Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIROTATIONAL ROTARY GAS TURBINE ENGINE
Document Type and Number:
WIPO Patent Application WO/2021/002773
Kind Code:
A1
Abstract:
A birotational rotary gas turbine engine comprises a housing with supply lines for feeding an oxidizing fluid and a combustible fluid into an impeller of a first rotor, said impeller being configured in the form of a single unit containing a double-flow closed centrifugal impeller surrounded by the housing of a toroidal collector having separate combustion chambers with supersonic nozzles arranged tangentially therein. A shaft of the first rotor is connected by one end to an inner axial fuel feed conduit and is connected by the other end to a useful load. An impeller of a second rotor is mounted in axial alignment and coaxially about the first rotor for independent rotation in the opposite direction and contains two identical discs that are rigidly and hermetically interconnected along the edge by a trough-shaped ring. Each disc is connected to its own shaft in the form of a hollow cylinder that is open at both ends and has, on the inside surface thereof, a bore in the form of annular depressions with magnets rigidly mounted therein. Identically oriented supersonic nozzles with an elongated plate in the subsonic part are tangentially mounted in the impeller of the second rotor. The invention provides increased power and efficiency and a simpler engine structure.

Inventors:
ISAEV SERGEJ KONSTANTINOVICH (RU)
Application Number:
PCT/RU2020/000300
Publication Date:
January 07, 2021
Filing Date:
June 22, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ISAEV SERGEJ KONSTANTINOVICH (RU)
International Classes:
F02C3/16; F01D1/32
Foreign References:
RU2623592C12017-06-28
US3200588A1965-08-17
US3077075A1963-02-12
US3045427A1962-07-24
Download PDF:
Claims:
Формула изобретения

Пункт 1. Роторный биротативный газотурбинный двигатель, содержащий корпус, на котором установлены жестко трубопроводы подачи окислительного и горючего рабочих тел в рабочее колесо первого ротора, установленного жестко на валу с возможностью вращения, содержащего компрессор для сжатия окислительного рабочего тела, и реактивную турбину, выполненную в виде сегнерова колеса, а также содержащий рабочее колесо второго ротора, установленное соосно и коаксиально вокруг рабочего колеса первого ротора, с возможностью независимого вращения на своем валу в противоположную от первого ротора сторону, отличающийся тем, что рабочее колесо первого ротора выполнено в виде моноблока, установленного жестко на своем валу с возможностью вращения, содержащего двухпоточное закрытое центробежное колесо, обеспечивающее сжатие поступающего в него окислительного рабочего тела, при этом двухпоточное закрытое центробежное колесо выполнено или как одно целое двухпоточное закрытое центробежное колесо с закрытыми центробежными каналами на каждой его стороне, причем центробежные каналы одной стороны выполнены зеркально по отношению к центробежным каналам другой стороны, или выполнено из двух однопоточных закрытых центробежных колес, выполненных зеркально по отношению друг к другу, плотно и жестко соединенных своими фланцами друг с другом, а также содержащего корпус коллектора торообразной формы, охватывающий соосно и коаксиально двухпоточное закрытое центробежное колесо по его периферии и соединенный с ним жестко, плотно и герметично, при этом корпус коллектора выполнен с внутренней полостью торообразной формы, имеющей отверстие по внутреннему периметру и разделенной на отдельные камеры сгорания жестко закрепленными поперечными перегородками, являющимися продолжением лопаток, выполненных по всей высоте двухпоточного закрытого центробежного колеса, причем закрепленными с образованием входных отверстий в отдельные камеры сгорания, при этом выходные отверстия центробежных каналов открыты в полости отдельных камер сгорания через их входные отверстия так, что, по меньшей мере, по одному выходному отверстию центробежных каналов открыто в полость каждой отдельной камеры сгорания, снабженной, по меньшей мере, одним тангенциально установленным соплом, выполненным сверхзвуковым, в виде сопла Лаваля, центральная ось которого совпадает по направлению с центральной осью отдельной камеры сгорания, снабженной средствами подачи горючего рабочего тела, а также системой зажигания, размещенной по обе стороны каждой поперечной перегородки с обеспечением одновременного воспламенения смеси горючего и окислительного рабочего тела в каждых отдельных камерах сгорания, примыкающих друг к другу через перегородку, а между выходными отверстиями двухпоточного закрытого центробежного колеса и входными отверстиями отдельных камер сгорания установлено средство дросселирования, выполненное в виде перфорированной ленты и обеспечивающее выравнивание термодинамических параметров сжатых потоков окислительного рабочего тела в поперечном сечении проточного тракта на входе в каждую отдельную камеру сгорания, при этом рабочее колесо первого ротора соединено с двух сторон соосно и подвижно, с помощью лабиринтного соединения, с концами двух корпусов трубопроводов окислительного рабочего тела, выполненных в виде полых, открытых с двух сторон цилиндров с фланцами, соединенных жестко своими вторыми концами с корпусом, при этом вал первого ротора, один конец которого выполнен с внутренним осевым каналом для подвода горючего рабочего тела в отдельные камеры сгорания первого ротора и соединен соосно и подвижно, с помощью лабиринтного уплотнения, с корпусом трубопровода, подводящим горючее рабочее тело, установлен в корпусе двигателя подвижно, с помощью подшипниковой опоры, с жестко закрепленным на нем компрессором, размещенным соосно внутри одного из корпусов трубопровода окислительного рабочего тела, а другой конец вала первого ротора также установлен в корпусе двигателя подвижно, с помощью подшипниковой опоры, с жестко закрепленным на нем компрессором, размещенным соосно внутри второго корпуса трубопровода окислительного рабочего тела, и соединен с полезной нагрузкой, при этом рабочее колесо второго ротора установлено соосно и коаксиально вокруг рабочего колеса первого ротора, с возможностью независимого вращения в противоположном направлении, и выполнено из двух одинаковых дисков, с диаметром, превышающим диаметр рабочего колеса первого ротора, и установленных соосно между собой, и с рабочим колесом первого ротора с каждой его стороны, при этом выполненных с тангенциально расположенными по окружности на их внешних сторонах воздухозаборными каналами, представляющими собой открытые в сторону вращения дисков выпуклые полости со сквозными отверстиями в их нишах, выполненными в дисках, соединенных между собой по периферии жестко и герметично кольцом желобообразной формы, с образованием внутри кольца полости рабочего колеса второго ротора, в котором установлены тангенциально одинаково направленные сверхзвуковые сопла, выполненные в виде плоского сопла Лаваля, с панелью дозвуковой части, расположенной параллельно оси вращения рабочего колеса второго ротора, по радиусу ближе к центру его вращения, выполненной удлиненной, с возможностью выполнения функции лопатки, при этом диски своей внешней стороной соединены жестко и герметично, каждый со своим валом, выполненным в виде полого, открытого с двух сторон цилиндра, на внутренней поверхности которого выполнены проточки в виде кольцеобразных углублений, в которых установлены жестко магниты, при этом каждый из валов рабочего колеса второго ротора установлен подвижно и коаксиально через подшипниковые опоры на соответствующий корпус трубопровода окислительного рабочего тела, выполненный с проточкой на наружной поверхности цилиндрической части, в которую установлена токопроводящая обмотка статора.

Пункт 2. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что профилированные лопатки закрытого центробежного колеса первого ротора выполнены на выходе с углом наклона от радиального направления в сторону, противоположную его вращению, при этом угол наклона определяется путем комплексного моделирования из условия безударного и безотрывного втекания окислительного рабочего тела в камеры сгорания.

Пункт 3. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что компрессоры, размещенные в трубопроводах окислительного рабочего тела, могут быть центробежными.

Пункт 4. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что компрессоры, размещенные в трубопроводах окислительного рабочего тела, могут быть осевыми.

Пункт 5. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что сопла рабочего колеса первого и второго роторов выполнены круглыми, осесимметричными.

Пункт 6. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что магниты выполнены в виде полуколец.

Пункт 7. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что магниты выполнены в виде колец.

Пункт 8. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что сквозные отверстия, расположенные в нишах воздухозаборных каналов, выполнены в дисках рабочего колеса второго ротора профилированными, с обеспечением поступления через них в полость рабочего колеса второго ротора окислительного рабочего тела с расчетными значениями расхода и избыточного давления.

Пункт 9. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что удлиненная панель дозвуковой части плоских сверхзвуковых сопел Лаваля рабочего колеса второго ротора, расположенная параллельно оси его вращения и по радиусу ближе к центру вращения, выполнена профилированной в своем продольном сечении по закону логарифмической спирали, с изгибом ее концов к оси вращения.

Пункт 10. Роторный биротативный газотурбинный двигатель по п. 1, отличающийся тем, что проточки, выполненные на наружной поверхности цилиндрической части каждого корпуса трубопровода окислительного рабочего тела, в которые установлены токопроводящие обмотки статоров, и проточки, выполненные на внутренней поверхности каждого вала рабочего колеса второго ротора, в которых закреплены жестко магниты, установлены друг против друга концентрически.

Description:
Описание изобретения

Название изобретения

Роторный биротативный газотурбинный двигатель

Изобретение относится к машиностроению, а именно к газотурбинным двигателям (далее по тексту ГТД), и установкам на их основе, предназначенным для получения момента вращения на валу агрегатов и механизмов различных транспортных средств, электрогенераторов.

Известен «Газотурбинный струйный двигатель», (патент РФ N° 2441998, от 31.08.2010 г.), который по конструкции и назначению является наиболее близким аналогом к заявляемому Роторному биротативному газотурбинному двигателю (РБ ГТД). Известный двигатель содержит установленные на одном валу компрессор подачи воздуха и вращающуюся камеру сгорания с тангенциально расположенными реактивными соплами, представляющую собой реактивную турбину по типу «сегнерова колеса», и являющуюся рабочим колесом первого ротора двигателя.

Газотурбинный струйный двигатель обладает рядом существенных недостатков: малой абсолютной и удельной мощностью, недостаточной экономичностью работы (по значению эффективного КПД), высокой сложностью и большой металлоёмкостью конструкции.

Техническими результатами заявляемого РБ ГТД являются повышение его абсолютной и удельной мощности, и экономичности его работы в заданных габаритных ограничениях по диаметру описанной окружности роторов, а так же упрощение его конструкции.

В частном случае исполнения Роторного биротативного газотурбинного двигателя:

- компрессоры, размещенные в трубопроводах окислительного рабочего тела, могут быть центробежными или осевыми.

- профилированные лопатки закрытого центробежного колеса первого ротора выполнены на выходе с углом наклона от радиального направления в сторону, противоположную его вращения, при этом угол наклона определяется путём комплексного моделирования, из условия безударного и безотрывного втекания рабочего тела в камеры сгорания;

В частном случае исполнения сверхзвуковые сопла рабочего колеса первого ротора и рабочего колеса второго ротора могут быть круглыми осесимметричными, и сменными.

Сквозные отверстия, расположенные в нишах воздухозаборных каналов дисков рабочего колеса второго ротора выполнены в его дисках профилированными, с обеспечением поступления через них в полость рабочего колеса второго ротора окислительного рабочего тела с расчётными значениями расхода и избыточного давления.

Удлинённая панель дозвуковой части плоских сверхзвуковых сопел Лаваля рабочего колеса второго ротора, расположенная параллельно оси его вращения, и по радиусу, ближе к центру вращения, может быть выполнена профилированной в своём продольном сечении по закону логарифмической спирали, с изгибом её концов к оси вращения.

В частном случае исполнения РБ ГТД магниты выполнены в виде колец, или полуколец.

Проточки, выполненные на наружной поверхности цилиндрической части каждого корпуса трубопровода окислительного рабочего тела, в которые установлены токопроводящие обмотки статоров, и проточки, выполненные на внутренней поверхности каждого вала рабочего колеса второго ротора, в которых закреплены жестко магниты, установлены друг против друга концентрически, с целью образования высокочастотных электродвигателей - электрогенераторов.

Рабочее колесо первого ротора выполняет в РБ ГТД функцию реактивной турбины, а рабочее колесо второго ротора выполняет функцию активно - реактивной, или реактивной турбины.

Краткое описание чертежей Техническое решение поясняется графическими материалами на фиг. 1 - 8.

На чертеже фиг. 1 изображен Роторный биротативный газотурбинный двигатель (аксонометрическая проекция с диаметральным сечением вдоль оси валов).

На чертеже фиг. 2 изображен Роторный биротативный газотурбинный двигатель (фронтальная проекция с диаметральным сечением вдоль оси валов).

На чертеже фиг. 3 изображен Роторный биротативный газотурбинный двигатель (аксонометрическая проекция с вырезом по оси валов части половины двигателя).

На чертеже фиг. 4 изображено рабочее колесо первого ротора (аксонометрическая проекция с диаметральным сечением вдоль оси вала первого ротора).

На чертеже фиг. 5 изображена часть рабочего колеса первого ротора (аксонометрическая проекция).

На чертеже фиг. 6 изображено двухпоточное открытое центробежное колесо рабочего колеса первого ротора.

На чертеже фиг. 7 изображен корпус коллектора тороидальной формы рабочего колеса первого ротора (аксонометрическая проекция с диаметральным разрезом).

На чертеже фиг. 8 изображено рабочее колесо второго ротора (аксонометрическая проекция с вырезом по оси валов 1 А части половины рабочего колеса второго ротора).

Далее по тексту описания, и на чертежах технического решения через «'» обозначены тождественные детали, выполненные в РБ ГТД зеркально.

РБ ГТД (фиг. 1 - 8) установлен в корпусе (1) с закреплёнными на нём вертикально, параллельно, и жестко (например, с помощью сварки) стойками (2) и (2'). На стойках (2) и (2'), выполненных с соосно расположенными сквозными решетками (3) и (З 1 ), в которых установлены подшипниковые опоры (4) и (4'), закреплён соосно, с возможностью вращения вал (5), на концах которого закреплены жестко (например, с помощью шлицов) компрессоры (6) и (6'), а между ними установлено, и закреплено жестко (например, с помощью шлицов) рабочее колесо (7) первого ротора. Так же к стойкам (2) и (2 1 ) прикреплены жестко (например, с помощью крепежа) корпусы (8) и (8 1 ) трубопроводов окислительного рабочего тела (например, воздуха окружающей среды), выполненные в виде полых, открытых с двух сторон цилиндров с фланцами. Своими наружными фланцами корпусы (8) и (8') жестко (например, с помощью крепежа) соединены со стойкам (2) и (2'), а внутренними фланцами, выполненными со сквозными решетками (9) и (9'), в которых для вала (5) установлены дополнительные подшипниковые опоры (10) и (10'), соединены подвижно через лабиринтные соединения (11) и (1 Г) с рабочим колесом (7) первого ротора, вал (5) которого с одного конца, и до его половины, выполнен с осевым каналом (12) для подвода горючего рабочего тела в рабочее колесо (7) первого ротора, и соединён этим концом подвижно, с помощью лабиринтного соединения (на чертежах не показано), с трубопроводом горючего рабочего тела (на чертежах так же не показано), а другим концом соединён через муфту с полезной нагрузкой, например, с установленным отдельно высокочастотным электродвигателем - электрогенератором (на чертежах не показаны).

На внешней цилиндрической поверхности корпусов (8) и (8') трубопроводов окислительного рабочего тела выполнены проточки в виде цилиндрообразных углублений, в которых установлены токопроводящие обмотки статоров (13) и (13'), а так же выполнены проточные каналы (14), служащие для осуществления охлаждения обмотки статоров (13) и (13'). Рабочее колесо (7) первого ротора выполнено в виде моноблока, содержащего на валу (5) двухпоточное закрытое центробежное колесо (15), с основными лопатками (16) и (16 1 ), выполненными на всей высоте ступицы двухпоточного закрытого центробежного колеса, и вспомогательными лопатками (17) и (17'), укороченными со стороны входа, образующими центробежные каналы. Центробежное колесо (15) выполнено, или, как одно целое двухпоточное закрытое центробежное колесо с центробежными каналами на каждой его стороне (при этом центробежные каналы одной стороны выполнены зеркально относительно центробежных каналов другой стороны), или выполнено из двух однопоточных закрытых центробежных колёс, изготовленных зеркально по отношению друг к другу, плотно и жестко соединённых своими фланцами друг с другом. Рабочее колесо (7) первого ротора содержит так же корпус (18) коллектора торообразной формы, охватывающий соосно и коаксиально центробежное колесо (15) по его периферии, и соединённый с ним жестко, плотно и герметично. Корпус (18) коллектора выполнен с внутренней полостью торообразной формы, имеющей отверстие (19) по внутреннему периметру, и разделённой на отдельные камеры сгорания (20) жестко закрепленными поперечными перегородками (21), являющимися продолжением основных лопаток (16) и (16') центробежного колеса (15), и закрепленными с образованием входных отверстий в камеры сгорания (20), при этом выходные отверстия центробежных каналов закрытого центробежного колеса (15) открыты в полости камер сгорания (20) через их входные отверстия, причём, по меньшей мере, по одному выходному отверстию центробежных каналов открыто в полость каждой камеры сгорания (20), снабженной, по меньшей мере, одним тангенциально установленным сверхзвуковым соплом (22), выполненным, в виде плоского сопла Лаваля, центральная ось которого совпадает с центральной осью камеры сгорания (20), снабженной средствами подачи горючего рабочего тела (23), а так же системой зажигания (24), размещенной на обеих сторонах каждой поперечной перегородки (21), с обеспечением одновременного воспламенения смеси горючего и окислительного рабочего тела в каждых камерах сгорания (20), примыкающих через перегородку (21) друг к другу. Между выходными отверстиями закрытого центробежного колеса (15) и входными отверстиями камер сгорания (20) установлено средство дросселирования (25), обеспечивающее выравнивание термодинамических параметров сжатых потоков окислительного рабочего тела в поперечном сечении проточного тракта на входе их в камеры сгорания (20).

Вокруг рабочего колеса (7) первого ротора, и соосно с ним установлено, с возможностью независимого вращения в противоположном направлении, рабочее колесо (26) второго ротора, выполненное из двух одинаковых дисков (27) и (27'), с диаметром, превышающим диаметр рабочего колеса (7) первого ротора. Диски (27) и (27') установлены соосно между собой, и с рабочим колесом (7) первого ротора, с каждой его стороны, при этом диски (27) и (27') выполнены с тангенциально расположенными на их внешней стороне по окружности воздухозаборными каналами (28) и (28'), представляющими собой открытые в сторону вращения рабочего колеса (26) второго ротора выпуклые полости с выполненными в их нишах сквозными отверстиями

(29) и (29'), выполненными в дисках (27) и (27'), каждый из которых соединён жёстко (например, с помощью крепежа) своей внешней стороной со своим валом (30) и (30') соответственно. Валы (30) и (30') выполнены в виде полых, открытых с двух сторон цилиндров, каждый из которых установлен коаксиально, через подшипниковые опоры (31) и (З Г), и (32) и (32') на соответствующие корпусы (8) и (8') трубопроводов окислительного рабочего тела, а на внутренней стороне каждого из валов

(30) и (30') выполнены проточки, в которых установлены жестко (например, с помощью клея) магниты (33) и (33'), выполненные в виде элементов различной формы (например, в форме колец, или полуколец). Проточки, выполненные на наружной поверхности цилиндрической части трубопроводов (8) и (8') окислительного рабочего тела, в которые установлены токопроводящие обмотки статоров (13) и (13'), и проточки, выполненные на внутренней поверхности валов (30) и (30') рабочего колеса (26) второго ротора, в которых закреплены жестко магниты (33) и (33'), установлены друг против друга концентрически, с целью образования высокочастотных электродвигателей - электрогенераторов.

Диски (27) и (27') соединены между собой по периферии жестко и герметично кольцом (34) жолобообразной формы, с образованием внутри кольца замкнутой полости, в котором установлены тангенциально и одинаково направленные сверхзвуковые сопла (35), выполненные виде плоских сопел Лаваля, с обеспечением вращения рабочего колеса (26) второго ротора в сторону, противоположную вращению рабочего колеса (7) первого ротора. При этом панель дозвуковой части плоского сверхзвукового сопла (35), расположенная параллельно оси вращения рабочего колеса (26) второго ротора, и по радиусу, ближе к центру его вращения, выполнена удлинённой, с целью выполнения ею в работе рабочего колеса (26) второго ротора функции лопатки.

Для охлаждения токопроводящей обмотки статоров (13) и (13'), а так же магнитов (33) и (33'), в корпусах (8) и (8') трубопроводов окислительного рабочего тела выполнены продольные и поперечные проточные каналы (14), в которые в процессе работы двигателя нагнетается первыми (по потоку окислительного рабочего тела) ступенями компрессоров (6) и (6') воздух окружающей среды, при этом диаметр рабочих колёс первых ступеней компрессоров (6) и (6') выполнен увеличенным по отношению к диаметру рабочих колёс их последующих ступеней.

Запуск и работа РБ ГТД осуществляется следующим образом.

От внешнего источника электрической энергии (например, от дизель-генератора) по команде блока управления (на чертежах не показан) электрический ток поступает на установленный отдельно внешний высокочастотный электродвигатель - электрогенератор, соединённый через муфту с валом (5) рабочего колеса (7) первого ротора. При этом внешний высокочастотный электродвигатель - электрогенератор начинает работать в режиме электродвигателя, и с мощностью, равной, или чуть большей мощности, потребляемой совместно компрессорами (6) и (6'), и закрытым центробежным колесом (15), раскручивает их вал (5) до высоких оборотов, примерно порядка 25620 об/мин. (или 421 - 423 Гц.). Одновременно с этим, от внешнего источника электрической энергии (например, другого дизель-генератора) электрический ток подаётся на токопроводящие обмотки статоров (13) и (13') рабочего колеса (26) второго ротора, образующих вместе с магнитами (33) и (33') высокочастотные электродвигатели - электрогенераторы, которые начинают работать в режиме электродвигателей, и раскручивают рабочее колесо (26) второго ротора с валами (30) и (30') до высоких оборотов, так же, примерно порядка 25620 об/мин. (или 421 - 423 Гц.). Благодаря высокой скорости вращения рабочего колеса (7) первого ротора окислительное рабочее тело (например, воздух окружающей среды) начинает засасываться с помощью компрессоров (6) и (6'), и центробежного колеса (15) в проточный тракт корпусов (8) и (8') трубопроводов окислительного рабочего тела, где сжимается сначала с помощью компрессоров (6) и (6') до давления расчётного значения, а затем сжимается дальше в центробежном колесе (15) с существенным повышением энтальпии (с существенным повышением температуры, и кратным повышением давления до 8 - 25 атм, и более). Сжатое до указанных выше значений давления окислительное рабочее тело на выходе из каналов закрытого центробежного колеса (15) проходит через дроссельное средство (25) с торможением и выравниванием термодинамических параметров в сечениях проточного тракта, и поступает в камеры сгорания (20). Одновременно с окислительным рабочим телом, горючее рабочее тело через канал (12) вала (5), и средства подачи (23), так же поступает в камеры сгорания (20), где оба компонента перемешивается, с образованием смеси, которая с помощью система зажигания (24) воспламеняется, и сгорает с недостатком окислительного рабочего тела. В процессе сгорания смеси горючего с недостатком окислительного рабочего тела, в камерах сгорания (20) образуются продукты её неполного сгорания с повышенными температурой и давлением, за счёт чего продукты неполного сгорания из камер сгорания (20) начинают истекать через тангенциально установленные сопла (22) с высокой сверхзвуковой скоростью, двукратно превышающей окружную скорость вращения рабочего колеса (7) первого ротора, создавая при этом высокий импульс реактивной силы, обеспечивающий на валу (5) рабочего колеса (7) первого ротора момент вращения требуемой мощности. При этом продукты неполного сгорания истекают из камер сгорания (20) рабочего колеса (7) первого ротора через сопла (22) с расчётным недорасширением, и имеют на выходе из сопел (22) расчётные избыточные значения температуры и давления, с которыми поступают в полость рабочего колеса (26) второго ротора, образованную кольцом (34) жолобообразной формы, и дисками (27) и (27') с валами (30) и (30').

Так как рабочее колесо (26) второго ротора вращается с окружной скоростью, равной по модулю окружной скорости вращения рабочего колеса (7) первого ротора, но в противоположную сторону, совпадающую с направлением истечения продуктов неполного сгорания из рабочего колеса (7) со скоростью, в два раза большей окружной скорости его вращения, то при сверхзвуковом истечении продуктов неполного сгорания из сопел (22) в полость рабочего колеса (26) второго ротора, в ней не происходит возникновение ударных волн, приводящих к потере полного давления в продуктах неполного сгорания и, как следствие, не происходит уменьшение мощности и эффективности работы по КПД РБ ГТД. Таким образом, продукты неполного сгорания, истекающие со сверхзвуковой скоростью из рабочего колеса (7) через сопла (22) в полость рабочего колеса (26) второго ротора, с одной стороны обеспечивают мощный импульс реактивной силы, обеспечивающий на валу (5) момент вращения требуемой мощности, а с другой стороны не образуют в полости рабочего колеса (26) второго ротора ударных волн, и с относительно небольшой скоростью, имея достаточные значения температуры и избыточного давления (скорость, температура и давление подбираются численным моделированием на суперкомпьютере), попадают на удлинённые панели дозвуковых частей плоских сверхзвуковых сопел (35) рабочего колеса (26) второго ротора, которые в данном исполнении представляют собой поверхности, выполняющие функцию лопаток. При этом на удлинённых панелях дозвуковых частях сверхзвуковых сопел (35) происходит торможение продуктов неполного сгорания, с некоторым повышением их статического давления и температуры, и повышением импульса вращения рабочего колеса (26) второго ротора. Одновременно с поступлением продуктов неполного сгорания из рабочего колеса (7) первого ротора в полость рабочего колеса (26) второго ротора, туда же через специально спрофилированные отверстия (29) и (29') воздухозаборного устройства (28) и (28') поступает с расчётными значениями расхода и избыточного давления дополнительная масса окислительного рабочего тела, которая перемешивается с находящимися там продуктами неполного сгорания, обеспечивая их полное догорание с повышением их температуры и давления. Полностью догоревшие продукты сгорания истекают из полости рабочего колеса (26) через сопла (35) со сверхзвуковой скоростью в окружающее пространство с образованием реактивной силы, создающей на валах (30) и (30’) рабочего колеса (26) второго ротора момент вращения требуемой мощности. Как только рабочее колеса (7) первого ротора и рабочее колеса (26) второго ротора выходят на режим работы требуемой мощности, обеспечивающей устойчивый режим работы РБ ГТД под полной нагрузкой, так сразу внешний электродвигатель - электрогенератор, связанный через муфту с валом (5) рабочего колеса (7) первого ротора, и высокочастотные электродвигатели - электрогенераторы, образованные расположенной в корпусах (8) и (8') токопроводящей обмоткой статоров (13) и (13'), и вращающимися в корпусе валов (30) и (30') магнитами (33) и (33') соответственно, переходят из режима работы электродвигателей, в режим работы электрогенераторов, вырабатывая электрическую энергию требуемой мощности, и с высокой энергоэффективностью по КПД.

Воздухозаборные устройства (28) и (28'), выполненные на дисках (27) и (27'), в процессе работы РБ ГТД выполняют две функции. Во - первых, они обеспечивают поступление через сквозные отверстия (29) и (29') в полость рабочего колеса (26) второго ротора дополнительной массы окислительного рабочего тела с расчётными значениями расхода и избыточного давления, с помощью которой продукты неполного сгорания, истекающие из сопел (22) рабочего колеса (7) первого ротора в полость рабочего колеса (26) второго ротора, полностью догорают с повышением температуры и давления. При этом за счёт присоединения к потоку продуктов неполного сгорания смеси окислительного и горючего рабочего тела дополнительной массы окислительного рабочего тела, поступающей в полость рабочего колеса (26) второго ротора, а так же за счёт повышения в полости рабочего колеса (26) второго ротора температуры и давления в продуктах полного сгорания, увеличивается мощность и эффективность работы по КПД рабочего колеса (26) второго ротора, и РБ ГТД в целом. Во - вторых, поступление в полость рабочего колеса (26) второго ротора дополнительной массы окислительного рабочего тела позволяет обеспечить эффективное воздушное охлаждение его дисков (27) и (27'), испытывающих в процессе работы РБ ГТД высокие температурные и центробежные нагрузки.