Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CAM DISC AND SPRING DEFLECTION SWITCH FOR A SPRING-LOADED DRIVE AND SPRING-LOADED DRIVE
Document Type and Number:
WIPO Patent Application WO/2010/012349
Kind Code:
A1
Abstract:
The invention relates to a cam disc and to a spring deflection switch having a cam disc for a spring-loaded drive, wherein the cam disc (10) comprises a first (14), second (16) and third (18) circumferential region, each having at least one corresponding radial extension (20, 22, 24), for actuating a pushbutton (12) comprising a switching hysteresis, wherein the at least one second radial extension (22) is larger than the at least one third radial extension (24), which in turn is larger than the at least one first radial extension (20). The pushbutton (12) interacts with the cam disc (10) in the spring deflection switch such that when the pushbutton (12) is applied by the first circumferential region (14), the switching contact (30) assumes a first switching position, and when the pushbutton (12) is applied by the second circumferential region (16), the switching contact (30) assumes a second switching position, and when the pushbutton (12) is applied by the third circumferential region (18), the switching contact (30) remains in the switching position assumed earlier. The invention further relates to a hydraulic spring-loaded drive for a high-voltage circuit breaker, comprising a preloaded spring for creating pressure in a high-pressure accumulator and said spring deflection switch.

More Like This:
Inventors:
BOHLAENDER JOACHIM (DE)
Application Number:
PCT/EP2009/004809
Publication Date:
February 04, 2010
Filing Date:
July 03, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ABB TECHNOLOGY AG (CH)
BOHLAENDER JOACHIM (DE)
International Classes:
H01H3/42; H01H33/34
Foreign References:
DE2015630A11971-10-21
EP0158054A11985-10-16
EP0451724A21991-10-16
Attorney, Agent or Firm:
PARTNER, Lothar et al. (DE)
Download PDF:
Claims:
Patentansprüche

1. Nockenscheibe (10) zur Betätigung eines eine Schalthysterese aufweisenden Tasters (12), umfassend einen ersten Umfangsbereich (14) mit wenigstens einer ersten radialen Ausdehnung (20) und einen zweiten Umfangsbereich (16) mit wenigstens einer zweiten radialen

Ausdehnung (22), wobei die wenigstens eine zweite radiale Ausdehnung (22) größer ist als die wenigstens eine erste radiale Ausdehnung (20), dadurch gekennzeichnet, dass ein dritter Umfangsbereich (18) mit wenigstens einer dritten radialen

Ausdehnung (24) in Umfangsrichtung zwischen dem ersten Umfangsbereich (14) und dem zweiten Umfangsbereich (16) angeordnet ist, wobei die wenigstens eine dritte radiale Ausdehnung (24) größer als die wenigstens eine erste radiale Ausdehnung (20) und kleiner als die wenigstens eine zweite radiale Ausdehnung (22) ist.

2. Nockenscheibe (10) nach Anspruch 1 , dadurch gekennzeichnet, dass die dritte radiale Ausdehnung (24) über den dritten Umfangsbereich (18) annähernd konstant ist.

3. Nockenscheibe (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der dritte Umfangsbereich (18) sich in Umfangsrichtung über einen Winkel von mindestens 5° erstreckt.

4. Nockenscheibe (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der dritte Umfangsbereich (18) sich in Umfangsrichtung über einen Winkel von 5° bis 20°, vorzugsweise 10°, erstreckt.

5. Nockenscheibe (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein erster Flankenbereich (26), welcher in Umfangsrichtung zwischen dem ersten Umfangsbereich (14) und dem dritten Umfangsbereich (18) angeordnet ist, sich in Umfangsrichtung über einen Winkel von höchstens 10°, vorzugsweise 8°, erstreckt.

6. Nockenscheibe (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein zweiter Flankenbereich (28), welcher in Umfangsrichtung zwischen dem zweiten Umfangsbereich (16) und dem dritten Umfangsbereich (18) angeordnet ist, sich in Umfangsrichtung über einen Winkel von höchstens 10°, vorzugsweise 8°, erstreckt.

7. Federwegschalter, umfassend eine Nockenscheibe (10) nach einem der vorstehenden Ansprüche und einen eine Schalthysterese aufweisenden Taster (12) mit mindestens einem Schaltkontakt (30), wobei der Taster (12) mit der Nockenscheibe (10) derart zusammen wirkt, dass bei einer Beaufschlagung des Tasters (12) durch den ersten Umfangsbereich (14) der Schaltkontakt (30) eine erste Schaltposition einnimmt, und dass bei einer Beaufschlagung des Tasters (12) durch den zweiten Umfangsbereich (16) der Schaltkontakt (30) eine zweite Schaltposition einnimmt, und dass bei einer Beaufschlagung des Tasters (12) durch den dritten Umfangsbereich (18) der Schaltkontakt (30) die zuvor eingenommene Schaltposition beibehält.

8. Hydraulischer Federspeicherantrieb für einen Hochspannungsleistungsschalter, umfassend eine Speicherfeder zur Druckerzeugung in einem Hochdruckspeicher sowie einen Federwegschalter nach Anspruch 7, welcher derart mit der Speicherfeder zusammen wirkt, dass der erste Umfangsbereich (14) der Nockenscheibe (10) den Taster (12) des Federwegschalters beaufschlagt, wenn die Speicherfeder eine vorgegebene Ausschaltausdehnung erreicht hat, und dass der zweite Umfangsbereich (16) der Nockenscheibe (10) den Taster (12) des Federwegschalters beaufschlagt, wenn die Speicherfeder eine vorgegebene Einschaltausdehnung erreicht hat.

9. Hydraulischer Federspeicherantrieb nach Anspruch 8, dadurch gekennzeichnet, dass der Schaltkontakt (30) des Tasters (12) in der zweiten Schaltposition eine Pumpe zur Förderung von Fluid aus einem Niederdrucktank in den Hochdruckspeicher anschaltet und dass der Schaltkontakt (30) des Tasters (12) in der ersten Schaltposition die Pumpe abschaltet.

Description:
Nockenscheibe und Federwegschalter für einen Federspeicherantrieb sowie

Federspeicherantrieb

Beschreibung

Die Erfindung betrifft eine Nockenscheibe zur Betätigung eines Tasters gemäß dem Oberbegriff des Anspruchs 1.

Die Erfindung betrifft weiterhin einen Federwegschalter mit demgemäßer Nockenscheibe sowie einen hydraulischen Federspeicherantrieb für einen Hoch- spannungsleistungsschalter, welcher einen derartigen Federwegschalter mit Nockenscheibe umfasst.

Ein gattungsgemäßer Federspeicherantrieb ist unter anderem aus der Patentanmeldung EP 0829892 A1 bekannt. Dabei setzt eine Speicherfeder über einen Druckkörper und einen in einem Speicherzylinder gleitend verschiebbaren Druckkolben ein in dem Speicherzylinder befindliches Fluid unter Druck. Mittels dieses Fluids wird eine Antriebsstange bewegt, welche an einem in einem Arbeitszylinder gleitend verschiebbaren Antriebskolben befestigt ist. Wird der Arbeitskolben mit der Arbeitsstange in eine erste Endstellung bewegt, so schließt er den Leistungsschalter. Wird der Arbeitskolben mit der Arbeitsstange in eine zweite Endstellung bewegt, so öffnet er den Leistungsschalter.

Der Bereich des Arbeitszylinders, in welchem sich die Arbeitsstange befindet, ist hydraulisch mit dem Speicherzylinder verbunden. Dort befindet sich also unter hohem Druck stehendes Fluid. Wird der Bereich des Arbeitszylinders, welcher der Arbeitsstange abgewandt ist, hydraulisch mit dem Speicherzylinder verbunden, so wird das unter hohem Druck stehende Fluid in diesen Bereich des Arbeitszylinders geleitet und der Arbeitskolben wird in die erste Endstellung bewegt.

Wird der Bereich des Arbeitszylinders, welcher der Arbeitsstange abgewandt ist, hydraulisch mit einem Niederdrucktank verbunden, so wird das Fluid aus diesem Bereich des Arbeitszylinders in den Niederdrucktank geleitet und der Arbeitskolben wird in die zweite Endstellung bewegt.

Bei jedem Schaltzyklus, das heißt bei einer Bewegung des Arbeitskolbens in die erste Endstellung und zurück in die zweite Endstellung fließt somit eine bestimmte Menge Fluid aus dem Speicherzylinder in den Niederdrucktank. Dadurch verringert sich das Volumen in dem Speicherzylinder und die Speicherfeder drückt den Druckkolben tiefer in den Speicherzylinder hinein. Dabei dehnt sich die Speicherfeder weiter aus.

Der Federspeicherantrieb verfügt über einen Federwegschalter, welcher erkennt, wenn die Speicherfeder eine maximal zulässige Ausdehnung, welche im Folgenden als Einschaltausdehnung bezeichnet wird, erreicht hat. Der Federwegschalter schaltet dann eine Pumpe an, welche Fluid aus dem Niederdrucktank in den Speicherzylinder pumpt, wodurch die Speicherfeder wieder gespannt wird und wodurch sich ihre Ausdehnung verringert. Der Federwegschalter erkennt, wenn die Speicherfeder eine vorgegebene Ausdehnung, welche im Folgenden als Ausschaltausdehnung bezeichnet wird, erreicht hat und schaltet die Pumpe wieder ab.

Die Ausschaltausdehnung der Speicherfeder ist kleiner als die Einschaltausdehnung. Die Ausdehnung der Speicherfeder folgt also einer Hysterese, welche im Folgenden als Nachladehysterese bezeichnet wird.

Die Nachladehysterese wird durch den Federwegschalter gesteuert. Der Federwegschalter umfasst eine linear verschiebbare Zahnstange, welche an die Speicherfeder gekoppelt ist und welche über ein Zahnrad eine Nockenscheibe antreibt. Die Nockenscheibe umfasst einen ersten Umfangsbereich mit einem verhältnismäßig kleinen Radius und einen zweiten Umfangsbereich mit einem verhältnismäßig großen Radius. Zwischen dem ersten Umfangsbereich und dem zweiten Umfangsbereich befindet sich ein Flankenbereich, innerhalb welchem die Ausdehnung der Nockenscheibe in radialer Richtung annähernd linear vom Radius des ersten Umfangsbereichs bis zum Radius des zweiten Umfangsbereichs ansteigt. Die Nockenscheibe betätigt einen monostabilen Taster, welcher eine Schalthysterese aufweist und welcher über mindestens einen Schaltkontakt verfügt.

Erreicht die Speicherfeder die Einschaltausdehnung, so beaufschlagt der zweite Umfangsbereich den Taster. Der Taster wird hierdurch soweit gedrückt, dass der Schaltkontakt schließt, wodurch die Pumpe angeschaltet wird. Während die Speicherfeder nun gespannt wird, dreht sich die Nockenscheibe und zunächst beaufschlagt der Flankenbereich und anschließend der erste Umfangsbereich den Taster. Aufgrund der Schalthysterese des Tasters öffnet der Schaltkontakt erst, wenn der erste Umfangsbereich den Taster beaufschlagt und der Taster annähernd vollständig entlastet ist. Solange der Flankenbereich der Nockenscheibe den Taster beaufschlagt, bleibt der Schaltkontakt geschlossen. Wenn der erste Umfangsbereich der Nockenwelle den Taster beaufschlagt, so hat die Speicherfeder die Ausschaltausdehnung erreicht und der Schaltkontakt öffnet, wodurch die Pumpe abgeschaltet wird.

Dehnt sich die Speicherfeder während des Betriebs des Federspeicherantriebs aus, so dreht sich die Nockenscheibe in die entgegengesetzte Richtung und der Taster wird zunächst von dem Flankenbereich und anschließend von dem zweiten Umfangsbereich beaufschlagt. Aufgrund der Schalthysterese des Tasters schließt der Schaltkontakt erst, wenn der zweite Umfangsbereich den Taster beaufschlagt und die Einschaltausdehnung der Speicherfeder erreicht ist. Solange der Flankenbereich der Nockenscheibe den Taster beaufschlagt, bleibt der Schaltkontakt geöffnet.

Je größer die Nachladehysterese ist, umso mehr Fluid kann aus dem Speicherzylinder in den Niederdrucktank fließen bevor die Pumpe eingeschaltet wird. Aufgabe der Erfindung ist es das Schaltverhalten eines gattungsgemäßen hydraulischen Federspeicherantriebs zu verbessern und insbesondere die Nachladehysterese zu vergrößern sowie die Anzahl der erforderlichen Pumpzyklen zu verringern.

Diese Aufgabe wird erfindungsgemäß durch den Einsatz einer Nockenscheibe mit den im Anspruch 1 genannten Merkmalen gelöst.

Die erfindungsgemäße Nockenscheibe zur Betätigung eines eine Schalthysterese aufweisenden Tasters umfasst einen ersten Umfangsbereich mit wenigstens einer ersten radialen Ausdehnung und einen zweiten Umfangsbereich mit zumindest einer zweiten radialen Ausdehnung, wobei die wenigstens eine zweite radiale Ausdehnung größer ist als die wenigstens eine erste radiale Ausdehnung. In Umfangsrichtung zwischen dem ersten Umfangsbereich und dem zweiten Umfangsbereich ist ein dritter Umfangsbereich mit wenigstens einer dritten radialen Ausdehnung angeordnet, wobei die wenigstens eine dritte radiale Ausdehnung größer als die wenigstens eine erste radiale Ausdehnung und kleiner als die wenigstens eine zweite radiale Ausdehnung ist.

Solange ein Taster von dem dritten Umfangsbereich der Nockenscheibe beaufschlagt wird, verbleibt der Schaltkontakt des Tasters aufgrund der Schalthysterese in seiner zuvor eingenommenen Schaltposition. Erst beim Übergang auf den zweiten Umfangsbereich oder auf den ersten Umfangsbereich schaltet der Schaltkontakt idealerweise ein oder aus.

Die Nachladehysterese eines hydraulischen Federspeicherantriebs mit einem Federwegschalter mit einer solchen Nockenscheibe ist durch die Größe des dritten Umfangsbereichs einstellbar. Insbesondere ist die Nachladehysterese durch Wahl eines verhältnismäßig großen dritten Umfangsbereichs im Vergleich zu einer herkömmlichen Nockenscheibe vergrößerbar.

In einer bevorzugten Ausführungsform der erfindungsgemäßen Nockenscheibe weist der dritte Umfangsbereich eine dritte radiale Ausdehnung auf, welche über den dritten Umfangsbereich annähernd konstant ist, das heißt der dritte Umfangsbereich ist näherungsweise als Kreissegment mit einem dritten Radius ausgebildet. Hierdurch ist die Herstellung der Nockenscheibe vorteilhaft vereinfachbar.

Alternativ kann auch vorgesehen sein, dass ein Umfangsbereich, insbesondere der dritte Umfangsbereich, mehrere unterschiedliche radiale Ausdehnungen aufweist, wobei beispielsweise die jeweilige radiale Ausdehnung von einem Anfangswert zu einem Endwert in Umfangsrichtung hin ansteigen kann, insbesondere stetig ansteigen kann, und/oder der dritte Umfangsbereich mehrere Stufen, auch mit unterschiedlicher Stufenhöhe und/oder mit unterschiedlichen radialen Ausdehnungen aufweisen kann. Dabei ist auch vorteilhaft vorsehbar, dass der jeweilige Umfangsbereich gekrümmt ist, insbesondere kreis-, parabel- oder ellipsenförmig gekrümmt ist.

Gemäß einer vorteilhaften Weiterbildung ist ein erster Flankenbereich der Nockenscheibe, welcher in Umfangsrichtung zwischen dem ersten Umfangsbereich und dem dritten Umfangsbereich angeordnet ist, verhältnismäßig klein ausgeführt und erstreckt sich in Umfangsrichtung über einen Winkel von höchstens 10°, vorzugsweise 8°.

Gemäß einer weiteren vorteilhaften Ausgestaltung ist ein zweiter Flankenbereich der Nockenscheibe, welcher in Umfangsrichtung zwischen dem zweiten Umfangsbereich und dem dritten Umfangsbereich angeordnet ist, verhältnismäßig klein ausgeführt und erstreckt sich in Umfangsrichtung über einen Winkel von höchstens 10°, vorzugsweise 8°.

Der Vorteil einer derart ausgestalteten Nockenscheibe liegt insbesondere darin, dass die Nachladehysterese durch Wahl der Größe des Winkels des dritten Umfangsbereichs verhältnismäßig genau einstellbar ist. Die Schalthysterese des Tasters ist toleranzbehaftet. Der Schaltkontakt des Tasters schaltet unter realen Bedingungen bereits kurz vor dem Übergang von dem dritten Umfangsbereich auf den ersten Umfangsbereich sowie von dem dritten Umfangsbereich auf den zweiten Umfangsbereich. Die exakten Schaltpunkte des Tasters liegen innerhalb des ersten Flankenbereichs sowie innerhalb des zweiten Flankenbereichs. Aufgrund der Toleranz des Tasters sind die Schaltpunkte jedoch nicht beliebig genau bestimmbar. Somit ist auch die Nachladehysterese toleranzbehaftet. Durch Verkleinerung der Ausdehnungen des ersten Flankenbereichs sowie des zweiten Flankenbereichs in Umfangsrichtung verkleinert sich somit auch die Toleranz der Nachladehysterese.

Die gestellte Aufgabe wird weiterhin durch einen Federwegschalter mit den im Anspruch 7 genannten Merkmalen gelöst.

Ein erfindungsgemäßer Federwegschalter umfasst demnach eine erfindungsgemäße Nockenscheibe und einen eine Schalthysterese aufweisenden Taster mit mindestens einem Schaltkontakt. Der Taster wirkt dabei mit der Nockenscheibe derart zusammen, dass bei einer Beaufschlagung des Tasters durch den ersten Umfangs- bereich der Nockenscheibe der Schaltkontakt eine erste Schaltposition einnimmt, und dass bei einer Beaufschlagung des Tasters durch den zweiten Umfangsbereich der Nockenscheibe der Schaltkontakt eine zweite Schaltposition einnimmt, und dass bei einer Beaufschlagung des Tasters durch den dritten Umfangsbereich der Nockenscheibe der Schaltkontakt die zuvor eingenommene Schaltposition beibehält. Beispielsweise ist der Schaltkontakt in der zweiten Schaltposition geschlossen und in der ersten Schaltposition geöffnet.

Die Nachladehysterese eines hydraulischen Federspeicherantriebs mit einem solchen Federwegschalter ist durch den Einsatz einer erfindungsgemäßen Nockenscheibe mit einem verhältnismäßig großen dritten Umfangsbereich vergrößerbar.

Ein erfindungsgemäßer hydraulischer Federspeicherantrieb für einen Hoch- spannungsleistungsschalter umfasst demnach eine Pumpe zur Förderung von Fluid aus einem Niederdrucktank in einen Hochdruckspeicher und eine Speicherfeder zur Druckerzeugung in dem Hochdruckspeicher sowie einen erfindungsgemäßen Federwegschalter. Der Federwegschalter wirkt derart mit der Speicherfeder zusammen, dass der Taster des Federwegschalters von dem ersten Umfangsbereich der Nockenscheibe beaufschlagt wird, wenn die Speicherfeder eine vorgegebene Ausschaltausdehnung erreicht hat, und dass der Taster des Federwegschalters von dem zweiten Umfangsbereich der Nockenscheibe beaufschlagt wird, wenn die Speicherfeder eine vorgegebene Einschaltausdehnung erreicht hat. Weitere vorteilhafte Ausgestaltungen der Erfindung sind den abhängigen Ansprüchen zu entnehmen.

Anhand der Zeichnungen, in denen ein Ausführungsbeispiel der Erfindung dargestellt ist, werden die Erfindung, vorteilhafte Ausgestaltungen und Verbesserungen der Erfindung sowie weitere Vorteile näher erläutert und beschrieben.

Es zeigen:

Fig. 1 eine erfindungsgemäße Nockenscheibe und

Fig. 2 eine erfindungsgemäße Nockenscheibe im Zusammenwirken mit einem Taster.

In Fig. 1 ist eine erfindungsgemäße Nockenscheibe 10 zum Einsatz in einem Federwegschalter dargestellt. Die Nockenscheibe 10 hat in dieser Darstellung annähernd die Form eines Vollkreises. Auch andere Ausgestaltungen, beispielsweise in Form eines Halbkreises oder eines Viertelkreises, sind denkbar. Hierdurch ergibt sich eine Reduktion des Platzbedarfs in einem Federwegschalter, in welchem die Nockenscheibe zum Einsatz kommt.

Die Nockenscheibe 10 weist unter anderem einen ersten Umfangsbereich 14 mit einer ersten radialen Ausdehnung (erster Radius) 20, einen zweiten Umfangsbereich 16 mit einer zweiten radialen Ausdehnung (zweiter Radius) 22 und einen dritten Umfangsbereich 18 mit einer dritten radialen Ausdehnung (dritter Radius) 24 auf. Die zweite radiale Ausdehnung 22 ist dabei größer als die dritte radiale Ausdehnung 24, welche wiederum größer als die erste radiale Ausdehnung 20 ist. Mit anderen Worten ausgedrückt, ist der zweite Umfangsbereich 16 in radialer Richtung weiter ausgedehnt als der dritte Umfangsbereich 18 und der dritte Umfangsbereich 18 ist in radialer Richtung weiter ausgedehnt als der erste Umfangsbereich 14.

Der dritte Umfangsbereich 18 befindet sich in Umfangsrichtung zwischen dem ersten Umfangsbereich 14 und dem zweiten Umfangsbereich 16 und erstreckt sich in diesem Beispiel in Umfangsrichtung über einen Winkel von etwa 10°. Selbstverständlich sind auch andere Ausdehnungen/Erstreckungen des dritten Umfangsbereichs 18 in Umfangsrichtung denkbar. Insbesondere haben sich Ausdehnungen/Erstreckungen des dritten Umfangsbereichs 18 über Winkel von etwa 5° bis etwa 20° als besonders praktikabel für den Einsatz in einem Federwegschalter für einen hydraulischen Federspeicherantrieb erwiesen.

Die dritte radiale Ausdehnung (dritter Radius) 24 des dritten Umfangsbereichs 18 ist annähernd konstant und beträgt in diesem Beispiel etwa 22 mm. Die erste radiale Ausdehnung (erster Radius) 20 ist ebenfalls konstant und beträgt hier etwa 20 mm. Auch die zweite radiale Ausdehnung (zweiter Radius) 22 ist konstant und beträgt hier etwa 24 mm. Es versteht sich von selbst, dass auch andere Zahlenwerte für die genannten radialen Ausdehnungen denkbar sind.

In Umfangsrichtung zwischen dem ersten Umfangsbereich 14 und dem dritten Umfangsbereich 18 befindet sich ein erster Flankenbereich 26. Die Ausdehnung des ersten Flankenbereichs 26 wächst dabei in radialer Richtung von der Größe der ersten radialen Ausdehnung 20 bis zu der Größe der dritten radialen Ausdehnung 24 an. Die Ausdehnung des ersten Flankenbereichs 26 in Umfangsrichtung ist dabei möglichst klein gewählt und erstreckt sich in diesem Beispiel über einen Winkel von etwa 8°. Ist die Ausdehnung des ersten Flankenbereichs 26 in Umfangsrichtung jedoch zu klein gewählt, so nimmt der erste Flankenbereich 26 einen mit der Nockenscheibe 10 zusammenwirkenden Taster beim Übergang von dem ersten Umfangsbereich 14 auf den dritten Umfangsbereich 18 in Umfangsrichtung mit, anstatt den Taster in radialer Richtung zu drücken. Eine Ausdehnung des ersten Flankenbereichs 26 in Umfangsrichtung über einen Winkel von etwa 8° hat sich als besonders praktikabel für den Einsatz in einem Federwegschalter für einen hydraulischen Federspeicherantrieb erwiesen.

Entsprechend befindet sich in Umfangsrichtung zwischen dem zweiten Umfangsbereich 16 und dem dritten Umfangsbereich 18 ein zweiter Flankenbereich 28. Die Ausdehnung des zweiten Flankenbereichs 28 fällt dabei in radialer Richtung von der Größe der zweiten radialen Ausdehnung 22 bis zu der Größe der dritten radialen Ausdehnung 24 ab. Die Ausdehnung des zweiten Flankenbereichs 28 in Umfangsrichtung ist dabei ebenfalls möglichst klein gewählt und erstreckt sich in diesem Beispiel über einen Winkel von etwa 8°. Ist die Ausdehnung des zweiten Flanken- bereichs 28 in Umfangsrichtung jedoch zu klein gewählt, so nimmt der zweite Flankenbereich 28 einen mit der Nockenscheibe 10 zusammenwirkenden Taster beim Übergang von dem dritten Umfangsbereich 18 auf den zweiten Umfangs- bereich 16 in Umfangsrichtung mit, anstatt den Taster in radialer Richtung zu drücken. Eine Ausdehnung des zweiten Flankenbereichs 28 in Umfangsrichtung über einen Winkel von etwa 8° hat sich als besonders praktikabel für den Einsatz in einem Federwegschalter für einen hydraulischen Federspeicherantrieb erwiesen.

In Fig. 2 ist eine erfindungsgemäße Nockenscheibe 10 im Zusammenwirken mit einem Taster 12 zum Einsatz in einem Federwegschalter dargestellt. Der Taster 12 umfasst einen schematisch dargestellten Schaltkontakt 30, welcher zwei Schaltpositionen einnehmen kann. In einer ersten Schaltposition ist der Schaltkontakt 30 geöffnet, in einer zweiten Schaltposition ist der Schaltkontakt 30 geschlossen.

In der gezeigten Darstellung beaufschlagt der erste Umfangsbereich 14 der Nockenscheibe 10 den Taster 12. Der Schaltkontakt 30 nimmt die erste Schaltposition ein und ist geöffnet. Eine hier nicht dargestellte Speicherfeder eines hydraulischen Federspeicherantriebs hat eine vorgegebene Ausschaltausdehnung erreicht und eine hier ebenfalls nicht dargestellte Pumpe ist abgeschaltet.

Im Betrieb des Federspeicherantriebs dehnt sich die Speicherfeder aus und treibt über eine hier nicht dargestellte Zahnstange und ein ebenfalls nicht dargestelltes Zahnrad die Nockenscheibe 10 an, wodurch sich diese in eine zweite Drehrichtung 2 dreht.

Nach einer Drehung der Nockenscheibe um einen Winkel von etwa 8°, was der Ausdehnung des ersten Flankenbereichs 26 in Umfangsrichtung entspricht, beaufschlagt der dritte Umfangsbereich 18 den Taster 12. Der Taster 12 ist um etwa 2 mm, was der Differenz aus der dritten radialen Ausdehnung 24 und der ersten radialen Ausdehnung 20 entspricht, gedrückt. Aufgrund der Schalthysterese des Tasters 12 bleibt der Schaltkontakt 30 geöffnet.

Nach einer Drehung der Nockenscheibe um einen Winkel von etwa 26°, was der gemeinsamen Ausdehnung des ersten Flankenbereichs 26 und des dritten Umfangs- bereichs 18 und des zweiten Flankenbereichs 28 in Umfangsrichtung entspricht, beaufschlagt der zweite Umfangsbereich 16 den Taster 12. Der Taster 12 ist um etwa 4 mm, was der Differenz aus der zweiten radialen Ausdehnung 22 und der ersten radialen Ausdehnung 20 entspricht, gedrückt. In dieser Position hat die Speicherfeder eine vorgegebene Einschaltausdehnung erreicht und der Schaltkontakt 30 des Tasters 12 schließt und schaltet damit die Pumpe ein.

Die Speicherfeder wird nun gespannt und treibt über die Zahnstange und das Zahnrad die Nockenscheibe 10 an, wodurch sich diese in eine erste Drehrichtung 1 dreht. Der Taster 12 wird nun nacheinander von dem zweiten Flankenbereich 28, dem dritten Umfangsbereich 18 und dem ersten Flankenbereich 26 beaufschlagt. Aufgrund der Schalthysterese des Tasters 12 bleibt der Schaltkontakt 30 während dieser Zeit geschlossen.

Wenn der Taster 12 von dem ersten Umfangsbereich 14 beaufschlagt wird, hat die Speicherfeder eine vorgegebene Ausschaltausdehnung erreicht und der Schaltkontakt 30 des Tasters 12 öffnet und schaltet damit die Pumpe aus.

Eine Beaufschlagung des Tasters durch einen Teil der Nockenscheibe ist beispielsweise eine direkte Berührung des Tasters durch diesen Teil der Nockenscheibe. Es ist aber auch denkbar, dass zwischen dem Taster und der Nockenscheibe eine Schutzhaube, ein zusätzlicher Tastkopf oder ähnliches angeordnet ist, so dass die Nockenscheibe den Taster nicht direkt berührt. Auch in diesen Fällen erfolgt eine Beaufschlagung des Tasters durch die Nockenscheibe.

Bezugszeichenliste

erste Drehrichtung zweite Drehrichtung Nockenscheibe Taster erster Umfangsbereich zweiter Umfangsbereich dritter Umfangsbereich erste radiale Ausdehnung zweite radiale Ausdehnung dritte radiale Ausdehnung erster Flankenbereich zweiter Flankenbereich Schaltkontakt