Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BLOCK POLYMER COMPOUND, POLYMER-CONTAINING COMPOSITION THAT CONTAINS THE SAME
Document Type and Number:
WIPO Patent Application WO/2005/033160
Kind Code:
A1
Abstract:
A block polymer compound containing block segments, characterized in that at least one hydrophilic segment among the block segments is a copolymer segment composed of an ionic or hydrophilic repeating unit structure and a hydrophobic repeating unit structure.

Inventors:
SATO KOICHI (JP)
NAKAZAWA IKUO (JP)
SUDA SAKAE (JP)
HIGASHI RYUJI (JP)
IKEGAMI MASAYUKI (JP)
TSUBAKI KEIICHIRO (JP)
Application Number:
PCT/JP2004/014798
Publication Date:
April 14, 2005
Filing Date:
September 30, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CANON KK (JP)
SATO KOICHI (JP)
NAKAZAWA IKUO (JP)
SUDA SAKAE (JP)
HIGASHI RYUJI (JP)
IKEGAMI MASAYUKI (JP)
TSUBAKI KEIICHIRO (JP)
International Classes:
C08F293/00; C08F297/00; C08L53/00; C09D11/00; C09D153/00; (IPC1-7): C08F293/00; C09D11/00
Domestic Patent References:
WO2003074575A12003-09-12
Foreign References:
EP0509109A11992-10-21
US6306994B12001-10-23
Attorney, Agent or Firm:
Okabe, Masao (Fuji Bldg. 2-3, Marunouchi 3-chom, Chiyoda-ku Tokyo 05, JP)
Download PDF:
Claims:
CLAIMS
1. A block polymer compound comprising block segments, wherein at least one hydrophilic block segment among the block segments is a copolymer segment composed of an ionic or hydrophilic repeating unit structure and a hydrophobic repeating unit structure.
2. A block polymer compound according to claim 1, further comprising a polyalkenyl ether repeating unit structure.
3. A block polymer compound according to claim 1 or 2, wherein, in the hydrophilic segment, a content of the ionic or hydrophilic repeating unit structure is 50 mol% or more and a content of the hydrophobic repeating unit structure is 50 mol% or less.
4. A block polymer compound according to any one of claims 1 to 3, wherein the hydrophilic repeating unit structure has an ionic group or an acidic group.
5. A block polymer compound according to claim 4, wherein the ionic group or the acidic group comprises at least one functional group selected from carboxylic acid and carboxylate.
6. A block polymer compound according to claim 5, wherein the repeating unit structure having the ionic group or the acidic group is a repeating unit represented by the following general formula (1) : wherein R° representsX (COOH) r orX (COOM) ri X represents a linear, branched, or cyclic alkylene group having 1 to 20 carbon atoms, or (CH (R5) CH (R6)0) P (CH2) mCH3ror (CH2) m (0) n (CH2) qCH3r or a substituted structure of these groups in which at least one of methylene groups is substituted by a carbonyl group or an aromatic ring group; r represents 1 or 2; p represents an integer of 1 to 18 ; m represents an integer of 0 to 35 ; n represents 0 or 1 ; q represents an integer of 0 to 17; M represents a monovalent or polyvalent cation; and each of R5 and R6 represents an alkyl group, where R5 and R6 may be the same as or different from each other.
7. A block polymer compound according to any one of claims 1 to 6, wherein the hydrophobic repeating unit structure is selected from repeating unit structures represented by the following general formula (2): wherein Ru ils selected from the group consisting of a linear, branched, or cyclic alkyl group having 1 to 18 carbon atoms,Ph,Pyr,PhPh,PhPyr, (CH (R5)CH (R6)O) pR7, and (CH2)m(O)nR7, where a hydrogen atom in an aromatic ring of these groups may be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms and a carbon atom in the aromatic ring may be substituted by a nitrogen atom ; p represents an integer of 1 to 18 ; m represents an integer of 1 to 36 ; n represents 0 or 1 ; each of R5 and R6 independently represents a hydrogen atom orCH3 ; R7 represents a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 18 carbon atoms,Ph,Pyr,PhPh,PhPyr,CHO, CH2CHO, COCH=CH2, COC (CH3) =CH2, orCH2COOR8, where when R7 is not a hydrogen atom, a hydrogen atom bound to a carbon atom of R7 may be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms orF,Cl, orBr, and a carbon atom in an aromatic ring may be substituted by a nitrogen atom ; R8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms ; Ph represents a phenyl group ; and Pyr represents a pyridyl group.
8. A block polymer compound according to any one of claims 1 to 6, wherein the hydrophobic repeating unit structure is selected from repeating unit structures represented by the folloeing general formula (3): wherein R1 is selected from the groups consisting of a linear, branched, or cyclic alkyl group having 1 to 18 carbon atoms,Ph,Pyr,PhPh,PhPyr, (CH (R5)CH (R6)0) pR7, and(CH2) m(O) nR7, where a hydrogen atom in an aromatic ring of these groups may be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms, and a carbon atom in the aromatic ring may be substituted by a nitrogen atom ; p represents an integer of 1 to 18 ; m represents an integer of 1 to 36 ; n represents 0 or 1 ; each of R5 and R6 independently represents a hydrogen atom orCH3 ; R7 represents a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 18 carbon <BR> <BR> <BR> <BR> <BR> atoms,Ph,Pyr,PhPh,PhPyr,CHO,<BR> <BR> <BR> <BR> <BR> <BR> CHCHO,COCH=CH2,COC (CH3) =CH2, orCH2COOR8, where when R7 is not a hydrogen atom, a hydrogen atom bound to a carbon atom of R7 may be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms orF,Cl, orBr, and a carbon atom in an aromatic ring may be substituted by a nitrogen atom ; R8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms; Ph represents a phenyl group; and Pyr represents a pyridyl group.
9. A polymercontaining composition comprising: the block copolymer compound according to any one of claims 1 to 8; a solvent or a dispersion medium; and a functional substance.
10. A polymercontaining composition according to claim 9, wherein the functional substance is a coloring material incorporated in the block polymer compound.
11. An imageforming method comprising applying an ink containing the composition according to claim 9 or 10 on a recording medium to carry out recording.
12. An imageforming apparatus comprising: an applying means for applying an ink containing the composition according to claim 9 or 10 on a recording medium ; and a driving member for controlling the applying means.
Description:
DESCRIPTION BLOCK POLYMER COMPOUND, POLYMER-CONTAINING COMPOSITION THAT CONTAINS THE SAME TECHNICAL FIELD The present invention relates to a novel block polymer compound useful as various kinds of functional materials, a polymer-containing composition that contains the same, and an image- forming method and image-forming apparatus using the same.

BACKGROUND ART In aqueous dispersing materials that contain functional material, the functional materials have been conventionally well known in the art, which include : agricultural chemicals such as herbicides and insecticides : pharmaceuticals such as anticancer agents, antiallergy agents, and antiphlogistic agents ; and coloring materials such as ink and toner that contain colorants. In recent years, digital printing technologies have very rapidly progressed and the representative examples of the digital printing technologies include the so-called electrophotographic and inkjet technologies. The technologies as image-forming technologies for office,

home, and other uses have increased their raison d'etre more and more.

Among the technologies, the ink-jet technology as a direct recording method has prominent characteristic features of compactness and low power consumption. In addition, the quality of an image has rapidly increased as the micro-fabrication of nozzles or the like has advanced. One example of the ink-jet technologies is a method in which ink supplied from an ink tank is vaporized and bubbled by heating with a heater in a nozzle to discharge ink to form an image on a recording medium. Another example is a method in which ink is discharged from a nozzle by vibrating a piezo-electric element.

The ink used in those methods is typically an aqueous dye solution, so that the ink may run on a recording medium when colors are superimposed thereon or a phenomenon referred to as feathering may occur on a recording area of the recording medium in the direction of paper fibers. For alleviating them, U. S.

Patent No. 5, 085, 698 discloses the use of pigment- dispersion ink. However, many improvements have still been desired.

DISCLOSURE OF THE INVENTION The present invention intends to provide a block polymer compound capable of dispersing a

functional substance in a solvent.

The present invention also intends to provide a polymer-containing composition that contains the block polymer compound, which is excellent in dispersibility, fixing ability, and resistance to environment.

According to a first aspect of the present invention, there is provided a block polymer compound, containing block segments, characterized in that at least one hydrophilic block segment among the block segments is a copolymer segment composed of an ionic or hydrophilic repeating unit structure and a hydrophobic repeating unit structure.

According to a second aspect of the present invention, there is provided a polymer-containing composition, containing the block copolymer compound, a solvent or a dispersion medium, and a functional substance.

According to a third aspect of the present invention, there is provided an image-forming method including applying ink containing the composition onto a recording medium to carry out recording.

According to a fourth aspect of the present invention, there is provided an image-forming apparatus including : an applying means for applying ink containing the composition on a recording medium ; and a driving means for controlling the applying

means.

BRIEF DESCRIPTION OF THE DRAWING Fig. 1 is a block diagram showing the configuration of an ink-jet recording apparatus.

BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have completed the present invention as a result of their extensive study.

According to the first aspect of the present invention, there is provided a block polymer compound composed of block segments, characterized in that at least one hydrophilic block segment of the block segments is a copolymer segment composed of an ionic or hydrophilic repeating unit structure and a hydrophobic repeating unit structure. Preferably, the block copolymer compound contains 50 mol% or more of the ionic repeating unit structure and 50 mol% or less of the hydrophobic repeating unit structure in the hydrophilic segment. Furthermore, the content of the ionic repeating unit structure is preferably 70 mol% or more, more preferably 80 mol% or more. In one of the preferable embodiments, the content of the ionic repeating unit structure is 90 mol% or more.

The term"block polymer"used herein is also referred to as"block copolymer", so that any of these

designations may be used.

In terms of favorable dispersion stability and also in terms of easiness. in formation of a polymer micelle and easiness in incorporation of a functional substance described later in the polymer micelle, preferably, the block polymer. compound is an amphipathic block polymer compound, characterized in that at least one block segment is composed of the hydrophobic repeating unit structure and the hydrophilic repeating unit structure and has hydrophilic property, and the hydrophilic repeating unit in the at least one block segment has an ionic group or an acidic group. More preferably, the block polymer compound is a block polymer compound, characterized in that the above-mentioned ionic group or acidic group is at least one functional group selected from carboxylic acid and carboxylate.

Furthermore, a block copolymer containing a repeating unit of polyalkenyl ether is preferable in the present invention, and of course, the present invention includes a block copolymer not composed of a repeating unit of polyalkenyl ether, such as an acrylic, methacrylic, styrylic, or polyoxyalkylene block copolymer. According to the present invention, there is provided an amphipathic block copolymer compound having at least one hydrophilic segment and at least one hydrophobic segment, in which the

hydrophilic segment is a block segment containing an ionic repeating unit structure and a hydrophobic repeating unit structure. In particular, when the composition is used as a dispersion composition as described later, it is possible to impart favorable dispersibility with high stability to the dispersion composition and to realize favorable driving characteristics of various kinds of recording devices.

The repeating unit structure having the ionic group or the acidic group is preferably selected from repeating units represented by the following general formula (1) : wherein R° represents-X- (COOH) r or-X- (COO-M) ri X represents a linear, branched, or cyclic alkylene group having 1 to 20 carbon atoms, or- (CH (R5) - CH (R6)-O) p-(CH2) m-CH3-r-or-(CH2) m~ (O) n- (CH2) q-CH3-r- or a substituted structure of these groups in which at least one of methylene groups is substituted by a carbonyl group or an aromatic ring group; r represents 1 or 2; p represents an integral number of 1 to 18 ; m represents an integer of 0 to 35; n represents 0 or 1 ; q represents an integer of 0 to 17 ; M represents a monovalent or polyvalent cation; and each of R5 and R6 represents an alkyl group,

where R5 and R6 may be the same as or different from each other).

Concrete examples of the repeating unit structures represented by the general formula (1) include the following repeating unit structures (Ph represents a phenylene group).

The above-mentioned at least one block segment is composed of the hydrophobic repeating unit structure and the hydrophilic repeating unit structure and has hydrophilic property. The hydrophobic repeating unit used in the block segment is preferably selected from repeating unit structures represented by the following general formula (2) : -(-CH2-CH-)- OR¹ wherein R1 is selected from the group consisting of a linear, branched, or cyclic alkyl group having 1 to 18 carbon atoms,-Ph,-Pyr,-Ph-Ph,-Ph-Pyr, - (CH (R5)-CH (R6)-O)p-R7, and -(CH2)m-(O) n-R7, where a hydrogen atom in an aromatic ring of these groups may be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms and a carbon atom in the aromatic ring may be substituted by a nitrogen atom ; p represents an integer of 1 to 18 ; m represents an integer of 1 to 36 ; n represents 0 or 1 ; each of R5 and R6 independently represents a hydrogen atom or -CH3 ; R7 represents a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 18 carbon <BR> <BR> <BR> atoms,-Ph,-Pyr,-Ph-Ph,-Ph-Pyr,-CHO,<BR> <BR> <BR> <BR> <BR> <BR> <BR> - CHCHO,-CO-CH=CH2,-CO-C (CH3) =CH2, or-CH2COOR8,

where when R7 is not a hydrogen atom, a hydrogen atom bound to a carbon atom of R7 may be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms or-F,-Cl, or-Br, where a carbon atom in an aromatic ring of these groups may be substituted by a nitrogen atom ; R8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms; Ph represents a phenyl group; and Pyr represents a pyridyl group).

Concrete examples of the repeating unit structures represented by the general formula (2) include the following repeating unit structures (Ph represents a phenylene group or a phenyl group).

As described above, preferably, the block copolymer compound of the present invention is amphipathic and has the hydrophilic segment described above. Therefore, the block copolymer compound of the present invention also has a hydrophobic segment as an amphipathic block copolymer. The hydrophobic segment is preferably a hydrophobic segment having a repeating unit structure selected from repeating unit structures represented by the following general formula (3): wherein R1 is selected from the group consisting of a linear, branched, or cyclic alkyl group having 1 to 18 carbon atoms,-Ph,-Pyr,-Ph-Ph,-Ph-Pyr, - (CH (R5) -CH (R6)-0) p-R7, and-(CH2) m-(O) n-R7, where a hydrogen atom in an aromatic ring of these groups may

be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms, and a carbon atom in the aromatic ring may be substituted by a nitrogen atom ; p represents an integer of 1 to 18 ; m represents an integer of 1 to 36 ; n represents 0 or 1 ; each of R5 and R6 independently represents a hydrogen atom or-CH3 ; R7 represents a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 18 carbon atoms,-Ph,-Pyr,-Ph-Ph,-Ph-Pyr,-CHO, -CH2CHO, -CO-CH=CH2, -CO-C(CH3)=CH2, or -CH2COOR8, where when R7 is not a hydrogen atom, a hydrogen atom bound to a carbon atom of R7 may be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms or-F,-Cl, or-Br, where a carbon atom in an aromatic ring of these groups may be substituted by a nitrogen atom ; R8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms ; Ph represents a phenyl group ; and Pyr represents a pyridyl group.

Concrete examples of the repeating unit structures represented by the general formula (3) include the following repeating unit structures, and may include a copolymerization block segment or a copolymerization block segment having two or more kinds of the following repeating units : (Ph represents a phenylene group or a phenyl group)

A more preferable embodiment with respect to the amphipathic block copolymer as one preferable embodiment of the present invention is a triblock copolymer. The triblock copolymer contains an additional segment in addition to the hydrophilic and

hydrophobic segments exemplified above, and preferable examples of the additional segment include segments consisting of the following repeating unit structure: In the present invention, the content of a block segment, which is a copolymer segment composed of the hydrophobic repeating unit structure and the hydrophilic repeating unit structure and has hydrophilic property, in a block copolymer compound is preferably 1 mol% or more but less than 99 mol%, more preferably 3 mol% or more but less than 95 mol%, still more preferably 3 mol% or more but less than 70% or 50 mol% or less. If the content of the block segment is less than 1 mol%, the dispersion stability may be insufficient. If the content of the block

segment is 99 mol% or more, the viscosity may increase too much. In addition, the content of the hydrophilic repeating unit structure in the block segment is preferably 10 mol% or more but less than 99 mol%. If the content of the hydrophilic repeating unit structure is less than 10 mol%, the hydrophilic property may be insufficient for the segment. If the content of the hydrophilic repeating unit structure exceeds 99 mol%, the proportion of the hydrophobic repeating unit to the hydrophilic one is less than 1 mol% and the effects of the hydrophobic repeating unit may be insufficient. One of the effects of the hydrophobic unit as a minor component mixed in the hydrophilic segment may be particularly responsible for keeping the ionic dissociation condition of the ionic unit favorable. This fact may relate to the possibility to make the recording performance of an ink-jet technology favorable in terms of dispersion stability and viscosity.

Furthermore, the content of the hydrophilic segment used in the present invention in the block copolymer is preferably 1 mol% or more but less than 99 mol%. If the content of the hydrophobic segment is less than 1 mol%, the dispersion stability may be insufficient. If the content of the hydrophobic segment is 99 mol% or more, the viscosity may increase too much.

The number average molecular weight (Mn) of the block polymer compound of the present invention is in the range of 200 or more and 10, 000, 000 or less, more preferably in the range of 1, 000 or more and 1, 000, 000 or less. If Mn exceeds 10, 000, 000, the number of intra-or inter-polymer chains tangled is too large and the block copolymer compound may be hardly dispersed in the solvent. If Mn is less than 200, the block copolymer compound may have difficulty in exerting its steric effect as a polymer because of its small molecular weight. The degree of polymerization for each block segment is preferably in the range of 3 or more and 10, 000 or less, more preferably in the range of 5 or more and 5, 000 or less, still more preferably in the range of 10 or more to 4, 000 or less.

In addition, for improving the dispersion stability and inclusion'property (intensionality), the molecular motility of a block polymer is preferably flexible. This is because the flexible molecular motility of the block polymer allows the block polymer to be physically tangled with and easily have an affinity to the surface of a functional substance. Furthermore, as described later, the molecular motility is preferably flexible also in terms of easily forming a coating layer on a recording medium. For this end, the glass transition

temperature Tg of the main chain of the block polymer is preferably 20°C or less, more preferably 0°C or less, still more preferably-20°C or less. In this regard, a polymer having a polyvinyl ether structure is more preferable because it has a lower glass transition temperature in general and has flexible property. For the exemplified repeating unit structures, most of them have glass transition temperatures of-20°C or less.

The block polymer compound having a polyvinyl ether repeating unit structure, which is preferably used in the present invention, is mainly polymerized by means of cationic polymerization in many cases.

Initiators for the polymerization include : proton acids such as hydrochloric acid, sulfuric acid, methansulfonic acid, trifluoroacetic acid, trifluoromethane sulfonic acid, and perchloric acid ; and combinations of Lewis acids such as BF3, AlCl3, TiCl4, SnCl4, FeCl3, RAlCl2, and R1.5AlCl1.5 (R represents an alkyl) with cation sources (cation sources include a proton acid, water, alcohol, vinyl ether, and an adduct of carboxylic acid). Any one of those initiators is allowed to coexist with a polymerizable compound (monomer) to advance a polymerization reaction, thereby resulting in a block polymer compound. The block polymer compound having a polyvinyl ether repeating unit structure to be

preferably used in the present invention contains, more preferably, a polyvinyl ether repeating unit structure in an amount of 90 mol% or more.

A polymerization method preferably used in the present invention will be described. A large number of processes for synthesis of a polymer that contains a polyvinyl ether structure have been reported (Japanese Patent Application Laid-Open No. Hall- 080221). Of those, the representative is a method by means of cationic living polymerization by Aoshima et al. (Journal of Polymer Bllutein, vol. 15, p. 417, 1986, Japanese Patent Application Laid-Open No. Hall- 322942, and Japanese Patent Application Laid-Open No.

H11-322866). The polymer synthesis with cationic living polymerization allows the formation of various kinds of polymers, such as a homopolymer, a copolymer composed of two or more kinds of monomers, a block polymer, a graft polymer, and a graduation polymer, while the length (molecular weight) of the polymer is precisely determined. In addition, the living polymerization can be also performed by using HI/Iz- or HCl/SnCl4-system.

The second aspect of the present invention will be described.

According to the second aspect of the present invention, there is provided a polymer-containing composition that contains the block polymer compound

described above, a solvent or a dispersion medium, and a functional substance. In other words, the polymer-containing composition contains the block polymer compound described above and the functional substance such as a coloring material which performs a predetermined useful function. Thus, the block polymer compound is suitably used for favorably dispersing the functional substance or the like. The 'functional substance is preferably in the form of a liquid or solid, and may be a soluble substance such as oil, a pigment, a metal, a harbicide, an insecticide, a biomaterial, a medicine, a dye, or a molecular catalyst. In the present invention, a coloring material is preferably used as a functional substance. Furthermore, the coloring material is preferably used for a recording medium such as ink or toner.

In addition, the content of the block polymer compound in the polymer-containing composition of the present invention is 0. 1 to 99% by mass, preferably 0. 3 to 70% by mass with respect to the weight of the composition of the present invention. If the content of the block polymer compound is less than 0. 1% by mass, the dispersibility of the functional substance may be insufficient. If the content of the block polymer compound exceeds 99% by mass, the viscosity may increase much more. In addition, the content of

the functional substance in the composition of the present invention is in the range of 0. 1% by mass or more to 80% by mass or less, preferably in the range of 0. 5% by mass or more to 60% by mass or less. If the content of the functional substance is less than 0. 1% by mass, the functionality of the functional substance may be insufficient. If the content of the functional substance exceeds 80% by mass, the dispersibility of the functional substance may be insufficient.

Furthermore, the polymer-containing composition of the present invention contains the solvent or dispersion medium. A binder resin may be used as the dispersion medium. The solvent or dispersion medium used may be water, an aqueous solvent, or a non- aqueous organic solvent, or a combination thereof.

Examples of the aqueous solvent include : polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, and glycerin ; polyhydric alcohol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether ; and nitrogen-containing solvents such as N-methyl-2-pyrrolidone, substituted pyrrolidone, and triethanolamine. Further, monohydric

alcohols such as methanol, ethanol, and isopropyl alcohol may be also used.

Examples of the non-aqueous organic solvent include : hydrocarbon-based solvents such as hexane, heptane, octane, decane, and toluene ; and solvents such as cyclohexanone, acetone, methyl ethyl ketone, acetic acid, and butyl. Further, natural fats and oils such as olive oil, soybean oil, beef tallow, and lard may be also used.

Examples of the binder resin include styrene acrylic copolymers and polyesters.

The content of the solvent or dispersion medium in the polymer-containing composition of the present invention is in the range of 1% by mass or more and 99% by mass or less, preferably in the range of 10% by mass or more and 95% by mass or less. If the content of the solvent or dispersion medium is less than 1% by mass or more than 99% by mass, the dispersion of the functional substance may be insufficient.

In the polymer-containing composition of the present invention, other components may be added in addition to the components described above without any limitation, so that a UV absorber, an antioxide, a stabilizer, or the like may be added.

The polymer-containing composition of the present invention employs the block polymer compound

according to the first aspect of the present invention. Therefore, it is possible to form a high- order and sophisticated structure. It is also possible to keep properties that resemble those of a plurality of block segments of the block polymer used in the present invention in the polymer-containing composition of the present invention to make the properties of the polymer-containing composition more stable. For instance, when a dispersion solution is prepared by using the ABC triblock polymer described above, a coloring material, and water as a solvent, it is possible to favorably incorporate the coloring material into a micell formed of the ABC block polymer. As a result, a coloring material incorporation-type ink composition can be formed. In particular, a suitable ABC triblock copolymer contains a hydrophobic segment as A, a non-ionic hydrophilic segment as B, and a hydrophilic segment as C which contains an ionic repeating unit structure and a hydrophobic repeating unit structure that are specifically used in the present invention.

Furthermore, the particle sizes of the dispersion composition particles may be extremely uniform.

Furthermore, it is also possible to keep the dispersion state highly stable. It is noted that it is also possible to incorporate a coloring material by using a diblock copolymer.

The incorporation of the coloring material into a micell formed of a block polymer means that the coloring material is incorporated into the core section of the formed micell and dispersed in the solution.

The state of the coloring material incorporated into the micell, for example, is formed by dissolving or dispersing a coloring material in a water- insoluble organic solvent using a dispersing machine or the like ; incorporating the mixture into a micell formed of a block copolymer in water ; and distilling the organic solvent off.

In addition, the incorporation state may be formed by phase transfer from a state in which a polymer and a coloring material are dissolved in an organic solvent into an aqueous solvent and then distilling the remaining organic solvent.

Alternatively, furthermore, the incorporation state may be formed by phase transfer of a state in which a polymer is dissolved in an organic solvent and a coloring material is dispersed therein into an aqueous solvent. The incorporation state can be identified through instrumental analysis such as instrumental analysis with various electron microscopes or X-ray diffraction. In addition, in the case of including in a micell state, the incorporation state can be indirectly identified by

independently separating the coloring material and the polymer from the solvent under the micell- decaying conditions.

In the present invention, it is preferable that 90% or more of the functional substance be incorporated in the micell.

Furthermore, an ink composition, which is one preferred embodiment of the present'invention, will be described below.

The content of the block polymer compound of the present invention in the ink composition of the present invention is in the range of 0. 1% by mass or more and 90% by mass or less, preferably in the range of 0. 3t by mass or more and 80% by mass or less. In the present invention, the ink composition is preferably used as an ink-jet printer ink and at this time 0. 3 to 30% by mass of the block polymer can be used.

Next, components other than the block polymer compound in the ink composition of the present invention will be described below. The other components include water, an aqueous solvent, a coloring material, and an additive. Examples of those additional components correspond to those described above.

The coloring materials typically include pigments and dyes. The pigment may be an organic

pigment or an inorganic pigment. The pigments which can be used in ink are preferably a black pigment and three primary color pigments of cyan, magenta, and yellow. By the way, a color pigment except for those described above, a colorless or light color pigment, or a metallic pigment may be used. In addition, in the present invention, the pigment may be one commercially available or may be one newly synthesized. In addition, the pigment may be used together with a dye.

Hereinafter, commercially available black, cyan, magenta, and yellow pigments will be exemplified.

Examples of the black pigments include, but not limited to, Raven 1060 (manufactured by Columbian Chemicals Co.), MOGUL-L (manufactured by Cabot Corporation), Color Black FW1 (manufactured by Degussa Corporation), and MA100 (manufactured by Mitsubishi Chemical Corporation).

Examples of the cyan pigments include, but not limited to, C. I. Pigment Blue-15 : 3, C. I. Pigment Blue-15 : 4, and C. I. Pigment Blue-16.

Examples of the magenta pigments include, but not limited to, C. I. Pigment Red-122, C. I. Pigment Red-123, and C. I. Pigment Red-146.

Examples of the yellow pigments include, but not limited to, C. I. Pigment Yellow-74, C. I. Pigment Yellow-128, and C. I. Pigment Yellow-129.

Furthermore, in the ink composition of the present invention, a pigment self-dispersible in water can be also used. The water-dispersible pigments include a pigment which has a polymer adsorbed on the surface thereof and utilizes effects of steric hindrance and a pigment that utilizes electrostatic repulsion. Examples of such pigments which are commercially. available include CAB-0-JET200 and CAB-0-JET300 (manufactured by Cabot Co., Ltd :), and Microjet Black CW-1 (Orient Chemical Industries, LTD.).

The content of the pigment in the ink composition of the present invention is preferably in the range of 0. 1 to 50% by mass with respect to the total mass of the ink composition. If the content of the pigment is less than 0. 1% by mass, a sufficient ink density cannot be obtained. If the content of the pigment exceeds 50% by mass, the pigment is hardly dispersed because of the agglomeration of the pigment. Furthermore, the content of the pigment is more preferably in the range of 0. 5 to 30% by mass.

The ink composition of the present invention may use a dye. The dyes include a direct dye, an acid dye, a basic dye, a reactive dye, a water- soluble dye of a food coloring matter, and a dispersion dye of an insoluble coloring matter.

Examples of the water soluble dyes include :

direct dyes such as C. I. Direct Black,-17,-62, and - 154, C. I. Direct Yellow,-12,-87, and-142, C. I.

Direct Red,-1,-62, and-243, C. I. Direct Blue,-6, - 78, and-199, C. I. Direct Orange-34 and-60, C. I.

Direct Violet,-47 and-48, C. I. Direct Blown,-109, and C. I. Direct Green,-59 ; acid dyes such as C. I. Acid Black,-2,-52, and 208, C. I. Acid Yellow,-11,-29, and-71, C. I. Acid Red,-1,-52, and-317, C. I. Acid Blue,-9,-93, and - 254, C. I. Acid Orange,-7 and-19, and C. I. Acid Violet,-49 ; reactive dyes such as C. I. Reactive Black,-1, - 23, and-39, Reactive Yellow,-2,-77, and-163, C. I.

Reactive Red,-3,-111, and-221, C. I. Reactive Blue, - 2,-101, and-217, C. I. Reactive Orange,-5,-74, and-99, C. I. Reactive Violet,-1,-24, and-38, C. I.

Reactive Green,-5,-15, and-23, and C. I. Reactive Blown,-2,-18, and-33 ; C. I. Basic Black,-2 ; C. I. Basic Red-1,-12, and-27, C. I. Basic Blue-1 and-24, C. I. Basic Violet-7,-14, and-27, and C. I. Food Black,-1 and - 2.

Further, examples of commercially available oil- soluble dyes for the respective colors are described below.

Examples of the black oil-soluble dyes include, but not limited to, C. I. Solvent Black-3,-22 : 1, and

- 50.

Examples of the yellow oil-soluble dyes include, but not limited to, C. I. Solvent Yellow-1,-25 : 1, and-172.

Examples of the orange oil-soluble dyes include, but not limited to, C. I. Solvent Orange-1,-40 : 1, and-99.

Examples of the red oil-soluble dyes include, but not limited to, C. I. Solvent Red-1,-111, and - 229.

Examples of the violet oil-soluble dyes include, but not limited to, C. I. Solvent Violet-2,-11, and - 47.

Examples of the blue oil-soluble dyes include, but not limited to, C. I. Solvent Blue-2,-43, and - 134.

Examples of the green oil-soluble dyes include, but not limited to, C. I. Solvent Green-1,-20, and - 33.

Examples of the blown oil-soluble dyes include, but not limited to, C. I. Solvent Blown-1,-20, and - 58.

The content of the dye used in the ink composition of the present invention is preferably 0. 1 to 50% by mass with respect to the total mass of the ink composition. The above examples of the coloring materials are preferable for the ink

composition of the present invention. However, the coloring materials to be used in the ink composition of the present invention are not specifically limited to the coloring materials described above.

The solvent used may be any of water, an aqueous solvent, and an organic solvent. Of those, however, water is preferably used. Water may be ion- exchanged water, pure water, or ultra-pure water, from which metal ions and the like are removed.

The content of water in the ink composition of the present invention is preferably 1 to 95% by mass, more preferably 5% by mass or more but less than 90% by mass. Within the range of 1 to 95% by mass, the effect of dispersion is more apparent and a more uniform dispersion state of the functional substance can be realized.

Example of the aqueous solvent include : polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, and glycerin ; polyhydric alcohol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether ; and nitrogen-containing solvents such as N-methyl-2-pyrrolidone, substituted pyrrolidone, and triethanolamine. Further, in some

applications of ink, monohydric alcohols such as methanol, ethanol, and isopropyl alcohol may be used in order to elevate desiccation on paper (recording medium).

The content of the aqueous solvent in the ink composition of the present invention is preferably in the range of 0. 1 to 50% by mas's, more preferably 0. 5% by mass or more but less than 40% by mass. In the range of 0. 1 to 50% by mass, the effect of wetting is more remarkable, so that a more uniform dispersion state of the functional substance can be realized.

The ink composition may be further provided with responsibility to a stimulus. The responsibility to a stimulus allows an increase in viscosity of ink to impart favorable fixing ability by providing a stimulus during the process of image formation. The stimulus may be a temperature change, exposure to electromagnetic waves, a change in pH, a change in concentration, or the like, which may be selected or combined appropriately for the formation of an image.

Now, the exemplified usage of the ink-jet ink of the present invention will be described.

(Preparation Process for Ink-jet Ink) As a process for preparing an ink-jet ink composition of the present invention, it is possible to exemplify a process of adding a pigment, the block

polymer compound of the present invention, an additive, and so on to ion-exchanged water ; dispersing these components together in the ion- exchanged water using a dispersing machine ; removing coarse particles from the mixture using a centrifugal separator or the like ; and then adding water or a solvent and an additive or the like, followed by stirring, mixing, and filtration.

Examples of the dispersing machine include an ultrasonic homogenizer, laboratory homogenizer, colloid mill, jet mill, and ball mill, which may be used alone or in combination.

When the self-dispersible pigment is used, the ink composition can be prepared by the same way as one described above.

Here, a liquid-applying method of the present invention will be described.

(Liquid-Applying Method) One preferred embodiment of a method of applying the ink composition of the present invention is a liquid-applying method of performing recording by discharging ink from an ink-discharging part and applying the ink on a recording medium. It is preferable to use a method of forming a certain pattern on a recording medium, various printing methods by which images and characters are formed on recording media, and various image-forming methods

such as an inkjet method and an electrophotographic method. It is particularly preferable to use the ink-jet method.

The ink-jet method used may be a well-know method such as a piezo-ink-jet system using a piezo- electric element, or a Bubble Jet (registered trademark) method in which the action of a thermal energy generates an air bubble to carry out recording.

The method may be either of a continuous type or an on-demand type. In addition, the ink composition of the present invention can be used for a recording method in which ink is printed on an intermediate transfer member, and an image is then transferred on a final recording medium such as paper.

Next, the configuration of the image-forming apparatus will be described.

(Liquid-Applying Apparatus) The ink composition of the present invention can be used in a liquid-applying apparatus using the liquid-applying method described above, a pattern- forming apparatus utilizing a pattern-forming method by which a certain pattern is formed on a recording medium, and an image-forming apparatus utilizing various printing methods of forming images and characters on recording media and various kinds of image-forming methods such as an inkjet method and an electrophotographic method. Particularly it is

preferable to use the-ink composition of the present invention in the ink-jet recording apparatus.

The ink-jet recording apparatus using the ink- jet ink of the present invention includes an ink-jet recording apparatus utilizing a piezo-ink-jet method using a piezo-electric element or a Bubble Jet (registered trademark) method of generating an air bubble by the action of a thermal energy to carry out recording.

Fig. 1 shows a schematic functional diagram of an ink-jet recording apparatus. Reference numeral 50 denotes a central processing unit (CPU) of the ink- jet recording apparatus 20. A program for controlling the CPU 50 may be stored in a program memory 66 or may be stored as the so-called firmware in a memory means such as an EEPROM (not shown). The ink-jet recording apparatus receives recording data in its program memory 66 from a recording date making means (not shown, a computer or the like). The recording data may include information about an image or character to be recorded or a compressed form thereof, or encoded information. For processing the compressed or encoded information, the CPU 50 may expand or extend the compressed or encoded information to obtain information about an image or character to be recorded. An X-encoder 62 (e. g., with respect to the X direction or the main-scanning

direction) and a Y-encoder 64 (e. g., with respect to the Y direction or the sub-scanning direction) may be provided to inform the CPU 50 of a relative position of a head to the recording medium.

The CPU 50 transmits a signal for recording an image to an X-motor drive circuit 52, a Y-motor drive circuit 54, and a head drive circuit 60 on the basis of information from the program memory 66, X-encoder 62, and Y-encoder 64. The X-motor drive circuit 52 actuates an X-direction drive motor 56 and the Y- motor drive circuit 54 actuates a Y-direction drive motor 58. Thus, a head 70 is moved relative to the recording medium to shift its position to a recording position. When the head 70 arrives at the recording position, the head drive circuit 60 sends to the head 70, a signal for discharging various ink compositions (Y, M, C, and K) or discharging a stimulus-imparting substance to act as a stimulus, to carry out recording. The head 70 may be designed to discharge a mono-color ink composition or to discharge two or more ink compositions, or may be designed to have an additional function of discharging a stimulus- imparting substance to act as a stimulus.

Hereinafter, the present invention will be described with reference to the examples. However, the present invention is not limited to these examples.

(Example 1) <Synthesis 1 of Block Polymer> Synthesis of a block polymer composed of isobutyl vinylether (IBVE : A block) and 4- (2- vinyloxy) ethoxy ethyl benzoate (VEOEtPhCOOEt : B block) After nitrogen substitution of the inside of a glass container attached with a three-way cock had been carried out, the container was heated to 250°C under nitrogen gas atmosphere to remove adsorbed water. After the reaction system had been cooled down to room temperature, 12 mmol of IBVE, 16 mmol of ethyl acetate, 0. 05 mmol of 1-isobutoxyethyl acetate, and 11 ml of toluene were added and then the reaction system was cooled down. When the system temperature reached 0°C, 0. 2 mmol of ethyl aluminum sesquichloride (equimolar mixture of diethyl aluminum chloride and ethyl aluminum dichloride) was added to initiate polymerization. The molecular weight of the product was monitored with time sharing through molecular sieve column chromatography (GPC) to confirm the completion of polymerization of the A block.

Next, a solution of 10 mmol of VEOEtPhCOOEt : B block in 13 ml of toluene was added to continue the polymerization. After 20 hours, the polymerization reaction was discontinued. The discontinuance of the

polymerization reaction was carried out by the addition of 0. 3% by mass of an aqueous ammonium/methanol solution to the reaction mixture.

Then, the reaction mixture solution was diluted with dichloromethane and washed with 0. 6-M hydrochloric acid three times, followed by washing with distilled water three times. The resulting organic phase was concentrated and dried through an evaporator and then dried under vacuum. The product was subjected to dialysis in a methanol solvent through a semi- permeable membrane of cellulose and then the dialysis was repeated to remove a monomer compound, thereby obtaining a diblock polymer as a target product. The resulting compound was subjected to identification with NMR and GPC. Consequently, Mn = 21, 500 and Mw/Mn = 1. 38 were obtained. The polymerization ratio A : B = 200 : 28 was also obtained.

The resulting block polymer was hydrolyzed in a mixture of methanol and aqueous sodium hydroxide for 10 hours. As a result, 48 mol% of a C block component was hydrolyzed, thereby obtaining a sodium chloride triblock polymer. In this case, 48 mol% of the C block component was carboxylate and hydrophilic and the rest (52 mol%) of the C block component remained as an ester, a hydrophobic group. The compounds were subjected to identification with NMR and GPC, respectively.

Furthermore, the aqueous dispersion was neutralized with 0. 1 N hydrochloric acid, thereby obtaining a triblock polymer in which a carboxylate portion became a free carboxylic acid. The compounds were subjected to identification with NMR and GPC, respectively.

<Synthesis 2 of Block Polymer> Synthesis of a triblock polymer composed of isobutyl vinylether, CH2=CHOCH2CH2OPhPh : (IBVE-r- VEEtPhPH : A block), 2-methoxyethyl vinyl ether (MOVE : B block), 4- (2-vinyloxy) ethoxy ethyl benzoate, and isobutyl vinyl ether (C block) After nitrogen substitution of the inside of a glass container attached with a three-way cock had been carried out, the container was heated to 250°C under nitrogen gas atmosphere to remove adsorbed water. After the reaction system had been cooled down to room temperature, 6 mmol of IBVE, 6 mmol of VEEtPhPh, 16 mmol of ethyl acetate, 0. 1 mmol of 1- isobutoxyethyl acetate, and 11 ml of toluene were added and then the reaction system was cooled down.

When the system temperature reached 0°C, 0. 2 mmol of ethyl aluminum sesquichloride (equimolar mixture of diethyl aluminum chloride and ethyl aluminum dichloride) was added to initiate polymerization.

The molecular weight of the product was monitored with time sharing through molecular sieve column

chromatography (GPC) to confirm the completion of polymerization of the A block.

Next, 24 mmol of EOVE of the B block was added to continue the polymerization. After the completion of polymerization of the B block had been confirmed by monitoring with GPC, a solution of 10 mmol of C block component (Component ratio == 1 : 1/mol ratio) in toluene was added to continue the polymerization.

After 20 hours, the polymerization reaction was discontinued. The discontinuance of the polymerization reaction was carried out by the addition of 0. 3% by mass of an aqueous ammonium/methanol solution to the reaction system.

The reaction mixture solution was diluted with dichloromethane, washed with 0. 6 M hydrochloric acid three times, and then washed with distilled water three times. The resulting organic phase was concentrated and dried through an evaporator and then dried under vacuum. The product was subjected to dialysis in a methanol solvent through a semi- permeable membrane of cellulose and then the dialysis was repeated to remove a monomer compound, thereby obtaining a triblock polymer as a target product.

The resulting compound was subjected to identification with NMR and GPC. Consequently, Mn = 38, 300 and Mw/Mn = 1. 34 were obtained. The polymerization ratio A : B : C = 100 : 200 : 30 was

also obtained. The polymerization ratio of two monomers in the A block was 1 : 1. In addition, the polymerization ratio of two monomers in the C block was 1 : 1.

The resulting block polymer was hydrolyzed in a mixture of dimethylformamide and aqueous sodium hydroxide. As a result, 100 mol% of a C block component was hydrolyzed, thereby obtaining a sodium chloride triblock polymer. The compound was subjected to identification with NMR and GPC, respectively.

Furthermore, the aqueous dispersion was neutralized with 0. 1 N hydrochloric acid, thereby obtaining a triblock polymer in which the C block component portion became a free carboxylic acid. The chemical compound was subjected to identification with NMR and GPC, respectively.

<Synthesis 3 of Block Polymer> The ester-type block copolymer synthesized in Synthesis 1 was hydrolyzed for 30 hours and then subjected to the same post processing as that of Synthesis 1, resulting in a block copolymer with a hydrolysis ratio of 88 mol%. The resulting compound was subjected to identification with NMR and GPC.

<Synthesis 4 of Block Polymer> The mole ratio between 4- (2-vinyloxy) ethoxy ethyl benzoate and isobutyl vinyl ether in the C

block segment of the block copolymer synthesized in Synthesis 2 was changed to 85 : 15, and then polymerization, post-processing, and hydrolysis were carried out by the same ways as those of Synthesis, thereby obtaining a block polymer.

<Synthesis 5 of Block Polymer> Isobutyl vinyl ether of the C block segment of the block copolymer synthesized in Synthesis 4 was replaced with 2 (4-methylphenyloxy) ethyl-l-vinyl ether and then polymerization, post-processing, and hydrolysis were carried out by the same ways as those of Synthesis 4, thereby obtaining a block polymer.

<Synthesis 6 of Block Polymer> The mole ratio between 4- (2-vinyloxy) ethoxy ethyl benzoate and 2- (4-methylphenyloxy) ethyl-1-vinyl ether in the C block segment of the block copolymer synthesized in Synthesis 5 was changed to 91 : 9, and then polymerization, post-processing, and hydrolysis were carried out by the same ways as those of Synthesis 5, thereby obtaining a block polymer.

(Example 2) 15 parts by mass of the carboxylate-type block polymer obtained in Synthesis 1 of Example 1 and 7 parts by mass of Oil Blue-N (C. I. Solvent Blue-14, manufactured by Aldrich Corporation) were dissolved together in 150 parts by mass of dimethylformamide, followed by conversion to an aqueous phase using 400

parts by mass of distilled water, thereby obtaining an ink composition. After the ink composition had been left to stand for 10 days at room temperature, there was no isolation and sedimentation of oil blue.

(Example 3) 15 parts by mass of the carboxylate-type block polymer obtained in Synthesis 2 of Example 1 and 7 parts by mass of a black pigment manufactured by Cabot Ltd. were mixed with 150 parts by mass of dimethylformamide, followed by conversion to an aqueous phase using 600 parts by mass of distilled water, thereby obtaining an ink composition. Then, the resulting ink composition was filtrated through a membrane filter to remove coarse particles of 2 um in particle size. The viscosity of the final ink composition was 0. 004 Pa-s (4cps, 20°C). After the ink composition had been left to stand for 10 days at room temperature, there was no isolation and sedimentation of oil blue.

(Example 4) The ink prepared in Example 2 was filled in a print head of an inkjet printer (trade name : BJF800, manufactured by Canon Inc.) to carry out overall printing on a 3 cm x 3 cm square. As a result, favorable printing was attained without causing any thin spot. After 3 minutes from the recording, a printed portion was strongly rubbed with a line

marker three times. However, there was no blue tailing at all. The result showed that the ink composition had an excellent fixing ability.

(Example 5) The ink prepared in Example 3 was filled in a print head of an inkjet printer (trade name : BJF800, manufactured by Canon Inc.) to carry out overall positive printing on a 3 cm x 3 cm square. As a result, favorable printing was attained without causing any thin spot. After 3 minutes from the recording, a printed portion was strongly grubbed with a line marker three times. However, there was no black tailing at all. The result showed that the ink composition had an excellent fixing ability.

(Comparative Example 1) A block copolymer (number average molecular weight 15, 000, Mw/Mn = 1. 3) of polystyrene : polyethylene glycol = 1 : 1 was used in stead of the block polymer of Example 3 in accordance with the present invention to prepare a pigment-dispersed ink by the same way as that of Example 3. Then, the prepared ink was filled in a print head of an inkjet printer (trade name : BJF800, manufactured by Canon Inc.) to carry out overall positive printing on a 3 cm x 3 cm square. As a result, the recorded product was blurred in a line shape and the overall printing could not be carried out.

(Comparative Example 2) A block copolymer (number average molecular weight 12, 000, Mw/Mn = 1. 3) of polystyrene : sodium acrylate = 1 : 1 was used in stead of the block polymer of Example 3 in accordance with the present invention to prepare a pigment-dispersed ink by the same way as that of Example 3. Then, the prepared ink was filled in a print head of an inkjet printer (trade name : BJF800, manufactured by'Canon Inc.) to carry out overall positive printing on a 3 cm x 3 cm square. As a result, the recorded product was blurred on the whole surface and the periphery of the square was recorded insufficiently with three rounded-off angles of the square.

(Example 6) In Synthesis 1 of the block copolymer of Example 1, the monomer of the A block segment was replaced with 2-ethoxyethoxyvinylether (EOVE) and then a carboxylate-type triblock polymer was synthesized by the same way as that of Example 1.

Then, similarly to Example 3, 15 parts by mass of the synthesized carboxylate-type triblock polymer and 5 parts by mass of Oil Blue-N (C. I. Solvent Blue-14, manufactured by Aldrich Cooperation) were dissolved together in 150 parts by mass of dimethylformamide, and subsequently, the solution was converted to an aqueous phase using 400 parts by mass of distilled

water, thereby obtaining an ink composition. After the ink composition had been left to stand for 10 days at room temperature, there was no isolation and sedimentation of oil blue. Furthermore, the dispersed composition was filled in a print head of an inkjet printer (trade name : BJF800, manufactured by Canon Inc.) by the same way as that of Example 4 to carry out overall positive printing on a 3 cm x 3 cm square. As a result, favorable printing'was attained without causing any thin spot.

After 3 minutes from the recording, a printed portion was strongly rubbed with a line marker three times. However, there was no blue tailing at all.

The result showed that the ink composition had an excellent fixing ability. Independently, furthermore, the dispersed composition was cooled to 0°C, an EOVE polymerization segment as a hydrophobic segment was converted to a hydrophilic one. Then, the polymer was subjected to molecular dissolving in a solvent, resulting in elution of oil blue from the dispersed composition. The resulting filtrate was subjected to measurement of visible light absorbance spectrum.

Comparison with the absorbance obtained before cooling showed that 99. 5% or more of the oil blue was eluted. This showed that 99. 5% or more of oil blue was incorporated in the polymer.

(Example 7)

In a manner similar to Example 2, pigment- incorporated inks were prepared using a copper cyanophthalocyanine pigment (manufactured by Toyo Ink Mfg. Co., Ltd.) and also using the polymers of Syntheses 1 to 6 of Example 1. Inks were prepared using the above cyan pigment and the polymers employed in Comparative Examples 1 and 2. Each of these inks prepared using the polymers of Syntheses 1 to 6 of Example 1 and the polymers of Comparative' Examples 1 and 2 was filled in a print head of an inkjet printer (trade name : BJF800, manufactured by Canon Inc.) and recorded on a 3 cm x 3 cm square, followed by subjecting to optical density (OD) measurement with an optical densitometer manufactured by Sakata Ink Corporation. The measured optical densities of the pigment-incorporated inks using the polymers of Syntheses 1 to 6 of Example 1 and the polymers of Comparative Examples 1 and 2 were in that order 0. 76, 0. 76, 0. 86, 0. 74, 0. 91, 0. 93, 0. 34, and 0. 42.

This application claims priority from Japanese Patent Application No. 2003-345828 filed on October 3, 2003, which is hereby incorporated by reference herein.