Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIOPARTICLE ISOLATION AND THERAPEUTIC APPLICATION THEREOF
Document Type and Number:
WIPO Patent Application WO/2017/139553
Kind Code:
A1
Abstract:
Compositions and methods for the isolation of protein-nucleic acid complexes, extracellular vesicle (EV) (e.g., microvesicles) and free nucleic acids (collectively referred to as "bioparticles") released by mammalian cells into body fluids or cell culture media are provided. Isolated bioparticles of the current disclosure contain biomolecules that are useful as diagnostic/prognostic biomarkers or for identification of therapeutic targets (e.g., disease or disorder-associated miRNAs, circulating tumor DNA). Isolation of biomolecules results in purification and concentration. Methods for producing biofluids without detectable bioparticles, largely depleted of bioparticles, and/or possessing a reduced concentration of bioparticles compared to a biofluid starting material (collectively termed "bioparticle-depleted") are provided. Bioparticle-depleted biofluid is useful, e.g„ in experimental systems where desirable to obtain a biofluid lacking or substantially depleted of endogenous bioparticles from the source material. Non-toxic bioparticle absorbing materials (e.g., exosome-reducing materials) can also be used for prophylactic, therapeutic, validation and/or experimental purposes.

Inventors:
PENDERGRAST PATRICK SHANNON (US)
PENDERGRAST ROBERT SCOTT (US)
PENDERGRAST JOHN STEPHEN (US)
MARKOWSKA ANNA IRMINA (US)
Application Number:
PCT/US2017/017339
Publication Date:
August 17, 2017
Filing Date:
February 10, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
YMIR GENOMICS LLC (US)
International Classes:
B01D9/02; B01D15/34; B01D21/26; C07H21/02; C07H21/04; C07K1/30; C07K14/705
Domestic Patent References:
WO2015189395A12015-12-17
WO2013090556A12013-06-20
WO2013138427A12013-09-19
Foreign References:
US20150104801A12015-04-16
Other References:
HOLMBERG RC ET AL.: "High-Throughput, Automated Extraction of DNA and RNA from Clinical Samples using TruTip Technology on Common Liquid Handling Robots", JOURNAL OF VISUALIZED EXPERIMENTS, vol. 76, 11 June 2013 (2013-06-11), pages e50356, XP002753498
BROWNLEE Z ET AL.: "A Novel ''Salting-Our Procedure for the Isolation of Tumor-Derived Exosomes", J. IMMUNOL. METHODS, vol. 407, 2014, pages 120 - 126, XP029030126
THATCHER SA: "DNA/RNA Preparation for Molecular Detection", CLINICAL CHEMISTRY, vol. 61, no. 1, 2015, pages 89 - 99, XP055409095
SZATANEK R ET AL.: "Isolation of Extracellular Vesicles: Determining the Correct Approach (Review", INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, vol. 36, 2015, pages 11 - 17, XP055409099
Attorney, Agent or Firm:
COWLES, Christopher, R. et al. (US)
Download PDF:
Claims:
CLAIMS

We claim:

1. A method for isolating and/or amplifying cell-free nucleic acids from a liquid sample with enhanced efficiency comprising:

a) obtaining a liquid sample from a subject or cell culture;

b) contacting said liquid sample with a crystallizing agent under conditions suitable to allow for crystal formation, thereby creating an admixture;

c) incubating said admixture for a period of time sufficient to allow for crystal formation;

d) separating said admixture to obtain a particle fraction containing bioparticles; and e) isolating and/or amplifying cell-free nucleic acids from the particle fraction containing bioparticles,

thereby isolating and/or amplifying cell-free nucleic acids from, the liquid sample with enhanced efficiency.

2. The method of claim 1, wherein the cell-free nucleic acids comprise cell-free DNA (cfDNA), optionally circulating tumor DNA (ctDNA).

3. The method of claim 1, wherein the cell-free nucleic acids comprise cell-free RNA.

4. The method of claim 1, wherein the crystallizing agent is selected from the group consisting of rnonosodiurn urate, uric acid, a salt thereof and a combination thereof.

5. The method of any of the above claims, wherein said admixture is present in an array of admixtures.

6. The method of claim 5, wherein said array is a 96 well array.

7. Tile method of any of the above claims, wherein said admixture volume is less than about 1 ml.

8. The method of any of the above claims, wherein said step (d) of separating comprises centrifugation.

9. The method of claim 8, wherein said centrifugation creates a pellet that is resuspended in a solution.

10. The method of any of the above claims, wherein said period of time of step (c) is selected from the group consisting of at least 1 minute, at least 5 minutes, at least 10 minutes, 1 -5 minutes, 5-10 minutes, 10-15 minutes, 15-30 minutes, 30 minutes or less, 15 minutes or less, 10 minutes or less and 5 minutes or less.

11. The method of any of the above claims, v/herein said isolated hiopartic!es comprise microvesicles.

12. The method of claim 11, wherein said microvesicles comprise exosomes.

13. The method of any of the above claims, wherein the liquid sample comprises a biofluid.

14. The method of any of the above claims, wherein the liquid sample comprises a fluid selected from the group consisting of whole blood, blood serum, blood plasma, urine, saliva, sputum, breast milk, ascites fluid, synovial fluid, amniotic fluid, semen, cerebrospinal fluid, follicular fluid and tears.

15. The method of any of the above claims, wherein said isolated microvesicles comprise a population of microvesicles possessing an average diameter of between about 40 nm and about 150 nm.

16. The method of claim 9, wherein said pellet is resuspended in a volume of solution that is less than the starting volume of the liquid sample.

17. The method of claim 16, wherein said resuspended pellet solution is enriched for at least one marker known to correlate with exosomes.

18. The method of claim 17, wherein said at least one marker is selected from the group consisting of a protein marker and a nucleic acid marker.

19. The method of any of the above claims, wherein said crystallizing agent is monosodium urate.

20. The method of any of the above claims, wherein said crystallizing agent is uric acid.

21. The method of any of the above claims, wherein said crystallizing agent is a salt of uric acid.

22. The method of any of the above claims, wherein said centrifugation is a low-speed centrifugation.

23. The method of any of the above claims, wherein said centrifugation is at about 2,000

24. A method for isolating bioparticles from a biofluid comprising:

a) contacting a biofluid with a first porous bead composition for an initial period of time;

b) removing the first porous bead composition from contact with the biofluid, thereby forming a bead fraction and a supernatant or eluate;

c) contacting the supernatant or eluate for a second period of time with one or more compositions selected from the group consisting of:

(i) a second porous bead composition; and

(ii) a crystallizing agent;

thereby creating an admixture;

d) separating the admixture to obtain a particle containing bioparticles and/or separating the bead fraction from the biofluid and obtaining sequestered bioparticles from the bead fraction,

thereby isolating bioparticles from the biofluid.

25. The method of claim 24, wherein the biofluid is a liquid sample obtained from a subject or cell culture.

26. The method of claim 24, wherein the biofluid is present in a subject.

27. The method of claim 24, wherein the first and/or second porous bead composition comprises siliceous beads, optionally diatomaceous earth (DE) and/or perlite.

28. The method of claim 24, wherein the biofluid is selected from the group consisting of whole blood, blood serum, blood plasma, urine, saliva, sputum, breast milk, ascites fluid, synovial fluid, amniotic fluid, semen, cerebrospinal fluid, follicular fluid and tears, optionally wherein the biofluid is urine, saliva or blood.

29. The method of claim 24, wherein the first porous bead composition is present in a column or matrix structure.

30. The method of claim 24, wherein the initial period of time is less than a minute.

31. The method of claim 24, wherein the second period of time is longer than 5 minutes, optionally 15 minutes to 30 minutes, or more, optionally the second period of time is selected from the group consisting of at least 1 minute, at least 5 minutes, at least 10 minutes, 1-5 minutes, 5-10 minutes, 10-15 minutes, 15-30 minutes, 30 minutes or less, 15 minutes or less, 10 minutes or less and 5 minutes or less.

32. The method of claim 24, wherein both a second porous bead composition and a crystallizing agent contact the supernatant or eluate in step (c).

33. The method of claim 24, wherein the crystallizing agent is selected from the group consisting of monosodium urate, uric acid, a salt thereof and a combination thereof.

34. The method of claim 24, wherein step (b) comprises low-speed centrifugation, optionally at about 2,000 x g.

35. The method of claim 24, wherein said admixture is present in an array of admixtures.

36. The method of claim 35, wherein said array is a 96 well array.

37. The method of any one of claims 24-36, wherein said admixture volume is less than about 1 ml.

38. The method of any one of claims 24-37, wherein said step (d) of separating comprises centrifugation.

39. The method of any one of claims 24-38, wherein the isolated bioparticles comprise microvesicles, optionally the isolated microvesicles comprise a population of microvesicles possessing an average diameter of between about 40 nm and about 150 nm, optionally the isolated bioparticles comprise exosomes.

40. The method of any one of claims 24-39, wherein the pore size of the porous beads is about 0.1 to 10 microns, optionally about 0.2 to 5 microns, optionally about 0.5 to 2 microns, optionally about 1 micron.

41. A method for isolating bioparticles from a biofluid comprising:

a) contacting a biofluid with a porous bead composition for an initial period of time; b) removing the porous bead composition from contact with the biofiuid; and c) subjecting the biofiuid to ultracentrifuge separation under conditions sufficient to allow for bioparticle isolation,

thereby isolating bioparticles from the biofiuid.

42. A method for isolating bioparticles from a biofiuid comprising:

a) contacting the biofiuid for a period of time with both:

(i) a porous bead composition; and

(ii) a crystallizing agent;

thereby creating an admixture;

b) separating the admixture to obtain a particle containing bioparticles and porous beads; and

c) obtaining bioparticles from the particle,

thereby isolating bioparticles from the biofiuid.

43. The method of any one of claims 24-42, wherein the isolated bioparticles comprise a biornarker selected from the group consisting of bladder cancer biomarkers B 1 integrin protein, A6 integrin protein, CD73 protein, Tropl protein, EDIL-3 protein, Mucin4 protein, GALNT1 mRNA and/or LASS2; prostate cancer biomarkers PC A 3 mRNA, ERG mRNA, TMPRSS2:ERG RNA/DNA and/or ITGA3 protein/RNA; diabetes biornarker AQ2 protein; lupus biornarker mir-335 miRNA and/or mir-302d miRNA; kidney damage biornarker cystatinC mRNA; and glomerular disease biornarker nephrin protein, TRPC6 protein, INF2 protein and/or phospholipase A2R protein.

44. The method of claim 43, further comprising identifying one or more of said biomarkers in the isolated bioparticles.

45. A kit for isolating bioparticles from a biofiuid comprising a porous bead composition for pretreatment of the biofiuid, and instructions for its use.

46. A composition for contacting a bioparticle-containing biofluid of an organism comprising:

a container or device containing porous beads possessing a pore size capable of sequestering the bioparticle of the biofiuid upon contact with the bioparticle-containing biofiuid.

47. The composition of claim 46, wherein the bioparticle of the biofluid is an exosome.

48. The composition of claim 46, wherein the bioparticle of the biofluid is a protein- nucleic acid complex, optionally an AG02-miRNA particle.

49. The composition of claim 46, wherein the bioparticle of the biofluid promotes a disease or disorder, optionally wherein the disease or disorder is cancer.

50. The composition of claim 49, wherein the cancer is a bladder or an oral cancer.

51. The composition of claim 46, wherein the container or device is a pouch, optionally a pouch possessing a porous membrane and/or porous cellulose as an outer layer, optionally a porous cellulose bag.

52. The composition of claim 46, wherein the porous beads are non-toxic, optionally wherein the porous beads are siliceous beads, optionally diatomaceous earth (DE).

53. A method for reducing the level of a bioparticle in a biofluid of an organism, the method comprising:

contacting the biofluid of the organism with the composition of claim 46 for a time sufficient to reduce the level of the bioparticle in the biofluid of the organism,

thereby reducing the level of the bioparticle in the biofluid of the organism.

54. The method of claim 53, wherein the bioparticle of the biofluid is an exosome.

55. The method of claim 54, wherein reduction of the level of exosomes in the biofluid is confirmed by determining whether or not sequestered material is enriched for protein and/or nucleic acid makers that are known to preferentially segregate with exosomes.

56. The method of claim 53, wherein reduction in protein and/or nucleic acid markers of the bioparticle within the biofluid after contact with the composition of claim 1, relative to an appropriate control, indicates sequestration or reduction of the bioparticles in the biofluid.

57. The method of claim 53, wherein the bioparticle of the biofluid is a protein-nucleic acid complex, optionally an AG02-rniRNA particle.

58. The method of claim 57, wherein reduction of the level of the AGQ2-miRNA particle in the biofluid is confirmed by assaying for specific miRNAs known to take part in an AG02-miRNA particle or by assaying for AG02 protein.

59. The method of claim 53, wherein the bioparticle of the biofluid is a cell-free nucleic acid particle.

60. A method for sequestering and detecting a released bioparticle from cell culture media in vitro, comprising:

i) applying porous beads to the cell culture media;

ii) incubating the bead-containing media with cells under conditions appropriate for sequestration of the released bioparticle in the porous beads;

iii) isolating the porous beads; and

iv) detecting bioparticles sequestered by said porous beads,

thereby sequestering and detecting the released bioparticle from cell culture media in vitro.

61. The method of claim 60, further comprising v) assaying the cells to determine an effect of the applied porous beads.

62. The method of claim 60, wherein the porous beads are non-toxic, optionally wherein the porous beads are siliceous beads, optionally diatomaceous earth (DE).

63. The method of claim 60, wherein isolating step iii) comprises low speed

centrifugation.

64. The method of claim 60, wherein the bioparticle is sequestered into a container or device, optionally a pouch, which is optionally placed in the vicinity of the bioparticle- generating cells.

65. The method of claim 60, wherein the container or device contains a porous bead resin surrounded by a porous membrane and/or porous cellulose or housing that allows bioparticles to flow into the container or device to be captured but optionally does not allow for direct contact between the resin and cells.

66. A method for treating or preventing cancer in an organ of a subject having or at risk of developing cancer comprising:

contacting a biofluid of the subject with the composition of claim 1 for a time sufficient to reduce the level of the bioparticle in the biofluid of the subject,

thereby treating or preventing cancer in the organ of the s bject having or at risk of developing cancer.

67. The method of claim 66, wherein the composition of claim 1 is placed in the proximity of a tumor or a site susceptible to formation of a tumor, optionally for a duration of time selected from the group consisting of 10 minutes to 30 minutes, 15 minutes to an hour, 30 minutes to 2 hours, 1-3 hours, 2-4 hours, 3- 10 hours, 5-24 hours, 1-2 days, 2-4 days, 3 days to a week, one to three weeks, 2-4 weeks, 2 weeks to 2 months, one month to four months, two months to six months, three months to a year, and six months to two years or more.

68. The method of claim 66, wherein the cancer is a bladder cancer.

69. The method of claim 66, wherein the composition of claim 1 comprises siliceous beads, optionally DE, optionally within a device or container, optionally a device or container bound by a porous membrane and/or porous cellulose, optionally wherein the device or container is placed within the bladder of a subject, optionally in proximity of a bladder cancer tumor and/or in proximity to a site susceptible to bladder cancer formation.

70. The method of claim 66, wherein the composition of claim 1 is placed within the bladder of a subject, optionally in proximity of a bladder cancer tumor and/or in proximity to a site susceptible to bladder cancer formation, optionally for a length of time selected from the group consisting of 10 minutes to 30 minutes, 15 minutes to an hour, 30 minutes to 2 hours, 1-3 hours, 2-4 hours, 3-10 hours, 5-24 hours, 1-2 days, 2-4 days, 3 days to a week, one to three weeks, 2-4 weeks, 2 weeks to 2 months, one month to four months, two months to six months, three months to a year, and six months to two years or more.

71. A method for sequestering released bioparticles in the saliva of a subject, comprising: i) contacting a container or device containing porous beads contained within a porous membrane and/or porous cellulose with the mouth of the subject under conditions that allow for sequestration of saliva bioparticles; ii) removing the container or device from the mouth of the subject; iii) removing the porous beads from the container or device;

iv) releasing biopariicles from the porous beads, optionally by contacting the porous beads with a chaotropic agent or a detergent; and

v) assaying the released bioparticles, optionally using one or more methods selected from the group consisting of SDS PAGE/immunoblot, PCR and mass spectrometry.

72. A method for disrupting bioparticle-mediated signaling in a biofluid of an organism, the method comprising:

contacting the biofluid of the organism with a porous container or device containing porous beads possessing a pore size capable of sequestering the bioparticle performing bioparticle-mediated signaling for a time sufficient to reduce the level of the bioparticle in the biofluid of the organism,

thereby disrupting bioparticle-mediated signaling in the biofluid of the organism.

Description:
BIOPARTICLE ISOLATION AND THERAPEUTIC APPLICATION THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is an International Patent Application which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No: 62/293,766, filed on February 10, 2016, entitled, "Methods for Particle Isolation from Biofluids", to U.S.

Provisional Application No: 62/293,771, filed on February 11, 2016, entitled, "Isolation of Cell-Free Nucleic Acids from Biofluids", and to U.S. Provisional Application No:

62/293,772, filed on February 11, 2016, entitled, "Reduction of Bioparticle Levels of an Organism". The contents of these related applications are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

The invention relates to the field of cell biology, and in particular, to the study of circulating, cell-free, membrane-bound structures, nucleic acids, and protein-nucleic acid complexes that are produced and released by cells. The term, "bioparticles" collectively describes these and other entities including cell-free proteins, non-vesicular lipids, DNA (cell-free DNA, including cell-free tumor DNA), RNA (cell-free RNA), and certain small molecules. The invention also relates to compositions and methods for the isolation of bioparticles produced by cells, which are useful, for example, in diagnostic, prognostic, and therapeutic applications. In addition, the invention relates to compositions and methods for the application of non-toxic bioparticle (e.g., extracellular vesicle (EV)) absorbing materials (e.g., non-toxic exosome reducing materials) for therapeutic, validation and/or experimental purposes, as well as providing compositions and methods for the in vivo and in vitro absorption of bioparticles produced by cells, for therapeutic and target validation purposes.

BACKGROUND OF THE INVENTION

There is a need in the art for methods for the rapid and inexpensive isolation of extracellular membrane particles, including microvesicles, exosomes, and apoptotic bodies - as well as any accompanying biomarkers, especially cell-free nucleic acids, e.g., circulating tumor DNA (ctDNA) - especially from accessible biofluids such as urine. Methods that isolate membrane-free protein-nucleic acid particles, cell-free RNA, and cell-free DNA are particularly desirable. For many applications, it would be useful to obtain intact bioparticles for use in mechanistic, vaccine-related, delivery-related and therapeutic studies, optionally also involving isolation and/or use of cell-free DNA, including ctDNA. Also needed are methods for the rapid, reliable, non-toxic, inexpensive, and selective sequestration of bioparticles such as extracellular membrane particles, including microvesicles, exosomes, and apoptotic bodies, in in vitro and in vivo settings, for therapeutic, validation and/or other purposes.

SUMMARY OF THE INVENTION

The current disclosure is based, at least in part, upon discovery of methods for isolation of cell-free nucleic acids (e.g., cell-free DNA (cfDNA), including ctDNA, and/or cell-free RNA (cfRNA)) from liquid sample (e.g., biofluid) using approaches including a crystal-promoting and/or precipitation method that uses a urate salt to precipitate/crystalize the biomarkers (cell-free nucleic acids). In certain aspects, the disclosure provides methods for the rapid and inexpensive isolation of such bioparticles: specifically, membrane-bound vesicles, cell-free protein-nucleic acid complexes, cell-free mRNA, and/or cell-free DNA can be isolated from almost any fluid. These methods use common laboratory equipment and reagents. They do not require high-speed centrifugation, such as ultracentrifugation. They do not require expensive membranes, antibodies, antibody fragments, beads, or sophisticated columns. Such methods produce a higher yield of bioparticles and known bioparticle markers than many other methods. The methods do not co-purify prohibitive amounts of PCR inhibitors that would complicate downstream nucleic acid analysis. In some embodiments, the methods allow for isolation of intact microvesicles, enabling mechanistic, delivery, vaccine-related, immunostimulation-related and therapeutic downstream studies.

The instant methods were primarily developed for bioparticle isolation from urine but can be used upon any biofluid, such as, but not limited to, blood plasma, blood serum, cerebrospinal fluid (CSF), saliva, synovial fluid, amniotic fluid, and cell culture media. The microvesicles isolated by the methods of the disclosure possess characteristics of true microvesicles, as assayed by protein markers, and small RNAs. Also, analysis of the microRNAs isolated by the methods of the disclosure suggests that protein-nucleic acid complexes are also isolated. Results obtained upon application of DNAse and omission of Reverse Transcriptase to a biparticle sample isolated using the instant methods, before applying PCR, showed that cell-free DNA was indeed isolated.

In one aspect, the disclosure provides a method for isolating and/or amplifying cell- free nucleic acids from a liquid sample with enhanced efficiency, involving a) obtaining a liquid sample from a subject or cell culture; b) contacting the liquid sample with a crystallizing agent under conditions suitable to allow for crystal formation, thereby creating an admixture; c) incubating said admixture for a period of time sufficient to allow for crystal formation; d) separating the admixture to obtain a particle fraction containing bioparticles; and e) isolating and/or amplifying cell-free nucleic acids from the particle fraction containing bioparticles, thereby isolating and/or amplifying cell-free nucleic acids from the liquid sample with enhanced efficiency.

In one embodiment, the cell-free nucleic acids include cell-free DNA (cfDNA), optionally circulating tumor DNA (ctDNA).

In another embodiment, the cell-free nucleic acids include cell-free RNA.

In certain embodiments, the crystallizing agent is monosodium urate, uric acid, a salt thereof, or a combination thereof.

In one embodiment, the admixture is present in an array of admixtures. Optionally, the array is a 96 well array.

In another embodiment, the admixture volume is less than about 1 ml.

In certain embodiments, step (d) of separating involves centrifugation. Optionally, the centrifugation creates a pellet that is resuspended in a solution.

In some embodiments, the period of time of step (c) is at least 1 minute, at least 5 minutes, at least 10 minutes, 1-5 minutes, 5-10 minutes, 10- 15 minutes, 15-30 minutes, 30 minutes or less, 15 minutes or less, 10 minutes or less, or 5 minutes or less.

In one embodiment, the isolated bioparticles include micro vesicles. Optionally, the microvesicles include exosomes.

In certain embodiments, the liquid sample includes a biofluid. Optionally the liquid sample includes whole blood, blood serum, blood plasma, urine, saliva, sputum, breast milk, ascites fluid, synovial fluid, amniotic fluid, semen, cerebrospinal fluid, follicular fluid and/or tears.

In some embodiments, the isolated microvesicles include a population of

microvesicles possessing an average diameter of between about 40 nm and about 150 nm.

In one embodiment, the pellet is resuspended in a volume of solution that is less than the starting volume of the liquid sample. Optionally, the resuspended pellet solution is enriched for at least one marker known to correlate with exosomes. In a related embodiment, the at least one marker is a protein marker or a nucleic acid marker.

In certain embodiments, the crystallizing agent is monosodium urate.

In another embodiment, the crystallizing agent is uric acid.

In an additional embodiment, the crystallizing agent is a salt of uric acid. In one embodiment, the centrifugation is a low-speed centrifugation. Optionally, the centrifugation is at about 2,000 x g.

In certain embodiments, the disclosure provides methods for isolating cell-free nucleic acids from, released bioparticles of whole urine samples, where those methods include i) treating whole urine samples with the reducing agent TCEP (tris(2- carboxyethyl)phosphine, optional; TCEP protects against the loss of microvesicles in the subsequent low speed spin), ii) spinning the urine samples in a low speed spin (typically 1000 x g for typically 5 minutes) to remove cellular contamination and debris (contained in the pellet), iii) applying the crystal and precipitation inducing reagent Monosodium Urate to the supernatant of the previous spin, iv) incubating the mixture, typically on ice or 4 degrees and typically for 15 minutes, v) centrifuging the mixture to form a pellet and a supernatant, most advantageously, in a low speed centrifugation, vi) removing the supernatant after the spin, vii) recovering the pellet by resuspending in a resuspension solution and viii) identifying cell- free nucleic acids in the resuspension solution, thereby isolating cell free nucleic acids from the released bioparticles.

In certain other embodiments, the secreted bioparticles that are isolated are exosomes. In some embodiments, isolation of exosomes is confirmed by determining whether or not the isolated material is enriched for protein or nucleic acid makers that are known to

preferentially segregate with exosomes. Confirmation can also be obtained by physical analysis such as NT A or electron microscopy where exosomes having an average diameter between about 40 nm and about 150 nm is consistent with exosome isolation.

In certain embodiments, the secreted bioparticles are protein-nucleic acid complexes such as AG02-miRNA particles. Evidence for these particles can be obtained by assaying for specific miRNAs known to take part in such complexes or by assaying for AG02 protein.

In certain embodiments, the secreted bioparticles are cell-free mRNA particles.

Evidence for these particles can be obtained (and indeed was obtained) via assay for specific mRNAs.

In certain embodiments, the secreted bioparticles are cell-free DNA particles.

Evidence for these particles can be obtained (and indeed was obtained) via assay for specific DNAs via polymerase amplification without the use of Reverse Transcription.

In some aspects of the disclosure, Uric Acid or other salts of Uric Acid (e.g. Lithium, Calcium, or Potassium Urate - see Figure 19) can be used instead of Monosodium Urate as the crystal/precipitation-inducing agent. The crystallization/precipitation-inducing agent can be prepared and administered either as a solid, slurry, or a liquid (Monosodium Urate, uric acid and other uric acid salts can be solubilized into basic buffers such as NaOH).

Methods of the current disclosure are superior to ultracentrifugation methods because i) they do not require an expensive ultracentrifuge, ii) they are significantly faster, iii) they do not lose as many microvesicles in the first centrifugation step, and iv) as judged by some markers for urine microvesicles and extracellular miRNA, the current methods have a higher yield, especially in more dilute urine samples.

In one aspect, the current disclosure provides a method for isolating bioparticles from a liquid sample, the method involving: a) obtaining a liquid sample from a subject or cell culture; b) contacting the liquid sample with a crystallizing/precipitation agent under conditions suitable to allow for crystal/precipitation formation, thereby creating an admixture; c) incubating the admixture for a period of time sufficient to allow for crystal/precipitation formation; and d) separating the admixture to obtain a particle fraction containing bioparticles, thereby isolating bioparticles from the liquid sample.

In one embodiment, the crystallizing/precipitation agent is monosodium urate, uric acid, a salt thereof and/or a combination thereof.

In another embodiment, the admixture is present in an array of admixtures.

Optionally, the array is a 96 well array.

In one embodiment, the admixture volume is less than about 1 ml. In another embodiment, the step (d) of separating includes centrifugation. Optionally, the centrifugation creates a pellet that is subsequently resuspended in a solution.

In one embodiment, the period of time of step (c) is at least 1 minute, at least 5 minutes, at least 10 minutes, 1-5 minutes, 5-10 minutes, 10-15 minutes, 15-30 minutes, 30 minutes or less, 15 minutes or less, 10 minutes or less, or 5 minutes or less.

In another embodiment, the isolated bioparticles include microvesicles. Optionally, the microvesicles include exosomes.

In one embodiment, the liquid sample includes a biofluid. In an additional embodiment, the liquid sample includes a fluid that is whole blood, blood serum, blood plasma, urine, saliva, sputum, breast milk, ascites fluid, synovial fluid, amniotic fluid, semen, cerebrospinal fluid, follicular fluid and/or tears.

In another embodiment, the isolated microvesicles include a population of microvesicles possessing an average diameter of between about 40 nm and about 150 nm. In one embodiment, the pellet is resuspended in a volume of solution that is less than the starting volume of the liquid sample.

In another embodiment, the resuspended pellet solution is enriched for at least one marker known to correlate with exosomes. Optionally, the at least one marker is a protein marker or a nucleic acid marker.

In one embodiment, the crystallizing/precipitation agent is monosodium urate.

In another embodiment, the crystallizing/precipitation agent is uric acid.

In an additional embodiment, the crystallizing/precipitation agent is a salt of uric acid.

In certain embodiments, the centrifugation is a low-speed centrifugation. Optionally, the centrifugation is at about 2,000 x g.

Another aspect of the current disclosure provides a method for isolating bioparticles from, a urine sample, the method involving: a) obtaining a urine sample from a subject; b) contacting the urine sample with a whole urine prespin treatment solution, thereby creating a first admixture; c) separating the first admixture to create a pellet and a supernatant; d) removing the pellet; e) contacting the supernatant with a crystallizing/precipitation agent under conditions suitable to allow for crystal/precipitation formation, thereby creating a second admixture; t) incubating the second admixture for a period of time sufficient to allow for crystal/precipitation formation; g) separating the second admixture to obtain a particle fraction containing bioparticles, thereby isolating bioparticles from the urine sample.

In one embodiment, the second admixture volume is less than about 1 ml.

In certain embodiments, the whole urine prespin treatment solution includes a reducing agent and/or a buffer that lowers the H of the sample below 6.

In one embodiment, the whole urine prespin treatment solution includes TCEP.

In another embodiment, either or both of the separating steps (c) and (g) involve centrifugation.

In one embodiment, the pellet of step (g) is resuspended in a volume of solution that is less than the starting volume of the liquid sample. In a related embodiment, the resuspended pellet solution of step (g) is enriched for at least one marker known to correlate with exosomes.

In certain embodiments, either or both of the separating steps (c) and (g) include a low-speed centrifugation. Optionally, either or both of the separating steps (c) and (g) involve centrifugation at about 2,000 x g.

An additional aspect of the current disclosure provides a method for reducing the microvesicle content of a liquid sample from a subject or cell culture, the method involving: a) obtaining a liquid sample from a subject or cell culture; b) contacting the liquid sample with a crystallizing/precipitation agent under conditions suitable to allow for

crystal/precipitate formation, thereby creating an admixture; c) incubating the admixture for a period of time sufficient to allow for crystal/precipitate formation; d) separating the admixture to obtain a particle fraction and a liquid fraction and isolating the liquid fraction, thereby reducing the micro vesicle content of a liquid sample from a subject or cell culture.

In one embodiment, the admixture volume is less than about 1 ml.

In certain embodiments, the liquid sample includes in vitro cell culture serum.

In another embodiment, the liquid sample includes serum. Optionally, the serum is selected from the group consisting of a bovine serum, a horse serum, a human serum, a rat serum, a mouse serum, a rabbit serum, a sheep serum, a goat serum, a lamb serum, a chicken serum and a porcine serum. In a related embodiment, the serum is a fetal bovine serum.

In some embodiments, the separating includes a low-speed centrifugation. In one embodiment, the separating includes centrifugation at about 2,000 x g.

Another aspect of the current disclosure provides a method for isolating Aquaporin-2 (AQ-2) from a urine sample, the method involving: a) obtaining a urine sample from a subject; b) contacting the urine sample with a crystallizing agent under conditions suitable to allow for crystal formation, thereby creating an admixture; c) incubating the admixture for a period of time sufficient to allow for crystal formation; d) separating the admixture to obtain a particle fraction containing AQ-2, thereby isolating AQ-2 from the urine sample.

A further aspect of the current disclosure provides a method for isolating secreted AQ-2 from a urine sample the method involving: a) obtaining a urine sample from a subject; b) contacting the urine sample with a whole urine prespin treatment solution, thereby creating a first admixture; c) separating the first admixture to create a pellet and a supernatant; d) removing the pellet; e) contacting the supernatant with a crystallizing/precipitation agent under conditions suitable to allow for crystal/precipitate formation, thereby creating a second admixture; f) incubating the second admixture for a period of time sufficient to allow for crystal/precipitate formation; g) separating the second admixture to obtain a particle fraction containing AQ-2, thereby isolating AQ-2 from the urine sample.

In certain embodiments, the second admixture is present in an array of second admixtures. Optionally, the array is a 96 well array.

In one embodiment, the second admixture volume is less than about 1 ml. In another aspect, the current disclosure also provides a kit for isolating bioparticles from a liquid sample that includes a crystallizing/precipitation agent, and instructions for its use.

In certain embodiments, the whole urine prespin treatment solution includes CaCl 2 , CaCOj and/or Hydroxyapatite at a concentration >10 mM.

In related embodiments, the separating steps (c) and (g) involve low speed centrifugation spins below 18,000 x g.

The current disclosure is also based, at least in part, upon discovery of dramatic additional improvements upon recently-described means for isolating bioparticles from liquid sample (e.g., biofluid), further enhancing such recently-identified methods, which include a crystal-promoting and/or precipitation method and an apparent matrix-binding method that is optionally suitable for columns (without wishing to be bound by theory, the matrix-binding method appears to exploit pore sizes of certain materials to effect enrichment, such as the pore sizes found in porous beads, e.g., siliceous beads such as diatomaceous earth and perlite; see PCT/US2015/043768). In certain aspects, the current disclosure provides for

improvements (including dramatically improved yields, allowing for use of even lower sample volumes and rendering certain additional biofluids even more available for bioparticle isolation) to methods for the rapid and inexpensive isolation of bioparticles: specifically, membrane -bound vesicles, cell-free protein-nucleic acid complexes, mRNA, and/or DNA, which can be isolated from almost any fluid. The improvements to these methods and the underlying methods themselves use common laboratory equipment and reagents. They do not require high-speed centrifugation, such as ultracentrifugation. They do not require expensive membranes, antibodies, antibody fragments, beads, or sophisticated columns. Such improved methods produce an even higher yield of bioparticles and known bioparticle markers than many other methods, and than even methods absent the newly-described improvement step. In certain aspects, a "pre-clearing" step is introduced to previously- described methods, which involves initially contacting a biofluid with a porous bead, then terminating contact between the porous bead and the biofluid (e.g., via low-speed

centrifugation or via elution from a column or other matrix where the porous beads are present in a column or matrix format) after a short duration of time (e.g, optionally less than 10 minutes, optionally less than 9, 8, 7, 6, 5, 4, 3, 2 or 1 minute, optionally less than 55 seconds, less than 50 seconds, less than 45 seconds, less than 40 seconds, less than 35 seconds, less than 30 seconds, less than 25 seconds, less than 20 seconds, less than 15 seconds, less than 10 seconds, or less than 5 seconds), thereby performing a "pre-clearing" of the biofluid, and then subjecting the biofluid to one or more of the following steps:

(1) a second contacting of the biofluid (the "pre-cleared" biofluid) with porous beads (e.g., DE), optionally for longer duration than the initial "pre-clearing" contacting;

(2) contacting of the biofluid (the "pre-cleared" biofluid) with both porous beads (e.g., DE) and a crystallization/precipitation reagent such as Na Urate ("combination" method), optionally for a longer duration than the initial "pre-clearing" contacting;

(3) contacting of the biofluid (the "pre-cleared" biofluid) with a

crystallization/precipitation reagent such as Na Urate, optionally for a longer duration than the initial "pre-clearing" contacting; or

(4) while more onerous, "traditional" bioparticle/EV isolation methods, such as ultracentrifugation, can also be performed upon such "pre-cleared" samples.

In additional aspects, contacting of the biofluid (even a non-"pre-cleared" biofluid) with both porous beads (e.g., DE, perlite, etc.) and a crystallization/precipitation reagent such as Na Urate (the above-referenced "combination" method, optionally without a "pre-clear" step), was also observed to improve bioparticle isolation from the contacted biofluid sample.

Remarkably improved isolation of bioparticles (by efficiency, purity or other relevant metric) was thereby achieved via use of the methods described herein.

The instant improved methods can be used upon any biofluid, such as, but not limited to, urine, blood plasma, blood serum, cerebrospinal fluid (CSF), saliva, synovial fluid, amniotic fluid, and cell culture media. The improved methods of the current disclosure are even capable of isolating microvesicles from water. The microvesicles isolated by the improved methods of the current disclosure possess characteristics of true microvesicles, as assayed by protein markers, small RNAs, and Nanoparticle tracking Analysis (NT A). Also, analysis of the microRNAs isolated by the improved methods of the current disclosure suggests that protein -n cleic acid complexes are also isolated.

The improved methods of the current disclosure can also be combined with methods involving treating biofluid (e.g., urine) samples with the reducing agent TCEP (tris(2- carboxyethyl)phosphine, optional ; TCEP protects against the loss of microvesicles in the subsequent low speed spin), with or without a "pre-clearing" contact of the biofluid with a porous bead (e.g., DE, perlite, etc.), and spinning the urine samples in a low speed spin (typically 1000 x g for typically 5 minutes) to remove cellular contamination and debris (contained in the pellet). In certain other embodiments, the secreted bioparticles that are isolated are exosomes. In some embodiments, isolation of exosomes is confirmed by determining whether or not the isolated material is enriched for protein or nucleic acid makers that are known to

preferentially segregate with exosomes. Confirmation can also be obtained by physical analysis such as NT A or electron microscopy where exosomes having an average diameter between about 40 nm and about 150 nm is consistent with exosome isolation.

In certain embodiments, the secreted bioparticles that are sequestered and/or purified by the improved methods of the current disclosure are protein-nucleic acid complexes such as AG02-miRNA particles. Evidence for these particles can be obtained by assaying for specific miRNAs known to take part in such complexes or by assaying for AG02 protein.

In certain embodiments, the secreted bioparticles are rnRNA particles. Evidence for these particles can be obtained (and indeed was obtained) via assay for specific mRNAs.

In some embodiments of the improved methods of the current disclosure, another reducing agent other than TCEP can be used, such as DTT.

In some aspects of the current disclosure, Uric Acid or other salts of Uric Acid (e.g. Lithium, Calcium, or Potassium Urate - see Figure 19) can be used instead of Monosodium Urate as the crystal/precipitation-inducing agent.

The crystallization/precipitation-inducing agent can be prepared and administered either as a solid, slurry, or a liquid (Monosodium Urate, uric acid and other uric acid salts can be solubilized into basic buffers such as NaOH). The porous beads of the current disclosure can also be administered as a solid, slurry or a liquid, or can be assembled into a column, matrix or other solid format, for contact with a biofluid (optionally with a "pre-cleared" biofluid) of the current disclosure.

In certain embodiments, the current disclosure provides methods for isolating released bioparticles from whole biofluid samples, where those methods comprise i) adding a porous bead (e.g., siliceous beads such as diatomaceous earth (DE) and/or perlite) to a sample and spinning the biofluid sample in a low speed spin (e.g., at 1000 x g for, e.g., 5 minutes) to remove contamination, debris and/or inhibitory factors (contained in the pellet), ii) applying porous beads (e.g., siliceous beads such as diatomaceous earth (DE) and/or perlite) to the pre- cleared biofluid sample, or alternatively applying the pre-cleared biofluid to column containing porous beads (optionally, siliceous beads, such as diatomaceous earth and perlite) iii) incubating the mixture, e.g., at room temperature, e.g., for 15 minutes, iv) centrifuging the mixture to form a pellet and a supernatant, most advantageously, in a low speed centrifugation, vi) removing the supernatant after the spin and, vii) recovering the pellet by resuspending the porous beads in a resuspension solution.

In certain aspects, the current disclosure provides methods for isolating released bioparticles from biofluid samples, where those methods comprise i) spinning the urine samples in a low speed spin (typically 1000 x g for typically 5 minutes) to remove cellular contamination and debris (contained in the pellet), ii) applying porous beads (e.g., siliceous beads such as diatomaceous earth (DE) and/or perlite) to the cell-free biofluid sample, or alternatively applying the cell-free biofluid to column containing porous beads (optionally, siliceous beads, such as diatomaceous earth and perlite) iii) incubating the mixture, typically at room temperature and typically for 15 minutes, iv) centiifuging the mixture to form a pellet and a supernatant, most advantageously, in a low speed centrifugation, vi) removing the supernatant after the spin and, vii) recovering the pellet by resuspending the porous beads in a resuspension solution.

In additional aspects, the current disclosure provides methods for isolating released bioparticles from biofluid samples using a "preclear" protocol, where those methods comprise i) spinning the urine samples in a low speed spin (typically 1000 x g for typically 5 minutes) to remove cellular contamination and debris (contained in the pellet), ii) applying porous beads (e.g., siliceous beads such as diatomaceous earth (DE) and/or perlite) to the cell-free biofluid sample, or alternatively applying the cell-free biofluid to column containing porous beads (optionally, siliceous beads, such as diatomaceous earth and perlite) iii) incubating the mixture, typically at room temperature and typically for less than 3 minutes, iv) centrifuging the mixture to form a pellet and a supernatant, most advantageously, in a low speed centrifugation, vi) removing the supernatant after the spin and, vii) applying porous beads (e.g., siliceous beads such as diatomaceous earth (DE) and/or perlite) to the cell-free biofluid sample, or alternatively applying the cell-free biofluid to column containing porous beads (optionally, siliceous beads, such as diatomaceous earth and perlite), viii) incubating the mixture, typically at room temperature and typically for 15 minutes, ix) centrifuging the mixture to form a pellet and a supernatant, most advantageously, in a low speed

centrifugation, x) recovering the pellet by resuspending the porous beads in a resuspension solution.

In further aspects, the current disclosure provides methods for isolating released bioparticles from biofluid samples using a "combination ' " protocol, where those methods include i) spinning the biotiuid samples in a low speed spin (typically 1000 x g for typically 5 minutes) to remove cellular contamination and debris (contained in the pellet), ii) applying porous beads (e.g., siliceous beads such as diatomaceous earth (DE) and/or perlite) plus a crystallization/precipitation reagent such as Na Urate to the cell-free biofiuid sample Hi) incubating the mixture, typically at room temperature for typically 15 minutes followed by on ice for typically 15 minutes, iv) centrifuging the mixture to form a pellet and a supernatant, most advantageously, in a low speed centrifugation, vi) removing the supernatant after the spin and, vii) recovering the pellet by resuspending the porous beads and crystal/precipitates in a resuspension solution.The improved methods of the current disclosure are superior to "traditional" ultracentrifugation methods because i) they do not require an expensive ultracentrifuge, ii) they are significantly faster, Hi) they do not lose as many microvesicles in the first centrifugation step, and iv) as judged by many markers for urine microvesicles and extracellular miRNA, have a higher yield, especially in more dilute biofluid samples.

The improved methods of the current disclosure also are superior to existing commercial and academic precipitation methods in that i) they do not lose as many microvesicles in the first centrifugation step, ii) the incubation time is significantly shorter, Hi) the crystal/precipitation-inducing agent or the porous beads are significantly less expensive than other precipitation-inducing reagents, and iv) as judged by many markers for biofluid microvesicles, have a higher yield, especially in more dilute samples.

Certain embodiments of the current disclosure are superior to existing precipitation, column and filtration methods, in that i) they do not lose as many microvesicles in the first centrifugation step, ii) do not require expensive column housing, column packing, or filters, Hi) can be significantly faster than, iv) can be easily scaled up to large volumes of biofluid and v) as judged by some markers for urine microvesicles and extra-cellular miRNA, have a higher yield.

Certain embodiments of the current disclosure are superior to all other tested methods known in the art, in that the instant methods isolate from urine >50-fold more of the well- known urine microvesicle biomarker Aquaporin-2. Aquaporin-2 has been used as a general biomarker for urine microvesicles and also as a specific biomarker for various diseases and drugs such as, but not limited to, Nephrogenic Diabetes Insipidus, Hepatic Cirrhosis, Congestive Heart Failure, Lithium Nephrotoxicity, Vasopressin activity, and V2R Antagonist activity (see Sasaki Aquaporin 2: From its Discovery to Molecular Structure and Medical Implications (2012) Molecular Aspects of Medicine 33:535).

As certain embodiments of the current disclosure are capable of isolating

microvesicles suspended even in saliva or unbuffered water alone, in some embodiments the liquid sample can be any biofluid including cell culture media; i.e., a culture media that has been used to culture cells. Other biofluids include, but are not limited to whole blood, blood serum, blood plasma, urine, saliva, sputum, breast milk, ascites fluid, synovial fluid, amniotic fluid, semen, cerebrospinal fluid, follicular fluid and tears.

In other aspects, the current disclosure also provides methods for producing biofluids or serum that are depleted or partially depleted of endogenous micro vesicles, or the microvesicles are below the limits of detection. These methods comprise i) spinning the biofluid samples in a low speed spin (typically 1000 x g for typically 5 minutes) to remove cellular contamination and debris (contained in the pellet), ii) applying the

crystal/precipitation inducing reagent Monosodium Urate or porous beads (e.g., siliceous beads such as DE and/or perlite) to the supernatant of the previous spin, iii) incubating the mixture, iv) centrifuging the mixture to form a pellet and a supernatant, most advantageously, in a low speed centrifugation, recovering the supernatant after the spin, and (v) transferring the supernatant to a suitable container, where the supernatant is the microvesicle-depleted biofluid.

In one aspect, the current disclosure provides a method for isolating bioparticles from a biofluid involving a) contacting a biofluid with a first porous bead composition for an initial period of time; b) removing the first porous bead composition from contact with the biofluid, thereby forming a bead fraction and a supernatant or eluate; c) contacting the supernatant or eluate for a second period of time with one or more of (i) a second porous bead composition; and (ii) a crystallizing agent, thereby creating an admixture; d) separating the admixture to obtain a particle containing bioparticles and/or separating the bead fraction from the biofluid and obtaining sequestered bioparticles from the bead fraction, thereby isolating bioparticles from the biofluid.

In one embodiment, the biofluid is a liquid sample obtained from a subject or cell culture.

In another embodiment, the biofluid is present in a subject.

In certain embodiments, the first and/or second porous bead composition includes siliceous beads, optionally diatomaceous earth (DE) and/or perlite.

In some embodiments, the biofluid is whole blood, blood serum, blood plasma, urine, saliva, sputum, breast milk, ascites fluid, synovial fluid, amniotic fluid, semen, cerebrospinal fluid, follicular fluid or tears.

In another embodiment, the first porous bead composition is present in a column or matrix structure. Optionally, the initial period of time is less than a minute.

In certain embodiments, the second period of time is longer than 5 minutes, optionally 15 minutes to 30 minutes, or more, optionally the second period of time is at least 1 minute, at least 5 minutes, at least 10 minutes, 1-5 minutes, 5-10 minutes, 10-15 minutes, 15-30 minutes, 30 minutes or less, 15 minutes or less, 10 minutes or less or 5 minutes or less.

In one embodiment, both a second porous bead composition and a crystallizing agent are used to contact the supernatant or eluate in step (c).

In another embodiment, the crystallizing agent is monosodium urate, uric acid, a salt thereof, or a combination thereof.

In certain embodiments, step (b) includes a low-speed centrifugation, optionally at about 2,000 x g.

In another embodiment, the admixture is present in an array of admixtures.

Optionally, the array is a 96 well array.

In certain embodiments, the admixture volume is less than about 1 ml. Optionally, the biofluid volume is about 5 ml or less, about 4 ml or less, about 3 ml or less, about 2 mi or less, or about 1 ml or less.

In some embodiments, step (d) of separating involves centrifugation.

In one embodiment, the isolated bioparticles include microvesicles, optionally the isolated microvesicles include a population of microvesicles possessing an average diameter of between about 40 nm and about 150 nm, optionally the isolated bioparticles include exosomes.

In certain embodiments, the pore size of the porous beads is about 0.1 to 10 microns, optionally about 0.2 to 5 microns, optionally about 0.5 to 2 microns, optionally about 1 micron.

Another aspect of the current disclosure provides a method for isolating bioparticles from a biofluid involving a) contacting a biofluid with a porous bead composition for an initial period of time; b) removing the porous bead composition from contact with the biofluid; and c) subjecting the biofluid to ultracentrifuge separation under conditions sufficient to allow for bioparticle isolation, thereby isolating bioparticles from the biofluid.

An additional aspect of the current disclosure provides a method for isolating bioparticles from a biofluid involving a) contacting the biofluid for a period of time with both (i) a porous bead composition and (ii) a crystallizing agent, thereby creating an admixture; b) separating the admixture to obtain a particle containing bioparticles and porous beads; and c) obtaining bioparticles from the particle, thereby isolating bioparticles from the biofluid. In one embodiment, the isolated bioparticles include one or more of the following biomarkers: bladder cancer biomarkers Bl integrin protein, A6 integrin protein, CD73 protein, Tropl protein, EDIL-3 protein, Mucin4 protein, GALNT1 rnRNA and/or LASS2; prostate cancer biomarkers PC A3 rnRNA, ERG rnRNA, TMPRSS2:ERG RNA/DNA and/or ITGA3 protein/RNA; diabetes biomarker AQ2 protein; lupus biomarker mir-335 miRNA and/or mir-302d miRNA; kidney damage biomarker cystatinC rnRNA; glomerular disease biomarker nephrin protein, TRPC6 protein, INF2 protein and/or phospholipase A2R protein. Optionally, the method further involves identifying one or more such biomarker in the isolated bioparticles.

A further aspect of the current disclosure provides a kit for isolating bioparticles from a biofluid, the kit containing a porous bead composition for pretreatment of the biofluid, and instructions for its use.

The current disclosure is additionally based, at least in part, upon the discovery of non-toxic compositions and methods that allow for targeted (apparently based upon size- selection) sequestration and/or reduction of extracellular vesicles and/or circulating bioparticles in a subject, which further allow for retrieval of EV and/or circulating bioparticle constituents such as protein, RNA, DNA and/or lipids, for therapeutic or diagnostic purposes, or for further study.

Certain aspects of the instant disclosure are based, at least in part, upon identification of a means for isolating bioparticles from liquid sample (e.g., biofluid) using an apparent matrix-binding method (without wishing to be bound by theory, the matrix-binding method appears to exploit pore sizes of certain materials to effect enrichment, such as the pore sizes found in porous beads, e.g., siliceous beads such as diatomaceous earth and perlite).

Diatomaceous earth (DE) is a non-toxic, non-digestible siliceous particle that has been used as an additive in livestock feed for many years. In certain aspects, the current disclosure provides methods for the rapid and inexpensive isolation of bioparticles, such as: membrane- bound vesicles, cell-free protein-nucleic acid complexes, cell-free rnRNA, and/or cell-free DNA, which can be isolated from almost any fluid, including in vitro cell culture and in vivo fluids/mucosal layers of animals, including humans.

The methods of the current disclosure can be employed using common laboratory equipment and reagents. They do not require high-speed centrifugation, such as

ultracentrifugation. They do not require expensive membranes, antibodies, antibody fragments, beads, or sophisticated columns. The current compositions and methods are provided as therapeutics and diagnostics, for administration to and/or contact with a subject. One contemplated effect of the administration/contact methods of the current disclosure is to enable researchers to determine the in vitro/in vivo effects of EVs on cellular processes, including disease. The current methods and compositions are also contemplated as useful forprophylaxis and/or treatment of disease in cases where the sequestration of EVs/disruption of bioparticle/EV signaling would be expected to provide prophylactic and/or therapeutic benefit (one such exemplary disease is cancer, as detailed further elsewhere herein).

The instant methods are not only directed to sequestration/reduction of EV and/or bioparticle levels in urine, but can also be used upon any biofluid, such as, but not limited to, blood plasma, blood serum, cerebrospinal fluid (CSF), saliva, synovial fluid, amniotic fluid, and cell culture media. Microvesicles isolated by the methods of the current disclosure possess characteristics of true microvesicles, as assayed by protein markers and small RNAs.

In one aspect, the current disclosure provides a composition for contacting a bioparticle-containing biofluid of an organism that includes a container or device containing porous beads possessing a pore size capable of sequestering the bioparticle of the biofluid upon contact with the bioparticle-containing biofluid.

In one embodiment, the bioparticle of the biofluid promotes a disease or disorder, optionally the disease or disorder is cancer. In related embodiments, the cancer is a bladder or an oral cancer.

In certain embodiments, the container or device is a pouch, optionally a pouch possessing a porous membrane and/or porous cellulose as an outer layer, optionally a cellulose bag or sac.

In some embodiments, the porous beads are non-toxic, optionally the porous beads are siliceous beads, optionally diatomaceous earth (DE).

Another aspect of the current disclosure provides a method for reducing the level of a bioparticle in a biofluid of an organism, the method involving contacting the biofluid of the organism with a composition of the current disclosure for a time sufficient to reduce the level of the bioparticle in the biofluid of the organism, thereby reducing the level of the bioparticle in the biofluid of the organism.

An additional aspect of the current disclosure provides a method for sequestering and detecting a released bioparticle from cell culture media in vitro, involving i) applying porous beads to the cell culture media; ii) incubating the bead-containing media with cells under conditions appropriate for sequestration of the released bioparticle in the porous beads; iii) isolating the porous beads; and iv) detecting bioparticles sequestered by the porous beads, thereby sequestering and detecting the released bioparticie from cell culture media in vitro.

In one embodiment, the method further involves v) assaying the cells to determine an effect of the applied porous beads.

In certain embodiments, the isolating step iii) involves low speed centrifugation.

In some embodiments, the bioparticie is sequestered into a container or device, optionally a pouch, which is optionally placed in the vicinity of the bioparticle-generating cells.

In certain embodiments, the container or device contains a porous bead resin surrounded by a membrane (optionally, cellulose) or housing that allows bioparticles to flow into the container or device to be sequestered/captured but optionally does not allow for direct contact between the resin and surrounding cells.

An additional aspect of the current disclosure provides a method for treating or preventing cancer in an organ of a subject having or at risk of developing cancer that involves contacting a biofluid of the subject with a composition of the current disclosure for a time sufficient to reduce the level of the bioparticie in the biofluid of the subject, thereby treating or preventing cancer in the organ of the subject having or at risk of developing cancer.

In certain embodiments, the composition of the current disclosure includes siliceous beads, optionally DE, optionally within a device or container, optionally a device or container bounded by a porous membrane and/or porous cellulose, optionally the device or container is placed within the urinary bladder of a subject, optionally in proximity of a bladder cancer tumor and/or in proximity to a site susceptible to bladder cancer formation.

In some embodiments, a composition of the current disclosure is placed within the urinary bladder of a subject, optionally in proximity of a bladder cancer tumor and/or in proximity to a site susceptible to bladder cancer formation, optionally for a length of time selected from the group consisting of 10 minutes to 30 minutes, 15 minutes to an hour, 30 minutes to 2 hours, 1-3 hours, 2-4 hours, 3-10 hours, 5-24 hours, 1-2 days, 2-4 days, 3 days to a week, one to three weeks, 2-4 weeks, 2 weeks to 2 months, one month to four months, two months to six months, three months to a year, and six months to two years or more.

Another aspect of the current disclosure provides a method for sequestering released bioparticles in the saliva of a subject, involving i) contacting a container or device containing porous beads contained within a porous membrane and/or porous cellulose with the mouth of the subject under conditions that allow for sequestration of saliva bioparticles; ii) removing the container or device from the mouth of the subject; iii) optionally removing the porous beads from the container or device; iv) releasing bioparticles from the porous beads, optionally by contacting the porous beads with a chaotropic agent or a detergent; and v) optionally assaying the released bioparticles, optionally using one or more of SDS

PAGE/immunoblot, PCR and/or mass spectrometry,

A further aspect of the current disclosure provides a method for disrupting bioparticle- mediated signaling in a biofluid of an organism, the method involving contacting the biofluid of the organism with a porous container or device containing porous beads that possess a pore size capable of sequestering the bioparticle that is performing bioparticle-mediated signaling, for a time sufficient to reduce the level of the bioparticle in the biofluid of the organism, thereby disrupting bioparticle-mediated signaling in the biofluid of the organism.

In certain embodiments, the secreted bioparticles that are sequestered/reduced are exosomes. In some embodiments, sequestration/reduction of exosomes is confirmed by determining whether or not sequestered material is enriched for protein and/or nucleic acid makers that are known to preferentially segregate with exosomes. In related embodiments, reduction in protein and/or nucleic acid markers within contacted biofluids post- administration/contact, relative to before administration/contact and/or other appropriate control or level/value, indicates sequestration/reduction of exosomes and/or bioparticles.

In some embodiments, the sequestered/reduced bioparticles are protein-nucleic acid complexes such as AG02-miRNA particles. Evidence for these particles (or for the reduction''absence of such particles) can be obtained by assaying for specific miRNAs known to take part in an AG02-miRNA particle/complex or by assaying for AG02 protein.

In certain embodiments, the sequestered/reduced bioparticles are cell-free nucleic acid particles.

In some embodiments, the current disclosure provides methods for sequestering released bioparticles from cell culture media during the course of an in vitro cell culture experiment, where those methods comprise: i) applying non-toxic porous beads (e.g., siliceous beads such as diatomaceous earth (DE)) to the active cell culture; ii) incubating the bead-containing media with cells for some time, at temperature and atmospheric settings appropriate for the experiment; iii) removing the media and isolating the beads via low speed centrifugation; iv) assaying the bioparticles bound to the isolated beads; and vi) assaying the cells to determine the effects of the added beads. In certain embodiments, the secreted bioparticles are sequestered into a device (e.g., a pouch), which is optionally placed in the vicinity of the bioparticle-generating cells, either in vitro or in vivo.

In some embodiments, the device contains a resin that captures bioparticles surrounded by a membrane (optionally, a cellulose bag or sac) or housing that allows bioparticles to flow into the device to be captured by the resin but optionally does not allow for direct contact of the resin with cells. Optionally, the device also allows for the relatively easy recover}' of the hioparticle-containing resin.

In certain embodiments, the resin consists of a non-toxic porous bead, such as siliceous beads, optionally diatomaceous earth.

In certain embodiments, the current disclosure provides methods for sequestering disease-promoting bioparticles in vivo, for research and/or therapeutic purposes.

In certain embodiments, the current disclosure provides methods for the therapeutic sequestration of released bioparticles from cancer cells by placing a composition containing siliceous beads (e.g., diatomaceous earth), optionally within a device or container, optionally one bound by a casing (e.g., a porous membrane and/or porous cellulose) in the proximity of a cancerous tumor or a site susceptible to formation of a cancerous tumor, for some time. Optionally, the duration of time for such placement is 10 minutes to 30 minutes, 15 minutes to an hour, 30 minutes to 2 hours, 1-3 hours, 2-4 hours, 3-10 hours, 5-24 hours, 1-2 days, 2-4 days, 3 days to a week, one to three weeks, 2-4 weeks, 2 weeks to 2 months, one month to four months, two months to six months, three months to a year, or six months to two years or more.

In certain embodiments, the current disclosure provides a method for the therapeutic sequestration of released bioparticles from bladder cancer cells by placing a composition containing siliceous beads (e.g., diatomaceous earth), optionally within a device or container, optionally one bound by a porous membrane and/or porous cellulose, within the bladder of a subject, in proximity of a bladder cancer tumor and/or in proximity to a site susceptible to bladder cancer formation, for some time. In certain embodiments, the duration of time for such placement is 10 minutes to 30 minutes, 15 minutes to an hour, 30 minutes to 2 hours, 1- 3 hours, 2-4 hours, 3-10 hours, 5-24 hours, 1-2 days, 2-4 days, 3 days to a week, one to three weeks, 2-4 weeks, 2 weeks to 2 months, one month to four months, two months to six months, three months to a year, or six months to two years or more.

In some embodiments, the current disclosure provides methods for the sequestration of released bioparticles from saliva by i) placing a composition containing siliceous beads (e.g., diatomaceous earth), optionally within a device or container, optionally a container or device bound by a porous membrane and/or porous cellulose, within the mouth of an animal or human for some time; ii) removing the device from the mouth; iii) removing the siliceous beads (e.g., DEjfrom the device; iv) releasing the bioparticles and/or components of the bioparticles from the treated siliceous beads (e.g., DE) with an agent (e.g., a chaotropic agent) or detergent capable of disrupting association of the siliceous beads (e.g., DE) with the bioparticles; and v) assaying the bioparticles and/or components of the bioparticles using a diagnostic method to identify bioparticles and/or bioparticle components (e.g. SDS

PAGE/immunoblot, PCR, mass spectrometry, etc., including combinations thereof).

The current disclosure provides advantages over antibody-based methods of bioparticle/EV sequestration and/or reduction, at least because it is low cost, capable of functioning in harsh environments including urine and saliva, distinguishes cells from bioparticles, and has higher capacity/is scalable/amenable to higher throughput. The current disclosure also provides advantages over heparin, at least because it induces fewer side effects and is less toxic. Advantages of the current method over existing methods for the isolation of bioparticles from saliva include not requiring repeated expectoration (ability to isolate bioparticles from small sample volumes) and not requiring a separate step to separate mucous and cells from bioparticle-containing fluids, among other advantages that will be apparent to the skilled artisan.

Definitions

As used herein, the term "bioparticle" refers to cell-free, membraned structures secreted from mammalian cells such as but not limited to microvesicles, exosomes, apoptotic bodies, LDL-particles etc., plus cell-free, relatively stable, protein-nucleic complexes secreted from mammalian cells such as but not limited to microRNA-AG02 complexes, plus cell-free DNA (cfDNA) and cell-free messenger RNA. Thus, certain exemplary bioparticles include miRNA (depicted in Fig. 1; optionally cell-free miRNA), proteins, lipids, glycoproteins, DNA, mRNA, tRNA, other types of RNA, etc., which can exist relatively stably outside of cells, in various forms, including but not limited to: protein -nucleic acid complexes, exosomes, microvesicles, LDL particles, and apoptotic bodies.

As used in this application, the term "cells" encompasses not only eukaryotic cells, e.g., higher eukaryotic cells such as mammalian cells, as in human cells or mouse cells, but also prokaryotic cells, such as eubacteria cells and Archaea cells. As used herein, the term "microvesicle" refers generally to any plasma membrane bound particle that may reside within the cell, or in the extracellular environment. These structures are not limited in any way with regard to in vivo localization (e.g., intracellular or extracellular), in a body fluid, in a cell culture media, generated by in vitro cultured cells, mechanism of origin or size characteristics. In some embodiments, a microvesicle can range in size with a lower size limit of at least about 20 nanometers (nm) in diameter, or alternatively, 30 nm, or 40 nm, or 50 nm in diameter. In some embodiments, a microvesicle has an upper size limit of not more than about 1 ,000 nm (i.e., 1.0 micrometer, micron, or μηη), or alternatively, not more than about 1,500 nm, about 2,000 nm or about 2,500 nm. As used herein, the term "secreted microvesicle" is used synonymously with "circulating microvesicle (cMV)" or "extracellular microvesicle (eraV)" or "extracellular vesicle (eV)" and refers to a subset of microvesicies that are found in an extracellular space under normal physiological conditions. As used herein, it is not intended that the term "circulating microvesicies" to be limited to microvesicies of any particular size or size range, or any particular production mechanism. For example, but not limited to, a cMV of the current disclosure can be produced by (i) exocytosis from multivesicular bodies to produce exosomes, (ii) budding, fission and shedding of microvesicies directly from a cytoplasmic membrane, and (iii) membranous blebs caused by programmed cell death leading to the formation of apoptotic bodies. As used herein, the term "cMV" is not limited to microvesicies of any particular size or size range.

Although mechanistic theories for the endogenous production of circulating microvesicies are found in the scientific literature, any knowledge of such mechanisms is not required to make or use the invention. It is not intended that the term "circulating

microvesicies" as used herein be limited in any way with regard to the mechanism of their in vivo production.

As used herein, the term "shedding microvesicle (SMV)" refers to a class of microvesicies that are produced by cells using a mechanism, of direct plasma membrane budding, fission and shedding to produce microvesicies that are released by a cell into an extracellular environment. As used herein, it is not intended that an SMV of the current disclosure be limited by any particular size or size range.

As used herein, the term "exosome" refers to a subset of circulating microvesicies that are preformed microvesicies that are released from the cell following the exoc tic fusion of intracellular multivesicular bodies with the plasma membrane, i.e., exosomes have an endocytic origin. As used herein, it is not intended that an exosome of the current disclosure be limited by any particular size or size range.

As used herein, the term "organism" refers to an animal, plant or single-celled life form. The term "organism" is also contemplated to encompass any alien/extraterrestrial life form(s) that might be identified.

The term "subject" includes human and non-human animals. Non-human animals include all vertebrates, e.g., mammals and non-mammals, such as non-human primates, sheep, dog, cow, chickens, fish, amphibians, and reptiles, and also includes non- vertebrates (e.g., insects, worms, etc.). Except when noted, the terms "patient" or "subject" are used herein interchangeably.

As used in this application, the term "cells" encompasses not only eukaryotic cells, e.g., avian, reptilian, higher eukaryotic cells such as mammalian cells, as in human cells or mouse cells, but also prokaryotic cells, such as eubacteria cells and Archaea ceils.

The term "treating" includes the administration of compositions to prevent or delay the onset of the symptoms, complications, or biochemical indicia of a disease (e.g., cancer, including, e.g., tumor formation, growth and/or metastasis), alleviating the symptoms or arresting or inhibiting further development of the disease, condition, or disorder. Treatment may be prophylactic (to prevent or delay the onset of the disease, or to prevent the manifestation of clinical or subclinical symptoms thereof) or therapeutic suppression or alleviation of symptoms after the manifestation of the disease.

By "ameliorate" is meant decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease.

As used herein, the terms "prevent," "preventing," "prevention," "prophylactic treatment" and the like refer to reducing the probability of developing a disorder or condition in a subject, who does not have, but is at risk of or susceptible to developing a disorder or condition.

By "reference" is meant a standard or control, e.g., a standard or control condition.

Cancer, as used herein, can include the following types of cancer: breast cancer; biliary tract cancer; bladder cancer; brain cancer including glioblastomas and

medulloblastomas; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; gastric cancer; hematological neoplasms including acute lymphocytic and myelogenous leukemia; T-cell acute lymphoblastic leukemia/lymphoma; hairy cell leukemia; chronic myelogenous leukemia, multiple myeloma; AIDS-associated leukemias and adult T- cell leukemia lymphoma; intraepithelial neoplasms including Bowen's disease and Paget's disease; liver cancer; lung cancer; lymphomas including Hodgkin's disease and lymphocytic lymphomas; neuroblastomas; oral cancer including squamous cell carcinoma; ovarian cancer including those arising from epithelial cells, stromal cells, germ cells and mesenchymal cells; pancreatic cancer; prostate cancer; rectal cancer; sarcomas including leiomyosarcoma, rhabdomyosarcoma, liposarcoma, fibrosarcoma, and osteosarcoma; skin cancer including melanoma, Kaposi's sarcoma, basocellular cancer, and squamous cell cancer; testicular cancer including germinal tumors such as seminoma, non-seminoma (teratomas,

choriocarcinomas), stromal tumors, and germ cell tumors; thyroid cancer including thyroid adenocarcinoma and medullar carcinoma; and renal cancer including adenocarcinoma and Wilms tumor. Other cancers will be known to one of ordinary skill in the art.

The terms "tumor," "solid tumor," "primary tumor," and "secondary tumor" refer to carcinomas, sarcomas, adenomas, and cancers of neuronal origin and, in fact, to any type of cancer which does not originate from the hematopoietic cells and in particular concerns: carcinoma, sarcoma, adenoma, hepatocellular carcinoma, hepatocellular carcinoma, hepatoblastoma, rhabdomyosarcoma, esophageal carcinoma, thyroid carcinoma,

ganglioblastoma, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, synovioma, Ewing's tumor, leiomyosarcoma, rhabdotheliosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, renal cell carcinoma, hematoma, bile duct carcinoma, melanoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, retinoblastoma, multiple myeloma, rectal carcinoma, thyroid cancer, head and neck cancer, brain cancer, cancer of the peripheral nervous system, cancer of the central nervous system, neuroblastoma, cancer of the endometrium, as well as metastasis of all the above.

In this disclosure, "comprises," "comprising," "containing" and "having" and the like can have the meaning ascribed to them in U.S. Patent law and can mean " includes,"

"including," and the like; "consisting essentially of" or "consists essentially" likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.

Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.

By "effective amount" is meant the amount of an agent required to ameliorate the symptoms of a disease relative to an untreated patient. The effective amount of active agent(s) used to practice the current disclosure for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an "effective" amount.

Unless specifically stated or obvious from context, as used herein, the term "or" is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms "a", "an", and "the" are understood to be singular or plural.

Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

By "reduces" is meant a negative alteration of at least 10%, 25%, 50%, 75%, or

100%.

A "therapeutically effective amount" is an amount sufficient to effect beneficial or desired results, including clinical results. An effective amount can be administered in one or more administrations.

Although mechanistic theories for the endogenous production of circulating microvesicles are found in the scientific literature, any knowledge of such mechanisms is not required to make or used the current disclosure. It is not intended that the term "circulating microvesicles" as used herein be limited in any way with regard to the mechanism of their in vivo production.

As used herein, the term "crystallizing agent" refers to an agent capable of promoting crystal formation and/or precipitation in a liquid sample. Exemplary "crystallizing agents" of the current disclosure include monosodium urate, uric acid, a salt thereof and a combination thereof.

As used herein, the term "precipitation agent" refers to an agent capable of promoting precipitation and/or crystal formation in a liquid sample. Exemplary "precipitation agents" of the current disclosure include monosodium urate, uric acid, a salt thereof and a combination thereof.

As used herein, the term "apoptotic body" refers to a subset of circulating

microvesicles that are produced as a result of apoptotic cell destruction. As used herein, it is not intended that an apoptotic body of the current disclosure be limited by any particular size or size range.

As used herein, the term "isolating," or "to isolate," refers to any artificial (i.e., not naturally occurring) process for treating a starting material, where the process results in a more useful form of a molecule or structure of interest that is in the starting material. The "more useful form" of the molecule or structure of interest can be characterized in a variety of ways, no one of which is limiting. For example, as used herein, the current disclosure provides methods for isolating secreted microvesicles from conditioned cell culture media. Further, for example, the process for isolating can result in:

(i) the molecule of interest having a greater concentration in the isolated form compared to the starting material (e.g., concentrating),

(ii) the removal of any amount or any type of impurities from, the starting material (e.g., purifying),

(iii) an increase in the ratio of the amount of molecule of interest to the amount of any undesired component in the starting material (e.g., enriching),

(iv) any artificial process for removing a molecule or structure of interest from its natural source or location;

(v) any artificial process for separating a molecule or structure of interest from at least one other component with which it is normally associated (e.g., purifying), or

(vi) any combination of (i), (ii), (iii), (iv) or (v).

Similarly, as used herein, the term "isolated" generally refers to the state of the molecule or structure of interest after the starting material has been subjected to a method for isolating the molecule of interest. That is to say, isolating a molecule of interest from a starting material will produce an isolated molecule. For example, the methods of the current disclosure can be used to produce preparations of isolated microvesicles (optionally sequestered from biofluid(s) of a subject). These preparations of microvesicles have been isolated from their natural source, for example, from urine, mucus, or from conditioned cell culture media.

As used herein, the term "purifying" or "to purify" a molecule or structure of interest refers to a process for removing at least one impurity or contaminant from a starting material. For example, purifying a molecule of interest from a starting material refers to a process for removing at least one impurity from the starting material to produce a relatively more pure form of the molecule of interest.

As used herein, the term "substantially purified" refers to molecules or structures of interest that are removed from their natural environment or from a starting material (i.e., they are isolated) and where they are largely free from other components with v/hich they are naturally associated or substantially free of other components that may render future use or study sub- optimal, difficult or impossible.

As used herein, the terms "purified" or "partially purified" refers to molecules or structures of interest that are removed from either (1) their natural environment, or from (2) a starting material (i.e., they are isolated), and where (a) at least one impurity from the starting material has been removed, or (b) at least one component with which the molecule is naturally associated has been removed. A "purified" or "partially purified" molecule may still contain additional components that may render future use or study of the molecule sub- optimal, difficult or impossible.

As used herein, the term "enriching" (and "enriched" and the like) refers to a process whereby a molecule of interest that is in a mixture has an increased ratio of the amount of that molecule to the amount of other undesired components in that mixture after the enriching process as compared to before the enriching process.

As used herein, the term "concentrating" refers to a process whereby a molecule of interest that is in a mixture that has been subjected to that process has a greater concentration after the process as compared to the concentration of the molecule in the mixture before the process.

As used herein, the term "depleted" refers to a mixture containing an undesirable component, where that undesirable component has been (i) completely removed from the mixture, (ii) sufficiently removed from the mixture to be undetectable, or (iii) partially removed from the mixture such that its concentration in the mixture is significantly reduced. For example, a blood serum that has been depleted of endogenous microvesicles may contain no microvesicles, or may contain no detectible microvesicles, or may contain a reduced level of microvesicles compared to the untreated serum.

As used herein, the expression "cell culture media" refers to any growth media that can support in vitro cell growth of a designated cell line. Such media can be supplemented or non- supplemented, for example, with 10% by volume, heat-inactivated fetal calf serum.

As used herein, the expression "minimal defined cell culture media" or "minimal media" refers to any culture media where each component is defined by name and the concentration of each component is known. Minimal defined cell culture media generally does not contain a serum supplement. For example, Dulbecco's Modified Eagle's medium (DMEM) is a defined minimal cell culture media. Minimal defined cell culture media generally can be used to culture cells in vitro, but not for extended periods of time.

As used herein, the expression "complete cell culture media" refers to a culture media that comprises a defined minimal cell culture media, and in addition, also comprises a complex supplement that enhances the growth properties of the culture media. For example, a blood serum supplement is commonly added to a minimal media to produce a complete cell culture media. Fetal calf serum (FBS or FCS) is a common supplement (10% by volume) that is added to a minimal media to produce a complete culture media. Complete culture media are used to culture cells in vitro for indefinite (long) periods of time. [0075] As used herein, the expression "conditioned cell culture media" refers to any cell culture media (including complete media or minimal media) that has been exposed to live cells in culture. Conditioned cell culture media comprises not only the defined components of the minimal media and the serum supplement, but also contains additional components that the living cultured cells have produced, in many cases, conditioned cell culture media is a serum-free media.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows an exemplar}' range of biomarkers from cells such as miRNA (depicted), proteins, lipids, glycoproteins, DNA, mRNA, tRNA, etc., which can relatively stably exist outside of cells in various forms, including but not limited to: protein-nucleic acid complexes, exosomes, microvesicles, LDL particles, and apoptotic bodies.

Figure 2 shows a comparison of exemplary methods used and/or proposed for isolation of microvesicles. Notably, most such methods are optimized for isolation from blood serum or plasma of a subject.

Figure 3 shows a comparison of commercial kits available for microvesicle isolation. Asterisks indicate kits released in 2014. Boxed regions indicate potential drawbacks for each kit.

Figure 4 shows that a Na Urate bioparticle isolation protocol worked more consistently than ultracentrifugation or any of three different commercial kits. Unlike other methods, Na urate isolated vesicle markers, even from dilute samples. Methods: Two 15 ml samples; 1

naturally concentrated (left panel) and 1 naturally dilute (right panel) were split into 5 eq al parts and were subjected to the Na Urate protocol (see Example 1 ), ultracentrif ugation, or one of three commercial urine exosome isolation kits (from Life Technologies, Exiqon, and System Bio, respectively). Following each procedure, equal amounts of the final pellet were loaded onto SDS page and subjected to western blot analysis using antibodies specific for known microvesicle protein markers HSP70, Aquaporin 2, Rab5 and CD9. Only the Na Urate protocol isolated all four markers from both samples. As a control, vesicles were also isolated by ultracentrifugation (2000 x g 10 min spin, followed by a 17,000 x g 10 min spin, followed by a 100,000 x g spin for 1 hour); vesicles were isolated using the following commercial kits as per their instructions: rniCURY Exosome Isolation Kit (Exiqon, Woburn, MA), ExoQuik-TC, (SBI, Mountain View, CA) and Total Exosome Isolation Reagent (Life Technologies, Carlsbad, CA).

Figure 5 shows that Na Urate functioned even in very dilute samples. Methods: A 12 ml first void clean catch urine sample was split into four equal parts and subjected to Na Urate ("Ymir"), ultracentrifugation ("UC"), rniCURY Exosome Isolation Kit ("Exiqon", Exiqon Woburn, MA), or ExoQuik-TC, ("SBI", SBI Mountain View, CA). The Na Urate prep was performed as per Example 1. Ultracentrifugation was performed as per Figure 4. The commercial kits were performed as per manufacturer instructions. The resulting preps were subjected to immunoblot analysis with Mabs for vesicle markers Aquaporin 2, Rab5, and CD9. The full strength preps are shown in lane 1 of each panel. The same sample was also diluted 2x, 4x, and 8x (lanes 2, 3, and 4, respectively, for each panel) with PBS before being subjected to the same prep methods.

Figure 6 shows that the Na Urate protocol precipitated a subset of the total extra-cellular protein and thus could be considered a "purification". "A" corresponds to Amicon

preparation, while "Y*" corresponds to the Na Urate protocol of certain aspects of the current disclosure. Method: A single 6 ml first void clean catch urine sample was split in two and either concentrated with an Amicon protein purification column (3000 MW cut-off) or subjected to the Na Urate bioparticle isolation protocol described herein. Equal amounts (by volume) of each processed sample was loaded onto an SDS PAGE gel and subjected to Cooniassie protein stain. Significantly less protein was seen in the bioparticle isolation prep (Y*), as compared to total protein from the Amicon column (A).

Figures 7 A to 7C shows that the Na Urate process isolated high quality RNA, especially miRNA. Figure 7 A shows a Bioanalyzer gel of small RNA isolated from a single 10 ml first void clean catch by ultracentrifugation (UC; half of the sample) and Ymir Genomics' Na Urate protocol (Y; half of the sample). Figure 7B shows a Bioanalyzer gel trace of small RNA isolated from a single first void clean catch by ultracentrifugation (UC) in red and Ymir Genomics' Na Urate protocol (Ymir) in green. Figure 7C shows relative amounts of 3 miRNAs known to be found in human urine. Methods: RNA was isolated from urinary vesicle preps (UC and Y) with mirVANA Kit (LifeTechnologies). Small RNA quality and concentration were determined using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) and Small RNA Kit (Agilent). RT- quantitative PCR. cDNA was synthesized from urinary vesicle RNA using the TaqMan Micro RNA RT Kit (LifeTechnologies) according to the manufacturer's instructions. qPCR was performed using TaqMan Gene Expression Master Mix (Life Technologies). Primers for hsa-mir-lOb, hsa-mir-223, and hsa- mir-200c were obtained from Life Technologies.

Figure 8 shows that Na Urate purified complex RNA, including miRNAs. Indeed, Na Urate purified miRNA was more complex than Ultracentrifuge-purified miRNA. RNA from identical samples was isolated via Na Urate or Ultracentrifuge methods and analyzed for microRNA level(s) with Firefly miRNA Array Panel (Abeam Cambridge MA).

Figure 9 shows that the Na Urate protocol isolates RNA without PCR inhibitors. One concern for RNA purification from hiofluids, especially urine, was that Enzymatic inhibitors such as Urea will be co-purified; however, a known amount of cel-mir-39 (a non-human miRNA) was spiked into a UC prep and a Na Urate prep. The amount of cel-mir-39 detected was identical between the two preps, demonstrating that Na Urate did not purify more PCR inhibitors than Ultracentrifuge.

Figure 10 shows transmission electron microscopy (TEM) images that demonstrate that Na Urate isolated whole exosomes, when used as described herein. A 4 ml sample of first void clean catch urine was split in two. Half was subjected to Na Urate

precipitation/crystallization (Method Y, left panel; see example 1 ) and half was subjected to standard ultracentrifugation. Both methods yielded particles of similar sizes and shapes as judged by transmission electron microscopy. Vesicles were also isolated by ultracentrifugation as follows: urine sample was sequentially centrifuged for 10 min at 2,000xg and at 17,000xg for 10 min to remove cells and cellular debris then the resulting supernatant was centrifuged at 200,000xg for 60min at 24°C to sediment exosomes.

Figure 11 shows that Na Urate isolated whole exosomes: the NanoSight nanoparticle tracking device measured the number and size of vesicles in a solution. Methods: A 1 ml sample of first void clean catch urine was split in two. Half was subjected to Na Urate precipitation/crystallization (Method Y, right panel; see example 1) and half was subjected to standard ultracentrifugation. Both methods yielded particles of very similar size and shape, as judged by nanotracker particle sizing and counting. Vesicles were also isolated by ultracentrifugation as per Figure 4. Nanoparticle Tracking Analysis. Vesicles, diluted in PBS, were analyzed by nanoparticle tracking using the NanoSight NS300 system (Malvern Instruments, Malvern, UK) equipped with 405nm laser. Videos were collected and analysed using the NTA software (version 3.0 0060).

Figure 12 shows that the Na Urate protocol was scalable (protein). An imrnunoblot of the instant method (see example 1 ) from different amounts (indicated) of a single first void clean catch urine sample using Mabs specific for vesicle markers TSGlOl, Aquaporin 2, Rab 5 and CD9.

Figures 13A and 13B show that the Na Urate protocol was scalable (RNA). An qRT-PCR values for 3 miRNAs isolated from different amounts (indicated) of the same first void clean catch using the Na Urate protocol (example x). qRT-PCR traces used to calculate Ct values shown in Fig. 13 A. The lower the Ct value the higher the concentration. Methods: RNA isolation and qRT-PCR as per Figure 12.

Figures 14A and 14B show that the Na Urate protocol could isolate extra-cellular rnRNA. qRT-PCR values for GAPDH messenger RN A (mRNA) isolated from different first void clean catch urine samples from 3 donors using the Na Urate protocol (Method Y; example 1), ultracentrifugation (UC) and the Norgen Urine Exosomai RNA Kit. qRT-PCR traces used to calculate Ct values shown in A. Methods: RNA isolation as per Figure 12, except that an extra 15 minute DNAse step was added at the end.

Figure 15 shows that Na Urate isolated vesicles from UC-depleted urine supernatant and even from vesicles suspended in pure H 2 0. The Na Urate ("Y") protocol isolated vesicles that ultracentrifugation ("UC") rnissed, whereas ultracentrifugation could not isolate vesicles from urine depleted of vesicles isolated by Na Urate. Furthermore, Na Urate was even capable of isolating a small amount of urine vesicles purified by ultracentrifugation and resuspended in pure H20, suggesting that Na Urate could isolate vesicles from any fluid. Methods: 4.5 mis of first void clean catch urine was divided into three parts and subjected to either just a control double low speed spin (lane 1), the Na Urate protocol (example 1 ; lane 2) or ultracentrifugation (as per Figure 4; lane 3). The vesicle depleted supernatants were saved and subjected to the reciprocal methods Na Urate (lane 4) or ultracentrifugation (lane 5). Separately, a 1.5 ml first void clean catch sample was subjected to ultracentrifugation. The vesicle pellet was washed Ix with PBS then resuspended in ¾€). The ¾0 plus vesicles was subjected to Na Urate, incubated, and spun as per Figure 4 legend. Then analyzed by immunoblot with Mabs specific for Aquaporin 2, TSGIGI , and CD9.

Figure 16 shows that the Na Urate protocol isolated vesicle markers in saliva as well as urine. Methods: A 3 ml first void clean catch urine sample was processed with Na Urate as per Example 1. A 5 ml saliva sample was diluted 2x with PBS and then spun 2 x 1500g to remove cells, cell debris, and mucous. Na Urate was added to 5 mM (40 ul of .131 M stock/ml of sample) concentration and incubated on ice for 20 minutes before being spun at 1000g for 5 minutes. The resulting pellet was resuspended in Laemmli buffer and run on PAGE along with the results for the urine prep. Immunoblot analysis was performed with Mabs specific for vesicle markers Rab5 and CD9. UC = Ultracentrifugation protocol as per Figure 4 with 3 mis of Urine or 5 mis of Saliva as indicated; Yl = The instant method on 1 ml of Urine or Saliva as indicated; Y3 = The instant method on 3 mis of Urine or Saliva as indicated; D = 200 ul slurry of Diatomaceous Earth as per Example 1 on 3 mis of Urine or Saliva as indicated.

Figure 17 shows the 96-well plate protocol for the Na Urate protocol. The protocol is one for using the Na Urate Protocol for small volumes in a 96 well format, suitable for automation

Figures ISA and 18B show 96-well plate data for the Na Urate protocol. The efficiency of the Na Urate protocol allowed for the isolation of measurable quantities for biomarkers from small volumes of sample. The simplicity of the Na Urate protocol allowed for the use of 96 well plates and semi-automation. In Figure 18A, an immunoblot using Mabs for vesicle markers Aquaporin 2, Rab5, and CD9. A single first void clean catch urine sample was divided into 6, 200 ul portions and bioparticles were isolated using 96-well plate protocol (lanes 1-5 which are identical replicates towards precision data) and the standard test tube protocol (lane 6 (tube format)). RNA preps were made using the standard protocol (tube format) or 96-well plate protocol (96 Well Format) from multiple 200 ul aliquots from a single first void clean catch urine sample. The preps were subjected to qRT-PCR with Life Technologies miRNA probes for mir-200c. The 96-well plate format was identified as more efficient at isolating mir-200c than the standard tube format.

Figures 19A and 19B show that different Uric Acid salts work similarly in the Urate -based EV isolation protocol. The protocol for the experiment was as per example I. Western blot analysis was performed upon vesicle protein isolated from a single 12 ml first void clean catch urine sample divided into 12 parts and treated with different amounts (as labeled in μΐ) of different Urate salts, as labeled.

Figure 20 shows that the methods of the current diclosure isolated cell free DNA specific to a known human gene (GAPDH) from human urine. Extracellular vesicles were isolated from 50mL of urine by Ymir Na Urate protocol or urine concentration with Amicon MWCO 3000. Nucleic acids were obtained from extra-cellular vesicles using an Ambion mirVANA RNA isolation kit and genomic GAPDH was amplified using TaqMan chemistry. Results: Lower cT = higher concentration. The Na Urate method of the current disclosure isolated significantly more DNA than the Amicon method.

Figure 21 shows that the cell-free nucleic acids responsible for the signal specific for the GAPDH included cell-free DNA (cfDNA) and RNA. Both genomic DNA and mRNA for GAPDH were detected in extracellular vesicles isolated using the Na Urate method ("Ymir"). Na Urate preps of 50 mis of urine were subjected to RT-PCR analysis to detect DNA + RNA specific for the GAPDH sequence. The lower the cT, the stronger the signal. It was observed that DNAse reduced signal profoundly, demonstrating that much of the GAPDH signal was attributable to DNA (cfDNA). Residual signal was due to RNA (cfRNA).

Figure 22 shows that TCEP added to the urine before the first spin reduced EV loss. Adding TCEP to sample before the first spin was easier than the current art, where DTT is used to recover EVs from the first pellet and leads to decreased pelleting of Tamm-Horsefall Protein (THP) and exosomes and increased final yield. TCEP was preferable to DTT for this purpose because it has a wider range of pH activity (urine has a pH range from 4-8). Methods:

immunoblot using a Mab specific for the urine vesicle marker Aqua-2G and protein stain showing THP of an experiment where extra-cellular vesicles were isolated using multiple centrifugal spins at indicated speeds either without (left panel) or with 16 mM (final concentration) of TCEP added to the urine sample. Adding TCEP reduces the amount of pelleted THP and EVs and increases the yield from the final 200,000 x g pellet. P2 = 2000 x g spin for 10 minutes; P17 = 17,000 x g spin for 10 minutes; P200 = 200,000 x g spin for 1 hour.

Figure 23 shows that Diatomaceous Earth (DE) isolated vesicle protein markers from urine, whereas control silica did not. A single 9 ml first void clean catch urine sample was split in three and either 1) subjected to 2 x 1500 g spin, 2) exposed to Diatomaceous Earth protocol, or 3) exposed to Silica particles as a control. The resulting preps were loaded onto a SDS PAGE gel transferred to Nitrocellulose and immunostained with antibodies specific for vesicle markers Aquaporin 2 and CD9. Protocol: 1 gram of Diatomaceous Earth or Control Silica particles were washed twice in PBS and then resuspended in 10 rnls of PBS plus protease inhibitors. After vigorous vortexing, 150 ul of each slurry were pipetted into separate 3 ml aliquots of a cell-free urine sample in 15 ml polypropylene tubes. The tubes were rotated slowly for 30 minutes then spun at 1500 g for 2 minutes. The urine supernatant was discarded and the pellets were washed 2x with 3 mis of PBS. After the second wash the pellets were suspended in 100 ul of Laemmli buffer, boiled for 3 minutes and 50 ul of each was loaded onto a SDS PAGE gel. "Just Spin" control used the same protocol except no DE was added - showing that DE is required.

Figures 24A and 24B show that Diatomaceous Earth (DE, labeled as "YM") isolated exosomes from multiple biofluids, including saliva (Figure 24A) and cell media, plasma, sera and urine (Figure 24B), to extents comparable with ultracentrifugation ("UC"). Figure 24A shows an immunoblot performed with Mabs specific for vesicle (exosomal) markers Rab5 and CD9. Lane 1 ; bioparticle prep of 3 ml urine sample using DE (protocol as per Figure 23), Lane 2; blank, Lane 3; 2 x 1500 g spin of 5 mis of cell free saliva, Lane 4; 5 mis cell-free urine treated with silica particles, Lane 5; 5 mis cell-free urine treated with Diatomaceous Earth. Saliva Protocol: 7.5 mis of saliva was diluted with 7.5 nils of PBS. Then it was spun 2 x 2000» to remove cells, cell debris, and mucous. The resulting supernatant was split into 3, 5 ml aliquots. One aliquot (negative control) was spun two more times at 1500g. Either 150 μΐ of silica beads or Diatomaceous Earth prepped as per figure 23 legend were added to the other two aliquots and then processed as per figure 23. Figure 24B shows immunoblots performed with Mabs specific for vesicle (exosomal) markers Rab5 (top band) and CD9 (bottom band) isolated from the indicated amounts of the indicated biofluids by DE or ultracentrifugation (UC). Protocol: Jurkat cell culture media (24 hours) was diluted 2x with PBS, Plasma was diluted lOx with PBS, Sera was diluted lOx with PBS and Urine was diluted 2x with PBS. Indicated amounts of these samples were respectively treated with DE, as in Figure 24A, or were spun sequentially as per Figure 22.

Figure 25 shows that DE (optionally non-calcinated (N) and low permeable/small pore size) isolated EVs from urine. It was noted that the calcinated and larger pore diameter DE Grades worked the worst; C = calcinated; N = non-calcinated. Permeability was measured in Darcies (the higher the value, the more permeable). A single first void clean catch urine sample was split into 5 ml aliquots in 15 ml polypropylene tubes and exposed to 300 ul of a slurry (1 g into 10 mis of PBS) of different grades of Diatomaceous Earth acquired from several sources (see below). The mixture was incubated at RT for 20 minutes then the DE was removed from the mixture by a 3 minute 1500 x g spin (supernatant poured off). The treated DE was washed 2x by 5 mis of PBS then suspended in 150 ul of Laemmli buffer. 50 ul of this was run on SDS PAGE gel and transferred to Nitrocellulose. The Nitrocellulose was probed with Mabs specific for extra-cellular vesicle markers CD9 and Aquaporin 2. Shown are signals from glycosylated Aquaporin-2 and CD9 as judged by MW and important properties (if known) of each grade of DE. Grades and sources of Diatomaceous Earth: W = Natural Food Grade DE from PermaGuard; FP-4 = Calcinated DE from Ep Minerals (Reno Nevada); FW- 60 = Calcinated DE from Ep Minerals (Reno Nevada); FP-22 = Calcinated DE from Ep Minerals (Reno Nevada); FN-6 = Natural DE from Ep Minerals (Reno Nevada); Ce -S = Natural DE (Brand Name Celite-S) from Sigma Aldrich; AW-2 = Acid Washed DE from Ep Minerals (Reno Nevada).

Figure 26 shows that calcination and acid washing decreased DE's affinity for exosomes. A single first void clean catch urine sample was split into 5 ml aliquots in 15 ml polypropylene tubes and exposed to 300 ul of a slurry (1 g into 10 mis of PBS) of different grades of Diatomaceous Earth acquired from several sources (see figure 25 Description). The mixture was incubated at RT for 20 minutes, then the DE was removed from the mixture by a 3 minute 1500 x g spin (supernatant poured off). The treated DE was washed 2x by 5 mis of PBS then suspended in 150 ul of Laemmli buffer. 50 ul of this was run on SDS PAGE gel and transferred to Nitrocellulose. The Nitrocellulose was probed with Mabs specific for extra-cellular vesicle markers CD9 and Rab5. Shown are signals from Rab5 and CD9 as judged by MW and important properties (if known) of each grade of DE.

Figure 27 shows Perlite (Sil-Kleer) with smaller pore sizes/permeability can also isolate Extra-cellular Vesicles SilKleer is the commercial name for a type of Perlite which is volcanic glass heated to expand and form pores. It contains less S1O 2 than DE. Methods: A single first void clean catch urine sample was split into 5 ml aliquots in 15 ml polypropylene tubes and exposed to 300 ul of a slurry (1 g into 10 mis of PBS) of different grades of Diatomaceous Earth or Per! lie acquired from several sources (see below). The mixture was rocked slowly for 20 minutes then the DE was removed from the mixture by a 3 minute 1500 x g spin (supernatant poured off). The treated DE was washed 2x by 5 mis of PBS then suspended in 150 ul of Laemmli buffer. 50 ul of this was run on SDS PAGE gel and transferred to Nitrocellulose. The Nitrocellulose was probed with Mabs specific for extracellular vesicle markers CD9 and Aquaporin 2. Shown are signals from glycosylated Aquaporin-2 and Rab5 as judged by MW and important properties (if known) of each grade of DE. Grades and sources of Diatomaceous Earth: W = Natural Food Grade DE from PerrnaGuard; 17-S = #17-S grade Perlite(Sil-KIeer) from Silbrico Corp (Hodgkins, IL); 23-S = #23-S grade Perlite(Sil-Kleer) from Silbrico Corp (Hodgkins, IL); 27 -M= #23-S grade Perlite(Sil-Kleer) from Silbrico Corp (Hodgkins, IL).

Figure 28 shows that Diatomaceous Earth (DE) purified complex RNA. Diatomaceous Earth-purified microRNA was more complex than Norgen kit: RNA from, identical 30 ml samples was isolated via DE or Norgen kit and analyzed for microRNA level with Firefly miRNA Array Panel as per Figure 8.

Figure 29 shows that Diatomaceous Earth (DE) isolated exosomes from cell culture media. Jurkat Cells were grown for 24 hours in DMEM media plus 5% Fetal Bovine Serum. Cells and debris were spun out of the media for 10 minutes at 1500 x g. The resulting cell free media was split in two and subjected to a Diatomaceous Earth protocol (see Figure 23) or an Ultracentrifugation protocol (see Figure 10). Furthermore, the bioparticle-depleted supernatant from, the DE protocol was saved and subjected to the ultracentrifugation protocol. The pellets from all three procedures were suspended in Laemmli buffer, and half of that suspension was loaded on an SDS PAGE gel, and was then transferred to Nitrocellulose and was probed with a monoclonal antibody (Mab) specific for vesicle marker Rab5. Lane 1 ; Ultracentrifuge isolated vesicles. Lane 2; DE isolated vesicles. Lane 3; DE treatment almost completely depleted cell culture media of vesicle-derived Rab5.

Figure 30 shows that pre-clearing samples with Diatomaceous Earth (DE) significantly improved isolation of vesicle protein markers from urine. Extracellular vesicles were isolated from urine samples by a single DE incubation for either 1 min or 10 min, or by a 1 min preclear with DE (primary DE incubation) followed by a 7 min secondary DE incubation ("Preclear lane), Immunoblot analysis for Rab5 and CD9 were perfonned to confirm vesicle isolation.

Figure 31 shows that Diatomaceous Earth (DE) and Na Urate isolated vesicle protein markers from urine with enhanced efficacy when a "combination" protocol was employed. Vesicles were isolated from. 10 ml urine Na Urate, in the presence or absence of

Diatomaceous Earth. miR A (top) and GAPDH RNA + DNA were detected sing TaqMan chemistry. Lower cT scores indicate higher concentrations. Significant improvements (approximately 10-fold to 100-fold) in miRNA biomarker isolation were identified when the "combination" protocol was employed.

Figure 32 shows known EV-associated urinary biomarkers that have been isolated using ultracentrifugation. The methods of the instant disclosure isolate these biomarkers more efficiently, quickly, and inexpensively.

Figure 33 shows that DE placed in a porous cellulose bag and then held in a human mouth for 30 minutes isolated the extra-cellular vesicle marker; Rab5b. Methods: A Cellulose paper tea bag (T-sac Inc.) was cut into a 2 inch by 2 inch square. 1/4 teaspoon of unprocessed Silica gel (lane 1), or 1/3 teaspoon of unprocessed Diatomaceous Earth (lanes 2) or 1/4 of a teaspoon of unprocessed Diatomaceous Earth (lane 3) was placed into the paper and folded over 2x. For lane 1, 5 mis of saliva was diluted with 5 mis of PBS and spun at 2500xg for 8 minutes twice to remove mucous and cell debris. The silica gel in bag (lane 1) was placed in the cell-free supernatant in a 50 ml tube for 30 minutes. For lane 2 and 3 each DE containing bag was placed on one side of the mouth of a volunteer (51 year old male) tucked between the gum and side of the mouth for 30 minutes. After incubation, all 3 bags were washed 2x in PBS then opened. The contents were placed in a 15 ml tube and washed 2x more with PBS, each time the pellet being reformed by a 2 minute 2000 x g spin. The final pellet was resuspended in 350 μΐ of 3x Laemmli buffer, run on SDS-PAGE, transferred to Nitrocellulose and immunoblotted with anti-CD9 and Rab5 antibodies.

DETAILED DESCRIPTION OF THE INVENTION

Certain aspects of the current disclosure provide compositions and methods for producing preparations of isolated secreted microvesicles, RNA, DNA and protein-nucleic acid complexes (collectively called "bioparticles") from a liquid sample. The current disclosure additionally provides methods for producing biofiuids and blood serum/plasma that has been at least partially depleted of bioparticles. The current disclosure also provides improved compositions and methods for producing preparations of isolated secreted microvesicles, RNA, DNA and protein-nucleic acid complexes (collectively called "bioparticles") from a liquid sample. The current disclosure also provides improved methods for producing biofluids and blood serum/plasma that has been at least partially depleted of bioparticles.

In addition, the current disclosure provides compositions and methods for

sequestering and/or reducing bioparticles (including, e.g., secreted microvesicles and/or extracellular vesicles (EVs), RNA, DNA and protein-nucleic acid complexes) by contacting a biofluid with a composition that includes porous beads.

These methods have a number of advantages over the state of the art, which will be apparent from the discussion herein.

In certain aspects, the current disclosure provides methods for the isolation of bioparticles (including, e.g., microvesicles, exosomes, etc.) from a liquid sample (e.g., a biofluid of a subject or cell culture), optionally by a method that involves contacting the biofluid with porous beads (e.g., DE, perlite, etc.), optionally for a brief period of time before ending such contact, and then contacting this "pre-cleared" biofluid sample with one or more of the following compositions, for improved isolation of bioparticles from the biofluid sample (or removal from/reduction of such bioparticles within the biofluid sample so treated): (1 ) contacting the biofluid (the "pre-cleared" biofluid) with porous beads (e.g., DE),

optionally for longer duration than the initial "pre-clearing" contacting; (2) contacting of the biofluid (the "pre-cleared" biofluid) with both porous beads (e.g., DE) and a

crystallization/precipitation reagent such as Na Urate ("combination" method), optionally for a longer duration than the initial "pre-clearing" contacting; (3) contacting of the biofluid (the "pre-cleared" biofluid) with a crystallization/precipitation reagent such as Na Urate, optionally for a longer duration than the initial "pre-clearing" contacting; or (4) while more onerous, "traditional" bioparticle/EV isolation methods, such as ultracentrifugation, can also be performed upon such "pre-cleared" samples. Kits for performance of such of such isolation steps, including such improved isolation/biopartiele sequestration/reduction steps, and instructions for their use, are also provided.

In some aspects, the current disclosure specifically provides therapeutic methods for the sequestration and/or reduction of bioparticles upon contacting porous beads with a biofluid of an organism or subject. In certain embodiments, implantable, porous pouches and/or devices containing porous beads (e.g., diatomaceous earth and/or perlite) are contacted with a biofluid of a subject, e.g., via implantation within a bladder or other organ of a subject, thereby disrupting bioparticle and/or exosome-mediated signaling, to therapeutic end, optionally allowing for isolation of such bioparticles from the implantable

composition/device. In other embodiments, a composition of the current disclosure is contacted with a mucous membrane of a subject, thereby causing sequestration and/or reduction of bioparticles within contacted mucus and/or saliva of the subject, optionally with therapeutic effect.

Specific diseases or disorders contemplated for treatment using the compositions of the current disclosure include hyperproliferative diseases (e.g., cancer), although the methods and compositions of the current disclosure can be applied to any disease or disorder that is modulated (e.g., upregulated) via bioparticle signaling. Kits, devices and/or pouches used to contact a subject with porous beads of the current disclosure, as well as instructions for their use, are also provided.

Extracellular Vesicles and Bioparticles

A diverse collection of proteins, nucleic acids, protein-nucleic acid complexes, and membrane -bound structures are released from cells, particularly mammalian cells, during the course of their life and death (Figure 1). Such compositions are broadly termed

"bioparticles".

Exemplary nucleic acids that are useful in diagnostics include both DNA (also called cell-free DNA (cfDNA), circulating tumor DNA (ctDNA) and/or circulating DNA) and RNA (including cell-free RNA). Cell-free DNA can be found associated with extra-cellular vesicles (EVs) and also completely free of vesicles, although it may be bound by protein. Cell-free DNA (cfDNA) released from necrotic tumor cells (also known as circulating tumor cell DNA (ctDNA)) has been used to ascertain the existence, type and genotype of the tumor cell. Cell-free RNA (cfRNA) also can be found associated with EVs (such as exosomes, sometimes called exo-RNA) or free of vesicles as part of protein-nucleic acid complexes including, e.g., Ago2-microRNA complexes, which are known to exist as stable complexes in cell-free biofluids (Arroyo et al. PNAS 108: 5003-5008). Such complexes are released into the fluids of a subject (e.g., urine, blood, saliva, etc.) according to the status of the cell and/or upon degradation of the cell after death.

Exemplary protein-nucleic acid complexes include protein-microRNA complexes, which are also known to exist as stable complexes in cell-free biofluids (Arroyo et al.).

Ago2-microRNA complexes, cfDNA and cfRNA are released into the fluids of a subject (e.g., urine, blood, etc.) according to the status of the cell and/or upon degradation of the cell after death.

Membrane-bound structures (also known as "extracellular vesicles" or "EVs", or microvesicles) released from or otherwise derived from cells include exosomes,

microvesicles, apoptotic bodies, and high density lipoprotein (HDL)-particles. (It is noted that the terms "extracellular vesicles" (EVs) and "microvesicles" are used interchangeably herein to describe all cell-derived membrane-bound structures. It is further noted that, as would be evident to the skilled artisan, compositions and methods of the current disclosure recited as directed to, e.g., exosome sequestration/reduction/isolation, can also be applied to sequestration/reduction/isolation of other cell-derived membrane bound structures, e.g., extracellular vesicles, microvesicles, etc.)

Methods and compositions for the rapid and inexpensive isolation of extracellular membrane particles, including microvesicles, exosomes, and apoptotic bodies, as well as any- accompanying biomarkers, from biofluids such as urine and saliva, have recently been identified (see PCT/US2015/043768). Such methods have been demonstrated as useful for isolating membrane-free protein-nucleic acid particles, messenger RNA, and DNA as well. The methods allow for obtaining intact hiopartic!es for use in mechanistic, vaccine-related, delivery-related and therapeutic studies.

Such methods use common laboratory reagents and apparatus, and do not require high-speed centrifugation, such as ultracentrifugation. In addition, these methods provide higher yields than more "traditional" methods (e.g., ultracentrifugation), allowing for the isolation of important biomarkers and/or therapeutic targets from a smaller volume of sample than such "traditional" methods allow. The recently developed methods also allow for generation of ceil culture media that are free of endogenous bioparticles, or have reduced concentrations of endogenous bioparticles compared to traditional complete media.

One of the significant technical challenges in current research in cell-free bioparticles is the problem of how to efficiently isolate the bioparticles from various sources. Current methodologies to isolate secreted bioparticles are constrained by technical limitations and other drawbacks. These known methodologies are labor intensive, time-consuming, costly, and can be unreliable for different fluids; see Tauro et al., "Comparison of

ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes," Methods 56(2): 293-304 (print Feb 2012, Epub Jan 21, 2012), doii l0.1016/j.ymeth.2012.01.002. Extracellular Vesicle (EV) Function

The function of EVs is not clearly understood, although in certain capacities, they are believed to act as nano- shuttles for the transport and delivery of information from one location and/or cell type to distant locations and/or other cell types (Mathivanan and

Simpson, J. Proteomics 73(10): 1907-1920 (2010)). Also, they are theorized to be involved in a wide variety of physiological processes, including cardiac disease, adaptive immune responses to pathogens, and in tumor biology. It has been suggested that microvesicles might function in tumor immune suppression, metastasis, and tumor-stroma interactions.

Microvesicles are particularly thought to play a role in immune system cellular

communication, for example, involving dendritic cells and B cells (Raposo et al., J. Exp. Med. 183: 1161 (1996)). Importantly, there is recent evidence that EVs released from tumor cells (also known as Tumor Derived Exosomes or TEXs) can promote tumor invasiveness and/or metastasis (Sucliorska and Lach, Oncol. Rep. (2015) PMID: 26707854). For instance, exosomes released from bladder cancer cells can promote epithelial-to-mesenchymal transition in urothelial cells, setting the stage for bladder cancer invasiveness (Franzen et al., Oncogenesis 4: el63 (2015)).

One of the significant technical challenges in current microvesicle research relates to the problem of how to isolate microvesicles efficiently from their various sources. Current methodologies for isolating secreted microvesicles, including but not limited to exosomes, are constrained by technical limitations and other drawbacks. These known methodologies are labor intensive, time-consuming, costly, and can be unreliable for different fluids; see Tauro et al., "Comparison of ultracentrifugation, density gradient separation, and

immunoaffinity capture methods for isolating human colon cancer cell line LIM 1863 -derived exosomes," Methods 56(2):293-304),

In particular, investigators and clinicians have previously possessed few choices for the selective, non-toxic "knock-out", elimination and/or amelioration of EVs in vitro (i.e., in cell culture) or in vivo (i.e., in animal models or human subjects in clinical trials). Such methods would enable pre-clinical validation of exosomal targets, discovery of disease biomarkers and possibly even provide for clinical therapeutic intervention of disease-altering exosomal effects. One previously available method for EV reduction has been to use antibodies specific for membrane proteins to sequester EVs. However, since many cells possess membrane proteins identical to those of EVs, it has been impossible to prevent such antibodies from affecting cells as well as exosomes. Furthermore, antibodies are expensive and possess limited capacity. A second available alternative has been to use Heparin to bind EVs (Franzen et al., Oncogenesis. 4: el63 (2015)). However, Heparin has a very limited half- life and would thus require constant dosing to maintain any manner of blockade/chronic depletion of EVs. Furthermore, Heparin is well known to affect cells and has been shown to possess significant side effects when used therapeutically in humans and animals (Smythe et al. "Guidance for the practical management of the heparin anticoagulants in the treatment of venous thromboembolism. J. Thromh. Thrombolysis. 41 : 165 (2016); Gurbuz et al. "Heparin toxicity in cell culture: a critical link in translation of basic science to clinical practice." Blood Coagul. Fibrinolysis. 24: 742 (2013)).

Microvesicies

The term "microvesicies" (also known as microparticles) refers to a heterogeneous in vivo collection of membrane bound (i.e., encapsulated) biological structures. These stmctures are formed from lipid bilayer, which is the same lipid bilayer that comprises eukaryotic cell membranes. Microvesicies can reside within the cell, or in the extracellular environment. Microvesicle structures (intracellular and/or extracellular) are produced by nearly all mammalian cell types, as well as during in vitro cell culture.

The molecular composition of microvesicies is diverse, containing and/or transporting a variety of nucleic acids, proteins and lipids. Microvesicle molecular composition is generally reflective of the plasma membrane and antigenic content of the cell types, tissues and organs from which they originate. Mathivanan and Simpson, "Exosomes: extracellular organelles important in intercellular communication," J. Proteomics 73(10): 1907-1920 (2010). Although protein composition of the microvesicies varies, most of these structures are enriched for various soluble protein markers, including HSP70, Hsc70, CD63, CD9, CD81 and others. Circulating microvesicies have also been reported to contain nucleic acids, including messenger RNAs, DNAs, and relatively high levels of small RNAs and microRNAs.

Circulating microvesicies are associated with numerous cell functions, including intercellular (cell-to-cell) communication, removal of metabolic byproducts and toxins (including misfolded proteins, cytotoxic agents and metabolic waste), angiogenesis, tissue regeneration, endocytic recycling of the plasma membrane, selective removal of plasma membrane proteins and regulation of immune functions such as antigen presentation. Some microvesicies have been shown to transport messenger RNA (rnRNA) and microRNA (miR A), which is highly suggestive of microvesicles functioning as messengers that allow one cell type to regulate the activity of a distant cell type by acting as a shuttle that can merge with the distant cell and release its contents into that target recipient cell. This microvesicle shuttle can utilize the body fluids to travel to distant sites and control the activity of distant target cells.

Circulating microvesicles (cMVs), or synonymously, extracellular microvesicles (eMVs) or extracellular vesicles (EVs), describe an eclectic group of microvesicles that are released by cells, and therefore, exist in extracellular spaces and/or reside in body fluids. The mammalian body fluids that are known or suspected to contain cMVs include, but are not limited to, blood, urine, saliva, breast milk, tears, sweat, ascites fluid and cerebrospinal fluid. Secreted microvesicles are also found in cell culture media that has been exposed to cultured mammalian cells.

With regard to defining and categorizing the cMV molecules that can be found in body fluids, there is lack of consensus as to the nomenclature and description of the different types of cMV particles. Some literature distinguishes at least three subcategories of circulating microvesicles, based on their mechanistic origin. The molecular/cellular mechanisms that produce microvesicles are theorized to include (i) exocytosis of intracellular multivesicular bodies, (ii) outward budding, fission and shedding of plasma membrane, and (iii) byproducts of apoptosis. The diverse collection of circulating microvesicle structures can range in size from about 20 nanometers (nm) to upwards of about 1,000 nm (i.e., 1.0 micrometer, micron, or μητι) in diameter.

The first recognized subgroup of cMVs are those produced by direct plasma membrane budding, fission and shedding. Some sources describe these shed microvesicles as generally large, namely with lower sizes limits of at least 100 nm or 200 nm, and with an upper size limit of about 1 ,000 nm in diameter. Some have proposed that these structures be termed "ectosomes" or "shedding microvesicles (SMVs)." Still other groups state that ectosome particles may be as small as 40 or 50 nm in diameter.

A second recognized subgroup of cMVs are exosomes, that is, the preformed microvesicles that are released from the cell following the exocytic fusion of intracellular multivesicular bodies with the plasma membrane. These exosome structures are generally smaller than ectosomes, and have an upper size limit estimated to be about 100, 1.50 or 200 nm, and a lower size limit of about 40 nm or 50 nm. However, various sources differ in their size-based definitions for exosomes, and this size distinction remains unresolved.

A third group of structures is the apoptotic blebs released by dying cells. These membrane structures have a less well-defined size range, and may be anywhere from about 50 nm to about 5,000 nm in diameter.

A unified microvesicle nomenclature and classification system utilizing broadly- accepted definitions has been elusive in the field. In the literature, microvesicles have been alternatively referred to as micropaiticles, nanoparticles, exosomes, ectosomes,

epididimosomes, argosomes, exosome-like vesicles, promininosomes, prostasomes, dexosomes, texosom.es, archeosomes, oncosomes, exosome-like vesicles, apoptotic blebs, extracellular vesicles and shedding microvesicles. in some publications, uses of these tenns is conflicting or overlapping. Simpson and Mathivanan (2012), "Extracellular Microvesicles: The Need for Internationally Recognized Nomenclature and Stringent Purification Criteria". J Proteomics Bioinform (2). doi: 10.4172/jpb.l0000el0. One source suggests that a preferred nomenclature for circulating microvesicle is based on the microvesicle's mechanism of origin. Namely, these categories would be (i) the ectosomes produced by membrane budding, (ii) the exosomes produced by the exocytosis to intracellular multivesicular bodies, and (iii) the membrane blebs produced by the process of apoptosis.

The release of exosomes was highlighted from different cell types in a variety of physiological contexts. Thus, it has been shown that B cells release exosomes bearing molecules of the major histocompatibility complex class II, which play a role in antigen presentation (Raposo et al., J. Exp. Med. 183 (1996) 1161). Similarly, it has been shown that dendritic cells produce exosomes (also referred dexosomes) with specific structural and functional characteristics, and playing a role in mediating the immune response, including the stimulation of cytotoxic T lymphocytes (Zitvogel et al., Nature Medicine 4 (1998) 594). It has also been shown that tumor cells secrete in a controlled manner, specific exosomes (also designated texosomes) bearing tumor antigens and are able to present these antigens or to transmit them to antigen-presenting cells. It is also known that mast cells accumulate molecules in intracellular vesicular compartments, which can be secreted in response to signals (Smith and Weis, Immunology Today 17 (1996) 60). In general, it seems that the cells emit signals and communicate with each other through membrane vesicles they release, which may carry antigenic patterns, MHC molecules, or any other signal (cytokine, growth factor, etc.) which have special structural and functional characteristics and are produced in different physiological situations. Membrane-bound structures (also known as extracellular vesicles or microvesicles) released from or otherwise derived from cells include exosomes, microvesicles, apoptotic bodies, and high density lipoprotein (HDL)-particles. (It is noted that the terms "extracellular vesicles" and "microvesicles" are used interchangeably herein to describe all cell-derived membrane -bound structures.)

The function of extracellular vesicles is not clearly understood, although they are theorized to act as nano-shuttles for the transport and delivery of information from one location and/or cell type to distant locations and/or other cell types (Mathivanan and

Simpson, "Exosomes: extracellular organelles important in intercellular communication," J. Proteomics 73(10): 1907-1920 (2010)). Also, they are theorized to be involved in a wide variety of physiological processes, including cardiac disease, adaptive immune responses to pathogens, and in tumor biology. It has been suggested that microvesicles function in tumor immune suppression, metastasis, and tumor-stroma interactions. In particular, microvesicles are believed to function in immune system cellular communication, for example, signaling involving dendritic cells and B cells (Raposo et al., J. Exp. Med. 183: 1161 (1996)).

The ubiquitous presence of circulating microvesicles in body fluids, their association with a broad range of physiological processes, as well as their elevated levels in human disease, suggest that microvesicles could serve as tools in molecular medicine, as measures of physiological state, disease diagnostics, and possibly therapeutic targeting.

Although the study of microvesicles/exosomes had been greatly advanced with the development of analytical systems such as nanoparticle tracking analysis (NT A) and fluorescent nanoparticle tracking analysis (FNTA; see (i) Van der Pol et al., "Optical and non-optical methods for detection and characterization of rnieroparticles and exosomes," Journal of Thrombosis and Haemostasis (2010), doi: 10.1111/j.l538-7836.2010.04074.x; and (ii) Dragovic et al., "Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis," Nanomedicine: Nanotechnology, Biology and Medicine (201 1 ),

doi: 10.1016/j.nano.2011.04.003), other technical challenges remain related to isolation and use of microvesicles/exosomes.

Methods for Isolating Bioparticles

In certain aspects, the current disclosure provides methods for the isolation of bioparticles, specifically including isolation of cell-free DNA, including circulating tumor DNA (ctDNA) from, liquid samples. In certain embodiments, the liquid sample is urine. From urine as an example, certain methods of the current disclosure comprise the following steps:

A) (Optional) Preparing a Whole Urine Prespin Treatment Solution (also called Solution 1)

The purpose of the Whole Urine Prespin Treatment Solution is to reduce the amount of bioparticles lost in the first spin (prespin), which is typically performed to reduce the amount of cells and debris in the Whole Urine sample.

It is well known in the field that spinning urine at speeds above 17,000 x g can lead to the loss of microvesicles due to the trapping action of the protein THP (also called

uromodulin). However, it v/as discovered that a large amount of microvesicles could also be lost in the lower speed spins (below even 3000 x g) that are typically used to remove cells and debris (see Figure 20).

In certain embodiments, the Whole Urine Prespin Treatment Solution consists of the reducing agent TCEP. TCEP is preferred over DTT for this purpose, as it is active in a broader range of pH. In one embodiment, the concentration of the TCEP in the lOx solution would be at a concentration of 160mM. Other embodiments have the TCEP lOx

concentration being between 80mM and 300mM. Other embodiments use other reducing agents such as DTT at similar concentrations.

In other embodiments, the Whole Urine Prespin Treatment Solution consists of an acid buffer plus reducing agent such that addition of the acid buffer-containing Whole Urine Prespin Treatment Solution reduces the pH of the Whole Urine below 6.

In other embodiments where the reducing agent is not used, the Whole Urine Prespin Treatment Solution consists of a basic buffer that increases the pH of the Whole Urine to above 7 as it was discovered that without reducing agent present, less bioparticles are lost if the pH of the sample is above 7.

B) (Optional) Adding the Whole Urine Prespin Treatment Solution to the whole urine sample.

In certain embodiments, a l/10 Ul volume of a lOx Whole Urine Prespin Treatment Solution is added to the whole urine sample to create a mixture. In other embodiments any combination of Prespin Treatment Solution and Urine Sample yielding a mixture with a final concentration of the TCEP or other reducing agent of from 5mM to 30 niM and a pH below 6 is acceptable or, if no reducing agent is used, a pH above 7. No incubation is necessary; the next step can be taken immediately. C) Centrifuging the Mixture

The mixture is subjected to a centrifugation. The centrifugation typically forms a pellet and a supernatant, although pelleted material may not be visible to the eye. In contrast to the prior art, this centrifugation does not require ultracentrifugation, e.g., does not require centrifugal forces in excess of 100,000 x g. This centrifugation can be done at slower speeds, for example, to generate RCF values of not more than 30,000 x g, or not more than 20,000 x g, or not more than 12,000 x g, or not more than 10,000 x g, or not more than 5,000 x g, or not more than 2,000 x g, or not more than 1 ,500 x g. In one embodiment, a centrifugation producing 1,000 x g is used. The length of time for centrifugation is not limiting. In one embodiment, the centrifugation is for 5 minutes. Alternatively, the centrifugation can proceed for one or more minutes, two or more minutes, three or more minutes, four or more minutes, six or more minutes, seven or more minutes, eight or more minutes, nine or more minutes, ten or more minutes, fifteen or more minutes, twenty or more minutes, etc.

D) Removing the Supernatant

Following the spin, the resulting supernatant is carefully removed so as not to disturb the pellet, and the pellet is discarded.

E) Combining the Urine Supernatant from D) with the Crystallization/Precipitation Solution (also called solution 2)

To initiate the crystallization/precipitation of bioparticles, Solution 2 (see below) is added to the Supernatant generated in step D) to create a mixture. In one embodiment, a 1/10 Λι volume of a lOx concentration of Solution 2 is added to the supernatant, however, any combination that yields a .5x to 5x final concentration of Solution 2 in the mixture is acceptable.

F) Incubating the Resulting Mixture

The resulting mixture is then incubated. The incubation can be with any degree of cooling, for example at 5°C, although such cooling is not always required. The incubation times can vary, and are not in any way limiting. For example, incubation can be anywhere between 0 minutes to overnight (e.g., 16 hours). The incubation can be with or without mixing, and the mixing during the incubation period can be constant or intermittent. In certain embodiments a 15 -minute incubation on ice is performed. G) Centrifuging the Mixture

The mixture from F) is subjected to a centrifugation. The centrifugation typically forms a pellet and a supernatant, although pelleted material may not be visible to the eye. In contrast to the prior art, this centrifugation does not require ultracentrifugation, e.g., does not require centrifugal forces in excess of 100,000 x g. This centrifugation can be done at slower speeds, for example, to generate RCF values of not more than 30,000 x g, or not more than 20,000 x g, or not more than 12,000 x g, or not more than 10,000 x g, or not more than 5,000 x g, or not more than 2,000 x g, or not more than 1 ,500 x g. In the one embodiment, a centrifugation producing 2,000 x g is performed. The length of time for centrifugation is not limiting. In one embodiment, the centrifugation is for 5 minutes.

H) Removing the Supernatant

Following the spin, the resulting supernatant is carefully removed so not to disturb the pellet, and this supernatant is discarded.

I) Resuspending the Pelleted Material

After removal of the supernatant, the pellet is resuspended in any desired

resuspension solution and collected for further analysis. The resuspension solution can use either water, phosphate buffered saline (PBS), or any other suitable aqueous, such as any isotonic solution. In some embodiments, the resuspension solution is basic in nature, for example, 100 mM Tris pH 8. The volume used for the resuspension is most typically the smallest possible practical volume, and is typically many times smaller than the volume of the original liquid sample comprising the secreted microvesicles. In some embodiments, the volume of the resuspension solution is smaller by at least one order of magnitude than the volume of the original liquid sample.

"Traditional" Isolation of Microvesicles and Bioparticles

One of the significant technical challenges in current microvesicle research relates to how to efficiently isolate the rnicrovesicles from various sources. Current methodologies to isolate secreted microvesicles (including but not limited to exosornes) are constrained by technical limitations and other drawbacks. These known methodologies are labor intensive, time-consuming, costly, and can be unreliable for different fluids; see Tauro et aL,

"Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM 1863 -derived exosornes," Methods 56(2): 293-304 (print Feb 2012, Epub Jan 21, 2012), doi: 10.1016/j.ymeth.2012.01.002.

LJltracentrifugation is the traditional method for microvesicle isolation. Generally, centnfugation refers to the process where a centrifugal force is applied to a mixture, whereby more-dense components of the mixture migrate away from the axis of the centrifuge relative to other, less-dense components in the mixture. The force that is applied to the mixture is a function of the speed of the centrifuge rotor, and the radius of the spin. In most applications, the force of the spin will result in a precipitate (a pellet) that gathers at the bottom of the centrifuge tube, where the remaining solution is properly called a "supernate" or

"supernatant." In other similar applications, a density-based separation or "gradient centrifugation" technique is used to isolate a particular species from a mixture that contains components that are both more dense and less dense than the desired component (e.g., OptiPrep™)-

During the circular motion of a centrifuge rotor, the force that is applied is the product of the radius and the angular velocity of the spin, where the force is traditionally expressed as acceleration relative to "g," the standard acceleration due to gravity at the Earth's surface. The centrifugal force that is applied is termed the "relative centrifugal force" (RCF), and is expressed in multiples of "g" (or "x g").

The centnfugation procedures that have been used to isolate circulating microvesicles can incorporate as many as five centrifugation steps, with at least two of these spins requiring centrifugal forces in excess of 100,000 x g for several hours. Generally, ultracentrifugation is centrifugation conditions that produce forces in excess of 100,000 x g. These

ultracentrifugation procedures are time consuming and labor intensive, and furthermore, are constrained by the requirement for expensive ultracentrifugation equipment. They can also be unreliable for certain fluids (see Figures 2 and 3).

Size exclusion chromatography can also be used to isolate microvesicles, for example, by using a Sephadex™ G200 column matrix. This approach is also time consuming and the yields are inconsistent. It also may be difficult or expensive to scale up to larger quantities of biofluid. Finally, these columns can be clogged by viscous biofluids.

Selective immunoaffinity capture (including immuno-precipitation) can also be used to isolate circulating microvesicles, for example, by using antibodies directed against the epithelial cell adhesion molecule, a type-1 transmembrane cell-surface protein (also known as EpCAM, CD326, KSA, TROP1). The anti-EpCAM antibodies can be coupled to magnetic microbeads, such as Dynabeads* magnetic beads. This method has very low yields compared to other methods, and is costly due to the use of the immuno-reagents and magnetic beads, and further, these system reagents cannot be re sed for subsequent isolations.

Enhanced Methods for Isolating Bioparticles

In certain aspects, the present disclosure provides enhanced methods for the isolation of bioparticles from liquid samples. In certain embodiments, the liquid sample is urine. From urine as an example, certain methods of the current disclosure comprise the following steps:

A) (Optional) Preparing a Whole Urine Prespin Treatment Solution (also called Solution 1)

Performed as described above.

B) (Optional) Adding the Whole Urine Prespin Treatment Solution to the whole urine sample.

Performed as described above.

C) Optionally performed while performing the prespin treatment of (A) and/or (B) above, porous beads {e.g., DE, perlite, etc.) can also be added to the biofluid (here, urine), before performing the centrifugation of step (D) below, thereby forming a "pre-cleared" biofluid sample under the improved methods of the current disclosure.

D) Centrifuging the Mixture

The mixture is subjected to a centrifugation. The centrifugation typically forms a pellet and a supernatant, although pelleted material may not be visible to the eye. In contrast to the prior art, this centrifugation does not require ultracentrifugation, e.g., does not require centrifugal forces in excess of 100,000 x g. This centrifugation can be done at slower speeds, for example, to generate RCF values of not more than 30,000 x g, or not more than 20,000 x g, or not more than 12,000 x g, or not more than 10,000 x g, or not more than 5,000 x g, or not more than 2,000 x g, or not more than 1,500 x g. In one embodiment, a centrifugation producing 1 ,000 x g is used. The length of time for centrifugation is not limiting. In one embodiment, the centrifugation is for 5 minutes. Alternatively, the centrifugation can proceed for one or more minutes, two or more minutes, three or more minutes, four or more minutes, six or more minutes, seven or more minutes, eight or more minutes, nine or more minutes, ten or more minutes, fifteen or more minutes, twenty or more minutes, etc.

E) Removing the Supernatant Following the spin, the resulting supernatant is carefully removed so as not to disturb the pellet, and the pellet is discarded.

F) If the supernatant has not yet been contacted with a porous bead (to "pre-clear" the sample), or as an alternative to the above "prespin" procedure, the supernatant of the biofiuid sample, or a whole biofiuid sample (non-prespin) is contacted with a porous bead (e.g., DE, perlite, etc.) for a period of time as recited elsewhere herein, and this "pre-elearing" contacting is terminated either via low- speed centritugation as described elsewhere herein, via elution of "pre-cleared" biofiuid from a column or matrix formed by the porous beads, or by other method known in the art, thereby forming a "pre-cleared" biofiuid

sample/supernatant.

G) Combining the Biofiuid Sample/Supernatant (e.g., Urine Supernatant) from F) with a Crystallization''Precipitation Solution (e.g., solution 2), or with a porous bead (e.g., DE, perlite, etc.), for bioparticle isolation purposes.

To initiate the crystallization/precipitation of hiopa.rtic.les where a

crystallization/precipitation solution is employed, Solution 2 (see below) is added to the Sample/Supernatant generated in step F) to create a mixture. In one embodiment, a l/10 ih volume of a lOx concentration of Solution 2 is added to the supernatant, however, any combination that yields a .5x to 5x final concentration of Solution 2 in the mixture is acceptable.

H) Incubating the Resulting Mixture

The resulting mixture is then incubated. The incubation can be with any degree of cooling, for example at 5°C, although such cooling is not always required. The incubation times can vary, and are not in any way limiting. For example, incubation can be anywhere between 0 minutes to overnight (e.g., 16 hours). The incubation can be with or without mixing, and the mixing during the incubation period can be constant or intermittent. In certain embodiments a 1.5 -minute incubation on ice is performed.

I) Centrifuging the Mixture

The mixture from H) is subjected to a centrifugation. The centrif ligation typically forms a pellet and a supernatant, although pelleted material may not be visible to the eye. In contrast to the prior art, this centrifugation does not require ultracentrifugation, e.g., does not require centrifugal forces in excess of 100,000 x g. This centrifugation can be done at slower speeds, for example, to generate RCF values of not more than 30,000 x g, or not more than 20,000 x g, or not more than 12,000 x g, or not more than 10,000 x g, or not more than 5,000 x g, or not more than 2,000 x g, or not more than 1,500 x g. In the one embodiment, a centrifugation producing 2,000 x g is performed. The length of time for centrifugation is not limiting. In one embodiment, the centrifugation is for 5 minutes.

J) Removing the Supernatant

Following the spin, the resulting supernatant is carefully removed so not to disturb the pellet, and this supernatant is discarded.

K) Resuspending the Pelleted Material

After removal of the supernatant, the pellet is resuspended in any desired

resuspension solution and collected for further analysis. The resuspension solution can use either water, phosphate buffered saline (PBS), or any other suitable aqueous, such as any isotonic solution. In some embodiments, the resuspension solution is basic in nature, for example, 100 mM Tris pH 8. The volume used for the resuspension is most typically the smallest possible practical volume, and is typically many times smaller than the volume of the original liquid sample comprising the secreted microvesicles. In some embodiments, the volume of the resuspension solution is smaller by at least one order of magnitude than the volume of the original liquid sample.

While the above improved process describes an in vitro application of the current porous bead "pre-clearing" approach, it is also contemplated that such a "pre-clearing" approach could be used to improve, e.g., yield and/or purity of bioparticies during direct application of porous beads to a biofluid of a subject in vivo (e.g., using a first porous pouch or device containing porous beads that contacts a subject's mouth for "pre-clearing" of the subject's saliva, followed by application of a second porous pouch or device containing porous beads that contacts a subject's mouth and that is used for isolation of bioparticies from the subject's saliva).

Bioparticie Reduction in Biofluids of an Organism

The current disclosure provides for contact of biofluid of a subject with a composition containing porous beads capable of targeted sequestration and/or reduction of bioparticies from the contacted biofluid. Such compositions can optionally be implantable, and can include an outer, porous membrane and/or porous cellulose, mesh or other biocompatible layer, which surrounds or otherwise segregates the porous bead content from, e.g., surrounding tissues and/or cells, while allowing for bioparticles originally present in a biofluid to contact and be sequestered by the porous beads. Optionally, the composition containing the porous beads is a pouch or device bounded by a porous membrane and/or porous cellulose. In certain embodiments, the porous beads are siliceous beads, such as diatomaceous earth and/or perlite. Various implantable membranes, sacs and/or pouches that are contemplated as adaptable for use with the porous beads of the current disclosure have been described in the art, including at, e.g., EP 1466632; US 8,591,531; US 6,262,255; US 5,713,888; and US 2014/0014226.

It is newly contemplated herein that undesired and/or deleterious signaling activities attributable to bioparticles that are present within a biofluid of an organism (e.g., within urine, saliva and/or other bodily fluids of a subject, in plants, or within growth media of cells in culture, including cells of animals single-celled organisms) can be disrupted simply via contacting of such biofluid(s) with porous beads (optionally contained within a biocompatible pouch and/or device) capable of sequestering and/or reducing the level of targeted bioparticles (e.g., EVs, e.g., exosomes) that are originally present in such biofluid(s).

Liquid Samples

The present disclosure provides methods, incl ding improved methods, for isolating circulating bioparticles from liquid samples. The current disclosure also provides methods for sequestering and/or reducing circulating bioparticles within liquid samples. It is not intended that the nature of the liquid samples be in any way limited, and can be any liquid sample that contains bioparticles. Advantageously, very small volumes of liquid sample can be used and/or contacted, for example, as little as about 10 pL, 50 μΐ.,, 0.1 mL, 0.2 mL, 0.3 mL, 0.4 mL, 0.5 mL, 1.0 mL, or 2.0 mL. or 3.0 mL. or 5.0 mL of starting sample can be used.

In some embodiments, the liquid sample can be conditioned cell culture media that has been used to culture a cell line in vitro that has produced bioparticles, and therefore, those bioparticles are now contained in the conditioned media. The conditioned cell culture media can be a complete media (containing a serum supplement), or a serum-free culture media.

In some embodiments where the conditioned cell culture media is a complete media comprising a serum supplement, the serum supplement that is used can be a serum that has been depleted of any endogenous circulating bioparticles prior to addition of the supplement to the defined minimal growth media. The present disclosure also provides methods

(including improved methods) for producing such bioparticle-depleted serum.

In some embodiments, the liquid sample and/or liquid that is contacted is a biofluid (synonymous with body fluid). The body fluid that is contacted with a composition of the current disclosure or used in an analysis and/or method of the current disclosure is not particularly limited. Bioparticles can be isolated from, sequestered and/or reduced within any body fluid using the methods of the current disclosure, even though a particular body fluid is not itemized herein, as it is intended that the present methods find use with any and all body fluids. For example, body fluids that can be contacted with, analyzed by and/or treated with the compositions or methods of the current disclosure include, but are not limited to, amniotic fluid, blood serum, blood plasma, breast milk, cerebrospinal fluid, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, semen, synovial fluid, tears, urine, sweat, saliva, and ascites fluid.

CRYSTALLIZATION/PRECIPITATION REAGENTS (Solution 2)

In certain aspects, the present disclosure provides methods, including improved methods, for the isolation of bioparticles, including in certain embodiments for isolation of cf-nucleic acids, including ctDNAs, from liquid samples, in certain aspects, where the methods use a crystallization/precipitation solution (Solution 2), combined with the liquid sample, to initiate the bioparticles precipitation and isolation. Certain embodiments use Monosodium Urate in solid form, slurry form, or liquid form (solubilized in a basic solution such as NaOH). Another embodiment uses Uric Acid. Another embodiment uses some other salt of Uric acid. The amount used depends on the sample volume. One embodiment uses from 1 to 100 nM Monosodium Urate. Optionally, a Monosodium Urate or other crystallization/precipitation reagent at a concentration of 1 , 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 nM can be added to a sample in an amount of 5 , uL, 10 μυ, 20 μL·, 30 μL·, 40 μυ, 50 LiL, 60 μ , 70 μΙ_, 80 μυ, 90 LIL, or 100 μΕ or more, to promote a

crystallization/precipitation event in the sample. It was discovered that Uric Acid and optionally Monosodium Urate when added to a liquid, optionally urine, crystallizes and induces a precipitate that includes bioparticles but excludes many proteins and salts contained in the liquid. MATRIX REAGENTS (Solution 2)

Certain aspects of the instant disclosure provide methods (including improved methods) and compositions for isolating, sequestration and/or reduction of bioparticles that, without wishing to he bound by theory, appear to exploit pore sizes of certain materials to effect bioparticle enrichment, such as the pore sizes found in porous beads, such as siliceous beads or particles, examples of which include diatomaceous earth (DE) and perlite. In certain embodiments, the porous beads (e.g., porous siliceous beads) are non-calcinated, non-acid washed, (i.e. natural grades) diatomaceous earth with average pore sizes ranging from .1 to 10 microns and permeabilities less than 2 darcies. In some embodiments, the porous beads (e.g., porous siliceous beads) are Perlite (i.e. treated volcanic glass) with pore sizes from .1 to 10 microns and permeabilities less than 2 darcies. It is contemplated that matrix reagents with average pore sizes in the range of 0.01 micron to 50 microns, including in the range of 0.01 to 1 micron, 0.5 to 40 microns, 0.5 to 50 microns, 1 to 20 microns, 1 to 10 microns, 2 to 5 microns, and/or about 3, 4, and/or 5 microns are effective reagents for isolation of microvesicles/bioparticles as described herein. Similarly, it is contemplated that agents with permeabilities of less than 5 darcies, less than 2 darcies, less than 1 darcy, less than 0.5 darcies, less than 0.3 darcies, or smaller can be effective reagents for the methods and compositions of the current disclosure. Exemplary grades of DE are non-calcinated, non-acid washed, "natural" forms possessing pore sizes between .5 - 2 microns in diameter and permeability below .1 Darcies (Figures 25-26). Certain exemplar}' Perlite grades have a permeability below 3 and pore sizes below 10 microns (Figure 27).

EXAMPLES

The following examples are offered to illustrate, but not limit, the claimed invention.

It is understood that various modifications of minor nature or substitutions with substantially similar reagents or components will be recognizable to persons skilled in the art, and these modifications or substitutions are intended to be included within the spirit and purviev/ of this application and within the scope of the appended claims.

Cell-free membrane and/or protein-containing structures found in urine have high value as biomarkers for disease or disorder diagnosis, and even for approaches involving screening of urine for therapeutic targets (e.g., biomarker and/or targetable miRNAs). Cell- free biomarkers are preferred agents to work with because they are relatively easy to isolate, are less variable in content/consistency than whole cells and/or whole cell-containing fluids, and can travel from the tissue of their origin into easy to isolate biofluids, such as urine (Figure 1 ).

A number of methods have been implemented and/or proposed for isolating microvesicles (MVs) from urine; however, all have significant limitations (Figures 2-3). In particular, current methods other than those described herein - both commercial and noncommercial - possess one or more of the following drawbacks:

1. Certain methods require expensive equipment (e.g., ultracentrifuge methods);

2. Certain methods require expensive kits (e.g, NEP, Qiagen, Exiqon);

3. Certain methods are difficult to scale up (e.g., orgen (only a 1 ml column), ultrafiltration filters (e.g., Amicon) can clog

4. Many such methods are time consuming (e.g., ultracentrifuge methods, SBI, Lifetech, Exiqon);

5. Certain methods produce low yield, especially from certain fluids, such as urine (e.g., NEP, SBI, Lifetech, Exiqon);

6. Certain methods use phenol (e.g., Lifetech).

An unmet need was thus previously identified for isolation of bioparticles (e.g., microvesicles, exosomes, etc.) from urine, as well as other bodily fluids (e.g., saliva, as well as blood, plasma, etc.), which has been improved upon in certain of the below examples. The instant methods (including certain improved methods) were newly identified to allow for rapid and inexpensive isolation of extracellular membrane particles, including microvesicles, exosomes and apoptotic bodies. The methods described herein were also observed to isolate membrane-free protein-nucleic acid particles as well. Finally, obtaining and in some cases dramatically improving yield of intact bioparticles is an advantage of the current disclosure, with such bioparticles used in mechanistic, vaccine- and delivery-related and therapeutic studies.

One advantage of certain of the currently described methods is that they use common laboratory reagents and apparatuses, and do not require high-speed centrifugation (e.g., use of an ultracentrifuge). Thus, the current methods are designed to achieve a higher yield than previously available methods, also allowing for isolation of important biomarkers and/or therapeutic targets from a smaller volume of sample than could be obtained using previously- described approaches. Biopartieles, particularly extracellular vesicles (EVs), including exosonies, have also recently been identified as important signaling moieties during initiation/establishment and/or progression of certain diseases and disorders, including hyperproliferative diseases such as cancer. Porous beads were previously identified (PCT/US2015/043768) as capable of isolating a range of biopartieles from contacted biofluids.

Certain aspects of the current disclosure therefore contemplate administration of porous bead compositions directly to a subject or organism, to cause sequestration and/or reduction of signaling biopartic!e levels within a biof!uid of a contacted subject, for advantageous, e.g., therapeutic, effect.

Deve lopment of Systems for Isolation of Circulating Biopartieles

Being unsatisfied with current methods for the isolation of circulating biopartieles, including exosomes, from urine and other biofluids, the following experiments were initiated and undertaken in an effort to develop new and improved methods for this purpose.

It was known that urine contains several constituents (chemicals) that can be present at saturating concentrations and thus can form crystals in vivo and in vitro and also can be easily precipitated from a urine sample in vitro. Since it was also known that certain crystals can form on and/or interact with epithelial cell membranes in the urinary tract, it was hypothesized, since micro vesicles are membrane structures as well, that crystal growth on microvesicles could be induced artificially and then the microvesicle-crystal complex could be easily centrifuged out of solution as a method for microvesicle purification. Similarly, it was noticed while working with urine that the same group of endogenous chemicals present at near saturation levels, often spontaneously precipitated in vitro when exposed to lower temperatures and/or artificial concentration. It was hypothesized that artificially increasing the levels of some of these constituents could reliably induce a precipitate that would include biopartieles. It was also realized that the addition of these constituents of the urine approach to other liquids containing biopartieles (e.g., saliva, blood, plasma, etc.) would similarly crystallize/precipitate biopartieles (as was demonstrated in Example 3 below).

After an extensive trial and error process that examined different constituents of urine, it was discovered in certain embodiments that the addition of Monosodium Urate, but also optionally (additionally and/or alternatively) Uric Acid, or other salts of Uric Acid could indeed induce a crystallization''precipitation of urine and that the resulting sediment of this included biomarkers known to be present in microvesicles and cell-free protein-nucleic acid complexes.

Example 1: A Recently Discovered Na Urate Protocol Isolated Microvesicles from Urine Quickly and Effectively

To exemplify certain recently discovered methods for microvesicle and bioparticle isolation, 2 x 1 mi whole urine samples obtained from, two different donors (one sample was naturally concentrated and one sample was naturally dilute) were treated with 16 mM TCEP reducing agent as part of a Whole Urine Prespin Treatment Solution, which simultaneously reduced the pH to <6 and was believed to have reduced the matrix-forming properties of the abundant endogenous urine protein, THP. The mixture was immediately centrifuged at 1,000 x g for 5 minutes to remove cells and debris. The supernatant was gently removed and then 40 microliters of 1.31 mM Monosodium urate (in 1 N NaOH) was added to create a mixture. This mixture was incubated for 15 minutes on ice and then centrifuged for 5 minutes at 1,000 x g in a desktop microcentrifuge. After centrifugation, the supernatant was gently removed and the pellet was resuspended in a small volume of PBS buffer.

At the same time, using the same samples, bioparticles were isolated using the gold standard method of Ultracentrifugation using a published protocol (Fernandez-Llama Tamm- Horsfall Protein and Urinary Exosome isolation (2010) Kidney Int. 77:736-742), as well as with three commercial precipitation kits (SBI, Life Technologies, and Exiqon), following their protocols. The instant method took 25 minutes, as compared to 2.5 hours for ultracentrifuge, 14 hours for SBI, 2 hours for Exiqon and 3 hours for Life Technologies. The instant method required no special equipment, while the Ultracentrifuge method requires a -$35,000 ultracentrifuge and rotor. The commercial methods all required an expenditure of between ~$2 to ~$10, while the instant method required approximately 1 penny worth of Monosodium urate.

Protein, biomarkers for microvesicles were assayed for all of the above preparations. As shown in Figure 4 (which presents the results of multiple western blots using antibodies specific for four protein biomarkers), all 5 methods were able to isolate HSP70, Rab5, and CD9 from, the more concentrated sample (left panel); however, the instant method isolated significantly more of the urine-specific vesicle marker Aquaporin-2G than the other methods. As for the more dilute sample, only the instant method isolated all four microvesicle markers (right panel). The commercial kits from Exiqon and Systems Bio were unable to isolate significant amounts of any of the biomarkers from the naturally dilute sample.

To ascertain if the instant method was consistently superior to other methods for more dilute urine samples, the instant method, UC, and eornniercial kits obtained from Exiqon and SBI were applied to two mis of a single concentrated sample, or to the same sample diluted with PBS 2x, 4x, or 8x. As shown in Figure 5, only the instant method (second panel from the left) was able to isolate the biomarkers Aquaporin 2, Rab5 and CD9 from the 4x diluted sample. In contrast, the two commercial methods were unable to isolate any significant biomarkers from the 2x diluted samples. Given the wide range of concentrations of urine samples and given that some diseases or conditions such as alcoholism, diabetes, and kidney disease can cause a substantial dilution or concentration of urine, the instant Na Urate methods' ability to isolate extra-cellular vesicles from a wide range of urine concentrations provided a substantial advantage over any and all art-recognized methods examined. By any criteria; cost, time, or consistency of yield, the instant method was superior to all of these methods for isolating protein biomarkers associated with microvesicles.

To determine if the instant method was indeed purifying bioparticles from urine, that is, if there was less protein in the instant method prep than in the starting sample, a urine sample was split in two with half of the sample concentrated by an Amicon protein purification column (Ultra- 15; ultracel-3K) and the instant method applied to the other half. Equivalent amounts of the resulting preps were loaded onto a SDS PAGE gel and the protein on the gel was stained with Coomassie stain. Figure 6 shows that there was substantially less total protein in instant method prep (Y*) than in the Amicon prep. Thus, the instant method concentrated protein markers for microvesicles while removing other proteins from urine. Because the Na Urate method of the recently described approach precipitated a subset of the total extra -cellular protein, the method was identified as a true purification method.

To assess the quality of biomarkers isolated by the newly-identified Na Urate process, isolated RNA from such preparations was examined, particularly rniRNA. As shown in Figures 7A to 7C, in which the Na Urate process of the recently described approach (labeled "Y" in Figure 7 A) was compared to an ultracentrifuge (UC) process for the isolation of RN A from 5 ml of urine, high quality RNAs of all types were obtained. The instant method specifically produced an amount of RNA equivalent to that produced by the ultracentrifuge method, as j dged by RNA Bioanalyzer (Figures 7 A and 7B).. As shown in Figure 7C, the instant method isolated from 8-24X more of 3 miRNAs than ultracentrifugation (UC), as assessed by quantitative RT-PCR. To determine if this was true for microRNAs in general, 69 respective microR A levels were assayed via Firefly microRNA array. In samples obtained via UC or the instant method, Figure 8 shows that a similar pattern of detected microRNAs was seen in both preps; however, the instant method yielded a significantly stronger signal for the majority of microRNAs. The fact that the instant method isolated similar amounts of total RNA but much more miRNA suggested that the instant method was isolating cell-free miRNA-protein complexes, as well as miRNAs contained in extracellular vesicles.

It was important for downstream analysis that a given method did not co-purify PGR inhibitors with the RNA. To test for this, isolated bioparticles prepped by the instant method or by ultracentrifuge were spiked with the non-endogenous microRNA cel-mir-39 from c. elegans, and then PGR was performed using probes specific for this microRNA. If the instant method introduced PGR inhibitors to a greater extent than the gold standard ultracentrifuge method, then a lower amount of cel-mir-39 would have been detected for the instant method as compared to ultracentrifuge. Since an identical amount of cel-mir-39 was detected in both methods, Figure 9 shows that in the instant method, isolated RNA did not contain PGR inhibitors, as compared to ultracentrifuge preparations.

It was highly desirable to isolate whole microparticles, rather than just RNA or protein from microparticles. Whole microparticles can be used for functional experiments directed towards therapeutic discovery (De Toro et al. "Emerging roles of Exosomes in Normal and Pathological Conditions: New Insights for Diagnosis and Therapeutic

Applications. (2015) Front. Immunol. 6:203). They also can be used as a delivery agent for therapeutic and research pavloads (Tran et al. "Exosomes as Nanocarners for Immunotherapy of Cancer and Inflammatory Diseases. (2015) Clin Immunol. PMID: 25842185). To determine if the instant method isolated whole microparticles, Transmission Electron Microscope and a Nanosight nanoparticle tracking analysis (NTA) device were employed. The Nanosight device used lasers to visualize and track the Brownian motion of individual particles (Dragovic et al., "Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis," Nanomedicine: Nanotechnology, Biology and Medicine (2011), doi: 10.1016/j.nano.2011.04.003). This allowed for obtainment of precise size and concentration data for the isolated microparticles.

If the instant method degraded or altered the microparticles significantly, then the size and/or shape of the vesicles would have been predicted to appear different when compared to UC isolated vesicles by Transmission Electron Microscopy. Figure 10 shows that that was not the case, as the populations of vesicles obtained using each method were essentially indistinguishable for size and shape. Similarly, the NTA traces from the different preparations would have been expected to show fewer particles and/or differently sized particles, were there a significant difference in the quality of the respective preparations. As shown in Figure 11, the instant method isolated a similar number of particles as the ultracentrifuge method. Furthermore, the size distribution of those particles obtained using the Na Urate method was nearly identical in comparing between the two methods. These results for the instant method strongly suggested that the instant method isolated whole exosome and microvesicle particles that closely approximated the gold standard isolation method of ultracentrifuge.

One of the drawbacks of isolating bioparticies using Ultracentrifugation, binding columns, and/or sieving columns is that there are substantial labor and expense costs when scaling up to larger volumes (i.e. many more ultracentrifugation runs and many more expensive columns are required for larger volumes, as each ultracentrifugation tube and column could only hold a small amount of sample). Therefore, it was of interest to determine if the instant method linearly scaled to larger volumes of urine for both protein and RNA bioparticle markers. Figure 12 shows that scalability was an attribute of protein markers, and Figure 13 shows this was true for microRNA markers.

As shown in Figures Ί4Α and 1.4B, the instant method isolated extra-cellular messenger RNA (mRNA) as well as or better than Ultracentrifugation or a commercial kit specific for RNA (obtained from Norgen).

Example 2: The Na Urate Process More Completely Depleted Urine of Bioparticies than the Ultracentrifuge Method

The fact that the i stant Na Urate method isolated significantly more of several protein and microRN A markers for bioparticies, and also of particles as judged by NTA and TEM (see Example 1 above), strongly suggested that the instant method could isolate the same bioparticies which the heretofore gold standard method of ultracentrifugation could. This was important, as there was also value in depleting biofluids such as urine, blood serum/plasma, and tissue culture serum of bioparticies. To determine if the instant method more completely depleted urine of bioparticies than the ultracentrifuge method, the instant method and the ultracentrifuge method were applied to 1.5 mis of urine from the same sample. Subsequently, the respective final supernatants for each method represented bioparticle-depleted urine. These depleted urine samples were then applied to the alternate method (i.e. the instant method was applied to the ultracentrifuge supernatant and the ultracentrifuge method was applied to the instant method supernatant). Figure 15 shows that, as in Example 1 above, the instant method final pellet yielded significantly more AQ2 and CD9 than the ultracentrifuge method did (lane 2 vs lane 3, respectively). Strikingly, application of the instant method to the ultracentrifuge method's depleted supernatant yielded a significant amount of AQ-2 and CD9 exosomal markers (lane 4), suggesting that the instant method isolated a significant amount of exosomes that the ultracentrif ligation method missed. On the other hand, the ultracentrifugation method was incapable of isolating any detectable exosomal markers from the instant method's final supernatant (lane 5). These results demonstrated that the instant method was superior for generating urine depleted of exosomes.

Example 3: The Na Urate Process Isolated Bioparticles/Mkrovesieles From Non-Urine Biofluids

To determine if the instant method could isolate bioparticles from liquid other than urine, bioparticles were initially isolated from 1 ml of urine using ultracentrifuge. These bioparticles were then added to pure water, and the instant method was applied. This was considered to be an ideal test for the hypothesis that the instant method could isolate bioparticles from other fluids, because water contains no salt, has a neutral pH, and also has no other constituents of urine. As Figure 15 shows, the instant method was capable of isolating a small amount of TSG iOl and a significant amount of CD9 exosomal markers even from water (lane 6). Although little Aqua-2 was recovered, this was likely due to the small amount of Aqua-2 isolated by ultracentrifuge in the first place (lane 3), which meant that little Aqua-2 was introduced into the water at the outset. This demonstrated the ability of the instant method to isolate bioparticles from liquids other than urine. To demonstrate this ability of the instant method in a natural biofluid, the instant method was also applied to 1ml and 3mls of saliva. As shown in Figure 16, the instant method (Yl and Y3) was capable of isolating significant and dose-dependent amounts of extracellular vesicle markers Rab5 and CD9 from saliva.

Example 4: The Efficiency of the Na Urate Purification Methods Enabled Use of 96 Well Format Plates for High-Throughput Bioparticle Isolation

Given the ability of the methods of the recently described approach to isolate significant amounts of extracellular vesicle markers from 1 ml and lower amounts of urine sample (See Figures 12 and 13A-13B) it became feasible, for the first time, to devise a bioparticle isolation protocol suitable for a 96-well plate format (1 ml and lower sample volumes). This was significant, as the ability to use 96-well plates allows for the automation of the method in a high-throughput manner, as there are many existing automation tools available for 96-well plates. Figure 17 describes a 96-well plate protocol using TCEP and Sodium Urate and Figure 18 shows that this protocol successfully isolated significant quantities of extracellular vesicle protein markers (Fig. 17 A) and microRNA mir-200c (Fig. 17B) from only 200 ul of sample. Surprisingly, this format was significantly superior to the more standard tube format for isolating mir-200c (32 PGR Cts compared to 34 PGR Cts).

Example 5: Alternative Urate/Uric Acid Compositions were Identified as Effective for Bioparticle Isolation from Urine and Other Biofluids

While the above experiments were primarily performed using sodium urate (Na Urate) to promote biomarker/microvesicle isolation from urine, a range of uric acid salts also capable of isolating such biomarkers/microvesicles was also identified. As shown in Figures 19A and 19B, uric acid salts other than sodium (of Na Urate), specifically, Calcium, Lithium and Potassium, were also assayed for the ability to isolate bioparticles/microvesicles. Thus, many additional salts of the compounds of the recently described approach were also identified as active in the instant methods.

Example 6: Uric Acid Compositions Isolated DNA

To exemplify certain methods of the current disclosure, 50 mis whole urine samples obtained from a healthy volunteer were split into 2 equal 25 ml aliquots. Aliquot 1 was treated with 16 mM TCEP reducing agent, as part of a Whole Urine Prespin Treatment Solution, which simultaneously reduced the pH to <6 and was believed to have reduced the matrix-forming properties of the abundant endogenous urine protein, THP. The mixture was immediately centrifuged at 1,500 x g for 5 minutes to remove cells and debris. The

supernatant was gently removed and then 40 microliters per ml of sample of 131 mM

Monosodium urate (in 1 N NaOH) was added to create a mixture. This mixture was incubated for 15 minutes on ice and then centrifuged for 5 minutes at 1,000 x g in a desktop microcentrifuge. After centrifugation, the supernatant was gently removed and the pellet was resuspended in a small volume of PBS buffer. Aliquot 2 was also treated with 16 mM TCEP reducing agent, and the cells and debris were spun out as per Aliquot 1. The resulting supernatant was spun through an Amicon MWCO 3000 column to concentrate it. Both resulting concentrated Aliquots then were run through an Ambion mirVA A RNA isolation kit to isolate nucleic acids. The nucleic acids were subjected to PCR analysis, in the absence of reverse transcription, to determine the relative amounts of GAPDH DNA fragments contained in the preps (see Figure 20). In a similar experiment, the Na Urate aliquot (the "Ymir" sample) was subjected to DNAse treatment to verify that part of the signal was indeed due to DNA. In this case, the Na Urate Prep was subjected to RT-PCR in order to detect both genomic DNA and rnRNA. Figure 21 shows that DNAse treatment strongly- reduced the signal. Residual signal was likely due to GAPDH rnRNA.

Thus, the crystallization/precipitation-inducing agent method was identified as especially effective for isolation of cell-free nucleic acids, and for cfDNA in particular (including, e.g., ctDNAs).

Example 7: Diatomaceons Earth Isolated Vesicle Protein Markers from Urine, While Control Silica Did Not

Following extensive searches for conditions that could exploit the association of large, matrix-forming proteins such as THP with exosomes for bioparticle purification, it was initially discovered that addition of the robust reducing agent TCEP within a pre-spin centrifugation of urine samples could allow for improved removal of whole cells in initial clearing spins from urine, while retaining exosomes within the supernatant of such spins (Figure 22). It was additionally discovered that following such a pre-clearing spin performed with one goal of preventing formation of bioparticle-protein aggregates during such an initial clearing spin, bioparticle aggregation could then be promoted and used in favor of purification of bioparticles in a subsequent spin, via use of an agent capable of promoting bioparticle aggregation (see Example 1 and Figures 4-16). It was newly discovered that

Diatomaceous Earth and certain other siliceous particles were surprisingly effective at promoting bioparticle association and aggregation, with both speed and at low cost, and with remarkably good yields from multiple biofluids (urine and saliva) of a widely representative number of bioparticle markers (Figures 23, 24). Indeed, the recently described methods accomplished yields of a remarkably broad RNA profile from urine or saliva (with speed and at exceedingly low cost, see Figures 23-25), as compared to prior art methods (e.g., Norgen). It was also observed that calcination and acid washing could decrease DE's affinity for exosomes (Figure 26).

DE is characterized by a nanometer to microme er-range pore sizes. To examine if non-DE porous materials (i.e., Perlite, which is volcanic glass heated to expand and form pores) were also capable of isolating biomarkers/microvesicles, such agents were examined within the recently described methods. As shown in Figure 27, Perlite (Sil-Kleer), which possesses slightly larger pore sizes/permeability than DE, could also isolate extracellular vesicles. The pore size of the Perlite inversely correlated with its ability to isolate extracellular vesicle markers.

The products of DE-directed bioparticle/microvesicle isolations were also examined for the integrity of RNA (i.e., miRNAs) within such preparations. As shown in Figure 28, DE purified highly complex populations of RNA (e.g., miRNAs), as compared to Norgen kit isolations. As shown in Figure 29, DE-directed bioparticle/microvesicle isolation approaches also were highly functional in isolating (as well as depleting) exosomal biomarkers from cell culture media.

Furthermore, it was hypothesized that a brief (typically 1 minute) preliminary treatment or "preclear" of DE would remove potential molecular constituent binders to DE from the biofiuid, which could block subsequent binding of bioparticles to DE. Thus, following this new "preclear" step with any of standard protocols (e.g., a second round of contacting a sample with porous beads, e.g., for 15 minutes) would yield superior results. Figure 30 demonstrates that this was indeed the case. Indeed, the "pre-clearing" sample showed a remarkably dramatic improvement of bioparticle yield, suggesting that significant amounts of material that would otherwise disrupt, e.g., EV isolation, were being removed by the newly discovered "pre-clearing" step.

Example 8: Combination of the Na Urate and Diatomaceous Earth Processes

Significantly Increased Bioparticle Yield, as Compared to the Na Urate Method Alone

Without wishing to be bound by theory, the hypothesized mechanisms of action for the two methods described above (crystallization/precipitation and binding to a porous siliceous matrix) are sufficiently distinct to suggest that they could work simultaneously and possibly even more efficaciously. To test this, a 20 ml urine sample was divided into 2 equal 10 ml aliquots. To aliquot 1, the same Na Urate protocol described in Example 1 was applied. To aliquot 2, 1 ml of DE in a 10% DE slurry in PBS, 150mM NaCl was added to the sample after the prespin, then the same Na Urate protocol was applied without deviation. Nucleic acids of the resulting pellets from both aliquots were then purified by glass fiber filtration and then subjected to TaqMan chemistry to detect miRNA and GAPDH nucleic acids. Figure 31 shows that the combination protocol was significantly more efficient at isolating miRNA and GAPDH nucleic acid signal from the same sample.

Thus, a "combined' '' method of contacting a biofluid with both porous beads and a crystallization/precipitation was identified to result in improved yields, as compared to either method alone. Such a "combined" method could also optionally be performed after a "pre- clearing" step with a porous bead, as described above, though the improvement inherent in the "combined" method was even observed without performing a "pre-clearing" step of certain improved methods of the current disclosure.

Accordingly, a high speed, low cost and highly efficient method of isolating bioparticles from multiple biofluids was identified, representing a dramatic improvement over methods previously described in the art.

Example 9: Use of Porous Beads to Reduce Levels of Bioparticles in Biofluids

A broad range of biomarkers are secreted from cells, such as miRNA, proteins, lipids, glycoproteins, DNA, mRNA, tRNA, etc., which can exist in relatively stable form outside of cells, including but not limited to the following forms: protein-nucleic acid complexes, exosomes, microvesicles, LDL particles, and apoptotic bodies (Fig. 1). it was identified in the above Examples that Diatomaceous Earth (DE) isolated vesicle protein markers from urine, whereas control silica did not (Fig. 23). Diatomaceous Earth (DE) was also identified to isolate saliva exosomes (Fig. 24). DE (optionally non-calcinated (N) and low

permeable/small pore size) also isolated EVs from urine (Fig. 25). Calcination and acid washing were identified to decrease DE's affinity for exosomes (Fig. 26). To examine the effect of pore size upon efficacy of isolation of bioparticles from biofluids, Perlite (Sil-Kleer) possessing smaller pore sizes/permeability that DE was examined, and was also identified to isolate EVs (Fig. 27). Consistent with its isolation of intact EVs, Diatomaceous Earth (DE) was shown to have purified complex RNA, e.g., a variety of miRNAs (Fig. 28). In a proof - of-concept experiment relevant to therapeutic use of porous beads to disrupt bioparticie (e.g., EV)-mediated signaling, DE was demonstrated to have isolated (and depleted) exosomes from cell culture media, as demonstrated by the absence of EVs within a sample exposed to DE treatment and followed by ultracentrifugation - DE almost completely depleted the contacted cell culture media of vesicle-derived Rab5, consistent with dramatic levels of sequestration/reduction of EVs in the sample (Fig. 29). Example 10: DE Placed in a Porous Container ami Introduced to the Mouth of a Subject Isolated Exosomes

As shown in Figure 33, Diatomaceous Earth placed in a porous cellulose bag, which was then held in the mouth of a subject for 30 minutes, successfully and robustly sequestered exosomes, as evidenced by detection of the exosomal marker, Rab5b. A control Silica gel placed in the same type of container (cellulose bag) was meanwhile shown not to sequester this marker from saliva.

Example 11: Therapeutic Reduction of Bioparticles in Urine of a Subject Having or at Risk of Developing Bladder Cancer

In an exemplary therapeutic method of the current disclosure, a subject having or at risk of developing bladder cancer is identified. Porous beads, e.g., DE, are deposited in a porous, implantable membrane -bounded pouch or device. The implantable pouch or device is inserted into the bladder of the subject, optionally at or near a site of an existing tumor, and in contact with the urine of the subject. The device remains implanted in the subject for an appropriate period of time (e.g., ranging from a single day to a number of months or even years, noting the inert/non-toxic nature of both the implantable pouch or device and its contents (e.g., DE)). Growth, progression and/or metastasis of cancer (or markers of pro- cancer signaling) in the subject is assessed, using art-recognized methods, relative to an appropriate control subject or value, and the therapeutic efficacy of the implantable pouch or device containing the porous beads (e.g., DE) is thereby assessed.

Optionally, the implantable pouch or device is removed from the subject, and sequestered biomarkers are examined (either via dissociation from the porous beads or via detection methods that do not require such dissociation). Therapeutic, diagnostic and/or prognostic associations and/or conclusions are detected using the isolated biomarkers.

Example 12: Prophylactic and/or Therapeutic Reduction of Bioparticles in Saliva of a Subject Having or at Risk of Developing Oral Cancer

In an exemplary prophylactic and/or therapeutic method of the current disclosure, a subject having or at risk of developing oral cancer (e.g., a tobacco user) is identified. Porous beads, e.g., DE, are deposited in a porous pouch or device. The pouch or device is inserted into the mouth of the subject, optionally at or near a site of an existing growth/tumor, or simply between the cheek and gum, contacting saliva of the subject. The pouch or device remains in the subject's mouth for an appropriate period of time (e.g., minutes to hours or longer, optionally co-administered with a dose of tobacco), noting the inert/non-toxic nature of both the pouch or device and its contents (e.g., DE)). Markers of pro-cancer signaling and/or growth, progression and/or metastasis of cancer in the subject is assessed (optionally over multiple administrations of a pouch or device of the current disclosure), using art- recognized methods, relative to an appropriate control subject or value, and the prophylactic and/or therapeutic efficacy of the pouch or device containing the porous beads (e.g., DE) is thereby assessed.

Optionally, following contact with and removal from the subject, biomarkers sequestered within the pouch or device are examined (either via dissociation from the porous beads or via detection methods that do not require such dissociation). Therapeutic, diagnostic and/or prognostic associations and/or conclusions are made via detection of the isolated biomarkers.

All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.

One skilled in the art would readily appreciate that the invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the invention disclosed herein without departing from the scope and spirit of the invention. Thus, such additional embodiments are within the scope of the invention and the following claims.

The invention illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations that are not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of", and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description and the appended claims.

In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and

"containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

Embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description.

The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.