 2 4

8 1 1 0 3 2 4

1 1 1 3 4

2 2 4 1 7 2 0 2 8 8 1 .

1 1 6 4 1 8 4 8

1 4 3

3 1 0 3 6 0 . 7 4 5

5 0 2 . 7 . . 6 7 1 1 0

1 6 8 0 8 9

9 0 2

1 2 6 8 0 8 0 0 0 2 1 0 6 8 6

1 1 6 9 1 2 1 0 4 1 2 4 4 2

8 4 3 2 2 1 7 5 4 7 5 1 2 5 2 8

2 2 2 5 9

9 5 8 9 0

3 5 1 9

8 2 4 0

9 7 8 9 1 3 2 8 5 4 9 1 1 8 9 0 7 1 0 6

6 3 1 5

1 0 8 6 6 3 9 0

6 3

2 4 7 4 7 5 1 . 0 1 0 1 0 1 7 8 4 3 0

2 3 8 3

3 6 8 2 0

1 9 1 4 1 0

7 0 1 3

0 1 1 0 1 0 7 1 4 1

1 6

0 1 1 1 7 3 9 8

1 0 7 7 0 7 1 3 1 1 9 0

1 1 1 6 0 0 5 5 9 4 0

1 1 1 1 1 8 5 3 ) 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 2

0 0 0 1 0 1 2 0 1 1 7 1 5 7 t 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 n 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 c 0 0 0 0 0 0 0 (

0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 9 8 6 2 2 5

1 2 9 1 5 4 8 7 2 8 1 5 3 0 1

6 9 9 1 0 6 6

6 9 6 2 0 6

1 2 4 7 3 0 7 2 2 0

4 4 2 3 7 4 2

8 1 3 7 7

9 5 6 5 9

2 7 6 3

2 1 0 3 0 4 2 4

6 8 2 6

7 1 8 4 2 8 5 7

8 5 4 7 1 5 0 9 8

6 3 8 2 1

1 1 1 2

1 9 0

2 2 6 7 9

6 0 1 5 7 6 0 1 1 8 7 9 4 7

7 7 3 1 9 A A N N 5

3 B 4

L 4 1 B 1

0 D 6 T 1

5 1 2 2 9 L B A

4 L D L B B 1 9 P Y C R A 2 D 1 2 f 6 4 C 4

N X G 1

M L P 2 O A 3 3 7 E

3 1 C F R F 1 A P r 4 D R 1

Z S P A F N G H U T B 3 S T

S O E I o X F D

P C R 1 M

C F A M E G R N A D A A A Z A F S S T D P P S S I D I C P K S V D P A N K A N Z N P F S M VW N

3 0 9 9 9 9

^ 2 2 9 2 9 9 2 9 9 9 2 9 9 9 9 2 E ^ ^ ^ 2 2 9

^ 2 2 9 2 9 9

^ 2 2 9 2 9 9 2 9 9 9

7 E E E ^ ^ 2 2 2 2 9

1 E ^

2 E ^ 2

E ^ ^ 2

E ^ ^ E ^ ^ ^ 2 2 9

3 E E ^ E ^ ^ 2

E E ^ ^ 2

E ^ 2 9 2 9 8 7 8 9 E E ^

1 2 9 E ^ 2

E ^ ^ E ^ . 0

9 . 0 0 6 0 E

. . 3 2 6 E 2 E E

9 8 8 E 3

1 1 1 1 . . 2

1 1 . . 3 5 6 6 6 5

1 1 . . 5

1 1 . . 6 8

1 1 . 1 . . 9 9 8 1 5 6 E

4 3 1 E 7 E ^ 1 1 . . 0

1 2 . . 1 3 3

2 2 . . 4

2 2 . . 7 . 8 . 8 9 9 8 E 2 2 2 2 . . 0 8

2 . 0 3 3 . 3 1 1 1 1 1 1 1

^ 3 3 3 1 3 1 1 1 3 1 1 1

E ^ ^ 3 ^ 3 1

^ 3 3 1 3 1 1

^ 3 1 3 1 1 3 1 1 1

8 E E ^ E ^ 3

E ^ ^ 3 ^ 3 3 1

E ^ 3 ^ 3 3 1

^ 3 3 1 3 1 8 4 7 E 1 E ^

9 E E ^ E ^ ^ 3

1 E ^ E ^ ^ 3

E ^ ^ 3 ^ 3 1 . 1 1 0 4 4 E

8 0 0 E 2 E E ^

9 4 E 8 E E ^

0 E E ^ E ^ 3 2 3 . . 2

3 3 . . 5 6

3 . 5

3 3 . . 9 . 6 . 6 3 8 4 2 E

3 3 4 4 . . 9 5 5

4 4 . . 7

5 5 . . 9 4 3 6 9 E

5 4 0 E 3 E ^ 5 . 2

5 6 . . 4 0 1

6 6 . . 3

7 7 . . 2 5 6 0 7 E 7 8 . . 7

8 8 . . 3 7 9 . 3 9 9 . 9 7 5 8 3 4 1

9 2 9 2 2 1 6 4 4 7 5 3 7 7 8

4 8 4 6 7 3 6

3 9 4 6 2 1 5

4 8 9 1 1 5 2 3 1 8

0 3 0 0 9 3 2

9 8 5 4 8 1 4 7

4 9 4 0 5 0 7

1 1 5 8 8 3 3 3 5 0 2 8 4

4 2 0 7 5 6 4 5

1 9 4 5 5 4 5

3 5 0 4 1 4 3 6 3 2 7 6 8 6

0 6 5 5 6 0 2 3

9 6 6 2 1 5 0

6 9 2 6 8 7 7 8 . 2 2 1 1 2 5

6 4 0 0 6 5 9 1

6 8 . 5 6 5 4 2

8 4 9 9 6 2 8 1 6 6 2 6 1 1 2

. 0 9 0 8 4 4 5

5 6 5 1 3 8

4 0 7 2 2 5 4 1 1 . . 6 . 6 6 1 6 5 9 5 8 7 1

. 5 1 . 6 5 0

5 4 3 5 3 9 9 1 1 . 1 . . 1 . . 5 . 5 5 7

1 . 1 1 5 5 5

. 5 5 3 5 2 2 1 1 1 . 1 . . 5

^ 1 1 1 1 1

^ 1 1 ^ 1 ^ 1 1

^ ^ 1 1 1 1 .

^ 1 1 1

^ 1 1 1 1 1 .

^ 1 . 5

1 1 .

1 1 1 1 . . 5 . 5 5 1 1 1 . 1 . . ^ ^ 1 1 1

^ 1 1 1 ^ ^ 1 1 ^ 1 1 8 7 4 2 8 8

1 5 0 4 1 8 3 7 2 3 7 0 2 2 1 2

2 0 8 0 7 9 4 7 2 9 3 9 5 9

5 8 9 6 6 4 3 7 9 8

5 3 7 3 4 1 2 9 9 2 7 5 7 4 9

1 6 8 3 0 2 4

0 4 7 3 5 4 9 2 8 4 3 2 0 9 8 5 5 1 6 8 3 2

0 4 7 7 1 3 3

1 7 5 6 2 6 7 6 1 3 4 8 3 9 4 8 9 5 2 9 0 8 5

9 9 4 9 8 4 3

0 9 6 6 1 5 4 3 4 5 1 3 8 0 4 6 0 4 1 1 1

6 3 1 9 6 5 2

1 5 5 7 1 7 2 2 6 4 4 0 0 0

2 2 5 6 8 9 8 8 9 6

6 7 4 9 2 4 1

5 4 5 4 3 5 6 . 1 2 8 2 6 1 9

1 6 2 5 7 9 6

1 9 9 0 0

0 1 6 2 1 1 2 0 5 4 0 0 . . 2

0 0 . 0 . 0 . . 1

0 0 . . 1 7 1 7 7 5

0 . 1

0 0 . . 2 1 7

0 0 . . 2

0 0 . . 1 1 6 2 9 1 . 5 . 8 6 8 2 0 0 . . 1

0 0 . . 1 .

0 0 . 0 0 1 2

. 0 2 1 7 7 0 0 . . 1 1

0 0 . 0 . 9 1 4 7 2 8 6

1 0 0 1 4 5 1 8 7 5 6 1 8 5 1

0 2 6 4 4 5 6 3

9 8 6 0 2 5

7 2 0 2 2 9 3 3 9 5 6

3 5 5 8 8 6 9 3

5 0 2 9 7 9 6

0 8 7 7 2 3 7 6 7 7 2 3 6 5 7 5 5 2 8 0 0 7

5 0 1 5 7 2 2

9 9 2 9 0 7 9 5 4 4 6 7 3 0 7 3 1 2 6 9 9 8

5 0 6 4 1 1 1

4 3 6 3 0 9 2 5 0 8 5 2 0 8 4 8 3 4 4 8 5 2 7 9 7 6

3 8 9 4 4 0 4 1

5 0 3 8 5 2

2 8 3 5 2 5

9 3 5 1 3 9 5 5

6 3 5 8 2 6 4 1 4 0

7 9 0 8 8 4 7 0 6 2 8 9 8

3 0 1

. 9 8 0

. 3 3 9 . 8 4 4 1 9 8 9

4 5 9 8 6 8 2 1 . 2 3 . . 0 4 5

. 9 0 8 1 8 9

1 . 2 2 8 3 1 4 7 9 2 4 8 8 ^ 2 . . 8 1 . 2 8 9

^ 3 2 1 .

^ 1 . . . 2 0 8

^ ^ 1 ^ 2 1 . . 1

^ 3 2 .

^ 3 2 . .

2 ^ 2 2 . . 8

1 2 . . 7 3 8 5 9 ^ 1 . 6 . 0 .

^ 1 .

^ 2 1 . 1 ^ ^ 2 ^ 11 3 6 7 2 7 7 3 0 7 2 4 5 8 3 . . 1 9 3 . 0 8 2 2 4 3 7

3 2 1 3 9 8 3 3 9 1

9 7 9 4 6 8 4 0 7 6 3 3 4 5 1 1

4 7 4 5 8 9 6 4

8 1 4 3 8 2

2 9 5 3 2 5 0 2 3 9 2

3 7 9 6 7 0 8

. 8 7 2 3 5 2 1 3

2 8 2 9 4 0 1

8 2 5 6 3 9 6 8

8 0 3 2 1 9 1 6 7 0 3 1 4 7

8 2 8 3 6 6 2

9 8 7 6 7 7 0 7

7 9 3 t 0 1 1 0 2 4 6 2

0 1 1 6 5 2 6 2 9

1 0 9 7 9 2 0 0

0 7 4 6

0 1 9 9 5 1 ) 1 4 1 7 0

1 7

0 0 0 1 0 1 1 6

0 1

0 0 1 0 0 0 0 2 1 1

0 0 1 0 1 0 0 1 1 3 9

1 0 9 6 0 0 0 0 0 0 0 ( c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0 2

0 0 0 0 1 1 n 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 6 0 e S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 90 7 4 5 2

9 9 6 6 6

0 1 6 6 1 1 6 9 6 0 6 2

1 3 9 4 3 7 6 8 1 2 9 9 9 9 1 2 7 4 0 1 2 5 1

5 7 6 0 7 1 5

2 5 4

5 3 2 3 3 8 9 7

3 4 8 0 2 6 3 6 3 6 4 8 9 5 3 2

2 9 3 1

1 3 8 2

6 7 5

7 5 1 2 4 8

6 2 8 1

A A A A A A N N N N N N 1 1

5 3 U P 1 P

8 I 1 L 9 3 6 L 5 1 L 1 8 N S

C 3 T R A 1 E P 1 5 R N 1 K

P 7 6 1

S A C H 5 C 1

C 7 2 1 D A 6 E S B R X

D A A N P I P T X L R C N C D N A N A C N L A F K I WO R E P I D D N N H C A R A B M N O P I A N N A D M X D A A F S S F H R K L N N N A Z P I

2 9 9 9 9 9

^ 2 2 9 2 9 9 2 9 9 9 2 9 9 9 9

E ^ ^ ^ 2 2 9

^ 2 2 9 2 9 9

^ ^ 2 2 9 2 9 9 2 9 9

2 E E E ^ ^ 2

E ^ ^ 2 ^ 2 2

E ^ 2 ^ 2 2 9

^ 2 9 2 9 9 2 1 0 9 E E ^

5 E E ^ E ^ ^

8 E ^ E ^ ^ 2

E ^ 2 ^ 2 2 9 . 3 4 5 0 6 E

3 7 1 E 5 E E

1 6 E 4 E E ^

1 E ^ E ^ ^ 2 . . 6 8 7 3

3 3 . 3 . . 9

3 3 3 3 . . 3 4 6

. 4 . 5 4 6 E

9

4 4 . 4 4 . 6

4 . 7

4 4 . 4 . . 3 0 1 0 9 E

8 0 E 7 E E ^ 5 . 4

5 5 . . 3 4 4

6 6 . . 6

6 6 . . 9 0 2 3 2 E 6 . 2

6 7 . . 6 6 0 7 7 . . 6 8 9 . 3 1 0 0 0 0 0

^ 3 3 3 3 0 0 3 0 0 0 3 0 0 0

E ^ ^ ^ 3 0

^ 3 3 0 3 0 0

^ 3 0 3 0 0 3 0 0 0

3 E E ^ E ^ 3

E ^ ^ 3 ^ 3 3 0

E ^ 3 ^ 3 3 0

^ 3 3 3 0 0 8 1 4 E 0 E ^

4 E E ^ E ^ ^ 3

1 E ^ E ^ ^ 3

E ^ ^ ^ 3 3 0 . 0 0 0 1 9 E

3 5 6 E 1 E E ^

6 7 E 2 E E ^

4 E E E ^ ^ 3 9 1 . . 1

1 1 . . 1 2

1 . 2

1 1 . . 3 3 8 4 4 8 E

1 1 . . 3

1 1 . . 4 4 3

1 1 . . 5

1 1 . . 6 8 9 7 3 E

. . 0 1 7 7 0 E E ^ 1 . 6

1 1 . . 9 0 8

1 1 2 2 . . 1 2 3 1 3 E

2 2 . 2 . . 4 7 5

2 2 . . 0 2 3 . 7 6 5 7 2 7 4

8 6 5 2 6 6 4 7 3 2 4 6 6 7

3 8 8 6 5 4 2

0 5 3 5 3 3 5

7 1 8 3 3 1 7 4 8 5

5 8 5 4 7 8 1

7 3 2 4 7 4 5 4

8 9 9 6 0 7 5

0 5 2 6 1 5 2 9 4 9 4 3 7

6 6 7 9 2 0 8 1

5 8 1 3 7 5 6

0 0 0 4 4 0 3 5 2 0 6 5 2 8

8 1 2 0 3 9 3 8

2 4 8 6 5 3 3 7

1 6 6 0 4 2 1 . 2 2 5 1 9 6 6

9 8 7 6 4 5 2 4

8 9 8 7 2 5 7

8 8 0 1 3 3 9 1 5 5 1 5 0 0 4 9 9 9 9 2 0 9

4 7 7 6 5 2 4

5 6 3 2 7 0 5 1 1 . . 5 . 5 5 . 4 4 4 4 9 9 6

1 . 4

1 . . 4 4 4 6 6 0

. . 4 4 5 5 5 7 7 5 1 1 .

1 1 1 . . 1 . . . . 4 4 8 3 7

1 1 1 1 . . 4 4 6

. 4 4 4 4 ^ 1 1 1 1 1 1 1 1

^ 1 1 1 1 1 1 .

1 1 .

1 1 1 1 1 1 1 1 1 . 1 . . . 4 4 2

1

^ 1 ^ ^ 1 ^ 1 1 1 1 1 1 1 . . 4

1 1 . ^ 1 1 ^ 1 1

^ 1 94 5 7 7 1 5

9 3 6 5 1 6 8 4 3 7 1 6 7 6 2 1

5 9 2 5 4 2 6 7 2 8 6 1 1 7

5 2 8 4 5 9 4 7 6 4 2 8 3 1 5 2 3 7 3 7 1 6 4 4 0 2

6 7 7 0 2 4 6

0 5 8 9 2 6 9 7 2 2 3 7 6 3 9 7 9 2 7 5

5 0 3 8 2 2 2

8 6 1 1 9 2 9 5 5 7 4 2 9 5 3 6 6 8 6 1 6 5

9 0 0 8 6 5 3

2 4 0 2 6 4 0 1 3 2 0 3 9 7 5 3 7 8 1 4 9 6

3 0 1 0 1 5 4

5 4 6 7 3 8 5 2 7 7 7 2 9 4 1 3 2 8 4 1 0 5

6 7 8 8 0 9 6

4 5 9 1 7 0 5 . 2 1 2 . 5 1 2 5 1 6 1 6 9 8

1 5 8 0 1 0 2

7 3 9 3 3 5 3 0 0 . . .

0 0 0 . 1 3

0 0 . . 2 3 8 2 3 5 1

0 0 . . 1

0 0 . . 2 1 5

0 0 . . 1

0 0 . . 3 1 2 7 6 4

2 3 1 4 6 1 9 0 0 . 0 . . 1 1 8

0 0 . . 1

0 0 . . 3 . 3 1 7 9 0 0 . 0 . 3

0 . 1 3 1 0 0 . 0 . 7 9 1 5 7 9 1 1

6 8 2 7 6 1 2 3 5 6 9 9 5 5 5

4 9 2 4 7 4 5 5 2 7 0 4 2

5 7 9 8 7 4 5 2 8 3 6 1 4 0 1 3 1 8

7 5 1 3 6 1 3

5 9 3 1 5 9 2

9 6 3 9 0 4 3 8 6 0 8 7 1 9 6

1 2 9 3 5 1 3

4 5 7 7 1 5 2 9

9 4 1 1 6 2 4 5 2 4 3 1 0 1 6

2 9 0 3 4 9 3

6 8 1 4 5 1

6 7 2 7 7 3 9 8 5 0 1 4 4 8 9

3 9 9 7 7 5 8

2 1 2 5 7 5 7

5 3 5 5 1 7 1 4 1 9 4 7 1 1 3

1 5 4 1 8 0 6

8 8 9 2 0 9 5

5 1 0 3 4 4 8 . . 9 1 6 4 2 6

9 9 8 6 3 8 3

8 9 5 6 6 4 7

4 2 6 6 4 5 0 2 3 . 1

1 . . 8 6 7

. 5 4 4 1 2 4

. 0 1 8 9 4 1

1 8 8 8 7 1 6 ^ 3 2 1 . . 4 .

^ 3 2 2 . 1

3 2 . . 7 8 4

2 2 . . 7

1 1 . 1 . . 3 . 8 1

. . 2 2 8 6 5 ^ 4 2 .

^ 2 1 . 1

^ 1 2 .

^ 3 3 . 8

2 . . 9 6 ^ 3 1 .

^ ^ 1 . 3 74 3 8 6 7 9

3 2 9 2 6 4 9 0 3 6 9 2 8 7 6

4 0 3 9 1 0 7 5

0 3 1 1 9 3

2 9 7 8 3 4 5 1 1 8 6 8 9 5

. 2 7 7 5 3

1 9 7 8 0 5 6

4 2 2 1 6 6 7

3 2 3 2 0 8 4 5 2 4 0 4 2

8 9 1 2 2 8 3

9 0 7 3 1 2 0

9 2 0 5 7 9 1 . 0 7 9 7 . 6 8 0

7 4 4 8 7 4 6

2 9 3 9 3 4 0

1 0 2 1 2 5 5 8 7 2 3 6 2 8

9 8 1 2 2 0 7 1

. 0 9 7 . 6 1

0 2 2 9 3 2 9 1 . 0 9 . 8 7 4

. 6 . . 2 . 4

7 1 . 4 6 2 6

9 5 9 7 6 4 1 0 2 4 . 8 3 . .

8 . 3 9 8 1 .

1 . 3 . 0 . 9

. 1 3 4 . 3 2 1 7 0 1 7 5

8 4 9 3 6

8 1 0 0 6

6 1 0 0 5 9 3 . 3 2

0 6

3 4

7 5 7 1 8 2 5

1 8 6 1 2 5 4 1 5 8 9 .

0 . . 9 7 . 5 6 5 6 2 0

1 1 1 4 1 5

1 3 9

5 1 0 6 9 5 . 0 4 .

7 5 9 6 1

6 5 0 3 4 2 1 4 9 6 1 0 4 3 4 7 2 7

8 7 0 7 8 4 8 8 9 2 1 4 2 3 3 7

4 2 4 9 9 2 1 3

8 8 1 0 5 3

2 9 5 3 4 7 1 8 7 5 5 9 6 5 3 9 9 7 8

0 4 9 2 6 1 7

6 4 6 9 0 9 3 8 2 5 0 0 4 0 0 5 3 9 6 6 4 4

7 8 9 7 5 3 8

2 6 1 4 7 1 5 8 8 7 3 0 4 0 0 1 1 1 2 9 7 6

0 6 1 0 2 8 1

1 3 2 3 9 6 3 9 1 2 4 6 6 8 0 0 0 1 0 1 1 6

0 0 1 1 7 6 3

0 1 1 4 1 6 5 1 8 6 1 2 5 3 . ) 0 0 0 0 0 0 0 1

0 0 0 0 2 2 5

0 0 0 1 0 1 1 0 1 1 7 1 8 3 t 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 2 0 0 0 n 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 c 0 0 0 0 0

0 0 0 0 0 0 ( 0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G G e

S S Gl S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 86 0 3 2 8

0 6 1 1 9 3 4 2 0 9 7 2 6 6

3 4 8 0 2 2

2 0 6 1 6 8

0 6 4 7 7 0 0 3 9 5

2 4 0

8 8 4 3 6 1

2 9 3

7 2 3 4 9 5 0 4 2 3 7

8 5 6 3 5 7

9 6 6 4 3 6 9 5 8 7 6 4

2 8 3 1 6 5 4 5 0 6 4 4 7 7

3 3 8 2 2 1 9 1 5 0 6

2 5 2 6 6 4

4 1

1 5 2 3 7

2 5 1 1 9 6 1 2 3 9 4 7 2 3 A A N N 4C B

5 1 8 6 1 L 1

H T 1 1 2 1 E 6 3 9 B

7 D C 1 2 L

1 3 3 1 5 P A R P N L L F 2 2 P A 3

P N D 2 F L R

B 1 1

X E E X A T AM A 6 C

D P N D N P Z E H X A 6 4 1

C Z N A A C E P A G D E MS Z N P C M S O D M K M N R B G C P S L F N M D K L S O D S E T M R L I N P L M P T K A 3

A P O T F A P H

2 8 8 8 8 8

^ 2 8 2 8 8 2 2 8 8

E ^ 2 ^ 2 2 ^ ^ 2 2 8 8 8

0 E ^ E ^ ^ E E ^ ^ 2 2 8 2 8 8 0 4 E 6 E E 2 0 E E ^ ^ 2 ^ 2 2 8 . 0 5 0 1 3 2 4 7 6 E E ^ E ^ ^ 2 1 . 0

1 1 . . 1 1

1 1 . 1 . 1 . . 4 5 2 6 E 4 E E ^

2 2 . . 6 7 9 3 2 2 E 2 2 . . 0

2 3 . . 4 5 7 3 3 . . 6 3 3 . 3 0 0 0 0 0 3 0 3 3 0 0 0 0 0 0 0 0

^ 3 3 3

E ^ ^ ^ 3 3 0 0 3 0 0 3 3 ^ 3 0 3 0 0 3 0 0 9

8 E ^ E ^ ^ E ^ ^ 3 ^ 3 3

E ^ 3 ^ 3 0 3 ^ 3 3 9 2 9 9 1 1 E 9 E E 1 E E ^ E ^ ^

9 E ^ E ^ 3 ^ E ^ ^ 2 ^ 2 2 9 . 3 5 3 4 1 9 6 3 E 7 E E ^ E E E ^ E ^ ^ 2

7 0 E ^

1 E E E 7 8

3 . 3

3 3 . . 5 6

3 3 . 3 . . 9 4 4 3 1 2 E

3 3 . . 4

4 4 . . 5 5 2

5 . . . 9 8 0 3 5 5 2 0 E E ^ 5 . 7 . 9 6 8 9 6 1 6

5 5 5 . . 5 6 . 6 6 7 . 8 . 8 . . 0 0 1 3 6 E

8 9 . 1 . . 1 1 1

1 1 . . 2 1 1 . 0 6 6 8 1 4 4

1 1 4 7 1 9 2 6 7 8 1 1 5 1

2 2 5 5 3 2 0 7 9 2 5 7 7

4 0 3 2 5 9 7 3 1 7

8 5 5 4 3 0 3 5 9 3 9 2 8 4

6 2 6 5

4 5 6 5

4 3 2 3 1 1 3 2 2 1 1 8 9 6 9 3 6 4 1 6

1 0 4 6

0 6 3 3

3 6 9 5 3 3 3 3 2 0 9 8 5 6 5 6 4 9 1 8 2 1

7 0 8 7

6 8 7 7

2 6 1 9 7 1 4 2 1 1 4 2 0 4 9 6 8 8 8 3

3 7 0 3

5 4 2 7

7 5 5 9 4 2 4 . 4 4 4 1 1 4 0 3 4 7 5 5 6

. 3 9 1

5 6 5 5 4 3

3 2 2 6 3 8 5 1 . . . 4 4 . . 4 . 9 3 7 7 2

1 . 3 5 3 4 3 9

3 3 2 5 1 0 0 1 1 1 1 1 1 . .

1 1 1 1 1 1 3 . 3 3 7

1 1 1 . 3 . 3 . 3

. 3 3 1 3 1 7 1 1

^ 1 1 ^ 1 1 .

1 1 . . 3

1 1 1 .

^ 1 1

^ 1 1 ^ 1 . .

1 1 1 . 1 3

1 1 1 1 1 1 . . 3 . 3 0 ^ 1 ^ ^ 1 1 1 .

^ 1 1 1 1 1 1 . . 3

1 1 1 1 1 4 2 1 6 7 6 9

7 0 6 0 7 4 1 5 3 3 7 8 5 9

1 4 2 6 0 1 3

4 0 6 5 2 9

1 3 9 7 5 8 2 3 8 9 9

4 0 3 4 3 3 2

6 3 1 4 5 0 2

1 6 2 4 4 1 1 5

1 7 8 8 3 1 6 1 6 3 5 2 3 1

4 5 3 9 0 8 8

3 5 0 0 9 3 2 6

8 4 2 7 7 7 4 4 6 5 4 0 9 0

8 0 1 7 7 1 0

5 1 7 4 5 2 5 9

7 1 3 7 6 9 1 0 8 5 2 7 9 8

9 4 5 8 3 1 5

9 1 2 6 7 2 1 6

7 7 3 9 9 3 9 3 2 3 5 3 9 0

7 6 4 9 6 6 5

3 4 2 8 2 6 2 7

4 1 8 8 8 5 8 . . 2 2 8 2 7

2 2 3 7 4 0 7

2 0 8 7 6 8 7 . 1

2 6 4 9 2 7 3 0 0 0 . . 1 . 1

0 0 . 0 0 . . 2 9 1 8 8 6

0 . 1

0 0 . . 1 1 0

0 0 . . 2

0 0 . . 2 1 0 1 1 1 . 5 4 8 8 0 1 0 0 . . 2

0 0 . . . . 0

0 0 0 0 . 2 2 4 1 5 1

0 . 2

0 0 . . 3 . 2 0 0 0 .

34 4 6 4 8 2

0 6 4 8 7 9 3 4 7 2 6

4 7 7 8 3 1 7

0 2 3 8 8 2

9 7

2 4 2 7 4 8 5

1 2 9 8 9 9 2

2 8

7 5 7 0 1 4 3

4 5 2 7 0 6 4

2 2

9 0 5 8 1 1 9

2 0 4 2 6 5 8

7 3

. 6 3 . . 9 . 5

. 6 3 1 6 8 7 0

. 2

5 . . 6 6 5

3 2 . . 5 5 4

3 7

7 9 6 2 2 5 .

0 . 6 2 . . 7

8 7 8 9

1 5 1 2 5 6 .

7 1 1 1 7 6

4 1 5 3 2 7 3 .

1 9 4 1 6 5 2 6 7

1 1 0 3 4

2 1 8 3 2

1 6 1

23 2 3 0 3 5

7 3 5 6 3 3 8 1 6 7 4 9 9 8 1

0 4 6 2 3 9 2

4 8 4 5 1 0

1 0 4 7 3 4 5 2 6 9 2

1 6 6 5 9 0 3

5 1 7 9 5 2 4

7 9 4 5 9 2 0 0

6 6 2 6 4 8 2 1 6 2 5 9 4 6

0 0 9 3 6 4 5

0 6 8 4 ). 0 7 1 5 3 5 1 2 4 9 4 1

2 0 6 1 4 0 8 0 1 1 6 0 0 9

0 4 3 1 9 5 0 3 4 5

1 1 8 1 8 6 7 5 0

1 8 5 5 8 3 3 3 2

1 2 6 3 4

0 1

0 0 1 6

0 0 0 0 0 0 1

0 0 1 0 1 0 0 7

0 0 0 0 0 1

0 0 0 1

0 0 0 2 7 1 t 0 2 0 1 1 2 1 n 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1

0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 o

0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (

0 6 0 0 0 0 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 73 4 5 2 4

5 8 0

6 8 3 4 2 4 2 7 2 4 5 9 6

9 9 1 1 5 3 3 0 8 5 3

5 7 4 0 1 7 9 7 5 5

7 2 9 6 0 4

2 8 5 1 3 5 9 1 6 7 0 9

1 9 4 2 9 3 0

1 5 0 8 5 8 1 9 1 3 2

1 5 2 1 0

5 2 5 3 2 6

3 4 9 5 2 0 5

3 8 2 5 4 4 3 9 1 2 3 7 5 0

1 5 5 2 5 6 2 4 6 0 3 4 3 3 2

5 8 4 0 6 1 8 1 1 4 1 4 8 8 A

N 1

K

B J R 8

^ 2 2 2 2 ^ 2 2

E ^ 2 ^ 2 2 ^ 2 2 2 ^ 2 2 2 2

2 E ^ E ^ ^ E ^ ^ 2 ^ 2

E ^ ^ 2 ^ 2 2 ^ 2 2

E E ^ 1 7 7 9 8 2 E E 3 5 E E ^ E ^ 2

0 E E ^ E ^ ^ 2

E ^ ^ 2 ^ 2 2 7 . . 0 5

. 1 . 3 . 0 0 1 E

1 5 2 7 E E

. . 2 7

. 5 5 6 7 1 E

8 0 E

9 2 6 E ^

8 1 2 E E E ^ E ^ ^ 2 9 9 2 2 5 8 7 6 6 E E

4 . 6 6 7 7 . . 2 0

7 7 7 . 7 . 7 . 7 . 7 . . 8 . . 2

7 8 9 . . 6

4 4 5 5 5 . 9 . . 0 0 8 0 E

9 9 9 1 . . 0 1 3

1 1 . . 1 1 1 . 2 9 9 9 9 9

^ 2 9 2 9 9 2 9 9 9 2 9 9 9 9

E ^ 2 ^ 2 2 ^ 2 2 9 2 9 9

^ 2 2 9 2 9 9 2 9 9 9

6 E ^ E ^ ^ E ^ ^ 2 ^ 2 2

E ^ ^ 2 ^ 2 2 9

^ 2 2 9 2 9 9 3 8 E 6 E E 1 E E ^ E ^ ^

2 E E ^ E ^ ^ 2

E ^ ^ 2 ^ 2 2 9 . 5 5 6 1 7 0 0 7 E 3 E E

. . 3 3 2 4 4 2 5 8 3 E 0 E E ^

3 E E ^ E ^ ^ 2 1 . 6

1 1 . . 7 7

1 1 . 1 2 2 . . 4

2 2 . . 4 . 5

2 2 2 . . 5 6 6 7 9 8 E

1 8 3 E 2 E E ^ 2 2 . . 6

2 2 . . 7

2 . 9 3

2 2 . 1

3 . . 2 3 0 6 0 7 E 3 3 . . 6

3 3 . . 7 7 8 3 3 . . 8 3 3 . 2 2 4 9 1 3 2

9 4 1 7 1 8 1 9 3 5 3 5 3 8

2 7 9 4 4 2 2 6 4 4 2 1

8 9 3 3 5 6 4 9 8 1 6

8 8 2 6 2 7 5

8 9 1 7 3 7

9 9 0 9 8 5 1 6

6 8 5 1 2 4 3 6 7 7 1 6 3 9

5 7 7 3 6 0

5 0 4 7 4 2 9 7

9 4 3 1 3 6 5 2 9 3 8 9 6 6 2

0 8 1 6 3 9

2 5 7 2 6 5 6 6

3 3 6 6 0 0 8 1 2 8 7 9 7 6 3 3

5 7 0 5 5 6

4 4 0 8 6 3 4 7 7

3 2 9 6 5 6 9 6 . 2 2 2 7 7 2

2 4 6 4 5 2

2 3 7 2 3 2 4

2 9 7 0 0 5 6 4 1 . . . 2 2 6

. 2 4 2 4 4

. 2 3 . 3 2 3

2 1 1 1 1 8 0 4 2 2 1 0 2 4 . 2 2 . 2 . 0 1 1 1 1 . . 2

1 . 2 . 2 2

1 . . 2 2 . 2

1 1 1 1 1 . 1 2 . 1 . 1 1 2

1 1 . ^ 1 1 1 1 1 1 .

^ 1 1

^ 1 1 1 .

1 1 1 . . 2

^ 1 1 1 1 1 .

^ 1 1

^ ^ 1 1 1 ^ 1 1 1 .

1 ^ 1 1 1 1 .

1 1 1 1 .

1 1 ^ 1 1

^ 32 8 4 8 5 2

7 9 5 9 9 2 0 5 4 4 4 7 4 6 4

3 3 7 9 3 7 8

1 7 6 6 3 5

1 7 2 9 8 1 9 4 2 7 2

9 1 6 9 8 1 3

2 1 5 5 5 3 1

7 7 0 1 2 6 5 0 9 2 6 2 4 9 5 8 7 6 1 3

4 0 2 5 2 2 6

2 1 6 5 8 5

3 3 4 9 6 8 3 9 3 2 3 4 3 2

7 4 4

1 6 0 6

6 8 1 9 9 1 4 9 4 3 7

8 9 0 5 2 9 6

7 6 0 5 6 8 5 8 8

6 0 7 7 0 8

3 4 8 8 1

1 2 9 1 6 1 8 1 0 9 9 0 1 6

4 8 2

5 6 2 7

1 9 9 7

1 9 3 0

7 6 5 5 1 3 7

4 5 6 4 6 0

5 7 7 . 2 1

0 0 . . 1 . .

0 0 0 . 2 1 5 1 8 2 2 9

2 5 3 1 0 1 3 4

7 0 3 6 6 5 2 0 . 0 0 . 1 0

0 . 2

0 . . 1 7 1 5 5 0

0 0 . 1

0 . 1

0 . . 1 2 9 3 0 7 4

. 2 9 4 7 1 3 4 1

0 0 . 0 . 0 . . 2 1 6

0 0 . . 1 2 3 9

0 . . . 0 1

0 0 . 0 . 2

0 0 . 1

0 0 . 4 8 5 6 8 2 2

7 0 6 8 8 1 9 3 7 5 1 8 7 2

6 8 2 0 9 1 7 9

0 1 1 0 2 6

8 7 0 3 3 4 1 1 7 5 3

2 0 8 4 5 1 3

3 7 9 4 8 0 6

0 4 1 9 5 8 6 2

6 5 0 8 6 6 2 3 8 1 6 1 2 6

1 9 0 8 4 3 2

6 7 7 7 6 8 1 5

4 8 1 9 0 3 8 6 0 8 4 9 3 6

2 8 9 2 2 6 0

1 5 0 3 1 5 7 6

6 6 6 3 9 7 3 4 9 8 3 1 1 3

1 0 8 1 6 7 6

4 6 1 6 5 0 3 4

3 7 4 0 1 0 8 1 8 5 1 8 9 7 9

1 9 0 7 9 0 1

4 8 9 1 1 7 9 0

0 4 2 9 1 6 9 . 5 1 0 2 9

2 8 6 0 3 7 3

8 5 9 7 9 7 9 8

8 9 2 6 9 9 8 2 . . 8 . 0 5

. 7 2 . 4 1 7

. 7 5 5 3 6 4 5

0 5 5 6

6 4 0 7 . 2 9 4 8

2 1 . . 1 2 . . 1 . . . . 8 . . 2 8 3

. 3 8 2 ^ 2 2 1 2 . 2 . . 2 . 9 7 9

^ 2 .

^ 2 2 ^ 1 ^ ^ 1 ^ 1 ^ 2 2 3 2 1 .

^ 1 3 3 3 3 . . 7

1 . 9 1 . ^ ^ 1 9 7 4 9 8 8

1 6 8 4 8 8

3 7 6 7 9

7 2 5 6 8 5 7

0 6 4 7 7 6

4 8

9 4 4 3 5 6 7

2 1 7 4 0 4 4 3 5 0

3 8 1 3 0 4 4 7 5 9 8 6

. 2 2 5 2 8 1

1 9 . 3 . 5 4

. . 7 0 6 0

1 . 9 . 4 . 5

0 2 . . 2 7

0 4 6 2 8 2 .

8 4 8 8 5 5 4 . .

3 9 1 5 6 0 6 7

2 8 7

2 1 3 6 4 5 9 4 6

2 1 1 2 4 7 6

1 3 0 5

5 9

62 8 7 7 1 0

2 5 4 4 8 0 0 2 3 7 0 1 8 4 0

7 4 1 6 1 0 9

7 6 2 0 9 8

2 4 1 7 2 0 1 6 0 4 5

0 0 9 8 4 9 0

2 3 3 3 8 2 4

0 7 1 3 0 0 9 8

7 0 5 1 9 2 6 1 2 5 2 4 1 2

8 7 6 4 4 3 6 6

8 7 9 1 6 3 1 2

4 2 3 9 1 5 1 0 1 1 4 2 2 5

0 1 9 0 7 2

0 6 6 8 6 2 3 8

5 7 3 8 9 1 6 ) 0 0 0 1 0 1 6

0 1 1 6 2 4 8 5

2 7 0

0 1 1 1 6

0 1 3

0 1 0 1 7 8 7 1 4 .

0 1 1 6 1 0 3 t 1 0 1

0 0 0 0 1 4

0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 2 n 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ( c 0 0 0 0 0

0 0 0 0 0 0 0 0 6 0 0 0 e S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G l

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E N E T

')6^^^^^^^ 0 3 5 8 8 5 2 5

6 5 6 3 8 6 7 2 6 6 8 8 9 4

1 3 0 5 8 3 8

4 3 7 6 4 6 6 0 6 3 6 4 9 6 7 0 7 7 0

2 9 0

5 7 1

5 5 7 5 8

5 8 2 9 5 0 5 6 8 4 6 5 4 6 4

5 9 8 1 0

4 8 7 4 4 8 3

0 7 2 0 3 7 5 6 5 7 6 6 5 6 5 1 8 9 1 6

2 8 5 7 7 5 8

5 8 2 2 5 5 3 7 7 4

1 2 6 4 4 0

6 8 A

N 1 1 L

R O 2 2 0

P H 3

1 3 7 C B 5 P L 1 A 4 O A C 4 0 E 1 4 1

0 R 0 C 7 B 2 8

1 4 f B B C T 1 M V 5 L

f 2

G Y C 9 C C

C D L L A J Y 6 r A 2 X 4 4 1 0 2

P N P o D 1

A T L D B B 5 F 3 M r P 7 M L A C N S L C C C A R A G S Y Z M A T 5 C B

C 2 D

C D I F I P 8 E o 0 S F

O A 3 F E

L B K T T A N P R A P N Y Z M G E M P F A M 6 0 S T C 1 S 1 R A 2 7 7 7 7 7

^ 2 2 7 2 7 7 2 7 7 7 2 7 7 7 7

E ^ ^ ^ 2 2 7

^ 2 2 7 2 7

^ 2 2 7 2 7 7 2 7 7

6 E E E ^ ^ 2

E ^ ^ 2 ^ 2 7

E ^ ^ 2 ^ 2 2 7

^ 2 7 2 7 7 1 7 3 6 E E ^

6 E E ^ E ^ 2

6 E E ^ E ^ ^ 2

E ^ 2 ^ 2 2 7 . 1 3 3 8 8 E

5 1 1 E 4 E ^

. . 6 6 8 2 E 5 E E ^

2 E E ^ E ^ ^ 2 1 1 . 1 . . 3

1 . 3 4

1 . 5

1 1 . . 6 6 2 6 5 E

1 1 1 1 . . 6 6

1 . 6

1 1 . . 6 7 0 9 3 0 E

4 5 7 8 E E ^ 1 1 . . 9

1 1 . . 0 1 5

1 2 . . 1

2 2 . . 4 4 4 9 1 E 2 2 . 2 . . 4 . 5 1

. 8 2 2 2 2 . 2 9 9 9 9 9 9

^ 2 2 2 9 9 2 9 9 9 2 9 9 9 9

E ^ ^ ^ ^ 2 2 9

^ 2 2 9 2 9 9

^ 2 2 9 2 9 9 2 9 9 9

8 E E E ^ 2

E ^ ^ 2 ^ 2 2

E ^ ^ 2 ^ 2 2 9

^ 2 2 2 9 9 9 1 8 E 5 E ^

0 E E ^ E ^ ^

8 E E ^ E ^ ^ 2

E ^ ^ ^ 2 2 9 . 0 5 6 7 7 E

4 8 0 E 0 E E

7 6 1 E 4 E E ^

2 E E E ^ ^ 2 3 4 . . 6

4 4 . . 7 3

4 . 3

4 5 . . 5 6 2 7 4 8

5 5 . . 6

5 5 . . 7

5 5 . 7

5 . . 8 0 4 8 4 0 E

. . 6 . 5 6 4 9 E E ^ 5 5 6 6 . 1 4 8

6 7 . . 5

7 7 . . 6 7 7 3 9 E 8 8 . 8 . . 8 8 9

8 8 . . 9 8 9 . 0 1 6 7 2 9 7

4 1 8 8 8 1 1 7 8 7 7 3 3 7 3

7 5 2 0 1 3 1

9 2 5 9 2 9 8

9 8 9 2 0 2 7 2 3 5 2

0 0 1 7 6 4 8

9 5 8 4 6 0 0

7 5 3 7 6 1 5 1

7 6 9 1 7 7 5 2 4 6 6 4 0 8

0 0 8 8 5 3 8

9 7 8 6 3 1 1 4 2

1 3 1 9 8 7 0 1 9 0 6 1 7

5 1 8 0 2 1 2

6 5 9 1 0 6 8

5 1 8 0 3 6 2 2 0 8 8 8 6 1

7 2 1 5 0 7 0

1 5 6 4 3 0 4

4 1 2 4 3 1 3 . 2 1 8 1 8 6

1 7 7 1 7 9 9

1 1 . 1 . 1

1 . 1 . 1 1 6

1 . 1

1 . . 6 6 5 0 7 9

1 4 3 3 2 7 1 7 6 1 . . 1 . 1 7

. 1 1 7 1 3

1 6 6 8 5 1 1 5 4 4

1 3 3 0 0 1 1

1 . . 1 1 3 3 1 3 1 1 1 1 .

1 1 1 1 . 1

1 1 . 1 .

^ 1 ^ 1 1 1 1 1 . . 1

^ 1 ^ 1 1 ^ 1 1 1 1 . . 1

^ 1 1 1 1 . . 1 . 1 2

^ 1 1 1 .

^ 1 1 1 1 1 1 1 1 . 1 . 1

^ 1 1 1 1 1 .

^ 1 1 1 ^ 08 4 6 5 3 6

7 3 7 6 1 8 1 4 5 3 1 8 1 6 7

1 0 3 0 3 7 3 1 9 6 1 0 7 3

9 2 5 9 6 1 0 8 2 9

6 8 7 7 2 0 7 2 8 1 7 1 2 8 5

2 9 0 8 3 4 3

9 4 8 4 9 8 2 4 1 4 0 7 3 4 7 8 3 8 9 4 1

5 2 2 7 5 0 2

4 9 0 0 1 2 3 7 4 2 9 3 3 6 3 9 3 6 8 2 2 9

3 0 9 4 2 7 4

5 7 6 1 9 5 7 6 8 6 2 1 9 6 5 8 5 1 4 2 1 4

7 5 0 0 9 1 1 0

1 9 4 8 1 1 4 2 0 6 7 6 5 1 2 0 5 7 8 0 1 1

5 8 1 7 8 4 1

5 5 8 3 3 1 8 . 2 1 1 1 6 0 2 7 1 0 9 1 8 3

2 5 9 6 5 6 8

2 6 9 1 7 5 9 0 0 . . .

0 0 . 1 2

0 0 . 0 . . 2 2 7 1 6 4 9

0 0 . . 1

0 0 . . 1 1 2

0 0 . . 2

0 0 . . 2 1 1 8 2 9

. . 2 . . 5 6 0 5 0 4 0 0 . 0 . . 1 3 0

0 0 0 0 0 . 1 1 4 1 5 7

0 . 3

0 0 . . 2 1 6 0 0 . 0 . 3 2 6 9 7 8 1

4 8 8 1 8 3 9 0 1 8 5 8 3 1 8 1

5 8 0 3 1 6 1 2 0 3 7 9 6 5

6 9 0 2 9 8 5 4 6 3

8 0 8 3 2 4 9 2 8 3 8 2 9 8 5

1 8 2 3 2 2 9

4 4 7 5 5 7 5 8 1 0 4 0 9 9 8 9 8 3 6 8 4 4

8 0 1 0 7 8 9

7 7 4 7 4 8 6 3 9 9 9 4 8 2 1 4 9 6 9 1 9 2 6

0 3 3 1 5 1 2

7 2 4 9 3 8 8 9 4 9 4 4 1 8 6 9 5 7 7 7 3

4 3 0 3 6 9 6

8 2 7 8 7 2 3 9 3 5 3 0 6 3 2 7 1 1 5 2 1

7 6 1 3 8 5 2

0 4 7 2 1 7 4 . 3 8 9 8 5 5 . 5

0 0 7 2 8 4 2

8 8 3 7 1 8 3

0 3 0 3 1 3 6 2 2 . . .

1 1 . 8 2 . 4 0 . 9 5 1

. 8 1 8 7 3 8

8 4 9 6 5 8 2 ^ ^ 1 1 . . 2

^ 2 3 . 9

2 1 . 2 . 7 6 6

. . 0 6 3

. 7 8 8 7 8 6 ^ 1 . 5 .

^ 1 .

^ 2 2 2 2 ^ 1 . . 3

^ 2 3 2 . 2 1 . . 7 . 7 8

^ 1 3 . 1 . .

^ 2 ^ 1 3 5 7 2 8 1 7

2 8 9 3 5 7 5 1 2 5 1 6 2 2 5

0 4 8 1 8 7 9 9

8 5 6 1 1 7

7 5 3 3 1 4 2 1 3 7

5 2 2 4 5 5 1 5

8 6 0 7 7 9 3

6 5 9 2 7 4 3

0 3 4 7 1 5 7 1 2 3 3

. 7 4 7 1 5

1 6 3 1 1 0 6

5 5 2 2 3 0 6

5 8 2 6 9 1 4 0 9 6 2 7 2

3 6 2 0 2 1 2

5 3 8 5 7 0 0

5 2 5 1 0 0 5 . 2 1 3 7 4 8 . . 7 0 . 0 0 4

0 1 6 7 0 4 1

8 9 6 1 2 4 7

4 6 8 . 2 . . .

. . 8 . 8 . 4

. 8 . 3 . 8 5

3 . 5 0 8 7 6

5 7 9 0 3 6 4 3 8

8 9 . 7 . 8 9

0 . 2 . 8 5 4

4 4 6 . 0 6 . 5 0 . 2 6 1 0 4 2

1 9 1 0 2 0 3

4 4 3 2 8

4 1 4 5 0 1 0

9 2 2 .

8 3 4

1 1 5 4 4 8 3 4 0 4 2 9 8 . 2 8 .

4 7 2 3 4 . .

1 4 2 1 9 7 5

6 6 5 3 3

1 2 2 1 4 9

5 1 4 1 1 1 3 9

6 4 6 2 0 0 5 6 7 2 0 9 7 0 1 8 2 0

6 4 3 2 8 2 1 8 3 0 5 3 4 2 2 1

5 9 8 6 5 2 7 6

0 6 3 6 5 6

8 0 8 2 4 3 7 0 2 8

8 1 2 0 8 8 4 1

9 4 1 7 7 8 3

6 6 4 6 8 1 7

5 2 7 8 8 7 9 1 2 6 9 0 2 0 9

5 6 1 5 3 9 8

1 9 5 5 2 8 7

6 2 6 4 6 9 4 0 1 2 0 1 1 7 9

1 4 7 0 2 7 7

1 6 7 7 3 8 4 1

0 9 8 0 0 4 8 ) 0 0 0 1 0 0 1 8

0 1 1 2 7 6 6

0 1 1 9 1 6 0 1 8 6 5 4 6 9 . 0 ( c 0 0 0 0 0 0 0 0

0 0 0 0 1 1 6

0 0 0 1 0 1 1 0 0 1 3 1 1 9 t 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 n 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 6 0 e S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 67 6 7 6 5

4 9 7 3 4 6 2 4 5 8 4 1 6 6 0

4 4 8 4 4 7

8 3 2 1 3 0

6 1 0 9 3 4 1 6 7 6 0 0

5 7 7

5 9 9 3 8

7 9 9

5 5 6 7 6 2

5 8 5 4 8 3

5 9 8 7 6 6

5 7

5 5 1 3 3 6 2 9 9 5 3

5 3 6 0 6 2 5 0 6

4 1 4 9 7 4

0 6 3 0 4 3 1 8 2 9 8 8 2

0 3 1 8 8 9 2 0 9 5 1 0

8 2 3 0

1 0

2 7 7 7 7 7

^ 2 7 2 7 7 2 7 7 7 2 7

E ^ 2 ^ 2 2 7

^ 2 2 2 7 7

^ 2 7 7 7

1 E ^ E ^ ^ 2

E ^ ^ ^ 2 2 7

E ^ 2 2 2 7 7 9 9 E 5 E E ^

0 E E E ^ ^ 2

7 E ^ ^ ^ 2 2 7 . 9 4 1 8 2 E

4 6 0 8 E E ^

3 0 E E E ^ ^ 2 2 . 1

2 3 . . 1 3 9

3 3 . . 3

3 3 . . 5 6 8 3 5 E

3 3 . 3 . . 0 0 8 5 6 E

6 8 E ^ 8 E 3 4 . . 1 2 5 3

4 4 . . 5

5 5 . . . . 7 . 9 3

. 1 5 5 5 5 5 6 . 2 8 8 8 8 8 8

^ 2 2 2 8 8 2 8 8 8 2 8 8 8 8 2 2 8 8 E ^ ^ ^ 2

E ^ 2 8

^ 2 ^ 2

E ^ 2 ^ 2 ^ 2 8 8

^ 2 8

^ 2 2 8 2 8 8 2 2 8 8 8

3 E E E ^ 2

E ^ E ^ ^ 2 ^ ^ 2 2 8

^ ^ 2 ^ ^ 2 2 8 ^

2 E

1 4 E ^

9 E 2 E E E

2 8 2 9 4 0 5 6 E

5 1 E 4 E E E E E ^ 7 0 E . 0 0 2

. 1 2 2 E E E ^ ^

7 7 7 9 1 E

8 3 E

9 0 1 2 E ^ 2

E ^ 3

1 1 . . 1 . 1 2 2 0 0 8 2

1 . 1 1 1 . 1 . 1 1 . 1 . . 4 4 1

1 1 . . 5

1 1 . 1 . 1 . 1 . 7

1 . . 8 8 6 5 1 1 . 1 . 1 . . 0

2 2 . 2 . . 1 . 2

2 2 . 2 2 2 . 7 5 8 2 4 5 4

1 6 4 8 4 6 7 8 2 8 2 8 6 2 5

2 6 5 2 6 8 8

7 4 1 2 0 4

8 2 7 4 5 6 2 3 2 2 7 2 3 3 5 2 7 1

6 5 0 5 7 4 2

0 4 4 8 5 8 2 5

8 3 5 8 3 8 7 5 1 8 9 0 4

5 3 3 8 9 3 2

6 2 2 8 3 1 9 0

9 0 0 0 0 2 9 1 4 0 9 7 9 8

2 2 7 2 6 7 1

2 3 3 4 1 3 5 7

7 4 1 7 8 9 1 1 1 1 0 8 4 7

0 8 9 4 8 2 1

8 2 9 0 7 1 5 2

7 4 7 7 8 4 9 0 0 2

. 1 1 1 1 1 9 0 0 0 6 4

0 7 6 8 6 6 5 1

5 7 5 8 2 8 9 1 . . . 1 0

. 0 . 9 . 8 3

. 0 0 6 0 6 6 0

0 5 0 4 5 9 4 1 1 1 1 .

1 1 1 1 . 1

1 . 1 0 1 0 8

1 . . 0 . 0 0 6

. 0 . 5 0 4 7 1 . 0

1 . 1

^ 1 1 .

^ 1 1 1 .

^ 1 1 1

^ 1 ^ 1 1

^ 1 1 ^ 1 1 1 . 1 . . 0

1 . 1 0 . 0 4 ^ 1 1 1

^ 1 1 1 1 .

^ 1 1 1

^ 1 1 1 1 . 1 . 0

1 1 ^ 1 ^ 1 1 1 .

1 1 48 6 7 2 6 6

6 6 9 4 9 2 9 6 6 6 2 5 3 6 1

4 5 1 1 6 8 4

8 3 1 3 1 3 1

4 7 0 6

7 0 6 3 3 5 5 3 1 2 2 7 7 5 0

1 9 0 3

4 4 2 2 3 4 4

3 7 6 4

4 4 2

3 6 5 6

7 6 7 4 5 3 9 6 9

0 1 3 0 7 6 7 3 6 4

7 2 0 7 8 3 7 0

0 9 6 2

7 5 5 5

1 2 7 2 6 6 5

5 1 2 7 5 0 2 3

2 2 2 5 3 9 5 7

0 9 6 1 9 9

4 1 8 1 6 9 5

6 5 6 5 8 9 2 6

2 1 1 0 7 5 8 2 7 9 4 0 1 3

6 7 0 2 6 5 9

8 9 1 8 2 7 1 0

2 1 3 4 4 9 7 . 2 1 5 2 6 0

1 5 7 7 1 9 7

1 2 0 1 6 5 2 1

5 1 8 2 6 6 0 0 0 . . 1

0 0 . . 1 3

0 . 2

0 0 . . 2 1 4 2 0 7

0 0 . . 2

0 0 . . 2 . 1

0 0 0 . . 3 2 4 1 9 5 8

. . . 1 0 9 5 1 3 . 2 0 0 . . 2

0 0 . . 2 1 1

0 0 0 0 . 3 1 0

. . 2 2 9 0 0 0 0 . . 2 0

0 0 . 3 9 3 9 1 4 3

2 3 9 7 4 4 3 5 2 4 6 6 4 1 9 8

4 4 7 9 1 2 9 6 2 8 3 8 4 9

3 8 8 9 5 7 6 3 1 5 7 6 3 8 9 1 6 7 2 0 4 6 6 4 0

9 5 2 3 0 9 0 1

8 3 6 8 4 6 1 7 5 0 4 5 1 0 5 0 6 7 7 2 4

0 6 9 1 2 3 2 9

3 3 3 9 9 8 1 8 1 6 9 7 5 1 6 6 2 2 0 0 3

6 1 5 0 4 3 1 9

4 2 7 4 8 9 9 2 9 8 2 0 8 0 1 3 6 2 6 0 2

7 8 5 8 6 5 1 0 6

2 3 5 6 7 8 8 2 2 6 6 . 0 1 3

7 4 8 8 2 4 9 7 1 6 3 8

4 1 6 2 3 3 0

3 5 7 0 6 8 8 2 . 1 . 1 2 9 5 8 5 8 1 0 3 2

6 3 7 0 7 3 3 6 9 2 9

0 6 8 2 9 8 6 9 2 5 3 2 . 1 . 7 5 . 8 . 4 4 2 7 6

2 . 2

3 . 2 . 8 2 8

. 6 0

. 3 1 3 4 9 ^ 2 . .

^ ^ 1 2 1 . 1 . 3 9 6

.

^ 2 ^ 7

2 ^ 2 2 . . 0

1 .

^ ^ ^ 2 1 .

^ 3 1 . .

^ 2 1 . . 2 . 2 2 .

^ 3 2 . .

^ 2 2 3 2

29 0 7 3 2 3 8 5 0 6 4 2 6 2 2 0 6 4

6 6 8 8 7 4 9 5 6 3 1 8 3 7 7 3 4 3 7 2 3 6 1 2

0 6 7 7

6 7 4 6 9 1

6 0 4 3 5 2 9

7 5 4 8 8 9 6 3 0 2 0

0 9 4 8 2 5 2 5 5 6 7 ) 2 7 7 1 4 6 2 4 2 0 5 1 4 1 3 7

2 0

4 2 7 5 5 9 8 1 7 1 8 0 8

0 1 1 1 8 1

9 3 7 6 3 3

0 1 2 1 0 4 0 3 2 1 0 3 7

1 1 6 2 1 1 1 6 2 2 8

2 3 6 9 . 0 0

0 0 0 0

0 0 0 0 0 1 1

0 0 0 1 0 0 1

0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 2 1 8

0 0 0 1 0 1 0 7

0 2 1 1 3 1 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 n 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 c 0 0 0

0 0 0 0 0 0 0 (

0 6 0 0 0 G G S G S G S G S G S G S G S G G G G l S S G G S S G S S S S S G S G S G S G S G S G S G S G S G S G S G S G G S G e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^

A A A N N N

2 7 7 7 2 7 7 2 2 7 7 7 7 7 7

^ 2

E ^ ^ 2 7

^ 2 6 6 2 6 6 6 2 6 6 6 3 E E ^ 2 7 2 7

E E ^ ^ ^ 2 2 7 7 7

^ ^ ^ 2 2 2 2

E ^ 2 7

^ 2

E ^ ^ 2 ^ 2 2 ^ 2 2 6 2 6 2 7 0 9 E E 8 E E E ^ ^ 2

4 2 E E ^ E ^ ^ E ^ ^ 2 ^ 2 6 . 3 4 9 4 5 6 E

1 3 5 0 5 E E ^

5 7 0 E 2 E E 9 E E ^ E ^ 2 6 6 . . 8

6 6 . . 5

7 . 8

7 . 1

7 8 . . 4 . 6 . 8 3 6 E

8 8 8 8 . . 4 6

9 9 . 4

9 . . 5

9 . 7 2 0 4 5 1 1 1 E 3 E ^ 9 . 0 1 1

9 1 . 1 . 1 . 1 . . 2 2 2 2

. . . 2 4 E

. 2 9 1 1 1 1 1 . 2

1 1 . 2 8 8 8 8 8 8

^ 2 2 8 2 8 8 2 8 8 8 8 8

E ^ E ^ 2 ^ 2 2 8

^ 2 ^ 2 8

^ 2 2 2 8 8 8 8 2 2 8 9 2 E E ^ ^ 2 8

^ 2 8 8 8 E E E ^ E ^ 2 8

^ 2 ^ 2 2 2 8 2 8 8 E ^ 2

E ^ E ^ 2 ^ ^ ^ 2 2

0 2 E E ^

4 E E ^

5 7

. 3 . 3 . 9 0 0 1 4 2 E E ^

2 8 9 9 5 4 E 4 E ^ ^ ^ ^ 2 2 5 6 5 E E E 6 E E ^ ^ 2 5 4 E

7

2 2 2 2 . . 8

2 2 . . 2 . 3 3 . . 2

3 . . 4 4

3 3 . 5 5 7

3 3 . . 5

3 3 . . 6 8 8 8 4 E

. . 4 5 9 E 8 E E 3 3 . 3 . . 2 3 8

3 4 4 4 . . 5 3 6 2 0

4 . 6

4 4 . . 7 . 9 4 4 4 . 5 9 7 9

1 3 9 4 1 3 6 2 1 2 8 3

8 9 1 9 9 1 6 9 5 1 1

8 2 5 7 7 0 9 2 7 2 1

9 6 4 7 4 4 9 9 6 4 6

3 4 5 1 1 2 9 9 9 8 6

8 3 6 8 0 6 . 9 8 8 5

9 8 2 9 1 7 0 . 9 9 8

. 9 8 . 8 7

. . 1 0 . . 9

1 0 1 0 .

1 1 0 0 . 9

0 0 9 9 1 0 ^ ^ 1 0 .

1 1 1 0

^ 1 77 8 1 1 4 1

9 0 8 8 2 6 8 6 1 1 5 6 5 5 9 3

1 9 5 9 4 7 9 7

0 9 7 1 2 9 4

3 1 3 1 2 9 4 8 8 4 5 5 0 5 9 0 8

8 0 7 6 1 8 7 3 4 3 5

0 8 7 1 4 6 6 1 2 7 3 2 6 1 9 8 5 0 4

8 0 2 3 3 1 3 2

4 7 7 1 2 0

3 0 4 4 2 7 8 2 2 2 7 0 9 1

2 6 4 9 8 2 5 6 6 4 9 2

4 4 4 0 3 5 9

2 6 4 8 6 3 6 3 0 3 0

7 9 3 5 5 7 2 9

2 8 6 3 9 7 6 1 1 5

6 0 9 8 0 4 1 6 9 2 8 6 4 7

1 4 7 8 1 5 3 8

6 0 2 7 1 6 2

5 3 6 2 6 3 . 1 1 4 7 0 9 9

. . 2 2 7 6 7

. 0 . 5 1 5

0 0 . 0 . 1

0 . 0 . 2 1 7 1 1 1 4 7 6 7

4 2 5 1 4 6 0 0 0 0 . . 1 . 1 7

. 1 1 2 5 1

0 0 0 0 . . 1

0 0 . . 2 2 6 1 5 3

2 9 6 0 5 8 0 0 . . 1

0 0 . . 1 0

0 . 2

0 0 . . 1 . 2 . 2 6 1 0 0 0 . 1 .

0 0 . 0 9 6 9 4 2 1 3

5 7 6 4 2 6 2 4 4 1 1 5 3 5 9 9

3 6 6 1 3 1 9 6

9 1 5 9 7 7 4

8 4 7 9 7 9 1 1 1 6 0 9 6 3 6 0 9 1

5 2 5 0 7 8 4 4

0 6 5 4 9 0 4

7 7 2 2 5 9 3 9 2 6 5 7 4 6

4 9 8 0 5 6 0 3

6 6 4 5 8 3 5

2 5 2 2 8 2 9 1 7 7 8 0 9 9

2 0 0 0 0 1 6 5

7 2 4 4 7 4 7

9 6 2 1 8 4 7 6 3 7 9 0 2 5

5 3 1 9 8 3 7 6

8 3 1 4 6 5 3

7 8 5 6 8 0 0 3 3 7 2 1 2 4

0 7 4 5 8 8 8 7

9 1 0 2 0 9 6

9 1 0 4 2 0 . 8 1 7 1 4 1 8

9 0 9 6 8 7 3 9

7 2 4 2 8 0 0

6 2 8 0 9 6 2 . . 6 . 9 8 5

. 7 3 1 8 2 8 7

. 3 3 1 8 2 8

. 1 1 1 6 5 ^ ^ 1 2 . 1 . 9

1 . 1 2 . . 4 . 0 4

. 9 . 7 3

2 . 1

^ 2 3 . 9 2 1 4

1 ^ 1 . . 7

1 ^ 1 . . 8

^ ^ ^ 2 2 .

^ 1 1 2 ^ 2 . . . . 8 0

1 ^ 1 . 2

1 ^ 2 2 2 2 1 . .

^ 2 87 9 7 4 6 0 . 4 8 1 41 4 3 4 8

7 8 0 4 3 2 6 8

2 4 2 6 2 7 3

1 5 2 0 2 8 3 0 4 6 1 0 4 7 6 8 3 2 2 4 7

4 7 2 3

7 9 7 0 1 2 8

7 9 6 3

5 4 5 6 7

0 3 4 0 1 6 9 3 7 1

2 2 3 4 5 5 8 9 7 7 1 5 1 4 2 5 1 0 5

3 5 7 9

0 1 6 1

1 7 8 4 1

1 8 0 3

1 3 6 3 3 9 0

0 0

4 1 5 6

1 0 7 5 7 7

1 7 5 8 7 .

1 0 8 0 8 0 ) 1 1 0

0 0 0 0 1 0 0 0 1 0 0 1 0 0 8 1 5

1 6 1 5 4 0 1 9 8

1 5 3

0 1 3

0 1 0 1 n t 0 0 0 1 0 0 0 0 0 0 0 2 6

0 0 0 1 0 2 6

0 0 0 0 0 0 0 1

0 0 0 0 1

0 0 0 1

0 0 0 1

0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0 0 0 (

0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N N a

E E N E N N E T

')6^^^^^^^ 9 7 6 4 8 4

8 7 1 8 0 3 1 2 0 5 2 1 9 1 4

6 3 7

7 5 7 1 9 4 6

1 1 8 2 3 4 4 2 0 8 9 9 8 1

6 1 3 2

9 5 9 6

8 5 2 9 1 5 3 6 9 6 2 0 0 4 8 9 5 4 4

1 4 4 7

5 9 7 4

0 5 2 1 2

5 5 9 9

3 3 8 2 3 9 3 4 8

7 6 6 4 8 6 9 0 0 0 3 2 5 4 6

3 1 8 3 0 0 3 5 0 1 2 8 9 0 7

2 7 0 1 8 1 0 A

N 2 A 6 S 1 7 1

2 2 2 8 A 1 0

S H D L 5 5 ^ 2 2

6 A B L 1 2 2 f3 1 R 1 1 P D 1 2 R 1 R

C R D A G 2 3 4

F 1 P r L 6 6 L F 6

P H A 1 L

C P 2 2

F G A 1 o 3 A R C F A N 0

L A T N T B L H S MN A A K I R S A P S T A A A C X I A N K N S Y N P I D R Z R P R S P M H T R O K L R A 1 1 M X X N

A E C E E R 1 O H B C S T D U

2 6 6 6 6 6

^ 2 6 2 6

^ 2 6

^ 2 6 6 6 6

^ 2 2 ^ 2 2 6 6 2 6 6 6 6

E ^ 2

E E E ^ 2 6

^ 2 2 6

^ 2 ^ 2 2 2 6 6 2 6

E ^ 2 6

^ 2 ^ ^ 2 6 2 6 6 6 2 E ^

3 5 0 4 E E ^

3 E E ^ E ^ 2

0 E E ^ E ^ ^ 2

E ^ ^ 2 ^ 2 2 6 . 4 5 5 5 6 E

6 8 1 E 5 E ^

9 3 6 E 8 E E ^

4 E E E ^ ^ 2 1 1 . 1 . . 5 5 7

1 1 . . 5

1 1 . . 6 7 3 7 2 E

1 1 . . 7

1 1 . . 8 8

1 . 8

1 1 . . 9 9 0 0 0 7 E

3 4 8 8 E E ^ 1 1 . . 0

1 2 . . 1 1 0

2 2 . . 3

2 2 . . 5 5 5 1 2 E 2 2 . 2 . . 6 8 4

2 2 . . 8 2 2 . 2 8 8 8 8 8 8 7 7 ^ 2 2 2 8 2 8 8 2 8 2 8 8 8

E ^ ^ E ^ 2 ^ ^ 2 8 2 8 2 8

E ^ ^ E ^ E ^ 2

E ^ ^ 2 2 8 2 8 2 8

^ ^ 2 2 8 8

E ^ ^ 2 8 2 8 7 7

5 E 4 7 E E

0 3 0 E 7 7 E E ^ 2

4 E E ^ ^

4 E E E ^ 2 8

^ 2 ^ 2

E ^ ^ 2 2 7

^ 2 2 . 5 7 3 9 2 5 3 7 0 E 0 E E ^

6 E E E ^ ^ 2 5 5 . 5 . . 9 9 4

5 5 . . 0

5 6 . . 4 5 9 7 3 6

6 6 . . 6

6 6 . . 0

6 7 . 2

7 . . 4 6 6 1 7 4 E

1 5 1 1 E E ^ 7 7 . . 7

7 7 . . 1 4 7

8 8 . . 9

8 8 . . 9 0 0 2 1 E 9 9 . 1 . . 0 1 2

1 1 . . 1 1 1 . 8 1 9 8 1 4 3

4 2 1 3 5 4 6 2 9 9 2 4 2 7 4

1 5 7 8 9 4 3

8 1 0 7 5 6 5

0 9 9 6 2 6 2 7 5 4 3 7 9 8 3 5 3 9 9

8 5 8 2 7 1 7

3 8 4 4 3 2 5

8 8 2 6 4 8 4 6 3 7 9 8 3

2 6 3 8 7 5 5

9 2 2 7 8 6 7

1 6 7 1 7 7 3 7 6 3 0 0 1 6 5

5 2 0 3 6 5 2

3 8 9 0 1 7 3

9 5 9 3 1 1 4 9 6 6 6 9 6

5 5 1 4 8 9 9 0

9 7 8 2 3 2 8

0 3 0 6 7 1 0 . 9 9 6 9 5 8

9 9 5 9 4 4 1 1

. 3 5 3 1 8 7

2 3 2 7 0 5 6 0 . . 9 . 9 5

. . 9 4 9 4 4 4

0 9 3 9 3 2 2

9 1 1 1 1 3 8 1 1 0 0 . 0 . 9

0 0 . 9 . 9 9 9

1 . 9 . 9 9 2

. 9 9 1 9 0 2 0 0 . . 9

1 0 0 .

1 0 . . 9 . 9 0

0 ^ 1 0

^ 1 1 0 .

1 1 0 1 1 0 .

1 0 0 . . . .

^ 1 1 1 0 0 0

1 1

^ ^ 0 .

1 1 ^ 1 1 0 0 0 0 0 . 9

^ 1 1 1 1 ^ 1 0 .

^ 1 ^ 1 3 1 9 9 1 7 9

0 7 2 1 8 3 6 1 3 1 5 3 1 1

6 9 2 2 1 2 3

4 7 4 2 9 2 9

8 9 4 6 4 3 3 4 3 2 6 4 8 7 5 8 2

5 5 9 0 7 8 3 7

3 9 3 7 2 6 5

0 2 4 8 1 7 8 5 6 2 5 8 0

9 6 8 9 6 5 8 3

0 9 2 6 6 5 8

2 3 9 3 6 7 8 7 5 6 0 3 2 1

1 8 2 1 8 3 2 5

2 2 1 6 7 0 0

1 5 7 9 8 9 5 8 4 7 4 0 3 1

6 1 8 2 1 7 1 9

4 9 4 6 1 2 1

8 5 0 7 3 0 9 1 7 7 3 1 3 5

2 2 9 9 6 6 2 5 1 2

7 7 4 2 3 1 8

3 6 9 2 2 2 3 . 1 1 0

. 2 0 3

. 6 5 9 9 2 4 7

1 1 7 0 5 5 2

6 0 3 2 7 0 9 . 0 0 . 0 . 0 . 2 1 9 1 6 5 2

0 . 1

0 0 . . 2 1 5

0 0 . . 2

0 0 . . . 1 2 8 2 7

2 4 3 9 9 8 8 0 0 0 . . 1 2 0

0 0 . . 2

0 0 . . 2 2 8

. 1 1 7 9

1 6 0 . 2

0 0 . 2 7

0 0 . 0 0 . 0 . . 1 0 0 0 . 8 1 6 2 6 5 9

6 1 0 6 8 9 5 2 2 3 7 5 1 6 5 7

3 5 7 6 5 4 4 0 6 4 1 1 4 8

5 0 8 6 4 4 9 3 4 4 1 9 6 0 3 7 6 9 6 8 9 9 9 0 2

8 9 3 1 9 0 7

6 2 1 6 6 7 7 8 8 3 8 3 0 2 8 0 2 6 5 5 0 3

6 1 3 8 5 7 4

0 4 2 4 7 1 0 1 2 8 4 5 2 1 7 3 9 7 8 2 8 0

5 5 8 6 6 9 6

1 7 6 4 4 8 1 6 4 7 4 5 4 3 9 8 2 4 9 7 6 5

0 1 4 5 7 7 8

8 5 2 0 1 3 0 0 1 4 9 0 8 7 6 4 0 7 7 5 6 0

9 1 5 5 5 1 0

8 3 4 1 0 5 3 . 9 9 2 3 2 9 8 9 5 5 4 0 0 0

. 6 0 1 2 0 4

. 6 2 8 2 0 3 2 1 . . 2 . 2 9 7 1 8 1 7 9 5

2 2 . . .

2 2 . 1 . . 8 6 6

1 2 2

^ 1 .

^ 2 2 .

^ 2 2 2 . . 7

1 .

^ 2 ^ . 9 9 2 . 0 6 6

6 5 4 5 1 2 1 1 . 2 . 2 4 2

. . . 5 6 1 4 5 ^ 2 ^ 2 2 . 0

2 2 . . 9 8 ^ 2 . .

^ 1 ^ 1 4 6 9 1 6 6 5

8 8 5 4 8 4 4 5 2 2 8 4 9 9 8 6 8

8 3 3 2 8 6 1 5 7 7 7 9 1

8 0 9 6 4 3 7 3 3 4 3 5 6 6 8 5 3 6 5 4 5 3 5 1

2 8 0 7 1 5 6

5 1 9 6 0 1 8 1 3 2 7 4 6 9 8

1 6 5 8 4 7 1

9 8 5 8 6 3 0

7 0 8 2 8 2 3 . 5 9 5 3 0 3 2

0 1 7 7 1 7 8

. 9 8 2 5 9 8

. 9 7 8 2 1 1 8 4 7 . . 3 . 9 9 0

9 5 5 4 1 8 1

1 . 0 1 5 0 1 4 3 5 7 3 0 5 6 . 1 . 0 3

. . 5 . 8 . 4

5 3 . 2 . 2 8

. 8 2 0 5 7 5 8 0 4 0 2 6 . 0

9 2 . 5 8 4 2

0 9 8 6 6 3 6

3 . . 0 5 2 3 1 2 4 2 6

1 1 5 4 6 1 .

1 4 9 2 9

7 6 2 9 9 5 7 . 4 3

8 6 6

3 1 1 9 8 0 .

1 5 9 5 9

1 6 7 4 4 6 . 7 2 8

3 2 6 . . . . 2 3 3 1

2 9 8 6 1 0 .

4 5 4 0 3 8 5 9 8 4

1 2 3 3 3

1 2 5 0 6 5 8 1 9 3 4 0 7 8 1 8 6 1

4 0 1 5 5 6 8 4 3 9 4 9 2 7 5

3 4 6 8 6 2 7 5

8 4 9 4 0 9

5 3 6 6 2 7 3 6 9 5 1 1 1 4 6 3 4 5 2

1 0 3 5 9 3 4

2 7 0 5 8 1 8 3 8 0 0 2 3 1 1 3 5 5 1 1 0 7

0 1 6 0 2 6 0

4 2 6 7 3 4 8 7 1 8 5 2 5 7 0 1 0 4 1 1 0 8

1 3 5 4 2 2 8 0

1 1 1 5 5 2 8 4 2 2 4 7 9 6 0 0 0 1 0 0 1 5

0 1 1 1 6 0 4

0 1 1 1 1 2 8 0 0 8 1 6 4 7 .) 0 0 0 0 0 0 0 2

0 0 0 0 1 1 5

0 0 0 1 0 1 1 0 1 0 1 0 7 6 t 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 2 0 1 1 n 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0

0 0 0 0 0 0 ( 0 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 3 4 3 0 2 1 8 3 3 9 3 2 0 8 1 2 6 0 9

7 1 0 0 8 0

1 3 6 7 7 5 9 7 9

7 1 5 1 6 1 1 9 9

7 8 0 6 1

^ 2 2 2 2 2

E ^ 2 ^ 2 2 ^ 2 2 2 ^ 2 2 2 2 2

8 E ^ E ^ ^ E ^ ^ 2 ^ 2 2

E ^ ^ 2 ^ 2 2 ^ 2 2 2 2 8 0 E 6 E E 4 E E ^ E ^ ^ 2

1 E E ^ E ^ ^ E ^ ^ ^ 2 . 0 5 1 7 0 3 1 4 E 5 E E ^

9 1 4 E 7 E E ^

0 E E ^ E ^ 2 2 . 0

3 3 . . 1

3 3 . 2

3 . . 4 4 5 5 6 9 E

8 9 9 0

3 3 . . 4

3 3 . . 6 7 3

3 3 . 3 . 3 . . . . 0 1 7 3 E

7 1 9 E 4 E ^

1 3 3 3 4 . . 2 3 4

4 4 . . 5 8 E 4 4 . . 7 . 0 0 3

4 4 . 1

5 5 . . 3 5 5 . 6 5 . 2 7 7 7 7 7

^ 2 7 2 7 7 2 7 7 7 2 7 7 7 7

E ^ 2 ^ 2 2 ^ 2 2 7 2 7 7

^ 2 2 7 2 7 7 2 7 7 7 3 E ^ E ^ ^ E E ^ ^ 2 ^ 2 2 7

E ^ ^ 2 ^ 2 2 7

E ^ 2 2 7 2 7 7 1 8 E 5 E E 5 E ^ E ^ ^ 2

6 E E ^ E ^ ^ 2

E ^ ^ 2 ^ 2 2 0 2 5 7 3 7 E 1 E E ^

5 7 8 E

5 0 7 E E ^

3 0 E E ^ E ^ ^ . 1

1 . 2

1 1 . . 2 2 2

1 1 . . 3

1 1 . . 3 7 4 6 1 E

1 . 3 5 5 3

1 1 . 1 . 4

1 . 1 . 1 . . 5 . 6 2

. 7 4 7 9 0 6 E 6 E E 1 1 . . 6

1 1 1 1 . . 8

1 1 . . 9 0 6 1 8 2 8 1 1 . . 0

2 . 1

2 . 2 2 . 2 . 5 9 4 9 1 1

0 7 6 4 1 8 0 9 7 0 6 6 7 7

6 3 6 3 1 7 5 1

0 1 7 1 6 7 4 7

0 7 9 3 5 2 3

7 7 6 1 6 0 9 2 6 1 2 5 5 7 4

7 3 1 3 8 2

2 6 1 4 1

3 1 7 9 9 2

5 3 3 3 2 0

4 4 1 6 4 6 1 1

6 4 8 0 8 9 1 9 9 9 1 7 1

0 9 6 2 5 5 1 3 8 4 6

1 1 0 9 7 4

2 0 3 9 3 5 6

5 6 8 6 3 5 7 9 8 9 9 2 1 4

8 4 4 1 4 3 0

7 2 1 8 5 6 2 2

4 2 0 1 6 5 1 . . 8 8 9 9 7

8 8 8 8 8 5 3

8 7 7 9 6 3 2 9

5 4 7 9 2 7 8 0 0 . . 8 8 8

. 8 8 8 7 7 4

. 8 8 6 8 6 6 7

8 5 4 6 4 1 7 1 1 0 0 . . 8

0 . . . 8 8 7

0 . . 8 . 8 8 5

. 8 8 4 8 4 3 ^ ^ ^ 1 1 0 0 . 0 0

^ 1 1 0

^ ^ 1 1 1 1 0 . . 8

0 0 . 0 0 . . 8

1 1 1 0 0 . 0 . . 8 . 8 8 ^ 1 0

^ 1 ^ 1 1 ^ ^ ^ 1 1 1 0 0 .

1 0 1 1 1 0 1 0 .

1 0 0 . .

1 0 1 0 ^ ^ 1

84 5 6 5 9 5

8 7 5 4 7 7 5 3 3 6 5 2

3 1 3 8 9 7 6 9 3 8 4 8 2 3 1 7 2 4 5 4 7 4

2 0 7 5 8 1

7 6 0

9 0 4 3 5 3

6 7 1 8 2 4 7 4 1 2 8

7 2 9 7 7 4 6

7 2 7 8 0 8

7 6 9

2 9 1 7 4 6 3

6 4 1 5 6 8 9 7 7

5 2 2 6 3 7 9 . 7 7 7 2 6 6

6 5 6 7 6 1 8

1 3 4 6 8 2 6

0 9 6 2 8 2 1 5 3 . 3 . 0 0

5 8 8 5 8 7 0

5 . 7 . . 8 . 9 9 7 5 6 1

. 8 0 7 4 7 0 7 . 5 3 2 . .

. 1 . 9 . 2 7

4 . . 5 . 5 7 5

8 3 6 4 1 9 8 .

2 6 3 .

2 4 4 2 8 . . 1 8 3 . 2 . . 4 6 7 . 8 7 6

2 0 .

6 6 1 2 7 5 6 4

1 0 4 3 8 5 5 2 8 2 6

7 . . 7 . 3 9 2 1 5 6 6 3 7 2 9 3 0 9

5 4 8 5 7 6 3

1 4 0 3 5

2 4 2 7 4 4 6 2 6 0 6 3

1 4 9 5

5 1 9

8 1 0 1 4 9 3 9

2 3 7 2 1 4 1 1 3 5 1 4 1 8 9 0

8 2 .) 4 t 0 1 n c o 0 0 ( 0 6 0 l e S a b E T

')6^^^^^^^ 58 1 6 8 3

4 0 6 9 9 0 1 9 3 5 5 9 9 6 0

0 5 8 9 8 0 3

6 3 4 5 7 4

6 1 9 6 7 8 8 4 1 6 0

1 4 2

4 5 8 8 3 0

0 9 6 5 0 4 3

0 6 2 1 3 0 7 3 7 5 1 9 0 8 1 2 1 3

9 8 0 5 2 5 7 9 4 3 4 9

5 5 0 9

1 8 4 1 8 1 4 6

8 5 5 4 0 1

8 5 5 1 3 2 2 2 8 7 7 4 6

8 7 5 1 3 1 9 8 0 6 1

5 3 4 8

5 2 3

^ 2 2 2 2 2

E ^ 2 ^ 2 2 ^ 2 2 2 ^ 2 2 2 2

8 E ^ E ^ ^ 2

E ^ ^ ^ 2 2

E ^ ^ 2 ^ 2 2 ^ 2 2 2

6 3 E 7 E E ^

6 E E E ^ ^ 2

7 E E ^ E ^ ^ E ^ ^ 2 ^ 2 2 . 8 4 1 8 4 E

0 6 1 8 E E ^

0 7 4 E 6 E E 1 E E ^ E ^ ^ 2 5 . 9

5 5 . . 2 3 5

6 6 . . 8

6 6 . . 1 3 3 7 7 E

7 7 . 7 . . 7 7 1

7 7 . . 9

7 7 . . 2 4 0 7 1 5 3 3 9 E 2 E E ^ 8 8 . . 5

8 8 . . 9 . 0

8 8 9 . . 3

9 . 5 9 8 2 6 E 9 . 5

9 9 . . 0 0 7 9 1 . . 0 1 1 . 2 7 7 7 7 7

^ 2 7 2 7 7 2 7 7 7 2 7 7 7 7

E ^ 2 ^ 2 2 7

^ 2 2 7 2 7

^ 2 2 7 2 7 7 2 7 7

1 E ^ E ^ ^ 2

E ^ ^ 2 ^ 2 7

E ^ ^ 2 ^ 2 2 7

^ 2 7 2 7 7 3 7 E 2 E E ^

9 E E ^ E ^ 2

3 E E ^ E ^ ^ 2

E ^ 2 ^ 2 2 7 . 3 2 5 6 9 E

8 4 0 E 9 E ^

. . 0 3 2 9 E 3 E E ^

8 E ^ E ^ ^ 2 2 . 4

2 2 . . 5 5 0

2 2 . . 8

2 2 . . 9 0 3 1 0 E

2 2 3 3 . . 2 6

3 . 2

3 3 . . 4 4 2 6 9 6 E

8 0 E 0 E E ^ 3 3 . . 5

3 3 . . 6 7 7

3 3 . . 8

3 3 . . 0 0

. 1 8

. 2 5 E 4 8 3 . 0

4 4 4 4 . . 4

4 4 . 2 9 3 8 7 6

3 7 4 0 6 5 7 3 2 3 7 9 7 3 5

3 3 9 3 7 5 1

5 2 0 3 0 4

5 9 5 3 2 2 4 5 2 9

6 3 7 0 8 0 5

5 9 8 5 6 1 5 4

5 1 6 4 3 0 2 4

9 9 3 8 7 4 4 6 1 9 7 1 4 3

9 7 7 0 7 4 5

0 0 8 7 1 3 1 3

6 7 5 8 1 4 6 3 4 2 8 0 0 9

5 5 5 1 8 0 8

3 7 7 3 1 2 3 0

9 7 8 4 8 4 8 8 3 2 2 7 6 8

1 4 2 6 6 7 9

0 0 8 0 5 5 9 1

8 2 1 9 6 7 9 . 8 3 8 2 2 1

8 1 1 1 0 6 4

8 0 9 8 3 1 2 9 9 6 4 0 8

9 9 9 9 8 6 6 3

. 8 8

0 . . 8 7

0 . 8 8

. . . 8

0 . 8 1

. 8 8 0

. 8 0

. 8

0 . . 8 7 7 8 7 8 7 7 7 5 0 1 0 . 7 9

. 7 7 . 7 7 8

.

^ 1 0

^ 1 1 1 0 0 0

1 1

^ ^ 1 1 0 0 .

1 0

^ 1 0

^ 1 0

^ ^ 1 ^ 1 1 0 0 . 0 . . 7

0 . . . 7 7 ^ ^ 1 1 0

^ ^ 1 1 1 0 0 .

1 0

^ ^ 1 1 0 0 . 0 . 7

0 0 . ^ 1 1 1 1 0

^ 1 1 03 9 5 6 7 4 1 1 7 4 2 4 9 1 4 8 5 3 5 8 4 5

5 1 6 2 1 8 8

7 3 7 1 7 4 8 3 1 9 1

8 2 0 0 8 5 6 9 4 0

3 6 7

1 9 2 2 3 5 9 7 6 8 1 3 1 1 1 2 9 7 6

8 3 7 5 0 8 4 7 3 6 8 0 8 1 6 8

6 8 4 3 2 2 4

2 7 9 2 4

3 6 9 7 3

8 8 1 7 8 3 7 6

0 8 9 3 0 8 0 7 9 1 0 0 5 0 9 1 7 6 1 8 7 7 5 8

4 6 7 0 5 2 8 0

3 6 0 5 8 7 5

8 8 5 8 0 2 1 1 1 3 2 3 2 2

2 8 7 6 6 0 4 6

5 7 8 3 3 0 2

4 7 9 0 7 1 9 . 2 2 . 3 8 5

. 9 8 9 8 4 5 1

1 7 7 2 8 0 2

8 0 4 7 2 8 7 0 0 . 0 . 0 . 2 1 5 5 7 8

1 5

0 . 1

0 . 1 1 8 1

0 0 . 0 . 1

0 0 . . 1 . 1 5

0 . 1 5

0 0 0 . . 1 . 2 . 1 2 1 2 1 5 8

1 1 6 0 4 1 9 6 5 0 . 0 . 2 5 6 4

0 0 0 0 . 0 . . 0 0 . . 3

0 0 . . 2 0 . 1 0 0 . 4 7 9 8 4 6 7 2

5 6 3 2 9 5 6 1 4 2 6 1 2

3 2 4 4 8 8 1

6 6 3 5 2 8 5

9 7 1 1 6 7 1 4 1 9 9 1 4 0 2 3 6

3 5 9 1 3 1 3 3

0 3 9 9 8 8 7

2 1 5 7 2 5 8 4 4 5 6 3 2 0

5 0 8 4 8 1 6 2 1

8 6 8 6 4 4 8

5 4 2 8 6 2 5 4 5 1 5 6 3 0

2 3 9 4 8 5 3 2

6 1 1 6 6 9 1

8 2 2 5 8 6 1 2 9 0 0 0 9 7

5 1 5 7 4 4 6 9

6 9 0 4 3 8 3

9 4 3 6 9 9 2 8 2 8 8 3 5 0

8 8 9 9 6 6 1 1

5 7 4 3 9 4 9

3 5 1 3 9 2 7 . . 5 0 5 7 8 0 6 6 6

6 4 2 9 1 .

6 1 0 1 8 7 8

9 3 7 9 3 9 1

4

1 2 . 0 . 9 6 1 8 0

2 1 . . . 1 0 4 0 9 8

. . 0 ^ 7

^ 1 ^ 2 . 2 2 2 . 9 7 4 8 2 2

9 7 6 6 5 3 3 ^ ^ 2 3 . .

^ ^ 2 1 . .

^ ^ ^ 1 1 . 1 . 1 . 7 . 7 4

. 7

^ 2 2 1 .

^ 2 . 2 . 3 7 3 8 ^ ^ ^ 1 . 1 . . 1 7

^ 2 3 1 . .

^ 3 1 88 6

9 7

9 1

9 2

4 5

. 1

0 .

9 9

1 9

2 5 4

66 7 5 1 9 9

8 6 0 3 3 8 8 9 7 8 1 1 1 0 2 4

5 7 4 9 6 5 6 3 4 0 1 1 5 9

2 4 8 7 2 0 4 7 6 3 7 7 1 3 1 8 4 8 3 1 7 0 4 2 2

8 7 2 1 4 0 3

5 9 6 9 0 8 5 t 1 6 1 4 0 8 5 9 1 6 6 9 4 6 4

1 6 1 0 1 8 8 8 6 5 8

6 4 5 6 1 1 0 0 1 0 6 0 9 1 1 0 7 5 6 0 8 6

1 4 8 7 3

1 6 3 1 2 4 8 2 2 7 9 3 3 0 0 0 0 0 1 1 0 0 1 1 0 0 6 3 7

0 1 0

0 0 0 0 2 2 0 8

0 0 2 8

1 6 9 6 .) 1 2 3 9 0 0

0 0 0 0 0 0 0 1 0 0 1

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 1 0 1 1 n 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0

0 0 0 0 0 0 0 ( 0 0 0 6 0 S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G Gl e

S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^ 81 5 3 0 7 9

1 9 7 5 1 6 1 2 2 8 4 3 7 2 9 6

0 7 0 0 7

5 9 5 3 4

3 4 7 3

3 6 4 7 1 8 6 3 9

4 1 7 0 0 3 8 0 4 4

1 1 2 2 3 9 4 1 0 2 0 2 6 3 1

9 2 3 5 0

6 5 5 5 5 0 1

5 5 4 6 2 6 4 6 0

3 7 0 8 8 9 5 5 7 0 1

1 5 1 9 6 7

1 0 0 9 7 6

1 3 6 3 5 4 2 3 1 7 9 1 6 2

5 9 4 2 6

2 7 7 7 7 7 7 7

^ 2 2 7 2 7 7 2 7 7 7 2 7 7 7

E ^ ^ 2 ^ 2 2 7

^ 2 2 7 2 7 7

^ 2 7 2 7 7 2 7 7 7

0 E E ^ E ^ ^ 2

E ^ ^ 2 ^ 2 2

E ^ 2 ^ 2 2 ^ 2 2 7 2 7 5 5 6 E 5 E E ^

5 E E ^ E ^ ^ 2

1 E ^ E ^ ^ E ^ ^ 2 ^ 2 7 . 5 8 2 4 3 3 E

1 6 7 E 3 E E ^

5 9 E 6 E E 7 E E ^ E ^ 2 4 4 . . 9

4 4 . . 5 5 8

5 5 . . 0

5 6 . . 1 1 9 2 4 7 E

6 6 . . 1

6 6 . . 3 3 2

6 6 . . 4

6 6 . . 6 3 9 8 3 6 9 5 E 5 E ^ 6 . 9

6 6 . . 3 6

6 7 . 7 . . 7 9 8 3 7 E

7 7 . . 9

7 7 . . 6 7 8 . 7 8 8 . 7 2 1

9 6 3 2 5

5 2 1 5 6 8 8 7 3 8 7

2 8 7 8 1 5 0 7 8 5 6 4 4 4 2 5 2 1 0 0 6 1 3 2 0 1 1 7 1 8 1 2 4 0 1 3 6 5 8 9 1 . 4 8 5 5 7 7 6 7 8 5 3 0 7 0 7 3 5 3 9 6 2 4 2 5 8 8 0

3 7 7 2 1 1 1 . 7 3 7 2 2 7 2 2 2 1 4 8 0 . 7 . 7 7 . . . 7 7 7 1 0 . 0 . .

1 0 1 0 0 . . 0 . 7 ^ 1 0 1 0

^ ^ 1 0 0

^ 1 ^ ^ ^ 1 1 1 ^ 1 0 .

^ 1 1 0 ^ 33 9 7 7 7 7

5 4 4 1 1 5 9

7 5 3 5 5

3 0 3 2 3 9 8 4

9 9 4 2 4 3 3 8

3 7 8 5 7 6 4

8 6 5 2 6 1 5 1

0 3 6 5 1 4 7 3 8 8 0 1 0 2 1 4 1 9

6 3 3 9

2 3 3 4 2

2 4 4 3

4 8 6 6 1

8 4 0 5 5 7 0

4 2 5 8 0 6

5 0 7 0 4 2 8 3

0 3 7 2 5 8 4 5

6 7 8

1 6 2 8 2

5 2 3 3 4 6 8 5 9 7 3 7 8 9 0 2 1 3 4

3 1 9 4 5 7 4 7

6 8 2 6 4 7 8 9 8 1 3 0 1 1 9 6 7 7 2 3

2 2 8 7 8 8 1 6

6 3 4 2 3 4 5

4 8 4 0 7 7 . 2 1 2 1 1 7 9

2 8 7 4 1 7 1 8 7

. . 2 2 1 9 1 0 1 8 5 5 4

7 4 7 5 0 5 0 0 . . .

0 0 . . 1 9

0 0 . 1

0 0 . . 1 1 3 . 2 6 1

0 0 0 0 . 0 . 0 . 1

0 0 . . 2 . . 0 1 8

. 1 6 5

1 1 1 8 4 7 9 4 0 0 0 0 . . .

0 0 . 1 5 1 1 7 0 . 1

0 0 . . .

0 0 1 0 . 9 3 3 8 5 8 6

0 1 2 4 5 2 5

0 5 2 6 4 0 2 7 2

3 1 7

3 4 5 5 9 2 3

3 9 7 9

5 6 8 3

8 2 5 6 2 5 4 8

0 7 7 2 1 2 8 6

9 0 3 4 6 2 7 3 6

3 5

3 8 1 9 9 9 3 3 7 7 1 2

3 9 5 8 2 8 0 5 0 2

1 5 7 7 5 5 5 2 7 3 1 0 3 3 4 0 0 9 9 6

0 4 5 3

5 5 4 3

2 8 4

7 8 8 2 7 3

6 2 2 6 5 2 2 0 7 8 3

8 0 8

4 3 4 3 0 7 8 3 2 2 4 3

4 6 9 6 2

2 6 3 4 8 9 4 5 9 8 1 4 4

9 7 3 5 3 8 1 5

8 9 0 6 6 9 6

5 2 9 9 1 1 . 3 1 9 . 4 5 2

3 5 2 2 9 4 3 1

7 8 7 9 8 4 7

7 8 2 5 7 3 1 2 . . 7

2 2 . 1 . 8 8 4

1 . 1

1 2 . . 9 9 2 9 4 7 1

2 . . 5 . . . 6

. 1 8 . 8 7 5

8 9 9 7 3 0 ^ 1 1 . . .

^ 2 1 2 1 .

^ ^ 0

2 1 2 1 1 . . 5 8 4 7 ^ ^ ^ ^ . 9 7 6

1 . .

1 1

^ ^ 6

1 1 . . 0 8 ^ ^ 1 1 . .

^ 2 ^ 1 9 1 2 3 1 1 7

6 2 3 7 7 9 2 0 7 2 6 2 1 7 1 6

0 8 8 3 0 7 2 3

5 4 4 8 3 6 3

3 7 6 1 2 7 0 3 7

8 0 1 0 8 3 1 1

7 9 6 2 2 2 8 8

9 8 1 2 1 2 4 9

7 1 9 3 8 7 4 7 9 9 4 0 7 0 4

4 2 8 8 0 2 4 6

0 6 3 9 3 2 4 9 0 0 9 0 9 0

1 6 2 1 0 1 . 0 8 4 2 3 3 3

3 8 2 7 0 0 4 5

8 5 8 9 1 8 3 0

4 8 2 0 1 3 . . 9 1 2 4 0 2 0 0 4 8 . 6 1

. 3 2 9 7 2 . 1 5 3 . . 9 . 0 . 1

4 5 . 1 3 . 8 3

6 . . . 6 . 3 7 5

5 6 6 3 . .

0 5 3 . 7

3 .

3 6 8 2 5 2 5 6 6 5 1 5

. . . 1 9 5 . 6 4 6 . . 2

0 . 0 4

4 1 7 . 8 8 2 2 9 1 9

1 9 6 9 7 .

8 4 8 6 5 7 7

3 2 6 5 0

2 6 2

8 2 1 2 7 3 0 8

1 9 1

7 9 7 1 2 4 1 6

1 2 3

4 3 1

2 2 8 2

1 1 7 1 4

1 7 2 4 5

2 4 3 4 4 8 1 3 4 2 1 9 5 6 2 4 3 1 2

7 1 9 2 0 4 0 8 6 8 1 4 4 8 7 2

3 6 6 5 5 1 5 4

0 4 2 9 0 0 5

1 0 4 0 9 2 6 5 7 1

0 0 0 8 1 2 3 4

4 9 8 1 8 8 6 9

4 4 9 8 0 9 6

0 1 5 8 7 5 0 9 4 4 5 0 1 4

0 3 8 2 3 0 1 0

0 0 0 6 6 2 7

6 3 3 0 1 6 0 0 1 3 1 7 0 1

1 6 5 1 4 6 1 0

1 7 6 1 5 4 6

2 9 5 4 4 9 1 5 6 t 0 0 0 1 0 0 1 7

0 1 1 4 1 0 3 1

0 0 0 0 0 0 0 0 1 2 0 8 5 .

1 2 0 6 8 7 ) 0 1 0 1 n 0 1 1 o 0 0 0 0 0 0 0 1

0 0 0 1 0 1 1 9 1

0 0 0 0 0 1 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1

0 0 0

0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0 0 0 0 (

0 0 0 0 6 0 G S G S G S G S S G S G S G G G l

S S S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G S G G e

S G S b E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N E N Na

E T

')6^^^^^^^

2 5 5 5 5 5

^ 2 2 5 2 5 5 2 5 5 5 E ^ ^ 2 ^ 2 2 5 2 5

^ 2 2 2 2 5 5

^ 2 2 E E ^ E E ^ ^ ^ E ^ E ^ E E ^ ^ 4 E ^ 0 0 4 4 E E E 0 1 1 9 1 0 E 0 1 E 7 3 4 8 . 2 2 . . 2 . . 2 . 2 2 8 1 3 3 4

2 . 2

2 2 2 2 . . 2

2 2 . 2 . . 3 . . 3 4

2 2 2 2 .

')6^^^^^^^

E G E D

^

G I N D A L E X

A

^ M

T

^ A

K N R A

a l

^ v

^ p

E R F W

al

v

q ^

^

R F D

a l

^ v

^ p

M O N E S N E S E

I Z S

P

_ U

P 1 P

U

M _ P

N P L R E U

L _

D U _ E B N

_ _ H T P A

N P L T S U U T I O O U A I

L _ N S T

M _ I C W

A V _ C S _

_ P I D S R A N

S _ V P E

M M R A E M N U A C S F D

_ U

O O P E _ I _

L S C O C I _

N S T P

N _ O U L I _ I S N N T S

D A 3 X _ B R E O S 3 C N I 6 D A R

_ T 5 _ S A H R R A V C C R D _ G _ P R O

R E T P N R K 3 U T 4 2

U P T C A _ K R T P

_ N U E I P

R I _ N U U H _ S 2 _

T _ S N R 4 M A D C

_ O C M _ R

A S A E C K C A

_ E E D S F

E _ _ 2 _ 2 P R Y N E E T D L H E _ C

T I I I

_ A P N I

_ W U E H U K S T N S E _ _

I A A N N L S P L X L P A O K G S R U U L A T R R O R P

O _ G M U D N V T U

D _ S

O P T E _ _ T _

_

P O R _ _ A R N S G A

I L O O L S C M S R E _ _ A

T H V G V D E N C S _ _ T _ P I O R _ A E N R I A

M P _ B P _ L N T E H S 1

E 6 _ N U P N G

_ T O P R U M A

G _ H N

9 _ V I O W S _ C

C U R I U _ E A A Y 0 T N

R D _ E C T E N S S C G 3 E Y _ U A N

E E _ W _ U M

N L

R _ S R O _ Y

T _ D R S A E

G P _ T S T E E R T O

T _ L E C 6 E K A E S S S _

R E R E R

_ E R _ T A S N

_ S N R U E S H C

E N C E E V G O _ G D

I Y I M S R C T R N E T S

_ E N E T A N L C N

S _ _ G E N T T E T A A N D E H _ H

X P T E A _

T Y B T D O N E

_ C O

S C I A S O S E G C A

_ E O A

P H S E P O A _ S

S T _ N

E A A G _

D C T C T C E N R _ 1 G S P P T I N

S _ S O G I _ C R T N

A T K M G _ B V N _ G P E G

S G R G P A _ E N G A A T

T S

2 R E O N G H

R _ O E 2 A P R D L A I N C I M S

S _ _

C Y R C _ R E S R

E _ A

R O S A C T A R G T N _

I A R S

T _ A P A R A R A T S A O A T _ _

C S E T P C _ S T O E R

N L A R S I 2 R T

I _ T F S I P _ E T

_ N T S R G O R C _ A

_ 1 E M _ V N S T E

R A R _ O I 0 S S P L F

I G 5

3 R A _ P

N T _ T _ A

C G _

V I _

L 3

W A S A A 1 A _

T R C R

_ X _ E _ C N _

_ V A T _ 3 V R _ R _ N F I V D _ Y L U R X E S F D R R V T E I P E X R P L I _

N _ X _ O R R U C P

E C E E T B _ E A B L T _ A

_ A T _ L N

T A A Y

T _ U E L L L T E

B A A

_ Y X

_

D _ C P M 2 U E

P R T L P N E O O _ T X

A C O A B E B 1

N 2 L H R 7 E I E G S T P U R G _ U R D S M E

E E C M _ B H U S H

_ _ D _ S _ _ A _ _ M E _

A N P T A _ O

T _ F

R _ R _ X

I A T R B T E _ _ E R O N E G N A S N 1 H

Y _ S G _

E N R E Y C _ G E E M B N O Z A N N G A N S I A G _ P Y A N G N _ Y A

A A A C G A A E N Z E U S N I T L S D A N O N A N A R M I _ _ A N S V e H D T E J A E A B I _ N

E A O _ N

D U H J Y E C O N G

_ N A N

E A E R A E J T R J I D D A E T l N G H A N Z D S E D Z H P Y E A S D S I I B M O I K M R O I K P U Z H P Y Z H K O W L E Z H O W J O U P D C H D C H Z H E U U L I H I N N b F P D F A F U B I I S C H S E V A a

T

')6^^^^^^^ %

7 3

l =

a

g n

s i

,^

6 %

= 1

t

l i s

, ^

%

6 2

s =

a g

t

8 7

3 1

0

0 0 7 5

8

7 6

. 3

2

5 3

0 6

9 1

6 7

0 .

8 1

P U

P _

U E

_ T P

D Y N R E C U D H

4 T O P

U _

A H D

N _ 2 6 P

T P _

N I E M N D

D 4 _ A U

_ _ U

_ K P E M O N F N

I U _ S L 3

D D A _ M Y I D L N N D P R R

P D T C U _ L T _ _ D _ U E H S T _ _ N

I V S S

1 I _ C

I E N I N N M P _ C _ S 8 R

E _ 4 E _ Y O V N P T V A 1 R

3 P D A S P U E _ P

N C A B F D D D _ L M _ F N Y _ K C U N W E E R D _ G 1 U

D _ N

E I _ E _

7 Y T

O N B 1 R C _ A

H R R U _

R R _ _

_ R _

S S S E A E E E T L

1 _ E _

R D _ T A R S T S C A R E _

T G _ U E B P 2 R N N D E _ D K E C 1 T T N _ T

P T D S N

R _

H _ U Y T E I V F C E D D N

I _ T E E A M _ N D A I R

A E D R E L _ A P D

U L R C E G B V N S C C _ _ A P I N _

I A N T C R G L _ O G E 2 R A _

L N E R L O P R H 9 G E O L T Z N K A

_ G _ E N U Y R I I L V I P O R P A R

_ A I N C G A D B E

_ C V S S _

A W N O I T A W A O U I N A U R R C L L Y O T I N

_ I C I A E P A _ _ R I

F _ M E _

T T _ T N U

_ O S

E _ A A M R I S _ D N

E A E S _ T S R 3 3 _

L T C _ U T 2 1 R _ T

_ R R R

A _ S

S E F E _ M _ S

_ _ _ R _ T

S _ _ 1 R E A A

I M T E _ S _ E

R 1 T O I _

C N T

N _ P S S N R O G E O G S P E

E 9 E T 3 R _ I

C V

_ _ R L T _ I X

S O N L N M C E 5

P E S _ N M I

R C O Y C T R E B E

_ T O N A E

I F G F _ E T C C

U _ G T T S E A O R P A T B N A K R R G R O A R _ I O R E C O C S S A T E F E C L I E N D N E C S O

T _ D I I T A

Y . P N S E N _ G

S C C L C _ T

S S _ A R _ N E L E N _ _ A _ _ A S E P

H C A E I S C E E T _ A S _ _ N G N E I E T

_

_ B G E Y _ Y

_ I E N C C N E

_ A D

S _ S

Y T C A E

_ T C C E Y _ G S _ S L

L _ N I F L _ T V _ V S S

R A T _

E E E R A I R ) _ T t S O F I T S A R B G 2

L R G B E

C _

_ U R Z H L O O R E G _ N _ G C T L _ R

L _ S E 6

I T R O E N Y C N O L L

A _ O R G S

X _ T I n N A L S A T O C S I P O C E L I N R N T O _ C L L

I T A G O 1 V R T A E E I N 3 C E A O A L

P L E M _ I

O A L P D P _ E S R _

R M _ F E E D o U O _ _ C T _ P D Y

I N C E C C

_ E 1 D U _ _ L N I L

R A A S B N S 2 G P c

T E _ O D S L E P B

E B K O U T A O M R _ ( _ X L M M R

A U

O _ H _ S T P

O T I _ S A E A O A G D R B A

L _ O L _ T M T _ D E I D E R _ T

C E M A _ _ N I S R

Y B N P L A E L H R _ _

A R Y _

T E N E U S _ N _ B _ C C Z T N E

N H N R _ S A U A N R S U L L R T _ A N E L D

2 E

S D A

_ N I I E L _ R _

_ B C E R A _ O E M E _ S I O M Q _ A A I _ _ _ E

S N V I I R A I T N E _ _ A T D

S G _ R 7 F U M Q L F C O G E M F L S N _ F I H

T E G I N A O N U T H _ Z D S E _ G O G

C E D T R R F N M N M U H T N O M I N N X N C I A G E e H E A F A J F I A

B _ C D T

K A N L M H R I C R T E O I I E E G _ R F O

O I U O U U N P T S M O N O D A O K M K A W V E C H B U H H H E N N Z Z W E C _

R P L U S H S E A M T K I U E T B G O S N T E S K A C R T H U O E M N G E R A A W G N T l

I

_ O O L G A _ P H D O E E W M E U I N B H G W L I R D I C O W I U H b R I W X W T a

') ^^^^^^^ %

5 2

l =

a

g n

s i

,^

2 %

= 1

t

l i s

, ^

6 %

= 4

s

a g

t

1 4

2 4 0 1

. 0

0 0 5

E ^

2 7

1 .

0 7

3 0

3 6

1

. 2

2

8 7

5 4

9 5

6 2

0 .

8 1

L A R M O N N

_ D

R _

A N L G R P U I N E D U B I D B _

N _ R N O Y I V M E T H D N L U G E N

6 _ A D

I D N _

_ D S W N O C _ A L _ _ R S E Y T E S M R _ V

E N _ H C

T 4 A

3 P S N I N E V A A M O _ E D U O K I O L I M P I R N C P _ Q P U _ S R

I S E _ T

L O D _ U D O N N T _ E L A 4 L A

I N N _ M S O

N _ E Y E T D N L R _ T D Y C I O D O _ 5 S B E _ R P E _ _ N D 6 A A _ I C E _ H R T N N S 3 A

I H _ T E _ U V A D _ P

_ E _ T M R I R T F R T I P A G V C N Y R E _ I

_ C Y _ E E A O C I L S M R T R U S

S T C R _ P O _ P P I

_ A

N S M T S O A M L N O H Y T E M T O I O T N _ C B U N R T

E S S H _ O E

H N C 5 O N 6 C _ N N

I _ O

_ H E U _ S 4 _ D P N N

S L Y D L

N 3 S 1 _ E D S

M R E T P T I _

P E I K C P P E C N P I _ N H N S M R E P G C B _ A

I T S _

1 E C _ T

O G M P _ M _ U S

R P D U _ U O S N

1 _ _ F E T A R

X W R E V _ I _ C L 2 U _ P V D S C NM R A E D O R E T _ S S A E

T S G U E R R R A U _ A O _

T P _ B S _ _ _ C T M Y E G

S _ T Y C K G _ E Y L T S E L N U T M G E S E S I P I Y U S P E R L _ E T U I S O N I T

G _ _ S S _ C

N T _ D

P _ _ _ R G S _ _ A _ I _ S T C S L S

_ O 4 E T S T C F A R P

I O T A U E E L Q O _ G T A

C I R T I

_ B T C N _ O A T D I E O T L E D E A E

F B _ D E C N G W H D D E R O A R _ _ T _ N S

R _ T I R _

T E 1 _ E A A I T T E

O N _ _ G Y A R I E . ) L P M P L U E S E S A _ S _ L

C _ S U O C X G R C O _ S G

R I E H R C A H C V G t Y L D E G C R A N T 2 P T E L A _ S A 6

E A T T N _ E A R

I A S E R E E R A T T H S T Y _ R G A _ _ T T _ I R

_ A M D A n C L M R E A _ E

E E E A E G L S T _ S P

A M S P E T A H V I T L

_ E _ _ R _ A R

1 N B G G _ T G O P

_ R N S A

M C _ _ T T M U H _ L H

2 P _ N _ 2 _ T o

L O O A 2 U

C I _ L C I V _ B F I _ _ R T _ _ A E _ I A M N M _

_ T _ 3 E S

P A D _ L _ T E A M W R I

_ E G R G 1 _ E Y O _ A

R L P S C H A V P C U

_ R A N G M 1 c E T A U A R I L U _ T I _ N P T 0 D

S E 3 _

I U X D O E C H ( C _ R _ L I

E _ _ I

M I S T A I _ _ A

T M N A R I R N _ M

H O B _ S N R

E _ O D C

H _ D _ G L G Y E V

O T _

B H C C T E R A I

R _ M W

O U I L A M S _ A R E

I E E R S U U I O R T I A E L H T I K R S T S A N Y N O E M

T _ L G _ T K R N I M E F L _

_ C

_ _ I E D

F R E N M M C 7 A _ E _ K T A S A O A R e D O U R N S R E E T S A A C _ T Y O E I U

E R M T R A _ M

A R

_ R A H

I A I B G I R R U C A I _

T E _ D _ E I G

W I I L N N C A Y U U B H R A G N R A M E B O E T N R O R T V I P E F T H E l H E A E I S A O R Z D M G M M M T U E U O R O I O D A R S T G H C G H E C J A C A F U E N A E R N A I N D R D Y M K B I A I O S E A H E N _

D D b F H S E C H S T O R R O E B M G G W S H E I A P E R N a S R G O T

')6^^^^^^^ %%

4 8 1

= 5

l =

a l

n a

g n

i g

s i

,^ , ^ s

4 % 1 %

= 1 1

t =

s t

l i s

, ^ i

, ^ l

1 % %

4 6

= 4

s =

g s

a g

t t a

7 4 7 3

2 7 2 2

22 3 5 9

0 2 2 5 5 3 9 2 4

. 0 0 2 6

0 3 5

0 3

. . 0 2 0 3 4 3 4 6 9

0 0 0 0 . 0 . . 0

0 0 . . 0 0 4 0 4 4 9

0 0 . . 0

0 0 . . 0 0 4

0 0 . . 0

0 0 . 0 4 4 4 4

^ 0 0 4 4 4 0 4 4 4

E E ^ ^ 0 0 0 4

E E ^ E ^ ^ 0

E E ^ ^ 0 0 4 0 4 4

E E ^ ^ 0

E E ^ ^ 0 0 4

E E ^ ^ 0

E E ^

8 6 9 3 0 8 6 3 1 6 8 4 2

. . . 0

2 2 . . 8 2 0 2 3

1 1 . 2 2 2 . . 2 4 7 5 6 7

3 3 . . 4

3 3 . . 6 8 4

3 3 . . 8

3 3 .

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 8 3 7 5 3 3 8 4 3

4 2

3 0 4

9 2 2 2 1 5

0 1 5 3 4 4 9 1 5 0 0 5 8 2 6 9

1 0 7 5

2 1 5

1 8 6 2 0 6

7 6 5 4 9 3

8 8 6 7 4 3 1 5 1 5

6 5 4 1

0 6 5 2

0 5 3 2

3

. 0 0 . 0 4 0 3 2 7 2

2 . .

2 2 2 2 . 0 4 2

. 0 . 0 . 0 0 0 2 2

2 . 0 2

2 2 . 2 2 2 . 0

2 . 2 . . 0

2 2 .

99 5 6 4

8 7 8 4 7 4 1 7 2 1 9 6 3 3 4 5 1 5 0 3

7 4 8 0 7 0 2 4

0 2 3 6 7 2 4 2

1 4 8 1 1 1

1 1 3 4 9 1 3 8

4 6 2 0

1 2 6 7 0

4

5 3 9 7 1 1 1

0 5 7

1 7 0 8 1 5 0 9

2 6 3 1 1

. 6 5 0 6 7 5 6 6 5 9 5 7 5 8 8

5 7

0 6 . 5

0 0 . . 6 5 6

. 5

0 0 . . . .

0 0 . . 9

0 7

0 0 0 . 0 0 . . 4

0 0 .

33 1 8 7 7 6 8 5 6 4 5 4 8 8 5 2

1 6 5 5 6 1 1 8 0 4 8 3 8

1 3 4

P U P N

_ U D

2 _ _

E R S

_ E N P

I N C I O U

_

D N S 2

N A C N U A L A _ D C

R P _ N _ F

N P G E S D 1

A V U T N _ D _

T I _ O

E D R X _ S

E R

S _ L D G _ H C O

O S T E R 1 0 O

R V E T A _ 1 F N

P _ M N A _

T S _ X A M

_ S _ E T N A T U

S O I S _ D T

N G I O P I T

S _

T I T T Y _ U

O

_ T E B E I R T _ E E

E A G S _ S _ M

T A C F E O R U

_ P S ) S F P R I O 3 A T

N 2 E A S D T C _ F _

I B N S .

I t I U T O E H T E _ F L

F V N S I T C _ n P _ _ _ N R _ E I S _

S Y C B E W _ I

A V G B T T _ 1 o E B I Y G O H L L T P P R U E F S

R _ N _ M A R G O E c _ D O M O _ I M

_ E C T O R S _ ( Z N R B C V WA

T _ N I X A _

T A H I U H O U _

_ L N H _

O E _ N O _ T 7

A e N B O C D

I _ R _ E P C

T O D 2 M

S N I _ R A R l M A N L A Y

I _

E _

N K A P E T E D N E M

L _ N W I C G Y O

H C E E M H O V G E A P b

I _ K N a R S A H I E A S S G G K O A N J B R D K A E A L N B E T

')6^^^^^^^ 9 6 6 7 7 9 2

2 9 4 7 4 7 7 9 4 9 9 9 2 5 2 6 6 6 6

5 2 8 4 7

8 4 4 9 3 1

5 4 4 4 2 2 5 2 2

4 5 2 6 2 6 6 2 6 6 6 2 6 6 6 5

0 5 6 8 4

6 8 8 3 5 9 9

0 5 5 5 5 5 2

4 5 2 5 2 2

6 4 8 2 8 2 2 8 2 2 6 2 6

8 2 2 2 6 6 4 5 5 5

6 0 0 6 8

0 6 6 5 0 8 4

4 0 0 0 4 4 5

6 4 5 4 5 5

1 6 0 8 0 8 8 0 8 8 2 8 2 6

0 8 8 8 2 2 9

4 4 4 4 5 5 0 6 0 0 6

. 0 0 0 0 0 0 4 1 5

2 4 4 4 6 6 4

1 6 4 6 4 4

3 1 0 0 0 0 0 0 0 0 8 0 8 2

0 0 0 0 8 8 7

7 4 4 4 4 4 5 0 . 0

0 0 . . 0 0 4 7 3 0

0 0 . . 7

0 0 1 2 2 2 1 1 6

3 1 1 6 1 6 6

1 3 5 0 5 0 0 5 0 0 0 0 0 8

5 0 0 0 0 0 0

6 7 7 7 4 4 4 r 0 0

. 0 0 0 1 4

. 0 1 2

0 1 1 1 3 3 1

1 3 3 3 1 1

. 0 0 0 1 1 3

0 1 1 1 3 3

0 1 1 5 1 5 5 1 5 5 0 5 0 0

1 5 5 5 0 0 6

7 6 6 6 7 7 4 0 1 1 1 0 1 1 5 1 5 0

0 1 1 1 5 5 9

1 7 7 7 6 6 7 f d 0 0 . 0 . 0 . 0

0 0 . 0 0 . 0 . . 0 0 1

0 0 . . 0

0 0 . . 0 0 0 1 1

0 0 . 0 . . 0 0 0

0 0 . 0 . 0 . . 0 0 1 0

0 . 0 0 . . 0 0

0 0 . 0 . . 0 0 1 0 1 5

0 0 . . 0

0 0 . . 0 1

0 . 0

0 0 . . 0 0 0 1 1 1 6 1 7 1 7 6

1 7 0 0 . 0 . 0 . 0 . 0

0 . 0 . 0 1 1

0 0 . 0

0 . 0 0

0 0 . . 0 0 1 0 0 . . 0 0 0 . 0 5 5 5 5 0 9 6 3 9 1 4

^ 2 6 7 9 2 9 9 6 9 9 8 8 6 6 1 7 3 0 8 9 3 ^ 0 0 5 0 5 5 5 7 2 8 8 9 0 3 4 1 4

E ^ ^ 0 5

E ^ 0 ^ 0 0 5 0 5

E ^ E ^ 0

E E ^ 0 4 7

7 1 7 2 7 1 2 7

t 2 E 3 9 E E 6 E ^

4 6 0 5 8 2 3 8 2 4 9 9 9 2 4 9 2 6

1 3 5 8 3 9 5 2 9 2 2 7 6 6

1 9 2 2 2

1 8 0 7 9

0 1 5 6 4 0 4 6 9 c 1 6 5 3 4 0 6 2 5 8 5 6 8 2

8 5 1 7 7 3

5 6

e 0 2 2 4

0 2 4 2 5 1

3 0 3 3 9 9 9 2 1 4 9 9 2

4 6 7

5 0 2 3

0 4 6 1 2 0 4 4 7 0 0 3 3 1 9 3 1

6 7 5

l 1 . 1 . . 3 3

4 . 0

4 5 . . . 5 0 4 5 4 4

6 6 . 1

7 9 . . 1 1

9 0 0 0 0 0 2 0 3 6

0 0 0 3

0 0 3 3 0 5 8 6 0 6 6 2

0 0 0 0 0 7 7 7 6 4

0 0 8 8

0 0 8 8 6 0 7 9 1

0 2 1 7 s e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 7 0 7 0 0 0 1 2 0 2

0 0 0 0

0 0 0 0 0 0 0

0 0 0 7

0 0 0 0 0

0 0 0 0 0 8 8

0 0 1 1

0 1 1 1 2 2 2 . . 0

p 0 . . 0 0 0 0

0 0 0 . . 0

0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0 0 0

0 0 . 0 . . 0

0 0 . . 0

0 . 0 0

0 0 . . 0

0 0 . . .

0 0 0 . . 0 0 0

. 0 0

. 0 0

0 0 . . 0

0 0 0 . 0

0 0 . . . 0 0 0 1

0 0 0 0 1 1 2 0 0 . 0

0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0 0 1 0 0 . 0 . . 0 0 0 0 0 . . 0 0 0 . c o

s 8 1 9 8 4

_ 1 3 3 6 4 6 8 6 0 6 3 4 5 4 3 3 2 7

k 8 4 5 8 3

7 7 4 8 1 7

4 9 6 9 3 2 6 5 7 5

0 0 4 8 7 6 1 8 5 3 9 1 4 3 1

n 6 1 1 2 6

9 2 8 6 1 4 1 1

9 4 1 3 3 3 7

0 4 2 0 7 2

5 6 3 6 6 6 0 9 4 4 4 6

6 6 3 1 9 6 6 3 5 8 r a 1 0 6 8 2

2 3 3 5 7 4 9

8 7 6 6 5 5 4

5 5 7 4 7 3 3

9 5 1 3 5 8 0 0 7 6 2 7 1

8 3 1 3 8 0 4

0 8 6 3 9 1 _ 1 6 6 4 0

2 2 3 3 0 2 2

8 7 6 3 5 1 9

7 4 2 7 3 9 3

0 1 2 0 3 0 1 7 8 5 1 5 7

7 1 6 7 1 2 6

9 1 6 8 5 3 4 l . 7 . 6 0

. 2 1 5 8 4 1

. 7 7 3 . 8 3

2 6 6 4 9 1 5

. 6 0 8 1 9 7 8 4 4 5 9 1

4 9 5 8 0 2 3

5 6 7 2 5 4 5 a 4 . 2 . 5

2 . . 8 . 2 9

0 . . 7 0 3 3

. 2 2 2 0 5 4

0 8 2 7 5 3 . 0 9 9 6 9 5

. 6 3 7 9 7 4

3 0 5 7 7 2 5 n 1 3 1 2 2 .

1 2 2 . 1 . .

1 0 0 . 1 . .

0 . . . 2 1 2

1 . 8 . 7 7 9 9

i ^ ^ 1 ^ ^ 1 ^ 1 ^ ^ 1 1 1

^ ^ 1 1 1 0

^ ^ 1 ^ 1 ^ ^ 1 1 0

^ ^ 1 ^ 0 0

1 1

^ ^ 1 0 1 0 1 0 . . 1

^ ^ ^ 1 0 0 .

^ ^ 1 1 0

^ ^ 1 ^ 9 .

^ ^ 9 9 .

^ ^ 9 .

^ 9 ^ . 6 5 5 5 2 6

9 . . . 5 1

^ 9 9

^ ^ 9 . 5

^ 9 .

^ ^ 9 ^ . 4 4 9 3 8 7

1 1 0 2 6 7 7 9 . 3 3 2

9 . 9 . 2 . . . 0 2 0 3 ^ 9 . . 0 0

. 0 ^ ^ ^ 9 .

^ ^ 9 9 9 9

^ ^ ^ . 0

^ 9 ^ 9 9 .

^ ^ 9 f

t a 1 5 6 5 8

e 4 4 2 9 1 4 3 2 7 7 9 2 8 5 4 8 7 8 1 7

b 3 8 7 6 4 9 7 7 1 1 4 2

8 7 9 9 9 5 5 6 8 8

8 0 7 1 7 1 3 4 9 9 2 8 7 9

. 6 0 4 3 1 2 9 2 6

6 6 7 5 9 1

8 8 9 4 8 9 2 1 7 1 4 8

9 3 3 6 3 4 9 5 8 3 h 0 3 9

. 9 2 0 9 5 4 6 1 1

. 2 5 7 9 0 2

5 6 4 5 1 8 8

0 3 0 7 6 6 8

6 6 2 8 2 4 3

3 0 7 5 9 4

5 5 9 8 9 8 5

1 9 0 7 9 3 e 8 4

. . 1 1 . 5 5 5 8 1 9

6 7 4 9 0 3 2

. 2 8 . 5 7 2

5 9 0 4 9 1

. 4 8 1 3 3 8

9 6 1 8 3 8 9 9 9

v 0 1 ^ . 0 . ^ . 7 5 7 5 5 1

0 . 2 . 8 5

0 . . 8 . 5 6

. 5 5 6 1 9 6

0 . 3 0 . 7 9 . 1 3

0

_ ^ ^ ^ ^ 0 ^ 0 .

^ ^ 0 0 .

^ ^ 0 .

^ 0 ^ ^ 0 0 .

^ ^ 0 0 . 7

^ 0 .

^ ^ 0 0 . . . 8 6 6

^ ^ 0 ^ 0 0 . . .

^ ^ 0 0 0

^ ^ ^ 0 .

^ ^ 0 ^ . 6 8 0

0 . 6

^ 0 .

^ ^ 0 0 . 3 0

^ 0 .

^ ^ 0 ^ . 7 5

0 .

^ ^ 0 ^ . 8 6 6 4 0 5

3 5 6 0 9 4 9 0 . . . 5 0

. 6 5 . 2 0 9 ^ 0 0

^ ^ 0 . 6

^ 0 .

^ ^ 0 0 . . 1 . 5 4 3 ^ ^ 0 ^ 0 ^ 0 . 6 ^ 0 . ^ ^ 0 s k

c

a 5 7 4 6 1

t 7 7 1 9 6 1 3 6 3 7 4 3 4 1 5 2 8 6 4

e 7 8 0 2 3 6 4 8 9 3 7 5

4 0 2 6 7 9 0 3 4 6

3 1 6 6 3 5 7 1 9 2 7 4 2 9

. b 9 5 2 6 0

. 3 2 4 2 8 4 9 0 5

6 7 5 2 6 1 5

2 2 2 5 8 6

2 8 6 3 6 3 7

8 5 1 4 9 6

4 1 7 1 4 3 1 6 3 7 2 2 7

. 8 1 9 6 0 0 1 5 5

. 7 3 5 5 7 4 3 0 2 0 9 5 1

8 3 5 9 8 1 3

5

. 1 4 4 7 8 9

3 8 8 9 8 7 0

. . 1 7 9 3 8 7 7 7 6

1 0 9 0 4 4

9 4 0 8 3 5 8

6 4 5 9 7 9 . 6 2 4 4 7 4

7 0 3 2 0 2

1 3 1 7 0 8 3

4 2 4 2 9 6 4 e 0 . ^ . 7 5 1 3

0 . 0 . . 5 . 3 2

^ 0 .

^ ^ 0 0 . . 6 . . 1 4 3 5 8

^ ^ 0 0 .

^ ^ 0 0 . 4

^ 0 .

^ 0 .

^ 0 ^ 0 . . 6 2 1

^ ^ 0 ^ 0 ^ 0 0 .

^ ^ 0 0 . 0 . . 4 4 3

0 6 1 4 7 2

. . 8 0 1 2 3

4 9 4 1 1 1 8 8 ^ 0 ^ ^ 0 ^ ^ 0 ^ 0 0

0 . 0 . . .

0 0 0 0 0 . . . 1

^ 0 4 3

. . . 0 . 1 . 1 5

_ ^

l 0 0 0 0

r ^ ^ ^ ^ ^ ^ 0 0 0 .

^ 0 . . 8

^ ^ ^ ^ ^ ^ 0 . 0 0 2 1 0 4 8 5

0 0 . .

. 0

0 0 0 . . 3 6 ^ 0 ^ 0 6 . . ^ ^ 0 0

^ ^

^ 0 0 0 ^ ^ c t

1 7 3 2 1 4 2

3 7 1 7 5

9 6 5 8 7 4 8

1 3 1 4 5 4 2 7 8 5 9 5

9 5 0 7 9 1 2 2 8 1 1 8 9 5 3 7

3 2 2 4 3 2 3 7 3 9 5 4 1 2

t a 3 9 5 8 0

2 3 9 2 7 9 5 8 8 1

3 6 3 5 6 3 1

0 7 5 6 8 7

3 8 5 4 9 9 4

9 5 7 5 8 9

5 5 0 5 1 4 1 4 2 7 1 5 3 5 8 4 2

3 0 2 6 3 3

6 0 1 3 8 2 2

0 5 1 5 8 9 e 4 9

. 1 2 7 1 4 . 1 2 7 0

9 1 6 0 3 7 0

. 2 0 0 0 3 3 3 7 3

0 6 3 0 3 0 0 0 1 6 2

. 3 1 2 0 0 1

9 0 1 1 3 3

1 0 6 8 7 9 0

7 3 8 9 3 4 4 b 0 3

. . 0 0 . 0 . 0 2 2 2 5 5

. 0 . 0

0 2 5

. 0 . 3 0 9 . 2

0 0 3 1 2 8 9 5

0 0 . 0 . . 3 1 3

. 0 . 1 . 2 3 0 3 4 8

1 3 8 0 1 6 1 i ^ . 0 0 1 3 3 6 5

j 0 ^ 0 0 0 . 0 . . 0

0 0 .

. 0 0 0 . 0 0 . 0 . 0 . . 2 5 . 2

^ 0 0 . 0 0 .

^ 0 0

^ 0 . 0

0 0 0 . . . 2

0 0 . . 2 . 2

0 0 0 0 . 0 0 . . 1

0 0 . . 5 8

. 3 0 9 0 1 8 ^ 0 0 4

. 0

0 . 0 0 . . 2

0 . 5 4 ^ ^ 0 ^ . 0

0 0 0 2 . . ^ 0 0 a ^ 0 0 0

R

1 5 8 1 3

t a 1 8

7 7 9 6 8

5 4 3 0 7 7 3

5 3 5 7 5 9 9 0 9 7 4 3

1 1 0 6 7 2 2 8 6 6 1 4 8 6 8 9

9 9 3 1 3 5 6 1 4 3 4 4 5 9

e 2 6 0 1 7 2 7

b 4 1 5 1 8

. 4 6 1 2 0 6 2 9 2 7 9 5 2 5

2 6 1 0 1 2

6 7 3 5 1 3 7

1 2 7 7 7 5

7 4 9 2 1 1 4 0 1 2 1 . 2 4 1 7 9

0 2 1 2 1 0 8 3 4 2 5 2 8 9 1 7

0 7 5 9 9 8 7

8 2 0 5 1 6

1 0 0 4 7 6 6 2 6 0 5 4 5 e . 3 . 1 1 . 1 0 1 2 2

. 8 1 5 9 5 7 0 8 3 9 2 5 2

. 2 1 2 6 8 4

8 7 6 2 9 8

2 9 7 9 4 4 6 2 2 4 2 8 2 1 y 0 0 .

^ 0 0 . 0 . 0 . 1

0 0 . 0 1 0

. . . 0 . 0 . 2 0 8 1 . 1 2 9 2 2 3

0 0 . 0 . . 2 4 5

0 . . 1 2 4 2 5 8 . 6 4 0 5 7 4 ^ 0 0 . 1

0 0 8 3 2 7 1

o 0 0 0

^ 0 0 0 . . 0 .

0 . 0 0 4 2 6

0 0 0 0 . . 0 . 0 0 1

^ 0 . . .

^ 0 0 0 . 0 . 0 1 . 1 2

0 . 0 . 8 . 1 1 0 . 2 1 3 8 2 3

. 5 y 0 0 . .

0 0 0 0 . 0 . 0 . .

0 0 0 . 0 0 0 0 0 . 2

^ 0 0

. ^ 0 . 0 . 3 0 0 0 J i

2 4 9 4 2 9 4 2 2 6 9 2 4 3 3 1 4 8 1 2 4 1 1 3 1

ta 1 1 6 3 5 0 2 9 4 0 9 6

3 1 2 2 2 9 7 3 9 3 7

1 9 4 7 5 9 1 6 8 7 1 2 8 2

e 1 0 5 2 3 6 7 3 4 9 7 8

6 0 4 7 1 9 4 8 6 0 4 6 5 0 1 4 2 1

1 2 2 9 8 7 6

8 1 3 6 5 6

7 . 1 9 5 5 4 7 9 7 7 8 9 4 1 9 8

5 9 5 6 . 6 7 4 6 6 8

2 2 3 2 6 7

3 1 7 0 5 2 6 8 0

5 0 5 0 b 3 1

. 1 0 4 2 3 4 8 0 5 4 4

1 2 5 9 3 9 9 7 5 7 4 4 2 6

. 0 4 . 3 2 . 1 2 1 3 3

. 2 2 2 2 6 0 7 9 1 5 4 5 6 9

0 . 1 3 5 . 3

0 . 2 7 1

. 3 0 9 4 1 2 3 0

2 3 1 2 8

. 7 4 4 1 2 4 0 1 0 1 8 0 3 2 .

6 0 ^ 0 0 0 . 0 . 0 . 0 0 . 2

. 0 . 1

0 . 1

0 . 2

0 0 0 . 0 .

0 0 0 . . 1

0 . 3

0 0 . 0 6 2 1

. 1 3 7 7

. 1 8

0 .

^ 0 0

. 0 0 0 . 0 0 1

. .

0 0 0 0 . 0 . . 3 . 9 1 0 3 0 ^

0 . . 0 . 0 0 0 0 . 0 . 0 . 1 . . 1 1

0 0 0 . 4

0 0 . 0 1

0 . . 1

0 . . 0 0 0 0 0 0 . . 0 ^ 5 ^ ^ 0 ^ 0 0

K

3 5 3 4 4

a 3 1 5 6 6 9 6 5 2 6 1 7 9 9 4 6 5 3 7

t 3 2 8 6 6 4

4 2 9 8 2 6

4 8 4 7 6 8 2 2 1 8 7 6

8 6 2 4 7 5 1 3 7 3 6 8 3 8

e 2 4 1 0 1 3

4 1 7

. 6 0 7 4

0 4 4 0 8 0 8 6 8 6 5 3

0 9 4 2 1 5 3

0 0 1 4 4 7

3 6 9 6 7 3 3 0 9 7 9 . b 1 7 1 2 6

. 4 1 . . 2 2 8 9 8

. 0 1 6 7 6 0 1 2 7 5 1 7 8 3 0 6 1 0 3

. 1 7 1 7 5 1 0 9 4 2 3 2

3 1 1 4 6 5 9

1 9 0 5 8 9

4 8 4 8 1 4 6

. 8 9 8 9 8 5 7 2 . 2 2 8 3 9 5

1 9 0 0 1 7

1 2 0 2 6 5 0 7 1 3 6 8 7 0 0 .

^ . 0 0 0 . 1

0 0 . 0 1 8 9

. . 0 1

0 . 2

0 0 . 0 3 2

. . 0 . 2 1 2 2 3 4

0 0 . 0 . 0 1 1 3

. . . 2 . 3 6 3 2 3

. . 3 0 . 1 1 1 2 3 1 6 8 5 1

0 0 0 . 0 8 . 4 2 6 6 3 9 ^ 0

M 0 0

^ ^ 0 0 . .

0 0 0 0 0 . 0 0 . . 3

0 . 0 . 0 2

0 0 . 5

0 . 0

^ 0 0 0 0 0 . 0 . 2

0 0 . . 2 3

0 . 0 . .

0 0 0 . 0 0 0 . . 7

0 . 0 0 1 8 0 . . 1 0 ^ 0 0 .

^ K B

t a

e 4 7 2 7 2

b 5 6 9 6 3 0 5 2 1 1 8 7 6 5 5 3 7 1

. 4 4 6 5 3 7

8 5 8 0 6 9

6 9 1 4 4 9 7 2 5 6

0 8 1 9 4 5 7 4 5 6 4 5 4

4 3 3 1 6 7 2

4 4 6 8 5 2 3

5 3 8 8 4 3 7 7 1 2 3 5

0 6 8 4 4 6 5

4 3 1 3 5 5

7 1 9 6 8 3 4 1 7 3 1 1 8

. 5 . 2 8 4

0 1 0 0 5 4 5 7

. 2 0 1 7 5 2

4 0 9 8 9 8 6 4 6 2 9 2 5

1 3 8 8 8 2 5

8 6 9 2 2 9 2

7 2 4 2 6 6 3 3 8 2 2 5 . 2 1 1 8 5 2

1 6 5 0 6 5 2

2 1 1 7 8 4 9 3 3 3 9 3 6 O 0 . ^ . 3 1 1

0 0 2

. . . 2 1 2

0 1 1 6 6 5 9 1 5 0 6 4 6

S ^ 0 0 . 4

^ 0 .

^ ^ 0 0 0 0 . 0 . 1

. . .

0 1 2 0 1 1 7 2 9 6

0 . . . 4 . 1

. 9 8 2 2 3 7

. 1 3 1 5 3 4 7 2 0 9 8 5 ^ 0 0 0 .

^ 0 0 ^ 0 . . .

0 0 0 . 0 . 1 . 6 7

^ ^ 0 . 0 0 0 .

^ 0 ^ 0 1

. .

^ ^ 0 0

^ ^ 0 0 0 0

^ . 0 ^ . 3

0 0 0 0 5 . 2 3 0

^ 0 1

. . 0 . 1 2 8

0 . .

^ 0 0 0 . . 0 . 2 4 4 8 8 3 ^ 0 0 .

. . 0 0

M 0 0 0 ^ 0 0 0 0 . 0 1

. . 0 1 1 ^ ^ 0 0 . . 1

0 0 0 . ^ D

t a

e 5 1 4 2 5

b 4 2 5 7 5 2 6 8 6 3 4 9 5 2 9 5 9 7

. 4 1 8 7 7 4

3 6 9 2 5 6

1 0 1 8 5 9 5 9 2 9

4 0 2 5 1 7 9 1 9 6 5 2 2

5

8 9 5 5 8 4 2

6 3 2 5 1 8 8

7 5 0 6 7 4 7 5 0 5 1 4

8 8 7 3 5 5

8 6 8 9 1 0 9

1 1 3 1 4 2 3

2 1 5 2 2 6 4 7 5 6 4 1 3 2 5 9 6 4

2 5 4 0 9 2 0

. 8 2 3 1 0 5 0 2 0 5 6 4

0 4 4 4 4 8 5

7 0 1

5 7 9 1 3 7 2

5 5 7 6 4 2 2 7 9

T . . . 8 5 3

. 0 8 2 5 3 7

0 2 6 0

. . 2 3 8

. 3 3 . 1 1 1 1 3 2 5

5 7

0 2 1 0 0 1

3 0 4

4 1 2 2 4 3 2 1 5 1

4 5 0 9 7 8 1 3 4 2 8 8 9 _ 0 ^ 0 0 . 0 . 7

0 . 1

0 0 . . 5 2 8

0 0 . 0 . 0 0 . 0 0 0 . . 2

. .

0 0 0 0 . . 2

0 . 0 0 . 0 . . 2 1 5 6

. 1 1 2 2 1 4 9 8 9 4 9 3 0 0 . 0 0 . 1 4

. 0 0 0 0 1

E 0 0 0

0 0 . 0 . 1 .

0 0 . 0 0 0 . 2 . . 7 . 1 2 2 1 0 3 . 0 5 2

^ ^ 0

^ ^ 0 0 . 0 0 . 0

0 0 0 . . . . 2 1 ^ ^ 0 ^ 0 0 0 . 0 . P 0 . . . 0 . 4

0 0 .

0 0 0

^ ^

t R

b e 9 1 1 4 7 6

. 4 2 4 8 4 3 7 3 7 2 7 4 4 2 9 5 8 3

8 9 2 0 3 4 3

8 5 4 5 5 9

4 1 4 1 8 5 9 4 9

9 6 1 5 5 1 5 6 6 4 6 7 3 8

1 1 7 1 1 3 9

3 6 6 4 8 2 4

8 0 1 7 5 9 6

6 7 6 8 6

5 6 5 6 8 9 1

1 1 8 7 2 7

9 9 5 5 8 1 4 5 7 7 T 1 4 1 1 3 4

1 5 3 2 1 4 2

7 5 7 2 1 9 0

8 0 7 5 6 1

0 1 7 2 5 2 5

0 6 5 6 7 4 4

1 6

2 2 2 0 2 1 5 6

1 2 1 9 1 6 6 6 3 0

4

0 0 . . 3 4 2

0 0 . 0 4

. 0 0 9 2 1 6 4 1

. 1 1 2 1 9 2 9 9 4

. 0 3

. 0 0

. 2 7 2 2 3 0

6 5 . 1 1 6 1 7 9

8 7 8 7 9 8 8 6 3 1 0 2

1 8 6 1 0 3 _ 0 0 . 4 . 3 8

. 0 0 0 . . . . 2 . 1 . A . . 0 0 0

0 0 0 . . 0

0 0 . . 0 0 0 0 0 . 0 0 . 1

0 0

. 0 . 0 .

^ 0 0 0 . 0 . . . 1 0

. . 1 0 1 7 6 2 6

. 8 4 3 1 2 3 1 2 8 3 9 8 .

^ 0 0 0 L ^ 0

E 0 0 0 0 0 . 9

0 0

0 . . . 0 0 5 1 6

0 ^ 0 . 0 . 1

0 . .

0 0 0 ^ 0 . . . 2 3 5 2 ^ 0 1

. . 0 1 9

0 0 . .

^ ^ 0 0 0 2

0 . 0 0 0 0 t H

e 9 9 3

b 3 6 1 0 7 2 8 1 2

. 2 2 3 6 8 1 6 3 6

4 1 3 6 6 3 4 1 1 9 2 3 8 1 9 1 1 3 6 7 7 4

1 9 4 7 6 9 4

2 3 2 1 2 3

1 5 8 3 0 4 5

6 4 4 0 9 6 7 9 1 3 4 1 4 9 4 9

2 7 1 3 2 8

6 3 1 9 8 7 6 4

8 9 1 3 2 8 7 2 1 1 6 3 9 8 9 7

3 3 4 1 8 2 3 4 3 5 9 7 6 3 2 4

3 6 0 6 5 2 0 5 3 9 3 9 3 3 5 7 1

2 4 6 8 3 8 1

7 4

6 4 7 9 9

2 0 8 1

5 5 7 9 2 1 0 1 8 5

5 7 7 5 3 7 1 6 9 T . 1

. . . . 3 .

0 8

_ 0 0 0 7 5

0 1

. . 7 0 0 5 2 8

0 3 2 7 1 3 8

7 5 6 6 8 9 9 4 9 2 7

4 8 3

1 1 1 1 4 2 1

9 2 6 0 . 1 . . . 2 7 5 1 7

4 5 3 6 0 0 . . . 0 . . 8 7 0

. . 1 0 1 1 2

0 0 4

0 0 0 1 1 9 3

0 . ^ 0 0 . 6

^ 0 0 0 0 . . 0 3 9

. 3 0 . 3

0 0 8 3 8

3 4

0 0 0 2

. . . 3 3 7 . 1 3 1 . 0 0 . 0 .

M 0 0 0

^ ^ 0 0 . . 0 0 2

^ 0 0 0 ^ 0 .

^ ^ 0 0 0 . 0

0 . . . .

. . 2 . 5 3

^ 0 0 0 0

^ 0 0 . 0 0 9

. 0

^ ^ 0

^ 0 0 .

^ ^ 0 0 .

^ ^ ^ 0 0 . 0 0 0

. 0 ^ . 0

0 0 . . ^ ^ 0 0

0 0 ^ ^ B 0 0 0 .

^

1 G

T 5 6 1 2 7 4

_ 2 4 1 8 1 9 9 2 4 7 3 5 2 6 6 9 4 7 3

2 4 9 5 2 5 7

4 1 4 6 5 6

9 4 4 5 3 4 2 4 8

0 9 1 1 6 4

6 4 2 3 8 8 6 7

8 9 4 5 6

_ 2 0 6 4 5 7

7 1 4 9 7 0 1

6 1 8 3 1 9 5

1 9 2 6 3 2

6 2 9 3 0 3 2

4 3 7 7 6 7 2

1 5 8 6 7 1 5 3 5

0

6 0 3 2 2 1 5

1 4 8 2 0 1 3

0 . 0 . 3 7 8 2 6 9 0 1 4 3

4 6 1 7 4 6 4 7 4 0 5 7 8 2 1 1 3 0 1 5 8 2 8 5

0 1 5 5 0 7 3 5 8 4 4 9

1 5 6 7 7 1 3 6 1 5 . 8 8 4 5 5 9 1 4 7 6

.

1 0 . . . 7 3 3

. 0 . 0 1 . 0 . 3

0 . 7 . 0 1

0 0 . 0 0 .

^ . 0 8 8 4 5 7 3 1 1 3 7

3 7 5

6 1 . 7 6 3

. 1 8 1 2 3 9

8 0 3 0 8 3

. 1 3 6

0 . . 1 9 9 1

^ ^ 0 0 0 0 0 . 0 . 0 0 0 . . 0 . 0 1 . . 1 1 T 0 0 0 . 0 .

^ 0 0 0 0 1

. 0

0 0 . 0 0 . 0 1 . 3 2 0 6 . 3

0 . .

0 ^ 0 0 0 . 0 8

. . 0 1 4

. . 0 0 . . . 2

0 0 0 . 0 0 3 3

. . . 3 0 1 0

^ 0 5 6 .

^ 0 ^ 0 0 0 0 0

0 0 0 0 . . . 1

0 0

^ 0 0 0 C

e H

. b 2 5 5 9 7 8

H 1 0 6 7 6 4 4

1 8 1 3 2 4 8 1

4 9 5 2 9 6 0 1 1 6

5 9 8 0 4 6 4 6 3 1 7 2 5 8 2

3 0 6 2 0 9 4 2 6 3 4 6 6 4 9

O 3 0 1 7 8 2

3 4 5 3 2 7 6

8 2 2 5 6 9 3

3 6 5 4 3 8

7 9 5 8 5 1 4

6 6 7 7 6 6

1 7 1 4 8 5 5 5 2 1

T 2 2 1 9 3 9

2 2 2 4 6 6 6

3 0 8 9 1 2 8

9 8 9 7 2 5

2 2 9 6 1 6 3

5 7 8 3 3 5 9

8 9 4 1 7 6 9

7 9 4 8 2 1 6 1 3 8

E . . . 4 3 3

0 . 0 . 2 2 0 9

. 1 . 2 2 . 2 2 9 1 5 1

0 . 0 0 0 . 0 0 3

. . 0 1

. . 1 . 1 3 . 1 2 4 7

1 1 0 0 5 8 7 1 3 2 3 2 . . 1 2 8 2 2 1

2 8 8 9 0 7 0 5 2

0 9 8

.

_ 0 ^ 0 0 0 0 . 0 . 2 0

0 5 2 1 2 7 5

0 1 6 2 3 7 7

4 8 3 1 1 2 .

D 0 0 0

0 ^ 0 0

^ 0 0 0 . 0 . . 1

0 . 6

0 . 0 . 1 2

^ ^ 0 0 0 .

0 0 0 . .

^ ^ 0 0 0 . 9

0 . 0 . 0 . . 1 4 4

. 0 0 . 1 1 0

. 3 0 3 0 3 ^ 0 0 0 . 0 0 0 . 0 4

. 0

^ 0 .

^ 0 0 . . 0 0 . . 2

0 0 . 0 . 6

0 0 . . 1 . 1 0 ^ 0 0 ^ 0 0 .

^ 0 D L

e t 1 7 9 6 5 3

b . 5 9 2 2 2

. 4 9 9 5 6 9 1 4 7 0 5 8 2 7

0

2 0 2 7 7 6 2

4 2 2 2 6 3

5 8 3 5 5 2 8 1 3

^ 6 1 8 5 3 5 6 1 7 1 9 2 1 4 7

E 9 0 3 5 9 2

8 2 4 1 0 4 6

5 4 4 9 0 7 4

3 6 2 7 7 9

4 2 3 8 8 3

7 2 9 1 2 4

3 2 4 5 6 3 3 4 7 _ 7 . 3 4 0 4 9

. 3 5 2 7 0 4 1 5 2 6 2

. 4 1 3 4 8

1 6 1 4 0 7 9

8 7 8 3 4 6

. 1 . 8 8 2 2

3 5 8 8 8 6

1 1 5 6 1 2

7 3 9 0 4 2 2

1 6 9 4 8 5 4

6 0 2 6 4 3 . 4 7 5 5 1

3 3 8 9 6 8 9

5 5 0 8 5 5 9

1 9 3 7 8 2 . 4 2 5 5 8 7 . 0 0 0 . 0 . 2

0 . 0 . 1 2 1 1 4

0 . 9

0 . . 4 8

. . 2 9 1 4 5

F 0 ^ ^ 0 0 6 8

. .

0 ^ 0 ^ . 0

0 0 0 . 0 0 2 8

. 0 . 0

0 0 . ^ ^ 0 0 6 2 4

. 0 . 1

0 0 . 0 0 . 0 . 3 . 0 1

^ ^ 0 0 . 0

0 .

^ ^ 0 0 0 .

^ ^ 0 0 1

. . 2 4

0 2 1 9 4 5 5

0 0 . 3

. . . 0 3 2 4 3

. 2 7 4 ^ 0 ^ 0 . 0 0 8 0 9

0 ^ C ^ ^ 0 .

^ 0

^ ^ 0 0 .

^ 0 0 0 . 0 . 1

. 0 . 2 1 ^ 0 . 0 0 .

^ 0 0 0 . .

^ . 0 ^ ^ 0 0 ^ 0 a M

e t 9 6 1 2 8 4

b 3 7 1 2 1 9 8 8 4 4 3 6 6 3 9 8 8 7 9 5

. 5 6 3 3 9 8 8

5 3 5 9 4 4

7 7 7 8 7 8 6 3 7

0 2 2 5 0 2 1 2 1 4 1 8 8 2 6

2 5 9 5 4 3

4 7 3 2 6 1 3

2 6 6 3 7 6 9

1 5 2 6 6 6

2 0 2 3 9 8 2

3 4 2 8 3 1

5 1 7 8 8 1 9 7 9 E 3 7 0 2 3 1

. 1 7 1 5 0 5

. 3 4 7 9 5 6

3 4 3 5 1 4

2 9 9 1 1 3 5 7

1 4 6 8 4 9 3

5 3 6 5 8 9 5

3 6 7 8 3 8 _ . 0 . . 1 3 1

. 4 7

^ 1 . 3 2 7 2 6 0

^ 0 . 3 1 . 1 . 1 9 2 1 5 6 9 8 1

0 0 0 5 1 9 1 4 6 8 4 8 9 4 9 3

3 1 6 6 6 0 8

2 1 9 7 9 1 4 D 0 1

^ ^ 0 . 4

^ ^ 0 . 0 0 . 2 . 8 7

.

^ 0 0 ^ 0 0 3

. . 0 . . 3 1 3 3 3

^ 0 0 5

. . . . . 1 . 3 1 0 2 2 1 1 3 0

. 2 2 2 6 3 4

2 3 9 1 3 0 7 ^ 0 ^ 0 0 ^ 0 0 0 0

^ ^ 0 6

. . 0 1 6

0 0 . . 0 .

^ ^ 0 ^ 0 0 0 0 0 .

^ ^ 0 0 0 . .

^ 0 . . . 5 . 2 8

0 ^ 0 0 0

0 . 0 . 0 9

0 0 . 0 . . . 2 1 3

. . 7 1 3 0 . . ^ ^ 0 ^ 0 0 . . 1

^ ^ 0 0 .

^ ^ 0 0 0 0 . . 8 3 ^ 0 0

0 0 ^ ^ T 4 8

1 1 3 8 C

2 0 1 0 4

3 1 A 2 D L 1 A 2 1 B 1 1 S 1 1 8 A 2 1 5 2 6 C F e

4 L e 1 A 2 9 0 T 5 B A 1 4

M 1 P

n L 3 L 2 6 1

A 3 5 X 3

T H 4 I 2 1 E 4 H 7 1

e S C H P X D

A C F G H A R 3 Z D V 1 B K 1 E 2 D G 2 F C 1 A

E L T G 2 M 8 1 1 R C 2 1

2 A P 0 2 l B MD 1 2 K 5

F D S WF B C K P 1 1 L L E L T

A T X M F R C U D M 3 0 D b G R G L R S G C E D R D B A G L R N A Z M A I R P F F C G O G C L 5

N E T MC R H T S C P L Y D O I P C P L T R S G G P L A K N N P K G S L F O P R T D K P P A P A T M L T M A B R C C M H L T L O K G G M P L N Y R F X A A C T R M H E N H A C C D T a A T

')6^^^^^^^ 4 5 5 9 9 4 5

4 4 6 8 9 9 8 9 9 9 4 9 9 9 9 3 5 5 5 3 9

7 4 2 7 8 8 7 8 8 9 8 6

7 4 4 4 9 9 4 9 8

6 3 7 4 5 3 3 7 1 1 1 5 9 7 7 7

6 7 6 4 7 7 4 7 7 8 7 4 6

5 7 7 7 4 4 9

7 4 9 6 5 5

2 6 6 7 5 7 7 9 1 1 1 1 1

8 5 2 7 2 7 2 7 7 7

7 6 1 7 4 4 7 4 4 7 4 1 4

6 8 8 8 7 7 4

8 7 4 7 3 3

4 2 4 4 3 9 9 4 3 3 1 3 1 9

5 8 6 2 6 2 7

6 2 2 2 7 7 1 7 7 7 7 7 7 7 7 4 7 1 1

8 9 9 9 8 8 7

9 8 7 5 6 6

9 4 6 6 7 4 4 7 6 6 3 6 6 5

0 5 5 6 5 6 2

5 6 6 6 2 2 7 0 1 7 1 7 7 1 7 7 7 7 1 1

1 8 8 8 9 9 8

8 9 8 0 2 2

1 1 9 0 6 0 7 7 0 9 9 6 9 7 8

1 0 2 5 2 5 6

2 5 5 5 6 6 2 . 0 1 0 1 1 0 1 1 7 1 8 1

0 1 1 1 8 8 9

1 8 9 9 4 4

0 2 0 2 0 0 2 0 0 9 0 9 5

2 1 1 2 1 2 5

1 2 2 2 5 5 6 0 . 0

0 0 . . 0 0

0 0 . 0 . . 0 0 1 0 1 8

0 0 . . 0

0 0 . . 0 1

0 . 0

0 0 . . 0 0 0 1 1 8

0 1 8 1 9 9

0 0 . 0 . . 0 0 1

0 0 . . 0

0 0 . . 0 1 0 1 1

0 . 0

0 0 . . 0 0

0 0 . . 0

0 0 . . 0 2 0 2 2 0 2 2 0 2 0 0

0 2 2 1 2 1 2

2 1 1 1 2 2 5 0 . 0

0 0 . . 0 0

0 0 . 0 . . 0 0 2 0 2 1

0

0 0 . . 0

0 0 . 0 . 0 2

0 . 0 . . 0 0 2 0 2 1

0 2 2 2 1 1 2 0 0 . . 0

0 0 . . 0 2

0 . 0

0 0 . . 0 0 0 2 2 1 0 0 . 0 . . 0 0 2 0 0 . . 0 0 0 . 6 6 7 7 3 9 5

1 2 9 3 2 1 7 6 6 4 8 6 2 6 5 7 4 7 2 6

5 5 4 7 2 5 8 7 1 7 7 4

0 5 4 8 4 9 8 3 6 3

7 7 8 5 3 2 3 7 3 3 6 5 5 1 4

2 2 8 5 4 9 1 5 7 1 3 4 1

1 2 6 7 9 0 2

3 6 9 0 2 4

2 1 2 4 9 9 6 1 7 2 8 6 9

1 0 6 9 0 9 6 4 5 4

1 1 7 3 8 0 4 4 4 5 6 9 4

6 6 6 1 9 5 3

8 7 5 1 4 7 5

0 8 0 4 4 3 2 1 0 8 5 8 9

6 8 7 5 9 6 6

0 8 9 9 4 5 0 0 2 1 3 4 1 4 4 5 4 3 0

1 7 7 0 8 0 5

1 4 8 9 2 5 6

2 1 1 2 7 1 3 4 5 2 4 6 7

5 7 6 3 1 0 4

2 3 5 3 8 0 9 0 0 1 0 1 1 0 1 1 4 1 5 4

0 1 1 0 7 8 0

. 1 1 8 0 8 1 8 0 1 5

0 2 2 2 2 3 2 2 4 5 2 8 3

2 5 2 8 7 8 1

8 2 5 1 3 7 5 . . 0 0 0 0 0 0 0 1 0 1 5

0 0 0 0 1 0 1 0 0 2

0 0 2 0 2 2 0 0 2 4 0 4 5

0 2 0 6 2 7 1

2 8 8 9 5 9 3 0 0 . 0

0 . 0 0

0 0 . 0 . . 0 0 0 0 0 1

0 0 . . 0

0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0 0 0 1

. 0 0 0 2 2 0

0 0 . 0 . . 0 0

0 . 0

0 0 . 0 . 0 . 0 0 0 2

0 0 . 0 0 0

0 0 . . 0

0 0 . . 0 0 0 0 0 0 0 0 2 0 2 2

0 0 0 2 0 2 8

0 2 2 2 9 2 7 0 . 0

0 0 . . 0 0

0 0 . 0 . . . 0 0 . 0 0

0 0 . 0

0 0 . 0 . 0 0

0 0 . . 0 . 0 0 0 2

0 0 0 0 2 0 9 0

0 0 . 0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0 0 2 0 0 . 0 . . 0 . 0 0 0 . 0 . 0 0 2 6 6 6 9 8 5

0 5 1 8 9 5 4 3 6 5 1 8 4 5 9 9 2 4 2 3

3 7 3 4 3 5 5 4 7 8 8 2

5 2 8 2 8 5 1 7 9 6

6 3 3 3 7 3 5 7 1 3 6 5 1 5 6

4 3 2 1 5 0 9 4 6 6 7 8 3

4 7 2 3 9 1 4

7 8 5 9 9 1

4 6 6 7 5 7 9 4 2 8 3 3 4

4 4 4 3 4 3 8 4 4 2

8 3 7 4 3 2 4 9 8 1 1 1 5

3 0 6 8 5 5 1

9 3 2 9 6 4 3

6 5 1 7 2 8 6 9 9 6 3 0 8

8 7 0 2 0 6 4

7 0 6 7 9 7 9 8 0 9 2 2 4 3 2 7 0 0 1

0 3 0 8 8 4 1

5 4 2 4 2 1 7

4 4 0 2 7 6 2 2 2 3 8 8 4

1 4 4 3 7 0 1

4 2 9 9 3 8 1 . 7 5 4 7 5 4

6 5 4 8 0 7 8 . 9 6 8 7 5 8 2 2 6 1 4 3

7 0 0 5 5 6 3

5 0 3 4 5 1 2

4 6 0 3 7 8 9 2 4 3 0 8 0

8 . 9 . 8 8 . 8 8 1 8 5 3

8 . 8

8 . . 7 5

. 6 6 . 8 7 6 2 0 6 3 6

5 7

. 5 5 5 4 5 . 3 5 3 1 9 2 5 3 3 3 7 5

^ 8 1 7 3 2 1 2 1

7 7 2 9 6 2 0 ^ 8 . . 7 5

^ 8 8 . . 4 4 4 4

^ ^ 8 8 . 5 7

^ ^ 8 8 . .

^ 8 ^ ^ ^ 8 ^ ^ ^ 8 8 .

^ 8 . 8 . 5 5

^ ^ 8 ^ 8 .

^ 8 .

^ 8 ^ 8 ^ 8 . .

^ ^ 8 8 . 8 .

^ ^ 8 .

^ ^ 8 8 . 3 . 3 2 . 2 2 3 2 1 9

. 1 3 1 9 0

0 0 6 3 4 8 1 ^ 8 .

^ ^ 8 8 . .

^ ^ 8 ^ 8 8 . . 2 . . 2 . 1

^ ^ 8 8 .

^ ^ 8 ^ 8 ^ 8 ^ 8 8 . 1 . 0 8

. . 0 0 2 1 7 ^ 8 .

^ ^ 8 8 . 0

^ 8 .

^ ^ 8 8 8 . . 0 0 1 ^ ^ ^ 8 8 . . 0 ^ ^ 8 8 .

^ ^ 8 6 4 2 1 5 1 8

7 0 6 4 5 8 3 4 6 9 8 3 9 6 2 6 9 6 8 3

7 9 0 6 6 7 4 5 8 9 0 5 5

7 8 9 1 9 8 2 5 9 2

1 2 3 4 4 5 6 7 7 9 3 9 1 6 6

3 5 7 8 1 6 6 4 4 4 6 1 5

9 5 9 5 7 7 1

5 9 7 7 7 1

3 9 6 6 6 5 7 7 6 5 7 5 1

6 5 7 6 4 8 3 9 2 1

. 2 7 5 8 1 6 9 0 0 9 0 6

5 4 9 3 2 5 6

6 5 0 0 4 9 2

7 4 5 7 8 0 3 7 0 2 3 3 2

4 9 8 8 8 3 6

4 7 7 6 7 6 8 . . 7 8 1 3 2 0 . 4

0 . 0 0 . 5

0 . 4 6 1 3 9 8

. 6 5 5 8 3 3

. 9 3 5 8 7 0

. 3 6 7 0 1 5 2 5 7 0 8 2

4 9 3 8 5 9 7

^ 0 .

^ ^ ^ ^ ^ 0 . . 6 . . 5

^ ^ 0 0 .

^ ^ 0 0 0 .

^ ^ ^ 0 0 . . . 5 6 1

0 . 2 3 4

^ ^ 0 ^ 0 0 .

^ 0 . 6

^ 0 .

^ ^ 0 ^ . 6 7

0 . 0 . . 6

0

^ ^ 0 ^ 4

^ 0 ^ . 2

^ 0 0 . . . 7 5 . . 4 3 4 5 8 2

. 5 3 5 6 2 . 7

^ 0 7 8 9 3 3 7 0 ^ 0 0

^ ^ 0 . .

^ ^ 0 ^ 0 ^ 0 0 . 5 . 6 2

^ 0 .

^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . . 5 . 4 . 2 8 4 2 9 ^ ^ 0 0 .

^ ^ 0 0 . ^ 0

^ ^ 0 0 . 3 . 5 3 ^ 0 .

^ ^ 0 0 . .

^ 0 0 ^ ^ 9 2 2 6 1 5 4

7 7 2 1 5 2 9 1 9 7 3 7 2 3 2 1 7 3 3 4

1 8 4 3 0 1 3 5 5 2 5 4 1

1 8 8 4 2 8 4 1 5 3

3 2 1 5 4 5 2 5 7 2 7 3 9 6

5 0 0 1 6 8 6 9 1 9 5 8 2

0 0 5 3 6 7 9

8 9 3 1 9 5

3 3 0 2 1 8 8

0 8 6 9 6 8

5 5 4 5 7 7 3 7 1 6 .

0 4 3

0 3 2 3

. 6 7 4 3 2 3 9 8 7 7

. 3 0 3 5 5 4 8 6 2 8 0 3

2 7 0 2 2 1 9

. 3 3 1 1 6 7

2 3 5 0 9 8 1

3 2 1 6 5 5 4

1 9 5 5 5 5

. 8 3 5 1 9 6 6 2 2

1 7 3 9 5 5 . . 8 3 4 2 6

1 6 9

1 9 3 4 3 2 1

7 8 0 8 7 6 8 0 0 ^

. . 0 . .

^ ^ 0 0 .

^ ^ 0 0 . 2 . . 2

^ 0 .

^ ^ 0 0 0 .

^ ^ ^ 0 0 . . 4 . 3 5

. 4 5 4 2 3 7

^ ^ 0 0 .

^ ^ 0 0 . 3

^ 0 .

^ ^ 0 0 . . . 2 3 0

^ ^ 0 ^ 0 0 . . 1

^ ^ 0 0 .

^ ^ 0 0 0 . 2 . 4 3 9

. 1 7 ^ 0 2 4 3

. 3 7 2 3 5 4

1 8 0 7 1 0 3 ^ ^ 0 0 0 . 2

^ 0

0 0 . 0 .

^ ^ 0 0 . 2 . .

^ 0 .

^ ^ 0 0 0

^ ^ 0 . . 2 3

^ ^ 0 0 2

. 0 0 6 5 4 3 2 2 ^ 0 0 . 0 . 4

. . . 1 . 5 4

. ^ ^ 0 ^ 0 .

^ ^ 0 0 ^ 0 0 .

^ ^ 0 0 . 2 ^ ^ 0 0 ^ 0 5 5 4 1 6 2 4 6

3 8 7 5 8 4 8 4 2 8 8 3 2 6 6 5 3 3 9 9

0 5 6 3 5 5 6

5 8 2 6 3 6

5 3 5 1 1 6 0 9 1 9

4 1 6 0 1 3 9 1 7 3 4 5 6 3

1 5 7 0 1 3 4

2 2 9 7 8 5

0 3 8 4 6 7 1

9 3 0 2 3 6

1 6 6 5 3 3 5

3 4 9 3 4 3

6 4 0 3 6 5 4 2 2 6 7 . 3 1 2 7 4 4

1 9 6 4 7 9

4 4 8 0 5 9 7

8 8 7 0 7 8 9

. 8 3 8 4 4 8

3 7 8 3 4 3

8 1 4 9 1 5 3 9 9 1 6 7 8 0 0 . . 0 . 1 7 3

. 1 6 1 6 3

0 4 1 7

. 4 2 7 8

9 3 4 4 9 0 6

0 . 2 2 2 9 1 4 1 3 9 5 1 6 2

1 5 0 9 7 6 5 9 8 2 1 4 4 6 0 . 0 1

0 0 0 . . 0 0 . 2

0 . . 2 . 3

0 0 0 . 0 . . 2 0 . 2 1 3 4 3

.

0 0 0 . 1 0 2 2 9 4 2 9 1 4 0 9 8 9 9

0 0 .

^ 0 0 0 2 6

0 4 4 2 4 3 1

. .

0 0 0 . 0 . . 2

. . 0 . 1 2 6

. . 3

^ 0 0 0 0 .

^ 0 0 0 . 0 . . 3

^ 0 0 0 .

^ 0 0 0 .

^ 0 0 . 2

0 0 . . 2

0 0 . 0 . 1 0 2 9 . 1 2 5 4 3 8 0 0 0 . . . 0

0 0 . 0 0 . . 3

^ 0 ^ 0 . 0 0 3 1

0 . . 6 0 0 0 0 . ^ 0 5 4 3 4 4 5 7 2

9 0 5 9 1 8 0 7 1 2 2 5 8 8 5 9 5 4 1 5

2 9 1 3 6 7 6

7 0 6 5 4 8

0 8 0 5 7 3 5 2 4 7

7 3 2 1 3 9 7 2 4 3 5 2 1 6 4

6 1 . 0 4 1 4 8

1 1 8 3 0 8

0 8 0 9 8 8 6

6 2 9 3 4 5

4 8 5 8 8 2 8

9 0 6 1 6 3

9 1 8 1 2 2 5 4 3 1

3 2 0 5 2 8 6 3 0 2 1 8 1 6

3 6 8 5 0 1

1 2 2 0 8 3 5

4 5 5 2 4 3 4

1 6 3 5 9 4 1

3 5 3 9 4 6

2 1 2 6 2 3 1 9 6 2 8 7 . . ^ 0 . 2 3 7

. 1 3 7 9 1

0 2 3 8 5 0 6

1 2 0 6 6 8 3

. 2 3 2 7 8 6

2 3 5 1 6 0

. 7 1 9

2 3 4 1 3 1 4 2 9 3 8 8 0 3 2

1 2 6 7 9 3 8 4 3 6 . 1 0 0 . 0 0 . 2 3 8

2 5 4 1 .

0 0 0 0

. 0 0 . 0 0 . 0 . . 0 . 0 . . . . 0 3 2

. 4 0 1 1

. . 0 1 6 2

0 0 . . 0 1 . 1 5

. 2

0 . 0 . 0 2

. . . 0 1

. . . 1 . . . 1

0 0 0 0 . . 3 1 1 7 6 8

0 0 0 0 0 . . 2 .

0 0 0 0 .

^ 0 0 0 0 0 . . 0 0 0 0 . 0 . . 2 .

0 ^ ^ 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 . 0 0 . 2

. 0 0 ^ 0 7 2 7 1 1 4 8 9

9 4 5 8 5 9 3 7 7 0 5 2 7 8 2 2 4 1 1 4

7 9 4 1 2 8 1

5 0 7 1 1 8

8 4 3 6 7 8 0 5 4 4

4 4 3 3 4 3 7 2 5 0 5 4 8

4 3 4 8 5 4 0

3 4 1 6 7 8

7 7 8 5 7 0 8

2 5 9 6 9 6

7 0 4 1 3 1 8

0 3 9 4 6 5

2 3 6 6 3 8 5 6 4 4 0 3 1 2 0 9 9

1 1 8 5 2 8

9 1 0 7 1 9 2

. 7 4 1 2 0 2 3 0 3

9 8 5 8 0 7 7

6 7 9 1 3 3 7

1 8 5 8 5 9 4 7 6 4 0 6 . . . . 3 7 6

0 5 7 2 0 1

0 2 2 4 9 8 1 3 6 8 1

0 1 1 3 4 9 6

5 4 5 5 4 3 2

1 4 3 7 3 8 5 6 1 9 9 9 3 0 0 0 0 .

^ 0 0 5

. .

0 0 . 0 3 . 2 1

. . . 1 ^ 0 1 0

. 6 0 1 4 1 6 9 6

. . 0 . 3 1 0

. 0 6 2 4 2 9

. 6 5 1 2 1 . 7 3 6 9 6 1 ^ 0 . .

0 0 0 0 . 0

0 . 0 0 0 0 . 0 0 . . 0 0 . 2 2 6

0 . 0 0 . . 3

0 0 .

^ 0 . 0

0 0 0 0 . 0 0 . . 2

0 0 . 0 . 1

0 . 0 0 . 4 2 4

. 3

0 0 1 0 2 5 2 2 3 4 0 2 . 0 .

^ 0 . 0 0 0 0 ^ . .

0 0 0 0 . . .

0 0 0 0 . 1 .

^ 0 0 . 0 2 3 . . 1 0 0 0 ^ ^

17 7 6 2 3 8 9

7 3 0 4 5 4 7 2 3 0 7 8 5 1 8 2 4 3 6 7

1 0 6 7 8 9 5

2 5 8 7 7 9

2 2 1 2

. 8 9 5 5 1 7 9

6 6 2 3 3 8 4 2 3 7 4 1 8 7

1 3 7 9 5 8 6

1 0 2 5 6 8

2 7 0 4 9 4 1

8 5 0 4 2 4

2 7 3 9 1 7 4

0 0 2 1 2 5

4 0 7 0 4 5 0 2 7 5 . 2 1 1 7 6 8

. 1 0 6 3 0

3 9 0 0 3 4

2 8 1 5 1 0 9

1 1 7 1 9 7 6

4 5 0 2 4 4 5

2 8 0 3 9 3 2 4 6 7 1 8 0 0 . 0 . . 6 1 5

0 . 0 . 2 0 2 5

. 2 1 1 0

0 3 2 3 6 5

2 9 3 0 4 7 1

. 3 2 4 2 9 7

. 0 6 0 1 1 4

. 1 7

. 0 1 0 1 8 7 1 2 4 0 2 6 7 1

. 3 0 0 0 . 0 0 . . . 3

0 0 0 . . 0 . 0 4 3

. . . 2 9 1 2 3 8

0 0 . 0 0 0 . 0 6

. 0 . 2 2

. 0 . .

0 0 0 0 . . 0 . 1 1 4

0 0 9 2 2 5 3 3 7

0 0 0 . . 3

0 . 1 1 2 0

. 2 3 2 2 4 2 8

0 5 9 8 3 . 0 0 0 0 . 0 0 . . 1

0 . 2 1 2

0 0 . . . 0 . ^ 0 ^ 0 0 0 2 1

0 0 . . 2

0 0 . . . . 2

. 0 0 0 0

0 ^ 0 0 0 0 0 48 1 3 4 6 2 4

7 3 9 3 9 3 1 3 5 2 4 9 3 5 1 6 5 7 3 7

5 4 8 9 6 3 7

1 9 4 4 3 9

0 1 8 3 5 1 7 5 5 7

2 8 2 6 3 6 4 3 1 6 0 4 8 2

1 6 1 2 9 1 2

1 4 6 5 9 1

0 4 8 2 6 1 7 7

8 4 8 1 5 9

1 8 5 3 6 1 9

2 4 1 2 8 1

6 7 3 1 8 9 5 4 7 2 . 1 2 1 1 2 2

7 8 7 8 7 8

2 2 2 5 4 9

8 6 0 6 1 7 9

3 5 1 7 8 4 6

2 7 2 7 6 6 7

6 5 4 0 1 6 0 8 4 1 1 3 9

. 0 4 1 2 1 0 0 9

0 0 . . 1 . 7

0 3 . 1 2 6 6

. 3 1 . 1 5 0 0 9

. 1 2 4 1 5 6

2 8 2 1 4 5 8

1 3 5 2 9 6 2 4 1 0 3 8 9 3 0 . . 2 6 1 6 . 3 0 0 0 0 . 0 . 2

^ 0 0 0

. . 0 8 1 3 4 7 9 0 9

0 0 . .

^ ^ 0 . 0 . 5

0 . 2 .

^ ^ . 0 ^ 0 0 . . 7

^ 0 0 0 0 0 . 0 . . . 4 1 3

^ ^ 0 ^ 0 .

^ ^ 0 0 2

. . . 1 . 2 3 6 8

. 2 2 . 5 .

4 6 7 4 7 1 7 ^ 0 0 ^ 0 0 . ^ 0 0 . .

^ ^ 0 0 4

. 0 0 0 ^ 0 . 0 0 0 0 0 . . 0 0 ^ 0 0 0 0 0 2 7

. . . 2 1

. 0 0 . 0 ^ 4 0

0 ^ 0 1 3 5 2 8 9 0 0 0 0 0 0 ^ ^

0 . . 0 . .

^ 0 ^ 0 0 .

^ 0 0 0 ^ ^ 03 1 3 8 2 2 4

9 7 2 7 3 4 1 2 7 9 2 7 5 4 2 8 3 5 9

9 4 4 8 3 4 1

6 0 0 2 0 1 1

7 2 5 6 7 6 7 7 5 5

6 8 9 2 8 6 6 1 8 7 4 9 5 2

1 0 0 3 3 3 2

2 9 9 4 7 4 3

6 0 3 2 2 3 6 6 7 8 1 7

2 7 1 4 7 5 5

9 2 3 0 6 7

2 2 8 4 8 6 7 4 2 6 6 8 6 8

. 4 3 1 2 4 1 5 7 7 2 9

7 3 0 9 9 7 6 2 2 1 1 7 1

6 3 9 8 5 5 4 3

8 9 2 9 9 7 3

9 5 9 1 3 6 6 8 2 6 3 3 0 0 . 0 . 0 . . 2 8

. 2 2 1 5 0

1 2 2 3 8 0 8

2 5 2 3 0 0 8 6 3 2 4 4 ^ 0 . 0

^ 0 0 .

^ 0 2 2 5 3 5 1

. . . 0 0 9 0

0 1 2 1 8 2 4 4 2 5 8 5 7

0 0 0 . . 0 3

. . . . 5 . . 8 1 1 4 1 0

0 0 . . .

0 0 . 1 2

0 . 1 . . . 1 1 0 9

. .

0 0 0 . 1 7 2

0 0 . 1 1 2 9 7 3

1 3 0 9 7 1 ^ ^ 0 ^ 0 . .

0 0 0 0 0 0 . 0 0 0 . . 7

0 . 0 . 3 3

^ ^ 0 0 0 . 3

0 0 .

^ ^ 0 .

^ 0 ^ . 0 0

0 0 . .

0 0 . 2 1 8

0 0 . 0 3

. . 0 1 8 3 3 2

. . 0 0 0 . . 1

0 . . 7 0 0 0 0 ^

14 2 5 5 3 4 7

2 0 3 7 3 3 2 2 4 9 4 5 2 6 4 8 7 1 9 8

2 2 6 6 1 7 3

8 0 8 5 8 6

5 5 1 0 8 4 7 2 5 6

6 5 2 8 2 9 9 1 6 9 1 6 9 4

2 2 3 7 2 4 7

5 3 2 4 3 8 9

1 9 1 0 2 3 7 9 3 5 1 7

8 5 7 4 6 2 9 4

6 3 2 0 2 2

5 8 3 3 7 5 8 8 3 2 0 3 1 1 5 7 7

1 0 1 7 2 4 7

1 0 5 0 6 3 2 6 6 7 6 8 1

3 9 8 5 3 0 0

1 5 7 1 9 8 9

4 6 6 9 0 8 3

1 0 3 0 3 1 . . . 1 0 2 8

0 . 4 2 1 2 9 3

4 8

. 3 . 2 4 2 5 3 5 3 9 7 0 4 3

. 8 2 0 1 0 2

2 4 2 2 8 7 2

8 . 5 6 1 2 1 4

7 9 4 5 9 9 0 0 0 0 . . 0 . 0 0 . 0 . . 7 2 4 4

. 7 1 0 2 0 4

. . 1 0

^ 0 0 . 0 0 . 9 .

^ 0 .

^ 0 . 0 . 2 0

^ 0 0 0 ^ 0 0 0 0 0 5 4 5

0 . 0 5 2 2 8 1

2 2 7 5 4 1 ^ 0 0 0 . 0 0 . 0 0 . .

^ . 0 0 0 . 0 . . 5 . 3 8

. 1 .

0 0 0 . 0

0 0 0 . 9 2

0 0 . 0 0 2

. 0 0 0 6

0 0 . 0 . . 0

0 . 0 0 . 0 . 3 1 8

. 1 5 1 5 2 ^ ^ ^ 0 0 0 0 . 0 2

. .

0 0 0 . 3

0 . 0 . 3 . ^ 0 0 0 . 0 ^

72 9 1 2 1 2 1

3 3 5 3 9 7 4 4 6 2 3 4 7 9 1 3 7 6 7 5

3 0 9 3 3 4 1

0 0 5 7 1 5

9 3 9 6 6 1 5 8 9 4

3 9 9 4 0 3 0 5 4 1 4 1 7 2 2

9 2 9 3 8 9 7

6 5 1 0 4 1 8

4 9 2 3 3 8 4 5 3 5 3 9

4 3 0 3 1 6 4

9 1 2 4 1 4

6 4 0 3 9 2 4 7 8 0 . 2 1 6

. 2 4 6 2

. 0 0 2 6 6 8 5 5 6

. 5 5 2 9 7 1

2 2 7 0 8 1 3 7 3 6 0 1 3

. 9 9 . 0 4 1 1 6 1 7 7 0

0 9 0 4 7 9 9

9 8 4 6 0 1 2

2 2 8 9 8 0 4

4 5 1 6 2 4 . 1 3 0 1 5 8

1 0 3 1 6 3 3

1 2 1 1 1 6 4

7 1 5 8 9 7 . 0 0 0 . 0 0 . 3

0 . 0 0 . 0 0 . 1 1 1

0 0 2 2 2

. . 0 . . . 1 6 2 6 4

0 0 . . 1

0 0 . . 2 4

0 0 . 2 . 2 8 1 5 1 0

. 1 1 8 7 2 8

5 3 8 4 5 4 0

0 0 ^ 0 0 0 . 0 0 . . 1

0 0 .

^ 0 0 0 0 . 0 0 . 3 . 2 4

^ ^ ^ ^ 0 . 0

0 0 . 1

0 0 .

^ . 0 0 0 . . 0 . 2 . 9

0 0 . . 0 0 1 2 2

0 9 5 1 6 5 0 0 0 0 . 0 . 0

^ 0 0 . . . 2

0 0 0 0 . . 0 2 . 4 1 ^ ^ 0 . 0

0 0 . 0 0 . 0 . 4 6 . 3 5 6 7 4 2

5 0 9 9 1 5 9 6 2 8 1 1 2 3 2 4 1 9 1 4

2 8 2 7 0 3

1 2 6 6 8 9

8 6 2 7 4 1 1 2 1 1

8 9 3 1 2 2 6 1 1 9 8 0 9 8 2 3

1 2 6 6 7 6

4 2 9 2 9 8 3

0 2 8 3 2 6 0 6 9 2 2 1

3 1 2 3 4 6 9

2 3 4 8 4

. 6 0 7 9 2 6

9 5 7 9 2 2 8 3 9 0 6 1 0 3 1

3 3 5 0 3 4 9

6 4 0 6 3 3 0 2 1 6 7 9 2

1 4 6 2 8 0 5

7 4 2 7 1 6 7

1 7 4 9 7 4 . 0 1 0 5 0

. . 2 3 2 4 0

0 5 2 1 7 1 4 8 7 1 2 5 3

. 2 9 2 4 0 1

0 3 3 7 9 5 5 0

7 5 7 0 2 2 1

7 8 1 4 6 5 0 . .

0 0 0 0 0 . . . 6 . 6 . . 2 2 1 8 4 0

0 0 . 0 3

. . . 1 7

. 4 7 7 4 8

0 1 2 4 2 3 4

0 4 7

2 1 3 5 0 3 . 0 . . . 2 . . . 1 2 ^ 0 0 6

. . 0 ^ 0 9 9 6

0 0 3

0 0 0 . 0 . 0 . . .

0 0 0 0 0 0 . 0 0 0 0 . . 1

0 . .

0 0 0 . 3

0 0 0 . 1

0 0 . 0

0 0 0 . . . . . 5 1 9

. 1 2 2 2 0 0 0 0 0 . . 1

0

^ ^ ^ . 0

0 0 ^ 0 0 9 3

0 0 . 0

^ ^ ^ ^ 0 0 0 .

^ 0 0 0 0 . 0 . 6 2 2 8 7 8 8 7

6 5 5 4 8 6 7 9 3 7 6 2 1 7 2 7 1 5 9 3 4

0 6 6 9 5 1 6

2 1 3 6 9 3

7 9 4 8 8 7 4 8 3

5 6 8 1 5 9 1 1 9 9 5 4 8 7 5

2 5 3 8 8 8 6

2 1 1 9 2 5 7

1 2 3 3 8 1 1 6 3 0 8 8

7 7 3 4 7 2 8

4 7 7 7 3 8

9 9 1 2 2 2 3 4 3 . 1 5 0 3 0 5

2 2 7 1 8 4 6

8 4 4 8 8 3 7

2 2 7

. 0 5 7 8

1 4 3 9 0 8 0

3 6 1 8 5 5 2

1 4 3 4 4 5 2

9 5 5 9 1 4 0 0 . 0 1

. . . 2 2

. 5 1 5 1 2 7

^ 0 0 2

. . 0 8 8 1 5 3 9

3 0 0 0

. 4 2 7 1 0 1

1 1 4 7 1 9 1

1 8 5 9 3 0 3

3 3 7

0 1 2 0 4 1 9 4 0 . 2 0 . 2 . ^

0 0 0 0 0 . 0 . 0 . 8 9

0 ^ 0 . 0 .

0 ^ 0 . 0 3 . . . 7 0 1 4 2

0 . 0 0 . . 2 3

0 . 0 . 7 8

. . 1 0 3 1 5

. 2 4 9 6 7 0

1 3 7 0 8 1 ^ 0 ^ 0 0 ^ 0 0 0 . . .

0 0 0 0 ^ . 0

0 0 0 . 0 0 2

. 0 0 0 . 1

0 0 . 0 9 5

. 0 4

0 0 . . 0 0 3 7 8

0 1 2 5 1 8 ^ 0 . 0

0 0 . 0

0 0 .

^ 0 . 0 0 9

. . 3 0 2 1 ^ 0 0 . . 0 . .

0 0 0 0 0 . . .

0 0 0 67 7 9 8 5 5 7

5 8 0 8 3 1 1 2 4 6 5 1 6 2 6 4 6 2 4 5

3 8 1 8 4 6 9

7 3 3 3 8 7

4 2 5 8 1 9 0 3 1

8 9 6 6 5 8 5 1 6 7 6 7 7 6 3

. 2 9 5 1 7 1

3 4 2 7 4 5 3

5 8 9 4 6 5 2

0 3 8 4 9 5

5 1 7 6 4 4 6

2 2 6 3 1 9

2 0 4 9 4 1 0 2 9 ^ 0 . 1 7 4 3 0 1

3 3 3 5 4 5 5

1 1 7 1 9 2 9

1 5 8 7 4 1

1 1 2 2 2 9 6

0 8 1 4 5 7 1

1 4 6 7 4 3 4

6 4 4 4 1 7 0 0 4

. . 0 2 7

. 1 5 4 1 0 6

. 0 3 1 5 6 9

1 2 0 7 7 7

. 2 3 2 5 3 1 9 8

1 2 6 8 3 6 4

3 4 8

. 9 2 7 2 6 4

1 1 6 2 2 1 0 ^ 0 . . 1 8 9

0 0 0 . .

^ 0 0 3 . 3 . 1 1 1 1 5 0

0 0 0 . ^ 0 . 0 0 ^ 0 0 1

. .

0 0 . 0 8 2 8

0 .

. 0 ^ 0 . 0 . 3

0 . 0 . . 1 3 . 3 . 1 5

. . 1 0 . 4 5 3 4 1 ^ 0 0 0 .

0 0 0 . . 0 0 . 0

^ ^ 0 .

^ ^ ^ 0 0 . 0 ^ 0 . 1

0 . . 1 0

^ 0 0 . 8

^ 0 . 0 ^ . 2 2 2 5 3 9

0 ^ 0 . 0

0 0 0 . . 9 0 8

0

^ ^ 0 0 . 1

^ . 0 ^ 1 7

. 1 6 6 5 0 0 . 0

^ ^ 0 ^ . 0 0 3 9 0 . . 0 0 ^ 0 0 . 0 7 2 2 9 7 2 4 2 7 7 3 6 9

4 6 7 8 6 9

8 9 3 2 9 2 9 6 1 2 2 5 2 9 6 3

9 1 4 4 4 0 3 1 3 3 6

4 0

2 2 5 3

8 2 0 4 6

8 9 9 4 5 5

1 0 9 4 4 6 6 4 8

3 6 7 3 8 2 8 7 8

. 1 6 4 4 1

2 8 5 0

1 4 5 3

4 1 3 7 9 0 7 5 2 8

1 1 0 2 2 9 9

4 3 6 9 6

9 7 3 8

1 1 3 6 8

6 9 2 3

1 3 1 7

1 2 0 7 1

8 8 2 5

3 1 5

. 5 4 5 5 0 3 5 4 5

3 8 2 9 2 4 2 6 4 3 4 2 ) 1

. 3 6

0 . 7 9

. 8 3 8 3 0 8

. 6 6 . 0 0 7

1 8 8 9 4 6

. 6 4 3 2 1 0 . 9 1 4 3 0 . 3 7 9 0 8 9

1 6 7 4 8 4 . ^ . 0 0

0 . 0 0 0 . 0 . 2 . 2 3

0 0 4

. 0 0 . 1 4 0

. 1 2 9 0 7

0 . 4 . 1 1 0 . 6

0 . 2 0 2 4 5 6

1 9 3 7 2 0 t ^ ^ 0 ^ 0 1

. .

0 0

^ ^ 0 0 .

^ 0 0 . . 3

^ 0 ^ 0 0 . 0 . 1

0 . 4

0 .

^ ^ 0 ^ 0 .

^ 0 ^ ^ 0 0 4 1

. . .

0 ^ 0 ^ 0 ^ . 0 ^ 0 6 1 ^ 7 7

0 ^ 0 . 0

0 0 . . 1 . 2

^ 0 ^ 0 . 0 0

0 0 . 0 .

^ ^ 0 0 0 . . 1 1 1

0 . . . . 2 0 3 1 3 4

. . 1 n ^ 0 0 0 . 1

0 ^ 0 0 . .

^ 0 ^ 0 0 c o ( 8 8

1 2 A G M 1 1 2 A B 2 2 1 2 4 6

N A 2 A G 6 3 7

2 D P D 0 f 2 1

0 2 2 1

A 8 4 0 3

3 A P 4 L

C F L W U 3

2 MR A C 1 1

F 6 M R 2

E 1 C S A 7 1 1

5 5 r I 1 3 2 C

D A T 6 F M

1 S 2 5

E B S N I C R 2 7 G

f C P P E P 1 A 2 2 4 e A X B P C H I Y T M M L C o 2 A

C E G F B P T L C N D A 4

P N I I H M M C T L A S S T C M K S E F N C F D Z N G S C F C R T I A W S

A 3

E F A M C H U N 1

C U C 2 Z S G I L U S E G 2 N r H

D 6 G P 3 C 4 L l

1 P D S H 2

T T C H A C A R S P I G T MA C R S L K o K

P 2 E

C P L C X A N A F R A P L 5 C C S T N X P H B B T I A P G K E R G 4 b

B C R E A R R R L H P a E T

')6^^^^^^^ 2 7 7 7 7 9 6

6 2 7 2 7 7 2 7 6 9 5 9 9 9 5 2 6 3 3 9

5 6 2 6 2 2 6 2 2 9 5 9

3 5 5 5 9 9 1 5 6

7 2 3 5 3 3 3 3 5 5 0 8 8 8 8

2 5 6 5 6 6 5 6 1 4 3 5 9

4 3 3 3 5 3 5

3 9 6 2 6 6

0 7 5 4 3 3 8 3 1 5 1 5

8 2 2 2 4 8 6 3 3 2 1 2 5 2 5 5 2 5 4 3 4 3 5

5 4 4 4 3 5 1

6 1 2 7 2 2 6

0 0 4 0 8 8 2 8 9 1 9 1 5

9 2 2 2 3 6 8

4 0 2 8 2 3 2 1 2 1 2 2 1 2 3 6 5 4 3

1 5 5 5 4 1 3

1 2 7 0 7 7 2

3 0 0 3 2 2 5 2 2 9 2 9 3

7 7 7 7 9 4 6

0 6 8 2 8 6 5 0 2 1 2 1 1 2 1 1 3 1 5 4

2 1 2 1 1 1 5 1 6

2 9 0 0 0 0 7

2 3 3 2 5 5 3 5 5 2 5 2 2

3 8 8 8 2 3 0 4

3 7 5 1 2 0 3 . 0 2 0 2 2 0 2

. 0 2 1

0 2 2 1 5

. 0 . 0 2 0 2 2 2 1 2 1

2 2 3 0 3 0 0 0

0 2 2 0 3 3 2 3 3 5 3 5 6

2 3 3 0 3 0

. 4 3 4 5 7 9 1 5 1 0 . 0

0 0 . . 0 0

0 0 . 0 . 0 0 . . 0

0 0 0 . 0

0 0 . . 0 0 0 2 2 2

0 2 2 2 3 3 0

0 0 . 0 . . 0 0 2

0 0 . . 0

0 0 . . 0 0 0 2 2 2 3

0 0 . . 0 . 0

0 . . 0

0 0 0 0 . . 0 0 . 2 2 0 2 2 3 2 3 3

0 2 2 3 2 4 4 4 9 9 4 0

0 . .

0 0 0 . 0

0 0 . . 0 0 2 0 2 2

0 0 . . 0

0 0 . . 0 0

0 . .

0 0 . 0 0 2 0 2 4

0 2 0 2 2 2 4 4 0 0 0 . . 0

0 0 . . 0

0 0 . . 0 0 0 2 2 5 0 0 . 0 . . 0 0 2 0 0 . . 0 0 0 . 2 2 6 4 7 1 7

3 4 4 1 6 4 9 9 9 7 2 4 9 3 8 8 2 6 9 1

5 5 8 0 7 0 9 0 1 4 1 1

8 7 9 2 9 9 7 8 8 4

8 2 4 2 2 5 7 4 6 5 8 1 8 1 7

0 6 5 8 8 9 4 0 0 0 3 4 4

0 3 7 6 2 0 9

5 4 7 4 6 9

2 3 7 8 6 6 5 4 3 2 9 8

8 9 4 5 8 2 6 4 7 5 3 0 6 0 0 4 1 5 9 1 3 4 4

4 2 4 6 0 9 8

5 0 3 3 7 8 7

0 0 3 9 3 0 7 5 7 1 0 8 7

3 2 3 2 8 4 3

4 5 0 2 6 6 0 3 0 3 3 1 3 1 1 2 3 3 8

3 4 4 4 4 7 5 9

6 1 7 3 7 8 8

4 4 7 0 2 5 2 0 4 7 1 6 0

5 9 2 5 6 6 7

5 0 9 1 5 4 8 0 0 3 0 0 3 0 3 3 2 0 3 9

0 3 3 3 3 3

3 8 8 9 4 9 5

0 0 0 4 4 2 4 3 3 7 4 2 5

4 5 6 4 4 2 4

8 4 0 9 4 4 6 . 0 0 0 0 0 0 0 0 3 0 0 3

0 3

. 0 0 0

. . 0 . 0 0 0 0 3 0 0 6

0 3 3 3 9 3 0

0 0 4 0 0 4 0 4 4 3 4 4 7

0 4 4 6 0 8 4

4 9 0 0 0 4 8 0 . 0

0 0 . . . 0

0 0 0 . 0 0 . . 0

0 0 0 . 0

0 . 0 0 0 0 0 3

0 0 0 0 3 0 0

0 0 . . 0

0 0 . . . 0

0 0 . 0

0 . 0 0 0 0 0 4

. . 0

0 0 0 . 0 . 0

0 0 . 0 0 . . . 0 0 0 0 0 0 0 4 0 4 4

0 0 0 4 0 4 8

0 4 5 5 1 1 7 0 0 . 0

0 . . 0

0 0 0 . . 0 0 0 0 0 4

0

0 0 . . 0

0 0 . 0 . 0 0

0 . 0 . . 0 0 0 . 0 4

0 0 0 0 5 5 2 0 0 . . 0

0 0 . 0 0 0

. 0

0 0 . . 0 . 0 . 0 0 0 5 0 0 0 . 0 0 0 0 0 . . 0 0 0 . 9 1 1 5 2 6 3

7 8 8 3 9 7 1 1 4 6 1 7 3 9 2 6 7 5 7 6

3 7 8 0 0 1 7 6 5 2 6 7

1 4 1 5 9 9 7 5 9 1

7 3 9 2 9 8 0 3 5 3 1 4 3 7 7

7 8 3 5 8 0 2 2 8 7 9 0 6

5 8 3 0 5 9 8

2 0 1 8 3 4

6 4 5 7 3 1 1 0 5 4 7 1 3

3 9 3 6 5 2 6 1 3 8 8 2 7 7 7 6 2 2 9 4 0 1 6

3 3 4 8 1 2 0

4 4 3 6 1 7 8

4 7 1 3 3 8 4 9 2 3 8 8 8

8 0 9 1 6 5 1

8 0 2 6 3 2 9 8 2 7 4 2 5 2 7 1 9 9 4

6 8 0 4 3 6 4

4 6 0 7 6 4 8

7 3 2 5 9 0 7 5 6 0 1 0 4

9 4 8 7 1 0 1

5 7 7 0 3 5 3 . 9 8 9 7 5 9 5 3 7 8 4 7

8 5 5 4 4 4 3

8 7 9 1 6 9 4

6 7 6 5 7 4 0 9 8 9 2 1 8

3 6 8 5 3 2 1

3 3 0 6 4 0 1 7 . 9 . 9 9

7 7 . 9 9 2 8 8 6

. 8 8 4 8 0 9

7 3 1 0 7 5 1

. 6 6 6 1 1 6 9 8 0 7 8 5

5 2 1 3 0 0 9

6 4 8 9 6 8 6 ^ 7 .

^ ^ 7 7 . .

^ ^ ^ 7 . . 9 6

. 8 8

^ ^ 7 7 .

^ ^ 7 7 . .

^ ^ 7 ^ 7 7 . . 8 . 8 8

. 7 7 7 9 8 1

^ ^ 7 7 .

^ ^ 7 7 . 7

^ 7 .

^ ^ 7 7 . . . 6 6 8

^ ^ 7 ^ 7 7 . . 6

^ ^ 7 7 .

^ ^ 7 7 . . . 6 6 . . 5 5 8 5 6 5

. 5 5 1 5 7 5

4 4 2 0 6 7 5 ^ 7 7

^ ^ 7 . .

^ ^ 7 ^ 7 ^ 7 7 . 5 . 5 5

^ 7 .

^ ^ 7 7 . .

^ ^ 7 ^ 7 7 . . 5 . 4 6

. . 4 4 0 9 8 ^ ^ 7 7 .

^ ^ 7 7 . 4

^ 7 .

^ ^ 7 7 7 . . 4 3 6 ^ ^ ^ 7 7 .

^ 7 . 3 ^ 7 . ^ ^ 7 7 6 4 5 2 1 8

5 5 5 1 3 4 0 8 2 3 9 2 5 4 2 4 4 7 6 5

4 8 7 7 0 7 1 6 0 3 7 3 1

9 2 0 9 0 4 9 1 5 8

2 3 4 8 1 5 9 4 5 1 8 8 8 6

. 6 2 6 1 3 2 3 8 9 2 0 8

8 5 9 6 3 3 9

4 8 1 7 6 1

7 3 8 6 8 7 1

5 8 2 1 4 9

7 3 9 2 1 4 0 3 1 3 ^ 0 3 5

. 8 5 5 7 5 4 7 4 3 4 1

6 2 3 2 5 8 0

0 4 9 7 1 4 8

. 5 0 1 7 9 3 8

9 2 3 7 7 3

6 8 6 8 9 8 4

7 8 6 5 8 6 0 . . 5 4 . 3 5 6 . 4 8

. 4 . 6 5 6 6

5 5 1 2 8 8 4

. 4 5 3 9 5 3

4 0 3 5 4 5

3 5 2 6 1 5 6

6 9 7 7 8 9 3 ^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . . 6 0

^ ^ 0 0 .

^ ^ 0 ^ . 4 3

0 .

^ ^ 0 0 . 0 . 4 4

. 5 6 4 6 1 5

^ ^ 0 ^ 6 3 4 5

0 . .

^ 0 . 7

^ 0 .

^ ^ 0 0 ^ 0 ^ 0 . 2

^ 0 . 0 . 0 .

^ ^ ^ ^ 0 0 . 3 . 2 . 9

. 3 1 3 3 4

. 4 4 3 5 0 9

5 2 4 5 8 8 1 0 . 3

^ 0 .

^ ^ 0 ^ 0 .

^ 0 ^ ^ 0 0 . 5 . 6 8

^ 0 .

^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . . 6 . 3 0

. 4 2 6 3 2 8 ^ ^ 0 0 . 2

0 0 . 0 . 0 . . 4 1 ^ ^ 0 0 . 6

^ 0 .

^ ^ ^ ^ ^ ^ 0 0 . 7

^ 0 . ^ ^ 0 5 2 6 8 3 6 3

2 2 7 7 7 7 3 3 5 4 6 7 4 2 1 4 7 4 4 9

2 5 5 5 3 3 3 3 8 4 3 6 8

6 5 3 9 4 9 4 6 4 5

8 0 6 0 2 2 9 3 7 4 2 2 2 1

3 5 9 2 4 3 6 . 2 5 7 6 6 3

6 2 1 0 7 7 5

0 0 8 8 1 9

8 2 9 8 7 3 1

9 8 1 7 8 5

6 7 2 9 6 6 9 4 3 6 . 1 0 . 5 0 ^ 0 7 3

3 7 9 8 6

4 1 3 7 1 9 7

1 6 6 7 3 7 6

1 5 8 0 1 3 1

8 1 6 1 7 2

1 7 4 7 2 5 0 1

6 6 3 6 3 3 . 6 1 1 7 1 1 3 2 1 6 8 8 6 8

0 . . 0 . 3 1 3 8

. 2 . 8 5 0 5 5 1 4 3

3 2 0 8 2 3 7 3 9

2 1

0 ^ . 0 0 . . 4 2 . . 1 2 5 7

. . . . 1 2 2 1 2 6

2 3 6 4 6 8

^ ^ 0 ^ ^ 0 . 4

. 0 ^ 0 ^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . 0

^ ^ 0 ^ 3

^ 0 0 . 3

^ 0 .

^ 0 0 0 .

^ ^ 0 0 2

. .

^ 0 0 ^ ^ 0 ^ 0 0 4

. . 7 0 0 9 5 7

. 2 1 2 8 7

0 . . 8 3 5 0 5 4 ^ ^ 0 0 7

. 4 1 2 4

0 0 . . 0 . 1

0 . 3

0 0 . . . . 0

^ ^ 0 0 0 . 0

^ . 0 ^ ^ ^ 0 .

^ ^ 0 0 0 6 7 5 8 2 1 5 . . .

^ 0 0 0

^ ^ ^ 0 . 0 1 . 1 9 0 0 0 0 .

^ ^ ^ 0 . . 3

0 . ^ 0 0 ^ 0 0 ^ ^ ^ 0 6 1 5 2 9 4 6

7 3 6 8 9 3 5 6 9 4 3 8 3 7 3 6 9 3 3 3

7 8 0 6 8 8 7

3 6 3 7 1 2

6 5 3 6 8 4 1 6 6 5

8 3 4 9 6 8 3 7 3 4 5 5 8 9

1 1 4 3 2 7 6

5 8 1 2 5 1

3 2 6 7 5 9 6

7 4 2 8 6 5

0 7 2 5 2 0 9

6 6 4 9 3 7

8 8 0 4

^ 6 3 8 4 0 9 4 5 . . 1 1 4 2 5

2 0 0 3 4 7

0 0 7 2 2 3 5

2 6 6 0 7 3 2

2 8

. . 2 1 1 6 6 1 7 8

3 3 9 1 3 1

3 1 E 4 2 9 3 9 0 7 3 1 3 0 0 . 2 1 4

. 3 5 . 7 9

. . 4 1 5 4 8 6

1 2 9 0 0 6 3

1 7

0 0 . 0 . 4

0 . . 1 . 2 0 5 1 1 1 8

0 0 . 0 . . . 2 1 1 6 6

1 4 1 4 2 7

2 9 4 2 0 5 9 3 1 9 8 7 ^ 0 . . . 1

0 0 0 0 . 0

0 0 . 2

0 . 1 5

0 0 . 0 0

0 0 0 0 .

0 . 0 . 1

0 0 . 0 0 0 . . 1 2 3

0 0 . 0 3

. . . 2 1 0 1 0

0 . 2 2

0 . . 1 3 8 7 0 0 1 9 7 3 9 1 8 ^ 0 0 0 0 . 2

0 . 3 6 . 3 1 1 1 3 6 ^ . 0 .

0 ^ 0 0 0 . 5 . 0 0 1 4

0 . . 0

0 0 0 . 0 0 . . 2

0 0 . . . 0 0 0 0 5 . ^ 0 7 5 8 7 4 7 3 6

8 3 2 0 6 7 5 8 9 3 7 4 9 4 1 1 4 5 4 9

0 3 7 3 6 0 4

1 9 4 0 3 5

8 0 4 1 4 1 6 5 4 4

5 9 5 6 3 1 9 6 2 1 9 1 7 6

4 . 2 2 8 4 8 0

8 5 5 2 4 9

1 1 5 9 1 6 8

6 0 2 5 5 5

1 5 1 1 1 4 7

9 0 2 9 6 5

5 7 1 8 6 4 1 9 1 1 3 0 2 9 2 7 7

1 1 8 4 1 4

1 7 0 9 4 3 1

8 8 0 5 2 3 6

1 9 6 2 3 2 5

4 3 8 5 4 7

3 2 0 6 7 9 6 7 8 7 8 9 8 4 . 0 0 0 2 1 2

. 0 9 2 0 0

. 2 1 5 2 6 9 5

8 0 8 3 9 2 4

. 1 2 1 1 3 3

7 6 7 5 9 1

. 5 4 7 3 8 1 7 8 9 9 5 6 . . . 9

. 0 0 0 0

0 0 . 0 . 1

0 . . 1 1

0 0 . . 3

0 . 0 . 3 4 0 5 2 6 7 9 2

0 0 . 0 . . 1 1 2

0 0 . . .

0 0 0 2 1 1 1 4

. . . . 3 6 0 4 6

0 2 1 1 4 0 4 6 4 1 5 4 . . . 2 0 0 . 0

^ 0 ^ 0 0 0 0 0 0 . 0 . . . 1 1 2

0 . 0 . 0 9 0 . .

0 0 0 .

0 0 0 . 0 0 0 0 . 0 0 0 . . . 1 . 1 . 0 2 9 1 2

0 0 0 0 . . 0 0 4 0

. 1 ^ ^ 0 ^ 0 0 . .

0 0 0 0 .

^ 1 6 8 1 5 3 3 3

3 8 0 6 9 3 3 9 3 6 5 7 5 8 8 1 1 5 4 9

6 0 6 7 7 1 3

2 8 7 1 3 8

3 4 2 9 5 8 7 7 3 9 8

2 1 0 8 8 4 6 7 3 1 7 1 8 3 6 7 6 2 7 0 2 9 6 2

2 2 0 4 2 5 7 6 7

2 5 9 7 7 8 2 3 5 6 1 9 4

0 5 0 4 8 2 6

2 4 9 5 5 2

2 0 3 7 6 8 3 7 5 7 3 0 2 3 1 6 9 2 0 5

. 3 . 3 . 1 1 1 4

3 0 2 2 2

1 1 1 5 5 3 6 0 9 8 1 2 8 5

. . 6 5 1 5 2 2 7 2 7 9 9 8

. 0 . . 2 8 6 3 6 0 9

2 0 3 2 6 7 4

0 4 0 5 3 5 6 5 8 6 2 5 0 0 .

^ 0 0

. 0 0 0 0 0 3

. . 0 2 2

0 0 0 2

. . . 5 . . 1 3 1 1 7 6 8 1 3

0 0 7 1 3 8 . 8 3 0 8 8 0

4 9 3 4 0 7 2 9 0

. . 2 3

0 0 7

0 . 0 . . . 1 0 1 0

. . 5 1 3 2 9

. . 2 8 0 3 8 2 1 5 6 7 1 2

. 3 0 0 ^ 0 0

0 0 0 . . 0

0 0 0 0 . 0 0 0 . . . . 7 4

.

^ . . 0 0 0 0 0 0 . 7 .

0 . 0 0 0 0 . 1

0 0 . . . 2

0 0 0 . . 4 2 0

. 5 0 4 0 6 . .

0 0 .

^ 0 . 1

0 0 . 0 0 ^ ^ 0 0 0 0 0

^ ^ ^ ^

^ 0 5 7 2 6 4 9 7 1 6 4 9 1 9

1 4 9 9 5 6 8 1 4 1 9 2 4 2

4 4 4 1 9 2 3 7 3 2 1 7 6 9 3 6 7 1 8 1 3 7 9 6 8 0 1 7 8 4 7

5 1 4 7 8 8

1 3 1 3 5 7

2 6 3

1 3 5 3 1 5 9 7 3 4 2 9 9 7 5

2 7 4 2 9 3 2 3 7 2 8

6 3 0 0 5 5 3

6 5 0 1

1 7 9 6 5 6 1 5 3 3 4 1 1

2 7 6 7 6 7 3

5 9 1 5 8 3

5 5 8 6 5

5 1

1 4 8 6 9 2 2 1 7 2 7 9 2 9

3 1 2 5 9 7 5 0 1

8 2 1

0 2 4 . 9 1 2 9 8 9 4

0 8 1 2 9 5 7 0 4 7 2

0 7

. . . . . 2 6 0 2 1 . 2 2 1 7 6 0 1

. 2 5 2 4 2 4 8 0 1 . . 3

0 0 0 . 0 . 0 . 0 0 0 . 0 . . 5

0 . 0 0 . 1 0 2 9 5 2 1 .

0 0 . . 1 9 5

0 0 . 1 2

0 0 0 . 0 0 . 0 1

. . . 2 6 7 8

. . 0 3 3 7

0 . . 2

0 0 . 2 0 1 3

. . 7 2

0 0 . 0 2 5 6 5 7

. 1 8 1 . 1 4 9 6 1 2 ^ ^ 0 0

^ 0 . .

0 0 0 . 1

0 0 . . .

0 0 0 0 0 0 0 0 . 0 0 0 . 2

0 0 . 0 0 . .

^ ^ 0 ^ 0 0 . 1 . 2 . 6

0 0 . 0 0 . 0 ^ 0 4 4 4 6 7 2 8 4

7 9 6 7 3 7 0 9 7 0 4 4 8 6 6 5 6 4 2

5 7 6 3 4 4 9

5 4 6 7 7 3

4 9 5 9 8 9 8 1 3 6

5 9 9 1 5 5 6 9 4 6 4 3 2 5

1 3 5 8 3 1 3

9 1 7 8 9 2 6

3 7 0 0 6 9 2 9 1 1 2 1

0 1 4 4 8 4 7

2 5 8 4 7 2

3 3 3 4 1 1 5 7 1 5 . 1 5 3 6 0 4

3 2 0 8 3 6 3

0 2 8 4 9 9 2 0 1 6 0 4 9

1 7 7 4 4 0 9

4 6 5 8 3 3 1

8 6 9 4 2 6 3 4 1 5 7 2 4 0 . . . 1 9 4

. 0 2 0 1 3 1 2 2 9

. 1 2 3 8 5 3 1 8 7 7 6 0

. 6 1 3 2 0 6

1 3 4 3 6 0 2

7 4 2 2 4 1 7 9 2 1 4 5 6 5

^ 0 ^ 0 ^ 0 0

0 . . 3

. . . . 3 2 4

0 0 0 . 4 . . 1 2 . 1 5 0 1 4 9

^ ^ 0 0 ^ 0 . .

^ 0 ^ 0 0 . 0 0 1 . 8 9

0 . . 0 0 6

. 0 0 0 . . 3 2 2

. 3 2 2 9 5 0

0 2 5 3 7 6 8 6 6 7 3 3 0 0 0 0 0 . . .

^ 0 ^ 0 0 ^ ^ 0 0

^ ^ 0 .

^ 0 ^ 0 . 0 0 . 0 . 1

0 0 . 0 . . 2 1 0

0 . . 1

^ 0 ^ ^ 0 . 0 . . 3 . 3 0 2 0 1 3 4 1 1 3 0 0 0 .

0 0 0 .

^ 0 0 . .

0 ^ 0 . . 0 2 . . 4 0 ^ 0 . .

0 0 0 ^ 0 . ^ 0

^ ^ ^ ^ ^ 0

75 9 3 6 8 1 4

3 1 5 1 1 4 5 7 4 2 9 5 5 7 3 4 6 4 9 8

2 6 6 6 2 7 6

8 3 7 2 9 1

2 9 4 7 5 7 6 5 6 2

9 5 6 9 4 7 8 4 7 5 3 6 9 8

1 8 4 2 9 1 1

6 8 8 0 7 8 6

8 9 0 9 0 1 2 4 2 3 9 3

5 1 8 4 7 0 3

5 4 5 8 9 4

6 9 6 7 4 1 7 1 3 7 . 3 . 0 0 1 9

4 0 2 8 5 9 6

6 5 5 4 2 7 3 7 4 3 3 9 6

4 9 3 4 4 6 7

2 2 4 1 2 4 8

6 8 0 3 3 4 1 3 2 2 4 2 7 0 0 . ^ 0 0 3 5 3

. . . 3 0 4 3 3 1 4 6

0 3 3 4 1 4 1 8 8 5 2 0 8

. 1 2 2 2 2 0

1 9 2 5 8 1 9

1 0 5 8 4 7 2 2 9 0 5 7 6 0 0 0 0 . . . . 0 . 6

0 . 2 8

0 0 ^ 0 . 2

0 0 . . . . . 4 5 . 1 2 1 3 9 3

0 0 0 0 . 0 . . 2 7 3

2 1 1 3

. 3 . 4 3 2 9 0 3 2 0 3 0 0 0 0 . . 3

0 . . 0 0 . 0 0 . . 3 9

0 0 . 0 . . 3

0 . 6 6 7

0 . 0 0 1 9 . 3 3 7 . . 4 9 5 0 0 0 . . . 0 0 . . 3 ^ ^ ^ 0 0 2 2

0 . 0

0 0 .

^ 0 0 0 . 2

0 .

^ 0 0 0 0 ^ 0 0 . ^ 0 0 0 . 0 0 3 3

^ 0 . 0 . 0 0 0 . 0 ^

4 5 5 7 9 5 9 8

2 4 0 5 6 6 8 9 1 6 1 5 8 4 5 3 6 7 6 8

3 1 0 3 1 8 1

6 3 2 4 8 3

5 7 6 1 5 2 6 9 7 3

5 2 2 9 8 3 5 4 8 3 9 2 9 3

2 2 6 3 8 0 8 3

0 3 3 8 3 7 4

1 5 8 0 1 1 8 4 1 7 3 9

6 1 1 9 9 3 2

5 3 8 0 4 1

7 8 5 7 7 2 6 9 9 0 2 1 2 4 1

3 9 1 4 2 5 8

8 1 4 8 4 3 3 5 5 3 8 8 7

2 2 7 0 2 0 8

7 1 6 3 3 6 3

4 7 9 6 7 2 7

1 6 7 3 8 4 . 5 3 0 0 0 2

. . . 0 . 6 0

. 2 1 3 3 3 4

0 2 0 1 1 3

0 . . 2 3 9 9 8 3 0 6

. 0 3 5 1 4 4

. . 1 1 . 3 9

5 4 . 2 7 3 0 5

. . 3 . 2 5 2 3 6 0 4

. 4 4 0 0 0 0 .

^ 0 . 1

0 0 . 0 0 . 0 . . 3 5 0

0 0 . 0 3

. . 0

0 0 0 0 4

. . . 0 0 . 0 0 . . 3 . 1 9

.

^ 0 0 0 0 1

. . 0 0 . 1

0 0 . 0 7 7

0 1

. . 0 5 2 5 2 5

. 3 2 6 1 3 4

0 9 . 1

1 2 2 5 ^ 0 0 0 1 5 3

. 0 9 4 2 . 0 . . 0 . 2

0 0 ^

0 0 0 0 0 . 0 . ^ 0 0 0

^ 0 0 . .

^ 0 0 0 . 1 1 0

0 0 0 0 .

0 0 0 ^ ^ 0 . 2 5 9 6 3 7 3 7

7 0 3 6 7 5 2 6 4 2 3 1 8 1 9 3 4 7 7 7

2 9 7 1 2 7 2

7 3 0 9 5 3

6 6 2 4 8 7 9 5 9 3

7 0 4 3 8 1 9 2 2 3 7 5 5 6 1

1 9 7 2 3 3 8

0 0 7 1 0 9 5

4 1 8 9 8 5 2 2 7 6 3 8 2

2 2 4 6 9 0 9

3 1 5 2 6 2

6 7 2 4 4 7 9 9 1 . 1 3 1 2 7 8

1 8 2 6 9 9 6

5 1 8 8 8 0 0 1 6 4 0 1 8

1 1 4 8 1 2 5

6 2 5 0 9 7 3

4 8 0 2 0 4 5

6 3 8 5 3 6 0 . . . 1 6

. 5 5 2 8 7 8

. 1 4 6 3 0 5

1 2 1 4 5 9 1 4

. 3

^ . 3 3 3

. 8 7 1 1 9 5 4

1 5 0 8 2 5 1 1 4 1

0 0 . 1 1 9

0 . 0 . . . . 1 7 5 3

^ . 0 ^ 0 8 0 1 1 0 3 1 8 3 3 1 4 1

0 0 3 2 2 2

1 4

0 0 0 0 . 2

0 .

0 0 0 0 0 . . 0 4 . . 1 . 4 5 . 3 9

0 0 . 0 0 . 0 . 0 0 . . 0 . 5 8 9

. 4 1 8 4

0 . 1

0 . . . 3 0 0 . . . . .

^ ^ 0 . .

0 0 0 0 . 3

0 .

^ 0 0 0 0 . 3 9

^ ^ 0

0 0 . 4

0 0 0 0 0 0 . 0 . 2 2 0 0 . ^ 0 0 0 . 0 0 0 . . 2

0 . 6 0 0 ^ 0

0 0 . 0 ^ ^ ^ 0

^ 12 9 3 5 2 7 7

3 9 7 7

1 8 9 1 8 5 9 8 5

9 5 3 9 7 4 8 3 5 4 9 2 8 4 9 8 6

0 3 6 7 3 1 4 6 1 6 5 2 2 2 5 7

0 0 0 4 5 5 9 7 2 5 5

1 2 2 6 7 3 3

4 8 4 9 5 0 7

2 4 3 9 5 3 2

3 2 9 9 5 4

6 4 5 3 7 0 1

2 7 4 9 8 1

3 7 7 4 6 6 8 4 2 . 2 1 0 7 4 4

3 8 7 5 5 5 8

. 7 9 3 5 3 2

0 0 7 9 6 2

3 0 8 0 6 7 6 3 9 6 9 7 9 4

0 1 0 4 4 3 2 8

5 3 2 6

9 6 3 1 0 0 2

9 7 8 4 3 2 7 0 . 0 . 6 . 2 5

0 0 . 8 4 1 8 0 5

0 3 3

. 1 2 4 7 6

2 0 1 1 5 7

. 6 1 5 2 0 6

3 1 5 2 4 3 9

0 0 . 0

0 0 . 7

0 . 0 0 . 0 1 5

0 0

. . 0 0 . . 2

0 . . . 5 1 6

^ 0 0 0 ^ 0 0 . . 2

0 0 0 0 1 3 4 2 9

. . 6 0 1 1

0 . . . 0 . 0 . 2 . 1 3 4 0 9 0

0 . . . 1 . 1 1 . 4 . 7

0 . 6 . 4 2 2 1 1 1

0 ^ 0 0 1 7 8 1 2 5 0 . 0 0 0 0 ^ . 0 0

. 0 0 0 ^ 0 0 0 . 0 . 0 0 0 0 0 . 0 0 . . 1 2 9

. 2 3 3 6 1 ^ 0

0 . ^ 0 0 . 0 . 6

0 ^ 0 . 0 0 . 3

0 0 . . 1 .

0 0 0

0 8 4 9 4 9 5 2

0 9 7 6 2 2 6 4 1 1 4 9 8 7 5 9 5 8 1 3

1 5 3 5 6 4 4

3 9 6 6 4 9

1 0 1 9 2 4 5 1 2

9 1 9 8 1 3 9 6 3 8 2 7 9 9 9

7 1 9 9 7 6 3

3 2 4 8 3 0 6

1 2 6 8 7 2 7

1 9 2 2 1 8

. 4 9 1 2 1 1 1

3 8 2 2 1 7

6 2 9 3 9 9 6

2 1 4 7 4 3

1 7 1 2 9 7 2 9 7 0 1 4 1 1 0 9

1 0 8 3 4 3 6

7 1 0 3 5 5 4

3 3 3 3 9 0 2

3 6 8 1 7 4 8

1 9 4 5 9 8 . . . 8 . 8 4

. 2 2 4 8 3 7

0 0 9 1 3 1 7 1

1 2 0 9 1 4

0 5 9 2 2 7 2

2 9 6 6 7 1 5

1 4 1 3 2 5 8

8 6 5 7 6 8 0 0 ^ 0 0

0 . 0 0 0 9

. . 0 . 0 . 0 . 1 2 6

0 0 0 0 . . 5

0 0 . . . . . 6 9

. 8 9 3 6 8

0 0 0 0 0 7

. 0

0 . 0 0 3

. . 0 1 2

. 0 0 1 . 1 0

0 2 2 3 2 5 8

0 7 1 1 8 6 4

2 4 7 5 4 1 ^ ^ 0 0 0 . . .

0 0 0 0 . . . 0 . 3

0 0 . . . . 1 . 2 8

. 0 . . 1 5 5

. 1 8 5 7 6 ^ 0 0 0 .

0 0 0 0 0 . 3

0 . . 0 . 0 6

^ ^ 0 0 0 ^ 0 0 . 0

0 0 . 0 . 3

0 . 0 . 2 1 0 0 0 . 0 . 2 2 8 7 2 8 1 7 5 4

7 5 0 4 3 2 9 9 6 7 4 5 4 5 2 5 1 2 5 6 1 5 5

9 6 2 0 9 6 4 9 2 1 1 6 4 6 3 8 4 8 4 2 3 7 9 8

3 0 4 5 5 6 2

1 3 3 8 3 9 7 3 5

3 1 4

7 0 8 0 4 2 6

5 2 7 2 9 0 3 3 5

4 1 6 3

. 4 0 1 4 6 9 1 3

2 0 3

3 9 7

0 9 1 1 6

8 7 6 6 0 9

5 3 7 3 8 6 3 9 7

4 8 9

6 9 4 0 1 4

5 6 1

7 6 0 0 2 4 0 5 2 6 1 8

. 3 5 1 . 8 2 1 7 2 4

1 . 3 3 2 4

8 5 8 3

9 0 1 3

4 1 3 4 0

5 8 2

. 2 5 3 1 2 1 0 1 2

6 9 7 6 9 4 3

1 3

5 8 7 7 7 5 8 5 5 1 3 1 . .

0 0 . 4

0 .

^ ^ 0 0 0 1

. .

0 0 0 0 . 0 . 2 . 7

0 0 . 0 . 0 3 2 2

. . . 0 . 0 2 . 1 3

0 0 . 0 6

. 0 . 0 4

0 2 1 4 1 9 0

. 3 9 1 4 4 6

3 1 5 7 8 0 . 0 . 0 0 . 0 0

^ 0 0 0 . 1

^ ^ 2 .

0 0 0 0 0 . 2 2 .

0 ^ ^ 0 0 0 . 2

0 . . . . 1 1

. 8 .

0 0 . . 0 . . 4 0

. 5 2 4 9 9 ^ . 0 ^ 0

0 0 0 0 .

^ 0 ^ 0 . 0 0

0 0 0 0 0 4

. .

0 ^ 0 0 . 0

^ 0 0 . 0 2 2 . . . 0 0 0 ^ ^ ^ ^ 99 4 2 6 4 7 7 5 7 8 5 6 3 1 3 9 4 6 0 7 1 8 2 1 4 1 9 3 4

9 3 3 0 7 2 1

1 1 3 0 9 3

1 3 5 2 3 9 7 3 5 7 4 2 8 3

1 3 3 4 0 2 3 6 7 6 5

9 2 2 6 2 0 7 4 3 1 1 3 1 ) 2 9 6 6 2 3 7

2 3 6 4 3 6 5 3

5 4 9 5 3 7 4 5 6

2 9 1 1 7 7 6

4 1 7 0 2 9

. 0

0 1 6 2 1 8 3

7 1 9 0 5 8 5 0 3 0 8 9 4 2 7 4 7 1 6 . 7 . 5 . 1 3 3

. 2 4 1 . 0 6 . 8 2 8 3 7

1 4 9 2

1 8 9 3 1

1 3 0 6 1

7 2 3 4 3 5

5

0 0 1 8 1 9 4

1 2

. 0 . . 0 0 0 . 0 3 2 1 0 5

2 0 1 4

. 1 5 5 1 0 8 1 1 9 3 6 6 3

4 1 . 1 3 1 0 4

2 4 4 2 6 3 . ^ 0

0 0 0 . 0 . 3

0 .

^ 0 ^ 0 0 .

^ ^ 0 ^ . .

0 0 0 . . 9 4 6

. ^

0 0 . . 2 1 . 2 1 0 3 4 2

^ ^ ^ . 0

0 0 0 . 0 0 1

0 . .

0 0 0 0 0 2 3

. . 0

0 0 .

^ ^ 0 ^ 0 1

. . 0 3 2 1 4 5

1 5 4 3 1 0 t 0 0 0 0 .

^ 0 0

. 0 . . 1 . 7 2

^ ^ 0 0 . 3

0 0 0

^ ^ 0 . 3

0 .

^ 0 . . ^ 0 6 3 4

. 1 7 2 8 7 . 0

0 0 0 . 0

0 . . 0 0 . 0 . 1 1

0 ^ ^ 0 ^ ^ 0 0 . 0 . . n

^ 0 ^ o ^ 0 ( c 8 B

A 6 6

I 2 1 D 2

0 2

2 D 5 1 A 1 A 3 1 1 1

1 G 7 C 4 1 F 1 3 N 1 P 1 B e 6 K

F F 1 R 3 6 6 T 2

f 6 P D

C E 8 3 P 1 6 3 2 1

D A A A

F 2 C L M 5 4 7

r N A 3 2 1

C F H X N T P O 1

N R B E 2 6 N 6 R 1 1 2 B 3 L 1

P M A 1 M 5 l I 2 I

4 A P E H G I K 4 D R T N N L T A I S H G 4 1 K

A H O H C D Y A O 2 N

o T D R D P C a A P A N A R Z N K S V M L X S C C G D A N P X A Y B M G 4

C U 9 C N E

L M S E R M C C M C R MB P R A C B N A R C F P S R R T P X M E T Z A T U U M A E L G G D G W T A M G T D F O S L G C H N G C F I G L N T S U L A I F O S Y M T R R K P H 2 b

A G P 3 P R P P T

')6^^^^^^^ 3 5 5 5 7 4 1

1 3 5 3 5 5 0 9 9 9 6 4 4 1 1 0 1 1 1 4

4 1 3 1 3 3 3 0 0 9 0 9

3 6 6 4 1 8 0 1 1 1

6 0 1 0 1 1 9 1 4 4 2 4 4 4 4

0 4 1 4 1 1 6 4 4 0 4 0 2

1 3 3 4 1 1 0 2

6 0 0 0 1 1

8 6 0 6 0 0 9 9 2 4 2 4

8 2 2 4 2 4 2 7 8 8

5 0 4 0 4 4 0 1 1 4 1 4 6

6 1 1 6 6 3

8 6 6 6 0 0 1

9 8 6 8 6 6 9 9 8 2 8 2 4

8 8 8 2 8 2 4

8 0 6 6 8 8 2 5 0 5 0 0 5 2 2 1 2 1 1

5 6 6 6 6 3 8

9 8 8 8 6 6 0

5 9 8 9 8 8 1 9 8 8 8 8 2

5 8 8 8 8 8 2

8 2 7 7 6 6 9 0 2 5 2 5 5 2 5 5 2 5 2 0

2 5 5 5 5 7 2

5 9 9 9 8 8 6

2 5 9 5 9 9 6 1 5 8 5 8 8 8

6 5 5 8 5 8 8

5 7 8 8 7 7 7 . 0 2 0 2 2 0 2 2 5 2 5 6

0 2 2 2 2 5 9

2 5 5 5 9 9 8

0 2 5 2 5 5 2 6 6 5 6 5 5

2 6 6 5 6 5 8

6 6 7 7 8 8 6 0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 2 0 2 5

0 0 . . 0

0 0 . . 0 2

0 . 0

0 0 . . 0 0 0 0 2 5

0 2 2 2 5 5 9

0 0 . . .

0 0 . 0 2

0 . 0

0 0 . . 0 0 0 2 2 5

0 0 . 0 . . 0 0 2

0 0 . . 0

0 0 . . 0 2 0 2 2 0 2 2 6 2 6 6

0 2 2 6 2 6 5

2 2 6 6 7 7 8 0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 2 0 2 2 0 0 0 . . 0

0 0 . . 0 0

0 0 . 0 . . 0 0 2 0 2 6

0 0 2 2 6 6 6 0 0 . . 0

0 0 . . 0 2

0 . 0

0 0 . . . 2 2 2 0 0 0 0 0 0 . 0

0 . 0 . . .

0 0 6 4 2 1 3 4 1

1 4 5 4 1 5 0 4 9 2 9 5 9 5 6 8 2 8 3 6

8 2 1 7 2 0 6 8 6 7 4 8 7

2 5 2 8 2 1 7 9 7 8

6 4 3 7 2 5 5 5 2 7 5 7 6 9 1

2 0 9 7 5 9 2 5 6 2 0 1 5

0 0 2 2 9 7 1

0 2 4 0 8 9

4 6 3 2 4 6 4 7 7 2 0 6 1

1 3 1 1 2 4 0 2 8 7

5 3 5 3 8 8 4 6 8 9 1 1 0

8 2 4 2 1 9 7

1 6 9 0 7 0 9

3 4 8 8 5 9 9 1 5 7 3 1 5

6 6 8 0 5 2 7

1 1 4 4 4 2 0 5 3 5 3 3 5 5 5 0 6 2 4

5 8 8 8 9 6 7

6 1 0 1 3 6 0

6 4 7 4 8 4 5 6 1 6 9 5 7

9 2 2 0 8 0 6

6 1 5 2 0 3 5 0 0 5 0 5 5 0 5 5 6 5 6 7

0 5 5 8 5 9 4

0 6 2 2 4 9 6

0 6 4 6 4 6 6 6 8 7 8 3 4

6 0 0 6 0 1 9

1 3 2 3 0 7 5 . 0 0 0 0 0 0 0 0 5 0 5 5

0 0 0 5 0 5 0

0 0 6 6 2 2 9

0 0 6 0 6 0 0 0 6 8 6 9 9

0 7 7 0 7 1 3

7 2 3 3 7 8 2 0 . 0

0 0 . . 0 0

0 0 . 0 . . 0 0 0 0 0 0

0 0 . . 0

0 0 . . 0 0

0 0 . 0 . . 0 0 0 0 0 6

. 0 0 0 6 6 2

0 0 . . 0

0 0 . . 0 0

0 . 0

0 0 . 0 0 . . 0 0 0 0 6

0 . 0 0

0 . . 0

0 0 0 0 . . 0 0 0 0 0 0 0 0 6 0 6 6

0 0 0 7 0 7 1

0 7 7 7 3 3 5 0 . 0

0 0 . . 0

0 0 . . 0 . . 0 0 0 0 0

0 0 . 0

0 . . 0 . 0

0 0 0 0 . . 0 0 0 0 0 7

0 0 0 0 7 7 4 0 0 . . 0

0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0 0 7 0 0 . 0 . . 0 0 0 0 0 . . 0 0 0 . 4 8 8 6 1 9 3

2 3 7 2 1 6 6 5 7 4 7 8 9 7 4 3 1 1 5 2

9 6 5 1 5 4 8 0 9 9 0 7 7

2 0 8 1 4 8 3 7 1 5 4

1 4 8 5 9 1 0 8 3 1 2 9 5 6 4

7 4 7 5 6 5 2 7 1 4 0 1 0

9 8 3 5 4 2 3

8 6 4 4 2

9 6 3 3 7 6 0 6 9 4 1 9 0 9 7

5 0 0 3 4 2 1 6 8 3

6 3 3 7 8 0 7 3 1 3 3 2 2

0 4 2 7 3 8 3

6 1 8 9 6 8 2

8 1 5 4 8 4 2 2 1 4 7 9

4 7 8 7 3 9 9

9 0 2 3 9 8 3 6 1 4 5 5 3 8 4 5 9 1 2

6 7 3 4 8 6 0

2 4 3 2 5 5 8

5 1 5 3 2 3 1 6 5 7 7 5

3 8 5 1 3 1 0

1 0 4 5 0 3 5 . 3 5 3 4 4 3 0 0 9 9 7 3

2 5 5 5 3 8 9

0 2 8 7 7 0 5

1 4 3 1 4 2 2

1 7 4 4 5 7

5 2 2 4 3 3 0

1 1 2 1 1 3 4 7 . 3 . 3 . 3

7 7 . 3 3 9 2 9 7 1 1 2 4

^ ^ ^ 7 7 . . 2

^ ^ 7 .

^ 7 . 2 2 . 2 2 4 2 2 3

2 9 1 3 7 8 0

. 1 1 . 3 3 5

1 7 7 6 . 0 5

0 4 4 7 3 9 6

2 . 0 5 4 3 6 8 ^ 7 .

^ ^ 7 7 .

^ 7 . .

^ ^ 7 ^ 7 7 . . 2 . 2 1

. 1 . 8 1 6 8

^ ^ 7 7 .

^ ^ 7 7 . 2

^ 7 .

^ ^ 7 7 . 7 . 1 6

^ ^ 7 ^ . 1

^ 7 7 . 1

^ 7 .

^ ^ 7 7 . 7 . ^ 7 . 1

7 . 1 . 0 6 0 5

. 0 0 3 0 0 9 9 8 5 5 ^ ^ 7 ^ ^ 7 .

^ ^ 7 7 . 0 . ^ 7 0

^ 7 .

^ ^ 7 7 .

^ ^ 7 7 . . 0 . 0 2

. ^ 7 9 9 8 8 5 ^ ^ 7 7 .

^ ^ 7 7 . 0

^ 7 .

^ ^ 7 7 . . 9 9 7 ^ ^ 6 6 .

^ 6 . 9 ^ 6 . ^ ^ 6 7 7 2 1 1 7 1 7

0 7 1 1 5 5 3 8 9 6 3 9 6 6 3 8 6 1 7 4

0 9 3 8 8 3 4 6 2 6 5 2

4 7 9 1 4 3 9 1 2 5

9 9 4 6 3 7 8 8 7 2 6 8 2 8

6 4 1 1 3 6 6

7 6 5 6 0 4

4 6 5 1 1 8 1

1 4 6 3 3 6

9 7 2 1 6 0 7

0 0 8 8 5 9

0 8 9 9 4 5 7 6 8 4 . . 5 4 3 6 4

5 3 8 9 7 4

6 9 6 8 8 8 7

6 0 1 6 9 5 4

3 8 4 5 4 9 9

7 6 1 7 3 7

9 7 4 2 0 1 5

5 5 0 3 2 2 0 0 . 2 4 4

. 4 9 2 3 8

. 6 2 5 2 1 3

4 3 6 1 0 1 0

. 6 . 4 9 7 0

5 3 0 4 9 0

2 4 2 1 8 3 9

5 0 0 2 1 0 5 .

^ ^ 4

0 ^ 0 . . 5

^ ^ 0 0 .

^ ^ 0 0 . 2 . . 2

^ 0 .

^ ^ 0 0 0 .

^ ^ ^ 0 0 . . 3 . 5 5

. 5 4 5 6 3 3

^ ^ 0 0 .

^ ^ 0 0 . 4

^ 0 .

^ ^ 0 0 . . 4 . 3 6 3 4

^ ^ 0 0 .

^ ^ 0 0 . 5

^ 0 .

^ ^ 0 0 . 0 . 4 5 6 7 4 3

0 . . . 0 . 4 4 . . . . 6 3 7 5 5 0

4 8 0 9 6 7 3 ^ ^ 0 ^ 0 . . 3

^ ^ 0 ^ ^ 0 0 ^ ^ ^ 0 ^ 0 ^ 0 ^ 0 0 . . 5 . 5 0

0 0 . 5 . 3 3 6 4 4 3 ^ ^ 0 0 .

^ ^ ^ 0 .

^ ^ 0 0 . . 3 . 6 7 ^ ^ 0 0 .

^ ^ 0 0 . 3 ^ 0 . ^ ^ 0 5 4 7 4 1 9 6

0 2 4 4 3 2 7 3 8 9 5 3 5 6 6 2 5 6 8 1

2 7 9 3 5 6 8

4 4 1 3 8 1

1 7 5 1 9 7 1 8 4 8

6 6 7 1 4 2 8 4 5 7 8 1 7 5

1 4 5 5 4 0 5

0 3 1 8 5 0

9 4 4 3 7 3 1

2 8 9 9 4 3

3 5 0 6 8 7 7

5 6 7 5 8 6

4 9 5 6 5 0 6 2 9 2 1 9

. 4 1 5 4 4 4

6 5 3 7 5 7

1 1 1 6 1 0 7 7

8 7 5 9 6 4 2

1 4 1 0 2 4 5

4 0 4 3 9 7

3 0 0 3 2 4

8 3 5 5 6 4 0 . . . 5 5 2 3 4

. 4 3 1 2 3 2 2 3 5 7 7 6 3

. . 1 9 2 2 4

. 0 9 7 6 4

3 0 0 0 4 1

. 0 5 7 6 4 2 5 7 ^ ^ 0 ^ 0 0 2 2 1

. . . 1

0 0 0 0 . 0 . . 4

0 . . 2 . 3 2 . 2 4 9 1 0 8

0 0 . 0 . 4 0 3 1 0 5 0 8 9 0 ^ ^ ^ 0 2

. .

0 ^ 0 0 ^ 0 . 0

0 0 0 .

^ ^ ^ ^ ^ 0 0 .

^ ^ 0 .

^ 0 0 . . 4 . 2 0

^ ^ 0 0 .

^ ^ 0 0 . 2

^ 0 .

^ ^ 0 ^ ^ 0 0 3 2 0

. . . 3 ^ 1 1

. 5 1 0 5

0 0 0 0 . 0 . 1 5 5

0 . 5 ^ 0 5 0

0 . 0 . . 2 2 7 7 2 5 .

^ ^ ^ 0

^ 0 0 0 .

^ ^ 0 0 3

. .

0 0

^ ^ ^ 0 .

^ ^ ^ ^ 0 0 . . 3

^ ^ 0 0 .

^ ^ 0 0 3 9 . . 3 0 0 . 0 ^ ^ ^ 35 3 1 2 3 2 6

8 4 8 5 2 8 4 2 7 7 7 4 5 1 2 8 4 2 6 1

6 3 1 2 4 3 7

0 5 5 8 2 7

7 6 7 7 4 8 1 9 1 4 1

0 0 6 9 2 1 1 7 9 8 9 4 2

5 5 8 1 4 7 2

1 0 0 6 3 0

. 7 1 9 3 9 8 3 3 2 6 6 3 9 2 1 8 5 2

8 9 9 4 6 3 7

6 6 6 1 8 8

5 6 9 9 9 2 4 7 5 0 . 1 . 0 1 0 7 0

. 3 1 0

0 1 1

. 1 1 6 0 2 9 3 9

. 1 0 2 0 5 7 9 6 7 2 5

2 3 8 3 3 5 6

5 3 1 1 2 2 7

3 6 4 0 0 6 3

5 1 7 4 3 6 . 4 7 . 5 0 4

1 4 3 4 2 5 8

4 6 2 8 8 6 7 1 8 4 6 9 3 0 0 8 0 2 2 1 3 1 2 1 7 2 1 7

. 0 0 0 0 . . 5

0 . 0 0 0 . . 2

0 0 . 4

0 . . 0 . . . 1 . 7 1 5 2 3 4

0 . 0 0 0 0 0 3 5

. 1 5 1 1 1 3

. 1 3 2 6 8 8 8 8 4 2 7 2 0 ^ 0 0 0 . 0 0 0 0 . 0 . 0 0 . 3 . 5 3

0 0

^ . 0 0 ^ 0 3

. .

^

0 0 0 0 0 . . . 0

0 0 0 . 0 . 8

0 . 0 0 6 3 3

0 . 9 0 2 8 4 8 3 0 ^ 0 . 0 . .

0 0 . 0 0

^ 0 . 0 0 0 1

0 . . . . . 0 2 0 8 6 ^ 0 0 0 0 0 . .

0 0 . . 1 0 0 . 0 ^ 0 4 1 3 8 4 1 4 2

3 1 1 5 5 9 2 7 2 6 1 0 9 4 1 2 7 3 7 3 1 8

5 4 7 0 4 0 3

2 0 6 8 4 8

0 5 8 6 5 4 1 4 4

2 1 7 1 1 9 1 5 5 6 4 2 6

1 4 1 8 4 7 8

1 3 9 4 0 1

8 9 6 4 5 3 8 1 4 6 5 3 7

2 1 1 7 2 7 7

0 9 1 4 5 2

1 8 7 1 6 5 3 1 5 3 . 9 . 2 9 1 8

6 7 1 0 4 0

. 6 8 8 7 1 6

. 0 6 0 7 4 5 2 8 4 2 9

. 4 3 9 8 9 1

7 2 5 1 5 3 9

4 5 5 7 5 7 2 2 3 4 1 5 0 . 0 0 . 2 2 6

0 6 2

0 9 0 . 3 1 3 7

. 2 1 1 1 7 7 3 2 0

. 1 3 1 3 0 6

0 . 2 3 1 4 8 9

2 1 1 5 3 9 3

1 . . 0 . 2 1 6 2 8

. 5 7 7 5 8 7 1 2 0 6 1 . .

0 0 0 0 0 . 0 1

0 . 0 0 0 0 .

0 0

. . 0 0 0 . 0 . 0 0 . 0 . 4 . 1 5

0 0 0 . . 5 1 8

0 . 0 . 3 0 2 8 0 1 4 0

0 0 8 2 3 1 1 9 0 4 2 1 5

. 9 1 0 2 0 0 0 0 . 0 0 . 1

^ 0 0 .

0 0 . 0

0 . 0 1 . 3 2 0

.

0 . .

0 0 0 0 . 2

. 0 0 0 0 0 0 0 2

^ 0 0 . . . . . 0 . 0 . 1 . 4 8

^ 0

0 0 0 0 0 0 0 . 0 . 0 7

0 0 . ^

1 1 6 4 9 1 1 9

2 8 3 7 8 5 0 1 8 8 5 3 4 7 4 9 5 8 9

2 4 4 7 3 3 9

2 6 7 1 2 9

2 8 5 2 5 9 8 4 1 8

8 1 3 9 4 9 3 3 1 0 5 3 1

4 2 9 2 7 8 5

8 0 6 3 7 9 8

1 1 4 6 1 6 7 5 8 5 8 8

1 4 6 6 7 1 3

9 6 5 9 7 6

6 5 3 5 6 4 3 8 2 3 . 1 6 1 0 4 4

4 7 6 9 3 5 2

7 9 8 0 9 . 2 2 5 9 6 7 9 4

1 3 6 7 3 2 3

2 1 9 8 0 6 7

7 7 0 1 8 2 2 9 4 1 5 9 0 . . 8 2 0

. 2 3 3 3 9 5

3 2 3 2 1 1 1 2

4 3 0 9 6 3 3 3 3 4 2 0 8 ^ ^ 0 . 0 0 4 7 1 8 8 9

0 2 3 4 4 0 4 2 7 5 2 8

0 0 . 0 . 1

. . 1 . 1 0 3

. . 3 . 1 0 . 1 1 1 0 4 7

0 0 . . 4 1 7

. . 1 1 4 9 5

. 5 2 3 3 6 . 3 5 2 4 6 5 0 . 9

0 . 0

^ 0 0 0 . .

0 0 0 0 .

0 0 0 0 .

^ 0 0 . 0 . . 9 . 1 3

0 0 . . 5

^ 0 ^ 0 . 0 0

0 0 0 0

^ ^ . 0

0 0 0 . . 1

0 0 . 0 0 . 0 . 3 2 3

0 . 1

^ 0 0 . 0 . 3 0 . 1 8 2 2 8 8 ^ 0 0 . . .

^ ^ ^ 0 0

. . 0 0 0 3

. . . 2 7 0 0 0 0 0 0 . 1

. 0 0 0 21 6 6 5 3 3 8

2 0 5 0 2 3 1 7 2 2 9 5 2 0 3 4 7 7 6

0 4 4 4 3 7 9

1 2 8 1 2 3

2 1 4 7 6 8 1 9 5 3

1 3 3 8 1 7 4 2 4 9 9 3 4 8

1 5 4 2 6 7 5

4 7 2 0 8 3 9

1 1 0 1 4 3 6 9 2 2 5 9

6 7 8 8 2 7 7

8 8 1 3 1 4

0 2 9 8 6 5 8 1 9 8 . 2 1 9 5 9 0

1 3 0 1 9 3 3

1 3 2 5 7 2 1 . 1 0 9 1 5 2

1 3 2 0 0 7 4

6 1 4 7 8 5 9

5 0 9 1 5 2 2 2 1 3 4 4 0 0 . 0 . 0 7 1 1

. 0 . . . 4 4 3 2 2 5

. 2 5 1 1 9 1 8 6 1 5 2

0 . 0 . ^ 0 1 2 1 3 5

. 8 3 3 2 8 5

2 2 5 5 1 3 3

6 2 3 1 5 9 7 8 0 4 6 8 7 0 0 . 0 0 0 . . 1 . 2 8 7

^ 0 0 0 0 . 0 3

. .

0 0 0 . 2

0 0 . . 2 1

0 .

0 0 . 2

0 0 . . 4 5

0 0 . 0 . 0 . 1 6 2

. 2 1 1 7 6 3

0 3 1

. 1 2 7 7

. 1 2 3 6 5 6 4 8 5 ^ ^ 0 9 9

. 0

0 . 0 0 . 0 . . 1 . 1

0 0 . 3

0 0

^ 0 0 . 0 0 3

. 0 0 .

^ ^ 0 0 .

^ 0 0 0 3 2 9 4 1 9

. 0 0 .

^ 0 . .

^ ^ 0 0 . . . 1 0 3 4 0 0 0 0 0 . . . 0 6

0 0 0 . ^

83 8 4 9 3 5 6

3 6 0 0 7 8 2 7 3 5 3 6 5 3 5 4 3 9 8 9

9 8 2 6 6 2 7

9 6 2 4 2 6 1 5 5 2 4 1 2 6

4 7 8 8 9 5 6 3 3 1 7

7 5 6 6 7 0 9 4 8 7 2 7 4 3 3 4 8 4 8 5 8 2

5 7 9 2 4 5

1 3 5 9 8 3 1 3 4 6 5 3 3 9

0 2 5 0 4 1 0

8 5 2 8 3 7 4

6 2 6 8 7 8 1 6 6 2 3 8 7

. 4 1 7 0 0

. 1 9 9 1 9 5 2 7 1 4

5 . 0 4 2

0 0 1 . 0 . . 2 3 9

5 5 . 7 6 2 1 5 1 7

. 7

. . . 2

0 0 ^ 0 3 0 5 6

0 1 1 0 5

. 2 5 2 1 7 6 0 2 6 3

1 2 8 5 3 3 2

3 2 0 4 8 3 5 6 5 2 3 7 5 0 0 0 0 6 .

0 0 .

0 0 . . 0 . . 0 . 2

0 . . . . 9 3 4 6 3 1 3 3 1 ^ ^ . 0 6 1 3

. 7

0 0 7 7 4

5 6 5 9 8 8 8

2 5 8 5 7 0

. ^ 0 . 0 .

^ ^ 0 ^ 0 .

0 0 0 0

0 ^ . 0 ^ ^ 0 . ^ ^ 0 0 3 2

. 1 . 8 2 2 3 5 5

0 2 6

0 1 0 7 8 2 5 2 0 ^ 0 0 0 ^ 0

0 0 0 . 0 0 . . 2 1 9

^ 0 1 3

. 0 0 3 ^ 0 0 1 1 6 2 1 9 ^ 0 . 0 .

^ ^ 0

0 0 0 0 .

. . . . . . . . 2 0 . 6 . 1 ^ ^ ^ 0 0 1

. .

0 0

^ 0 0 ^ 0 0 0 .

^ ^ 0 ^ 0 0 0

0 ^ . 0 ^ 0 0 ^ 0 1 3 7 6 3 4 6 5 6

8 2 4 0 6 3 5 8 8 0 2 3 2 9 1 1 8 1 8

9 2 8 7 3 3 8

6 7 4 5 3 1

1 2 2 2 5 4 1 8 6

8 1 2 3 0 2 4 1 5 5 1 3 3 5

2 7 6 9 0 9 1

3 2 8 6 7 4 3

3 6 9 6 0 8 3

4 5 5 7 4 5

9 . 1 7 8 8 7 6

1 7 1 9 1 4

5 9 8 2 5 6 9 6 4 4 . 1 4 7 1 0 7

4 1 4 3 2 8 5

7 9 0 5 1 3 0

1 6 5 8 7 7

5 7 2 1 9 2

1 9 1 8 5 8 5

5 4 4 0 9 2 1 1 2 4 6 9 4 5 0 0 . . 0

0 0 . . 4 1

. 5 2 2 8 1 0

. 3 2 4 2 9 8

4 9 0 2 0 2

. ^ 0 2 3 . 9 2

. 7 4 2 5 1 8

3 2 1 2 3 5 5 3 4 0 9 0 ^ 0 . 3

0 0 . 0 0 . 0 . . 1 1 1

0 0 . . 1

0 0 .

^ 0 . 1

0 0 . . 6 5 4

0 0 . . 5

0 0 . . 6 7 3 4 2

0 0 1

. . . 1 3

0 0 0 . .

^ 0 0 0 . 1

0 0 . ^ 0 2 1

. 2

0 . 0 . 3 1 9 9 5 1

. 1 4 . 9 5 4 5 0 4 0 6 ^ 0 0 0 .

^ 0 3 7 0

. . . 4

0 0 0 0 . 0 . 2

0 0 . 0 . 3 1 9

0 . 6 . 1 1 7 5 3 ^ 0 0 . 0 . 1

0 0 . . 4 4 ^ 0 0 . 0 . 3 7 3 4 6 4 7 5

6 2 4 8 9 1 1 7 7 7 0 1 1 8 9 3 5 8 6 8

8 3 5 2 9 6 9

0 2 2 1 7 3

7 6 4 2 2 2 6 9 1

1 9 5 1 5 1 0 8 7 2 4 7 4 5 9

5 7 8 5 7 6 0

8 0 0 5 7 3 5

1 7 7 9 9 8 2

3 7 8 3 2 4

5 4 7 3 1 0 4

9 2 6 5 6 5

2 9 8 4 3 9 8 6 8 . 1 2 3 1 2 2

9 8 4 1 9 4 8

3 1 7 6 8 3 3

9 1 3 7 6 2

4 6 4 0 1 6 2

9 2 0 7 0 2 3

9 6 1 6 9 3 3

3 3 3 8 9 7 0 . 0 . 5 . 2 2

0 2 2 3 4 4 7

. . 4 4 1 8 4

1 1 4 0 5 8

. 7 2 8 3 6 9

1 1 3 1 6 0 9

1 8 7 9 2 9 4

2 9 5 9 4 6 0 0 0 . 0 . . 3

0 ^ 0 . . 0 . 8 1 6

0 . 1 0

0 0 0 . 0 . 0 0 . 0

0 0 0 0 . . 5 0 2

. 3 5 4 8 5

0 . 0 . 6 . 1 7

. 2 1 2 8 3 3

. 2 2 2 6 0 8

1 7 8 0 7 9 ^ ^ 0 0 . . 4

0 0 . 0 . 4

0 0 . 0 1 1

. . .

0 0 0

^ 0 0 . 0

0 0 . 5

0 . 0

0 0 0 . . 0 . 4 3 3

. . 1

0 0 0 0 0 . 0 0 . 0 . 0 2 1 3

. . . 5 . 1 4 5 6 7 0 0 0 0

0 . 0 0 9

. 0 . . 3 0 . 1 0 0 0 0 . 5 6 5 7 8 1 1 3

4 3 9 9 5 7 8 6 3 6 4 5 2 4 9 9 7 3 7 3

6 9 3 3 0 5 6

1 6 5 4 7 1

8 1 3 7 4 5 7 4 6

4 7 5 1 4 3 3 7 1 8 9 4 9 7 6

1 2 6 3 0 5 9

4 4 6 1 4 1 1

4 0 5 3 2 1 5

6 8 6 3 3 4

0 3 9 1 1 7 5

1 6 0 4 6 7

0 1 2 0 4 2 9 9 8 . 2 3 0 3 2 8

1 5 4 2 5 5 0

3 7 8 3 3 6 1

0 6 5 8 7 6

. 9 6 7 5 9

2 0 4 3 8 9 8

8 7 2 2 3 0 5

0 7 1 4 3 7 3

4 2 4 6 8 7 0 0 . . 2

0 0 . . 5 1

0 . .

0 ^ 0 . 4 2 5 7 0 3

0 . . . . 1 8 1 1 0

1 0 7 2 3 3 5

3 8 3 1 0 7 3

9 0 3 2 4 4 ^ 0 0 0 . 2 9 5

0 0 1 0 4 9 1 1 3 3

. 0 . . . . 1 . 5 2 6

^ 0 7 1

0 9 4 0 1

0 0 . 1

0 . 0 0 0 0

. 3 0 1 1 1 9 8 9

. 8 . 1 2 2 1

8 2 2 3 8 4 0 0 ^ 0 0 0 0 . 0 0 . . 1

0 0 . . 0 . 1 .

0 0 . 0 . 0

^ 0 0 . 0 0 0 . . . . . 2 8 2

0 . 0 0 . . 3 2

0 3 2 2 3 1 0 0 0 0 0 0 . 0 5

. .

^ ^ 0 0 0 0 ^ 0 . 3

0 0 . . 0 7 . 1 4 0 . 0

0 0 . 0 0 . 0 . 5 3 8 9 9 6 9 4

3 2 0 6 8 5 8 3 9 4 6 4 3 9 8 6 8 4 6 5

3 2 4 6 6 2 2

9 9 8 2 4 5

6 0 7 2 5 9 4 1 3

9 0 8 1 5 7 2 5 8 7 8 2 3 1 7 3

1 1 6 5 7 2 2

3 4 5 0 1 3 8 7

7 3 6 4 3 3 3

9 8 6 4 2 3

1 7 6 3 4 8 2

3 4 1 8 7

3 3 2 2 4 9 0 8 5 . 5 7 0 2 3 6

. 3 9 1 6 7 2

0 3 5 6 5 5 4

8 7 0 1 5 6

2 1 6 6 0 4 7

1 5 8 7 6 9 3

3 3 8 6 2 0 3

2 2 3 7 4 9 0 . 0 0 2 . 1 2

0 . 3 2 4 1 5 6

. 4 2 1 4 6 4

2 3 3 3 5 6

. 5 1 0 2 0 7

4 9 1 2

. 1 1 7 9

3 3 5 2 1 0 1

1 3 8 4 3 3 0 8 2 1

0 0 . . 4

^ 0 . 0 0 0 . . 0 0

0 . .

0 0 0 0 . 0 . 0 0 . 0 . . 3 4 2

0 . 0 . 1 . . 2 . 2 3

0 . 0 . 1 . 7 4

0 2 1 7 1

. 3 9 2 2 6 6

3 4 9 7 4 6 ^ ^ 0 0 0 0 . 0 0 . 1

0 ^ 0 . 3 0 1

0 0 .

^ 0 0 0 . 0 0 . 1

. . 0 .

^ 0 . 1 6

0 0 . 0 . 3 4 4 7 4 ^ . 0 0 0 0 6 6 2

0 0 0 0 . 4

0 . 0

0 . . 0 0 2

0 . 7

0 . 0 . 9 3 0 0 0 . . .

^ 0 0

^ 0 0 . 0 .

0 0 27 2 9 2 1 2 8

4 0 8 4 9 9 1 5 1 6 5 6 2 8 4 8 5 5 6 5 3

5 5 4 5 7 7 5

3 1 1 8 4 5

7 6 5 5 2 6 7 8 3

1 8 3 8 4 9 2 8 3 1 2 1 8 6 9

1 2 0 1 8 8 9

6 9 2 7 5 6 5

5 3 9 7 2 3 2

0 2 5 5 1 6

8 4 1 4 4 8 5

0 7 4 7 3 4

3 3 5 3 8 1 5 9 5 . 1 1 3 2 4 9

6 2 5 5 9 9 3

. . 3 5 2 5 4 9 7 9 0

2 1 3 2 4 0

6 3 4 3 7 0 8

5 7 7 3 8 6 1

0 7 7 5 1 9 3

1 3 7 0 8 4 . 9 6 9 3 1 0 0 . . 1

0 0 0 0 1

. . 0 1 1 4 2 5 9

. 2 2 2 5 5 6

4 0 1 2 0 7

0 3 3 6 0 8 1

1 8 4 0 9 6 5

2 2 2 5 3 4 6

0 0 . . . 2 . 1 2

0 . . . 1 6 7

. . 0 1 . 9 5

. 3 1 4 3 8 5

. 2 1 5 2 7 3

0 3 7

. 3 9 1 2 4 ^ 0 0 0 0 0 . 1

0 0 .

^ ^ ^ 0 0 0 0 . 0 3

. 0 0 2 9 3 0 0

0 0 . . . . 1 0 1 2

^ 0 . . .

0 0 0 0 . .

^ 0 0 0 0 2

. .

^ 0 ^ 0 ^ 0 ^ 0 0 0 . 0 . 8 . 1 7

0 0 . 0

0 0 . 2

0 0 . 0 0 . 0 . . 2 . 0 6 ^ 0 1 3 0

. . . 1

0 ^ 0 0 0 . 0 0 . 0 . 1 3

0 . 0 0 0 9 6 6 4 7 5 5 5

0 4 4 5 0 5 9 4 7 9 0 3 7 6 4 2 3 9 2 4

5 3 3 3 9 4 1

4 1 4 3 2 1

8 4 3 8 5 5 9 1 5 4

5 1 9 4 1 3 9 8 2 6 5 8 3 9

3 4 1 7 9 1 1

1 5 5 8 5 6 6

4 9 5 8 1 2 4

9 9 0 6 9 5

0 4 0 8 7 1

7 0 3 4 1 7

1 0 5 5 7 1 2 3 8 . 3 1 8 9 4 2

3 6 8 7 1 4 3

2 6 4 8 1 4 1

2 7 5 2 1 1 9

4 0 0 2 6 9

2 8 6 9 3 4 7

9 5 7 5 0 8 4

8 1 4 6 2 5 0 . . 1 . 1 2 9 4 5 5

1 5 7 1 3 1 5

. 7 7 1 9 1 1 8 9 1 0 5 4

3 4 4 4 8 1 7

1 0 5 2 8 5 ^ 0 0 .

^ 0 0 2 7

. . 3 0 7 1 6 1 0 1

0 0 . 0

0 . 0 . 1 . 4 1

0 . 0 . 0 . 1

0 0 . 0 . 0 . 4 3 . 1 2 3 2 9 5

0

^ 0 ^ ^ ^ . 0 0 3 1 4

0 2 1 6 4 9 0

0 0 . 0 . 1 .

0 . 0 ^ 0 . . . 0 8 9 5

^ 0 ^ 0 2

. . 0 1 0 2 8 6 8

2 7 9 8 0 4 5 0 0 0 0 . 0 0 8

0 . . 0

0 0 0 . 0 . 3 2

. . 0 . 6 1 7

0 5 1 3 4 2 ^ ^ 0 ^ 0 . 0 .

0 ^ ^ ^ 0

0 0 ^ . 0 0 3 1

0 . 0

0 0 . 0 . 3

0 0 . 0 0 .

^ 0 ^ . 0

0 0 . 0 . 0

0 . . 0 4 3 ^ ^ . 0

0 0 0 . . . ^ ^ 0 0 0

^ ^ 01 9 4 4 3 6 4

2 7 1 4 6 8 7 6 6 6 9 6 8 2 1 4 1 9 9 4 2

6 8 9 2 0 6 5 5 1 4 4 5 2

0 8 1 7 5 6 1 6 3 8

7 1 5 4 1 4 0 5 8 9 2 4 6 6 3

. 8 1 9 3 4 6 6 1 9 8 7 3 4

9 7 5 4 9 7 7

3 3 9 3 7 2

8 3 7 3 6 7 1 2 0 3 1 6

2 8 3 8 9 8 6 7 4 9 ^ 0 . 4 2 0 3 0 1 1 0 8 8 7 5 6

1 0 1 5 4 4 1

6 9 1 7 9 7 3

1 4 7 3 9 8 1 1 8 4 7 5 8

2 0 0 5 1 5 8

0 3 2 7 6 4 ) 0 . 2

0 . . 5 1 0 1 6 8

. 1 5 4 9 7 1

1 3 3 3 0 5 1

. 3 7 2 8 6 2 3 2 0 7 1 4

3 . 2 2 6 7 9 2

0 1 0 2 4 0 . ^ ^ 0 0 3 8

. 0 0 . . 2

0 . . 0 0 0 0 . . 5 5 .

0 0 7

. 0 0 . 0 0 2 1 2

. . 1 1 0 7 5 4

3 1 0 2 5 2

0 0 0 . . 0 . 2 . 2 1 .

^ ^ ^ 0 ^ 0 0

0 . 0 0 . 0 0

^ ^ 0 0 . 0 .

^ 0 3 0 4

. 2

0 0

. . ^ 0 . 0 ^ 0 .

^ ^ 0 0 .

^ . 0 0 4 1 3 0 1

2 8 1 4 6 . 2 t 0 0 0 0 0 0 . 2 . 4 2

. ^ 0 . . . 2 4

. . 2 3 9 0 0 0 0 ^ 0 0 0 9

.

^ ^ ^ 0 0 0

. .

^ ^ 0 ^ 0 0 0 0 0 0 0 .

^ ^ ^ ^ 0 1

. 0

0 0 .

^ ^ . 0 0 4 ^ n 0 . 0 ^ 0 0 . c o

( 8 1

B 2

2 0 A 2 2 L 1 D A 1 R L 1 1 P 9

P S f 4 4 0 B A 2 9 7

1 B 1

D 1 2 4 1 L 4 0 6 1 D 1 1 L 1 5 1

N X M A r D 1 6 0

M C R C H o B 8 1 1 1 B 9 M R L 4 C N H

L D H T K D L 1 2 1 2 M P D 2 8 Z X 1

X S R 2 2

T C R 1 T E T D D K M M R P 3

P 2 O 1 7 R B B C U B

C 2 2

E K H B G A 2 P l e 1 M A N U A H Y G b L A H MN Y P E P N C A C 1 B M B M 3 C

K N S W B T A R D F E F C C O O D R 5 T

C O 1 K P M C D 1

H N C P H A N U A N L E I N T A P D D C C H D C P L F O C T A N A C F M C 5 T I A R M C S

P E R I N P Y M T T R G G U B M E T R E R A R A B R C U L R C T K K F E P R A P Z MA a R T

')6^^^^^^^ 79 9 9 9 9 2

6 7 9 7 9 9 7 9 9 9 7 9 9 9 9 7 6 5 7 7

8 6 7 6 7 7 6 7 7 9 7 9

6 7 7 7 9 9 7 9 9

4 0 6 5 7 7 6 3 3 8 3 7 9 4 4

6 8 6 8 6 6 8 6 6 7 6 7 9

8 6 6 6 7 7 9

6 7 9 7 9 9

3 2 0 1 6 6 6 2 2 3 9 7

5 3 8 6 7 4 7 4 4 4

2 6 8 6 8 8 6 8 8 6 8 6 7

6 8 8 8 6 6 7

8 6 7 6 7 7 5

7 8 2 1 6 6 9 1 1 2 4 7 7

1 5 7 7 7 7 4

7 7 7 7 4 2 0 2 6 2 6 6 2 6 6 8 6 8 6

2 6 6 6 8 8 6

6 8 6 8 6 9 5

7 7 8 8 9 9 9 4 4 1 1 9 7

3 1 3 7 2 7 7

2 7 7 7 7 9 1 . 0 2 0 2 2 0 2 2 6 2 6 8

2 6

. 0 0 2

. 0 . 0 2 0 2 2 2 6 6 8

2 6 8 6 8 9 7

2 7 7 7 9 9 7 0 0 4 1 7 9

8 3 8 0 7 2 7

7 2 2 2 7 9 6 0 . 0

0 0 . . 0 0

0 0 . 0 . 0 0 . . 0

0 0 0 . 0

0 0 . . 0 0 0 2 2 6

0 2 6 2 6 6 1

0 0 . 0 . . 0 0 2

0 0 . . 0

0 0 . . 0 2 0 2 2 1

0 . 0

0 0 . . 0 0 7

0 0 . . 2

0 . 0 0 2 7 2 7 7 2 8 8 0 8 1 7

2 8 2 6 8 7 2

8 7 7 7 2 1 0 0 . 0 2 0 2 2 0 2 2 8 2 8 1

. . 0 0 2 2 8

. 0 . 0 2 0 2 0 8 2 8 7

2 8 8 8 7 8 6 0 . 0

0 0 . . 0 0

0 0 . 0 0 0 . . 0

0 0 0 . 0

0 0 . . 0 . 2 0 2 8

. 0 2 2 2 8 8 8 0 0 . 0 0

0 . 0 2

0 . 0

0 0 . . 0 0 0 2 2 8 0 0 . 0 . . 0 0 2 0 0 . . 0 0 0 . 3 3 1 1 7 7 7

2 9 4 4 1 3 7 6 1 6 0 3 8 1 5 8

9 9 5 5 7 9

6 9 7 9 4 9 9 6 4 2 6 7 4 6 6 6

1 7 3 6 8 8 6 7

8 9 9 4 7 4 3 4 5 5 5 4 7 4 5 5 4 5 6 9

3 7 5 2 0 1

5 2 2

0 4 2 5 4 7

7 0 6 1 3 3 7 6 0 3 7

9 6 0 3 3 5 8 1 9 0 9

3 4 2 8 6 6

8 8 1 6 8 4 3 0 6 7 3 6 1

0 0 1 3 2 0 6 7 6 2 1 9 2 0 9 7 1

7 5 5 6 4

0 7 7 6 2 7 7 8 9 2 6 1

3 4

7 9 0 8 0 6 5 3 6 6

2 4 0

1 2 2 3 6 6 7

8 7 7 1 5

8 3 5 7

9 8 8 4 1

8 6 6 3

6 5 0

9 7 3 8 6 7 1 5 5 0

7 1

7 7 7

0 0 0 0 7 7

0 7 7 8

7 7

0 8 0 1

8 1 8 8 2 2 2 0 8 6

0 8 8 8 9 9 8 0 0 0 1 2 2

0 3 4 4 9 3 6

7 8 8 7 4 3 4 . 0 0 0 0 0 0 0 0 0 0 7 0

0 0 0 8 0 8 2

0 8 8 8 3 3 5

0 0 0 0 8 8 0 9 9 1 9 2 9

0 9 9 5 0 7 3

9 9 9 8 8 5 9 0 . .

0 0 . 0 0

0 0 . 0 . . 0 0 0 0 0 8

0 0 . . .

0 0 . 0 0

0 . 0

0 0 . . 0 0 0 0 0 8

0 0 0 0 8 8 4

0 0 . . 0

0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0 0 8

0 0 . 0 . . 0 0 0

0 0 . . 0

0 0 . . 0 0 0 0 0 0 0 0 9 0 9 0

. 0 0 9 0 9 7

0 0 0 9 8 9 0 0 . .

0 0 . 0 0

0 0 . 0 . . 0 0 0 0 0 0

0 0 . . 0

0 0 . . 0 .

0 0 . 0 0 . 0 0 0 . 0 9

0 0 0 0 9 9 0 0 . 0

0 0 . 0 0 0

. 0

0 0 . . . . 0 0 0 0 0 0 0 . 0 0 1 0 0 . . 0 0 0 . 0 5 2 4 2 8 1

9 4 3 1 4 3 4 4 3 1 3 7 5 2 3 7 4 6 5 9

8 7 8 2 5 4 7 6 8 2 9 5 9

0 3 0 2 6 3 8 8 9 8

2 6 4 6 8 1 1 1 5 3 7 9 3 8 5

1 0 2 2 1 7 7 1 0 1 8 1 2

0 7 3 6 6 5 4

5 9 0 8 1 9

3 6 7 7 1 8 5 7 9 1 2 5 1

4 4 7 2 0 6 9 2 5 5

6 6 6 5 2 0 2 3 3 7 8 0 2

9 3 7 1 0 2 6

2 2 5 6 4 6 5

0 3 6 0 5 8 5 6 6 6 1 2 5

4 3 9 5 8 6 7

1 4 7 1 4 1 9 9 5 9 6 5 3 7 5 3 5 3 0

8 9 4 1 6 6 2

4 5 7 5 7 7 1

0 9 9 3 6 4 1 7 8 7 4 4 2

2 2 1 1 5 1 6

5 1 0 8 7 1 6 . . 9 . 4 3 9 2 2 9 0 9 4

. 8 8 8 7 5 9

6 1 4 3 9 6 6

8 8 8 8 7 6 6 8 4 9 8 0 7

1 2 5 9 7 7 0

4 3 6 3 2 4 0 6 6 . 6 . 9 9 0 9 9 9

6 . 7 8 7 6 7 7 7 4 7 5 3 1 6 .

7 1 0 6 6 9 9

6 0 4 3 7 7 6 ^ ^ ^ 6 ^ . 9 9

6 .

^ ^ 6 6 . . 9 . 8 8

^ ^ 6 6 . . 8 7 8 6 4

8 6 5 5 0 0 8

^ ^ 6 6 . .

^ ^ 6 ^ 6 ^ 8

6 . 8 8 8 3

. 8 6

. . . 8 5 4 0

^ 6 .

^ ^ 6 6 . 8

^ 6 .

^ ^ 6 6 6 6 . 8 8 8

6 . 6 .

^ ^ ^ 6 .

^ ^ ^ ^ 6 6 . 7 . 7 . . . 4 7 3 2

. 7 7 . 6 6

6 6 5 5 1 3 2 ^ 6 .

^ ^ 6 6 . 6

^ ^ 6 ^ . 6 ^ 7 . . 7 7

6 ^ 6 ^ 6 ^ 6 . . ^

^ ^ 6 ^ 6 6 . . 6 6 . 6 6 6 5 4 7 ^ ^ 6 ^ 6 ^ 6 6

. .

6 6 . .

^ ^ 6 6 6 . . 6 6 3 ^ ^ ^ ^ 6 6 . 6 ^ 6 . ^ ^ 6 6 7 4 7 2 3 4

9 1 5 5 8 1 5 1 2 2 1 7 4 9 9 5 3 4 4 5

8 0 6 7 9 4 9 9 8 1 8 1 9

0 8 9 7 8 5 3 8 9 3

6 8 3 2 1 3 5 3 7 4 9 6 7 7

5 6 0 7 6 9 2 4 0 7 6 3 4 1

3 1 7 6 2 3 6

5 0 8 5 6 5

7 0 9 9 7 5 2

5 1 2 0 5 4

0 3 6 1 8 1 4 6 8 9 . 2 5 3 5 1 5 5 3 7 1 2

3 6 3 0 7 4 1

5 6 1 7 8 8 4

3 6 1 6 6 5 4

1 4 1 3 3 3

2 2 1 0 9 2 4

8 4 7 3 7 2 0 . . . 4 3 . 3 7 4 3 5

. 4 3 5 4 5 5

3 2 3 9 3 2 4

. 3 6 3 5 7 0

2 9 7 6 8 7

5 2 4 1 3 9 6

4 7 9 7 8 2 7 ^ 0 0

^ ^ 0 . . 5

^ ^ 0 0 .

^ ^ 0 0 . 2 . 4 6

^ 0 .

^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . . 6 . 3 2

. . 3 5 2 5 8

^ ^ 0 0 .

^ ^ 0 0 . 4

^ 0 .

^ ^ 0 0 0 . . 4 3 3

^ ^ ^ 0 0 . . 3

^ ^ 0 0 .

^ ^ 0 0 . 4 . 2 3 7

. 3 0 3 2 4

. 4 4 8 3 6 7

2 9 1 4 5 0 4 ^ 0 .

^ ^ 0 0 . . 4

^ ^ 0 0 .

^ ^ 0 0 . 4 . 4 2

^ 0 .

^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . . 3 . 2 0

. 2 3 6 3 5 6 ^ ^ 0 0 .

^ ^ 0 0 . 5

^ 0 .

^ ^ 0 0 . . 4 . 5 5 ^ ^ 0 0 .

^ ^ 0 0 . 2 ^ 0 . ^ ^ 0 9 2 3 7 1 3 2

6 7 7 4 3 2 8 0 1 4 1 1 8 7 6 0 1 6 5 5 9

5 1 0 3 3 9 4

6 3 8 5 2 1

8 8 5 4 4 2 7 8 7 7

7 4 2 8 2 6 7 4 4 6 6 8 3 8

1 9 3 5 7 8 8

1 3 6 8 4 7

3 9 9 6 7 3 9

2 8 1 2 4 3

2 8 2 5 1 7 8

6 8 9 1 4 3

3 9 3 5 9 7 3 4 7 5 . 2 2 1 1 1 2

4 3 9 1 1 4

1 6 1 4 9 3 7

4 9 7 1 4 0 4

. 6 1 3 0 1 2

0 3 3 7 8 2

5 1 5 8 0 4 1

7 8 4 5 0 1 0 . . . 1 7 8

. 3 4 1 3 5

0 6 1 4 9 5 1

6 0 2 2 9 2 1

0 . 2 4 1 3 1 5

7 3 5 1 8 5

3 0 4 8 2 3 9 9

3 1 7 3 8 9 2 ^ 0

0 ^ 0 0 .

^ ^ 0 0 2

. .

0 0 0 . 1 . 0 4

. . . 5 0 1 3

0 2 1 7 6 0 1

0 . . 2 3 6

. 2 4 0 2 0 . 4 2 0 9 0 4 8 0 ^ ^ ^ 0 .

^ ^ 0 0 . .

^ 0 ^ 0 0 0 0 . . . 5

. 0 . 0 4 8 8

^ ^ ^ ^ 0 0 0 .

^ ^ ^ 0 0 . 0 . 0 0 1

^ 0 ^ 0 . . .

^ 0 0 0

^ ^ ^ ^ 0 0 . . 2

^ ^ 0 0 .

^ ^ 0 0 6 9 2 0 0

. 0 1 . 4 2

0 . . 0 . 0 . . 3 . 7 1 3 1 2 7 ^ 0 ^ 0 ^ . 0

0 0

^ ^ ^ 0 0 .

^ ^ 0 0 . 1 0

0 ^ ^

. 0 0 . 1 . . 6 ^ . 0 0 0 1 . 0 0 . 0 ^ ^ 0 0 0 ^ ^

6 4 1 6 4 2 5 4

1 4 0 3 2 8 8 8 6 5 5 7 4 8 2 4 1 6 4 6

1 1 6 3 8 8 6

6 6 8 5 4 7

8 9 6 6 3 3 6 1 2 7

9 8 0 1 9 1 5 4 8 5 2 7 5 4

1 1 6 7 9 6 2

8 1 5 7 9 0

1 1 6 1 9 4 3

5 8 7 8 5 6

2 1 4 5 9 4 5

7 5 9 2 2 8

6 8 3 9 6 3 9 8 8 1 2 . . 1 2 6 1 5

9 0 5 3 5 9

. 1 9 4 7 4 7

0 3 2 6 9 8 3

1 1 1 3 8 5 9

2 2 6 1 8 0

2 4 8 1 8 6 2 3 4 2 8 2 2 5

9 0 0 . 1 2 1

0 . 1 1 4 9 8 7

4 2 2 9 1 6 3

. 2 1 4 0 0 1

3 2 4 8 2 8

1 5 7 2 9 5 4 2 0 9 3 3 8 ^ . 0 0 6 9 6 2 8

0 0 0 . . 7

0 . 0 . 0 1 0 . 1 4

0 . 1

0 0 . 0 1 3

. . 3 . 5 1 1 7 2 0

0 . . . 5 7 9 5 6

. 1 5 1 7 5 3 7 0 5 8 7 4 2

0 0 0 0 . 8 2

^ . ^ 0 0 1

0 0 0 . ^ 0 0 . .

^ 0 0 . 0 0

0 0 0 0 .

^ 0 0 . 0 . . 9 0 0 0

. 1

0 0 0 . 0 0 0 .

. 0 . . 0 0 1

. . 0 1

. . . 1 .

0 0 ^ 0

0 ^ 0 . 4

0 0 . 1 5 . 1 1 1 2 4 1 0 0 0 0 0 . 0 .

^ 0 . 0 0 0 . . .

0 0 . 2 4 0 . ^ ^ 0 0 ^ 0 98 1 5 4 6 2 5

9 3 3 5 9 7 4 3 9 9 9 4 9 9 3 9 9 7 1 7

8 6 1 4 3 6 3

9 5 5 1 2 7

1 7 9 1 8 3 1 5 2 4

2 8 2 7 2 4 1 1 9 2 7 8 9

1 6 4 4 7 9 6

4 3 3 4 7 1

9 1 6 9 7 0 6 5 4

5 0 8 7 3

6 9 6 1 2 6 1

5 4 4 6 5 9

4 2 2 2 2 2 4 7 9 6 . 1 1 3 0 0 5

7 5 6 0 9 8

4 3 6 2 2 7 7

3 2 1 6 6 6

4 4 3 4 9 9 1

1 4 9 5 5 9 5

. 1 3 7 0 2 9

0 0 3 5 3 4 0 6 3 8 1 7 0 0 . 0 . . 2 2 7

0 . 0 . 1 .

0 2 5 6 6 1

0 . 2 1 4

. . 9 7 5

3 6 7 5 8 9 6

0 1 1 4 4 9 4

2 7 8 1 4 0 2 2 0 8 8 6 9 .

0 0 0 . . 1 0 0

. . . 0 1 0 4

0 1 3

. 1 4 3 2 8

. 2 7 . 1 1 1 3 6 7 9 9 6 ^ ^ 0 0 0 . . 0 0

^ 0 0 . 0 0 1 4

0 2 2 5

^ 2 3 5

. 0 0 0 . 0 2

. . . 1 0 2 1

0 0 . .

0 0 0 0 0 0 . . . 2

0 0 0 .

0 0 0 . . . 0

0 0 0 0 . 0 0 . 0 1 2 0

. 0 . 1

0 . 0 0 . 0 . 2

0 0 . 0 . 1 1

0 0 . . 1 3 6 1 4 9 0 0 . 0 2 5 . . . 1 1 . 0 ^ 0 0 0 0 . 0 ^ ^ ^

8 4 5 9 6 1 5 5

9 5 1 1 3 7 6 8 7 8 2 2 4 9 4 7 7 5 9 5

7 3 3 6 0 3 3

0 0 2 2 2 9

3 9 8 9 8 5 7 4 6 9

3 6 8 6 8 9 7 7 1 4 5 9 9

3 1 2 8 1 2 7

2 2 0 7 9 5

8 0 2 1 7 3 9

7 2 1 6 1 2

0 2 6 0 4 0 4

6 8 8 8 6 1

1 2 6 1 6 9 7 5 6 9 0 2 2 1 0 6 8

6 1 7 2 6 6

3 3 9 4 5 7 5 9

4 8 0 7 7 8 8

1 0 8 3 8 4 0

8 9 2 3 1 5 6

8 7 3 8 4 5 6 7 4 5 4 4 . . . . 1 1 8

0 3 7 4 6 8

. 2 3 3 3 1

2 3 9 7 4 0 3

. 2 1 4 8 0 0

. 1 3 2 9 2 7 1 4

. 6

1 3 2 4 4 5 1 6 8 8 1 5 9 .

0 0 0 0 0 . . 2

0 ^ 0 . . 9 0 0 4 3

0 0 . . 0 . 0 . 2

0 . 0 . 6 6

. 1 1 0 7 8 5

0 0 . 0 . 0 3

. 0 0 . 4 0 9 3 2 0

0 2 2 1 9 2 3 9 2 2 2 3 2 0 0 . 0 0

^ .

^ 0 ^ 0 0 0 0 3 6

. . . 3 6 2 0 5

. 0 0 0 0 0 . 0 0 1 4

. 0 . 0 . . 3 0 3

. 0 2 . . 1 2 3 9 6 0 0 0 . .

0 0 0

^ ^ 0 .

^ 0 0 0 0 . 0 0 . 0 0

0 0 . 0 . .

0 0 0 0 . . 0

0 0 0 . 0 3

. . 0 1 9 ^ 0 0 . . 1 ^ 0 0 0 . 0 6 8 4 9 8 3 2

9 1 1 5 6 8 3 5 6 6 8 3 9 7 9 1 1 2 9

7 0 7 0 3 8 6

3 5 9 0 4 8

4 4 1 7 9 7 6 3 7 3

1 0 0 3 9 3 9 8 5 2 8 2 9 8

2 7 7 2 9 4 0

0 9 1 0 2 8 8

0 3 4 2 3 2 5 4 9 3 2 8

0 7 0 9 7 9 1

0 8 3 7 6 6

8 6 6 1 4 1 8 3 1 9 . 1 2 3 8 9 4

1 3 3 1 9 7 0

2 7 6 4 5 3 6 7 0 6 1 1 5

1 0 0 8 2 1 3

3 4 2 2 5 6 7

9 1 7 7 6 1 2 5 8 7 9 7 0 . 1 6 0

0 0 . 0 3

. . 0 2 7 2 1 0 3

. 2 7 3 3 3 1 3 0 4 2 3 3

. 6 0 2 . 1 1 1 7

. . 3 3 0 8 8 5 6 5 1 6

0 1 4 4 4 0 2

1 1 5 7 4 5 3 7 8 2 9 0 8 . 2 0 5 3 4 1 0 5 8 1 4 5

3 2 0 0 . . . . 5 4 . 1 2 0 3 2 8

0 0 . . 2 . . 4 8

0 . 4

0 0 0 . . 0 0 . . 5

0 . 0 . 1 ^ ^ 0 0 0 . 0 0 . 1

0 .

^ 0 ^ 0 . 0 0

0 . 0 0 . . 1

0 0 . . . 6

0 0 0 6 6 0

. . . . . 0 2 2 9

0 . 2

0 0 . . 0 0 0 . 2 1 3 2 5 5 ^ 0 0 0 0 0 0 . 5

0 0

^ 0 0 0 0 . . . 5 0

0 0 0 .

^ 0 0 . 0 0 0 . 0 .

^ 0 ^ ^ 0 0 8 1 2 7 5 9 4 4

2 2 2 5 1 7 0 6 9 9 9 4 8 1 5 5 2 1 1

2 0 6 9 7 3 7

3 7 7 6 2 9

9 3 3 3 6 7 2 7 3 9

4 9 7 1 3 1 2 2 7 5 0 3 9 6

4 2 3 0 5 0 6

4 2 1 7 5 0 5 7

8 0 2 1 0 3 0 3 4 8 9 8

8 2 3 2 3 4 1

0 2 1 4 2 5

1 8 3 1 3 2 4 4 9 4 . 3 9 1 6 4 3

2 2 5 7 2 5 4

2 8 8 3 2 6 8 4 5 1 0 4 6

7 2 3 9 2 4 2

4 4 8 3 8 4 7

5 3 6 5 1 8 9 4 1 4 1 6 3 0 . 2 1 4

. 0 5 1 4 9 1 9 3 6 8 2 7

^ . 0 0 0 1 5 2 9 6 2

0 4 2 0 7 7 0

2 5 3 1 9 6 4

4 7 8 2 2 9 2 5 1 9

. 9 8 9 1 0 . 0 . . 1

. . 0 . 1 3 6

0 . 1 2 . 5 2 5 9

. 0 . .

0 1 2

. 1 1 9 8 3 0

. 1 0 7 3 3 2 8 1 1 0 1

. 0 . 0 . .

^ ^ 0 ^ ^ 0 0 0 .

^ 0 0

^ 0 0 0 ^ 0

^ ^ ^ 0 2

. . 0 3 3

0 0 . 0 0 0 0 . 0 0 . 2 6

^ ^ 0 0 . .

^ 0 0 ^ . . . 0

0 2 3 7 ^ 5

0 7 2 1 4 5 . 0 . 0 0 . . 1

0 0 0 . . 2

0 . .

. ^ 0 0 ^ ^ 0 0 7 1 4

. 0 . 2

^ 0 0 ^ 0 ^ 0 0 .

0 0 .

^ 0 0 0 ^ ^ 0 0 .

^ 0

0 . 0 0 . 0 . 0 . . 5 0 0 0 0 0 0 . . ^ ^ ^ ^ ^ 0 0

0 ^ 9 3 5 8 8 9 4 7

9 7 9 9 7 2 1 8 6 3 3 1 9 7 6 5 1 9 9 6

3 1 0 8 9 7 6

4 3 7 1 7 1

1 9 7 6 3 6 8 9 9 9

3 6 4 9 4 6 8 1 3 9 3 2 6 5

. 6 3 1 1 5 6

9 6 2 9 8 9 5

1 6 4 3 6 4 3 7 0 8 9 4

3 5 9 6 9 0 1

8 4 4 3 5 2

6 7 4 4 3 7 8 4 9 0 . 1 1 4 6 4 8 4

2 1 7 1 6 2 5

2 6 1 2 9 8 4 1 5 7 9 0 5

3 5 2 3 3 5 0

3 4 2 2 5 6 7

0 8 0 8 5 3 9

9 8 8 4 1 1 0 . 0 0 0 2 1

. 4 2 6 1 5 6

. 2 8 1 9 0 3 4 6 1 3 8 7

. 5 4 7 1 8 8

3 5 9 5 4 3 2

. 2 2 1 9 5 1

2 7 3 5 2 5 0 0 . . 0 1

0 0 . 0 . . . 3 1

0 0 . .

0 0 0 . 1

0 0 . . 6 5 . 4 4 3 2 7 5

. 0 . 4 3

0 0 . 0 0 . . 6

0 . 0 . 4 1

. 3 4 3 6 5 9

0 . 2 3 4

^ 6 9

. 5 2 2 4 9 8 4 . 0

^ 0 0 ^ ^ ^ 0 .

^ . 0 0 0 0 . 0 0 . . 4 0

0 .

0 0 0 . .

0 ^ 0 0 0 . . 0 . 2 4 3

0 0 0 . . 1

0 0 . 0 0 . 0 0 . 7 9

. 3

0 0 . . 2 7 4 1 4 0 . 4

0 0 . . 0 2 0 0 ^ ^ 0 0

. . 0 0 ^ ^ 47 2 1 9 5 7 9

3 6 6 1 3 1 0 8 5 8 7 1 8 2 5 4 4 9 7 1

8 2 0 1 2 3 4

4 9 6 5 9 4

6 7 3 4 9 3 0 5 9 7

0 3 8 9 9 2 8 3 3 1 6 9 1 1

4 8 4 5 0 1 7

3 6 0 4 3 4 8

2 6 7 1 2 9 6 5 5 7 4 4

2 . 3 7 0 5 3 4

3 6 0 3 4 7

0 2 8 6 5 6 2 4 8 7 . 9 2 0 . 3 8

0 1 3 5

^ 7 4

0 8 2 1 1 8 3 0 2

5 3 2 6 1 2 9 7 5 5 2 1 9

2 3 . 2 1 6 2

1 7 5 1 2 6 9

1 3 6 8 3 5 5

3 6 6 3 5 5 0 0 . 2 0 . . 2 5 9 6 5

. 2 3 9 . 1 0 2 2 7 5 3 9 9

. 0 1 2 4 5

1 5 5 9 4 3 9

. . 2 5

. . . 1 3 3 9 1 6 0

7 5 4 5 2 7 . 0 0 .

^ 0 . 0 0 0 . . 3 2 0

^ 0 0 0 . . 1

0 0 . 0 0 3

. 0 0 5 . 3 3 4 2 7 4

0 . ^ 0 4

0 . 2 1

0 . . 2 2

0 0 . 0 0 0 0 0 0 0 . 0 3 5 2 5 2 1

8 3 3

0 0 1 8 . . . 0 4 4 5

0 2 1 4 1 0 0 0 0 . 0 . . 0 0 0 0 . . 2

0 0 . . 1 3

^ 0 0 0 . ^ 0 0 1

. .

0 0 0 0 ^ 0 . 0 . 2 . . 2 2

0 . 0 . 0

0 . . 3

0 0 0 0 0 . .

^ 0 ^ 0 ^

46 2 2 7 1 9 2

3 1 0 6 8 7 6 5 9 6 5 9 1 1 1 4 4 7 3 8

0 8 2 4 3 1 2

5 5 7 3 4 5

1 4 7 3 3 5 6 4 4 7

6 6 9 1 8 9 6 8 4 9 9 7 4 2 6

2 0 7 4 7 8 4

9 8 5 7 1 3 9

4 4 6 0 4 6 5 1 7 3 9 8 9

7 6 4 3 7 3 7

7 0 5 8 5 5

9 5 1 1 1 1 3 1 8 . 3 4 4 2 2 9

7 1 6 2 2 1 3

. 0 9 7 9 7 4 5 2 9 1 8 4

2 4 0 4 5 8 5

4 8 0 2 8 8 6

3 4 1 7 7 5 7

2 9 6 9 6 5 0 0 . . 3

0 . 0 . 1 8

0 1 9 2 2 6 3

0 0 9

. 7 4 5 6 0 0 8 1 9 0 8

. 2 4 8 2 8 8

2 2 0 2 2 8 8

2 6 5 0 0 3 6

6 7 8 3 6 5 0 0 . 0

0 0 . . . 0 . 1 8 8

0 0 0 0 . 0 2

. 0 0 . 3 0 5 1 5 4

0 0 . . 1

0 0 . 0 7 0

. 0 4 . 2 1 . 8 8 0

. 3 4 2 9 0 2

2 2 8 2 4 4 ^ . 0 ^ . 0 0 7 4

0 0 0 . 0 . 0 0

0 . 0 0 . 0 . 2 . 3 1

^ . 0 0

0 0 . 0 0 0 . 0 .

0 . . . .

0 0 0 0 0 0 . 3 2 1

0 . 1

0 0 . 0 0 . 0 . . 2 . 4 8

0 2 .

0 0 . . . 1 3 . 2 4 3 3 0 0 0 0 . .

0 0 ^ 0 0 0 0 .

^ ^ ^ ^ 99 5 2 5 5 3 8

0 1 0 3 0 9 5 9 4 4 4 4 6 6 1 9 9 9 9 8 2

8 7 2 2 1 4 6

1 7 3 1 3 4

0 0 8 6 6 1 9 2 2 4

9 7 0 5 6 3 1 1 9 6 3 7 1 1 8

5 2 5 7 3 3 3

4 7 7 2 7 5 7

2 1 0 8 9 6 0 6 5 2 0 9 5

0 4 7 8 4 9 9

5 0 2 7 4 2

9 8 8 4 3 1 5 3 2 . 1 1 6 1 9 7

4 1 4 6 1 4 6

. 9 4 5 5 8 6 5 2 1 2 4 2

8 3 4 1 2 4 0

5 3 8 3 4 9 9

4 5 5 8 1 1 8

4 7 4 4 1 8 0 0 . . 1

0 0 . . 3 0

0 . 1 . 1 1 2 4 9 1

0 5 .

^ 0 0 . 0 0 . 0 . . 4 0 0

0 0 . . 2

0 0 . 0 1 2 3 0 3 4 7 8 6 1

. ^ 0 . 2 5 . 2 3 0 4 6 4

0 9 5 1 8 8 4

1 6 6 9 3 5 2

1 0 6 4 3 9 7

3 4 4 9 4 9 0 0 . .

^ 0 0 0 . . 7

^ 0 0 . 0 0 1 4

0 . . .

0 0 0 . 0 . .

0 4 5

. 4 3 2 3 9 4

. 9 1 1 8 9 3

. 5 6 2 9 6 . . 6 2

0 . 0 0 . 0 7

0 0 . . 0

0 0 0 0 9

. 0 0 . . 3 1 2

0 8 1

^ 0 0 . 0

0 0 . 0 0 . ^ . 0 0 7 3 9 9

0 . .

0 0 0 . 0 0 0 . 0 . 6 1

0 0 . 0 . 0 .

0 0 9 2 6 9 9 1 6 2

0 5 7 8 4 5 2 1 2 7 7 5 6 6 4 5 2 6 5 8 4

3 5 5 5 2 4 2

8 5 2 9 8 4

7 9 3 0 9 5 9 7 2 3 6

5 2 4 6 0 1 5 5 4 3 5 1 6 8 5

2 2 7 5 3 6 1

7 8 5 8 3 6 6

4 0 0 9 3 1 1 9 4 7 5 8

5 9 5 9 7 3 1

9 8 6 2 0 4

0 0 1 3 2 1 0 1 8 0 9 0 8 1 7 9

2 1 2 3 3 4 3

1 1 9 4 7 4 0 8 8 0 1 6

. 1 6 2 4 7 5 1

8 0 2 4 5 2 7

9 1 1 4 9 6 6

4 7 2 4 4 2 . . 1 5

. 1 2 0 1 4 1 7

. 0 3 1 2 . 0 0 2 3 4 8 6

8 0 1 4 9 2

0 0 . 0 . . 1 5 2 7 1 5

. 1 1 0 8 3 3 1 7

8 5 8 2 3 3 . 2 6 2 6 4 2 3

6 1 0

6 5 0 0 . . 0 0 0 . 1

0 0 0 0 . . 0 . 3

0 0 7 .

^ 0 .

0 0 0 ^ 0 . 0 0 3 3 8

0 3 8 1 0 5

0 0 . 0 2

. . 0 0 . 1 . 4 3 3 4 4 6

1 2 2 2 6 1

5 5

. 0 . 0 0 . 0 . . 2 1 0

0 0 . . 3

0 0 . 0 4 1 7 4 2 . 0 3 0 0 . . 0 . 0 . 3

0 . 0 0 . . . 1 . 2 1 . . 1

0 0 . 0 0 0 0 0 0 . . 8 8

0 0 8

.

0 0 0 0 . 0

0 . . 0 0 0 ^ 0 0

^ ^ 0 0 0 0 .

^ 0 .

0 8 3 5 1 4 4 3

1 2 3 1 4 6 5 1 7 2 5 4 5 6 7 2 7 1 1 9 2

6 3 9 9 9 7 9

9 3 1 6 5 8

3 1 3 9 2 4 5 8 7

6 1 1 9 0 9 9 4 9 2 6 1 7 9 9

2

2 5 3 3 9 1 1

3 9 6 3 6 6 5 3 5

3 E 1 1 0 3 6 0 8

3 8 7 8 2 7 1

7 5 1 9 5 8 6

2 3 0 7 3 8

1 5 4 0 1 2 3 2 7

1

. 4 1 1 1 2 7

1 2 1 8 9 4 ^ 0

0 2 0 2 5 2 3

4 4 6 7 3 0

2 1 9 9 4 4 4

4 3 3 8 9 7 4

4 4 2 0 0 8 4

7 9 1 8 6 8 9 4 1 8 5

7 6 4 0 0 . . 2 . . . 1 0 7

. 4 0 . 2

. 0 ^ . 9 . 3 1 2 8 0 1

. . 1 7 5 0 1 1 2

. 3 5

. 4 3 1 2 0 6

1 9 3 1 9 7 0

2 . 3 2 0 3 7 6 2

. 8 1 1 8 5 ^ 0 0 .

^ ^ 0 0 . 4

0 . 0

0 0 7 0 . . . 1 2

^ 0 ^ 0 0 0 ^ 0 .

^ ^ 0 0 1 1

. . 0 . 0 . 2 3

0 . 0 . 0 1 . 7 0 0 1 . 2 1 ^ ^ 0 0 5

0 0

. 0 0 . . . 3 4

. 2 1 0

0 1 2 5

^ ^ 0 0 0 ^ ^ 0 0 0 0 . 0 . 0 . 0 7

0 . 3 8 2 1 9 8 0 .

^ ^ 0 0 . 1 1

0 0 . 0 6 .

^ 0 ^ 9

0 0 1 .

0 0 0 0 0 . 0 . 0 . . . .

0 0 0 0 . . ^ 0 0 0

^ ^ ^ ^ ^ 0 ^ 0 2 6 1 8 2 2 4 6

4 1 0 1 2 7 3 2 1 8 5 5 1 2 8 5 1 9 3 8 2

2 8 2 0 3 9 7

9 4 7 3 0 5

2 6 3 0 1 7 1 4 7

0 0 7 8 8 3 2 7 2 8 5 5 3 2 7 9

1 0 2 4 6 5 1 8

. 2 4 6 9 5 1 3

6 4 2 1 1 0 4

3 9 9 5 8 1

5 0 5 2 2 3 9 6 4 2 9 2 6

4 1 4 5 2 6 0 5 5 7 . 5 3 8 1 2 1 3 2 3 8 0 0

1 1 1 9 7 0 3

6 2 5 3 9 2

3 6 8 9 9 9 6 5 2 6 3 5 2 6

0 0 2 5 3 8 9

0 9 0 6 7 3 ) 0 . . 1 ^ 0 . . . 2 1 5 6

. 1 3 1 1 4 4

9 3 7 0 6 7

. 7 2 5 3 7 7 1 2 8 5 3 3 2

6 3 9 6 2 4 9

6 9 1 8 0 7 . ^ 0 0 3

. 0

0 0 . 0 0 ^ 0 0 . 2

0 . 4 7

0 . . 0 . 0 0 2 . 6 8 . 4 2 8 1 0 4

0 5 0 2 1 5 8

4 4 9 3 4 6 t 0 0 . 7

^ ^ . ^ 0 ^ 0 . 0 ^ 0 ^ 0 0 2 2 5

. . . 1 0 1 6 2 8 9

0 ^ 0 0 0 .

^ 0 0 . . 3 . 0 . 1

. 0 .

0 0 0

0 ^ 0 0 0 . . 0 0 . 0 . 0 . 1 7

. 0 . . 0 1 7

. 0 . 0 . 2 0 3 0 8

0 0 . ^ 0 0 ^ 0

0 0 0 0 . 0 . 6

0 . 0

^ ^ 0 ^ 0 0 . 0 0 0 .

^ 0 . 6 . . . 1 3 n ^ ^ 0 . 0 0 0 ^ ^ ^ 0 . 0 o 0 0 0 ( c

8 8

1 1 3

E 4 2

R A L

D 7 1 1

I B I P M2 7 6 3 4 F A S 3 2 3

2 1 2 5 N 2 T

C 1 1 H T 3 9 4 5 A e

9

A 4 8 9 B

2 2 2 3

M 2 A 3 D D P

E A 1 C

7 C 2 P 6 2 U 1 1 O P B 4 M

A 4 L L 1 l P F L C B D H M S C 5 2

S 5 A P

I R U G I

D 3 M X L M A

E D T D L R D B R K 1 E 4 2 F M D B

B E A D H M C F O 1 R E b A R R T E D C T P M D H C T R B T B I F E R H S N Z D M P A P O B A Y K H P I A D Q P B 3 9 C

D Y K S A L M N A T C D S C P H F L P E P P G G N R I C X C F B N L Y C P T L C I A L G A B S Y C N C E R U T G X M S F A L N E L I T U K S N G A R A T V F N X P I C C N I a H T

')6^^^^^^^ 6 1 1 8 9 6 6

0 6 8 4 8 8 6 3 3 6 1 4 4 8 8 4 3 9 6 6

6 0 4 4 4 4 6 5 5 3 8 2

4 8 8 8 8 8 8 5 5

4 0 3 5 9 1 7 8 6 6 7 4 4 4 4

8 6 2 3 4 4 4 5 5 5 4 7 2

7 6 6 7 8 8 8

7 9 5 9 5 5

0 9 0 6 5 9 2 5 7 6 7 6

6 6 6 4 6 4 6 4 4 4 8 8 5 0 3 3 4 9 9 5 6 7 7

5 9 9 9 7 7 8

9 5 9 5 9 5 6

3 5 9 6 6 8 9 4 6 7 6 7 6

8 7 7 6 7 6 4

7 6 6 6 4 4 2 8 9 9 0 0 9 4 4 9 5 6 7

9 2 2 6 9 9 7

6 9 5 9 5 8 4

0 4 5 6 6 3 0 3 8 6 8 6 7

5 9 9 7 9 7 6

9 7 7 7 6 6 4 1

0 2 8 2 9 9 2 9 9 4 9 5 6

2 . 0 . 0 9 6 6 9

9 7 9 7 9 9 4

3 3 0 4 0 6 8 1 2 5 8 5 8 6

1 5 5 9 5 9 7

5 9 9 9 7 7 6 . 0 2 0 2 2 0 2 2 9 2 9 5

. 0 0 2 9 9 6

2 9 7 9 7 0 0

0 3 0 3 0 0 3 1 1 5 1 5 8

3 1 1 5 1 5 9

1 5 5 5 9 9 7 0 . 0

0 0 . . 0 0

0 0 . 0 . . 0 0 2 0 2 9

. . 0 2 0 0 2 2 9 2 0 3

3 0

0 0 . 0 0 0 . 0

0 0 . . 0 0 0 2 2 9

. 0 . 0 2

0 . 0 . 0 2 9

0 . . 0 0 0 0

0 0 0 0 0 . . . . 0

0 0 0 0 . . 0 3 0 3 3 0 3 3 1 3 1 5

. 0 3 0 3 3 1 3 1 5

3 1 1 1 5 5 9 0 . 0

0 . 0

0 0 . 0

0 . 0 . . 0 0 3 0 3 1

0 0 . . 0

0 0 . . 0 0 3 0 3 0 3 3 3 1 1 5 0 . 0

0 0 . . 0 0 3

0 0 . 0 0 . 0 . . 0

0 0 . . 0 0 0 3 3 1 0 0 . 0 . . 0 0 3 0 0 . . 0 0 0 . 1 6 9 7 1 7 1 7 4 2 4 2 6 7 1 9 5 5 9

4 8 9 4 4 8 3 8 2 3

7 2 7 4 8

5 0 8 1 9 8 4 9 3 4 2

7 8 2 6 9 4 3 1 6 4 6 4 6 4 2 9 4 9 6

0 5 0 4 6 9 2 3 6

7 4 5 8

8 1 1 9 9 6 8 8 8 5

8 5

9 6 3 1 7 0 3

4 2 8 2 0 6

8 2 3 5 1 2 7 6 9 5 0 0 4 2 6 8 4 5 8 4 6 1 9

7 7 0 6 4 5 6

9 4 4 8 6 2 3

5 1 6 9 5 1 1 6 2 7 1 5 2

1 1 1 4 9 4 7

5 6 1 0 6 7 2 0 1 1 1 0 2 2 0 5 5 0 6 7 4

0 8 9 9 0 6 1

0 2 5 6 8 4 2

1 7 3 8 9 0 2 3 4 3 1 9 7

6 4 2 7 6 6 3

0 1 0 8 2 4 5 0 0 0 1 0 0 1 0 0 6 0 0 4

1 0 0 0 0 0 8

1 1 2 2 8 4 2

1 1 7

1 1 8 0 1 2 4 7 5 5 7

2 7 9 6 9 7 9

1 0 2 3 1 2 3 1 . . 1 0 1 1 0 1 1 0 1 1 7

0 1 1 1 1 1 0 2 0

1 2 6

0 0 1

. 0 0 0 0 1 1 1 1 2 1 9

2 4

0 1 1 1 1

0 1 1 0 2

. 1 2 1 2 2 1 0 1 2 2 9 2 9 9

3 0 0 1 1 2 7 1 3 3 3 3 1 0

0 0 0 . 0 . 0 . 0

0 0 . 0 . 0 . 0 0 . . . 1 0

0 0 . 0 . 0 0 0 1 1 1

0 0 1 1 1 1 5

0 0 . 0 . . 0

0 . 0 1

0 . 0

0 0 . . . 0 0 1 0 1

0 0 . 0

0 . 0 . 1

0 0 . 0 0 . . 0 . . 0 0 . 0 1

. 0 1 2

0 1 1 2

0 1 0 1 1 1 1 3 2 0 . 0

0 0 0 0 . . 0 0 1 0

0 0 . 0 . 0

0 0 . . . 1

0 0 0

0 0 0 . . 0

0 0 . . 0 0

0 . .

0 0 . 0 0 0 0 1 3 0 0 . 0 . . . 0 1 0 0 . 0 0 0 . 6 7 5 6 8 6 9

3 8 3 8 1 8 2 8 7 3 6 2 8 3 1 1 4 9 1 5

1 0 1 2 1 2 1 6 3 2 1 7

7 7 4 9 6 5 0 9 2 7

3 8 6 5 6 4 9 1 2 1 7 3 3 9 9

2 3 1 3 3 5 1 9 0 9 2 6 5

2 5 8 4 4 2 5

9 6 3 1 1 3

4 3 6 2 0 5 5 9 6 9 0 4

1 5 6 4 3 2 3 2 5 3 3 9 4 0 0 5 5 1 8 4 9 0 7

1 1 8 5 0 8 1

2 2 0 3 3 0 7

7 7 0 4 6 9 6 8 2 9 0 2 5

0 0 5 9 8 8 4

2 9 0 8 7 3 6 2 1 1 8 0 8 6 2 7 3 1 0

5 2 8 7 8 6 3

8 8 2 7 8 1 4

6 5 8 8 2 7 4 5 2 5 9 1 9

0 8 2 3 2 3 7

0 0 5 6 6 0 9 . 6 2 6 0 6 5 7 7 0 6 9 6

5 4 3 1 2 1 0

1 2 2 0 6 3 5

4 5 3 3 8 2 1 5 6 3 9 1 9

7 8 4 4 8 6 9

5 6 8 0 6 9 2 6 . 6 . 6 . . 5 5 7 5 5 5

. 5 5 3 5 2 0

5 0 0 0 8 8 0

. 4 5 4 3 4 4 0 8 3 7 2 9

3 5 3 8 3 7 0

3 3 2 5 4 5 2 ^ 6 .

^ ^ 6 6 . 6

^ ^ 6 ^ 6 . . 5 . 5 5

^ ^ 6 6 .

^ ^ 6 6 . 5

^ 6 .

^ ^ 6 6 . . 5 . 5 2

. 5 5 5 9 4 8

^ ^ 6 6 .

^ ^ 6 6 . 5

^ 6 .

^ ^ 6 6 . . . 4 . 6

^ ^ 6 ^ 6 6 . 6

^ ^ 6 ^ . 4

^ 6 6 . 4 . 4 . . 4 3 8 3 7 0

. 3 . 3 3 3 6

3 3 3 2 2 4 7 ^ 6 .

^ ^ 6 6 . 6

^ ^ 6 ^ 6 . . 3 . 3 7

^ ^ 6 6 .

^ ^ 6 6 . 3

^ 6 .

^ ^ 6 6 . 6 . 3 3

. 3 3 3 3 2 1 ^ ^ 6 ^ . 3

^ 6 6 . 3

^ 6 .

^ ^ 6 6 . . . . 3 3 ^ ^ 6 ^ 6 6 6 . .

^ ^ 6 6 ^ ^ 7 1 9 7 4 2 1

7 8 4 2 1 2 7 7 6 9 2 3 8 7 7 3 2 8 7 7 4

1 5 8 4 7 9 9 5 1 5 6 3

6 0 6 8 9 4 1 8 9 1

8 4 4 1 3 6 6 9 7 4 2 1 2 4 5

3 9 2 2 5 8 0 5 0 0 8

1 5 2

7 3 6 2 1 2 3

6 0 0 3 5 1

2 7 8 8 5 9 9 4 6 4 6 1 1 9 8

8 3 0 4 5 3 4 9 4 9 . 3 6 3 4 6 3 8 8 6 4 8 4

^ 3 9 8 6 2 4 8

3 0 7 5 3 9 4

4 0 2 7 7 0 8

4 2 0 3 0 3 4 9

4 2 4 1 1

4 3 0 2

6 5 5 9 5 3 5 4 1 8

3 8 8 0 9 4 4 9 4 9 1 7 9 1

3 5 5 8 0 . 3

^ 0 . . . 5 . 4 3 5 3 0 3

. 4 3 2 5 3 6

4 6 5 3 0 7 0

.

^ ^ 0 0 0 .

^ ^ ^ 0 0 . . 3 . 3 .

^ ^ 0 0 .

^ ^ 0 0 . 0 5 . . 0

. . 4 .

^ ^ 0 0 . . . 4 . 6

^ ^ 0 ^ 0 ^ 0 0 0

^ ^ 4

0 .

^ 0 0 0 0

^ ^ ^ ^ . 4 2 4

0 . 4

^ 0 .

^ ^ 0 0 . . . 4 3 . 5 2 0 5 5 3

0 0 . 2 2 6 3 2 1

5 0 6 1 5 3 9 ^ ^ 0 ^ 0 0 . .

^ ^ ^ 0 .

^ 0 . 5 . . 4

^ 0 .

^ ^ 0 0 0 .

^ ^ ^ 0 0 . . 3 . 3 9

. 5 4 2 0 8 8 ^ ^ 0 0 .

^ ^ 0 0 . 2

^ 0 .

^ ^ 0 0 . . . 2 3 6 ^ ^ 0 ^ 0 0 . . 3 ^ ^ 0 0 .

^ ^ 0 3 8 9 5 8 8 7

2 7 8 1 3 2 2 6 7 7 3 5 9 7 8 3 7 9 1 3 1

6 5 6 0 6 0 5 5 2 6 5 6 8

4 3 7 4 4 8 1 4 3 1

0 6 7 0 2 1 3 1 6 4 8 8 4 8

6 6 3 5 4 5 9 7 6 0 9 6 4

2 1 0 8 1 3 4

1 4 9 6 8 6

4 9 0 9 2 8 7

2 7 4 6 3 9

2 4 7 3 4 2 6 8 7 3 3 0 2 1 0 2 8 3 1 0 0 3 0 7

2 6 1 4 8 0 2 6 5

3 0 0 2 5 2 4

1 0 4 7 6 3

1 3 0 0 9 9 9 3

4 0 2 5 3 7 6 9 0 5 3 9 5 0 8

1 . . 2 1 7 1 6 2 9 3 7 4

1 6 1 2 0 3 2 2 . 2 5 2 8

9 3 5 8 1 . . 4

0 . 0 . 0 1 9 2 2 1 5 5 3 2

. . 1 9 3 4 7

3 9 8 9 3 0 1 9 4

. ^ 0 0 . 0 . 4 8 9 4 9

0 . 1

0 0 . 1 2 . 5 . 2 0 1 7

0 0 .

^ 1 7

. . 1 5 6

0 5 3

.

0 ^ ^ 0 ^ ^ ^ 0 . . 0 2 0 0 3 2 1

0 0 2

. . . . 0

0 0

^ ^ . 0 . . . . 0 0 . 3 . 9 0

. 1 1 2 . . 5 . 0

^ ^ 0 0 4 6

0 . ^ ^ 0 . 0 2 . 0

0 0 0 0 0 ^ ^ 0 .

^ ^ 0 0 . .

0 ^ 0 ^ 0 ^ 0 ^ 0 0 . ^ 0 0 0 . .

^ 0 0

^ ^ ^ 0 0 . . 3

^ 0 . 0

^ ^ 0 0 . 2

^ ^ 3

0 .

^ ^ 0 ^ 0 0 ^ 0 0 . 0 . 0 .

^ ^ 0 ^ ^ ^ ^ ^ ^ ^ ^ 0

0 5 8 5 6 3 7 8

3 9 6 8 2 3 0 7 1 7 8 6 2 7 9 7 8 7 6 6 8

5 2 5 9 8 4 2 1 5 9 2 9 1

1 4 0 9 2 4 0 7 6 3

7 5 2 2 9 8 5 6 3 8 2 8 9 6

0

4 8 3 8 0 3 2 6 9 3 5 0 2

3 8 1 8 0 1 1

3 6 5 4 8 3

0 3 4 6 1 7 1

9 5 5 0 8 3

9 5 1 8 4 8 7 5 5 6 0 1 2 4 1 1 7 1 4 2 1 7 1

. 8 9 7 4 0 7 6 5 0

5 5 1 6 3 0 4

2 3 . 1 2 5 3 3

2 6 8 5 9 5

1 2 6 6 6 2 9

8 9 9 2 2 2 . . . 0 2 5 0 . 1 2 5

. 8 0 . 1 9 0 1 2 7 9 5 8

1 8 0 1 2 1 1 0

0 2 5 7 9 9

2 3 7 7 6 4

3 6 0 6 7

0 8 7 3 1 4 4 6 8 9 0 0 0 . . 0

0 0 . . . 1 0 0 1

. 2 2 2 1 5

. . 0 0 9 3 3

. 1 2 0 3 2

. 2 3 3 5 1 7 2 6 7 2 3 4 9 ^ ^ . 0 0

0 . 0 0 . 0

0 0 . 0

0 0 0 0 0 . . 0 . 1 4

0 0 . . 1

0 0 . 2 4

0 . 0 . 0 . 2 0 6 1 . 2 9 2 3 5 8 0 . 0 0 .

0 0 . 1

0 0

^ 0 . 0 0 0 . 0

^ 0 . 0 3

0 . . . 1 0

0 ^ ^ ^ ^ ^ ^ 0 0 0

. . ^ 0 0 0 .

^

0 0 0 0 0 0 0 . . 0 . 0 . 0 3 4

^ ^ ^ 0 . 0

^ ^ 0 ^ 0 0 1

. .

0 0 . 0 1 ^ 0 . 0 0 . ^ ^ 0 0 4 5 4 2 3 2 9

3 2 4 4 5 8 3 8 4 1 1 1 9 8 8 8 9 6 1 9

0 1 1 8 0 1 4

9 2 4 9 5 2

8 4 8 2 5 9 0 6 7 9

9 0 4 7 5 9 6 3 7 4 1 4 6 6

7 9 6 0 2 9 7

6 6 8 7 9 5

7 7 2 6 4 9 9

8 1 3 9 0 6

5 7 2 2 0 9 4

9 8 9 0 6 6

9 6 0 4 1 7 1 6 5 8 1 0 1 1 2 3 7 2

1 9 3 2 2 0

1 0 6 1 9 0 1

4 1 5 9 3 2 1

3 0 7 0 4 8 8

6 7 0 3 1 9

0 1 1 7

. 8 7 2 0 3 2 9 2 0 6 . 0 . . 1 1 9

. 1 2 1 3 5

. 1 1 4 0 0 5

2 3 1 3 7 4 6

0 2 5 1 4 7 0

6 5 8 6 9 5

5 5 0 0 9 4 2 1 0 7 1 5 2 7 0 . 0 .

0 0 0 . 2

0 . 0

0 0 . . 9 0

0 . 0 . 0 0 . . 2

0 0 . . 3 7

0 . 1 . 2 . 0 7 9 3

. . 0 . 0 1 2

0 2 0

. 3 2 1 4

. 2 4 0 2 1 2 2 6 1 3 3 1 9 2 6 ^ ^ 0 0

0 . 0 0 ^ 0 0 . 0 0 . 0 . 1

^ 0 0 2 2

. . 3

0 0 0 .

0 0 . 0 0 . . . 0 1 2 . 1 4 7 8 6 6 ^ 0 0 0 2

. . .

0

0 0 0 . 0 0 . 0 0 0 0

0 0 0 . . .

0 0 0 0 0 . 0 0

. . 0 1 1 0 0 . . 2 0 0 . 0 0 ^ 0 . .

0 ^ 0 ^ 35 2 4 6 4 7 6

4 9 9 3 7 4 9 5 9 4 2 3 9 3 8 9 1 1 6 4

6 3 6 6 0 6 3

0 5 8 6 6 2

8 3 6 8 6 5 1 6 3 9

3 5 9 5 2 1 0 8 1 9 3 7 8 3

1 7 7 5 5 4 2

1 5 1 6 3 7

4 3 5 4 6 9 9

8 8 5 4 5 3

3 5 3 1 3 1 4

5 3 6 3 3 8

4 7 1 8 8 7 8 2 7 6 4 . 5 1 2 8 2 0

. 1 4 7 6 0

1 1 9 3 0 4 2

8 5 7 7 2 8 2

1 9 7 5 7 4 0

8 0 6 5 0 5

9 0 7 1 9 7 9 8 4 9 7 7 2 0 0 . 0 . . 1 4 9

0 0 . 0 3 0

. 4 2 . 3 0

. 0 . . 3 7 1 9 8 1

6 3 3 7 6 9

0 3 5 5 5 3 1 2 9 7 2 3 3 7 ^ 0 2

. . ^ 5 4

. 3 9 5 3 0

3 8 4 1 1 1 4

0 0 0 0 . 0 1

. 0 . 0 0 . 0 1 4

. . . . 4 4 4 2 2 1

0 0 . . 0 . 1 0 2

0 4 1 2 9 8

. . 4 1 2 2 5 5 0 1 3 4 4 9 ^ 0 0 0 0 0 0 0 0 . . 7

0 . 0 . 2 1

^ ^ 0 0 . 0 2

0 0 . 0 0 0 . . 1

0 .

^ 0 . . 4 . 2 5

0 0 0 . 0 .

0 0 0 . 4

0 0 . 0 2 2

. . . . 3 . 0 8 3

0 1 0 1 1 0 0 8

.

^ ^ ^ 0 0

. 0 0 0 0 0 .

0 . . 1 0 ^ 0 . 0 0 ^ ^ 03 5 6 4 8 4 7 5

8 3 3 5 1 9 8 2 8 4 6 1 7 7 5 6 4 2 5

8 0 8 3 3 6 9

9 8 4 0 4 5

7 5 6 3 8 4 4 5 3 6 6

3 4 4 7 1 7

2 8 5 5 3 6

8 8 7 2 2 9

9 7 8 0 9 4

9 7 2 2 8 5 4 1 5 9 5 6 0 7

1 8 2 3 3 8 5

9 2 7 3 3 4 9 7 0 2 9 7 8 7 1 6 7 7 9 3

5 7 6 4 5 3 1 6 6

8 1 5 1 1 3

2 6 9 5 3 6

4 5

. 2 2 3 1 5 8

1 2 2 9 4 0 9

2 3 3 9

2 5 3 1 3 8 0 9 3 3

. . . . 6

. 0 . . . 1 0 4 4

. 3 4 8 1

0 5 3 6 1 1 1 9

. 4

. 3 1 1 4 0 3 1 1 3 1 5 6 8 8 5 8 4 4 3 2

2 2 6 4 0 7 8 6

1 4 6 9 6 7

1 0 7 7 2 8 5 9 0 0 0 . 0 . 0 . 0 .

^ 0 1 0 .

0 0 0 0 3

0 0 0 0 0 . . .

0 0 0 . 0 .

0 0 ^ 0 0 . . .

0 0 . 0 4

0 0 . 0 . . 0 . . 2 5 1 0

. 2 7 1 5 2 2 2

1 7 6 5

. 1 3

0 . 3

0 . . 5 4 2 7 9 4 0 .

^ ^ ^ ^ 0 ^ 0 0 3 0

. 0 2 . 7 . 2 0 5

. 1 . 1 6 0 . 0 . 0 . . 0

0 0 0 0 . 0 . 0 0 0 3 3

.

^ 0 ^ ^ 0 0

0 0

^ 0 0 0 ^ . 0 .

0 ^ 0 . . . 0 0 0 ^ 0 8 9 8 7 5 9 2 4

3 1 0 0 6 5 3 5 9 3 7 9 4 2 3 4 1 9 9

2 0 1 4 8 4 2

8 7 8 0 6 2

7 7 7 4 9 4 5 7 3 6

5 3 5 7 9 7 5 6 7 9 7 7 3

7 0 4 4 2 4 8

4 7 1 2 2 0 9

. 8 5 1

9 8 2 3 7 0 9 2 4 4 6 2

3 3 6 4 3 2 8

2 9 5 3 5 5

9 4 6 7 7 3 6 2 2 6 0 6 7 1 5 2 5

. 6 3 3 1

2 8 4 3 3 2 5 5 4 4 8 4 9

2 8 3 5 6 4 9

2 6 9 5 7 4 4

0 7 4 3 3 8 5 3 4 6 9 1 9 . 0 0 0 2 . 1 6 ^ 0 2 0 8 2

. 1 9 3 1 6 2 7 8 5 5 3 1

. 3 6 6 2 2 5

3 7 9 0 2 8 2

1 9 0 0 5 8 2 5 7 3 5 0 0 0 . . . . ^ 0 0 2

0 . 4 . 2 2

0 . 4 . 1 1 . 4 0 6 2 8 9

0 . 1 3

. 5 8 5 7 6 7

. 9 6 5 2 2 5 3 8 1 4 5 6 1

0 . 0 0 0 . 0 .

^ ^ 0 ^ 0 0 ^ 0 ^ ^ 0 .

^ 0 0 .

^ 0 . .

^ 0 0 0 . . 1 . 9 5

^ 0 0 .

^ 0 .

^ 0 0 2

. 0 ^ 0 ^ . 0 0 3

0 0 . 0

0 . 0 . 1

0 0 . 0 . 9 2 0

0 0 . 2 . 2 8 6 1 8 7 ^ ^ ^ 0 ^ ^ 0 4

. .

0 ^ 0 ^ 0 . 0 0 1

0 . .

0 ^ 0 0 0 0 4 1

. 0 . 0 .

0 ^ ^ 0 0 1

. . 0 1 4 . 0 0 . ^ 0 0 0 . . 0

^ 0 0 0 . 0

19 7 9 7 3 3 6 6 5 7 8 5

4 9 8 1 1 2 3 2 3

9 0 5 9 0 8 6 5 8

9 6 4 7 5 1 8

3 5 7 9 3 0 2 6 0 4 5 6 5 2 7 5 7 6 8 4 6 4 4

8 2

2 4 3 9 0 1 1 2

5 5 4 4 3 0 0 9 4

5 8 1 0 3 8

2 4 7 1 4 2 5

0 2

2 3 9 1 5 5 1 6 4

9 0 8 8 8 5 3 8 2 1 4 2 8 7

3 1 7 6 2 5

1 5 2 1 4 8 7 5 3 6 5 7 4

. 0 . 0 0 . 0 3

. 0 . . 9 9 7 4 3 4 6 1 5 6 1 8 . 2 2 4 . 1 6 2 6 3 5 7

4 4 6 4 8 7 1

8 2 8 9 0 2 4 7 3 4 8 5 1 0 0 . 0 . . 0 0 4 2

. 4 . 7 9 2 2 5 0

. 1 0 2 1 8 1 3 8 3 8 4 9

. 3 8 5 2 5 2

. 1 5 6 0 4 0

2 3 5 5 8 5 4 8 7 1 6 7 0 0

0 0 0 . 0 . 4 3 9 2 6

^ 0 2

. 0 . . . 3 .

0 0 0 0 0 0 . 1 . 0 . 6 . 1 3 5 2 1 5

.

^ 0 0 ^ 0 . 0 . . 4 3

0 0 0 0 0 0 . 0 0 0 . . 3 6 1 0 1

0 9 5 5 1 5 1 . 0 2 0 0 ^ ^ 0 0 . 0 0 . . 1 3 0

0 0 . . 6

0 0 . 0 . 2

0 0 . . 2 2 .

0 0 . 0 1

0 . . .

0 0 .

0 ^ 0

^ ^ 0 0 3 . . 0 0 0 ^ ^ ^ 0 4

. .

0 0

^ ^ 81 6 9 4 1 8 3

7 2 1 1 5 7 2 9 8 7 5 6 6 5 3 9 8 4 1

5 1 1 6 8 0 2

5 0 7 0 6 7

6 3 7 2 6 8 6 7 3 6

6 4 2 9 3 4 1 9 9 8 1 3 7 2

3 1 9 5 9 9 9

1 0 4 8 8 8 7

1 8 6 3 4 3 2 8 2 3 9 9

4 7 1 2 7 5 7

7 3 9 7 5 8

9 5 9 6 7 7 1 6 3 . 2 1 7 2 0 6

2 0 6 8 3 8 7

1 5 1 0 4 1 7 1 5 2 5 4 4 9

2 4 8 9 2 4 9

. 4 9 3 4 8 4 6 9 2

. 2 6 8 9 5 6

2 7 6 4 9 8 3

6 9 7 7 9 7 . 0 6 5 7 1 9

8 9 4 6 1 7 0 0 . . 2

0 . . 2 1 8 2 1 0

. 0

. 7 0 1 0 5 5 6 5 7 4 2 6

^ 0 0 6 9

. 0 1 0 2 1 0

0 . 0

0 0 . . 1

0 . 6 1

. . 0 2 ^ 0 0 7

. 3 0 0 6 4 1 3 8 1

0 2 5

. 9 2 3 7 8

7 3 3 6 2 5 ^ . 0 ^ ^ 0 0 0 3

. . 0 . 3

^ 0 1

. 0 0 3 7 5 9 5 7

0 0 0 0 0 . 0 . 0 0 . 0 0 6 0 1 1

0 0 . .

0 0 0 . . 0 . 4 2 4

0 . 0 . 1 4 6

0 0 5 2 4 5 ^ ^ 0 0 0 . 0 0 . . 0 . . 0

^ 0 .

^ 0 0 0 . . 0 0 . . 1

0

^ 0 ^ ^ 0 0 0 ^ ^ . 0

^ 0 0 0 0 . 0 7

. 0 . 0 . 2 . 5 1 ^ 0 0 . 0 0 0 . 0 .

^ . 0 0 ^ 0

08 4 3 1 8 4 1

9 1 4 8 1 2

8 6 5 5 9 6 9 9 6 5 2 5 8 9 4 1 4 2 4 9 7 3 8 8 0 3 4 6

9 9 1 3 5 7

8 4 1 3 5 8 5 6 3 2

7 0 2 8 9 8 5 1 9 9 6 9 8 3

5 0 2 6 3 1 2 1 8 2 7 6 4 7 5 6 6 9 6 1 9 9 1 4

. 8 9 6 . 1 9 5 4

1 2 1 3 3 1 0

3 2 3 1 1 1 2 4 6 6

7 7 1 2 8 7 3 4 5 3

3 3 1 0 1 1

3 6 4 1 8 4 0 4 8 8 2 3 2 6 1

9 6 2 5 9 9 9 1 8 . 9 0 2 5 3 4

0 . . 0 9 0 0 . 0 9 2 1 9 6

. 2 5 4 9 8 1 8 6 4 7 4 7

3 1 4 8 8 8 3 3 4 0 0 2 5 7

5 3

. 3 1 9 7 2 1 1 0 6 4 6 6

0 0 0 . 0 ^ 0 4

. . 0 0 . 0 . 3 8 1

.

0 0 0 0 . 1

0 . 5

0 . 0 . 1 2 . 2 ^ 0 3 0 2 4 5

0 0 . . 3

0 0 . 0 2 9

. . 1 . 2 1 4 8 5 4

. 3 1 8 2 4 0

1 0 9 7 6 6 0 0 0 0 0 . 0 . 0 0 . 0 . . 2 3

0 0 . 0 .

0 0 . . . 1 2 5

0 . 0 . .

^ 0 0 0 0 7 3 1

. 0 . 1

0 . 6

0 0 . 0 1 2 0

. .

0 0 . 3

0 0 . . 8 1

. 2 . 0 . 3 ^ ^ 0 0

0 0 0 0 ^ ^ ^ 0

. 0 0 . 0 0 . 0 ^ ^ 0 0 ^

0

21 7 1 7 8 2 5

1 2 6 7 7 8 9 9 3 3 9 4 8 9 0 7 2 1 5 1

4 2 8 8 5 7 5

8 9 6 9 3 3

1 5 6 8 2 9 1 1 6 4

1 0 7 2 1 5 7 7 5 8 9 1 8 3 5

3 1 2 3 2 6 8

1 4 2 5 6 3 6

2 8 2 4 1 1 1 9 3 4 4 1 7

7 7 8 1 8 6 5

4 3 3 1 8 6

1 4 3 0 9 8 9 4 3 . 6 2 3 1 0 3

3 1 3 2 0 1 4

0 9 1 3 8 6 0 4 4 4 2 5 0

2 0 8 9 3 4 8

8 7 3 4 7 1 9

5 1 7 2 7 9 5

6 9 8 2 4 3 . 4 0 6 3 6

0 . 0 . 3 . 1 6

0 4 2 1 0 3 7

0 3 3 1 7 2

. 1 7 1 1

. 3 2 4 4 2 7

5 0 7 1 7 9 8

4 5 7 3 0 0 9

9 6 2 3 6 3 0 0 . 0

0 0 0 7

. 0

0 . 0 . 0 . . 8 9 8

0 0 1 0 4 9 7 2 2

0 0 . . 9

0 0 0 0 1 6

0 9 2 2 2 5 7

0 2 3 1 1 9 3

2 5 2 3 7 9 ^ . 1

0 0 0 . 0 0 . 0 0 5

0 0 0

^ . .

0 0 . . 0

0 0 0 . . 0 . 0 1 7

0 . 0 0 0 . .

0 0 . 0

0 0 . . . . 0

. 0 0 . 5 1 4

. 0 0 . 3 0 7

. 9 5 1 8 2 ^ ^ 0 ^ ^ 0 0 0 0 .

^ ^ 0 0 0 . . 0 0 0 . . 2

0 0 .

0 0 . 0 . 0 . 0 . 2

0 0 0 . 0 . 3 .

^ 0 1

. . . 0 0 0 0 0 ^ ^ 0 ^

5 3 8 9 9 2 3 2

1 1 7 5 3 4 7 7 6 8 3 6 1 6 2 7 2 9 4 6

3 9 2 4 7 1 1

7 4 3 2 6 3

0 1 8 2 6 1 6 0 2 2

5 3 8 7 9 4 7 2 4 5 2 4 7 8 9

7 7 2 4 0 2 7

1 7 3 4 3 0 7

. 6 2 9 3 9 4

1 3 0 1 5 3 7

1 3 6 1 8 6

6 5 9 7 8 0 8

8 1 5 8 9 4

3 7 7 5 6 4 1 6 5 5 0 3 1 8

. 1 6 0

2 1 5 6 5 9 3

7 8 9 1 2 2

2 0 4 7 5 2 5

1 7 0 7 5 8 2

1 0 8 4 2 4 3

8 3 2 6 5 6 . . . 2 2 8 7

0 . 0 0 . 0 . 0 . 3 2 . 2 9 5 6

. 7

0 0 2 . 1 2 1 1 8 1

3 9 5 0 8 2

. 6 2 . 1 2 1 9

2 5 2 6 3 1 7

4 5 6 1 6 9 8

9 5 7 4 3 6 0 0 0 0 0 0 . . .

0 0 0 0 . . 1 1 9

^ 0 . 0 0 1 6 5 . 2 3

0 0 0 . . 1

0 0 . . . 1 0 0 9

0 . 0 0 . 9 0

. 1 1 1 9 3 8

0 1 1 1 9 5 3

4 6 0 1 1 8 ^ 0 0 0 .

0 0

. .

0 0 0 . 0

0 0 0 1

. .

0 0 0 0 . 0 . . 2 1 6

0 . 2

. . . 0 6 2 2

0 0 6 7 2 4 5 ^ ^ 0 0 0 .

. 0 0 0 0 . 0 . 7

. 0 3 . 2 2 ^ 0 . 0 . 0

^ 0 ^ 0 0 . 0

0 0 . 0 0 . 0 . 0

97 1 5 2 2 4 5

0 7 6 3 2 6 6 9 7 4 2 8 5 5 9 5 1 6 2 5 6

6 9 2 2 6 1 1

1 8 0 3 4 6

9 5 8 3 6 7 2 4 4

6 0 9 1 3 6 6 3 6 9 4 7 1 1 8 2

2 5 5 6 2 5 1

0 7 3 2 7 7 8

8 7 1 5 8 2 9

8 9 7 7 1 1

4 5 4 8 9 3 9 5 9 3 7 9 5

6 2 8 6 8 9 8 2 5 . 6 . 0 2 1 4

1 6 0 8 1 3 4

4 4 0 0 0 4 1

9 2 8 2 3 4

1 1 2 8 7 4 9 9 1 6 1 6 8 3

. 3 9 2 3 8 2 3 5

8 3 4 2 1 3 0 0 0 . 2 1 1 8 1 7

. 1 1 2 1 2 5 9 0 7 2 1 4

1 0 3 5 0 2 8

2 2 9 0 1 2 .

0 ^ 3 0 6 2

0 3 0 3 1 5 3

1 0 3 6 7 6

. 0 . 0 3

0 . . . 6 1 5

^ ^ 0 0 0 . 0 . 7

. 0 0 . 1 9 7

. 1 4 2 0 2

0 . . 4 6 . 1 3 0 . 1 4 8

1 3 8 9 9 7 ^ ^ 0 0 3

. . 0 3 4 0 2 1 5

0 0 . .

0 0 0 0 . 0

0 . . 0 . 0 . 1 . 3 1 0 0

0 0 0 0 . . . . 0 ^ 0 6 6

0 0 . . 0 0 0 5 4

. 1 . 1 5 1 9 7 0 0

^ ^ ^ 0 ^ ^ ^ ^ ^ 0 0 8

. 0

0 .

^ 0 ^ 0 0 . 0 . .

^ 0 0 0 . 2 0 . 3 9 0 0

^ 0 0 . .

^ 0 0 0 . 0 ^ 0 . 0 0 0 .

^ 0 .

^ ^ 0 .

0 0 0 0 0 . . 0

0 ^ 0 ^ ^ 27 6 7 3 9 8 7 5

7 5 8 6 5 2 5 1 9 5 1 8 5 1 1 3 8 8 2 1

5 9 8 7 6 5 6

1 3 8 0 3 5

8 6 4 9 4 7 2 7 2

7 8 8 7 7 6 9 1 5 1 5 4 9 9 1

5 8 1 8 9 6 0

4 9 9 3 6 1 3

0 8 3 8 9 2 3

6 7 1 8 5 9

8 7 2 3 5 8 8 3 2 5 3 1

8 0 1 4 2 1 0 6 9 0 0 9 6 2 9 1

4 9 1 1 1 6 3

1 8 3 5 5 9 1

9 9 1 2 4 0

3 4 7 4 1 7 0 2 5 9 9 2 9

0 8 0 5 8 2 4

2 4 6 5 9 7 ) . . 0 6 . 6 7

. 6 1 3 9 5 9

. 8 9 2 5 6 2

1 8 2 4 9 1 1

0 0 4 2 9 7 1 5 0 7 3 3 9

4 7 0 6 6 7 7

9 7 4 7 3 1 9 . 0 0 . 0 0 0 6

. 0 0 . . 1 4 2

0 . 7 2 9

. 2 9 1 6 9 3

. 0 5 . 4 5 . 3 2 0 1 4 6

. 2 2 8 3 1 4

2 4 1 3 1 4 t ^ 0 0 . 0 .

^ ^ 0 ^ . 0

0 0 0 0 . . 3

^ 0 0 .

^ . 0 0

0 . 0 0

^ ^ 0 ^ . 0 0 9

0 . 0

0 0 . ^ 0 4

. . 0 2 1 7

0 0 . 0 . 5

0 . 0 0 ^ . 0

^ ^ 0 0 0 0 . . 1

0 . . . 2 1 . 2 0 ^ 0 0

. . ^ . 0 0 ^ 0 0 .

^ ^ 0 0 1 9

. . 3

^ 0 0 0 1 1 4

. 0 . 3

0 ^ . 0 0 0 0 . 0 0 .

0 0 . 0 . . 7 n 0 0 . . 0 0

0 ^ ^ 0 ^ ^ ^ 0 0 c o

( C 2 8 5 A

1 2 1 0 1 6

6 N 7

D 2

G A A 3

N 5 7 6 6 1 A 2 1 1 1 9 1

2 3 2 B 3

K A C 5 B L 8

Y 3 2 H f T C K 2 L

A I N N f 4 D 5 9 3 6 1 1 P L E 1 K

P O D 1 M

Z C E S R R 2

R 7 1 P N A N 4

R 1 T 2 R 2 3 P A

Y P 6 r

2 1 D 3 7 1

E 6 3 2 9 l e M C C D r A

Z S L L 6

S I L L o K

A C 7 P R P H C O T D H O D D

P O T ME I 2 P 7

I 2 2 S F L 9 L

C I F P P A B C C Y H T C S Y L C C S E C S G B L B C K V B A U U E X X G G P o F 8 3 R

T M R S 1 L S K H 2 E F 7 B 2 4 B 2 R D A L P T C L H Z U 6

S S C S E U C 1 G X 7

F T 1

S I L T L P C C D M T T T C Z N R A P I X E T D R b A P P T E C A A C N T a S T

')6^^^^^^^ 6 4 4 4 4 6 5

7 6 4 6 4 4 6 4 4 2 9 2 4 5 3 6 5 5 5 1

9 7 6 7 6 6 7 6 6 4 0 2

2 1 0 5 5 9 8 7 6

6 6 5 6 5 5 6 5 9 6 8 7 7 7 3

5 9 7 9 7 7 9 7 7 6 1 0 6

9 1 6 4 5 7 9

4 4 7 2 6 6

4 6 6 6 6 6 6 6 4 9 3 5

0 2 2 7 2 7 1 3 3 8 1 5 9 5 9 9 5 9 9 7 6 1 9

6 3 7 5 4 1 7

8 7 4 2 2 2 4

6 4 6 4 6 6 4 6 2 4 7 7 1

3 2 2 2 2 2 2

2 1 1 8 3 3 3 1 5 1 5 5 1 5 5 9 1 6 2

1 7 0 1 5 0 1

7 5 7 0 2 2 6

3 6 4 6 4 4 6 4 2 2 2 6 8

9 0 0 2 0 2 7

8 2 2 5 3 3 3 0 3 1 3 1 1 3 1 1 5 3 1 9

3 1 2 2 1 6 0

2 0 5 1 0 0 2

3 3 6 3 6 6 3 6 7 2 7 7 0

3 0 0 0 0 0 9

3 8 8 1 1 1 3 . 0 3 0 3 3 0 3 3 1 0 3 6

0 3 3 3 2 2 6

3 3 0 3 1 1 0

0 3 3 3 3 3 3 3 3 7 3 7 3

3 4 4 0 4 0 2

4 3 3 4 3 3 1 0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 3 . 0 1

0 0 . . 0

0 0 . 0 . 3

0 . 0

0 . 0 0 0 3 3 2

0 3 3 3 3 3 5

0 0 . 0 . . 0 0 3

0 0 . . 0

0 0 . . 0 3 0 3 3 3

0 . 0

0 0 . . 0 0 3

0 0 . . 0

0 0 . . 0 3 0 3 3 0 3 3 3 3 3 9

0 3 3 4 3 4 0

3 4 4 4 4 4 3 0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 3 0 3 3

0 0 . . 0

0 0 . . 0 3

0 . 0

0 0 . . 0 0 3 0 3 4

0 3 3 3 4 4 4 0 0 . . 0

0 0 . . 0 3

0 . 0

0 0 . . 0 . 0 . 0 3 3 4 0 0 0 . 0 0 3 0 0 . . 0 0 0 . 2 9 3 3 3 7 2

7 4 3 0 2 3 8 6 1 9 5 3 6 6 8 4 9 8 9 6

1 2 6 2 8 5 9 8 1 3 2 6

3 0 2 2 7 7 4 1 9

5 6 1 1 8 2 3 5 1 8 1 2 2 8 8

2 0 1 2 2 2 8 1 3 9 1 1 8

6 1 1 3 7 1 3

3 4 4 9 3 9

2 9 0 3 4 1 7 5 1 5 1 8

9 9 1 4 9 6 7 3 6 3 3 3 3 3 6 1 4 0 4 5 6 6 9

7 2 0 9 9 7 3

3 3 5 4 7 4 3

2 7 2 5 2 1 0 2 0 4 0 6 8

5 0 9 8 1 8 1

2 5 4 0 9 2 1 3 3 3 3 4 3 5 5 5 3 4 1

3 8 4 0 2 0 0

5 2 9 6 2 7 7

5 2 3 3 3 9 5 2 6 4 9 6 9

1 6 0 6 4 6 5

5 2 6 7 8 8 9 0 1 1 1 3 3 1 3 3 3 1 6 6

1 3 1 4 1 4 1

4 7 3 8 7 8 0

1 5 5 5 4 4 5 5 5 4 6 5 0

0 0 1 3 1 1 5

4 2 2 8 9 0 5 . 6 6 1 6 6 2

6 5 5 5 4 2 7 0

. 0 0 0 1 1

. 0 . 0 1 1 1 0 3 7

. 1 3

0 0 0 . 0 0 .

0 . 0 . 0 0 0 0 1

. 0 0 1 0 1 4 4 4

1 4 7 4 8 8 1

0 1 1 1 5 5 1 5 1 6 5 7 0

0 . .

0 0 . 0

0 0 . . 0 . 0 1 1 4

0 1 4 1 4 4 1

0 0 . 0 . 0 0 1

0 0 . . 0

0 0 . . 0 1 0 1 1 5

0 . 0

0 0 . . 0 0 1

0 0 . . 0

0 0 . . 0 0 0 1 1 0 1 0 5 1 5 9

0 0 1 1 6 1 1 2

1 6 6 6 6 7 2 0 . .

0 0 . 0 0

0 0 . 0 . . 0 . 1 0 1 5

0 0 . 0 . 0

0 . 0 1

0 . 0

0 0 . . 0 1 0 0 6

0 1 1 1 6 6 7 0 . 0

0 0 . . . 1

0 0 . 0

0 . 0 0 0 1 1 6 0 0 . 0 . . 0 0 1 0 0 . . 0 0 0 . 9 3 7 8 3 6 7

3 1 5 5 2 1 2 6 1 9 4 7 8 8 7 0 5 4 1 2

3 0 4 9 4 5 9 8 3 1 5 3

0 3 7 8 2 9 8 3 5

1 3 8 4 9 8 2 5 1 4 1 1 5 4 2

6 9 9 1 5 3 6 5 2 9 6 7 6

4 7 0 4 4 7 2 8

4 0 6 3 7 3

2 7 2 9 3 2 7 5 4 8 0 2

1 0 1 5 8 9 7 9 4 8 1 8 6 7 6 9 2 6 1 3 1 3 8

9 5 6 9 8 8

2 7 8 5 8 6 1

2 0 0 4 0 9 8 3 6 5 4 9 5

6 6 7 9 9 9 7

8 8 1 8 1 1 3 0 7 0 3 9 9 1 8 7 2 3 3

6 4 8 9 8 3 2

6 1 9 0 4 9 6

5 8 0 2 5 0 0 7 8 3 2 1 1 0

0 0 5 6 1 7 8

9 5 8 1 1 7 3 . 3 0 3 0 2 2 9 8 6 8 9 5

2 6 4 1 3 6 1 .

0 1 8 0 4 2 1

1 4 5 4 6 2 3 9 3 6 7 3 7

0 0 6 5 4 2 8

1 0 7 5 1 5 5 6 . 3 . 3 . . 2 2 8 2 7 9

. 2 2 4 2 1 6

2 9 9 8 9 8 6

. 1 4 1 3 3 1 2 2 0 1 2 1

1 9 8 4 8 2 1

6 7 6 2 1 1 8 ^ 6 .

^ ^ 6 6 . 6

^ ^ 6 ^ 6 . . 2 . 2 6

^ ^ 6 6 .

^ ^ 6 6 . 2

^ 6 .

^ ^ 6 6 . . 2 . 2 1

. 1 8 1 7 7 ^

^ ^ 6 6 .

^ ^ 6 6 . 2

^ 6 .

^ ^ 6 6 . 1 . 1 1

^ 6 . . .

^ ^ 6 ^ 6 ^ 6 ^ 6 6 . 1 . 1 1 . 1 1 2 1 1 0

. 0 0 8 0 8 8

0 5 5 5 8 3 6 ^ 6 .

^ ^ 6 6 .

^ ^ 6 .

^ 6 6 . . 1 . 1 1

^ ^ 6 6 .

^ ^ 6 6 . .

^ ^ 6 ^ 6 6 . . 0 . 0 7

. 0 0 0 4 4 2 ^ ^ 6 6 .

^ ^ 6 6 . 0

^ 6 .

^ ^ 6 6 . . . 0 0 4 ^ ^ 6 ^ 6 6 . . 0 ^ ^ 6 6 .

^ ^ 6 8 3 1 9 7 1 7

1 4 5 8 2 9 1 7 7 6 3 1 4 6 3 1 7 8 1 2

7 9 5 8 5 2 6 1 9 7 3 5 6

9 5 0 2 2 7 1 9 5 9

3 1 5 9 5 1 0 2 6 7 6 3 5 9 4

2 5 0 4 8 9 3 2 8 9 2 8 2

8 5 1 5 8 2 1

3 2 2 4 7 1

4 9 2 8 3 2 7 6 7 4 1 4 4

8 1 7 3 1 9 3 3 2 8 . 5 4 2 0 1 5 2 0 0 4 5 9 9

2 1 3 9 6 6 5

2 6 0 3 0 9 1

3 8 4 2 1 3 4 7 1 2 7 3 5

7 1 6 5 7 2 4

2 7 5 7 4 4 0 . 5 . 4 2 . 2 3 3 0 4

. 4 2 8 3 4 1

3 6 0 3 6 3 1

. 2 6 3 0 8 3 0 7 5 0 2 7

3 1 9 8 2 8 4

9 0 9 2 8 0 1 ^ 0 .

^ ^ 0 0 . .

^ ^ 0 0 .

^ ^ 0 0 . . . 2 .

^ 0 0

^ ^ 0 .

^ ^ 0 0 ^ 0 . . 3 . 4 2

. 4 3 2 7 7 1

^ ^ 0 0 .

^ ^ 0 0 . 4

^ 0 .

^ ^ 0 0 . . 0 . 3 3 0

^ 0 0 . 0 . 3

0 .

^ ^ ^ ^ ^ ^ 0 0 . 5 4

0 . 3

0 . . . 3 3 1 3 7 2

. 3 2 4 3 6 2

2 4 2 2 5 3 2 ^ 0 .

^ ^ ^ ^ 0 ^ 0 0 . . 2 . 2 3

^ ^ 0 0 .

^ ^ 0 0 .

^ ^ 0 .

^ 0 0 . . 2 . 3 8

. 3 3 3 4 3 1 ^ ^ 0 0 .

^ ^ 0 0 . 3

^ 0 .

^ ^ 0 0 . 0 . 0 . . 2 . 0 ^ ^ ^ ^ 0 0 0 .

^ ^ 4 ^ 0 1 6 6 3 4 9 7

0 9 7 5 4 6 9 3 4 9 5 6 5 4 1 5 2 4 3

7 5 6 4 5 5 3

9 9 3 7 3 4

8 4 6 4 1 6 4 5 5 8

9 6 5 0 8 9 3 1 9 8 2 4 3 1 6

1 1 5 2 4 1 5

0 1 6 4 7 8

1 0 3 2 6 4 6

3 1 4 5 8 6

9 0 1 7 4 9 8 1 4 4 9 6 4 2

0 0 1 8 5 6 8 9 5 2 . 3 0 . 2 7 4

8 2 2 9 3 4

3 0 8 1 7 3 5

2 8 9 2 6 9 1

. 3 8 7 7 3 5

2 5 1 2 9 9 3 3 1 3 5 7 6

3 7 1 4 1 4 5

6 6 8 8 6 7 0 0 . 2 4 4

. 3 5 9 2 . 3 4 1 4 7 4 1 3

3 0 1 0 7 6 9

2 2 6 . 3 3 9 3 ^ 0 4

. . 0 4 6 2 2 3

0 2 8 3 1 4 0

0 0 0 . . 6 . 1 3

. . 0 . 2 . 1 5

^ 0 . 1 2 6 5 4 6

0 . . . 3 . 3 5 8 9

2 8 5 0 6 5 1 0

^ ^ ^ 0 6

. .

0 0

^ ^ 0 0 . 0 . .

^ ^ 0

0 0 0

^ ^ ^ ^ 0 ^ . 0 ^ 0 0 . . 3

^ 0 ^ 0 0 . . 1 2 2

^ ^ 0 0 . . 1

^ ^ 0 0 .

^ 0 ^ ^ 0 ^ 0 0 4

. . ^ 0 0 7 1 4 9 8 8

0 0 0 . 0 . 1 0 1 1

0 . 0 . 0 . 3 5 ^ 2 3 1 ^ ^ ^ 0 . 0 . . . .

^ 0 ^ 0 0 0 0

^ ^ ^ ^ ^ 0 ^ 0 0 5 7

. 0 4

0 . . 0 . . 3 7 ^ 0 0

^ ^ ^ 0 0 0

. 0 . 1 ^ 0 . ^ ^ 0 0

72 8 4 9 3 2

2 0 1 7 7 5 3 4 1 3 9 4 4 2 4 7 2 4 5 4

8 3 3 1 5 2 9

0 6 8 9 6 8

4 5 2 9 9 1 0 7 5 7

0 7 4 6 1 1 1 6 5 2 6 0 5 9 9 1

2 1 6 4 4 9 6 8

8 2 3 5 1 9

1 9 4 0 7 9 6

3 4 1 0 7 6

6 4 8 1 4 6 1 0 8 7 8 7

4 0 7 7 3 1 4 6 3 4 8 . 4 3 1 2 7 6

1 4 1 7 7 7

2 7 2 2 0 8 6

1 1 4 3 9 4 7

1

8 4

0 1 2 2 1 3 4 5 8 2 6 1 5 0 5 8 3 4 8

3 7 2 4 6 0 6 2 4 8 8 4 2 0 0 . 0 . . 2 4 8

0 . . 1 1 2 5 3

. 4 . 0 5 8 9

4 0 1 6 4 9 2

^ 0 0 1

. 0 0 4 1 1 9 6 9

6 3 3 6 5 3

2 4 4 5 4 3 4 2 7 6 9 7 6 7 . . 4 1

0 . 0 . 1

0 0 0 . 0 . 0 . 0 0 . 2 0 . .

0 0 0 . . . 7

0 0 3

0 . 0 . . 0 . . 0 . 5 2 6

. 1 3 7 5 5

. 1 8 6 1 3 1 . 3 2 3 1 2 8 ^ 0 0 0 . . 0 7 0

^ 0 0

^ 0 0 .

^ 0 ^ 0 0 ^ 0 . 0 0 3

0 . .

0 0 0 . .

0 0 0 1 9

. . 0 0 0 . 0 3 0 1

. . . 1 2 0 1 2

. 1 2 1 . 2 . 1 ^ 0 0 0 . 0 0 0 0 . 0 .

. 0 0 . 0 0 . 0 0 0 0 ^

48 9 7 5 9 6 9

0 5 9 4 5 8 2 6 5 0 9 8 7 7 0 6 4 1 6 1

6 6 2 9 0 6 3

9 7 5 1 1 4

3 9 8 6 7 3 4 9 6 1

6 5 5 2 5 7 9 3 7 5 8 7 1 5

2 6 2 5 6 0 2

5 6 5 0 1 9

1 8 4 1 6 7 4 8

2 9 5 0 9 2

1 5 7 8 2 9 3

8 9 3 4 1 2

4 2 0 7 9 6 7 4 4 8 4 . 2 1 1 8 8 8

9 1 7 6 2 4

3 6 2 5 7 5 0

7 8 2 3 3 3 2

1 1 2 1 6 6 7

3 4 3 6 2 4

6 2 4 5 7 3 4 6 0 6 5 6 1 2 0 0 . . . 2 1 5

. 0 0 1 3 3

. 1 8

0 . 0 0 4

. 0 0 1 2 1 8 4 3

5 6 2 0 3 3 9

. 1 . 3 4 7 1

3 6 1 9 6 0

1 4 7 4 6 8 2 6 0 7 0 3 6 . . 4

^ 0 0 0 0 0 . . 2

0 0 0 . . 0 . 2 0 1 1

0 1 2 2 1 1 5

0 . 0 . 9 3 5

. . 2 . 2 6 1 2 1

. 6 3 1 4 8 3 9 3 5 1 9 4 ^ 0 0 . 0 .

0 0 . . 3 0

0 . . . . . 3 6

^ 0 0 .

^ 0 0 0 0 0 . 1

0 0 .

^ 0 ^ 0 0

0 0 .

^ 0 0 . 1

0 0 . . 2 1

0 0 . . 1

0 0 . 0 0 1

. . 0 1 2 . 4 2 9 2 2 5 0 0

0 0 . 0 . . 0 1 . 2 0 ^ 0 . 0

^ 0 0 . .

0 0 0 . 5 0 . ^ 0 57 3 2 5 9 7 3

1 7 3 3 3 8 2 5 5 1 2 2 1 3 1 7 9 7 8 1

8 8 4 8 5 5 9

1 2 5 9 1 9

6 3 8 3 8 6 0 5 8 4

9 3 9 5 5 7 7 1 4 4 1 3 3

1 2 1 2 9 2 3

9 3 1 7 2 3

3 8 1 0 5 9 8

8 7 1 5 1 4 7

2 9 9 5 8 5 4

2 9 1 2 2 3

0 5 3 3 7 1 2 7 5 1 . 1 1 2 8 4 1

5 4 5 3 2 9

1 1 8 3 3 0 7

2 8 5 2 4 4

1 5 9 8 7 7 0

0 8 1 4 8 1 4

6 0 9 7 9 7 8 2 1 2 4 4 0 0 . . . 3 2 5

0 . 4

0 0 . 0 3 6 2 6 2

. . 3 0 9 0 0

1 2 6 0 7 2 1

. 0 1 4 1 9 6

3 2 2 5 3 0 6

1 6 7 7 3 7 1 1 5 6 5 5 6 ^ 0 0 .

^ . . 9 . 1 2

0 0 . 0 . 0 . 5

0 0 0 .

^ 0 0 ^ 0 0 . 0 1 6

. . 1 . 3 . 6 8 0 5

0 0 .

^ 0 0 . 0 . 3 0 4 . 3

^ 0 0 . 0

0 . 0 . .

0 0 0 0 . 3 2 1

. . 2 3 7 8 7

. 3 4 4 1 5 1 0 5 9 7 7 7 .

^ 0 0 0 4

. . . . 1 2 9

0 0 0 0 3

0 0 . 0 . 3

0 0 0 . 0 . .

0 0 0 3 3

. . . . 1 5 6 8 8 6 0 0 0 0 . 0 0 1 0 1 7 0 . . . . 4 ^ 0 0

^ ^ 0 0 0 . 2 7 7 6 2 9 5 5 9 6

8 8 9 3 8 4

6 5 3 9 8 5 6 4 6 4 4 3 7 3 2 5 5 5

4 6 4 4 1 2 6

7 5 1 6 1 6

1 3 2 6 2 6 6 2 8

0 2 6 3 8 1 4 6 4

1 1 2 6

8 6 9 7

6 4 7

3 9 4 6 2 6 5

1 0 2 7 7 5 3 3 3 4 9 9 6 8 7 2 9 5 1 8 0 6

8 0 9 2 2 0

8 9 9 8 4 4

4 1 0 2 4 2

4 5 4 6 4 5 9

. 1 4 9 7 9 1

5 8 9 0 6 3 9 6 8 1 3 4 2 2 3

. 9 2 0 6 2 4 0

3 3 7 1 5 9 4

0 0 1 2 6 9

. 2 . 1

0 0 . . 2 9 8

0 0 . 1 7 2 1

0 2 2

. 7 1 1 8 1

3 2 5

0 . . 4 7

. . 1 1 1 4 8 5 8

1 3 1 2 9 4 4 4 4 2 8 7 4 5 0

. . . 1 9

. 1 9 . 1 3 7 7 5 4 7 2 8 3 1 8

. 1 3 9 . 1 1 5 4 1 1 0 5 0 . 0

0 ^ 0 . 1

0 . ^ 0 0 0 . .

^ 0 0 1 1 1 6 3 3

0 .

^ 0 ^ 0 0 0 0 4

. .

. 0 0 0 . 0 . 0

^ 0 ^ 0 0 0 . . . .

0 2 2

^ 0 0 0 0 . . 7

0 0 . 0 . . 2

0 0 0 0 . 2

0 0 . . 1 2 7

0 0 0 0 . 0 . .

0 0 0 2

. 0 . 0 2 4 3 2 1 7 ^ 0 0 . . 0 6 . . 9

0 0 . 0

0 . 0 0 . 1 0 ^ ^ 0 0

6 1 8 1 3 2 4 4

4 0 9 0 2 6 6 8 4 1 6 7 6

8 1 3 6 2 4 2

1 4 7 4 7 3 9

0 5 1 6 7 4

6 1 1 9 6 6 8 4 4 3

9 2 7 5 4 1

2 1 7 5

8 9 9 1 2 8 4 5 8 7 8

9 9 1 3 1 6 5 7 1

3 2 1 5 3 7 1

9 0 1 8 7 7 3 9 0 7 5 2

3 4 1 2 2 3 2 0 3 4 0 9 0 9 2

1 0 7 8 6 5

4 1 1 7 8 5 5 7 3 1

9 0 2 3 8 3 0 . 0 . 1 3 7 7

0 . 0 1 5 1 8 0 9 1 7 3

0 . 2

0 . . 9 3 2 0 9 5 0

5 3 6 8 7 6 0 1 3 4 6 9 9

4 0 5 3 9 9 0

1 7 6 1 9 8 6

6 2 7 1 6 2 3 4 2 6 0 4 0 ^ 0 0 .

^ 0 0 . . 1 2 6

0 0 4 4 4 3 2 1 5 2 8 7 2 8

0 0 . . 1 6

^ 0 2 . . 2 0 6 3 8 4

0 5 1 0 1 8 4 6 0 4 0

1 3 9 3 6 5

. 7 4 6 5 1 4 3 6 9 8 1 . ^

0 . 0 0 . . 1 2

^ 0 0 .

^ 0 . .

0 . 0 ^ 0 0 . 6

^ 0 . . 1

^ 0 . 0

0 0 0 . . 8

. 0 . .

0 0 ^ 0 0 0

. . 0 .

^ ^ 0 . . 3 . 1 9 6

0 . 3 4 7 8 6 5 0 . 0

0 ^ 0 5 1 0

. 0 0 . .

^ 0 ^ ^ 0 ^ 0 0 0 0 . 0 0 . 0 3

. .

0 . 0 0 0 0 0 0 . 0 1

. 0 0 7 1 ^ ^ ^ 0 0 0

^ ^

0 0 ^ 0 0 . . 0 0 1

0 . . ^ . ^ 0 0 0

64 6 4 1 3 2 2

2 1 4 2 8 2 3 8 4 3 4 5 8 9 2 2 9 7 2 4

8 1 3 6 5 0 4

2 9 4 7 9 1

9 9 5 9 5 4 1 4 7 7

1 4 2 6 7 7 8 2 2 5 6 4 7

4 8 8 2 8 7 0

9 0 7 2 2 5 8

2 7 2 5 5 9 9 4 1 7 3 1

5 2 3 4 8 6 9

6 3 2 8 3 1

8 4 7 3 5 4 5 4 2 5 . 3 8 . 3 5 6

3 2 4 5 0 4 5

4 4 7 7 4 4 7 5 1 1 2 8 9

3 4 9 6 5 3 1

2 8 3 9 5 8 5

8 6 3 1 9 8 8 9 5 1 5 6 2 0 0 . . 0 . 1 3 1

. . 4 7 1 0 9

. 1 6 1 5 9 3 9

1 0 7 9 6 4 7

2 3 4 1 0 9 9 6 2 0 8 6 5 ^ 0 0 . 6

0 . 0 0 3 3 2 0 3 3 . 0 4 8 9 5 9

0 0 0 0 . . 6 4 2

0 . 0 . .

0 0 0 . . 9 . 1 2 0 1 5 1 6 1

0 0 . 0

0 0 0 . 0 . . 1 . 2 . 1 8

0 0 0 . 0 . 3

0 .

^ 0 0 0 . . 0 . . 1 8

. 4 5 5 8 5 0

. 1 7 5 2 3 5 5 6 5 7 9 7 2 0 0 0 . 1

0 0 . 0 . 5

0 0 . 0 9 3 2 5

. 0

0 0 . . 0 0 . 0 . 7

0 . 0 . 6 7 . 4 5 1 7 6 0 0 . 0 . 7

0 . 0 0 0 . 0 . 3 . 2 . 0 . 0 0 0 0 ^ 44 4 7 6 5 1 7

8 8 7 3 7 1 3 9 7 8 2 4 8 1 1 9 6 1 1 1

0 8 4 9 9 3 6

6 0 7 8 3 5

7 6 4 2 7 7 6 3 2 9

2 5 5 5 6 1 0 7 9 8 4 5 5 2

3 1 1 6 5 2 9

2 1 3 0 1 9 5

5 0 7 9 5 4 2 7 8 8 5 9

5 9 0 2 7 7 6

1 0 4 1 1 4

3 5 7 0 9 4 7 6 6 . 5 2 3 2 3 3

1 1 5 8 1 5 0

3 9 5 3 1 7 2 8 4 3 0 9 7

5 . 1 4 7 7 3 4

7 5 9 9 3 9 7

2 4 1 9 8 6 9

5 4 2 3 7 1 0 . 0 . 1 . 3 8

. 5 5 2 7 1 0

. 2 1 1 6 7 9 3 1 0 1 2 6

0 3 6

0 8 2 2

4 3 3 1 9 1 9

6 4 6 6 1 6 0

5 5 7 5 5 0 0 . 0 . 2

0 ^ 0 . 0 . . 2 2 1

0 0 ^ 0 . 0 0 0 . 0 . 6

0 0 .

^ 0 0 0 3

. . 0 3 2 0 4 1 7 1 6 0

0 0 . . 0

0 ^ 0 0 . . . . 2 . 2 3

. 0 . 4 0 2 0

. 1 0 1 2 5 7

0 4 5

. 2 3 4 4 0

. 2 3 2 4 1 8 7 3 7 0 . 2 7 1 4 8 ^ 0 0 0 . 0 . 2

0 ^ 0 . 0

^ ^ 0 0 0 0 . . . 2

0 0 . . 0 . . 2 5

^ 0 0 0 .

0 0 0 0 4

. .

^ 0 0 . 0 0 0 . 0 0 . . 0

^ 0 0 . 0 . 1

0 0 . . 5 1 0 . 0 . 0 0 0 ^

16 6 3 9 9 1 9

1 7 7 9 4 8 0 8 4 6 7 4 8 2 4 4 6 2 6 6

2 2 7 9 7 5 7

3 5 5 2 4 8

3 0 2 0 3 6 9 6 7 7

7 4 2 6 5 4 6 1 5 7 2 1 4 3 4

2 8 8 3 4 3 8

8 7 3 1 2 0 5

0 6 8 8 8 5 6 9 7 8 1 3

1 8 2 9

. 6 4 4 5

5 3 8 6 6 9

2 9 6 1 6 8 5 5 8 . 7 2 9 3 3 2

1 6 3 3 2 8 5

7 2 7 1 2 1 5 1 2 9 1 2 1

1 4 8 5 7

5 0 4 8 2 0 4

3 4 3 4 6 5 1

3 0 7 5 9 2 0 . 0 0 2 . . 9

. 1 6 2 7 5 3

0 2 6 1 6 3 1 3 9 8 7 7 1

. . ^ 0 1 7 2 6 9

1 6 4 6 7 7 8

2 1 1 2 9 5 2

8 1 3 4 9 4 0 . . .

0 0 0 0 1

0 0 0 . 0 . . 8 2 2

0 . 0 . 2

. . 4 . 1 1 0 2 1 3 2 0 4

0 0 0 . . 7 5

0 0 1

. . . 1 3 1 5 6 2

. 1 2 . 3 3 2

6 5 5 3 0 6 ^ 0 0 0 .

0 0 0 0 0 . 0 . . . . . . 1 2 8

^ . 0 ^ ^ 0

0 0 0 0 0 0 . .

^ ^ 0 0 0 0 0 . 0 . . . 4 0

0 0 0 2

. .

0 0 0 0 . 0 . 0 . 1 4 7

0 . 2

0 0 . 0 3 1 4 4 8 . . 1 . 8 5 ^ 0 0 0 . 0 . 0 .

0 0 2 6 5 9 1 4 2 2

3 1 3 5 4 8 1 7 7 6 3 1 1 2 9 5 4 4 1 7

8 6 5 8 3 1 9

5 8 3 5 5 1

5 3 1 0 1 3 8 1 1 8

0 1 5 6 2 3 1 2 6 6 7 1 8 5 9

2 7 2 8 5 1 3

4 6 0 8 5 7 9

3 1 5 2 1 7 9 7 5 5 9 3 2

8 9 0 0 1 8 6

6 5 3 8 7 8

9 5 1 5 9 9 4 8 3 0 3 1 5 8 3 4

9 0 8 0 0 4 0

3 4 5 5 9 5 4 1 4 9 3 4 8

3 9 6 2 8 7 2

3 7 7 1 2 6 9

6 3 1 0 6 9 3

6 8 6 6 2 5 . . . 1 0 1 0

0 8 3 3 7 2 5

0 8 8 2 4 5 1 8 3 2 4 4 2

0 . 2 2 7

. 3 2 4 1

. 1 4 2 7 7 8 0 3 8

. 6

. 3 2 1 2 3 7 8 9 8 2 8

9 6 5 0 9 1 . 8 3 7 3 6 8

1 2 2 1 3 0 0 0 0 . 2

0 . . 1

0 0 0 . . 0 . . 1 3 6

. 0 2 . 8 2 0 2 1 0 3 2 4

0 . 3

0 0 . 0 0 0 0 . .

^ 0 0 . 0 0 .

0 . . 0 0 .

. 0 . 0 . 3

0 0 4

. . . 3

. 0 . 0 . . . 0 2 0

0 . 0 . 0 7 4 0

. . 0 3 9 8 ^ 0 0 0 . 0 0 0

0 0 0 . . 2

0 0 .

^ 0 0

0 . .

0 0 0 0 . 2 . 0 0 0 0 0 . 4

. 0 . ^ ^ 0

^ 0 ^ 0 0 0 ^ 0 0 . 0 0 1

0 ^ ^ 0 ^ 0 0 9 4 1 6 4 3 4 4 2 0 5 2 9 2 7 3 2 3 8 6

9 7 6 7 1 6

4 2 7 9 0 2 6 4 5 2 5 2 3 9 6 6 7

1 3 1 9 0 7 6 4 8 6 0 7 3 6 9 6 7 9 1 2 3 7 1 1 1 9 2 0 4 3 1 4 7 6 3 7 2 . 0 7 9 7 4 1 4

9 5 5 1

3 6 5 6 2 1 8 3 5

6 6 1 5

1 3 4 3 2 5 4

1 0

. 0 0 4 1 5 0 6 4 1 7 0 8 1 8 3 1 4 4

1 8 5 6 6 8 8 0

1 8 2 1 8 6 1 6 0 4 2

1 1 9 1 9 9 7

1 8 7 8 5 3 1 8 5 0 1 7 6 1 2 3 5 8 6 0 5

5 3 2 1 1 0

. 1 3 3 3 4 2 6 5 2

. .

0 0 0 1 . 2 4 3 9

. 6 0 6 0 1 0 1 5

. 3

. 0 . . 0 1 8

. 1 . 1

0 . ^ 0 . 1 3 2 0 1 1

1 0 2 3 5

0 0 . . 4

0 0 . . 4 2 1 3

0 . 2 1 0 3

0 . 0 . 0 7 2

0 . 0 0 . . 2 7

. 4 2 . 8 7 8

. . 3 3 9 1 2

2 6 0 2 0 0 0 0 0 . 0 0 0 0 . 0 . .

0 0 . 0 0

^ 0 . 0

0 . 0 . 2

0 . 0 0 . 0 . 0 . 2 2 8

0 . 2

0 0 . 0 0 0 . . 5 4 9

0 . 0 0 2 . 1 3 . 9 8 ^ 0 ^ 0 0 . . 0 . 1

0 0 . 0 . 1 1 0 0 . ^ 0 0

54 5 2 3 8 4 7

8 2 2 6 2 5 2 6 8 9 8 2 5 1 3 5 4 1 4 1

4 2 0 3 5 6 5

6 2 5 8 2 9

7 8 2 8 7 8 9 5 6

1 4 0 3 2 7 4 7 1 6 2 9 9 1 6

1 1 6 3 9 3 8

4 0 2 9 1 2 3 7

2 3 5 5 2 0 0 3

9 8 9 5 5 1

2 4 2 2 1 3 7

3 3 8 8 5 1

7 3 9 4 9 5 5 8 9 . 1 1 3 8 2 0

7 1 3 8 9 3

6 1 7 9 5 2 5

3 3 0 7 5 4

2 3 5 1 1 8 4

3 9 1 2 1 2 6

6 3 9 3 7 3 5

3 3 9 6 4 5 0 0 . . 2 . 4 1 5 7 1 3

. 8 1 4 8 1 4 0

. 9 0 9 . 5 6

1 7 3 7 2 9 1

2 1 4 2 0 6 1

8 6 0 6 3 3 .

^ 0 0 0 9 8

. 0 6 0 1 8 2 1 6 1

0 . 0 7 . 2 5 1 2 0

0 . 0 . . 0 1 . 3 0

0 . 0 . 0 . 1 0 2 9

0 1 . 9 2 5 1 2 0

. . 2 3 1 6 6

2 0 7 4 3 1 ^ 0 0 . 0 0 . .

0 ^ 0 0 . 2

^ 0 .

^ 0 0 2

. 0

0 0 . 0 ^

0 0 0 . 0 . 3

0 0 . . 2 1

0 0 . 0 .

0 0 . 0 . 0 . 0 . 1 2 1

0 0 . . . 2 1

. 6 1 7 6 8 ^ ^ 0 0 0

. . ^ ^ 0 0 ^ 0 . 3

0 0 . 0 0 9

. 0 0 6 2 0 0 0 0 . 0 . .

0 0 . . 0 .

0 0 . 0 ^ ^ 0 ^ 0 0 67 6 2 5 8 6 1

9 5 6 6 5 9 4 4 4 8 4 1 4 1 4 6 5 5 6 3 1

4 2 3 1 1 1 6

6 2 7 7 2 3

0 2 2 1 5 5 0 7 3

4 7 2 5 1 1 0 5 8 3 7 8 4 6 7

2 8 7 3 0

2 9 7 3 1 1 5 1 0 7

7 5 5 0 4 7 5

7 6 7 2 7 4

5 0 4 5 6 3 3

3 9 1 5 0 3

1 2 5 1 9 6 6 2 8 . 1 2 7 3 7 9 1 4 7 5 5 5 4

3 5 0 3 8 6 6

6 4 2 4 3 2

1 3 3 6 4 4 2

8 3 8 8 7 7 7

4 9 2 6 0 5 5

7 6 3 8 9 7 9 ) 0 . 0 . 5 0 2 4 0 2 1 5 0 4 9

. 1 9 1 0 3 1

2 0 4 0 4 2

. 8 8 9 6 1 9

1 3 1 0 9 5 0

1 6 7 4 6 9 8

4 1 2 1 2 6 . 0 0 . 0 . . 0 . . . 1 0 2 0

. 2

0 0 . . 0 . 1 1 3

. 2 6 1 9 6

0 . 0 0 0 0 9 5

. 3 3 7 4 3 1

. 4 3 1 5 6 5

2 2 7 5 6 9 t ^ 0 0 0 .

^ 0 0 0 0 0 .

^ . 0 ^ 0 . 0

0 0 0 0 0 . . . 1

0 ^ 0 0 . 1

0 0 . . 1 2

0 0 . .

^ 0 0 . . 9 0 3

. . 9 9 8 0 . . 3

0 . . 0 0 0 .

^ ^ ^ 0 0 . 0

^ ^ 0 0 3

. . 0 ^ 0 0 . 0 2 4

. . 9

0 0 .

^ 0 0 0 . 0 0 0 . 3

0 0 0

^ ^ 0 . 0 .

^ 0 0 0 . 0 0 8 2 0 0 . 0 . n

0 0 o ( c 8 K5

B L 1

9 P P 4 1 3 2 8 1

6 9 2 A I A C 8

P B 3 6

2 5 D D L A 2 7 H A 2 B 1 1 A 2

5 8 C 3 A

M 5 6 N 2 B 2 1

I K 2 1 P I K

F 2 P B S P R 1

Z Z 2 T 1

A F 3 B R

O P 5 D

R T A B 2 3 2 5 B

M P L N 1 2 M

X S 2 2 P R 1 6 P 2 1 1 1 2 1 3 0 B 4 e

L P 1

O N T R L C R K C S 2 D 6

S B P N 4 4 X E F 1 1 A l D A T P A S I A K A R E X M R A C A D M P F A A P S L D ML 5

F M B S Z R P E P P S A F M T C K D A D L 1

M A P P X C O L N C C P A D F B U F O Z G L I S S L A N P 2 D A F 1

E V P P G P T I M G N H K T O M P R C S S O 1 L G b C M A T F G A C P C S L C E R I P S P R A N X O a A P E G T

')6^^^^^^^ 0 5 2 2 7 4 4

5 3 2 3 2 2 1 9 9 9 8 4 4 5 5 0 4 4 4 3

4 5 3 5 3 3 8 8 8 9 7 6

7 8 8 5 0 5 0 4 4 4

4 0 4 0 4 4 0 4 4 9 4 1 1 1 1

5 6 5 6 5 5 3 5 5 7 8 6 4

2 7 7 0 2 0 5

2 0 0 0 4 4

9 4 0 4 0 0 4 0 0 2 3 5 5

6 2 2 1 2 1 2 1 1 1 4 1 6 1 6 6 3 2 2 8 5 7 8

8 2 2 2 9 2 0

9 4 4 4 0 0 4

1 9 4 9 4 4 9 4 4 0 9 5 5

8 4 4 2 4 2 1

4 2 2 2 1 1 3 5 1 5 1 1 5 5 5 5 5 9 7

5 8 8 9 8 9 2

8 9 9 9 4 4 0

6 1 9 1 9 9 1 1 9 9 2 0 1 1

5 6 6 4 6 4 2

6 4 4 4 2 2 1 0 3 5 3 5 5 3 5 5 5 3 6 2

3 5 5 8 5 8 9

5 1 1 1 9 9 4

3 6 1 6 1 1 6 1 9 3 4 4

6 6 6 6 6 6 4

6 6 6 6 4 4 2 . 0 3 0 3 3 0 3 3 3 0 5 8

0 3 3 5 3 5 8

3 6 6 6 1 1 9

0 3 3 6 3 6 6 3 6 2 6 4 4

3 6 6 6 6 6 6

6 6 6 6 6 6 4 0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 0 . 3 5

0 0 . . .

0 0 0 0 3

. 0

0 0 . . 0 0 3 0 3 5

0 3 3 3 6 6 1

0 0 . . 0

0 0 . . 0 3

0 . 0 0 0 3 3 6

0 0 . 0 . 0 . . . 0 . 0 3

. 0

0 0 0 0 0 0 . . 0 0 0 3 3 6

0 3 6 3 6 6

0 3 3 6 3 6 6

3 6 6 6 6 6 6 0 0 . 0 . . 0 0 3

0 0 . . 0

0 0 . . 0 3 0 3 3

0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 3 0 3 6

0 3 3 3 6 6 6 0 0 . . 0

0 0 . . 0 3

0 . 0 0 0 3 3 6 0 0 . 0 . 0 . . . 0 . 0 3

. 0 0 0 0 0 0 0 . 3 6 9 8 3 1 1

7 6 4 1 1 8 9 3 8 5 5 7 7 8 5 9 8 4 8 8 4

2 4 2 5 3 0 6 7 3 7 9 3 8

8 2 7 7 1 8 5 4 5 4

6 9 8 9 8 8 8 6 4 6 5 9 1 4

8 5 0 9 2 6 8 0 1 4 3 8 7

5 3 4 7 8 1 1

8 2 1 3 1 1

4 0 4 1 0 2 9

3 0 8 0 8 4

7 8 0 5 5 8 7 7 9 8 6 2 6 2 1 5 4 4 7 0 9 4 2

0 0 4 3 8 6 9

0 3 6 4 6 5 7

0 6 6 9 4 5 6

2 3 9 8 1 6

0 3 0 3 7 7 1

8 4 1 2 3 2 1 7 2 7 3 3 7 6 6 7 7 9 4

8 1 1 2 2 3 4

4 6 6 0 7 9 9

9 0 0 0 2 2 6

9 6 1 1 8 2

7 6 0 3 0 4 6

1 3 5 7 6 9 6 0 1 7 1 7 7 1 7 7 7 7 8 0

1 8 8 8 8 3 7

8 6 6 7 7 6 0

1 9 9 9 1 2 3

1 2 6 4 7 8

9 8 9 3 0 1 7

3 6 6 6 6 2 7 . 0 1 0 1 1 0 1 1 7 1 7 8

0 1 1 1 1 8 3

1 8 8 8 7 9 0

0 1 1 1 9 9 2

0 9 3 9 5 5

1 9 9 9 2 1 2

0 3 3 3 8 1 4 0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 1 0 1 1

0 0 . . 0

0 0 . . 0 0

0 0 . 0 . . 0 0 0 0 1 8

0 1 1 1 8 8 9

0 0 . . .

0 0 . 0 1

0 . 0

0 0 . . 0 0 0 1 1 1

0 0 . 0 . . 0 0 0

0 0 . . .

0 0 . 0 0 0 1 1 9

. 1 9 1 9 9

0 1 1 9 0 0 2

2 0 0 0 3 4 5 0 0 . 0 . . 0 0 1

0 0 . . 0

0 0 . 0 0 1

. 0 0 1 1

0 0 . . 0 0

0 0 . 0 . . 0 0 1 . 2 0

0 2 2 2 0 0 4 0 0 . . 0

0 0 . 0 0 2

. 0 0 0 2 2 0 0 0 . 0 . 0 . . . 0 . 0 2 0 0 . 0 0 0 0 0 . 4 2 2 8 6 6 1

5 1 8 6 9 3 2 1 7 7 3 2 5 5 7 8 3 4 4 4 2

7 1 5 7 1 6 1 3 6 1 7 7 5

6 2 7 8 0 5 4 2 1 7

7 4 7 3 7 7 0 6 5 8 4 7 8 9

5 5 3 7 2 7 9 9 6 9 9 9 1

3 7 9 9 0 7 9

3 4 2 2 5 7

0 1 7 1 7 2 9

5 5 2 8 5 9

6 2 7 6 0 8 5 3 3 1 3 6 1 3 6 6 0 6 6 3 5 9 8

3 4 7 2 6 3 1

9 7 9 0 1 0 5

1 2 9 3 4 7 8

3 7 8 9 4 7

1 2 8 1 3 7 8

9 8 9 9 1 9 0 0 6 0 2 9 9 0 8 1 0 3 3

5 0 7 8 8 5 7

0 8 6 3 3 4 5

9 0 9 8 3 1 7

9 8 8 4 8 1

1 1 9 7 3 5 1 3

3 1 1 9 6 5 8 . 0 0 0 0 9 9 8 7 2 7 6 4

9 5 4 1 3 5 0

3 4 4 2 7 8 6

8 9 8 8 6 0 4

7 7 1 8 8 6

4 9 8 9 2 6

5 8 7 5 8 7 5 6 . 0 . 0 9

6 . 5 . 9 9 9 7

. 9 9 5

. . 9

^ ^ ^ 5 . 5 .

^ 5 ^ ^ 5 . 9 9 4 9 3 3

9 1 1 1 7 5 3

. 8 8 8 8 8 9

8 7 7 6 8 8

8 3 7 2 7 6

1 2 2 2 4 9 7 ^ 6 .

^ ^ 6 6 .

^ 5 5 .

^ ^ ^ 5 5 . . 9 . 9 3

. 9 9 9 0 9 3

^ ^ 5 5 .

^ ^ 5 5 . 9

^ 5 .

^ ^ 5 5 . . . 9 8 9

^ ^ 5 ^ 5 5 . . 8

^ ^ 5 5 .

^ ^ 5 5 . . . 8 8 7

. 8 8 8 5 5

. 8 3 8 2 0

8 1 1 1 1 9 5 ^ ^ 5 ^ 5 5 . . 8

^ ^ 5 5 .

^ ^ 5 5 . . . 8 8 5

^ 5 5

^ ^ 5 . . 8

^ ^ 5 5 .

^ ^ 5 5 . 8 . 8 2

. 8 8 8 8 1 0 7 ^ 5 .

^ ^ 5 5 . 8

^ 5 .

^ ^ 5 5 . . . 8 0 ^ ^ 5 5 .

^ ^ 5 5 . 8 ^ 5 . ^ ^ 5 5 6 2 6 3 3 9

9 5 7 6 6 1 8 1 4 8 1 8 9 7 5 3 1 4 5 7 3

5 4 0 4 5 2 5 6 5 1 2 8 5

5 1 5 6 1 5 4 7 3 3

9 7 8 6 5 5 4 2 1 8 7 9 2

2 3 2 4 9 2 6 8 5 8 7 1 3

3 3 2 8 4 6 2

5 1 7 1 3 3

4 6 5 9 6 0 6

8 5 7 3 3 4

9 8 4 7 2 0 0 6

1 7 6 6 9 3 2 9 3 . 4 7 2 1 7 2 3 0 7 0 9 2 0

. 1 1 8 6 9 7

2 4 4 3 7 0 5

3 4 9 8 1 3 8

5 8 5 4 9 5

1 9 5 5 3 3 2 8 2

0 . 3 . 4 2 . 3

0 0 . . 2 . 4 2

. 0 . 0

^ ^ ^ 0 ^ ^ ^ 0 ^ 0 ^ 0 ^ ^ . 2 4 8 3 0 7 3 3 1 6 7 8 0

0 . 2 . 3 3

0 0 . 2 4 3 2 2 2

. 2 3 3 3 3 7

3 9 6 0 1 0 0

3 3 5 6 3 1

5 0 1 0 6 9 6 ^ ^ 0 .

^ 0 0 . 0 . 0 .

^ ^ 0 .

^ ^ 0 0 . .

^ ^ ^ 0 . . 3 . 3 2

^ ^ 0 0 .

^ ^ 0 0 . .

^ 0 0

^ ^ 0 . . . 2 . 6

. 2 4 3 9 7 5

. . 1 2 2 9

2 8 6 5 6 0 3 ^ ^ 0 ^ 0 0 . 0 .

^ ^ 0 ^ 3

0 ^ 0 . 3 . 2 4 8

^ 0 .

^ ^ 0 0 . . 2

^ ^ 0 0 .

^ ^ 0 0 0 . 4 4

. 3 3 3 2 3 2 ^ ^ . 4

^ 0 0 . 3

^ 0 .

^ ^ 0 0 . . . . 3 0 ^ ^ 0 0 0

^ ^ 0 . 3 ^ 0 . ^ ^ 0 0 6 9 7 8 1 8

8 5 9 8 3 1 0 2 4 2 9 5 5 5 6 7 6 1 9 1

4 2 8 6 4 2 4

3 4 3 0 2 1

0 7 7 4 5 1 6 2 1 1 2

7 0 0 9 4 5 8 9 2 3 8 5 5

1 1 7 6 5 7 2

4 6 6 3 3 3

1 1 1 8 7 2 4 4 0 5 7 7 2

1 2 5 8 6 2 4

0 8 5 5 3 4

2 8 7 1 2 5 2 7 8 7 0 2 4 0 1 2 5

1 6 8 3 7 5

1 1 5 8 4 2 1 1 0 5 4 8 4 5

1 9 5 6 9 3 6

2 3 0 8 6 2 1

0 4 4 2 4 1 6 4 1 9 0 4 . . 1 . 7 1 0

. 3 8 . 1 2

. 1 2 7 5 8 1 1 0 2 9 0 2 4

. 1 4 9 3 4 2

1 3 4 0 5 9 1

6 2 0 1 7 2 2 4 8 7 7 8 1 0 0 . 0 . 3

0 0 . 2 0 0 . 0 0 . . 2 0 1 1 . 7 8 2 4 0 5

0 . . 2 4 5 4 4 5

. 2 1 1 2 2 2 2 5 7 4 8 4 ^ ^ ^ 0 ^ 0

0 . 0 .

^ ^ ^ ^ 0 .

^ ^ 0 ^ . 4 9

^ ^ 0 ^ 0

0 0 . . . . 0

^ ^ ^ 0 0 0 0

^ ^ ^ . 0 0 1 0 2 3

0 . . . . 1

^ 0 0

^ ^ 0 0 .

^ ^ 0 ^ . 0 0 0 1 2

0 0 . . . 4

0 0 . 2 . 1 3 . . 2 1 7 4 3 0

^ ^ 0 0 0 .

^ ^ ^ ^ ^ 0 2

. . 0 1 2 3

0 0 . . . 2

0 0 . 0 0 0 . . 0

^ ^ 0 ^ ^ 0 ^ 0 .

^ ^ ^ ^ 0 0 . 2

^ ^ 0 .

^ ^ 0 0 1 9 . 1 . 0 ^ 0 . 0 0 ^ 0 3 2 4 6 5 3 8 4 9

7 4 0 3 3 3 0 3 2 9 9 4 5 8 5 7 4 1 6

7 7 1 2 9 8 8

3 7 3 7 5 2

9 1 2 9 8 8 6 8 1 4

4 7 4 3 1 2 4 3 2 1 1 6 9 3

0 2 4 0 3 4 6

1 2 0 0 3 5

7 0 9 8 5 5 3 6 6 5 5 4

0 3 7 5 1 1 3

0 0 5 7 4 3

3 8 7 7 2 7 7 5 6 9 . 5 2 2 6 3 1

3 1 3 3 0 3 6

3 5 9 5 2 4 2 1 8 2 7 5 4

3 7 6 6 7 6 2

2 9 7 3 9 7 1

4 9 4 3 1 1 8 8 8 6 9 6 0 . 0 . . 9 5 9

. 3 0 3 4 8 9

. 6 5 1 3 1 2 1 1 6 2 8 6

. 3 9

. 1 4 2 1 7 3

. 5 7 7 2 3 6

7 1 2

. 7 1 0 8 7 9 6 3 8 2 2 0 0 0 . 0 0 2

0 . .

0 0 0 0 9

. 0 . . 2 1

0 0 . 0 0 . 3

0 0 . 0 0 2

. . . . 3 0 2 9 8

0 0 . . 0 . 1 8 0

0 0 4 1 1 4 9 8

0 1 6 0 2 2 1 7 4 7 1 ^ 0 0 0 0 0 . . . 0 3 0 0 4

. 3 . 2 . 7 2

^ 0 0 . . 0 .

^ 0 0 ^ 0 0 0 0 . 0 3

. .

0 0 . 0

0 . . 1

0 0 0 0 0 0

. . 0 0 4 . 7 2 0 . 2 3 1

. 2 2 0 2 . 0 . 0 . . 4 8 0 0 0 0 0

^ ^ ^ ^ ^ . 0 0 0 0 . 0 0 2

. 0 0 0 0 . ^

67 6 5 8 6 7 4

8 1 0 3 1 6 4 9 7 5 9 6 4 6 5 5 3 5 9

7 9 9 6 5 6 6

2 8 8 1 2 6

5 2 6 5 2 8 0 5 8 1

3 6 2 5 6 6 9 9 3 6 4 5 9 2

. 6 4

1 0 6 0 1 0 3 7 7 1 2 9

0 8 4 0 8 3 1 6 9 8 3 4

9 2 7 7 4 2 6

2 3 7 4 3 9

6 5 4 6 9 6 4 1 1 3 . 3 4 2 6 3

3 1 2 9 8 8 3

2 7 8 2 7 3 9 0 8 4 8 0 9

1 1 5 9 5 3 8

3 2 0 6 0 0 4

4 9 2 8 2 1 7 6 0 9 1 2 0 . 0 . . 0 1 6

. . 1 2 1 1 9

. 1 0 2 8 2 2 8 7 2 3 6 1

. 2 6 4 3 1 4

. 7 8 3 6 9 3

1 3 1 0 6 6 5 5 0 5 1 3 2 0 0 0 . 0 1

0 0 . 0 0 0 . . 3 3 7

0 0 . 0 1

. .

0 0 0 . 2

0 0 . . 1

0 0 . 1

0 . . 1 2 6 3 1 9

0 0 . . 2

0 0 . . 1 7

0 . 3

0 . 0 0 . . 0 0 8 1 6

0 0 9 4 1 5 3 1

0 3 0 3 8 5 1 2 9 5 1 6 9 ^ ^ 0 0 . 0 . 3

. . . 2 3 0

. . 5 0 3 5 . 2 3 1 2 5 2 ^ 0 . 0 0 .

^ 0 0 0 0 0 . . 0 0

0 0 . 0 0 . 0 0 0 0 . . .

0 0 . 7 3 0 0 1 . . ^ ^ . 0

0 .

^ 0 0 .

^ ^ 0 0 0 36 5 4 5 7 5 7

1 8 7 9 9 9 3 6 7 5 2 6 1 8 6 6 8 6 5 5

6 6 5 8 9 9 8

6 2 7 1 3 6

5 3 3 2 9 8 4 1 1 6

3 2 3 6 1 7 9 3 9 4 2 1 3

1 1 6 0 3 6 7

1 0 1 1 8 3 1

7 0 1 4 5 5 2 4 7 3 4 2

0 8 3 7 5 0 6

5 4 8 9 4 5

6 6 4 8 3 2 1 5 5 8 . 3 2 1 6 7 6

4 9 2 4 0 4 8

1 7 8 4 8 8 0 2 0 0 3 0 7

1 2 8 1 4 4 8

6 9 9 9 3 3 2

3 9 9 2 9 2 6 0 4 8 3 2 0 0 . . . 3 2 2

. 2 1 1 2 1 8

. 7 . 3 3 7 2 1 7 3 1 6 8 6

. 3 1 0 2 8 5

0 6 0 2 7 2 8

0 1 . 2 1

. 2 5 1

3 2 2 5 8 2 8 9 4 1 7 6 3 2 7 ^ 0 0 . 0 . 1

0 0 0 . 0 . 2

0 0 . . . 3 2

0 ^ 0 . 4

0 0 . 0 . 0 0 . 5 3 . 3 1 5 3 7 0

0 0 . . .

0 ^ 0 . 2 1

0 . 2

0 0 . . 3

0 . . 0 9 7 8 1 2 7 9 3 9 5 5 ^ 0 0 0 . 0 . 0 0 . 0 2

. . . 8 5

0 0 0 0 3

. .

0 0 0 0 0 0 . . .

0 0 0 . 1

0 . 0 5 1 5 3 0 2 ^ ^ 0 0 . 2 3

0 0

. 0 . . 0 . 3 2 4 .

0 0 0 . 0 0 . . 0 0 . 0 0 ^ ^ ^

47 6 4 3 4 1 7

6 9 6 3 1 2 3 6 2 8 6 8 5 6 5 8 6 4 3

0 7 7 2 0 8 7

5 1 2 8 7 9

3 9 9 0 7 1 6 6 1 6

7 0 4 3 4 4 3 1 8 9 9 6 9 1

2 3 6 2 1 7 9

6 2 4 6 6 2 9

7 2 6 4 0 1 4 7 5 5 8 9

4 5 0 3 5 9 2

5 9 7 4 4 9

4 9 2 5 3 8 5 2 9 5 . 6 2 1 6 0 0

3 3 4 8 9 2 4

1 0 2 3 1 8 4

2 2 6 6 4 2 9

0 6 4 3 1 0 0 4

1 1 2 3 8 6 2

1 1 2 3 0 8 8

0 8 8 2 6 0 1 3 0 4 0 7 0 . 0 . . 1 9 1

. . 4 3 2 2 3 2

0 . 7 . 8 1 3

0 . 0 0 3 2 0 1 2 2 4 2 1

. 2 3 4 2 6 6

. 1 1 2 3 2 3

1 3 7 6 7 7 1 0 7 2 5 2 1 . 0 1

0 0 0 0 . .

0 0 0 0 . 3

0 . 2 2 4

0 0 . . 2

0 .

0 . . .

0 0 0 . 0 . 4 . 2 8 0

0 0 . 0 0 . 0 0 .

^ 0

0 . 0 . 0 . 0 0 . . 1 4

0 . 1 1 2 2 0 7

. 1 2 6 2 5 2 0 8 2 3 3 0 0 0 0 . . . 3 4

0 0 1 8

. . 0 . . 1 . 4

0 2 . 0 0 . 0 0 0 ^ 0 0 . 0 . 0 ^ ^ 0 . 3

0 . 0 0 . 3

0 0 . 0 . 1 . 1 2 3 3 2 3 ^ 0 . 2 8 1 4 1 4 7 8

6 7 6 8 2 7 0 1 6 0 9 1 3 7 5 7 5 4 4

0 6 1 8 9 3 3

2 6 4 6 3 7

5 8 9 6 4 1 8 3 7 5

0 6 7 8 1 7 4 4 1 1 9 8 5 8

4 8 8 3 2 9 3 8

4 1 0 5 5 0 6

6 7 7 3 1 8 0 1 1 5 7 2 5

0 8 9 0 4 3 6

5 4 2 5 6 8 8

2 8 1 1 8 2 7 5 2 5 0 7 1 0 5 7 2

9 4 0 5 5 9 6

2 1 7 0 1 5 8 9 3 4 5 5 7 9

1 6 8 0 5 7 9

1 7 9 2 5 2 9

0 7 7 6 4 5 7 4 3 2 5 3 9 . 0 . . 2 2 0

0 1 1 3 3 6 3

0 3 3 1 7 8 1 3 1 1 7 2

. 3 1 1 3 8 1

5 1 8 5 1 9 8

2 7 5 0 3 2 0 3 6 2 6 3 0 6 5 0 0 2 5 1 3 8 3 2 . . . . 0 . . . 2 .

0 . 0 0 . . . 0 1 4 9

. . 1 . 2 2 . 4 7 4 1 2

0 .

^ 0 0 5

. 0 . 1 4

. . 1 6 3 2 2

. 1 5 1 7 7 1 6 1 0 8 3 1 ^ ^ . 0 0 9

. . 0

^ 0 ^ 0 0 ^ 0 0 0 0 . . 0 2

0 0 . .

^ ^ 0 0 0 0 . 0 . 8

0 . 1

^ 0 ^ . 0 0

0 0 . 0 0 0 .

^ ^ ^ 0 0 0 0 . . 1 . 3

0 0 0 ^ . 0 ^ 0 .

^ 0 3 3

^ 0 0

0 0 0 .

^ ^ 0 0 . . .

0 0 0 0 0

^ ^ 0 . .

0 0 ^ 0 7 1 . 0 . ^ ^ 0 0 . 0

^ 0 . 0

^ 0 ^ 23 4 2 1 4 5 8

2 6 9 4 4 9 6 9 6 1 6 9 2 5 7 1 5 6 4 1

5 1 6 0 6 4 1

0 9 6 1 1 5

0 5 8 2 3 3 3 6 5

1 4 3 5 0 7 7 4 7 4 3 9 6 8 3 8

2 3 3 7 2 2 8

0 9 3 9 1 1 7

3 1 1 4 5 1 8

6 4 8 7 1 3

0 7 9 6 5 8 4

6 6 9 5 3

2 4 3 4 8 7 3 7 3 5 9 . 1 2 9 9 5 0

2 3 3 6 8 4 7

3 4 5 7 5 0 4

1 9 1 6 1 5

9 4 6 9 3 2 4

1 9 5 3 2 8 3

5 4 7 6 8 0 4 6 4 5 3 9 0 0 . 0 . 0 2

. . 8 6

. 1 1 1 1 8 2

. 1 0 6 8 6 6

2 7 4 4 5 7

0 2 8 7 3 8 0

1 3 0 6 9 1 5

4 6 0 0 1 4 3 7 6 7 3 9 0 0 0 3

. .

0 0 0 . . 0 . 8

0 . 3 1 4

. 8 0 2 9 1

. . 0 3 . 2 9

. 3 3 5 6 0 5

0 3 6 2 1 2 3

2 8 1 6 5 5 5 0 . 0 . 0 . ^ 0 0 2 9 0

. . 0 7

0 ^ 0 . .

0 0 0 0 . 0

0 0 . 0 . 9

0 . 0

0 0 0 . . .

0 0 . 1 3

0 . 3

0 0 . . . . . 1 2 5 4 2 2

. 2 0 . ^ ^ 0 0 0 ^ . 0

0 0 0 . . 3

0 . . . 5 8 ^ 0 0 . 6 9

0 0 0 3 .

0 0 0 0 0 .

^ 0 . 0 . 0 . . 2

^ 0 0 0 69 9 6 4 5 7 8

2 5 8 2 0 5 0 3 8 8 4 2 4 2 6 1 1 6 7 3 2

1 6 8 6 7 8 3

9 3 4 3 1 5

1 9 3 2 3 8 3 6 7

5 0 2 2 1 1 2 1 1 8 6 6 1 1 3

4 1 6 9 7 7 5

4 6 4 3 1 9 8

9 6 9 6 7 3 1

7 6 9 6 1 4

6 5 6 7 5 5 9

8 0 2 1 6 9

2 7 0 3 9 8 3 1 3 . 5 2 1 1 4 0

7 4 3 5 6 4 2

1 3 7 9 2 1 8

4 4 0 6 7 9

1 7 9 5 1 6 9

4 0 1 2 4 0 4

6 7 4 7 7 9 3

9 6 4 0 4 8 0 0 . . 2

0 0 . . 1 2

0 . 3 . 7 1 3 4 1 3

5 2 1 5 5 7

. 1 7 1 2 1 8

4 1 8 0 9 9 1

1 0 2 6 4 2 0

6 1 9 7 0 9 .

^ 0 0 0 4 0 1 4 0 9

0 1 2

. 4

. 0

0 0 . . 0 .

^ 0 . 1

0 0 . 0 0 . 0 . 0 5 2 1

0 6 4 2 7 1

0 0 . . . 5

. . 8 . 7 1

0 0 . 0 7

. 0 . . 5

. 2 1 0 1 8 3

. 4 3 2 4 3 3

9 3 2 6 0 9 ^ 0 0 0 0 .

^ 0 0 . 0

0 0 0 .

. 0 0

0 0 . 0 0 . 1

0 0 0 . . 4

0 0 . . 1 8

0 . 0

0 0 . . . 5 3 8

^ ^ 0 ^ ^ 0 0

. ^ 0 0 0 0 . . 8

0 . 0 0 3 6

. 2 4 8 2 0 0 . 3 . 8 0 . 0 0 0 . 0 0 .

^ ^ 0 0

^

46 4 6 8 8 9 5 7 3

8 6 6 4 7 3 9 1 3 2

7 8 5 0 4 5 7 3 4 7

. 1 2 4 2 4 4 6 4 0 4 6 5 1 7

0 9 9 3 5 9 3

7 2 8 0 2 2

7 2 7 2 9 6 0 6 4 6

5 1 7 1 7 9 9 0 4 8 9 8 4 5 9 9 6 3

2 0 6 3 8 4 7

9 5 9 5 5

9 9 3 2 9

9 7 3 3 2 2

7 9 6 1 4 2 0 1 7

4 9 8 6 5 6 4 2 4

8 7 5 6 9 9 5 . 5

0 . 1 2 1 1 9

0 . 4

0 . . 9 5 2 1 2 7 2 2 3 3

8 2 7 2 5

2 0 0 5

3 6 8

4 5 1 7 2 0 3 7

6 8 8 6 2 7

0 0 0 1

. . . 8 1 0 . .

^ 0 3 4 4 2 6

4 0 5 6 1 5

. 2 1 6 1 1 9

2 1 7 6 2

4 3 5

2 4 4 3 2 9 1 4 0 1 0 2 8 1 4 3 7 7

1 3 6 5 4 3 ^ 0 0 0 . 0 . . 0 .

0 0 . 0 0 . . . 1 5

0 0 . 2

0 . 0 . 0 . 0 0 3 9

0 2 4 2 5 4 9

0

^ 0 0 0 ^ ^ 0 0 3 6 0 1 2

. 0 7 . 2 3

0 . 0 0 0 . 0 .

^ 0 0 . 0 0 0 . . 0 5

. . . 4 0 3 0

. . . . 1 8 2

. . 3 3 6 4 ^ ^ 0 . 0

^ 0 0 . 0 0 0 . 0

0 . . 8

^ 0 0

^ ^ . 0

0 0 0 0 0 0 .

^ 0 3

. .

0 0 0 0 . 3

0 . 1 6 0 0 . 0 ^ 0 . 4 7 4 5 9 8 1 5

1 3 5 8 4 4 3 9 8 8 3 4 1 5 6 7 9 9 2 2 5 2

7 0 0 1 1 7 1

3 3 2 2 3 1

3 0 4 5 7 8 4 8 6

4 4 7 4 7 1 5 1 5 3 9 2 3 6 7

4 4 4 2 0 6 3

7 1 9 6 0 6 4

2 8 3 9 8 3 8

6 1 1 9 6 9

4 0 7 0 5 1 1 2 2 8 3 7

6 6 7 4 8 8 6 4 3 . 7 2 8 5 7 5

2 4 3 2 6 0 5

0 0 0 9 6 0 2

1 1 5 7 8 5

2 8 4 3 5 7 2 2 1 5 2 2 1

2 7 3 8 5 7 8

9 3 3 9 6 5 0 . 0 . 3 . 1 4

. 6 4 3 2 5 8

. 7 3 1 8 8 2

1 3 4 0 7 4

0 3 0 4 4 8 3 7 9 4 7 8 2

9 7 3 6 2 9 2

7 2 3 9 4 7 .

0 0 0 0 . 1

0 0 . 0 0 . . 0 . . 2 3

0 0 0 . .

0 0 0 . 0 0 . 2 4 5

. 4 4 2 5 5 2

0 . 0 0 . . 3

0 0 . 0 0 2

. . . 1 1 7

. . 6 . 2 6 . 2 2 6 2 4 1

0 3 2 0 0 9 0

3 3 7 7 8 9 . . 2

^ 0 0 0 0 0 0 0 .

0 0 . 0 0 0 . 0 . 0 . 0 . 1 . 6 2

. . . . 3 1 7

. 9 1 9 6 8 ^ ^ 0 0 0 0 . 0 0 1

. .

0 0 0 0 0 0 . . 1

^ 0 0 0 . 0 0 1

. . 0 . 3 7 0 ^ 0 0 0 . 0 . 0 0 ^ 96 7 1 7 9 6 8

1 9 9 2 7 4 4 7 2 1 7 6 6 2 1 6 4 4 1 3

9 7 3 2 1 1 8

8 1 4 3 5 3

6 6 8 0 7 5 6 6 2

6 1 7 8 8 9 9 5 1 3 2 3 3 8 8

1 8 0 0 6 5 3

4 2 7 0 2 4 4 7

9 6 0 8 6 2 7

3 8 9 4 1 5

7 1 5 4 7 2 1 7 0 1 7 7

4 1 9 3 3 4 4 9 5

7 . 7 2 2 7 0 2

2 4 1 5 8 1

1 0 8 5 1 2 9

1 3 2 6 7 4 7

5 1 0

. 8 0 2 7 5 2 4 2 6 8 2

2 0 6 2 1 8 6 3

0 0 7 5 8 4 3 7 5 0 . 0 . 2 0 1 9

. 1 0 7 2 4 2

. 3 1 2 0 1 6

. 2 1 2 9 3 6

0 0 0 0 8 8 . 1 1 7 1 7 8 7 0

1 3 9 1 6 4 0

0 1 6 7 0 1 6 7 . . 1 1 1 0 9

0 0 .

^ 0 . . 1

0 0 0 0 0 . . 4

0 . 0 . 1 1

0 0 . 1

0 0 . 0 . 0 . . 1 7 7

0 3 5

0 2 0 2 8 8

0 2 . 0 3 1

. ^ 0 0 . .

^ 0 0 . 0 . .

0 0 . 6 1 3 7 6 8

1 2 7 1 2 1 ^ ^ 0 0 0 0 . . . . 6 2 4

^ ^ 0 3

. . 0 9

0 0

^ 0 0 0 .

^ . 0 . 0 0 0 . . 0 . 0 . . 8 7 3

. 1

0 0 0 0 . 0 0 0 . 0 0 2

0 . .

0 0 0 . 1

0 0 . . 1 2 0 0 . 0 . ^

0

5 9 3 1 2 3 2 6

7 3 9 1 1 3 4 8 4 2 8 4 8 8 3 3 1 3 8 5

4 2 9 3 5 2 6

2 4 2 9 6 7

8 5 8 5 3 7 0 4 6

5 9 9 9 6 6 4 8 7 1 2 7 1 5 6

2 9 3 0 3 1 6

1 5 6 9 9 7 3

4 7 2 3 7 6 6

0 1 6 3 1 7

5 2 9 5 9 3 2 5 8 9 9 9

4 3 4 1 7 3 0 3 3 . 2 1 5 2 2 5

. 7 8 8 6 0 9

2 3 4 5 2 6 1

4 7 8 2 1 7 7 8

4 0 1 2 3 2 2 1 8 1 0 7 7 9

0 9 5 8 6 8 9

4 1 9 0 7 1 0 . . 5 . 1 1

0 9 . 2 1 2 1 5 2

9 5 4 6 8 8 2

. 8 9 9 9 9 1 2 2 2 2 0 2

2 8 3 9 5 4 6

1 0 3 7 2 2 ^ 0 ^ 0 . 0 0 3 4 1 0 3

. 5 3

0 0 . 2

0 0 .

0 0 1

. . . 0 0 4

. . 0 0 . . . 5 0 6

^ 0 0 . 0 . 4 0 1 7 1 4 3 1

0 0 3

. . 0 1 1 . 6 1 0 . 2 1

0 6 9 4 8 6 6 3 0 . 8 7 5 0 6 8 5 . . . 0 . 0 7 4 1

. 0

0 0 0 0 0 0 0 0 . 0 4 .

0 . ^ 0 1 1 7 0 ^ ^ 0 0 0 0 . 0 . 0 0

0 0 0 . .

^ 0 0 . .

^ 0 0 2

. 0 . 0 . 0 . 0 1 2

0 . .

0 ^ 0 0 0 0 . 6 ^ ^ 0 0

^ 0 0 4

. . 0 0 1 7 0 ^ 0 0 . 0 0

^ . . . 0 0 0 0 0 .

^ ^ ^ 0 0 1 2 3 9 1 7 4

4 4 2 1 0 3 1 4 2 4 5 2 6 2 8 1 5 6 2 4

3 4 6 0 5 2 4

8 8 3 4 8 6

2 7 3 2 5 3 8 9 0 7 5 2

7 5 4 1 3 6 4 3 3 7 8 8 3 6 7

3 3 8 8 8 0 6

2 4 7 9 6 7 6

7 4 9 6 0 7

3 4 7 6 8 5

3 3 1 9 2 4 6 6 9 9 4 6 6

4 9 9 7 2 4 0 2 8 . 8 5 0 2 7 9

. 0 9 5 . 2 4 8 6

. . ^ 0 . . 2 . 2 3 7 4 8 1 7

5 7 9 3 0 9 9

. 1 9 2 0 8 9 5 5 6 8 3 4 9

0 0 6 4 0 8 7

1 7 9 4 1 8 ) 3 3 1 3

0 . 2 3 4

0 . 1

0 0 . . 1 0 8 0 3

4 4 0 1 0 3 8

. 9 6 3 7 0 1 5 1 8 7 7 0

7 2 8 0 5 7 6

8 3 6 3 6 9 . ^ . 0 0 3

0 . 0

0 . 0 0 . 0 0

^ ^ 0 0 0 . .

0 0

^ ^ 0 2 1 1 . 3 7 5

. . 1 . 0 0 0 0 .

^ 2 2

. 0 0 9

. 0 . 1 2 . 3 1 9

. 1 4 9

^ 0 0 . 0 8 1 6 3 2 5

3 0 2 0 9 0 t ^ ^ 0 ^ ^ 0 0 0 .

^ ^ 0 0 0 0

^ 0 . 0 0 . . 0 . 5 . 1 1

. 0 . 9 . 3 4

. . 5 . . 0 1 9 4 ^ 0 0 0 0 . 0 . 0 0 . 2

^ 0 .

^ 0 0 0 1 . 1 9 n ^ ^ 0

0 . 0 . ^ ^ 0 o ^ 0 ^ ^ 0 ^ . 0 0

0 0

^ ^ . 0 ^ 0 . 0

0 ( c 8 B

2 P 6 B e 0 0 1 G 9 B

3 1 1 1 T 6 2 2 4 A 4 A 2 0 1 2 S 6 1 1 C L 3 1 A 0 L 1 T 2 2 A 0 1 A 1

2 6 K B 1

1 L 2 1 T 1 A 0 f

F 4 X 1 L B B S M 1 R

2 O N H K 2 H 1

C 1 D

M S V T A 5 3 R

F A 3 C M 1

A 1 S D 8 1 P r 1 D T 3 l R 3 F G o T

N S L L 2 G T 1 1 O N C 5 3 5

R N 3 X 1 2 M

R M S N P O Y A X B C S P S T N X H L R C C H M S R 6

K I 1

C X I F R D 3

K C A P N A S C C C 2

C L C S T S E A C H T R S L M N F A T L C R F I N A N KO O 4 P 2 P O P I V A D L M E A M L A R K R

6 F B

A V W P I R O N F G T H D C L S L A F G 3 b

T S I G R A 1 P A

C L B S O P T 5

P M S T N MM A S U I a Z T

')6^^^^^^^ 2 1 1 1 8 6 6

4 2 1 2 1 1 9 8 6 6 6 6 6 6 8 4 6 1 4 6

6 4 2 4 2 2 4 9 6 6 6 6

8 2 2 6 2 6 1 8 6 8

5 4 6 9 5 6 3 4 1 6 6 6 6 9 3

6 6 4 6 4 4 4 4 8 6 8 6 6

6 9 9 2 9 2 8

0 1 3 4 8 4

9 5 4 7 4 8 8 3 9 6 6 6

7 6 6 8 5 3 3 5 3 3 3

6 6 6 6 6 6 8 4 6 8 6 8 6

8 8 8 9 8 9 1

6 0 9 4 4 7 4

1 9 5 3 8 6 8 8 1 6 7 6 6

9 7 7 8 5 3

8 5 5 2 3 8

3 6 6 6 6 6 6 8 8 6 8 6 8

6 8 8 8 8 8 0

0 6 1 3 4 7 7

7 1 9 2 3 8 3 8 4 7 9 7 6

7 9 9 7 8 8 5

8 8 8 4 2 5 8

0 3 6 3 6 6 3 6 6 8 6 8 6

3 6 6 8 6 8 6

7 0 1 1 3 7 7

3 7 1 7 3 3 7 3 5 9 7 9 7

7 7 7 9 0 8 8

0 8 8 3 4 2 5

. 0 3 0 3 3 0 3 3 6 3 6 8

. . 0 0 3 3 6 3 6 0

3 7 7 7 1 1 7

0 3 7 3 7 7 3 7 7 7 7 7 9

3 7 7 8 8 0 8

8 0 0 8 3 7 2

0 . 0

0 . 0 0

0 0 . 0 . 0 . . 0 0 3 0 3 6

0 0 0 0 . . 0 3

0 . 0

0 0 . . 0 . 0 3

. 0 0 3 7

0 3 3 3 7 7 1

0 0 0 0 . . 0 3

0 . 0

0 0 . . 0 0 0 3 3 7

0 0 . 0 . . 0 0 3

0 0 . . 0

0 0 . . 0 3 0 3 3 7

0 3 3 7 3 7 7

. . 0 0 3 3 7

0 0 3 8 0

3 8 8 3 8 3 7

0 . 0

0 0 . 0 . 0 . 0 . . 0 0 3 0 3 3

0 0 0 0 . . 0

0 0 . 0

0 . . 0 . 0 3

. 0 0 3 8

0 3 3 0 3 8 3

0 0 0 0 . . 0 3

0 . 0

0 0 . . 0 0 . 0 3 8

0 0 . 0 . 0 0 . 0 3

. 0

0 0 .

7 4 7 8 3 7 2

2 0 7 0 5 4 9 4 2 1 4 6 3 2 2 8 1 9 6 1

6 8 2 9 5 2 3 4 6 8 3 6 4

2 1 8 7 2 7 7 6 4 1

5 9 8 9 7 3 2 8 8 6 4 9 4 9 5

4 5 1 0 6 7 8 8 3 8 8 3 0

4 6 2 1 7 9 1

0 3 7 8 9 3

0 4 7 9 9 0 6 2 8 5 8 7 2

0 9 7 1 2 9 8 4 9 2

0 5 9 6 4 4 0 0 9 4 1 1 9

1 0 7 9 8 1 4

1 4 6 9 2 0 3

2 9 6 6 7 5 4 5 2 2 3 5 4 2

0 5 7 8 1 0 4

9 3 0 2 2 9

2 0 5 0 6 6 2 2 9 0 0 9 9

1 2 2 4 3 9 0

6 3 1 0 1 4 5

0 2 2 1 2 2 0 9 1 7 5 4 9 7 0 9 7

0 4 8 7 9 7 8

4 1 6 3 1 2 3

. 2

0 2 0 2 0 0 0 0 0 0 1 0 0

2 1 1 3 1 3 9

1 6 7 8 2 1 2

0 2 0 2 2 3 2 5 6 9 2 8

3 0 0 9 4 1 4

5 6 3 8 5 2 3

. 0 2 0 2 2 . . 2 1 2 1 1

0 2 2 1 2 1 5 5

2 1 1 1 8 9 4

3 3 5 3 3 5

. . . 0 0

0 0 . 0 0 0 0 2

. 0 . 0 2

. 0 2 0 . 2 2 2 2 2 4

2 2 8 2 2 9

2 3

0 2 3 1

2 3 2 3 6

2 2 3 0 2 8 5 1

.

0 . 0

0 0 0 0 0 0 . 0 . . 0 0 2 0 2 1

. . 0 2 0 2 2 2 1 1 9

0

0 0 . . 0

0 0 0 . 0 . 0 . 0 . 0 0

0 0 . . 0 . 0

0 0 . 0

0 0 . 0 0 2

. 0 0 2 2 2

0 2 2 2 0 9 4

. . 0 0 2

0 0 0 0 . . 0

0 0 . . 0 2 0 2

0 . 0

0 0 . . 0 0

0 0 . . 0 0 2 0 2 2

0 2 0 3 3 0

0 0 . . 0

0 0 . . 0 0

0 . . . 0 0 0 2

0 0 . 0 0 . 2 2 4

0 0 . 0 . 0

0 0 .

8 6 6 5 9 7 1

1 9 9 4 6 5 7 2 9 7 5 4 9 2 7 2 2 2 2 4 2

1 6 7 6 4 5 7 3 4 4 3 9

9 4 1 3 8 6 3 5 7 4

1 8 6 2 1 5 2 6 3 9 2 4 7 8

7 6 7 7 3 9 4 8 4 0 4 6

7 6 8 7 2 6 9

8 9 6 4 4 3

0 5 8 7 3 4 7

0 3 5 4 8 7

3 0 0 7 8 4 7 4 3 6

0 1 7 8 6 5 3

5 0 5 7 3 0

8 2 5 7 5 2 6

0 9 3 1 6 5 4

2 9 0 5 0 6 0 7

2 6 3 8 3 3

8 1 8 4 8 6 1

5 3 4 4 9 5

8 0 9 9 6 6 7

8 7 4 5 6 2

6 5 1 3 5 0 8

3 7 3 3 9 1 8

1 7 9 3 3 3 1

8 8 6 6 7 1

9 5 3 8 9 9 0

0 8 0 2 8 4 8

. 8 9 7 9 9 5

7 7 6 7 1 1

7 6 6 7 7 5 1

4 1 7 2 6 7 8

. 7 5 7 1 6 1 7 3 5

9 0 6 4 5 5

6 7 5 7 4 6 3

2 4 1 0 9 0 3

5 . 7 . 7 7 8

. 7 7 7 7 7

. 7 7 5 . 5 4

7 4 3 3 1 6 1

5 . . 7 . 7 7 7 3 2 5

7 . . 7 1 7 0 0 8

6 9 6 7 2 0

6 6 6 9 4 3 1

4 1 9 8 3 1 3

^ ^ 5 .

^ 5 5 . . 7

^ ^ 5 5 .

^ ^ 5 5 . 7 . 7 7

^ 5 .

^ ^ 5 5 . .

^ ^ 5 ^ 5 5 .

^ ^ 5 5 .

^ ^ 5 ^ 7 4

. 7

5 . 5 5 . . 7

^ ^ 5 ^ 5 ^ 5 .

^ ^ ^ 5 ^ ^ 5 5 . . 7 . 7 7 9

. 6 7 6 7 7

5 5 . . 6 6 5 6 4 2

6 4 3 2 6 2 7

^ ^ 5 ^ 5 5 . . 6

^ ^ ^ ^ 5 5 . 6 . 6 6

^ 5 .

^ ^ 5 5 . .

^ ^ 5 ^ 5 5 . . 6

5 5 . . 6 4

. . 6 . 6 6 2 2 7

^ ^ ^ ^ 5 5 . 6

^ 5 .

^ ^ 5 5 5 5 . . 6 6 1

^ ^ ^ ^ 5 5 . 6

^ 5 .

^ ^ 5

4 8 9 5 4 3 2

6 8 7 8 6 9 8 1 6 1 9 5 7 2 5 5 1 9 5 4 8

5 6 5 8 1 9 4

4 2 8 9 5 1

8 6 0 6 3 8 2 8 7 1

2 1 0 7 7 3 7 4 8 3 7 5 4 3

2 0 7 2 9 1 6

1 3 5 7 5 6

5 2 1 5 4 3 1

0 6 2 1 7 7 3

1 5 8 3

9 0 8 7 9 2 2

7 3 1 6 5 1 1

5 1 7 4 3 9 0 5 5 3

. 2 4 . 1 4 4

3 8 7 3 4 2

. 3 0 3 3 9 4 3

0 1 9 0 9 8 1

2 8 0 0 2 0 5

7 8 5 4 0 0

4 4 0 3 1 8 8

4 5 2 3 7 8

0 . . 0 . 6

. 4 4 2 3 2

. 2 2 3

. . 3 7 7

2 3 5

^ ^ 0 ^ 0 ^ 0 ^ 0 0 . . 2

0 . 4

0 . 3 . . 5 4 4 6 7 0

. . 2 . 4 3 9 1 6

2 7 3 6 6 2

3 3 3 8 7 3 2

4 7 2 0 9 8 4

^ 0 ^ 3

0 . 0

^ ^ . 2

^ 0 ^ ^ 0 0 . 3 . 5 4

^ 0 ^ 0 0 . . . . 2

^ ^ ^ ^ 0 ^ 0 0 0 . 3 3

^ ^ ^ 0 ^ ^ 0 0 . 3

^ 0 . . 3

^ ^ 0 0 0 . 2

0 0 . 2

0 . . 3 2 3 2 6

0 0 . 2 . 2 2 2 4

4 3 4 7 1 3 8

^ ^ 0 ^ ^ ^ ^ ^ 0 0 . 4 . 3 3

^ 0 .

^ ^ 0 0 . .

^ ^ ^ 0 . 0 . 3 5

. 3 3 4 2 4 0

.

^ ^ 0 ^ 3

^ 0 0 . 3

^ 0 .

^ ^ 0 0 . . 3 . 3 2

^ ^ 0 0 .

^ ^ 0 0 . 3

^ 0 .

^ ^ 0

0 7 8 6 9 2 3 4

2 9 9 0 6 4 2 9 8 2 9 6 7 1 3 2 1 1 1 6

4 2 3 8 3 9 3

1 9 4 5 7 6

4 0 7 7 1 6 3 8 6 9 1

6 3 9 0 2 3 2 7 8 9 5 3 2 1

1 6 3 8 7 0 7

1 8 0 5 1 2

5 2 0 7 8 4 2 2 0 6 6 1 9

3 4 4 7 4 9 9

2 4 7 4 9 3

4 8 3 2 7 2 7 2 3 3

. 1 3 2 3 2 7

2 5 . 8 5 0 7

4 1 5 7 4 2 2 6 3 1 2 6 7 9

4 2 6 7 8 2 0

5 9 1 7 4 5

9 4 1 1 4 7 1

7 3 5 6 4 4

0 . . . 7 2 2

. 1 5 4 5

. 3 4 1 1 6 4

4 6 3 7 9 5

1 4 2 5 1 1 1

1 9 8 0 3 2 4

^ ^ 0 ^ 0 0 . 9

^ . 0 0 3 1 3 3 8 4 3 0 5 3 6 0 5

0

0 0 0 . 0 . ^ 0

. . . 6 . 7 2 0 4 1 3 1 6 2

0 . . . 1 2 9

. 1 1 5 . 3 2

2 0 2 7 3 6

1 2 1 6

. 4

0 0 .

^ ^ ^ . 0 0 .

^ ^ 0 0 0 0 0 . . . 0 9

. . 0 . 5 7

^ ^ 0

^ 0 ^ 0

0 ^ 0 0 . 0 0 . 2

.

^ ^ 0 ^ 0 ^ 0 .

^ ^ 0 ^ ^ 0 ^ 0 0 . . 8

^ 0 ^ 0 . 0 0 2 1 6 5 3

0 . . 9 0 1 4

0 0 . 0 . . 6 0

^ . 0 ^ 2 9

. 2 0 . 3 3 9

. 1 1

0 0 ^ 0 . 0 0 8

^ 0 2

. .

0 0

^ 0 ^ 0 . . .

^ 0 0 0

^ ^ ^ ^ ^ 0 0 0 0 .

^ ^ 0

0 . ^ ^

58 4 8 9 3 9 9

6 1 6 0 4 6 6 4 7 2 5 4 1 7

4 1 1 1 8 2

2 6 6 8 8 1 5

9 7 9 0 6 4

5 3 7 2 7 9 6 6 3 5 7 7 3 2 8 6

7 8 8 8 6 4 2

9 6 5 7 4 1 4 9 4

9 0 5 2 4 4 3 1 8

9 7 9 2 5 6 7 8 2 9

2 6 8 9 0 6 7 6

4 1 6 8 6 8 4

1 4 6 5 4 2 6 6 5 8 6 7 6

2 0 7 1 2 6 5 9 7 8

5 1 1 2 8 6 1

6 5

. 2 0 2 0

. 2 . 2 1 2 7 9 2 7

. 1 2 0 6 9 . 1

0 . 4 4 3 0 9 8 3 2 1 6 6 6

0 3 0 2 . 0 9

. 3 . 1 3 2 0 7 9 2 7 1 2 9 4 6 6 7 3 7 2 5 6

1 6 9 1 8 3 5 0 0 3

2 8 6 9 9

1 9

0 0 . 0 ^ 0 0 . . 5

^ 0 0

. 0 0 . 2

0 . 0 . 7 6

0 0 . . 1

0 . 2

0 . . 2 9 1 6 7 5

. 1 .

^ 0 0 0 ^ 0 .

0 0 1 1

0 0 . 0 . 3 2 0

0 1 7

. 3 2 8 6 2

. . . 7 2 5

. 1 2 . 7 6

0 6 4 7 9 6 3 5 1

. 0 ^ . 0 0 . 1 0 0 0 2

0 0 . . . . 1 4

. . . 1 1 2 3

0 0 0 0

0 0 .

^ ^ . 0

0 0 . 0

0 0 0 .

. 0 0 0 0 0 . 1

0 0 0 . 3

. 0 0 2

^ 0 . 0 0 .

0 0

^ ^ ^ 0 0 ^ 0 0 ^ 0 0 0 0 8

. 0

0 0 .

75 5 4 7 3 1 6

3 8 7 3 5 3 6 9 2 2 2 6 8 9 1 7 9 6 1 5

1 8 2 7 3 1 9

3 3 9 2 2 2

4 1 2 5 5 2 8 5 6 7 2

9 0 7 1 5 3 2 6 3 0 6 4 9

2 3 8 9 2 3 4

2 2 9 1 5 9

6 3 8 1 4 5 0 6 0 7 1 2 1

2 6 9 9 2 6 8 6

1 4 7 7 7 5

7 0 3 8 1 3 0 2 9 3

. 3 4 1 6 9 8

3 9 0 1 5 7

2 5 5 4 4 0 9 1 8 8 2 8 7 2

7 4 3 2 8 1 5

. 2 3 0 1 2 3 1 0 7 9

8 7 6 7 7 8 5 1 0 2 6 4

0 0 . . 0 . 1 1 4

. 9 3 1 1 2

. . 1 2 3 3 5 1 7 7 9 9 0 4 1

0 2 2 1 5 8 5 1 3 4

4 0 7 2 8 4 6 0 8 6 9 8 1

. 0 1

0 0 0 . .

0 0 0 0 4

. 0 0 1 1

0 0 . . 0 . 0 . .

0 0 . 1

0 0 . 3

0 . 0 2 5 9 1 0 8

. 0 0 1 . 1 0

. . . 0 0 . 1 4

. 2 . 2 1 1 1 4 6

0 1 8 1 0 7 1 0 4 7 6 4 0

^ 0 . 0 . . . 7 1 8

. . 0 . 2 7 . 1 1 6 1 5 5

^ 0 ^ 0 0 . 0 . . . 2

0 ^ 0 . 0 0 0 . 0 0

0 0 0

^ 0 0 0 0 0 0 . 0 . 4

^ 0 ^ 0 0 . 0 0 0 0 . . 0 0

^ 0 0 0 . . . 0

0 0 0 0 0 . . 3 7

0 . 0

0 .

^

35 1 5 4 4 6 7

6 1 6 9 8 8 0 2 8 5 7 2 1 8 1 6 9 5 7

3 0 1 2 5 0 5

0 7 5 8 5 4 9

8 1 2 3 7 6 1 3 4 2

4 7 8 6 3 5 7 2 3 7 0 1 2 1

3 8 5 8 3 3 3

0 9 4 0 4 0 8

9 0 9 9 9 7 2 9 9 4 4 8 1 8

4 9 8 2 6 0 5 2 9

0 8 4 9 3 7

9 2 8 6 5

6 2 7 7 1 8 3 5 2 3 8

. 4 4 2 4 8 4 . 2 0

5 7 5 0 2

0 . . 0 . 5

. 2 0 9 4

3 1 7 6 8 2 6 0 3 9

4 1 6 3 6 0 3

2 7 2 5

1

. 3 9 1 2 2 9 1 3 5

4 0 4 0 6 5 7

8 2 1 4 6 3 0

3 5 0 3 4 8

0 0 . 0 . . 3 1 6

. 9 5 3 3 2

. 3 3 3 7 7 6 9

8 4 2 7

0 4 6

. 0

0 0 0 0 2

0 0 . 1 3 4 3

0 0 . 2 . . . 3 . 1 8 3 7

. . 1 1 5

^ 0 0 0 .

^ 0 0 0 ^ 0 ^ 0 . . 0 0

0 ^ . . 0

0 0 . . 1

0 0 . 0 0 . 0 . 2 . 2 8 4 4

0 0 . 0 0 7

. . 1 . 2 3

0 0 0 . 0 . . 0 . . 1 . 7 2 3 0 0 1 2 5 4 3 2 2

^ ^ 0 0 0 0 ^ 0 0 0 1

. 0

0 . . 1 1

0 . 3 1 8 0 7

0 . 0 . 2

0 . 0 0 1 0 8 1

^ ^ ^ 0 ^ 0 0 . .

0 0 . 0 7

0 0 0

. .

0 0

^ ^

23 5 1 5 5 3 4 2

4 6 8 7 1 5 0 5 3 5 7 2 4 9

2 7 9 6 9 6 8 8 4

0 8 2

0 2 3 3

7 8 2 6 3 3 3

9 3 1 3 3 5 3 6

4 1 9

2 3 3 7 4

7 0 6 7

9 5 3 8 4 7

6 4 2 8 8 8 8 3 8 7 9 7 5 9

1 7 8 9 3 1 0

2 9 2 3 4 8 9 5

1 1 8 1 3 8 7 5 5 9 1 0 2 6 1 4

0 2 1 0 4 0 2 8 2

5 4 4

2 2 7 3

1 7 8 3 1 6 3 5 5

0 3 3 2 6 0

2 8 7 1

1 9 2 3 7 2 5

3 4 2 1 5 6 3 5 0 1

5 2 8 1 0

3 8 3 3 5 0 8

2 3 1 1 2 8

. 8 7

0 . 2 2 3 2 5

. 3 4 3 5 1 4 3 4 7 3 7

2 5 8 2 4 9 3

3 6 7 6 1 4

. 0 0 . 0 . . 0 0

0 0 . . 0 0 0 0 . 2

0 . . 2 9

0 . 0 0 . . 2 2 1 2 3

. 0 0 . 0 . . 3 0 8

0 0 . . 1

0 0 . . 1 2 8 9 1 6

0 0 . 0 . 0 5 1 3 3

0 . 3

0 .

^ 0 . 0 0 . 1 . 8 1 3 8 8 1 3 8 3 0 4 6

. .

0 0 ^ . 1

0 . . 9 0

0 9 5 0 1 4

^ 0 . . .

^ 0 0 . 0 0 0 . 0 0 .

^ 0 0 0 2

. .

0 0 . 0 0 2 . 9 9

0 0

^ 0 . 0

0 . 0 0 0 5

. 0 . 3 1

0 0 . .

0 0 ^ 0 . 0 0

0 0 .

^ 0 0 0 0

^ ^ 0 .

65 5 1 9 7 6 1 1 4 4 1 9 4 3

9 9 1 3 9 9 8 4 7 4 0 5 5 3 2 1

5 6 2 4 4 3 8 1 3 0 5 7

1 5 1 7 1 0 2 1 6 5 7 7 2 9 4

1 4 5

1 6 7 8

2 0 2 2 6 9

7 4 9 4

6 8 6 0 7

2 6 7 1 2 8 7 4 7

1 7 2 0 0 5 2 4 1 4 8 9

. 3 6 6 6 7 6

4 7 0 5 5 1

1 1 8 9

1 6 7 3

6 8 7 3 1

8 4 5 4 5 1 5 3

4 6 0 7 4 9 4

9 6 5

. . 8 5 4 3

. 2 6 5 2 . 1 4 6 1 3 7 9 1 7

6 3 7 6 4

3

0 0 . 0 . 4 0 0 1 0 3 3 8 8 2 0 9

0

^ . 0 0 0 3 7 8 3 1 6

^ 0 9 3 1 1 9 1

4 6 4 2 9 4 5

. 1 8 2

2 2 1 4 2 2 8 4 2 5 3 4 1

.

0 . 0 2

. . 0 0 5 2 0

0 . 4

0 0 . . 6 5

0 . 3 0 8 5 2

.

. . 4 . 5 1

0 . 3 7 0 0 4 9 1 7 7 1 4 2 3 1 5 4

^ 0 0 0 ^ 0 0 . . . . 1

0 0 0 0 .

^ ^ ^ 0 5

. 0

0 . 0 . 3

0

^ 0 ^ 0 .

^ 0 1 2

. . 0 2

0 0 0 . 0 0 . 0 . 0 4 . 2 6 . 2 3 5 5 5 5

^ ^ 0 ^ . 0 0

^ 0 0 0 ^ 0 6 1 3

. ^ 0 . . . 1

0

0 0 0 ^ 0 0

. 0 . . 0 . 0 . 1

^ ^ 0 ^ 0 0

^ ^ 0 . 0

0 ^ . 0 0 1 9

0 0 .

^ ^ 0 . . 0

0 0 0 .

^

96 8 2 7 3 8 7

0 2 1 8 8 6 9 9 6 8 0 2 1 4 2 7 3 5 2 8

2 6 9 8 0 2 9

9 9 8 3 8 9

4 1 1 0 5 2 2 2 4

6 9 8 9 6 2 7 3 3 2 6 6 8 9

6 1 5 0 7 0 0

1 4 9 2 4 8 4

9 7 8 0 8 9 5

1 0 3 8 2

3 6 4 5 4 5 6

0 8 3 2 4 5

7 7 5 5 1 6 2 5 2 8

. 0 1 7 3 7 5

1 2 5 0 0 2 8

6 2 2 8 9 1 3

1 5 3 6 3 3

1 5 7 7 8 3 7

6 7 9 0 0 2 1

5 1 6 5 5 7 7 6 5 5 5 5 6

0 . 0 . 3 . 3 9

. 1 3 1 8 7 6

0 5 8 8 8 7 0

2 6 2 1

5 1 4

. 2 8 7 3 2 1

7 . 1 5 3 5 3 8

3 7 1 3 5 3 6 5 3 7 3 7 0

. 0 5

.

0 0 0 0 . 3

0 0 . 0 0 . 0 . . 2 8 2

0 0 . . . 2 0 9 3 4

. 6 7 1 1 3 6

0 0 . 0 . . 3 0

. 7 4 1 4 2

0 0 0 5 7 1 5

1 0 1 2

^ ^ 0 2

0 0

. 0 0

0 0 . 0 0 0 . . . . .

0 0 0 0 0 . 2

0 0 . . 2 5

^ 0 . .

^ 0 0 . 0 0 0 3

. 0 . 0 . 0 . 4 8 1 1

0 0 . . 6 2 . 5 4 3 0 6 6 6

0

^ 0 0 0 . 0 0 . 0 0 . 0 . 0 . . 5 . 7

^ 0 0 0 . 0 . 0

^ ^ ^ 0 0 5

. 0 . .

0 0 0

^ 0 0 0 0

^ ^ ^

5 8 4 1 3 2 3 5

7 4 4 4 9 1 4 6 5 2 0 7 3 1 6 6 5 6 7 5

8 7 6 2 6 8 4

5 3 0 1 5 2

3 2 7 8 3 9 5 8 9

8 6 7 1 3 3 5 5 8 9 5 8 9 7 3

5 2 6 6 3 6 2

. 7 1 1 6 0 1 8 2 4

1 7 2 5 0 3 8

5 5 4 8 6 3

7 6 5 8 4 6 1

2 4 1 6 3 3

4 9 3 3 7 8 3 6 1

0 7 2 2 1 5 7 3 8 1 5

3 8 2 2 8 1 6

5 0 4 7 7 6

0 0 9 0 5 3 4

0 1 9 4 0 5 4

0 4 4 5 7 4 7

2 2 8 5 3 1

. 0 . 4 0 1 8

. 4 . 6 6 9 9 2 4

. 4 3 1 7 2 5

1 1 2 2 4 5

. 2 8 6 3 3 6

3 1 3 6 8 7 1

1 3 8 7 3 9 8

3 4 3 6 4 3

0 0 . 0 .

^ 0 ^ 0 . 0

0 0 . 0 . 1

0 0 . . 1 7 3

0 0 . 0 4

. . . 4 6 6 4 . 1

0 0 . 0 3

. . . 1 0

. 1 2 7 4 1 7

. 2 0 2 2 7 7

3 6 0 9 2 0

. 0 4 1 0

^ ^ 0 0

0 . . . 2

0 ^ 0 0 .

^ ^ 0 0 0 0 . 9

^ 0 . 0 0 8

0 . 0 ^ 0

0 . 0 . 1

0 0 . 0 0 . .

^ 0 0 2 4 1

. . 0 4 5 2

. 7 1 1 3 2

^ ^ 0 0 0 0 0 0 . 0

^ 0 0 . . . .

0 ^ ^ 0 0 0 . . 1

^ 0 0 .

^ 0 0 1

. . . 2 . 9 0

0 0 0 0 .

^ 0

93 6 7 2 5 2 2

0 8 1 8 7 7 9 8 5 6 1 5 3 6 8 4 8 2 4 4

0 8 3 1 8 7 7

1 8 8 1 4 3

8 8 3 2 7 9 5 9 9

3 7 8 9 6 7 8 2 1 1 1 1 2 6 7

2 0 7 6 0 5 4

5 8 2 0 0 9 9

9 7 2 7 8 2 8

9 7 3 5 3 1

8 8 5 4 6 1 6

1 8 4 5 3 7

2 4 3 6 1 7 0 7 5

. 3 1 9 1 6 5

2 1 2 2 3 0 1

7 3 2 6 6 3 1 1

0 2 6 7 7 9

5 8 5 8 7 5 0

2 9 0 2 5 2 8

8 4 5 3 9 3 4

7 1 9 7 6 7

0 0 . . 3

0 0 . 3 1

. 4 8 7 1 1 0

. 3

^ . 0 4 4 1 6 5 9

4 9 5 0 2 8

0 8 3 2 2 4 0

1 2 2 1 1 1 4

3 2 3 3 5 4 4

3 2 6 8 9 3

0 ^ 0 0 4

. 0

0 . 0 0 . . 0 . . 3 8 1

. 8 3 1 2 6

. 0 . 5 . 2 3

. 1 1 3 1 5 2 8

. 7 6 . 7 7 8

0 1 7 1 2 9 0

0 0 0 . 0 0 .

^ 0 0 2

. .

^ 0 ^ . 0 0 3

0 . .

0 0 0

^ ^ 5

. 0 0 0 . 1 4

^ ^ 0 1

. . . .

0 0 0 0 0

^ 0 . 0 . 0 0 . 2

0 . 0 0 . 0 0 . . 1

0 . 0 0 0 0 5 1 4

. . 1 . 2 9

^ . 0 6 1 9

0 0 0 0 . 1

0 0 . 0 2 1

. . .

^ 0 0 ^ 0 0 . .

0 0 0 0

0 0 .

^ ^ ^ . 0

0 0 0 0

47 5 1 4 6 9 3 3 1 8 2 3 4 3 8 2 4 8 7 6 7 0 3 4 4 8

8 2 1 6 8 2 7 6 2

1 2 5 3 5 6

6 5 2 4 4 7

3 8 4 4 8 7 3 7 9 4 5 4 4

. 7 0 8 3

0 2 7 8 0 0 0 9

2 9 3 9 0 0 7

5 0 3 3 4 2 6

3 9 1 8 3 3

2 0 7 7 7 5 5

6 5 1 4 2 6

2 9 4 7 7 2 4 6 6

. 1 1 8 9 6

3 . 3 3 0 6 6 6

2 1 2 4 7 1 3

1 9 1 9 7 0

. 2 1 4 1 2 8

8 0 1 7 2 3 6

4 2 7 8 8 2 4

8 6 8 1 2 6

0 . 9

0 0 . 1 1 3 9 4 5

. 7 4 7 8 6

0 7

0 0 1 3

0 4 3 1 3 2

0 9 5 7 8 8

3 0 8 9 9 9 9

. 3 1 2 4 3 5

1 3 8 3 0 1 4

1 8 8 2 5 4

. 7 2 . 2 9 7

6 1 2

. 1 0 4 6

. . . 7

. 0 . 1 . 9 9

0 0 . 0 . . 2 4 2

0 0 . . 3

0 0 . 0 9 4

0 2 1 6 6

0 0 . 0 . 3 1 8

0 3 3 0

. . . 4 2

0 0 0 0 1 2

. 1

^ 0 . 4

0 0 . 0 .

0 0 0 . 0 0 0 0 . 0

^ ^ 0 1

. 0

^ 0 .

^ 0 0 0 0 0 .

. 0 0 . .

^ 0

0 . 0 0 0 0 0 . 7 . 1

0 0 . 0 . 0 1 1

0 0 . . .

^ 0 ^ ^ 0 0 0 . . 0

0 . . 3 3

. 0 .

^ 0

0 ^ ^ 0 0 0

^ ^ ^

1 1 2 8 6 6 4 8

2 1 8 7 1 2 3 5 7 4 0 9 6 8 6 7 2 9 4 7 5

1 7 9 6 2 8 1

7 5 4 1 4 8

9 1 9 2 2 4 3 1 8

5 8 9 9 4 3 4 3 7 5 6 3 1 4 7 7

. 6 4 3 2 4 2

7 8 8 8 6 4 5

4 5 9 3 1 7 3

7 5 3 2 2 6

9 0 6 9 3 3 1 5 2 3 6 4 3

9 0 9 8 9 1 3 8 8

0 . 2 3 7 4 3 7

2 7 5 1 2 3 2

6 5 7 0 0 3 3

8 9 2 7 1 6

1 1 1 3 8 9 9 6 5 6 5 9 1 2

1 0 2 7 9 0 7

0 4 5 9 1 5

0 0 1

. . 0 1 4 8

. 6 1 6 . 1 6

0 8 2 2 2 7 5

9 6 6 8 3 2

. 2 . 4 2 7 6 5 . 1 7 4 0 9 1

1 0 4 8 1 7 7

1 5 4 2 5 9

0 0 . . 0

0 0 0 . 0 . 0 . 2 ^ 0 2 4

. 1 0 0 . 0 0 1 1 0 8 0

. 2 3 4

0 0 0 ^ 0 . 0

0 . 0 0 . 2 1 8

0 1 8 8 1 1

0 . 0 . 1 2 4 8 1 6

2 1 3 5 7 9

^ 0 . . 0 0 . . 2

0 0 . . . 8 0 0 1 2

0

^ 0 0 0 ^ . 0 . . .

^ 0 0 0 ^ 0 1 . 2 7

0 0 . . . . 0 0 0 . .

^ 0 0 0 0 . .

0 0

^ ^ 0 . 1

0 .

^ 0 0 1 2 0

. 0 . 2 0 1 9 1 8 7

0 0 . 0 0 . . . 1 . 1 1

^ 0 0 . 0 0 0 . 0 .

^ ^ 0 ^

5 2 7 6 1 6 9 4

3 2 3 3 5 5 8 3 5 3 5 8 2 2 7 3 5 8 5 7 6 5

7 0 6 4 0 2 5 6 0 1 9 2 2

1 0 8 1 6 6 5 9 4

8 2 1 5 2 6 6 6 8 5 4 6 6 7 5 7 7

4 3 9 0 2 2

9 8 2 1 6 4 7 1

2 9 4 6 5 2 8 9 5 7 4 6 3 5

7 4 2 1 4 0 8

4 3 4 8 4 9

4 2 3 5 4 7 1 9 7 9 9 7 4

4 5 9 3 1 6 9 5 4

5 7 1 2 1 5

. 2 4

. 2 . 1 8 8 4 8 4 4 2 0 5

8 . 6 5 3 5 2 4

1 8 0 3 1 1

0 ^ 0 . 0 0 . 5 3 .

0 1 2 2 1 8 8

. 2 1 1

. 3 0 . 0 0 1 3 3 5 9 3 1 5 7 1 3 1 4 1

5 9

^ . 0 0 1 1 1 8 1

3 1 2 1 9 2

. 0 . 3 . 1

0 ^ 0 9 1 4 1 3 9 7 7 2 2 0

9 1

0 1 1 1 9 7 0 8 9

6 5 5 1 7 8

0 0 0 . 0 . . 0 0 2 1

0 0 0 . . 1

. ^ 0 . 0 0 . 1 5 . 3 1 7 . 5 7

^ 0 0 .

^ ^ 0 0 0 0 . . 1 0

0 0 . 0 0 ^ 0 . 0 . 4 4

0

^ ^ ^ 0 . 0 0 0 .

^ . 0 . 0 0 .

^ 0 . 0 0 0 . . 1

0 0 . 0 4 2

. 1

^ 0 0 .

^ . . . 0 1 3 4

0 1 5 1 5 6

0 0 0 0 ^ 0 . . 0 3

0 0 . . . . 1 . 8 4

^ . 0 0

0 0 .

^ ^ ^ 0 0

^ ^ 0 0 0 . 0

^

3 7 4 1 3 2 2 6 2 7 7

6 9 5 2 5 5 9 6 6 3 1

3 5 5 8 6 6 3

7 4 7

0 1 3 9 4 6 7 2 4 3 )

1 8 4 6

7 1 1 1 7 5 9 1

1 7 8

4 0 9 8 1 5 0 8

5 5 0

8 2 8 1 8 9 8

3 5 2 7 1 0 3 1

9 3 5 7 9

7 4 2

7 0 5 7

9 1 6 1

4 8 3 0 2 3 1 4 6 1 0 8 6 1 3 3 9 5 .

4 9 6 0 4 5 5

6 0 3 2 4 9 7 3 6 3 3

1 5 6

2 8 0 6 3

5 5 6 9 3

1 4 2 6 0 3 8 4

0 8 6 0 8 3 8

7 3 1 4 6

6 3 1 0 5 9 2 0 9 1 6 6 9

. 2 2 9 4 . 5 0 3 9

6 3 6 7 6 1

1 4 2 9 9

3 4 6 2 0 8 3 3 1

0 . . . 1

0 0 . 1 4 8 2

^ 0 0 ^ 0 0 2 1

. . .

0 0 .

^ 0 . 1 . 1 3

. 2 .

^ 0 .

^ 0 . 9 1 0 2 8 6

. 1 6 2

. 0 . 0 . 0 . 0 ^ 0 3 1 7 7 3

3 3 . 1 6 7 5 7 t

. 0 . 0 0 3 0

. 1 0 4 0 9 2

0 ^ 0 2 0

. 2 1 5 1

0 0 . 5 5 1 1

0 . 1

^ 0 . 1

0 . 0 ^ 0 0 ^ 0 . .

0 0 0 . 0 0 1

0 . ^ ^ . 0 2

0 . . 1 0

0 . 0

0 0 0 0 0 . 0

^ ^ 0

0 0 0 . 0 . . 3

0 .

^ ^ . 0 0 0

0 0 . . 0 0

^ 0 . 0 0

^ ^ ^ ^ 0 ^ 0 0 n

^ 0 . o

^ ^ ^ ^ ^ 0

^ 0 . . 0 . 8

0 0 . . 4 .

^ 0

^ 0 ( c

8

2

2 L B 1 C 0 C

1 D P U 6 H 1 1 4 2 1 T 2 1

f 1 2 3 1 E V B 3 B A 1 4 3 7 L 1 4 e

1 6

D E K 0

T 1 A T L 5 1 MT 1 3 P 3

f 7 1 4 5 A 9 8 2 N C

P G R N 1 1 1 A N D C K K A C A 3 1 A D r A 3 P 2 1

f 6 L 4 P D 2 1

E D A N E C H B R A r P S H

U I R

R 3 R 7

N P C O P P 1 o 4 1 N

N H 1 C 1 6

A r R 1 X

F 1 H B I 2 T T 2 0 D 1 D S H

G M H C G L R Y WZ o B M A T

D C 7 E M

A R B R O A T N S P N P S Z C G L Y S M O N C T G T B 1 P P 4

C T R T T A I F K o 1 G O

N L S N S F K 3 H 8 2 T

I S Z B 1 3 1 l

C b a

A 6 P

C P P Z D A C M R A E N D D E F N D A C U K N R C M V L L F U P A N U M N S S A D T C G M M M M I Q P T P C L T R E T

')6^^^^^^^ 5 8 8 7 9 5 8

2 5 7 6 7 7 5 7 5 5 2 2 1 1 8 0 8 8 8 9

7 2 6 8 6 6 6 5 2 5 2 5

9 8 0 1 0 1 2 8 8 8

3 0 8 0 8 8 0 8 8 5 6 9 6 6 8

3 7 8 1 8 8 2 3 9 2 9 2 5

3 5 7 0 7 0 2

8 0 0 0 8 8

5 3 0 3 0 0 3 0 0 8 7 5 2

1 6 7 6 6 7 2 2 6 2

8 3 1 5 1 1 5 4 3 9 3 9 2

8 1 2 7 2 7 9

4 3 3 3 0 0 8

4 5 3 5 3 3 5 3 3 0 7 2 7

3 1 6 6 3 9 8

8 1 4 7 2 2

3 8 5 8 5 5 8 5 8 3 8 3 9

8 9 2 2 2 2 2

4 5 5 5 3 3 0

9 4 5 4 5 5 4 4 5 5 3 1 5 3

7 3 4 3 5 7 2

2 7 0 2 7 7 2

0 3 8 3 8 8 3 8 8 8 8 8 3

3 3 9 2 9 2 9

9 4 4 4 5 5 3

3 9 4 9 4 4 9 4 5 6 3 7

9 7 2 5 2 4 8

5 9 2 7 2 2 7

. 0 3 0 3 3 0 3 3 8 3 8 8

. . 0 0 0 3 9 3 9 3

3 9 9 9 4 4 5

0 3 9 3 9 9 3 9 4 9 6 6

3 9 0 2 0 0 2

0 5 6 6 7 7 2

0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 3 0 3 8

0 0 0 0 . . 0 0 3

0 0 . 0 . . . 0 3 0 3 9

0 3 3 3 9 9 4

0 0 . 0

0 0 . . 0 3

0 . 0

0 0 . . 0 0 0 3 3 9

0 0 . 0 . . 0 0 3

0 0 . . 0

0 0 . . 0 3 0 3 3 9

0 3 9 3 9 9

0 3 4 0 4 4 5

. . 0 0 3 4 0 0 0 6 6 7

0 . 0

0 0 0 0 . . 0

0 0 . . 0 3 0 3 3

0 . 0

0 0 . . 0

0 . 0

0 0 . . 0 . 0 4

. 0 0 0 0

0 4 4 4 0 0 6

0 0 0 0 . . . 4 0

0 0 . 0 . 0 . 0 . 0 4 4 0

0 0 0 . 0 0 4

0 0 . . 0

0 0 .

74 6 2 5 4 6

7 7 5 1 3 9 6 9 8 3 2 8 7 4 2 5 1 4 6 8

0 1 2 2 9 9 6 0 9 8 7 9 9

5 0 7 4 6 3 7 3 8 3

2 0 1 7 9 4 5 9 4 9 3 9 3 8

4 8 8 1 1 1 2 7 2 0 3 8 1

7 3 7 9 3 3 6

2 6 6 1 5 4

8 0 5 0 8 4 3

5 1 2 1 1 1

8 7 3 9 8 8 0 8 9 4

2 0 4 3 6 7 4 8 8 2 4 0 0

9 2 5 7 5 7 8

2 0 8 6 8 3 8

1 5 9 9 9 6 8

5 7 3 1 0 1

5 2 4 2 2 3 2

7 6 0 3 3 7

0 4 2 4 3 3 4 4 7 3 8 9 4

4 5 3 7 4 7 5

7 2 4 2 5 7 6

6 2 5 2 6 2 6

4 0 9 0 4 1

9 8 8 5 9 9 9

3 6 5 4 2 5 7

8

. 2 4 2 4 4 2 4 4 8 4 8 9

2 2 5 3 5 4 3

5 8 8 9 6 6 1

0 2 2 6 2 6 3 0 4

. 4 6 5 3 7 6 4

6 9 3 5 4 9 6

8 3 0 5 1 9 7

0 0 2

. 0 0 2 2 0 2 2 4 2 4 4

0 0 2 5 2 5 6

2 5 5 5 9 0 6

. . 0 . . 0 0 2 6 2 6 0 6 2 6 5 6 7 8

2 6 7 4 7 6 0

7 9 0 1 8 2 0

0 0 0 2 0 2 2 2

0 0 . 0 . 0

0 . 0 . . 0 0 2 0 2 2

0 0 0 0 . . 0

0 . 0

0 0 . . . 0 2 0 2 5

0 2 2 2 5 6 1

0 0

0 0 . 0

0 0 . . 0 2

0 . 0

0 0 . . . . 0 2 2 6

0 0 0 0 . 0

0 0 0 . . 0 0 2 0 2 2 0 2 6 2 6 6

0 . . 0

0 0 . 0

0 . . 0 0 2 0 2 2 7

0 2 2 7 7 8

0 0 2 2 7 2 8 2 8 8 1 8 2 2 5

0 0 . 0 . 0 . 0

0 . 0 . . 0 2 0 2 2

0 . 0

0 0 0 . . 0

0 0 . 0 . . 0 . 0 . 0 . 0 0

0 0 . . 0 . 0

0 0 . 0

0 0 .

7 9 5 2 2 1 7

6 4 1 7 4 6 8 7 6 5 2 8 9 9 1 9 5 1 8 6 5

9 5 7 3 5 8 9 5 5 4 8 9 5

1 2 9 8 6 6 4 4 9 1

8 0 3 8 3 3 4 8 7 3 2 9 2 4

5 7 3 5 2 3 9 8 2 1 3 1 8

8 0 7 1 2 8 4

1 8 6 4 9 1

0 5 2 1 7 5 5

3 0 3 4 7 7

5 1 5 9 0 4 4 5 1 8

1 5 6 4 1 6 8 0 9 9 0 0 6

2 8 8 4 4 2 7

0 2 4 1 5 9 2

7 0 6 2 6 5 4

8 3 9 1 4 3

5 5 3 6 6 3 4

3 6 1 7 3 6

6 1 7 0 2 1 9 6 1 5 9 8 4

7 0 4 9 0 3 0

8 5 2 7 0 9 3

1 4 3 2 6 0 2

0 4 5 9 9 3 3

2 1 0 7 3 0 7

6 0 1 1 7 7 7

. 6 0 6 0 0 5 9 8 9 7 6 4

. . 5 6 5 3 5 9 0

3 3 2 8 9 2 0

5 5 1 1 1 8 5 2

. 5

^ 5 0 2 0 3 1 7

8 8 4 9 9 5 1

4 4 5 2 8 5 8

5 . 6 . 6 6 . 5 5 7 5 7 7

. 5 5 5 5 4 2

5 3 3 2 6 2 8

. 5 5 5 0 5 0 1 9 1 7

4 4 6 0 5 0 9

4 0 7 1 0 0 6

^ 5 .

^ ^ 5 5 . .

^ ^ 5 ^ 5 5 . . 5 . 5 5

^ ^ 5 5 .

^ ^ 5 5 ^ ^ 5 ^ 5 5 . . 5 . 5 4

. 5 5 5 2 2 1

^ ^ 5 5 .

^ ^ 5 5 . 5

5 .

^ ^ ^ 5 5 . 5 . 5 . . 5 5 5

^ ^ ^ ^ 5 5 . .

^ ^ 5 ^ 5 . . . 5 5 . 5 0 4 9 8

5 5 . . 4 6 4 5 5

4 4 3 3 0 8 1

^ ^ 5 ^ 5 5 . 5 .

^ ^ ^ 5 5 . 5 . 4 4

^ 5 .

^ ^ 5 5 . .

^ ^ ^ 5 5 . 4 . 4 4

. 4 4 4 3 2 7

^ ^ 5 .

^ ^ 5 5 . 4

^ 5 .

^ ^ 5 5 . . . 4 4 2

^ ^ 5 ^ 5 5 . . 4

^ ^ 5 5 .

^ ^ 5

5 9 5 8 5 5 1

3 3 7 5 4 7 6 2 7 4 3 9 8 9 6 7 7 6 1 9 3 8

2 4 6 5 8 5 8 5 3 9 7 6

8 0 8 3 8 2 8 7 3 4

9 5 2 3 7 5 2 3 5 0 7 2 8 8

3 9

3 4 7 2 7 . 7 5 7 4 1 0

6 0 0 4 7 5 9

3 4 4 9 3 6

2 9 4 3 6 5 9

. 7 2 0 8 8 2 1 2 7

5 5 7 9 6 5 8 7 4 7 5

. . 2 4 8 3 5 2 1 5 6

3 9 6 6 7 2 8

1 1 3 9 3 9 1

4 6 4 0 2 9 7 0 2

2 5 3 5 8 9 4

1 2 8 3 3

0 0 . . 3 ^ 0 . 2

. 2 3 3 9 2

. 3 2 8 3 1 2

2 3 1 8 0 7 2

. 3 3 ^ 0 5 2 0 9

2 7 4 9 4 9

. 2 7 5 9

2 6 8 7 2 9 1 2 2 1

0

^ ^ ^ 0 . 0

^ ^ 0 ^ 0 . 3 . 3 3

^ 0 .

^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . . 2 . 3 1

. 2 3 7 2 8 6

^ ^ 0 0 .

^ ^ 0 0 . 2

^ 0 .

^ ^ 0 0 . 0 . 0 . 3 . 2 6

^ ^ ^ ^ 0 0 . 3

^ 0 .

^ ^ 0 0 . . . 3 1

. 2 5 3 1 6

0 0 0

^ ^ ^ 0 . 3

^ 0 .

^ ^ 0 0 . 4 . . 3 2

0 0 . . 2 1 5

^ 0 .

^ ^ ^ ^ 0 ^ 0 ^ 2 5 6 2 6 4 2 2 7 7

0 . 4 . 3 2

0 . 0 . 3 4 8 . 4 0

^ 0 .

^ 0 0 .

^ ^ ^ ^ 0 . . 2 0

^ ^ 0 0 .

^ ^ 0 ^ 2 7

. 3

0 .

^ ^ 0

0 5 8 6 3 7 3

1 0 1 7 8 9 2 7 4 4 7 4 7 1 9 2 1 4 6 8

6 6 9 6 1 3 5

5 2 5 7 3 2

3 8 5 2 5 1 1 6 2 5

3 3 9 0 4 1 3 4 1 7 2 8 5 4

1 3 8 2 4 5 9

2 8 8 4 5 5

4 9 3 5 5 5 5

0 1 1 1 6 2

1 9 3 8 9 0 2

4 6 4 3 3 6

0 7 0 2 8 1 5 7 9 5 3

. 3 2 2 3 4 6

5 8 9 1 8 7

0 0 0 4

. 3 2 6 1

3 1 9 9 0 5 4

1 7 6 1 4 0 9

1 9 9 1 8 0

2 6 3 8 2 2 3 2 8 8 9 9 8

0 . 1 . 3 . 4

. 5 4 1 1 5 2

. 0 . 3 2 8 4 7

^ . 1 5 8 4 2 3 7 1 2 3 1 1 9 5 3

^ 0 .

^ ^ 0 ^ 0 ^ 0 0 0 1 4

. 1 8 7 3

0 0 5 1 0 4 1 2 2 5

1 0 8 9 2 0 6

1 0 4 6 0 2 4 1 1 7 0

. 0 0 .

^ . . . . 0 ^ 0 . 0 . . 2 1

^ 0 3 0

. 0 ^ 1 0

. 2 1 1

^ 0 0 0 8 8 3 6 2 1 4 3 3 8 9 7

4 4

0 0 ^ 0 . . 0 0 0 . .

0 0 0 . . 0 . 0 0 3 . 1 4 0 3 1 0 1 3 1

0 0

^ ^ ^

0 0 . .

0 0 0 5

. . . 8 1

0 . . 2

0 0 0 0 0

^ ^ ^ ^ 0 0

^ ^ ^ 0 2

. .

0 0

^ ^ 0

^ ^ 0 .

^ ^ ^ . 0 0

0 .

^ ^ 0 0 . 0 . . 0 .

^ ^ 0 . 0 . . . 1 . 0 8

0 0 0 0 0 ^ 0 0 .

^ ^ 0 ^ 0 0 4

. .

0 0

^ ^ ^ ^ ^

3 2 9 9 7 4 7

7 1 5 3 1 5 9 8 9 6 5 8 6 7 2 4 7 1 6 9

1 3 8 3 0 1 5

1 3 2 7 6 8

5 1 9 3 6 8 3 7 4 4 5

9 1 0 5 9 1 4 2 7 1 5 9 9

. 3 5 1 4 5 9

1 8 7 3 4 6

8 4 8 5 2 3 6 1 5 5 1 2 7

5 9 0 1 6 1 5

9 7 9 2 5 6

4 3 3 1 4 8 1 1 2 4

0 . 2

^ 0 . 1 4 1 8 4

1 5 1 0 3 7

4 5 6 6 8 2 0 5 8 4 7 0 7 2

9 4 3 4 5 1 0

. 4 2 2 1 5 0 2 2 1 7

2 1 8 7 1 7 0 9 8 1 3 7

0 0 1 0 5

. . 0 . 4 . 1 2 8 4 . 1

0 1 6 4 1 6 3 3 3 0 8 3 0 5

0 2 1 9 0 4 3 9 0 4

1 6 9 6 2 9 0 7 3 8 3 3 3

0

0 0 0 . 2

0 0 . 0 0

. . 0 . . 0 3 . 3 . . 3 2 4 1 9 1

. . 9

. . . 0 0 ^ 0 . 1 0 3 2 8 9 4 2

. 1 0 4 0 5 2 9 7 5 0 5 1

^ . 0 0 ^

0 0 0 0 0 . . 0 0 . 0 0 . 0 0 1 . 2 7

0 0 0 0 . . 1 0 7 0 7

0 0 . 1

0 0 . . 2 1 . 1 3 8 2 2 1

. 0

^ ^ 0 0 0

0 . . 0 0 5

. 0 . 0 0 . 3

0 . . 3

^ 0 0

^ 0 0 ^ ^ 0 0 .

^ . 0 . 9

0 ^ 0 0 . 0

. ^ 0 .

^ 0 . 0 0 .

^ ^ . 0

0 0 0 2

0 ^ 0 ^

53 3 8 6 4 9 9 8

9 9 2 1

7 1 1 3 6 9 7

1 1 2

0 6 8 5 1

1 0 8 9 7 5 4

3 2 3 9 1 6 2 2

8 0 7 7 9 7 6 9 3 3 7 2 5 1 4 9 9 2

4 4 8 0 0 6 1 1

2 4 9 3 9

6 5 1 5 7 5 1

. 0 1 5 1 3 4 8 1

9 5 7 7 8 9 0 2 3 5

8 4

6 3 6 1 8 0 9 1 1

1 0 0 6 1 4 8

7 1 6 8 6 5 6

7 3 2 6 1 8 9 4 3 7

2 1 0 2 2

5 5 0 8

1 2 3

5 . 4 . 1 6 5 3

1 6 2 . 1 8 3 1 7 8 0 1 1 4

0 . 0 1

0 . 0 1 1 4 6 1 6

. . 0 . . 1 . 2 4 8 3 2 1 2 2 0 4 2

2 8 1 2

. 5 2 1 1 2

1 1 7 3 0 8 5

0 . . 1 2 5 0 9 6

1 1 0 1 4 0 7 1 6 0 3

3

0 . 5

0 . 4

0 0 . 0 . 3 1

0 0 . . 7 2 8 2 4 8

0 . 0 0 8 . 1 . 0 2 9 4 9 9 2 4 9 3 3 3 8

0 0 . 0

^ 0 0 0 2

0 . . 3 3 3

0 .

^ 0 . 0

0 0 . 0

0 . 0 . 3

0 . 0

^ 0 0 0 0

. 0 . 0 . . 1

^ ^ 0 0 0 . 0 0 . .

^ 0 0 1 2 1

. . 0 6

0 . 0 . 4 8 . 2 5 3 1 3 2

0 0 0 0 . 0

0 ^ 0 . 0 0

0 0 . 0 . 0 0 1 . 3 5

^ ^ 0 .

^ 0 ^ 0 . . 0 . 5

0 0

^ 0 0

^ . 0

0

13 6 2 5 2 1 0 2 2 8 7 6 5 7 2 8 3 6 6 4 8 6 8 8 3 1 1 8 4 3 2 0 1 6 8 3 4 6 7 1 8 5 9 3 5

7 5 7 1 1 4 3 6 2 2 1 9 2 0 0 0 3 7 1 5

6 0 4 1 6 8 3 4

3 6 6 4 1 4 7 6 3 8

6 6 4 6 9

6 4 0 2 7 9 3 9

. 9 0 6

2 . 6 1 7 2 2 . 8 2 6

7 2 4

. 3 3 6 . 3 0 4 2 4 3 4

2 3 2 8 2 4 1 2 0 4 0 1 2

. 1 6 1 3 8 6 8 5 1

7 8 6 3 2 9

3 7 8 4 8 4 7 9 4 6 6

. 8 2 8 3

4 2 1 7

. 5 9 6 3 6 1 4

3 3 0 3 5 3 5 4 8 5 4 2 5 8 5 1

5 7

0 . 0 . 0 0 3

. 1 0 . 3 8 7

. 2 3 3 5 6 2 . 1 0 3 6 0 2 4 4 5

8 7 2 9

3 3

0 . . . 1 4 . 2 1 7 . 9 8

0 0 . 0 . 3

0 0 0 . 5

0 0 . 0 0 3 5 4

. . 0

0 . 2

0 . . 2 8 . 8 1 4

0 .

0 0 3 9 7

^ ^ 0 0 . ^ 0 0 0 . 0

0 0 . 0 0 0 2

0 0 1

. . . 6 0

0 0 9 0 3 3 1 2 6

0 .

0 0 0 0

^ . 0 0

0 0 . 0 . . . 0 4 1 2

0 . 2

0 0

^ ^ ^ ^ ^ ^ 0 0 0 . 0 . 2

^ ^ 0 0 . 0 . . 0 0 . . 2 0 3 1

. 1

^ ^ 0

^ 0 ^ 0 . 0

^ ^ 0 0 ^ 0 .

^ 0 0 0 . 1 3 1 5 6 9 4 6

5 3 1 5 2 4 9 6 5 1 2 7 2 5 6 5 8 2 4

6 0 6 8 8 1 2

6 2 4 4 5 7

9 9 5 3 9 4 5 1 2 6 6

4 8 7 1 5 5 2 4 6 5 4 3 8 4

1 9 3 0 2 0 2

8 5 7 5 2 5 7

3 7 9 5 1 9 2 5 1 9 3 3 8 7 3 4 5

8 4 1 1 9 7 2

6 1 4 1 7 6

8 9 8 6 0 4 9 5 5 3 4 9 2 5 9 3 6 8

3 7 5 7 3 2 2

0 2 9 5

. 7

0 0 6 5 1 3 9

1 8 6 1 7 4 3

1 8 9 0 7 3 9 7 6 9 2 4 4

1 4 0 3 1 6 3

. 0 0 1 1 2

. 5 1 . 2 9 2 9 9 0 0 0 0 6 6 8

. 4 2 3 4 8 3

7 0 2 3 7 0 8

1 9 8 3 0 4 3 8 0 6 5 3 4

0 . . . . 9

0 . 0 . . 9 3 7

0 0 4

. . . 3 7 0 2 3 2 1 7 9

0 0 . 0 4

. 0 . 1 1

0 5 2 1 1 2 3

. . 0 5 . 0 0

0 0 0 .

^ 0 0 0 0 . 0 . . . . . 1 7

0 0 0 0 0 .

. 0 . 2 1 2 5 4 . 1 1 6 5 7 8

0

^ 0 0 0 0 . 0 0 0 0 0 1

0 . .

0 0 . 0 .

0 0 0 1 8

.

0 0 . 0 . 7

0 0 . ^ 0 . 0 . . 3

0 ^ 0 . 1 4

0 . 0 7 . 1

0 ^ 5 1

0 . 0 0 0 0 . 0

^ ^ 0 ^ 0 . . 0 . 1

^ 0 .

^ 0 . 0 0 2 4 8

0 0

^ ^ ^

03 4 8 4 7 3 7

0 6 4 9 2 7 5 9 4 1 2 5 7 2 1 1 9 4 6 1

2 1 7 4 4 2 1

9 7 1 1 4 1

7 5 9 6 2 6 2 3 4 9 2

8 3 3 8 6 9 7 9 7 9 1 4 8 1

0 0 0 8 1 0 6

2 3 9 4 6 6 9

6 9 4 9 5 1 4 2 2 9 3 3 3

8 0 4 9 1 5 1 2

1 8 3 5 4 4 3 5 1 5 1 3 2

3 8 5 2

5 8 2

. 4 1 9 1 2 4

. . 1 0 9 1 6 6

3 1 0 3 6 2 0 0 2 7 9 9 0

4 1 4 3 9 9 2

4 1 4 2 3 2 5

. 0 1 0 8 2 1 7 2 1 5 8 8 3 1 6 4 9 7 7

1 3 8 4 2 8

. 3 7

. 7 6 . 1 0 1 4 8 9 3 8 2

0 0 . . 0 . 1 8 3 1 1 1 2 4 3 3 5 4

^ ^ 0 0 2 8 2

. 0 0 5

0 ^ 0 0 4

. 0 ^ . 3 2 2 8 1 0

0 9 6 7 3 3 2

. 0 . 7 5

0 0 0 1 0 1 . 2

. . . ^ 0 . 3 4 1 . 2 7 2

0 1 1 1 1 2

0 . . . 6 3

0 0 0 . 0 . 0 . . 1 . 1 1 . . 1 3 6 0 4 6

. . . . 1 5 5

0 . 3

^ ^ 0 0 ^ 0 ^ 0 0 ^ 0 . .

^ 0

0 0 0 0 0 9

. 0 . 7 1

. 0 . 0 .

^ 0 0 ^ 0 0

^ ^ 0 0 ^ 0 .

^ 0 ^ 0 8

. 0 0 0 1

0 .

^ ^ 0 0 ^ 0 0 . 0 . 0

0 .

^ ^ 0 0 0 0 0 0 . 0 . 0 0 0 . 1

0

^ ^ ^ ^ ^ ^ 0 3

0 .

^ . 0 ^

^ 0

48 8 2 2 3 4 5

6 0 0 8 5 5 8 6 4 3 1 1 7 3 5 6 9 4 4 1

3 8 9 6 4 7 5

0 5 3 8 2 9

8 0 5 7 7 4 6 5 9

3 7 6 5 3 7 4 4 7 5 0 8 8 3 6

3 5 2 8 6 5 7

6 6 4 2 0 6 5

2 6 5 7 3 6 4

7 5 3 4 7 1

8 5 0 1 5 2 5

3 1 6 9 6 7

2 2 2 3 8 7 1 2 8

. 2 5 2 4 8 4 5

7 2 9 1 0 2 4

2 6 4 4 6 9 4

4 3 3 1 4 7

9 1 3 7 3 1 5

8 8 8 3 6 9 2

8 0 0 6 3 5 6

1 2 8 6 4 4

0 0 . . . . 6

. 1 2 6 3 8 1 3

. 4 . 2 2 0 2

1 2 9 4 6 7

. 4 1

. 1 1 2 8 7 3

3 5 7 5 0 3 3

3 4 8 5 2 6 8

2 3 1 7 4 3

^ 0 0 . .

^ 0 0 4

0 0 0 . 0 . . 2 3 1

0 0 . . 2

0 . 0

0 0 0 0 . 2 1 6

0 0 3 4

. 0 . . 4

^ 0 0 . . 1 . 5 5 7 2 5

2 6 0 2 6 4

0 . . 2 0 . 0 0 0 0 . . .

0 0 0 2 5

. . 7 . 2 3 6 3 0 6

. .

0 0 ^

0 0 ^ 0 0 0 . 0 0 . 0 . . . 3 2

0 0 . 2

0 0 . 0 0 . 0 0 2 1 1

. 2 7 0 4 1

^ 0 . . . 6

0 0 . 1

0 . .

0 ^ 0 0 .

^ 0 . 3 2

0 ^ 0

0 . 0

^ ^

45 5 4 7 3 6 8

1 6 6 5 1 9 1 5 5 7 3 4 2 1 4 6 7 6 3 7 6 8

2 1 8 8 5 2 5

3 0 5 5 1 5

4 4 2 9 2 1 6 0 2 8 1 8 7

6 2 7 6 9 6 3 6 9 9 7 8 2 7 3 1

8 0 5 5 5 5

0 7 2 0

2 0 5 4 3 5 1

9 1 2 0 1 3 8

9 8 8 3 7 6 1

2 2 6 5 8 8

7 9 3 1 1 5 8

5 5 8 2 4 9

4 4 1 2 8 1 6 5 9

. 2 1 7

. . 4 4

4 8 3 3 5 7 4 7 3 8 6 6

9 6 4 6 1 2 3

. 2 1 3 7 1 7 7 7 0

4 0 3 5

2 9

0 2 5 3 2 0

. 0 1

0 0 .

^ 0 0 0 3 3 1

. .

0 1 2 8

3 1

0 . 4

0 0 . . . 0 . . 2 8 1 3 5 8 1

. 5 . 2 1 0

. 1 3 2 4

3 8 2 2 8 1 4 7

7 7 6 4

3 6

3 1 4 5

. 1 7 3 2 6 8

2 1 6 5 . 3 2 6

0 0 0 . 2

0 0 . 0 0 0 . 0 ^ 0 4 0 0 . 0 . 4 . 2 6 . . 3 0 . . 6 0 7 5 8

. 3 3 8 1 4

0 0 6 .

0 . 1

0 0 3 4

. 2 . 4 3

^ . 0 0

0 .

^ 0 0 0 0 0 . . 0 0 0 0 . . 0 0 2

0

^ 0 ^ 0 .

0 0 .

^ 0

^ ^ 0 0 0 2 8

. . . . 0 2 1

0 . 0 2

. .

0 0 0 . 0

0 0 . 0 0 .

0 0 0 0 .

0 0 0

^ ^ ^ 0 . 1 5 6 8 2 2 6 5

3 4 0 6 9 7 2 5 5 2 2 1 5 4 1 1 1 3 9 6

1 7 9 0 6 0 4

0 7 3 8 1 1 3

4 6 1 9 3 1 4 9 3

6 2 4 6 5 2 7 3 5 9 3 6 5 9 9

2 5 4 7 6 9 4

5 3 3 3 5 3 1

1 1 6 4 5 7 9

1 2 7 1 4 3

3 2 0 2 5 0 4

8 2 2 3 3 2

5 7 4 0 3 6 0 8 4

. 7 3 5 1 0 2

2 3 1 6 0 7 9

3 5 5 8 3 1 5

5 3 3 5 9 5

7 3 5 2 1 8 3 8 3 3

2 0 0 2 2 5 4 4 6 8 3 8

8 9 5 8 6 2

0 . 3 . 8 2

. 2 . 1 5 0 1

. 3 3 1 1 4 0

1 2 3 2 8 2

^ . 0 0 8 1 2 8 5 7

. ^ 0 . 3 2 9 4 0 8 4 9 3

3 5 3 0 6 2 1

7 9 5 2 0 7

.

0 0 0 0 0 6

. 0 0 0 0 0 . . 2

0 0 . 0 . 0 . . 5 3 8

0 1 6 9 0 1

. 0 0 3 0 1 5

. 6 0 7 4 2 0

. 1 3 4 3 0 4

0 4 4 6 6 1

^ ^ 0 . . . 2

^ 0 ^ 0 0 0 0

0 0 0 . . . 3 0 . 1 . 1

^ 0 0 .

^ 0 . 0 0 0

0 0 0 . . . . . 2

0 . 0 . 1 . 2 8

0 0 . 0 . . 0 8 3 4 6

^ ^ 0 0 0 0 .

^ 0 0 0 . 0 . 1

0 0 .

^ ^ 0 ^ 0 8 2 8

. 0 . 1

0 0 . 0 0 . 0 . 2

^ ^ 0 .

^ 0 0 2 3

. . .

0 0 0

^ ^

9 8 2 1 9 1 0 2 1 8 9 3 9 4 5 8 7 8 7 6 8 1 7 5 5 3

1 4 0 1

4 1 2 4 2 9 1

5 2 0 4 7 6 2 0 8 1

7 6 8 6 2 1 2 6

4 0 3

2 0 2 6 9 6 0 5

6 1 5 5 8 5 7

0 5 7 2 4 2 2 4 4 3 1 6 6

9 8 5 7 7 8 6

5 9 7 8 1 2 0 9 2 9

2 1 6 1

3 8 9 2 2 2 8 6 7

4 8

5 4 7

1 0

0 3 3

. 3 2 1 7

. 5 6 4 3

. 1 9 8 2 1 4 9

6 7 9

1 1 4 6 7 1 6 4 8 5

2 3 7 6 4 3 0 2 0 0

3 1 7 6 3 3

1 7 4

. 2 8 5 5 3 1 6 3 5 5 7 3 1 7 8 8 6 7

9

0 . 3 5 . 3 . 2 8

. 2 6 9

6 6

0 0 . 0 0 . . 1 5

. 4 1 3 1 1

. . 0 0 ^ 0 0 6

. 0 0 0 . 0 2

. . 0 5 7 4

0 . 0 . 2 8 9 1 2 0 5 3

5 . 9 5

8 2 6

. 7 0 6 6 1

1 5 2

0 0 0 . 0 0 . 0 1 6 4

3 1

. 6

^ 0 . 1 7

^ . . 0 9 . 1 6

. 0 0 . 0 0 . 7 0 8 0

0 0 . 0 0 0 1 9 1 4

0 1 1 0 8

8 7 4 5

0 0 0 . 0 ^ 0 . . 5

0 0 0 . 0 0 . 4

0 . 0

0 ^ 0 0 0 0 . 2

0 .

^ 0 0 .

. 0

0 0 0 . 0

0 0 . .

^ ^ ^ 0 ^ .

^ ^ ^ 0 ^ 0 0 0 . . 3 0 8 1

^ ^ .

^ 0 0 0 0 .

^ 0 . 0 .

0 0 . 0

35 8 2 2 3 8 4

5 1 8 4 3 8 0 7 6 4 9 2 7 9 6 2 7 4 8 8

5 3 5 1 2 7 5

9 3 8 8 7 9

3 9 2 3 6 4 1 3 8

2 5 4 5 4 5 0 8 9 8 0 2 6 1 2

2 2 9 2 2 1 2

. 3 1 3 1 7 1 6 2

9 7 2 4 6 4 5

0 0 9 1 4 2

9 5 7 2 7 9 5 4 6 7 5 6

9 3 0 1 3 8 1 8 6

0 1 2 2 7 0 6 4 5 0 5 4 5

. 2 5

8 5 1 3 0 8 7

8 3 5 7 8 5 8

1 3 2 3 0 0 9 3 6 7 6 4 5

1 3 2 6 0 4 9

7 9 8 6 7 6

. . . 2 5

0 ^ 2 0 1 2 4

0 6 1 1 7 7 1

2 0 2 2 2 2 7

. 1 1 . 6 1 3 7 4 9 2 6 0

2 3 6 9 1 3 8

4 3 2 1 5 3

0

0 0 0 . . 0 . . . 2 0 2 8

. 3

. 0 . . 1 1 0

. 2 3 . 5 4 8

0 0 . 1 1 7 . 5 . 2

. 2 0 2 5 0 4

7 2 9 1 0 6

^ ^ 0 0 .

^ 0 0 ^ 0 0 0 . 0 . 0

^ 0 0 0 . 0 0 0 . 0 2

. .

0 0 0 . 2 7 6

0 0 . 0 . 2 2 7

.

^ 0 . 1 1

0 0 ^ . 0 .

0 0 ^ 0 0 0

. . 0 0 . . 2

0 . 0 . 1 0

^ 0 0 0 0 . 0 . . 2 5 0

^ ^ 0 . 0 0 6 1 1 5 5 6

0 0 . 0 0 2

. 0 . . 2

0 0 . 0

0 0 0 ^ 0 0 . 0 0 0

. .

0 ^ 0

0 5 4 3 5 9 1 8 3

6 7 8 7 4 1 1 4 7 8 7 4 2 7 5

1 4 8 2 4 9 9 7 1

5 4 9 7 7 2 7

8 7 0 5 3 2

7 8 4 5 7 3 4 9 2

3 1 4 7 1 7 8 1 6 3 5 5 5 9 3 3

2 5

3 5 6 7 6 9 8

4 2 5 5 3 6 6

5 8 7 5 8 5 1

8 3 2 9 3 3

1 4 4 8 0 9

0 1 1 6 7 3 8 9

9 0 2 6 3

2 1 6 8 0 8 7 7 3 3

4 9 2 5

8 6 5 3 8

5 5 7 3 8 6

9 7 6

. 7 9 2 1 1 2 4 2 2

. 4 9 2

0 . 4 9 8 4 6 0 7

3 7 3 8 6 5 8

3 3 1 1 8

0 . 1 3 2 1 7 3 5 0

3 8 7

2 7 1 3 3 2 3 6 2 9

7 5

1 6

^ . 0 0 2 . 1 7

. . 0 2 . ^ 0 2 2 1

. . 1 2 6

.

^ 0 0 ^ 0 . 0 . 0 0 8 2 3 0 5 2 1

0

0 . .

0 ^ 0 0 . 3

0 0

0 0 . 0 1

. . 2

0 0 . . 3 2 8 6 1

0 . 1 2 2

0 0 . . 0 . 0 . 0 . . 1

0 . 5

0 . . 2 3 . 7 8 2 . 0 4

. 2 1 5 1 2 0

8 1 6 1 1 8

^ 0 0 0

^ ^ 0 0 0 ^ 0 ^ 0 0 . . 0 . 0 0 4 0 1 2

. .

0 0 . . 1 7 8 1 2 6

0 . . 3 7

. 0

^ ^ 0 0 0 . 0 0 0

^ 0 . 0 0 . 9

0 0 1 5

. 0 0 7 .

^ ^ 0 ^ ^ 0 0 . 0 0 .

^ 0 0

. 0

0 0 . 0

^

7 3 8 5 1 4 4 2

0 5 1 4 9 4 1 9 6 2 9 5 1 6 6 0 9 5 2 9

4 3 8 5 7 2 8

6 5 0 1 8 8

3 7 4 5 6 1 5 2 8 6

8 5 6 6 5 5 8 6 1 2 6 4 9 5 1

3 2 0 2 5 5 3

6 4 7 0 2 3 2

4 0 4 0 0 7 3

9 3 3 6 7 9

5 6 4 5 0 8 8 2 3 4 1 3

4 2 5 3 2 3 3 7 2 5

. 3 2 7 6 0 0

. 0 3 1 2 3 8 1 2

. 3 4 8 2 7 7 0

5 6 6 2 2 3 6

1 4 7 7 . 1 9 7 4 3 5 3 5 2

5 5 8 5 4 3 1

5 8 2 2 5 9 )

0 . 1 . 3 1 3 2 9 1 4 2 3

1 4 1 7

0 . 5 0

. 4 4 6

0 0 . . 7 . 1 8 4 1 1

. 8 6 1

4 8

. 6 2 0 7 6 8 5 4 0 7 6

2 1 2 6 1 6 8

0 7 2 4 8 9 .

^ . 0 0 0 3 . .

0 0 0 . . 0 . . . 2

0 0 0 0 0 0 ^ 0 . 0 0 . 1

0 0 0 0 6

0 0 6 ^ 2

. 0 . 0

0 9 3 9 2 3 1

. 3 1 7 2 0 6

9 3 3 3 0 9 t

0 0 3

. 0 0

^ ^ ^ 0 .

^ ^ ^ 0 . 0 .

^ ^ 0 ^ 0 6 1

. 0 1

0 0 . .

^ 0 0 0 0 . 0 .

^ 0 . 0 . 2 . 7 . 1

0 . 0 . 0 0 0 0 0 . . 6

0 . 0 0 2 4

0 1 1 2 2 1

^ ^ 0 ^ ^ 0 0

0 . 0 . 0 2

. . . . 5 8 n

^ 0 . .

0 0

^ 0 0 0 0 . 0 0

^ ^ 0 .

^ 0 o

^ ( c

8

L A

4 1 0 3 B 2

6 0 A 2 1 L 1

N 1 B 3 1

A B 4 4 C 3 e

M V A 1

B 1 1 4 C 3 L 5

S 1 B F 2 8 3 5

f I

6 H M L M D 3

2 5 A 4 2 1

E D 1 D T K R P 2 6 b

P 8 0 Z K MQ F M R H K 1 C S 4

F 1 T A 1 2

C P X K L 3 r D D 2 L E 3 P 1 B 2

L 1 A 1 9 L 1 l

N O C F A N 1

X H S V L B 8 S C 5 5 1

R 2 D Q 5

S C H Q C 5

M D U T G B P I N 1

A T A T C F G O B I D T U G C N P L T R A R G S T M C N P 4 V o P N C T B F

A N I R O 5

X D P A E S C C A N R S P A T O B F T S T I N 9 C M A E R A

D R S H P A L E A D C R S C C H A B N B Y L G 2

6 2

A T U M W Y C L S L E N G C G C a

L L R S L R A C L R C T E D R P X O P T

')6^^^^^^^ 1 7 7 5 1 2 2

7 1 4 9 5 2 5 1 6 8 6 2 7 5 3 7 3 3 7 4

1 7 2 1 0 7 3 5 5 5 7 2

0 6 2 5 5 3 8 3 3 3

8 7 3 7 3 3 2 7 7 8 2 4 2 2 3

8 1 0 5 6 9 1 3 9 2 0 3 2

1 0 1 7 1 0 3

0 8 8 8 3 4

1 2 7 2 7 7 8 7 7 8 3 7

0 2 0 2 0 2 6 3 3 1

0 8 3 1 5 2 4 1 3 7 5 3 6

2 1 5 5 9 8 8

1 0 0 0 8 2 1

7 7 2 7 2 2 6 5 6 6 0 4 1 6

0 0 1 0 1 0 2

6 6 6 1 4 4

4 0 9 1 2 3 0 4 4 4 4 1 0

. 0 1 4 1 8 1

2 2 2 9 5 8 0

3 1 1 1 0 4 2

3 9 7 9 7 7 2 5 4 8 2 4

9 0 5 1 5 1 6

3 6 6 5 3 3 4

0 4 0 4 1 1 2 4 4 2 4 2 9 9 1

4 3 3 3 1 9 0

. . 0 0 4 4 3 9 3 9 9 4 2 9 4 6 3

4 9 4 5 4 5 5

2 3 3 1 8 8 3

. 0 4 0 4 4 0 0 . 4 1

0 4 4 1 2 2 2 3

0 4 0 4 4 0 4 4 4 3 2 2

0 4 3 4 3 3 0

4 4 3 4 4 5

4 4 0 4

. 0 0 4 0

. 0 2 5 2 2 3 4 4 8

0 . 0

0 0 . . 0 0 .

0 0 0 . 0 0 4

0 0 . . 0

0 . 0

0 0 . . 0 . 0 4 4

. 0 0 0 4 3 4

0 4 3

0 0 . 0 . 0

0 . 0 0

0 . .

0 0 0 0 . 0 . 0 . 0 0 . 0 . . 0 4 0 4 4 4

0 4 4 4 4 7

0 4 4 5 5 5 5 5 4

0 . 0

0 0 . . 0 0 4

0 0 . . 0

0 0 . . 0 4 0 0 4

0 . 0

0 0 . . . 4 . 5

0 0 . 5

0 0 4

. 0 0 4 0 4 4 5 5

4 4 5

0

0 0 . 0 . 0 . 0 0 . . 0 0 4

0 0 0 . 0 . 0 . 0

0 0 0 . 0 0 .

2 3 3 6 9 5 6 2

4 6 7 7 7 8 4 9 2 7 3 9 5 7 1 9 4 7 4 9

0 5 8 5 7 6 5 1 0 6 7 1

8 2 8 4 3 7 3 5 4 6 2 4

9 8 1 4 4 8 1 2 9 3 1 3 1 1 9 2 6 6 5 2 1 2 2 4

0 8 7 3 1 1

5 0 2 4 2 2 9

7 5 3 3

4 4 7 9 1 6 1 8 4 8 8 6 3

0 8 3 5 8 5 1 9

4 1 1 6 9 2

8 4 2 6 4 0 8 1

7 3 3 6 7 8

0 3 6 8 0 6 6 3 4 5

1 4 3 9 0 0 7 2 4 0

8 8 8

8 7 2 2 1 4 6 2 7 9 6

0 1

0 0 4 0 3 0 0 1 1 2 9 7

1 2 1 3 2 2 0

3 3 2 6 2 0

9 7 8 5 0 8 3

8 7 5 5 3 5 8 2

9 0 4 2 2

2 2 5 1 4 5 5 6 2

8 3 4

2 8 9 1 2 2 3 3 7

3 3 2 3 2 2 2 2 7 9 9 7 3 9

2 7 0 5 0 3 1 2 3

0 3 3 6 8 1 9 4 3 3 7 8 8

0 0 2 9 9

. . 2 0 2 2 9

0 2 9 3

2 9 6 0

2 9 3 3

0 0 0 7

3 0 2 2 3

3 3 1 1 1 3 2 6

5 6

3 2 3

0 0 0 0 3 2 2 3 2 3 3 3 9

. 0 3 3 3 0 3 3 3 3 3 4 3 4 3 4 4 7 0 3

0

0 0 . . 0 0

0 0 0 . 0 . . 0 0 2 0 2 3

0 0 . . 0

0 0 . . 0 0

0 . .

0 0 . . 0 3 0 0 1

. . . 3 0 3 3 3 1 1 1

0 0 . 0 0

0 0 0 0 0 . . 0 0 0 3 3 3

0 0 . 0 . . 0 0 0 0 0 0 3 3 3

0 3 3 3 3

0 0 . . .

0 0 . 0 0 . 0 . . 0 0 0

0 0 . . .

0 . 0 . 0

0 0 0 . 0 . 0 . . 0 0 3 0 3 4

0 3 3 0 4 4 4

0 0 . . 0

0 0 . . 0 3

0 . 0

0 0 . . 0 . 0 . . 3 3 3

0 0 0 0 . 0 0 0

0 . .

0 0

2 4 3 1 6 3 4

5 8 3 3 4 9 5 7 8 9 9 5 5 6 3 8 7 7 1 6 4

7 5 8 3 8 6 4 4 2 1 1 9

5 4 8 1 0 3 1 5 3 1

5 9 3 5 3 6 0 9 9 4 4 5 3 6

0 8 1 5 5 6 4 1 1 3 7 8 1

4 2 1 9 4 1 1

1 4 0 4 1 4

3 9 2 1 2 1 1

7 1 2 9 7 8

2 6 5 2 6 2 9 4 9 8

2 1 1 4 3 0 1 1 4 0 7 8 0 9

2 6 0 1 3 1 7

1 8 7 5 3 1 9

1 1 5 9 5 2 0

1 3 5 8 5 5

5 7 0 1 3 6 4

0 8 7 8 4 5

4 4 3 0 9 5 9 0 5 3 0 2 9

5 0 0 5 3 4 0

1 7 7 1 8 6 4

8 9 7 6 5 0 6

2 1 7 8 1 8

1 5 4 0 4 5 4

9 4 7 2 9 4 6

. . 1 4 9 9 3 9 8 8 8 8 4

3 5 4 5 2 0 9

1 0 7 6 3 1 0

2 6 6 6 6 4 3

5 0 3 9 4 5

2 0 2 1 7 0 8

9 4 3 1 9 5 3

5 5 . 3 3 . 3 3 3 3 6 5

. 3 3 2 3 2 3

3 3 0 0 4 7 6

. 2 2 2 2 6 9

2 5 4 3 3 8

2 2 1 . 2 0 7 2

1 6 5 9 2 2 1

.

^ ^ 4

5 ^ 5 . .

^ ^ 5 ^ 5 5 . . . . 3 3

^ ^ 5 5 5

^ ^ 5 .

^ 5 .

^ ^ 5 5 . . 3 . 3 1

. . 3 3 0 9 1

^ ^ 5 5 .

^ ^ 5 5 . 3

^ 5 . 5 . . 3 2 9

. 2

^ ^ 5 5 ^ ^ ^ 5 .

^ 5 ^ 5 5 .

^ ^ 5 5 . . . . 2 5

. 2 4 2 2 2

. 2 2 2 0 2

. 9 9 1 0 9 2

^ ^ 5 ^ 5 5 5 . 2

^ ^ 5 .

^ ^ 5 5 . 2 . . 2

^ 5 .

^ ^ 5 5 5 .

^ ^ ^ 5 5 . . ^ 5 2 0 2

5 . 5 . 5 . 8 7 8

^ ^ 5 ^ ^ 5 .

^ ^ 5 ^ . 1 1

5 . 5 . 1 1 7

5 ^ 5 . 1

^ ^ ^ 5 .

^ ^ 5

9 7 7 6 6 3 5

9 6 6 9 8 2 0 9 8 1 2 3 8 4 1 2 5 8 4 2 8

1 2 6 5 7 5 7 5 8 7 6 8 4

2 1 0 6 1 6 4 8 2 7

4 6 6 5 8 9 0 2 6 6 5 4 2 8

4 9 6 0 9 6 1 9 0 4 5 5 8

1 0 4 2 0 2 7

4 5 2 8 2 9

5 0 0 5 2 3 7

3 1 4 5 7 1

9 8 2 6 2 6 6 4 3 2

. 2 3 2 3 6 2 5 8 4 2 3 4

2 6 8 7 7 2 8

. 7 3 5 8 8 0 1 9

3 1 3 0 0 5 7

5 6 6 5 5 0

8 8 1 8 2 1 6

7 7 3 6 9 1

0 . 3 . 3 2 . 2 2 2 . 7 1

. 2 2 1 2 . 9 4 9 3 3 3

. 2 3 4 4 9 6

2 4 1 6 6 0

3 3 3 2 3 3 2 2 4 4 9

3 6 2 7 1 3 9

^ 0 .

^ ^ 0 0 .

^ 0 .

^ 0 0 . 0 . 0 . .

^ 0 .

^ ^ ^ ^ 0 ^ ^ 0 ^ 0 0 0 . . 3

0 . . ^ 0 3

0

^ ^ ^ ^ 0 0 .

^ ^ 0 ^ . 2 3 2 3 5 8

5 2 6

0 .

^ 0 . 0 . 0 . 3

^ ^ ^ 0 .

^ ^ 0 0 . . . 2 2 1

. 3 3 2 2 2

. 3 3 0 2 5 8

2 7 0 9 0 3 9

^ ^ 0 0 . 0 . 4

0 .

^ ^ 0 ^ ^ ^ 0 0 . . . .

^ 3

^ 0 0

^ ^ 0 0 .

^ ^ 0 0 . . 3 . 2 0

. 2 2 3 0 6 5

^ ^ 0 0 .

^ ^ 0 0 . 3

^ 0 .

^ ^ 0 0 . . . 3 2 2

^ ^ 0 ^ 0 0 . . 2

^ ^ 0 0 .

^ ^ 0

66 9 2 4 6 9

0 9 2 2 2 1 5 5 3 6 4 4 2 8 5 8 1 9 3 4 8 1

2 5 7 0 1 4 5 1 7 3 5 3

5 9 8 2 8 4 6 3 5 8

0 6 0 2 4 8 0 8 9 9 3 7 8 1

1 8 5 7 4 6 9 7 9 1 8 6

0 0 7 5 9 1 9

9 3 8 5 5 6

5 9 1 4 5 1 2

7 9 6 0 7 1

3 9 0 1 3 7 3 8 4 8 3

0

0 8 0 6 1 4 8

3 7 7 9 2 2

2 0 9 4 4 9 8

3 2 8 3 2 3 1

0 8 3 5 3 4 8

6 8 4 0 0 8

6 3 9 6 7 4 1 6 8 3 0 8 5 2

. 0 3 1 3

. 1 2 1 1 8

. 0 1 0 2 1

. 3 1 5 2 4 1

2 6 2 9 6 7 7

. 4 9 7 0 9 2

1 3 4 3 3 4

9 8 2 0 0 7 7 0 3 7 4 9 5

0 . . . 1

0 . 1 . . 4

0 . . 1 . 2 1

. . 2 1 4 5 7

0 . . 2 3 6

. 4 7 1 8 9

0 0 . 3 . 0 4 3 1 2 7 8 0 2 9 6 3 7

^ . 0 0 ^ 0 .

^ 0 0 ^ 0 .

^ ^ 0 ^ ^ 0 0 .

^ ^ 0 0 . 2

^ 0 .

^ ^ 0 0 0 . 2 . 1 6

.

^ ^ 0 .

^ ^ ^ 0 ^ 0 ^ ^ 0 . 0 .

0 0 0 0 0 .

0 0 . . 5 .

^ ^ 0 0 0 0 0 5

0 0 . 1 3

0 . 0 0 . . 0 . 8

0 . 0 1

0 . . 8 0 3 . 1 1

^ ^ ^ ^ ^ ^ 0 2

. .

0 0 0

^ ^ ^ . 0 0

^ ^ 0 ^ ^ ^ ^ ^ . 0

0 0

^ ^ 0 0 . 0 0 . .

^ ^ 0 .

^ ^ 0 ^ 0 0

^ ^

5 2 5 7 4 6 1

1 6 8 3 5 8 4 9 5 4 2 9 4 3 1 2 4 4 2 4

4 9 4 9 9 7 2

8 5 2 5 6 8

5 2 8 5 4 2 9 2 8 3

4 7 2 2 5 5 9 7 6 8 4 3 6 4

1 1 7 2 4 7 4

5 6 1 0 1 1

1 2 3 8 4 2 9

3 5 9 9 3 2

4 4 5 5 9 8 3

3 6 2 1 6 9

4 6 6 6 8 9 6 2 4 6 5

. 6 9 5 7 1 2

. 2 1 8 0 2 9 4

. 5 1 9 6 9 8

8 2 2 3 5 2 1

3 0 5 5 9 1 5

9 1 1 5 7 2

0 5 5 2 6 7 6 7 8 0 2 7 9

0 . 1 0 5 3 8

0 . 2 2 7 1 3 2

7 6 1 0 4 9 6

^ 0 1

. . 0 9 0 . 3 . 1 1 3 2 4

1 3 4 1 5 0

. 2 6 . 2 5 2 4 5 0 1 9 1 7 2 5 3 9 7 1

. 3 2 0 8 . 2 3 2 2 8 3 6 0 8

0 0 . 0 0 0 5

0 . 7

0 . 0 0 3 9

0 . 2

0 0 . . 1 5

0 . 2

0 0 . 0 1 1 2 4 0 1

. . . 2 . 1 5

^ 0 . .

^ 0 0 0 . . 0 . .

^ 0 0 0 0 0 0 0 0 . . 3

0 0

^ ^ ^ ^ 0 0 0 0 3 1 8

. . . 2 1 8

0 . 3

0 . ^ 0 . 0 . .

^ 0 . 1

0 0 0 1

. 0 .

0 ^ 0 0 0 1 1 3 3 8 4

. 0 0 0 0 .

^ 0 0 . 0 0 . . . .

0 3 1

^ 0 ^ 0 0 0 ^ 0 . . 3

^ 0 0 0 .

^

0

1 9 3 4 4 1 7 3

2 4 4 0 1 2 8 3 9 7 8 4 5 2 0 1 2 6 5 9

5 5 3 4 1 6 8

1 8 3 6 7 9

0 1 1 6 3 7 7 4 2 8

1 7 1 2 7 6 8 9 6 7 8 1 5 8 1 4

6 5 1 1 2 0 6

2 2 5 5 8 9

. 3 0 3 3 9 7 1 7 6 9 0 4

1 0 6 5 3 8

3 2 8 1 5 3 6

3 5 8 3 6 6

9 8 4 2 9 2 6 8 5 8

0 2 1 1 3 2 2

2 8 8 1 6

1 5 9 6 4 5 4 1 0 6

1 4 3 0 5 7 5

3 3 3 3 7 8

1 5 2 5 1 7 7 6 9 7 3 8

. 0 . . 1 2 1

0 . 3

0 0 9 0 5 6

. 1 9 8 1 4 9 8 6 2 2 1 3 7

. 4 0

. 1 7 4 3 7 0

1 7 8 9 1 3

3 3 0 7 1 7 9 6 4 6 4 2 4

0 0 . 0 0 . 0 . 4

. . 3 3

0 0 . 0 1

. . 0 1 8 0 6 0 1

0 . . 2 2 0

. 1 3 3 1 6 7 1

. 8 . 1 2 9 4 8 2 7 6 9 6

^ ^ 0

0 0 0 .

^ 0 0 . 0 .

^ 0 0 0 0 . 0 . 0

0 0 . . 0 . 1 0 2 3

0 . 1

0 0 . 0 . .

^ 0 ^ 0 ^ 0 . 0

0 0 . . 2

0 0 0 . 0 . 0 0 . 2 7

^ . 0 0 1 2 0

0 1 1 5 2 4 6

^ ^ 0 0 .

0 . . 0 2

^ 0 0 . .

0 ^ 0 0 0 0 . . 0 . 0 . 1 . 1 4

^ ^ 0 0 0 0

. 0 . 0 . 1

0 0 .

0 ^ 0

7 5 5 5 5 3 1 7

0 5 8 4 2 4 1 1 2 6 5 4 6 3 9 4 2 9 1 9

2 8 1 1 6 2 7

9 3 2 1 9 7

3 0 1 6 9 7 5 9 3 3 4

9 2 6 2 1 6 3 5 1 3 8 5 8 7 9

1 4 3 5 9 8 4

2 5 0 0 5 0

1 2 3 3 6 2 1 9 8 7 3 8 7

4 1 2 0 8 6

6 1 4 2 7 4

8 1 5 0 2 7 3 5 9 3

. 3 4 2 1 4 2

2 8 3 2 9 5

6 . 3 2 3 9 0 9 3 8 5 0 5 2 6

2 8 0 . 3 7 5 9

8 2 5 7 9 4 9

0 5 8 8 5 9 5 3 2 7 1 6

0 . . . 1 4 2

. 4 4 1 9 9 . 3

0 1 6 7 1 1 2 5 7 8 9 6

. 8 9 0 1 4 0 . 1 2 7 7 5

8 5 2 0 8 2 5

3 5 1 5 5 9 4 3

^ 0 0 0 0 . . 2 3 3

0 0 . 0 . 5

0 . 0 . 0 .

0 0 . 0 0 . 0 . 4 0 3 . 1 2 2 1 1 6

.

0 0 0 . . 0 .

0 0 0 . . 3 . 1 7

^ 0 0 .

^ 0 0 . 1

^ 0 0 ^ 0 . 3 9

. 8 5 1 1 9 1 0 9 5 9 4 7

^ . 0 0 ^ 0 1 9 1 6 0 5

0 . 0 0 . 9

0 . 0 . 0 0 . 1 5 6

0 0 4

. . . 3 1 0 2 4 0 6 3

. 0 1

0 0 . . 0 0 0 . 0 . . .

0 ^ 0 ^ ^ ^ 0 ^ 0 0 0 0 0 . . 3 . 1 9

^ ^ 0 0 0 .

^ 0 . 1

0 0 . 8 5 7 6 8 9 8 1 3

4 1 4 0 3 8 5 9 1 5 7 8 1 8 2 7 7 6 4 4 6 1 6

7 3 8 7 0 9 4

4 8 3 8 5 7

1 4 7 0 7 9 9 5 8 6

5 3 3 5 9 5 3 1 3 5 5 6 2 6

1 1 2 8 0 7 4

6 0 6 2 4 1

6 3 1 6 1 3 3 1 9 6 3 3

0 8 0 0 6 0 8

3 3 1 4 5 5

5 7 8 4 6 3 5 1 8 6

. . 1

0 0 . 2 8 8 1

1 3 3 5 7 7

3 7 5 0 1 6 1 7 4 5 2 0 9

. 8 6 4 1 5 0

6 8 5 6 6 9 3

7 1 3

5 9 3 1 8 2 9

2 3 9 6 1

0 . 5 0 2 3

. 8

0 . . . 7 3 2 3 3

. 9 . 3 2 3 2 2 1 7 8 1 5 7

^ 0 . 1 0 5 2 2 0

2 1 9 2 2 3 9

0 0 0 1 2 . . 7 4 2 6 5

2 7 3 2 2 6 2 4 6 9 9 7 8

. 0

0 0 0

0 0 0 9

. . . 9 6

0 . 0 ^ 0 0 . 0 . 4

0 . . 3 4

0 . 8 2 1 8 0 1 8 1

. 1 2 1 3 1 1 6 2

0 0 . 0 . . 2 1

0 0 . 0 . . 1 2 2 1 5 1

0 0 . . 1

0 0 . . 4 4

^ 0 0 0 0 1

. .

^ 0 0 0 . . . 2

0 0 0 0 0 0 0 . 0 2

. 0 0 .

^ ^ 0 4

. 0 . 1 . 8

0 . 0

^ 0 ^ 0

0 0 .

^ ^ 0 0 . . 0 5

^ ^ 0 0 . 0

0 0 . ^ 0 . 2

0 0 . 4 6 3 5 4 8 6 4

8 5 7 9 4 6 2 4 2 2 5 8 7 0 2 7 6 3 1

8 4 7 2 2 7 5

7 2 3 4 8 1 5

8 0 5 5 7 9 5 1 3 1

4 3 1 4 8 3 4 6 5 5 5 7 6 8

0 5 9 3 8 4 9

7 2 5 0 6 5 5

4 1 2 1 1 8 2 5 5 4 9 7 4

9 0 4 5 4 7 6

1 5 2 8 5 9

0 8 3 1 6 8 0 9 4 6

. 5 2 3 2 2 4 3

2 0 4 1

3 9 7 5 4 1

4 4 0 0 9

6 1 4 2 1 5 5 6

5 9 9 5 0 5

8 1 3 4 4 3 4

5 3 8 1 6 1 6

7 9 5 2 8 9 6

5 2 5 5 0 1 7 4 0 1 6 7

0 ^ . 0 . . 2 1 3

0 . 1

0 .

^ 0 . 0 0 0 2 0 . 1 4

. 3 . 3 0 1 6 1 1 4 2

2 1 3 8 4 4 8

1 4 8 5 9 0 7 6 8 8 5 5 7

0

. 5 1 1

. 8 9 4 5

0 . . 8 9 9

1 4 8 1

0 0 ^ 0 ^ 0 ^ 0 0 1

. 0 4 7 0 8 1 8

. 2 9 5 4 7 3 4

0 . . . 0 . 0 . 0 . . 0 0 7

0 . 0 0 5 5

0 0 0 . 0

0 .

^ 0 .

^ ^ 0 . ^ 0 0

^ ^ ^ ^ 0 0 0 0 0 1 0 1 5

0 1 1 2 2 4 5

0 0 . 0 0 . 0 0 . 0 . 1 . 1 1

^ 0 . 0 . . 0 . .

0 ^ 0 0 . 0 ^ ^ 0 0 4

. . 0

^ ^ ^ 0 0 . 0 . 0 . 0 0 ^ 0 0 0 3 1 6 1 6 4

0 0 . 0 .

0 . 0 0 0 . . 0 . 1

^ ^ 0 .

^ 0 . 0

^ ^ 0

0 .

0 0 0 . 0

^

8 1 5 2 5 9 8 3

5 2 1 9 2 2 6 9 1 1 3 9 5 3 0 5 9 3 6 3

8 4 3 4 3 8 6

4 4 0 9 4 7

6 3 4 4 2 2 7 5 8 6

2 0 0 6 8 9 2 6 6 1 9 8 5 4 1

3 9 0 6 5 2 4

9 1 1 7 9 4 2

3 3 7 8 3 2 0 0 4 2 0 1 9

8 8 1 9 1 6 8

9 0 8 0 2 9

1 6 8 6 8 1 1 8 3

. 1 2 5 7 2 0

7 . 2 9 7 9 3 6

0 3 6 1 2 7 3 5 8 3 0 3 2

3 3 7 6 0 9 2

9 0 8 9 1 6 7

2 1 6 5 6 9 1 7 7 2 7 5

0 . . . 7 2 1

. 3 9 . 8 8 4 6 4 7 4 9 7

. 3 0 6 . 6 2

4 7 1 0 0 9 4

. 3 9 5 3 0 5

8 4 7 8 8 9

^ 0 0 0 0 . . 1 1 9

0 0 . 0 0 . 1 2 0 6 2

. 9 1 0

.

. 0 0 0 0 . . 3

0 0 . 0 . 1 0 6

0 0 ^ 0 . . 2 4 3 .

0 ^ 0 . 0 . 0 0 6

. 0 ^ 0 . 5 3

0 . 0 . 2 0 2 6

. 3 . 4 . 3 7 5 1

^ 0 2 5

. 5 3 8 2 8

0 2 1 8 9 2

. 0 0 .

0 0 0 0 0 .

^ ^ 0 0 0 .

^ 0 . 0 0 . 3 5 8

. . 1

0 0 0 0 0 . 0 . . 2 3 5

^ ^ ^ 0 0 0 . . 2

0 0 . 0 1 8

. 3 . 7 3 0

. 6 . 2 .

. 0 0 0 0 0 0

^ 0

2 5 1 5 2 6 2 9

6 4 4 0 2 9 3 4 5 4 6 9 7 1 5 7 4 1 8 6

7 1 3 3 7 5 3

1 8 9 1 9 6

9 2 7 3 2 6 1 5 2

9 8 5 5 8 5 2 8 2 2 9 8 8 5

1 2 9 0 . 3 6 4

5 1 8 9 3 4 3

7 7 4 1 5 1 2

1 9 1 4 6 4

8 4 4 2 6 7 8

6 8 3 4 3 4

3 2 1 7 3 1 3 1 9

. 2 . 4 9

. 2 1 4 0 9 6

7 4 1 3 3 1 2 9 0

2 9 3 1 8 5 8

2 9 8

9 8 8 5

1 0 7 5 7 5 8

3 2 6 3 6 1 4

8 0 7 9 0 2 1

5 9 7 0 6 7

0 . . . . 2 3 1 2 7

. 0 7 1 5 8 7 8

4 2 1 1 2 7 6 9 5

0 . 3 4 3

. . 3

0 0 . 1 1

0 . 3

0 . 2 1

0 . 0 . . 2 2 2 1 9 2 8 8 0 6

1 8 0 5 8 4 2

1 8 6 1 5 6

. 0 . 3 6

. . 1

^ 0 0 .

^ 0 0 2

. 0 0 6 2 5

0 . 0 0 0 . . . 1

0 . 1

0 . . 0 . . 1 . 2 0

0 3 6 2 8 0 2

. 0 . 7 5

. 5 5 4 8 0 6

. 3 0 3 6 6

^ 0 0 0 0 0 . 0 0 . 0 . 1

^ ^ 0 0 0 0

^ ^ 0 . 3

0 0 . . . 0 . 1 4 2

0 0 0 .

0 0 . 0 . . 1

0 0

^ ^ 0 1

. 0 0 0 . 1

0

^ ^ 0 0 0 ^ 5 1

0

0 . 0 0 0 0 .

^

66 3 6 3 3 7 3

1 1 9 2 7 5 4 5 2 4 7 2 3 6 9 1 5 2 6 1

9 2 8 9 7 0 7

2 5 8 0 9 6

9 6 6 8 1 4 5 4 3

3 9 4 9 1 7 3 1 4 5 8 6 1 4

8 1 2 5 0 2 2

8 6 2 1 1 2 7

5 2 8 0 0 6 2

9 6 3 0 6 8

1 4 9 4 8 9 3

0 6 5 8 8 7 2

9 8 6 5 4 1 3 5 1

0 1 1 1 1 9 4

3 7 5 2 8 6 1

2 1 4 6 2 4 0

2 0 4 5 7 7

. 1 0

2 9 2 9 3 9 7

2 5 7 8 6 7 7

2 5 4 7 9 3 9

8 3 6 2 7 7

. . . 2 . 6 6

. 1 2 0 1 1 5

. 1 9 5 0 3 2

1 5 8

1 6

. 7 6 6 . 3 5

2 0 6 2 6 4 6

2 1 7 4 8 2 0

7 5 0 8 3 2 1

^ 0 ^ . . 0 . 4

. 0 0 2 9

. 3 . 2 6 9 9 3 6

0 2 7

. 1 . 7 1 2 0 4 2

9 0 9 0 8 5

0 0

^ ^ 0 . 0 0 2

0 0 0 0 . .

^ 0 . 2 1 4

^ 0 . 0 . 7

0 0 0 0 . 1

0 .

^ ^ 0 0 3 3 2 2 2 4

. . . 0 . 0 . 0 . 3 2

. 3 .

0

0 0 0 .

^ ^ 0

^ ^ 0 0 0 . . 0 . . 0 0

^ 0 0 0 .

0 0 0 ^ 0 0 0 . 0 . 0 . . 4 3 4

0 .

^ 0 5 4 3 2 0

^ ^ ^ 0 . 0 0

0 0 0 0 0 . 0 3

. 0

0 0 . . . 2 0 . 1 9

^ 0 0 0

^ . 0 0 0

0 . 0 .

^ 0 0

^ ^

49 8 1 4 8 5 7 9 1 1 5 6 6 7

7 8 3 5 2 2 2 6 7 4 4 9 3 9 2 6 9

0 7 8 3 2 9 3 0 6 7 4 4

2 4 0 1 3 5 1 6 1 2 9

1 2 1 8 1 4 2 2

1 1 8 5 7 4 6 8 8

3 3 9 7 1 8 4 7 4 9 5 3 3 1 3

9 9 7

9 4 0 4 5 9 7 5 9 7 8 0 5 4 7 1 5

3 2 9 3 1 1 8 3 6

0 2 3 3 3 4 5

1 4 6 5 2 2 5

2 0 9 7 9 6 1

8 3 9 1 2 7

1 9 9 4 2 1 1 9 2 7 9 4

3 7 3 9 3 1 4

6 9 2 9 7 5

. . . 2 . 2 0

. 1 1 8 8 8 7

. 6 7 4 1 0 3

8 4 8 4 0 1

. 2 2 4 5 5 1 4 4 8 8 9 3

1 5 0 0 0 2 8

0 6 9 1 2 8

. 0

0 0 0 0 0 . 4

0 . 0 . . 0 . 0 0 0 2 3 2

0 2 6 7 6 3 2

. 1

0 . 1

0 0 .

^ 0 ^ 0 0 0 1 4 6

. . 0 2

0 0 . . . . . . 0

0 0 0 0 . . 7

. 0 0 4 . 0 . 4

0 0 0 0 . 0 0

^ 0 0 0 0 .

^ ^ ^ 0 2 1

. . . 0 1 4 8 2 5 7

0 7 2 7 7 4 9

2 5 0 2 4 7

3 5 9

0 ^ 0 ^ 0 . 0 1

0 . 0 .

0 . 0 . 0 0 0 . . 0 . 0 0 1 3

. 0 . 6 6 4 1 4

^ 0 .

^ 0 0 0 ^ . 0 . 4

0 . .

0 0 0 0 0 6

. 0 . . 1

^ 0 0 . 0 0 0 .

^

9 1 3 8 2 7 7 3

7 2 3 4 9 5 0 8 1 4 8 6 8 1 6 3 6 8 1 7

4 8 5 2 2 4 5

3 3 0 1 4 2

0 2 4 3 9 8 3 5 6

7 2 7 8 8 7 7 8 1 9 5 2 5 3 9

3 6 6 0 9 7 2

9 4 3 4 4 7 8

1 0 8 6 7 9 1

7 2 5 4 6 6

0 0 4 2 1 9 0 5 4 5 6 6

6 1 4 9 2 9 3 1 5

. 0 8 2 9 5 3

1 9 4 2 1 9 8

2 7 8 1 3 3 4

1 3 3 5 2 8 8

2 1 7 0 9 6 2 7 8 1 7 7 5

2 7 8 5 5 8 4

3 0 7 7 3 6

0 . . 4 5 . 3 9 8

. 1 0 1 8 0 9

4 2 8 5 4 7 4

. 7 . 0 1 0 8 1 1 0 1 7 4 7

. 1 2 0 1 1 8

2 0 3 1 9 1

^ ^ 0 0 2

. . 0 2 2

. 0 0 . 2 5 0

0 0 . . 9

0 0 0

0 0 0 . . 0 0 0 3

. 0

0 . 0 0 . . . 9 3 6

0 . 0 0 . 3 1 . 0 1 7 1 5 7

0 . 4

0 . 0 . 3 2

0 0 2 3 3 1 6 6

2 3 1

. 0 3 0 6

^ 0 ^ 0 0 . 0 . 1 0 4 4 4 4 9 0

.

0 0 0 . . 2

. . 2 2 3

0 0 0

0 0 . . 5

^ 0 0 0 0

0 . 0 0 . .

^ 0 0 0 .

0 0 . 2

. . . 1 3 5

0 0 4 2 3 0

. 2 2

^ ^ 0 0 . . . 1

0 0 0 0 0 0 .

^ 0 0 .

. .

0 0 0 0 . 0

71 4 1 5 2 5 8

3 1 4 1 6 7 3 5 5 1 4 9 6 9 3

0 7 9 5 8 3 0 2 2 6 6

3 1 9 7 2 1 3

5 9 0 4 3 2 2

9 5 9 9 1 8 7 7 7

6 1 5 9 5 3 5 5 7 6

4 4 2 8 4 1

6

. 7 0 1 5 8 2

0 0 2 0 2 5

7 9 6 2 9 6 3

3 0 5

. 8 3 8 7

9 6 0 6

1 ^ 1 6 6 6 9

8 1 7 5 1 0 3 2 8 9 1 2 3

3 7 4 4 3 3 3 6 9

5 4 1

^ 0 . 1 1 9

0 . 1 2 5 1

2 7 4 3 8 8 2

2 2 6 6 2 1 2

7 0 1 4 7 3

. 2 9 4 7 6 9 3 4 1 0 3 8 3 9

1 2 1 3 8 7 1 1 1 5 9 5

2

^ 0 . 0 . 4 0 1

. . . 2 3 9 2 0 9

. 1 2

^ 0 ^ 0 2 8 1 3 1 6 3 7 3 7 8 0

1 3 4 6 0 8 1

3 6 2 5 6 6

7

0 . 0 . 0 0 2 1 5

. 8 9 2 0 1

0 0 0 0 . 7

. 0 ^ 0 . 0 0 1

. . 1

^ 0 0 0 . 6

0 0 . 0 . . 1 1

0 . . . 1 4 2

0 0 . . . 0 0 4 6

. . 4 7

0 1 . . . 0 . 0 0 1 7 4 9

. 0

0 0 0 0 . . 0 . 6

0 0 . 0 2 1 4

0 0 2 3

. 8 5 3 2

0 0 0 0 0 .

^ 0 . .

^ ^ 0

0 0 0 .

^ 0 0 0 .

^ ^ 0

^ 0 ^ 0 ^ 0 . . 0 . 0

0 0 0 0 5 3

. ^ ^ 0 0 . . 0 .

^ 0 ^

0 0 . 0

^ 0

8 1 6 6 5 4 3 9

0 4 0 1 5 7 7 9 7 6 3 2 4 2 4

0 5 2 5 3 5

7 2 4 2 6 6 6

5 6 9 7 7 8

7 6 2 8 7 5 1 5 3

2 8 5 1 7 6 2 6 1 5 3 5 1 9 3

. 2 . 1 0 6 7 5 3 2 9 4 5 9

6 1 8 1 5 2 4 7 9

1 8 5 8 0 2 5

9 6 3 9 4 7 8

4 9 4 4 9 0 4

4 0 8 0 3 1

. 2 0 1 8 2 3 8

5 3 3 1 3 3 8 7 4 2 1 3

7 5

1 4 9 1 5 9 9 9

6 5 3

1 1 1 3 0 1 8 1 2 ^ 0 5 8 2 5

1 9

. 3

3 4 2 4 2 9 7 2

5 9 5 9 8 8 7 1 1 5 6 4 1

0 2 9

6 2 7 2 )

7 1 4

. 2 1 1

. 7 . 1 7 5 5 9

0 . 0 0 0 .

0 . . . 0 . . 2 . 1 2

. 0

0 0 0 . 0 0 . 0 . . . 9 6

0 . 5 . 1 2 0 4 1 3 6 4 2 7 2

1 6 8 2 3 2 .

^ 0 0 0 0 . 3 2 . 1 2 1 2 8 5 6 1 3 t

0 0 . 3 4 5

0

^ 0 .

^ 0 0 ^ ^ ^ ^ ^ ^ 1

^ . 0 0 4 5 1

0 0 . 0 . 2

0 ^ . 0 0 0 ^ 0 0 ^ ^ 0 0 0 2

^ 0 0 .

^ . 0 1 2 7 0 0 5

0 . . .

0 0 0 0 ^ 0 . . 0 1 0 6

0 0 . 0

0 0 . . . 2 9

. . 6 5 2 7

0 0 0 . 5 1 2

0 0 . . 0 0 . 8 2 n

^ 0 0

^ ^ ^ 0 . 0 . 3

0 0 .

0 . 0 0 . 0 .

0 0 0 c o

(

1 8

R L

0 1 6 1 B

0

2 1 3 1 2 3 3

F 1 A

1 4 9 A 3 6 P B 2 0 7

1 4

R 2 T A A 1 B P

4 1 2 2 A 1 D 2

3 N R 4 2 L N

A M 2 G 1 5 N 3 A A 1 2 6 5 8 4

Y 4 4 6 8 1 A 4 l e

A C D N 5 A D D 1 2 0

B C r f 2 3 2 L 2 K F E I L 1

L P

P 4 R T

E T I F O N M A 1

8 O 1 1 1

A A 5 H b

K T I A P 2

T 1 R O 1 A

I P T C R S C K O D G A B 1

P P A G D Z M A L U P U M P C O S C H P D L C S M C N V P A D N R G B 1 4 1 E

A D H X 1 K

D L R I T R S P C C E M T B C R 3 G o P N

A C A Z C H E D P D G D F L L N P S Y C 6 I X

R F B P A C A T E R A A P N C P P A D D X A E 7 A

C G K S P R E P M N B P F T S M C T S L L C a

S P Y X R C N S L N D T

')6^^^^^^^ 3 4 4 4 9 1 6

8 3 4 3 4 6 3 3 9 8 1 1 5 1 6 5 3 4 7

4 8 3 8 3 4

5 1 1 9 6 9

3 8 8 4 6 6 6 4 7

4 7 8 3 2 2 7 4 4 8 9 5 4 7 3

5 4 8 4 8 3

6 1 1 8 6 6 4

7 3 3 5 3 3 3

9 8 7 6 5 5

3 6 2 3 2 2 4 7 7 8 3 6 9

3 5 9 4 8 6 3 4 3 9 5 5 4 5 4 8

6 0 0 1 8 6 0

4 7 7 9 0 0 1

5 7 9 3 0 0 8

5 5 8 3 5 5 9 4 4 3 9 9 5

9 8 0 9 8 7 3

4 7 2 2 4 4 4 5 5 5 5 4

5 7 7 5 5 8 9

6 4 4 7 2 2 9

0 7 3 3 6 6 5

7 5 7 8 8 8 8 9 9 9 4 0 5

3 0 8 0 8 9 3

3 2 7 4 7 7 4 0 4 5 4 5 5

4 5 5 8 4 5 1

4 4 6 6 6 8 8 3

7 2 3 7 9 9 4

0 7 7 4

4 7 5 7 7 7 7 8 8 4 1 8 3

8 5 6 8 7 2 4

3 1 9 5 6 6 7 . 0 4 0 4 5

0 4 4 5 0 4 0

4 8 8 6 8 1 3

9 4 4 5 5 5 6 0 4 4 4 6 6 9 3

4 7 7 4 3 3 7

0 0 4 7 4 4 4 4 7 7 1 8 1 3

4

0 0 . 0

0 . . 0 . 0

0 0 . . 0 0 4 . 0 6

0 4 4 6

0 4 4

0 . 0

0 0 . 0 0 . . 0 . 0 . 0 0

0 0 0 . . 0 0 4

0 0 . 0 . 0

0 . . 0 0 . . 4 4 7

0 . 0 0 0 4

0 . 0 0 . 0 . 0

0 0 . . 0 4 0 0 0 0 4 4 8 4 8 8

0 4 4 8 4 9 3

4 9 9 9 5 5 5 0 . 0

0 0 . . . .

0 0 0 . 0 0 4 0 4 4

0 0 . . 0 4 0 0 . . 0 0

0 0 . 0 . . 0 0 4 0 4 9

0 4 4 4 9 9 5 0 0 . . 0 0 0 4 4 9 0 0 . . 0 4

0 . 0 0 0

0 0 . . . . . . 0 0 0 0 . 0 0 0 0 0 . 6 4 1 3 2 7 8

5 7 5 9 5 9 5 5 2 1 9 5 6 8 1 9 4 1 9 8

6 6 2 9 4 0 8 4 7 5 4 3

8 9 3 0 2 4 3 9 9 6

9 9 1 9 7 2 7 2 9 4 3 5 1 5 9

9 2 1 0 6 9 0 0 3 7 9 6 5

3 8 2 5 2 3 5

5 8 3 5 5 9

3 8 5 3 9 4 6 5 1 8 2 6 9

8 4 8 3 2 8 6 3 1 5 4 0 8 1 4 5 3 5 5 9 2 9 5

6 3 7 8 2 5 9

3 6 4 7 8 6 2

0 1 7 6 1 2 3 4 2 0 5 1 3

3 9 9 0 1 0 6

1 1 8 9 9 6 3 5 0 5 1 1 5 4 4 2 7 5 7

3 4 4 7 1 2 7

2 4 7 3 4 0 7

8 1 9 4 5 0 7 8 8 0 1 0 8

5 6 9 1 1 6 6

5 0 3 4 8 0 5 0 3 5 3 5 5 3 5 5 6 5 7 3

0 6 6 6 9 9 0

7 7 5 6 6 8 0

3 8 1 8 5 6 8 7 8 1 9 4 2

9 9 8 6 0 5 6

7 8 1 2 2 9 6 . 0 3 0 3 3 0 3 3 5 3 5 9

. 3 3 3 6 6 7

3 3 7 7 7 7 3

0 3 8 3 8 8 3 8 3 9 3 2 4

3 3 9 9 4 4 0

0 8 0 1 6 2 8 0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 0 3 0 3 5

0 0 . . 0

0 0 . . 0 3

0 . 0

0 0 . 0 . 0 0 0 3 3 3

0 0 3 3 7 3 9

0 0 . . 0

0 . 0 0

0 . .

0 0 . . 0 0 3 0 7

0 0 0 . . 0 . 3

0 0 . 0 . 0

0 . 0 3 0 3 3 0 3 0 3 0 9 9

0 0 3 9 0 0 7

4 0 1 1 2 3 5 0 . 0

0 0 . . 0

0 0 . 0

0 . . 0 . 0 . 3 3

0 . .

0 0 0 0 . 0 0

0 0 . . . 0 3 . 4 0

0 4 4 4 1 1 3 0 0 . 0

0 0 . 0 0 4

. 0 4 1

0 4 0 0 . . 0

0 . 0

0 . 0 4

0 . 0

0 . 0 . 0 0 0 . 5 4 3 8 6 7 4

8 0 2 0 1 9 8 7 5 9 3 2 2 1 6 4 2 1 3 8

6 6 6 7 0 0 3 9 9 5 8 3

1 7 2 3 7 6 8 2 5 5

6 8 7 4 4 9 6 3 1 1 9 5 6 7 5

3 1 4 7 3 0 0 4 3 5 7 0 4

0 9 0 6 9 4 4

4 7 3 3 1 3

9 4 6 9 5 8 2 5 1 7 5 9 5 4

7 4 7 7 0 3 9 9 2 4 7 7 7 8 5 1 2 2 1 2 4 8 2

6 3 3 9 8 5 6

5 6 0 9 3 1 5

7 2 0 1 6 5 3 7 9 9 3 5 9

6 5 6 8 9 7 4

1 1 2 7 1 7 1 1 9 6 7 7 6 7 7 2 1 8 5

. 6 9

2 4 3 0 0 8 5

8 0 7 6 5 2 7

7 7 0 9 9 5 9 5 1 4 5 1

6 9 7 2 3 5 6

4 4 7 2 5 2 4 . . 6 1 6 6 1 5 5 1

1 2 2 3 1 0 3

9 1 7 5 6 3 0 4 7

8 2 6

6 5 6 1 0

4 8 8 7 0

2 2 1 5 9

1 3 9 1 7

0 9 0

1 9 6 2 7

8 4 4 5 5 3 6 5 5 . 5 . 1 1 . 1 1 5 ^ 5 4 0

1 4

. 1 1 1 . 1 0

0 9 8 8 1 0 4

. . 1 0 0

5 5 . 5 . 1

. 0 0 0 8 8 6

. . 0 5 0 5

0 4 0 3 5 0

0

^ ^ ^ 5 .

^ 5 .

^ ^ 5 5 . . 1

5 5 . . 1 . .

^ ^ ^ ^ 5 5 .

^ ^ 5 5 ^ ^ ^ 5 5 . 5

^ ^ ^ ^ 5 5 5 . 0 0 0

5 . 5 .

^ ^ ^ 5 .

^ ^ ^ ^ 5 5 5 . 0 . 5

. 0 4 0 3 3

. 0 0 1 0 9 9 1

9 8 9 9 7 7 6 .

^ ^ 0

^ 5 5 . 5

^ ^ 5 ^ . 0

^ 5 5 . 0 . 0 0

^ 5 .

^ ^ 5 5 .

^ ^ 5 .

^ 5 5 . . 0 . 9 9 . 9 . 7 9 9 2 ^ ^ 5 5 .

^ ^ 5 5 .

^ ^ 4 .

^ 4 4 . 4 . . 7 . . ^ ^ 4 ^ 9

^ 4 4 4 ^ ^ 9 ^ 4 5 2 6 9 4 5 6

0 0 9 5 4 8 7 5 5 2 8 8 6 3 6 3 8 9 4 3

1 6 7 2 1 7 2 6 3 9 3 4

3 8 3 5 2 7 0 3 8 8

4 2 5 2 7 4 8 1 9 2 8 3 3 2

2 0 2 2 7 0 5 2 7 6 7 9 9

8 2 2 2 0 4 6

0 1 5 9 7 4

5 5 3 1 7 4 7

2 6 3 7 7 5

0 8 3 8 1 7 7 0 2 8 9 . 2 4 3 6 2 2 7 5 9 2 9 5

2 5 2 6 9 2 1

0 0 9 8 9 9 3

2 4 6 2 5 2 1 7

2 2 5 5 3 9

8 0 2 1 6 7 5 3 6 1 4 4 4 0 . 2 . 2 3 . 3 3 3 2 6 0

. 2 . 8 2 3 8

2 1 4 9 9 6 0

. 2 3 2 8 0 5

2 8 8 4 5 4

3 5 3 9 6 4 5 9 2 3 7 3 0 6 ^ 0 .

^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . . 2 . 2 9

^ ^ 0 0 .

^ ^ 0 0 . 3

^ 0 .

^ ^ 0 0 . 0 . 2 8

. 2 2 2 0 1 6

^ ^ 0 ^ . 2

^ 0 0 . 2

^ 0 .

^ ^ 0 0 . 0 . 0 . 4 3 9

^ ^ ^ 0 . . 2

^ ^ 0 0 .

^ ^ 0 0 . . . 2 3 1

. 2 3 2 2 2

. 2 4 5 2 2 1 2 3 5 0 8 7 8 ^ ^ 0 ^ 0 0 . . 2

^ ^ 0 0 .

^ ^ 0 0 . 2 . 2 .

^ 0 .

^ ^ 0 0 . 0

^ ^ 0 ^ 0 . . 2 . . 2 . 2 2 9 2 9 5 ^ ^ 0 0 .

^ ^ 0 0 0 .

^ ^ ^ 0 0 . . 2 . 2 9 ^ ^ 0 0 .

^ ^ 0 0 . 2 ^ 0 . ^ ^ 0 5 1 3 9 5 1 2

8 6 3 8 4 9 2 6 3 4 2 9 3 2 9 6 8 6 9 4 6

2 9 2 8 0 6 1 2 9 4 5 1 9

2 6 6 7 7 8 2 6 5 3

0 3 7 3 1 1 8 2 3 3 5 4 2 8

4 5 9 1 7 6 8 8 2 6 8 0 3

1 1 7 4 6 3 5

4 3 6 5 2 7 7

3 8 0 3 9 3 2

4 1 2 6 4 3

8 3 3 4 0 6 6 3 2 4 2 0 2 2 2 0 1 3 4 3 4 0 6 6

1 2 5 4 9 5 0

4 1 1 6 4 4

3 5 2 5 8 3 3

4 8 5 4 4 8

0 0 3 5 3 3 3 6 3 4 7 4 4 . 0 6 0 7 6 0 2 1 5 2 1 1

. 5 4 7 1 3 9

2 2 0 0 2 8 0

. 1 1 0 4 6 6

9 2 5 0 4 8

5 0 5 5 1 4 5 9 2 3 5 3 1 8 0 . 0 . 0 . . . . 6 . 2 1

0 . 1 7

. 2 1 4 2 2 5

0 0 ^ 0 0 ^ 0 ^ 0 . . . 0 . . . 2 1 4

. 2 1 7 1 5 0 3 5 9 6 4 3 4 ^ 0 .

^ 0 0 .

^ ^ 0 0 0

^ ^ ^ 0 ^ . 0 0 1

0 . .

0 ^ 0 0 . 2

^ 0 .

^ ^ 0 0 . . 1

^ ^ 0 0 .

^ 0 0 6 3

. 0 2

0 . .

^ 0 0

^ ^ ^ ^ 0 0 0 . . 1

^ ^ 0 0 0 .

^ 0 4 0 1 5 4

. . 2 . 8 0 . 1 1

0 . . 0 0 .

^ ^ 0 0 0 . ^ 0 .

^ 0 .

^ ^ 0 ^ 0 0 7 2 7 . 0 . 0 0

. . 6 1

0 . 1 2 3 3 . . 0 . 0 0 0 0 0 ^ ^ 0 ^ 0 ^ 0 . ^ ^ 1

0 ^ 0

7 6 6 9 7 5 7

4 9 2 9 5 5 6 8 4 7 5 2 7 7 6 9 9 8 9 4 5 3

1 3 6 4 3 6 4 1 5 2 7 9 5

8 2 0 5 8 5 3 9 2 8

5 2 2 0 5 2 7 2 1 2 8 8 7

. 8 3 0 3 4 5 2 6 5 5 1 0

4 5 9 7 9 7 6

6 6 1 7 3 1

6 6 1 9 1 2 4 6 5 2

9 3 4 5 2 9

2 8 4 3 1 2 7 2 4 9 0 1 2

. 3

0 0 7 7 7 1 9 8 2 3

1 5 4 9 7

4 1 9 4 2 1 7

4 8 5 6 7 7 7

1 7 9 2 5 7 4

6 6 9 5 1 0

3 5 8 9 4 1 7 9 7 7 9 2

2 . 0 3 1 . 0 . 7 1 2 3 3

. 0 ^ 0 1

. . 0 . . . 3 6 1 1 0 5

2 1 8 7 3 7 5

0 0 7

. 0 . 6 1 . 0 1 8

1 5 7 7 2 4 4

2 5 7 9 2 9 0 4 3 1 4 8 8

. 0 . 0 . 0 0 . 0 2

. . . 2 0

. 3 4 8 3 4 0

0 . .

0 0 . . 0 . 0 . 0 0 7 0 0

0 5 7 1 3 2 5

. 1 7 1 4 4 2 2 3 9 3 8 8 ^ 0 0 . 0 0

^ 0 ^ 0

0 0 0 0 0

^ ^ 0 0 0 . 2 .

^ 0 0 0 .

0 0

^ ^ 0 ^ 0 . . 1

0 0 . . 0 1 . 4 9 6

0 . 1

0 . . 2

0 0 3

. 0 0 2 1 9 4 3 4 ^ ^ 0 0 . .

0 0 0 . 0 0 3

0 . .

0 0 ^ 0 ^ 0 0 . . . . 0 0 2 2

0 0 .

0 0

^ ^ . .

0 0 ^ 0 6 6 8 3 1 5 1 2

8 4 9 9 4 8 6 3 5 1 9 2 5 9 8 9 8 9 2 2

2 3 2 8 5 1 8

5 1 1 2 1 4

7 3 6 9 6 4 7 4 6 9

7 2 0 2 7 5 2 1 5 8 4 2 3 8

1 6 2 6 1 4 2

3 1 1 3 4 9

7 2 6 7 1 1 8

4 9 2 7 5 7

2 0 7

6 4 1 7

. 8 9 0 5

9 5 7 8 4 6 1

3 3 6 2 8 9

9 6 9 2 4 4 0 7 1 3 . 1 4 2 1 9 4

4 0 2 5 1 2

8 . 3 4 1 8 9 9

4 4 0 9 3 8 5

1 7 1 8 6 2 6

7 3 4 1 6 1 8

5 6 8 8 7 0 8 2 6 6 6 6 0 0 . 0 . . 0 0 . 3 9 . 0 7 7

3 6 . 1 0 5 0 9 3 3 9 4 0 6 0 . 0 0 . 1

0 0 . 0 2 9 1 2 2

. 0 9 . 3 6 0 6

. 0 0 2 0 1 5

0 3 2 5 7

. 2 . 9 1 3 7 0

4 2 7

0 0 . 0 . 1 1 0

0 1 1 4

0 . 3 2 2 4 1 4 2 1 6 9 9 0 0 . 0 0 0 . . 0 . .

0 0 . . 0 8 1

. . 0 . . 1 8

. . 2 6

0 0 0 0 . . 0 0 . ^ 0 2 5

0 0 . 0 0

0 0 0 . 0 . 1

0 0 . 0 . 0

0 . 1 1 . 1 2 1 1 6 9 ^ 0 0 . . 0

0 0 0 . . 6

0 . 0 . 1 4 0 0 . 2 ^ 0 0 .

^ ^ ^ 0 0 . 0 ^ 0 0 0 0 . 1

^ 0 0 . 4 1 4 2 5 8 3 6

7 9 8 9 4 5 3 3 9 1 5 3 2 2 0 7 3 1 1 1

7 1 7 3 1 5 4

0 1 8 2 4 2 1

0 3 4 6 6

8 9 2 4 2 1 2 1 9

7 2 1 0 2 4 2 1 4 2

9 6 3 7 8 8 4 3 3 3 8 5 4 6

3 5 8 5 4 9 2

6 2 4 2 1

2 7 9 5

8 3 8 9 9 1 3 1

1 9 9 0 4 5 . 0 . 0 . 1 2 1 6 2

0 . 0 . 3

0 . . 0 0 . . 4

0 0 . 0 . 0 4 . 1 2 4

. 4 5

. . 1 0 4 . 1 8 7 5

. 3 3 7 6 3

1 1 4 2 7 9 1 7 6 4

2 5 3 8 5 9

6 5 2 4 5 2 9 6 7 3 0 9 9 1 1 6 5

3 2 4 4 0 0 8

2 1 6 3 5 2 4 1 4 8 5 2 0 8

8 4 1 1 8 2

2 9 8 8

6 3 1 1

4 9 7 8 2 6 5

0 0 3 2

4 2 3 2

8 6 6 2 8 1 1 6 0 5 2

0 0 0 0 . . 5

0 0 . . 1 4

0 . 1

0 .

^ 0 0 0 3

0 0

. . 0 0 2 5

0 . . . . . 0 8 2 0

0 1 3 4 0 3 3

. 1 3 5 2 4 4 8 4 0 6 9 4 ^ 0 0 0 0 0 .

^ 0 0 0 .

^ 0 0 . . 0 0 0 . 4

. . 0

0 0 0 0 . 0 0 0 .

^ 0 0 .

0 0 0 0 . . . . 6 1 7

0 . 2

0 . . 1 2 2 3 8 2 ^ ^ 0 ^ 0 0 . 0 . 2 0 3 5 0 0

^ ^ 0 0 0 .

^ . . 1 0 0 0 . ^ 08 3 2 7 5 2 3

3 5 2 0 6 1 4 2 3 1 7 3 6 5 9 6 5 5 9 4

2 9 7 8 8 3 4

9 7 2 4 8 2

5 5 8 3 6 5 3 5 1 9 6

8 1 7 8 5 2 3 9 9 4 6 2 7 3

2 2 1 7 9 4 8

2 1 8

. 6 7 8 7

8 5 1 5 5 2 3 1 5 1 2 2 3

3 8 7 3 2 0 9

7 5 1 7 9 5

1 8 9 5 7 2 3 1 6 4 . 1 . 7 4 6 9

2 4 3 4

6 2 4 9 2 6 5 0 1 4 4 6 3 3

6 4 4 2 1 0 2

. 8 3 6 8 7 2 7 7 6 8

9 3 1 5 2 4 4 7 4 2 9 2 9 0 0 . 0 0 8 2 4 2 1 1 7

. 0 . 2 . 0 2

0 3 2 5 1 8 6 9 . 2 3 3 9 2 2

0 2 4 2 0 8 5 3 5 6

2 1 0 9 0 2 2 3 0 7 5 8 5 0 0 . 0 . 0

0 0 . . 2 8

^ 0 0 . 0 0

0 0 . . . . 1 . 2 5 0 6 7 1 8 6

0 0 0 0 .

^ 0 . 0 0

0 0 . . 0 0 2 . 1 8

. . 0 0 . 1 0 1

. 1 1 3 6 7 0

. . 2 6 5 2 3 1 6 7 4 0 6 ^ 0 . .

0 0 0 . 1

^ ^ 0 0 .

0 0 0 . 0 . .

0 0 . . 0 . 5 2 2

0 0 .

^ 0 0 1 6

. . 0 . 0 . 4 9

. 1 1 4 0 ^ ^ 0 0

^ 0 0 . 0 . 4

0 0 0 .

^ 0 0 0 . 0 0 0 . . 2 1

0 . . ^ ^ 0 ^ 0 3 7 3 5 1 4 6 9

5 7 9 4 3 5 9 6 3 7 1 4 3 9 0 1 6 7 5 1

8 6 3 3 5 9 3

0 7 4 1 6 2

1 3 4 2 5 1 8 5 5 8 5

5 4 3 3 2 3 0 8 1 4 7 6 2 3 5

3 7 0 7 2 9 7 0 9 7

0 6 3 1 4 6

4 8 3 6 3 9 1 2 4 4 6 3 1 6

9 5 9 9 1 5 5

1 0 5 5 5 6

1 1 9 7 2 3 7 5 7

1 6 4 2 3 0 5 2 2 1 6 9

3 9 2 0 6 2

2 4 6 0 4 1 8 8 6 5 9 5 9

1 3 8 8 8 9 3

9 0 3 8 4 9 8

1 4 3 3 5 7 9

0 1 9 2 1 2 . 6 2 1 3

. 0 3 3 2 4 5 . 0 0 0 3 5 1

0 0 . 0 . . . 0 1

0 0 . .

0 0 0 . . 1 . 3 7 . 6 3 5 8 2 5

0 . . . 2 4 . 4 0 6 0 2

0 0 5 1 1 7 1 2 8 3 6 0 6 9

. 2 9 3 1 9 9

9 2

. 0 . 3 3 2

. 2 1 2 5 1 8

. 4

0 . 2 . 3 3

0 . 9 5 5 0

1 7 9 9 ^ ^ ^ 0 1

. 0

0 . 0 . . 2

^ ^ 0 ^ 0 0 .

^ ^ 0 0 0 0 . 0 0 . . 0 0 . 0 0 2 0 1 5

^ ^ 0 0 . .

0 0 . . 4 ^ . 1 6 0 0 0

0 0

^ ^ 0 . 2

. 0 0 0 0 . . 0 1 . 3 3

. 2

. ^ 0 0

0 ^ 0 0 ^ . 0 0 0 0 ^ ^ 0 .

^ 0 ^ ^ 0 0 .

^ 0 0 ^ 0 0 0 7

. 0 . 5 1 ^ 0 0 0 0 0 0 . 0 . .

0 0 2 5 4 5 8 3 2 6

9 1 1 4 5 9 9 1 6 7 6 1 6 3 9 8 1 1 9 6

2 5 9 6 2 5 6

5 1 5 4 5 8

7 5 2 0 3 6 6 3 3 2

3 1 8 7 1 0 4 1 2 2 1 3 6

4 7 2 6 1 7 7

2 4 8 3 4 8 7

1 2 1 7 0 5 7 5 4 5 8 4

2 4 3 2 1 1 5

1 8 7 6 8 4

1 6 4 3 3 8 3 5 8 0 3 2 2 8 3 7

2 7 5 2 5 4 7

3 4 2 7 . 1 6 6 7 2 6 2 9 6

1 3 6 1 6 0 2

8 0 2 9 2 1 3

4 2 7 0 8 6 3

1 4 9 4 9 4 . . . . 2 4 9

. . 7 1 0 0 0

. 2 7 1 4 4 7 4 2

. 4 2 9 1 1

. 1 1 4 1 7 6

2 5 2 5 2 3 0

6 0 8 5 3 3 2

6 4 1 3 4 2 0 0 0 0 . . 1

^ 0 0 0 . 0 0 . 6

0 . 1 4 3

0 0 . . 4

0 0 . 0 . 3

0 0 . . 0 0

0 0 .

^ 0 1 4 4 0

. . 0 . 1 . 1 9

0 0 0 0 0 . 0 . 0 . 4 . 1 3

. . 2 6 8 6 6

. 3 2 1 7 6 9

1 8 7 8 3 0 ^ ^ . 0

0 0 0 0 . 0 . 5

^ 0 . 0

0 0 0 0 . 0 3 1 2

. . . 1

0 0 0 0 . 0 . .

0 0 0 3 1 1

. . . 3 . 3 4 9 5 9 ^ ^ 0 0 0 0 . 0 . 2

^ 0 . 0 0 6 0 0 . . 0 ^ 0 0 ^ . 0 ^ 0 7 4 5 9 6 5 1 9

1 7 4 7 6 5 5 5 7 6 8 3 1 7 8 7 4 3 2

5 5 7 3 3 2 6

2 5 8 9 8 1

0 8 1 3 5 4 3 9 3 8

7 6 4 2 6 2 6 4 2 1 1 9 2 2 6

9 3 0 7 7 8 7

3 9 2 3 1 2 8

2 9 2 8 8 1 8 5 2 9 0 8 8

2 8 6 4 8 2 6

3 1 0 4 6 4

9 1 4 9 7 5 9 6 5 0 4 4 1 3 3 3

2 4 6 4 3 6 7

2 1 7 8 . 1 5 7 7 3 1 5 9 7

2 9 8 5 1 9 5

2 8 1 8 9 4 8

0 6 1 6 2 5 3

1 4 3 6 3 9 . . . . 2 4 4

. 4 0 1 4 7 1

. 2 0 2 5 3 0 8 6 9 4 7

. 1 8 7 3 5 8

2 3 1 2 8 8 5

3 8 9 0 9 7 9

2 6 1 7 6 8 0 0 0 0 . 0 . .

0 . 4

0 0 . . 8 7 0

0 0 . 5

0 . 0 . ^ 0 4 0 1 5 7 1 1 5

0 0 . 0 1

. . . 1 8

. 7 2 5 3 9 7

. 2 6 8 5 0 6

1 7 3 7 2 0 ^ 0 0 0

^ . 0 0 3

0 . .

0 0 0 0 0 0

. . . . 1 . 1 2

0 0 ^ 0 0 0 . . 0 . .

^ 0 0 0 0 0 . 3

0 . 0 0 0 . 0 . 0 3 1 4

. . 0 3

0 0 . 0 . 0 3 0 3

. . . 2 . 6 2 1 2 5 ^ ^ 0 0 0

^ . 0 ^ 0

0 0 0 0 . 0

0 0 . 1 . . 0 ^ ^ 0 0 .

^ 0 0 . ^ ^ 0 81 3 5 3 8 6 6

3 2 5 0 1 3 6 4 9 6 7 7 5 2 6 8 1 3 5 6

8 6 4 4 2 0 6 1

6 6 3 6 3 4

0 4 9 8 8 8 1 1 8 8

3 1 4 2 9 4 0 9 7 9 6 4 4 1 2

4 5 5 7 8 2

8 2 6 4 9 1 9

7 1 2 3 0 8 2 1 6 8 2 7 6

1 5 3 2 6 4 1

3 8 3 4 2 3 4

2 9 0 1 9 3

0 0 5 4 2 7 0 1 6 3 7 5 0

6 5 4 2 9 0 7

1 3 3 4 2 7 2 4 3 0 8 4 7

1 5 2 2 2 0 3

2 1 6 8 4 1 2

1 9 4 3 3 7 9

9 8 4 4 5 8 . . 0 1 0 3 4

. 2 4 1 0 2 8

. 6 2 1 1 9 3 8 1 8 4 8 1

0 . . . . . 2 . 1 2 7 1 3 5

0 2 2 2 3 5 9 4

. 1 1 9 5 4 4 4 6 9 1 4 0 0 0 0 . 0 0 . . 1

0 0 0 . 1 0 8

. 0 . . 0 2 4 7

. . 8 . 2 5 3 3 6

0 0 8 2 0

. 7 2 5 4

1 7 3 8 1 2 0 0 0 . 1

. ^ ^ . . 0 3

^ ^ ^ 0 . 0 . . 0 . 5 0

. . 3 0 . 4 0 0 . . . 6

0 . 0 .

^ 0 0 . 1 2 1

0 0 3

. 0 . 1 1 . 2 2 5

. . . 4 7

0 2 1

0 3

^ 0 0

^ 0 0 0 0 0 . ^ 0 0 0 0 0 0 . . 0

0 0 0 ^ 0 0

^ ^ 0 0 0 . 0 0 . 0

^ 0 0 0 .

^ 0 0 0 . ^ ^ ^ 0 0

^ ^ 0 0 0 0

^ . 0 ^ 0 0 .

^ 0 1 6 5 8 6 3 6 2

2 7 5 7 3 6 0 7 6 5 4 2 9 6 0 7 6 6 8 4

8 9 6 7 2 0 1

6 0 8 6 8 4

9 9 9 0 2 2 4 3 3

2 5 0 4 8 1 0 1 8 2 1 1 7 6 2

1 8 4 6 8 0 2

4 1 7 1 9 2 8

2 6 9 2 2 9 2

3 9 7 9 7 8

3 0 2 9 3 8 7

2 2 8 2 7 2

9 5 7 2 4 7 7 6 4 . 7 4 9 3 1 5

1 6 8 3 6 2 3

2 4 9 9 1 6 5

1 5 3 8 3 2

0 5 5 4 1 0 2

5 8 2 8 5 0 2

3 8 5 4 9 3 4

3 1 9 2 8 9 0 . 0 0 4 . 3 2

. 0 2 1 4 2 3

. 7 0 2 1 5 3

3 5 7 5 3 7

. 1 2 0 . 1 9

4 1 2 1 2 2 4

. 8 8 5 5 4 8

3 5 3 1 8 3 0 . 0

0 0 . 0 . 1

0 . 0 0 . . . 6 1 3

0 . 3 4 4

. 1 1 4 9 7

0 . . . 0 5 3

. 4 . 1 2 1 1 0 4

0 . 1 3 1 5 2 6

. . 2 4 1 3 1 8 ^ ^ 0 ^ 0 0 0 . 1 .

. 0 0 0 ^ 0 2

. .

^ 0 0 ^ 0 0 0

^ 0 0 0 0 . . 1 1

^ 0 1

. .

0 0 0 0 8

. 0

0 0 . 0 . .

0 ^ 0 . 2 2

0 0 . 0 .

^ 0 0 0 . 1

0 . 0 0 . . 2 7 7

. 1 6 . 4 1 6 ^ ^ 0 ^ 0 0 0 0 2

. .

0 0 0 0 1

. . 0 0 9 0 0 . . 0 0 0 . ^ ^ ^ 0 0 6 3 5 2 6 1 6 1 7 4 2 0 4 8

5 5 3 7 1 3

5 4 2 9 2 0 1 2 4 3 9 2 4 1 2

4 1 7 9 6 6 2

1 4 5 5 9 6

6 7 4 2 8 4 8 6 7

2 4

8 3 4 1

0 0 2 7 1 4

7 5 2 7 3 8 7 4 8 7 4 0 2 7 2 6 6 1 3 1 4

. 4 0 9 8

2 4 2 7 3 0 9

9 4 0 7

7 2 2 7 9 4 4 9 7 9 5 6 1 9 4 2 4 5

0 8 2 8 8 7 3 1 9 9 2 0 7

0 9 1 0 7 8 4

3 4 1 1 9 7 8 7 2 6 3 4 4

0 3 . 6 4 6

0 0 . . 4 . 1 . 2 6 1 8

. . 2 5 9 1 8 1 3 8 0 2 5 1

2 6

2 3 1 1 3 2 8 0 6 5

1 5 4 . 0 0 2

0 0 0 . 1 2 4

0 . 0 . 1 . 1 2 2 2 2 4 9

2 9 2 8

7 2 3 8 2

0 0 . 0 0 0 . 0 3 2 9 8 3 1 4

. 1 . 3 . 2 6 6 1

. . 0 . 2 .

0 0 . 0 . 0 3

0 0 0 . 0 0 . 0 0 . 0 . 8 0 1 4

. 1 1 1 1 1 7

. 2 3 8 2 3 3

9 6 4 6 2 1 3 . 7 5 . 0 . . 0 1

0 .

^ ^ ^ 0 0

0 0 0 0 .

0 0

0 0 ^ 0 0

0 0 . . . . .

0 0 0 0 0 0 . 2 7

0 . 4

^ 0 . 0

0 0 ^ 0 0 1 8 5

. 0 . 0 3

. . 0 0 0 3 . 0 0 ^ 0 0 . 0 0 6 9

0 . . ^

0 0 . 0 ^ ^ ^ 0 0 .

0

58 2 1 7 8 7 7

2 2 1 1 9 8 4 5 7 3 8 4 8 6 6 2 1 2 9 1 7

3 4 9 3 5 3 6

6 6 2 7 9 6

4 3 3 0 7 8 0 2 5

0 2 7 2 1 2 1 8 6 4 6 9 3 3 8

2 4 1 0 6 5 6

0 0 0 7 0 2 4

8 5 8 9 5 1 9

1 1 2 1 1 8

4 3 3 0 3 5 2

2 8 4 1 5 6

4 6 3 8 7 7 6 9 2 2 . 2 2 4 6 8 2

1 4 2 6 9 9 1

4 6 1 2 7 7 8

0 4 7 6 3 2

1 1 0 9 8

9 6 7 9 4 7 6 1 2 1

0 7 7 1 1 0 4 7

8 3 4 7 8 6 0 0 . . 3 . 2 3 2 4 0 5

2 2 7 1 6 3

. 1 2 1 7 7 4 7 3 7 5 8 2 7

2 9 7 1 5 0

7 4 5 0 4 0 ^ 0 0 . 0 3 1

. 0 8 0 1 6 2 0 3 8

0 . 0

0 0 . . . 0 . . 2 1

0 . . . 5 . 1 2 9 1

0 . . 3

^ 0 0 0 . 0 0 . 1

0 .

^ ^ 0 ^ ^ 0 0 0 2 5 8

. . 0 2

0 0 . . 0 . 0 0 . 4 1

^ ^ 0 0

^ 0 0 .

^ ^ . 0

0 0 ^ 0 0 .

^ 0 0 2 1

. . . 0 3 5 6 3 1 2

0 . 3 2 3

. 2 3 6 9

. 8 1 1 8 6 5 5 9 . 8 1 2 8 6 0 ^ 0 0 . . 0 1 . . 5

0 ^ 0 . .

0 0 0 0 . 1

0

^ ^ 0 0 0 0 . 0 0 1

. . 0 . 0 . 0 . 2 1 0 ^ ^

. 0 0

^ 0 0

^ 0 0 . 0 . 0 0 0

^ 36 5 7 7 3 9 6

6 3 8 6 6 7 9 7 5 8 0 3 2 1 4 2 1 3 3 9 7

4 9 8 4 0 5 5

1 7 9 8 9 2

2 4 6 1 8 1 4 1 4

7 2 3 1 8 7 3 8 1 2 6 6 1 1 1 4

9 1 0 2 0 0 4

9 4 4 6 6 1 6

. 6 0 8 8 5

8 4

2 9 4 0 7 8

9 3 7 1 1

6 3 9 4 0 4 5 9

6 6 5 4 0

6 7 3 1 7 7 3 6 5 0 2 2 9

8 9 2 9 8 3 2 9 3 2 8 0 1 2 1 2 1 3

7 1

. 1 8 3

0 1 9 1 0 3 1 3 3 4 6 1 7 4 7 4 5 9 1 3

7 9 5 4 9 8 8

8 0 7 8 5 1 ) 1 5 2

3 7 9 8 3 8 t . . 0 1 . 3 7

0 2 2 8 1 5

0 9 1 1 0 0 7

1 6 8 8 1 8

. 1 5

0 . 0 0 . 9 0 1 6 7 4 2 1 3 3 5 4

5 7 2 8 4 8 8

8 1 7 3 2 6 . 0 0 . . 0 . 1

0 0 . . 0 . . 8 8 1

. 0 . 0 . 4 1 0 9 1 2 8 7

0 5 0 6

^ ^ 0 0

^ ^ 0 0 0 . 0 0 1

^ 0 . 0

^ 0 0 .

^ 0 0 3

. .

0 . . 1 .

^ 0 ^ 0 0 1 . 4 0

0 . 0 0 . 0

^ ^ 0 0 . 0 .

^ ^ 0 ^ 0 . 0 0 . .

^ 0 . . . 7 0 8 0

. . . 1 . 2 1

. . 1 5 2 5 0

0 0 0 . . 0 1

0 ^ 0 0 0 ^ 0 . 8

^ 0 . 0 . 0 0 . 3 3

. 4 n 0 .

0 0 0 ^ 0 0 ^ 0 0

0 . o ^ ^ ^ ^ 0 0 . .

0 0

^ ^ ( c

8 A

9 2 1 7 2 2 1

1

1 1 8 1 D 2 C

A D N D L M9 2 A A

T 2 B M 6 7 1 4

0 8 7

2 D 2

6 N 1 M 1 K 1 2 1

J 4 5

S S A 3 f F 1

M S 2 B 2

1 3 H P 1 1 2 2 1 9 8 2 7 1 1 B

1 1 7 e C D O X E E 2 f

P P r C

C R 3 M r R 1

M E A 1 N D 5

8 2 1

1 L 3 9 D E L

L X C M T S 6 C

S A M C O T B T M C A I N R P C L C Y S o T

H C 1 T MT P C O R F 2 3 M

S E T P T T T O o T C 1 T B

2 C

C C M B I S T H F D S H N X R S I V P T MB M A C G F C S F 2 H

F V P N 1 M G S K M C G R A G S I Q P L H O N X R R S E S T F Y A B G D R Z N P C T R E Q K 8 R C l

J E M U F S K I S A A N A R R G P A b T C 1 P H A L B MN a D T

')6^^^^^^^ 7 4 5

6 9

5 1

5 5

9 7

4 9

0 4

. 0

0 0 .

4 3 6

2 5

8 9

3 0

1 6

4 1

0 4

. 0

0 0 .

6 9 8

7 1

9 0

1 4

7 5

9 6

. 9

4 .

^ ^ 4

6 5 3

7 7

4 1

2 7

. 3

0 .

^ ^ 0

67 4

3 2

7 9

8 8

0 8

. 0

0 .

^ ^ 0

92 9

6 4

1 8

1 3

. 1

0 0 .

^

18 2

4 2

2 7

1 6

. 8

0 . 0

^ 0

6 2 7

9 3

1 9

. 4

0 0 7

0 .

45 6

2 6

0 1

2 1

. .

0 0 1 9 3

4 8

0 8

2 3

. 1

0 .

^ ^ 0

16 3

7 2

8 5

5 6

. 2

0 0 .

^

61 3

0 6

6 7

2 7

. 2

0 0 . 4 2 1

2 7

6 8

3 1

. 3

0 0 .

^

28 2

9 2

5 6

1 9

. 0 1

0 . 0

^ 0

83 8

4 4

2 4

1 4

. .

0 0 0 5 5

0 8

8 0

2 8

0 1

. .

0 0

. ) 1 t 7 2

5 5 n 8 3

1 4 o 0 7

. 0

0 . c ^ ^ 0 (

8 l e 1 P 1 b G P a R N B I T M T

')6^^^^^^^ 3 6 6 6 5 7

1 3 6 3 6 6 0 5 7 7 7 2 7 7 7 7

5 1 3 6

1 3 3 7 5

3 0 1 1 7 2 7 7

2 2 2 7 7 2 7 7 2 7 7 7 7

5 5 1 3

5 1 1 7 0

0 3 1 1 1 7

2 2 2 7

4 2 2 2 2 2 2 7 2 7

2 2 2 2 7 2 7 7 4 5 5 1

5 5 5 2 3

5 0 7 7 1 1

4 2 2 2 7

4 4 4 2 2 4 2 2 2 2

4 2 2 2 2 7

2 2 2 7 0 4 5 5

0 4 5 4 5 5 7 0

0 4 4 5 2 5 5 5 2 2 7 1

4 4 4 2 2

0 5 6 6 2 7

6 4 4 4 2

6 4 4 4 4 4 4 2 4 2

4 4 4 4 2 2

4 2 2 2 7 0 6 6 4 4 6 4 4 4 4

6 4 4 4 4 2

4 4 4 2 2 r . 0 0 0 4

. 0 0 0 0 0 5

. 0 0 0 0 0 0 0 0 6 2

0 6 6 4 4

. 0 0 0 0 6

0 0 0 6 6 4

0 0 0 6 6 0 6 4 6 4

0 6 6 6 4 4

6 4 4 4 2 . 0 0 0 0 0 0 6 0 6

0 0 0 0 6 4

0 6 6 4 4 . . 0

f d 0 0 . 0

0 0 . 0 . 0

0 0 0 0 . 0 0 . 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0

0 0 . . 0

0 0 . 0

0 . 0 0 . . 0 0

0 0 . 0 . . 0 0 0 0

0 . 0

0 0 . . 0

0 0 . . 0 0 0 0 6

0 0 0 6 4 0 0 . 0 . . 0 0

0 . 0

0 0 . . 0 0 0 6 0 0 . . 0 0 0 . 0 0 0 . 7 9 9 4 8 0 3 5 7 6 1 0 7 9 2 7 4 7 4 7

8 9 6

2 9 1

4 2 7 6 8

8 0 3

6 0 1 1 1 7 5 2 4

9 8 1 8 9

3 8 9 9 4 7 9 4 3 5 7 9

6 5 2 1 7 1 9 4

1 2 3 6 1

0 6 4 4 2 7 1 1 7

t 0 5 1 4 6 8 7 1 0 7 3 8 3

5 7 4 0 c 1 1 3 8 7 9

0 0 1 4 0 6 9 7 4 1 0 4

6 2 8 5 8 9 9 1 0 1 4 8 5 8 7

0 0 0 0 7 0 7

0 0 0 0 0 0 1 6 2 9 2 9 0 8 9

6 4 1 9 7 7 2

5 5 0 8 1 3 3 2 9 9

0 0 0 0 1 3 5 4

0 2 3

0 0 2 0 0 4

0 0 0 0 0 1 0 1 3 1 4

0 0 1 1 6 5 6 6 7 2

1 7 9 9 0 3

8 6 9 0 1 3 6 7

0 1 1 0 1 1 7 1 1

l 0 9 9 4 0 8 7 1

1 0 0 3 e 0 0 9 1

e 0

. 0 0 . 0 0 0 . 0

s 0

0 0 0 . 0 . 0

0 0 . . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 1 9

0 2 2 1 1 . . 0 0

. 0 . 0 0 0 0 . 0 0 0

0 0 0 . . 0 . 0 . 0 . 0 0 . 0 0 0

0 . . . 0

p 0 0 0 . 0 . 0 0 0 . . 0

0 0 . . 0 0 0 0

0 . 0

0 0 . . 0

0 0 . . 0 0 . 0 1

0 0 0 2 2 0 0 . 0 . 0 0 0

. 0

0 0 . . 0 . 0 0

. 0 0 0 0 0 0 0 . 0 . 7 9 9 4 5 4

8 9 6 1 6 8 8 1 7 5 2 4 7 9 1 4 1

0 2 9 2 8 0 3 1 3

9 1 8 9 7 0 7 9

6 5 7 7 1 2 3 4 2 7 1 1 7

1 3 4 7 8 7 9 0 0

6 8 3 8 9 1

4 7 9 9 7

8 5 2 7 9 0 6 6 4 4

7 2 3 2 9 7 3 8 0 1 5 1 1 3 6 4 1

4 8 6 9 7 6

4 1 4 2 5

1 6 8 9 1 0 8 9 1 9

1 2 3 1 0 9 7

5 7 4 3 1 0 0 1 0 0 2 5 3 4

0 4 0 6 2 8

8 0 9 4 3

1 2 9 3 7 5 6 4 5 7

7 9 9 0 3

6 6 8 8 6 9 0 1 1 7 1 3 6

9 4 8 7 0 0 0 0

. 0 0 0 0 0 0 2 0 0

0 0 0 0 7 5

0 9 9 0 4

0 1 2 1 4 1 5 0

. 0 . 0 0 0 0 0

. 0 0 0 0 0 0 0 0 0 0 7 1 1 9

0 1 1 0 0 1 0 1 1 1 0 9 7 0 0 0 1 3

0 1 1 1 2 0 2 0 2 1 0 0 0 2 0 0 0 . 0 0 . 0

0 0 . . . . 0 0

0 0 . 0

0 0 . 0 . 0 0 0 0 0

0 . 0 0 . . 0 0 0 0

0 0 . . 0 0 0 0

0 0 . 0 . 0 . . 0 0 0 0 0 1

0 0 0 1 1 6

0 1 7

0 0 0

. 0 . 0 0

. 0

p 0 0 . 0 . 0 0 0

0 . 0

0 0 . 0 . . 0

0 0 0 . 0 . 0

0 0 . 0 0 0

. 0

0 0 . . 0 0 0 0 0 0 . . 0 0 0 0 . 0 . c o

s 5 6 8 5 9

_ 9 5 8 9 0 9 2 0 6 6 4 4 4 9 3 8 2

k 8 6 5 7 6 1 4 4 4

7 0 0 2 0 8 0 4 9

6 4 5 4 1 1 8 9 8 1 4 9 9

n 4 6 3 0 6 6 4 5 6

5 8 2 8 4

5 2 5 9 2

4 9 7 6 8 5 1 1 7 3

3 1 9 7 9 2 5 3 r a 6 4 0 6 0 6 7 1 9

. 1 8 2 5 2 3 6 5 8

1 3 7 0 5

3 9 5 5 9 7 8 6 2 4 2

2 1 7 0 7 6 9 3 2 4 _ 6 4 8 6 0 9 9 6 1 1

1 9 9 0 1

4 1 6 1 3 2 0 5 7 3 0

8 0 9 3 6 8 4 2 7 5 l . . 2 1 1 8 2 4 1 8

. 2 2 4 9 2 7 8 4 6

0 7 3 6 0 8 3 7 5 1 6

2 5 7 1 1 9 0 9 6 7 a 1 1 . . 1 . 7 . 2 6

^ 0 . 0 7 6 8 3 4 4 3 3 4

. 9 4 8 8 7 3 0 7 5 1

6 8 1 1 5 6 6 2 5 3 n 1 1 1 1 1 0 0 . 0

1 . . 5 5 . 3 2 1 2 8

9 . 9 . . . 7 7 6 6 2

1 1 9 9 . . 9 . 5 5 0 7 4 3 1 3 1 i ^ ^ ^ ^ ^ ^ 1 1 0 .

^ 1 0

^ ^ 1 ^ ^ ^ ^ 9 ^ 9 . . 0

^ 9 .

^ ^ 9 9 .

^ ^ 9 ^ 8 .

^ ^ 8 8 8

^ ^ 8 . 8 . 8 . . 3

.

^ ^ ^ 8 8

^ ^ 6

8 ^ 8 . . 5 4 . 4 4 0 9 ^ ^ 8 8 .

^ ^ 8 .

^ 8 8 . . 4 3 ^ ^ 8 8 . .

^ ^ 8 ^ 8 t f

u c 0 6 0 5 5 5 0 5 5 5 0 5 5 5 5 1 6 1 3 6 8

d ^ ^ 0 0 ^ 0 0 5 0 5

^ 0 0 5 5 0 5 8

8 9 6 7 3 3 7 3 8 9 9 4 9

o E E ^ ^ E ^ ^ ^ 0 5

E ^ ^ 0 0 ^ 0 5 0 4

r 9 7 E E 6 E E E ^ 0

3 E E ^ ^ E ^ 0 9 3

1 6 5 1 1 3 1 3 6 9

8 8 8 4 8 6 1 8 p 5 0 6 1 5 1 9 8 E ^

4 5 8 E E 0 E ^

0 1

1 2 0 4 0 5 1 5 0 8 8

7 6 9 2 5 9 9 9 0 7 2 _ . . . 2 4 . 0 1 9 6 E

. 9 5 8 0 1 1 E

0 1 3 1 5 1 6 6 7 4 2

1 8 9 3 8 0 6 4 8 k 8 1 1 1 . 1 2 . 2 . . 6 4

2 . 2

3 4 . 4 5 . . 8

6 6 . 2

7 . . 7 2 1 1

8 . 7

8 9 . 0 0

0 0 0 0 1 0 1 0 1 1 1 7 8

0 1 1 0 0 2 1 1 2 6 n 0 0

. . 0 0 0 0 0 0 0 0 0 1 7

0 0 0 2 2 0 2 2 2 2 . 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 2 0 2 r a 0 0 0 0 . 0 . . 0

0 0 . . 0 . 0 . 0 0 0

0 0 0 . 0 0

0 . 0

0 0 . . 0 0 0 0 0 0 0 0 0 0 0 . . 0 0

0 0 . 0 . . 0 0 0 0 0 . 0

0 0 . . 0 0 0 . 1 1 5 . 5 2 2 0 2 5 6 7 8 5 9 8 7 8 3 2 9 7 2

a 0 1

t 5 5 6 6 6 9 4 9

7 2 7

8 7

0 6 6 8 8 8 8 8 7 1 5

0 9 0 6 2 6

2 1 2 4 4 7 . 5 5 5

4 0 2 5 5 8 6 6

e 6 1 1 0 1 1 1 5 7 3 5

1 1 1

1 1 2 2 5

1 1 2 1 1 3 1 3 3 7

1 1 3 1 3 9 4 4 3 8

3 5 8 8 4 9 8 1 3 1 1 4 3

1 1 4 1 1 4 4 8 0

1 1 4 1 5 2 1 1 8 2 1 5 3

1 1 5 4 4 1 1 5 b 1

k _

a n

r

8 9 1 0 1 1 1 2 1 4 1 5 1 9 2 1 2 3 4 2 3 2 2 9 3 0 3 1 3 3 3 6 3 8 4 2 4 3 4 4 4 6 4 7 5 0 5 2 5 3 5 5 5 6 5 7 5 8 5 9 6 3 6 1 4 6 6 5 6 6 7 7 6 8 6 9 7 2 7 0 e

o r

c

_ s

n k

r a

16 5 5 9 5 5

7 9 7 5 7 5 5 5 1 75 5 2 5 5 5 5 6

. 3 8 7 3 6 6 2 2

7 1 2 5 3 4 2 5

8 2 7 2 5 7 5 5 8 5 5 6

7 0 0 3 . 9 4 9 1 5

9 9 9 2 2 3 8 5 3 5

1 9 2 3 2 5

. 7 7 0 2 2 . 9 5

9 2 9 5 8 8 1 4 1 . 6 2

. 4 6 6 . 9 3 2

. 5 9 1 . 5 . 0 7 3 . 6 2 0 2 4 7

3 6 7 7 . 9 2 8 0

^ 6 7 4 0 2 2 0 7

6 5 8 4 1 5 7 5 0 5 1 2 2 . 1 1 1 7 . 4 . 1 9 3

1 6 6 1 7

4 8 6 7 6

7 . 6 . 1 5 2

. 6 2 2 e ^ 1 6 . ^ 5 9

1 1 . 4 8

1 . . 6 2 2 5 5 . 4

1 . 1 ^ 1 1 8

. . 1 . 0 9 ^ 8

7 7 9 0 3 7 9 r ^ 1 6

o ^ ^ ^ ^ 4 ^ 1 9

1 3 1 1 1 . 1 . . . 0 . 0

1 7 ^ ^ 1 ^ 1 ^ 1 2

^ ^ 1 ^ 0 9

. .

2 1 1 .

^ 1 . .

^ 1 ^ 1 ^ 1 1

^ ^ 1 1 1 0 0

^ ^ 1 1 1

^ ^ 0 0 1 0 1

^ ^ 1 ^ . ^ 1 . 5 4 4 c 1 1 1

^ ^ ^ 1 1 0 0 . .

^ ^ 1 1 0 0

^ ^ 1 1 ^ ^ . s

E 2 1 7 8 7 6

_ 4 9 4 1 0 4 7 7 2 4 9 7 6 3 6 4 5 2

4 4 2

7 1 2 8

7 2 7 5 8 2 7

8 4 8 9 1 6

3 5 0 4 1 7 3 3

4 5 7 4 3 5 6 5 8 3

2 4 9 7 1 8 3 6 5 5 8 1

3 5 5 2 9 9

4 6 7 6 6

3 8 3 7 9 9 1 9 w 1 2 1 8 2 5 9 2 4 3

1 3 5 6 6 8 1 8 4 2 7

0 0 4 0 0 8

0 3 1 8 4

3 8 4 9 1 9 6 8 4 5 6 _ . 5 . 3 . 1 0 3 2 9

0 7 2 5 7 5 1 9 5 4

. 5 . 1 4 7

4 8 8 8 3

1 9 5 0 5 3 4 1 9 0

D ^ 0 . 0 .

^ 0 0 . . . 3 6

^ ^ 0 ^ 0 0 . 4

0 . 0 . 0 3 . 1 . 0 8 2 7

0 . 0 0 . 3 6

0 3 4 7 7

. 2 3 5 6 1 0 8 0 8 7 0 0 0 . .

0 0 0 .

^ 0 0 . 0 . 3

^ 0

0 0

^ 0 0

. ^ 0 0 0 . 1

0 . . . 0 3 4

0 . 3

0 . 0 . 2 . 2 0 7 6 ^ ^ ^ 0 0 0 . . .

0 0 0 0 0 0 .

^ 0 0 2

. . 0 1 0 0 . . ^ ^ 0 ^ 0 T 4 0 0 .

2 .

E 2 2 4 4 1

_ 5 7 6 5 2 4 8 4 5 2 5 7 9 3 2 1 7 1

3 1 1

6 4 0 6

4 1 1 0 8 2 3 2

3 0 4 8 7 9 4 9 7 8 8 5 3 3 9

7 3 4 7 6 7 6 4 5 4

4 5 1 4 7 4 4 8 9 6 3 8

8 5 1 8 6 1

0 8 0 2 4

5 1 5 9 4 7 5 9 3 w 0 8 7 3 2 3 1 5 9 6

6 1 5 0 1 6 3 1 1 7

6 6 . 3 4 0 3

2 7 0 6 5

1 5 5 2 5 0 6 9 3 8 _ . 4 0 2 . 1 . 9 8 5

0 1 5 3 8 5 5 1 7 0

0 . 0 1 7 7

2 6 1 8 8

1 2 0 3 0 4 0 4 3 1 D ^ 0 . 0 . . 0 . 0 ^ 0 0 2 1

. . 2 . 6 . 6 . 1 2

0 0 . 1 6 . 2 0

. 1 3 . 9 7 7 0 1 0 ^ 0 0

^ ^ 0 . 0 0 1

. 0 0 . 5 .

^ 0 .

^ 0 . 0 0 0 . 0

0 ^ 0 0

0 ^ . 0

0 ^ 0 0

0 . .

^ 0 ^ 0 3 7

. .

0 0 0 . 0 0 4

. 0 0 0 8 0 8 0 6 9 7 0 ^ ^ ^ 0 ^ 0 0 1

. 0 .

0 0 0 . 0 . . 0 . 0 3 4 0 0 0 0 . 0 . .

^ ^ 0 ^ 0 0 ^ ^ T

t a 4 5 6 6 7

e 6 8 3 5 8 6 7 8 7 3 8 1 1 3 3 9

. b 8 5 4 9 6

7 8 9 8 1

8 2 7 9 2 3 5 9 4

9 7 5 9 5 0 9 9 1 1 8 4

h 0 1 6 6 1

2 1 9 4 4

5 5 1 6 9 9 3 0 7 3

5 5 4 8 3

. 7 7 4 4 4 6 1

5 4 8 9 2 7 4 5 5 e 7 8

. . 6 6 5 5

. 6 5 6 6 9 2 9

. . 5 7 5 5 5 1 0 4 8 4 8 3 6 3

. 5 1 5 0 4 9 7 7 9 7

4 4 4 2 8 3 5

4 1 5 6 7 1 8 4 3 7 . . ^ 0 4 4 4 . 3

4 4 3 4

. 3 7 2 4 6 2 1 8 9 v 0 0 0 . 6

0 0 . 5 5

0 . 5 . 5 . 4 4 4 6 4

0 0 . 4 . 4 4 4

0

_ ^ ^ ^ 0 .

^ ^ 0 ^ ^ 0 . .

^ ^ 0 ^ 0 ^ 0 .

^ ^ 0 0 .

^ ^ 0 0 . . . 4 6

^ ^ 0 ^ 0 0 . 4

^ 0 .

^ ^ 0 ^ ^ 0 . . ^ 0 .

^ ^ 0 0 . 0

^ ^ 0 ^ 0 ^ ^ 4 2

. 4 4 2 4 2 2 2 9 0 . . 4 . 4 4 4 1 ^ ^ 0 0 .

^ ^ 0 0 . . . 4 ^ ^ 0 ^ 0 0 .

^ ^ 0 k

c s

a 4 7 9 5 5 9

t 1 2 2 6 1 1 5 6 7 7 7 6 3 2 1 9

e 5 4 1 4 4

6 8 8 3 6

4 3 8 3 1 1 4 6 7

1 6 8 7 8 7 4 7 4 2 2 6

. b 4 9 1 2 7

8 7 4 4 9

2 0 9 9 4 7 9 9 3 2

5 4 6 3 9 7 5 7 6 8

0 4 7 2 5 0 4 2 4 2 4 1 1 4 8

2 0 5 8 5

2 4 7 2 0 0 9 8 3 1 5

3 1 2 6 2 6 1 9 3 3 5

2 2 1 3 4 3 3 3 7 8 6

0 0 e 0 . 0 0 2 0

. 0 2 0 1 1 8 1

. . 0 0 1 3

. . 0 4 0 0 1 1 0 1 0 4 3

. 0 2

. . 0 0 4 1 2 5 0

0 3 1 0 0 0 7 3 2 4 7 1 0

4 3 0 0 8 6 9 1 5 5 8 0 . . 0 . 0 . . 0 . . 0 0 6 0 1

0 0 5

. 0 8 2 7 1

0 0 . . 3 4 7

0 2 2 5 4 2 . . 0 0

_ 0

l . 0 0 . 0

0 ^ 0 ^ 0 ^ 0 ^ 0 0 .

^ 0 ^ 0 ^ 0 0 ^ ^ 0 ^ 0 0 . 0

0 . 0

^ 0 0 ^ 0 0 0 0 1 0 0

. 0 0 0 0 .

0 0 . . .

0 ^ ^ 0 0

0 0 0 0 . 0 . 0 0 0 1 t r ^ ^ 0 0 0 . 0 0 . 0 .

^ ^ ^ . 0

0 0 0 . . 0 ^ ^ 0 . 0

0 0 . ^ ^ ^ 0 c

6 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 6 66 6 6 6 A R N

s g

B

2 B B 1

A 1 4 9

A 2 T A 1 N 4 L E 1 1 0

e 2 2 2 3 1 1

P H 3 F 1 7 2 1 1

1 L A 6 T 1 A 1 2 3

n C B 2 C

G 3 A

T 2 D S T C 1

R H P H2 G MS r f 6 R P L A M 3 3 2 e e I H K S 5 P D B 2

A S A4 M S 2 T

G C H E P R R S C M V P Y XG O C P L I K P D A P A N I E H U B T E T M R B P E O A 4

G M V KN O D X P N D P 1 2 Uo F B B E 2 f 6 1

3 4 G A L L F E E E A P M 6 P

C P R A M G I MC M X r H

E M K L E R l C S T N o A

S C 4 D NT I N 3 b S P P Y K S I a P T

')6^^^^^^^ 5 7 7 7 2 6 6

8 5 9 3 1 6 6 0 6 6 6 0 9 4 4 4

4 8 2 0 2

4 0 0 6 6

0 0 6 0 6 0 6 6 6

0 1 2 4 8 9 4 4 0 1 8 4 3

5 4 0 1 1

3 0 0 0 0

8 0 0 0 0 0 0 0 0 6

8 6 2 2 6 5 9 4 0 4

4 5 4 7 3 0 3 3 6 5 7 2 4

8 8 8 0 0

9 8 0 8 0 8 0 0 0 0 6

9 9 6 2 6 9 5 9 4 0

6 0 5 1 0 3

6 0 3 3 0 6 6 8 3

6 9 9 8 8

6 9 8 9 8 9 8 8 8 0 0

6 9 0 6 7 4 9 5 6 4

7 5 7 4 6 0

9 6 2 3 3 0 0 0 6 8

0 6 6 9 9

0 6 9 6 9 6 9 9 9 8 0

0 6 7 0 1 7 4 9 7 6

0 6 8 9 9 6

0 9 1 2 3 . 0 0 0 6

0 0 0 6 6

0 0 6 0 6 0 6 6 6 9 8

0 0 0 7 7 0 7 4 0 7

0 7 7 7 0 9

8 0 1 1 2 0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0

0 0 . . 0 0

0 0 . 0 . . 0 0 0 0 0 0 0 0 6 9

0 . 0

0 0 . . 0

0 0 . . 0 0 0 6

. 0 . 0 0

0 0 . 0 0 . 0

0 0 . . 0 0 0 0 0 0 7 0 0

. 0 0 0 8 0

0 8 8 1 1 0 0 . . 0 0

0 0 . 0 . . 0 0 . 0

0 . 0

0 . .

0 0 0 0 . 0 0 0 0 8

0 0 0 8 1 0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 8 0 0 . . 0 0 0 . 0 0 0 . 5 1 8 7 5 3 2

4 8 4 8 3 6 5 7 4 1 7 3 4 7 3 8

3 0 8 3 2

0 8 2 8 5

7 0 6 9 4 3 8 9 8

6 9 7 3 2 5 6 8 9 3 4 2 1

2 7 7 5 2

9 1 1 9 7

9 2 6 3 1 0 7 9 1 5

4 0 8 9 7 1 3 8 3 2

7 6 3 5 8 3 5 3 2 2 3 7 8

5 4 9 7 6

2 1 9 8 1 8 0 6 9 9 9

5 1 0 8 7 2 2 5 6 0

9 5 6 7 7 4

4 2 7 9 7 0 2 2 4 4

2 7 7 7 7

0 0 4 1 7 2 3 3 0 3 3

3 6 7 5 7 1 9 1 1 2

4 6 7 6 4 6

6 3 4 5 9 0 0 0 2 5

0 2 2 8 9

0 3 0 3 2 3 3 3 4 9 9

0 3 3 7 8 4 1 3 4 6

4 5 4 8 3 6

1 2 3 5 7 . 0 0 0 2

0 0 0 2 2

. 0 3 0 3 0 0 0 3 4 2

0 0 0 3 3 0 4 2 4 4

0 4 0 4 0 2

5 2 5 7 0 0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0

0 0 . . 0 0

0 0 . 0 . 0 0 0

. 0 0 0 0 0 0 0 3 5

0 0 . . 0

0 0 . . . . 0 0 3

0 0 0 . 0 0

0 . 0

0 0 . . 0 0 0 0 0 0 4 0 4

0 0 0 0 5 1

0 5 0 3 5 0 0 . . 0

0 0 . 0

0 . . 0 0

. 0 0

. 0

0 . 0

0 0 0 0 . . 0 . 0 0 5

0 0 0 5 5 0 0 . 0 . 0 0

0 . 0

0 0 . . 0 . 0 0 0 0 . 0 . 0 0 0 0 . 5 1 8 7 5 3 2

4 8 4 8 2 3 6 5 7 4 6 1 7 3 4 7 3 8

3 0 8 3 2 0 8 2 8 5

7 0 6 9 4 3 8 9 8

6 9 7 3 2 5 6 8 9 3 4 2 1

2 7 7 5 8 9 1 1 9 7

9 2 9 3 1 0 7 9 1 5

4 0 8 9 7 1 3 8 3 2

7 6 3 5 8 3 5 3 2 2 3 7 4 5 4 9 7 7 6

2 1 4 8 1 8 0 6 9 9 9

5 1 0 8 7 2 2 5 6 0

9 5 6 7 7 4

4 2 7 9 7 0 2 2 4 5 2 7 8 7

0 0 0 1 7 2 3 3 3 0 3 3

3 6 7 5 7 1 9 1 1 2

4 6 7 6 4 6

6 3 4 5 9 0 0 0 2 2 0 2 7 2 9

0 3 3 3 2 0 3 4 9 9

0 3 3 7 8 4 1 3 4 6

4 5 4 8 3 6

1 2 3 5 7 . 0 0 0 0 0 0 2 0 2

. 0 0 0 3 0 0 3 4 2

0 0 0 3 3 0 4 2 4 4

0 4 0 4 0 2

5 2 5 7 0 0 0 . . 0 0

0 0 . 0 . . 0 0 0 0

0 . 0

0 0 . . 0

0 0 . 0 . 0 0 0 0 3

. 0 0 3 3 5

0 0 . . 0 0

0 . 0

0 0 . 0 0 . 0 0 0

. 0 0

0 0 . 0 . . 0 0 0 0 0 0 4 0 4

0 0 0 0 5 1

0 5 0 3 5 0 0 . . 0

0 0 . 0

0 . . 0 0 0 0 0 0

0 0 . 0 . 0 . 0 . . 0 . 0 0 5

0 0 0 5 5 0 0 . 0 . 0 0

0 . 0

0 0 . . 0 . 0 0 0 0 . 0 . 0 0 0 0 . 5 6 8 5 5 6 3

0 2 8 4 4 0 7 1 5 7 5 2 8 1 6 4 5 7

8 2 4 1 5 3 3 9 8 6

0 7 3 4 2 0 1 6

2 2 4 8 6 0 4 4 1 6 9 9 5 8

7 7 8 7 3 1 0 4 5 5

7 5 9 0 6 9

2 1 1 8 9

7 5 8 8 4 7 2 9 5 3

0 5 6 9 3 3 6 7 3 9 7 0 5 2 3 2 8 1

5 6 6 2 6 8

7 5 9 8 7

8 3 1 1 8 9 0 6 9 5

0 1 0 8 3 3 3

3 9 0 3 3 3 1 6 3 0 7 8 8 3 9

1 2 8 0 7 5

9 2 1 9 1

1 8 8 3 0 8 8 7 1 7 5

5 3 3 1 5 6 4 4 4 9 6 1 . 3 2 2 9 1 0 8 5 5

0 0 8 4 9 6

8 6 3 4 1

8 9 5 7 4 9 9 0 1

5 5 0 2 7 3 5 8 9 5 8 . . 2 1 . 1 0 0 1

. 0 9 9 0 0

. 7 6 5 4

. 7 6 7 1 6 2 1 7 9

. 8 6 2 1 9 0 3 8 2 . 4 2 0 3 8 5 7 0 ^ ^ 8 8 . .

^ ^ 8 ^ 8 8 . . . 0

^ 8 8

^ ^ 8 .

^ ^ 8 8 . . . 9 9

8 7 7

^ ^ ^ 7 . . . 8 3 2

^ 7 7

^ ^ ^ 8

7 . 8 8

^ 7 . .

^ ^ 7 ^ 7 7 . 7 . 7 . 6 6 5 5

7

^ 7 .

^ ^ 7 7 .

^ ^ 7 7 . . . 5 5

^ ^ 7 ^ 7 7 . .

^ 7 7

^ ^ ^ 4

7 . 4 4 . 3 3 4 2 ^ 7 .

^ ^ 7 .

^ 7 7 . . 3 3 ^ ^ 7 7 . .

^ ^ 7 ^ 7 9 3 6 4 2 4 4

3 6 6 9 7 4 3 7 2 7 8 3 8 1 1 4 3 5

2 3 6 3 2 2 0 3 8 7

0 5 2 1 4 7 5 4

2 4 8 4 8 5 1 5 8 0 8 2 8

0 4 5 8 7 8 1 1 7 1

3 4 9 6 1 1

1 6 6 5 7

0 0 9 9 4 6 8 9 2 2

5 3 3 9 9 2 6 1 5 0 2 2 6 7 2 0 7 1 0

3 3 3 5 7 3

7 9 4 4 9

4 1 2 2 4 7 5 0 5 3 7

3 1 5 7 1 5 2 9 2 0 0 0 2 2 0 3 0 3 3

0 3 3 3 6 8

3 7 8 5 9

0 4 2 4 4 4 8 9 1 1 0

5 6 7 7 0 1 3 0 3 6 . 0 0 0 0 0 0 0 3 0 3

0 0 0 0 3 6

0 3 3 9 9

0 0 4 0 0 0 4 4 5 2 6

0 5 5 9 1 6 2 4 4 6 0 . 0 0 0 0 0 0 0 0 0

0 0 0 0 0 3

0 0 0 3 3

0 0 0 0 0 0 0 0 0 5 2

0 0 0 5 6 0 6 6 6 0 0 0 . . 0

0 0 . . 0 0 0 0

0 . 0

0 0 . . 0

0 0 . . 0 0 0 0 0

0 0 0 0 0

0 0 . 0 . . 0 0

0 . 0

0 0 . . 0 . 0 0

. 0 0 0

0 0 0 0 . 0 . . 0 0 0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 0 0 0 0 . 0

0 0 . . .

0 0 . 0 0 0 0 0

0 0 . 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0 0 0 0 0 . 0 0 0 . . 0 0

0 0 . 0 . . 0 0 0

0 . .

0 0 . 0 0 6 0 7 . 5 9 0 7 8

5 6 7

7 2 8 6 9 2 9 4 3 4 5 8 0 2 7

1 5 0

1 1 6 3 6 6 2 0 5 . 5

7 8 9 0 0 2 5 . 5 5 5

8 7 9 1 2 7 6 0 0 3 1 0 3

6 1 1 7 4

1 1 7 7 5

1 8 1 1 7 1 7 8 2 1

1 8 1

1 1 5 8 2 0 4 .

1 1 8 3 8 9

1 8 9

1 1 8 9 4

1 1 9 9 7 8 1 7

1 1 9 1 9 0 1 9

2 0 1

2 2 0 0 7 9 9 1 5 5 3

2 2 0 0 3 5

2 2 1 2 1 1 6 . 5 4 9 2 1 1

2 9 0 6 1 1 7 8 1 9

1 1 6 1 2 1 9

2 7 3 7 4 7 6 7 8 8 1 8 0 8 3 8 4 8 6 8 8 9 1 8 9 9 0 9 4 9 6 1 6 7 9 0 0 2 2 3

1 9 9

1 1 0 1 1 0 4 7 5 5

1 0 6

1 1 0 0 9

1 1 0 1 7 8 2

1 1 1 1 1 2 3

1 2 4

1 1 2 2 9 1 6

1 1 2 3 3 5

1 1 3 1 3 3 7 0

1 3 9

1 1 3 5 0 1 1 6 2 55 5 5 5 5 6

1 7 5 7 8 0 5 5 5 2 5 4 5

2 5 7 5 2 5 9 5 8 5 6 8 3 6 2 0 7 4 5 2 5 5

0 7 0 5 9 6 1 5 5

. 6 5 4 4 2 6

1 7 5 0 5 7 5 5 5 7 5 8 5

4 1 9 2 5 9 7 5 4 8 4

5 ^ 4 5 0 . . 1 9 8 5 9 7

8 3 2 8

. 1 1 4 2 7 7 5

8 2

2 . 3 4 . 2 2 6 5 5 7 8 1

. 2 8

. 4 4 1 6 . . 9 6 5 6

5 3 4 4 7 0 5

3 0 2 4 2 1 8 8 9 6 2 2 6 6 5

9 4 7

. 8 4 4 0 . 2 . 5 9 9 . . 5 1

^ ^ 6 . 5 9 . 2 2 ^ 9 1

9 . 0 0 9 0 . 2

8 . ^ 8 5 4 9 4 8 4 9 1

1 0 .

1 0 2

1 9 9 . 7

5 . 9 . . 9 9 9

9 . 8 . 4 . ^ 8 3 9 8 6 ^ 1 0

^ ^ ^ . 9 ^ ^ ^ ^ ^ 9 ^ 9 0 2 ^ ^ 2

. 4 3 5

^ 9 .

^ ^ 9 ^ 9 . . . 9 . 8 ^

^ ^ 9 ^ 9 8 ^ ^ 8 ^ 7

^ 8 .

^ ^ 8 8 .

^ ^ 8 8 2 0 6 9 9 . 9 . 8

^ ^ 9 0 5

. 9 ^ ^ 9 .

^ ^ 9 8 .

^ ^ 7 7 22 2 7 5 9

0 7 5 6 2 5 9 8 5 1 6 2 6 3 7 2 4 5 1

3 8 5 8 9 4 4 0 6 6

6 5 8 8 4 6 8 2

4 9 6 7 7 9 3 5 3 1 1 3

2 2 9 7 7 4 0 6 0 4 9

0 8 5 1 3 8 2 1 3 5

4 9 2 3 9 9 3 8 7 1

8 1 2 9 1 2 4 3 . 1 1 1 4 1 6 3 1 1 3

2 1 0 2 1 9 8 7 9 6

1 2 3 3 5 7

3 8 4 3 7

8 4 9 0 8 1 3 4 6 6 0 . 8

0 0 . . . . 1 1 2 1 5 3 0 1

. 4 2 4 4 4

4 1 3 6 9 2 5 0

6 0 1 6 6 1 6 7 8 0 0 4 0 3 8 5

. 0 0

^ ^ . . . . 2 3

0 0 . 5 1

0 0 . 0 . . 1 5 4 8

^ 0 . 3

^ 0 .

^ 0 0 7

. 0 0 0 . . . . 2

. 1 1 1 7

. 2 6 5 3 0 0 9 0 ^ ^ 0 0 0 . 8

^ ^ 0 0 . 0 . 2 6

0 0 0 0 0 . .

0 ^ 0

0 0 . 0 0 . 0 . 9

0 . . 1 . 1 1 2 4 ^ ^ ^ ^ 0 . 0

^ 0 ^ 0 .

^ 0 0 0 . 6

0 0 . 2 ^ ^ . 0 0 . 0 ^ ^ ^ 93 3 8 2 2 4

6 1 9 0 3 7 8 7 4 6 2 8 1 6 6 3 3 7 1

4 6 3 2 6 5 1 4 8 1

6 7 5 3 9 7 5 8

1 6 3 0 8 4 2 7 8 8 2 2

1 9 7 0 6 2 6 7 2 2 2 2

6 2 7 6 1 4 5 4 5 9

2 2 3 1 2 4

0 8 1 5 6

8 4 7 2 3 7 6 5 5 2 4 6 6 6

. 2 1 2 2 3 . 2 6 0 9 1 7 6 1 5 4

9 7 6 8 7 5

9 9 2 1 4

7 8 9 0 9 7 5 9 4 5 0 . 0 . . 2 0 8 2 4 6

0 7 8 1 1 3 4 6 9 0

0 1 1 1 8 0

8 6 1 9 4

3 2 7 4 0 0 8 3 4 3 0 ^ 0 0 .

^ ^ 0 . 0 0 . 1 2

0 0 . .

0 ^ 0 . 0 0 2 3 . 2 3 1 5

. . . . 2 9

0 1 7 4 5

. 1 4 . 2 3 4 8 9 1 .

. 0 . . . 0 0 . 7

0 0 . 3

^ 0 ^ 0 . 0 . 0 1 3

. . 0

^ 0 ^

0 0 0 0 0 0 0 . 0 . .

0 0 0 . 1 . 2 7 1 7 ^ ^ 0 0 0 .

^ 0 ^ ^ 0 . 0 0 2

0 . .

0 ^ 0 . 0

^ 0 ^ ^ 0 0 . 1

^ 0

0 . 0 . ^ 0 ^ ^ 0 2 5 7 7 3 2 1 5

7 6 9 8 8 6 2 1 2 0 1 6 6 0 9 5 6 7 1

1 6 9 4 8 7 0 8 8 4

3 9 2 3 1 7 6 8 4 1

4 5 9 3 4

1 9 9 5 3 7 9 7

9

4 1 0 0 5 9 9 7 5 3 8

8 1 0 2 8 7 6 7 6 3

3 7 6 7 4 7 1 8 8 7 9

0 5 1 5 4

5 1 2 6 3 8 2 5 2 3 6 5 6 5

. 4 6 4 3 8 5 2 5 . 4 4 4 0 3 3 8 8 2 0

0 0 0 . . 3 3 8 8 8 3 7 7 8 5 1

3 7

. 3 3 6 6 4 3

3 6 6 0 7 0 4

3 9 7

8 0 1 9 9 7 9 5 2 4 . . . 3 3

0 . . 0 . 0 0 . 3

0 . 3 7

. 3 2 4 . 3 7 3 9

^ ^ ^ ^ ^ 0 . .

^ ^ ^ 0 ^ 0 0 ^ ^ ^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . 3 . 3

^ 0 .

^ ^ 0 0 .

^ ^ 0 0 . . . 3 6

. 3 3 5 5

0

^ ^ 0 ^ 0 0 . 3

^ 0 .

^ ^ 0 0 . . 3 3

^ ^ 0 0 . .

^ ^ 0 ^ 0 ^ 3 4

. 3 3 3 3 3 3 5 1 0 . . 3 . 3 3 3 6 ^ ^ 0 0 .

^ ^ 0 0 . . . 3 ^ ^ 0 ^ 0 0 .

^ ^ 0 7 57 3 7 2 9 3 8 7 5 7

4 4 6 6 2 3 1 7

2 8 9

8 8 0 6

2 1 2

2 0 3 7 3 7 3 5 7 4

4 4 1 8 4 6 5 6 1 7 5 8 7 1 6 2 7 3 9 2 5 0 0 2 2 4 2 4 3

5 4 5 5 9 4 9

1 7

6 9 3 2 1 3

4 8 7 6 6

2 4 8 5 8 9 2 8 1 0 3 2 3 0 9

2 6 5 8 9

9 1 6 2 9 2 7 0 2 0

3 6 4 6 5 7

0 3 1 0 0

9 6 1 9 9 0 7 9 8 2 . 0 0 0 4 0

0 3 3 6 0

0 7 0 5 6 1 1 8 8 5

0 3 0 1 3 9

3 7 4 0 6

2 0 6 3 3 2 5 5 5 0 0 . . . 0 3

. 0 0 1 4

. 0 0 0 0 4

0 1 2 2 8

0 1 4 2 9 2 5 9 3 4 ^ ^ 0 ^ 0 0 . 0

^ 0 0 .

^ 0 . . 0 0

^ ^ 0 0 . .

^ 0 0 0 0 9 0 4 0 5 0 2 3

. 0 0 0 0 . 0 0 2 0 4

.

0 . 0

0 0 . . . 0 . 0 . . 0

0 0 . . . . 1

. . 0 0 2

. 0 4 0

0 0 . 0 2 0 6 0 1 2 4 5 ^ 0 0

^ 0 0 0 0 .

^ ^ ^ ^ 0 0 0

^ ^ 0

^ 0 0 .

^ ^ 0 . 0

0 0 . 0 . 0

^ ^ 0 .

^ ^ 0 ^ 0 . 0 0 0

. . 0 . 0 0 4 0 . 0 . 0 0 ^ ^ 0 0 66 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 6 66 6 5 6 t. ) o n c 2 ( C

5 A AA 1 9 1 N F 4 0 L 3

B L 1 L L 2

2 1 1 3 1 L A H A2 0 0 1 1 1 3

T C A2 A1 1

2 GP S 3 E S A B 5 1 4 4 D G F 1 3 0 1 1

X A4 GR

M 2 M

F E KNB 6 P 2 2 1 P D 2 A 2 K 1 O1 7 e C 6 B 2 3 M

T E A 2 6 N 2 7 C 3 l T M C R G C T S F O G P S T R N C D D R D X R P AP 9 T H L E

E P L P R P C C H E L B C O G T M 4

T I AA M F P C T S R L Q B S B R U T NG 1 R 1

S C E P I T F GF H K 5 S H P D

C P C D H T F AC AA S W O 4

H I N E I R L O P b G P P D S L K X C C O a C T

')6^^^^^^^ 3 3 3 3 9 9 9

2 3 3 3 8 9 9 8 9 9 5 3 9 9 9 9 9 7

1 2 2 3 2

4 8 8 9 9

4 8 8 5 5 3 3 9

4 3 3 3 9 3 9 9 8 3 1 2

1 1 1 2 9

5 4 4 8 8

5 4 4 3 3 1 2 9 3 9

5 4 4 4 3 4 3 3 9

0 8 4 8 7 4 4 8 1 1 1 5

1 5 5 4 4

1 5 5 1 1 7 6 3 4 3

3 5 5 5 4 3

5 4 4 3 9

8 9 5 8 4

6 2 6 4 6 0 8 8 1 2

8 1 1 5 5

8 1 1 7 7 1 1 4 5 4

8 3 3 3 5 4

3 5 5 4 2

4 1 3 8 3

5 3 1 6 6 0 0 0 8 1

0 8 8 1 1

0 8 8 1 1 8 3 5 3 5

0 8 8 8 3 5

8 3 3 5 0

8 9 9 5 8

9 2 9 1 5 . 0 0 0 8

0 0 0 8 8

0 0 0 8 8 0 8 3 8 3

0 0 0 0 8 3

0 8 8 3 2

0 8 8 0 3

0 0 0 9 7 0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0

0 0 . . 0

0 0 . 0

0 . . 0 0 0 0 0 0 8 0 8

0 0 . . 0

0 . 0

0 0 . . 0 0 0 0

0 . 0

0 0 . . 0

0 0 . . 0 0 0 0 8

0 0 0 8 4

0 0 0 9 3

0 1 1 0 5 0 0 . 0 . . 0 0

0 . 0

0 0 . . 0 0 0 8

0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 9

. 0 1 1 1 0 0 . . 0 0

0 . 0

0 0 . 0 0 . 0 1 1 . 0 0 0 . 0 0 . 2 6 1 1 7 4 5 1 9 9 3 8 9

5 0 9 2 4 5 5 6 5 5 9 9 7 8 6 7 3

3 0 0 7 8

9 6 7 7 9 5 6

3 4 5 6 7 8 9

9 3 4 9

1 9 2 2 7

3 3 2 7 1 3 6

5 3 9 8

6 6 6 6 6 6 4 9 0 8 8 3 6 4 8 1 7

0 5 5 5 5 8 0 4 8

0 0 7 4 0

2 0 3 7 3 6 2 6 4 0 2

2 7 2 1 9 3 8 8 4

2 2 2 3 5 7 5 4 8 2 6 2 4 0

6 2 1 4 4

4 7 5 6 8 4

6 0 5 4

1 1 6 7 7 1

7 2 2 2 4 5 9 3 2

8 4 3 0 1 5 4 8 2 6 0 0 0 5 7

0 6 6 6 1

0 6 3 6 4 0 7 9 0 9

0 7 7 7 0 6

7 5 5 1 1

7 3 4 2 6 2 8 1 0 5 . 0 0 0 5

0 0 0 0 6

0 0 6 0 6 0 6 8 7 0

0 0 0 0 0 3

. 7 0 7 7 6 4 0 7 . 0 0

. 0 0 8 8 6 9 9 9 9 0 0 . 0 0 0 . . 0 0 0 0

0 0 . . . 0

0 0 0 . . 0 0 0 0 6

. 0 0 0 7

0 . 0

0 0 . . 0

0 . 0 0 0 0

0 0 . 0 0 . . 0

0 0 . . 0 0 0 0 0 0 7 7

0 0 0 8 8 0 9 0 1 5 0 0 . 0 . . 0 0 0

0 0 . . 0 0 0 7

0 0 . . 0 0

0 . 0

0 0 . . 0 . 0 0

. 0 0 0

. 0 0 1 1 1 0 0 0 0 . 0 . 0 . 0 0

. . 1 0 0 0 0 0 0 . 2 6 1 1 7 1 3

5 0 9 2 8 4 5 5 6 5 5 9 9 7 8 6 7 3

3 0 0 7 7 7 7 9 5 6

5 6 7 8 9 3 4 4 9

1 9 2 2 7 2 7 1 3 6 9 8

6 4 8 1 6 6 9 4 4 5

0 3 4 6 0 2 6 9 0 2

7 2 1 9 3 8

2 2 8 8 3

5 3 9 4 9 5 4 8 5 6 6 9 6 8 3 4 8 7

2 7 3 4 4 5 6 8 4 9

1 2 1 6 7 3 3

2 4 0 2 2

6 4 0 5 7 8 8 3 2 6 0 5 5 6 7 5 0 0 0 2

6 2 1 4 7 6 0 9 5 4

7 2 2 7 1

4 5 9 3 1

8 4 3 0 1 5 4 8 2 6 0 0 0 5 5 0 6 6 0 6 1

0 6 3 6 4 0 7 8 0 9

0 7 7 0 6

7 5 5 1 4

7 3 4 2 6 2 8 1 0 5 . 0 0 0 0 0 0 0 6

0 0 6 0 6 0 6 6 7 0

0 0 0 0 3

. 7 0 7 7 6 7

0 8 8 6 9 9 9 9 0 7 0 0 . . 0

0 0 . 0

0 . . 0 0 . 0

0 . 0

0 0 . 0 . 0

0 . 0 0 0 0 . 0 0 0 7

0 . 0

0 0 . . 0

0 0 . 0 . 0 0 0 0 7

0 0 . . 0 0

0 . 0

0 0 . . 0 0 0 0 0 7 7

0 0 0 8 8 0 9 0 1 5 0 0 . . 0 0 0

0 0 . . 0 0 0 0

0 0 . . 0 0

0 0 . 0 . . 0 0 0 0 0 0 1 1 1 0 0 . . 0 0

0 0 . 0 . . 0 0 0 1 0 0 . . . 0 0 0 0 . 7 4 1 3 1 5 9

7 9 0 8 8 4 5 5 9 2 7 8 0 4 5 3 6

2 1 1 1 8 4 3 6 8 2

4 5 9 7 5 0 6 2 2

3 3 6 8 9 1 3 3 8 7 6

4 3 5 4 3 3 0 3 9 7

5 2 6 8 0 4 1 9 4 3

9 0 7 4 9

3 8 6 2 2

1 8 0 2 4 4 6 4 9 3 8 9 0 8 4 2 9 6

4 1 1 0 8 5 3 6 7 2 1

2 3 4 4 4

2 0 5 8 4

9 9 6 7 4 3 5

1 7 2 4 2 9 2 2 8 4 5 4 6 9

8 2 9 1 2 7 0 7 3 8 5

1 5 2 3 5

0 0 4 1 1

3 1 3 6 2 9 9 3 6 . 2 . 8 6 2 1 4 0 8

1 7 4 4 6 2 6 3 8 7 4

0 0 0 9 6

8 6 5 1 1

1 6 4 8 3 6 0 5 3 0 7 . 7 . 2 1 2 9

. 1 6 1 3 1 9 6 3 1 9

. 0 0 9 9

9 9 9 5 2

. 9 4 3 8 6 4 2 0 1 8 7 2 2

^ ^ 7 ^ . 7 .

^ ^ 7 7 . . 2 . . 1

^ ^ 7 ^ 7 ^ 7 ^ 7 7 . 1 . 1 . 0

7 . 0 0 3 1

^ 7 .

^ ^ 7 7 .

^ ^ 7 7 . 7 . 0 0

^ ^ ^ 7 . .

^ 7 7

^ ^ 7 . . . 8

. . . 9 3

^ ^ . 9 . 8 8 0 7 4 7 2 9 ^ 7 ^ 6 . 9 6 6 6

^ ^ 7 ^ 6 ^ 6 ^ ^ 6 6 . . 8 7 6 3

6 6 . . 6 . 6 . 5 5 6

. 4 ^ ^ ^ ^ 6 ^ ^ 6 .

^ ^ 6 6 .

^ ^ 6 4 2 7 8 5 1 7

9 0 6 6 8 3 7 8 2 9 4 9 9 1 6 3 8 6

7 0 5 1 4 1 1 9 3 6

8 6 2 8 1 6 9 5 5

0 0 6 8 6 0 2 7 8 9 4 2

6 8 8 7 7 1 5 8 1 3

5 7 3 1 7 2 3 5 5 6

0 7 9 8 3 0 0 2 5 4

3 4 6 9 3 2 9 4 0 6 6 6 8 9 7 3 5 4 7

7 6 7 9 5 0 8 5 7 3 2

9 0 0 7 1 3 9 4 7 9

9 3 1 3 2 8 6 1 4 8 0 0 0 6 0 7 3 7 4

0 7 7 7 9 8 2 5 7 3 3

0 9 9 1 2 9 4 5 5 5

9 6 6 0 4 9 0 6 1 6 0 0 0 0 0 0 0 7 0 7

0 0 0 0 7 0 0 8 8 8 8 4

0 0 0 9 9 0 9 9 9 7

0 0 7 1 5 1 3 8 6 9 . 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 8 9

0 0

. 0 0 0 0 0 0 0 0 0 0 0 9

0 1 0 1 1 1 1 4 4 4 0 . 0

0 0 . . 0

0 0 . . 0 0 0 0

0 . 0

0 0 . . 0

0 0 . . 0 0 0 0 0 0 0 0 8

0 0 0

0 0 . 0 . 0 . 0

0 0 . 0 . 0

0 . 0 . . 0

0 0 . . 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 4 1 5 0 0 . . 0

0 0 . 0

0 . . 0 0 0 0

0 0 . . . 0

0 0 0 . . 0 0 0 0 0 0 1 0 1 0 . 0

0 0 . . 0

0 0 . . . 0 0 0 0 0 . 0

0 . 0 0 0 . 8 6 2 4 2 3 4

0 3 5 9 8 7 5 6 1 7 9 2 2 3 6 3 9 . 5 1 9 1

2 2 3

2 2 2 9 5

1 2 2 2 9 4 0 . 5

2 0 0

2 2 3 3 9

2 0 3 2 2 1 2 9 5 4

4 1 4 4 3 5 . 5 7

2 1 1

3 3 8 2 0 8 0 3 2 2 2 3 5 8

2 3 5

2 2 3 2 9 1 6

2 2 3 4 1 2

2 4 3

2 2 4 2 2 1 1 5 8

2 2 4 2 3 4 1 1 9 0 7

2 8 3 4 9

2 4 2 2 2 4 0 3 7 .

1 4 5 1 6 9 5 2 5 2 2 3 2 2 2 2 5 1

2 2 5 3 1 2 9 2 2 4 5 55 4 9 6 6

1 4 6

1 1 4 6 7

1 1 4 4 7 3

1 6 2

1 1 5 5 4

1 1 5 5 7 83 2

1 1 5 1 5 6 1

1 6 2

1 1 6 7 0 3

1 1 7 7 4

1 7 5

1 1 7 7 4 2 0 9

1 2 0 0 84

2 1 7 1 8 8 2 3

1 8 6

1 1 9 8 6

1 1 8 8 9 1 0 4 5 8

1 1 6

2 2 2 2 4 2 7 1

2 4 4

2 2 7 9 6 2 2 9 9 8 5 9 4 5 5

2 2 8 3 5 1 7 5 5

. 1 7 7 5 7 5 5 2 1 4 1 3 5 8

9 3 3 4 7

8 2 2 2 2 5 6 3 5

9 8 6 5 9 7 5 5 4 2 1 5

4 5 . 2 9 9 ^ 6 4 6 4 7

4 9 0 8 2 5

9 1 3 5 5

6 5 6 8 7 8 7 3 1 9

5 2 4 5 9 8 1 9 . 7 4 6 4 5 0 0 7 5

. 6 4 9 9 5 5 7 5 8 8 4 . 2 ^ 8 1 6 4 6 6 9

0 0 0 0 1 0 9

9 6 3 4 . 8 4 0 2

. 0 0 7 7 4 7

. 7 9

7 7

0 0 . 1 8 . 0 0 4

. 0 ^ 1 9 4 . 6 8 6 0 9 5 5

. 6 8 . .

^ 0 4

2 1 6 6 9 4 5 3 0 . ^ 8 9 8 8 . .

^ ^ 8 ^ 8 2 9 9

. .

9 5 ^ 7 .

4 4 7 9 4 4 8 8 8 4 5 0 0 8 . ^ 8 . ^ 8 8 .

^ ^ 8 . 7 7

^ ^ 7 ^ ^ 7 . 6

. 4 ^ 6 7 . 6

7 8 7 7

^ ^ 4 ^ ^

2 6 7 0 9 7 9 8 1 ^ ^ 7 ^ 7 7 . ^ 7

^ ^ 7 7 . 5 0 9 0 5

. 2 9 0 6 4 9 ^ 7 .

^ ^ 7 7 . 7 . 9 . . . 8 5

^ ^ ^ 7 6 6 7 .

^ ^ 6 . 6 . 3 ^ ^ ^ 6 .

^ ^ 6 8 9 5 7 3 9 8

8 0 3 7 4 3 4 9 2 7 1 6 9 2 4 8 5 9 4 8

3 9 2 9 7 5 5 7 6 8

8 6 7 2 4 6 5

0 6 5 0 5 0 4 1 6 2 2 2 5

1 5 6 2 5 8 8 3 9 5

9 9 2 4 3

. 1 5 3 5 2 4 5

6 5 6 8 8 9 1 3 8 3

7 0 3 7 3 7 1 4 6 . 1 6 1 5 3 6 1 1 4

4 8 0 4 9 4 5 5

1 4 5 5 4 3 3 3 9 8

4 3 0 7 6 6 5 0 7 8 0 0 2

. . . 7 . 2 2 7 9 4

0 2 ^ 1 5

4 7 8 2 7 2 9

. 2 7 2 5 5 8 0 0 3

4 9 0 4 4 0 7 6 6 5 0 0 0 . 0

0 0 0 . 0 . 0 1 1

. . 1

. . . 1 0 . 2 1 4 8

. 4 1

. ^ 0 0 0 . .

^ 0 0 . 2

0 0 . . 3

^ 0 . . 3 3 2 4

. 2 6 7 3 1 9 1 6 3 ^ 0 0 . 0 0 .

^ ^ 0 0 0

^ ^ 0 ^ 0 0 . 3 . 1

^ 0 0 . 0 .

^ 0 0 0 . . 0 . 3 . 1 8 2 1 0 0 0 . 0 0 . . 0 . 1

^ ^ 0 0 0 . 0

^ ^ 0 7 86 3 8 3 8

2 5 5 4 8 9 3 2 7 1 42 3 2 7 2 8 3

1 6 8 1 6 8 8 6 2 4

7 7 2 2 1 8 3

6 0 6 0 5 4 5 2 4 2 2 8 4

1 8 5 7 4 9 1 5 9 7 2 8

8 4 7 4 6

9 9 2 3 2

6 0 4 0 4 6 6 9 4 9

6 9 1 9 8 1 7 4 5 . 1 1 6 5 2 1 4 0 6 6

3 0 2 2 5

. 0 8 0 0 7 2 3

0 2 5 7 9 3 3 2 0 6

0 6 3 8 5 5 6 8 1 5 0 0 . 0 . 0 1

. . . 4 1 . 0 7

0 . 1 0 1 4 1 0 5

. 7 . 3 9

. 1 4 7 . 3 2 7 4 2 4

3 3 3 8 1 1 3 8 4 7 ^ 1 5

. 1

0 0 0 0 . 0 . 0 0 . 0 . 1

0 0 . . 2 3 4 1 7

. 1 7 3 3 . 3 9 2 4 ^ ^ ^ 0 0 ^ 2 0

. 1

. 0 0 . 0 0 . 0 0 . 2 1

^ . 0 0

0 0 0 0 . 0

0 0 . . 4

0 0 . . 8 0 5 . 8 0 . 0

0 . 0 0 1 5 0 ^ 0 0

0 ^ 0 0 0

^ ^ . 0 . 0 . 0 0

0 . 0 ^ ^ ^ ^ . 0

^ ^ ^ ^ ^ 0 1 3 2 3 6 7 8

7 1 5 9 9 5 2 7 9 3 1 9 8 7 1 4 5 2

4 0 9 8 7 2 1 6 5 9

0 0 7 1 8 1 2 4

7 2 3 7 2 3 3 4 6 9 3 3 8 4

3 3 2 5 6 3 6 2 2 9 1

2 0 1 4 5 4 5 7 2 9

0 4 8 6 0 6 0 2 8 6

1 8 2 0 4 9 1 5 3 . 3 3 3 2 . 4 2 2 1 7

3 2 2 8 7 2 2 9 6 8

3 4 0 0 4 0 4 1 2 3

0 1 6 6 4 1 1 2 4 4 0 . . . 3 0 . 3 3 1 1 3 1 0 9 7

. 3 4 3 1 3 0 2 0 2

3 2 1 3 8 0 1 1 3 8 . 3 3 2 1

^ ^ 0 ^ 0 0 .

^ ^ 0 ^ 3

0 . . 3 2

^ ^ 0 0 . 3

^ 0 .

^ ^ 0 0 . . 3 3 . 3 3 0 0

^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . . 3 3

^ ^ 0 0 . .

^ ^ 0 ^ 0 0 . 3 . 3 . 3 3 3 0

. 3 3 3 2 3 0 0 1 2 ^ 0 .

^ ^ 0 0 .

^ ^ 0 0 . . . 3

^ ^ 0 ^ 0 0 .

^ ^ 0 0 . . . 3 . . 3 3 3 0 ^ ^ 0 ^ 0 0 .

^ ^ 0 ^ 0 0 . . 3 ^ ^ 0 0 .

^ ^ 0 3 43 5 3 6 6 1 2 1 1 8 2 6 0 8 8 9 0 1 3 7 9 1 2 5 9

3 8 6 4 7 9 3

3 9 8 8 7 7 5 4 2 1 8 4 3 9

3 1 8 4 2

2 8

2 4 5 8 8 5 2 8 1 2 5 9

0 9 4 6 0 7 6 1 1 6 3 3 8 6

7 3 7 8 9 2 4 3 5 4 4 7 4 3

0 1 5 5 5 6

4 8 3 8

4 7 1 8 4

0 9 0 3 2 1 6 9 1

2 6 7 7 4 8 0 9 0 4

4 5 1 9 3

8 4 1 5 . 0 0 0 6 0 3 2 7 5

. 3 4 7 8 4 2 5 2 9

0 4 5 2 1 3 3 2 3 3

4 3 8 5 3

3 6 9 5 0 . . 0 1

. 0 0 1 1

0 . 0 0 4 0 4 0 1 4 0 9

. 1 0

0 ^ . 0 0 2 2 0 4 9 0 0

0 4 4 7 5

4 5 8 3 ^ ^ 0 . 0 ^ 0 0 0 0 4

. .

0 0 0 . . 0 0

^ ^ 0 0 . .

^ 0 0

^ 0 . 0 0 . 0 3 . 3

^ 0 . .

^ 0 0 0 0 . 0

^ 0 0

. .

0 0 0 0 0 . . . 0

0 . 0 0 3

. 0 . 0 0 4 2

0 . 0 0 4 4 7 ^ ^ ^ ^ 0 0 0

. 0 0 .

^ ^ 0 .

^ ^ 0 0 . 0 .

^ ^ 0 . . 0 . . 0 0 0 4 0 . . ^ 0 ^ 0 ^ 0 ^ ^ ^ ^ 0 ^ ^ 0 0 66 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 6 66 6 6 t. ) n c o ( 2

28 D 1 C B C

D 4 6 3 7 0 1 C 9 R C 1 A 5 2

2 1 4 2 4

3 2 1

2 7 L 1 R 3 1

K HC E T B T 1

D B M2

A K 1 3

3 D A A AL B A 3 5 A N HI AH AP M 2 D 2 C 8 T N 1 7

I 1 A

T P G4 E 1 T P

L T F I 3 S E

T 3 1 S

N H4 9 e A Z D S P S P P M G T R E A T N O Y N R T N Z A M B 1

C T M E B R D K A G I U P V E R V G R K A P R F A R AE I F S A B 1 C P 1 6 l

F b T A M P KI L E W O M E D MO P F A M N Z I P R P G S R E N K D G A A B A C A A C D I N M R A a F T