Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CANOPY OF A PASSENGER BOARDING BRIDGE
Document Type and Number:
WIPO Patent Application WO/2018/189053
Kind Code:
A1
Abstract:
Canopy (10) for a passenger boarding bridge (2), comprising - a fixed frame (3) attached or to be attached at passenger boarding bridge (2), - a flexible frame (6), to be aligned to a fuselage (1) of a plane or a ship, - a bellow roof (5) clamped between the fixed frame (3) and the flexible frame (6), - a suspension system comprising a first cylinder actuator (16A) and a second cylinder actuator (16B), wherein the first cylinder actuator (16A) is adapted to provide a pushing force in first pushing direction (DA) and the second cylinder actuator (16B) is adapted to provide a pushing force in a second pushing direction (DB), characterized in that the first cylinder actuator (16A) and the second cylinder actuator (16B) are connected in series and that the first pushing direction (DA) is opposite to the second pushing direction (DB).

Inventors:
HERNÁNDEZ ESPINA MANUEL (ES)
BUSTO FERNÁNDEZ JOSE RAMÓN (ES)
MURIAS BERMEJO ANTONIO (ES)
VIGIL FERNÁNDEZ JOSE FERMÍN (ES)
Application Number:
PCT/EP2018/058864
Publication Date:
October 18, 2018
Filing Date:
April 06, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THYSSENKRUPP AIRPORT SOLUTIONS S A (ES)
THYSSENKRUPP AG (DE)
International Classes:
B64F1/305; B61D17/20; E01D15/24
Foreign References:
DE3311754A11983-10-27
EP2803587A12014-11-19
US4120067A1978-10-17
US4817223A1989-04-04
DE3023885A11982-01-14
EP2803587A12014-11-19
Attorney, Agent or Firm:
THYSSENKRUPP INTELLECTUAL PROPERTY GMBH (DE)
Download PDF:
Claims:
Claims

I. Canopy (10) for a passenger boarding bridge (2), comprising

- a fixed frame (3),- a flexible frame (6), to be aligned to a fuselage (1) of a plane or a ship,

- a bellow roof (5) clamped between the fixed frame (3) and the flexible frame (6),

- a suspension system comprising a first cylinder actuator (16A) and a second cylinder actuator (16B), wherein the first cylinder actuator (16A) is adapted to provide a pushing force in a first pushing direction (DA) and the second cylinder actuator (16B) is adapted to provide a pushing force in a second pushing direction (DB),

characterized in that the first cylinder actuator (16A) and the second cylinder actuator (16B) are connected in series and that the first pushing direction (DA) is opposite to the second pushing direction (DB).

2. Canopy (10) according to the preceding claim,

wherein the suspension system connecting the fixed frame (3) and the flexible frame(6).

3. Canopy (10) according to the any of the preceding claims,

wherein the canopy is adapted to be attached at a passenger boarding bridge 82) and/or at a bridgehead of a passenger boarding bridge (2).

4. Canopy (10) according to the any of the preceding claims, characterized in

that the first cylinder actuator (16A) is arranged between the fixed frame (3) and the second cylinder actuator (16B), and

that the second cylinder actuator (16B) is arranged between the first cylinder actuator (16A) and the flexible frame (6).

5. Canopy (10) according to any of the preceding claims,

characterized in

that the first cylinder actuator (16A) and the second cylinder actuator (16B) are fixedly connected to each other by a common frame (29), in particular a closed housing, in particular wherein the common frame (29) has main extension direction with a length (L29) along a mean pushing direction (D).

6. Canopy (10) according to any of the preceding claims,

characterized in

that the first cylinder actuator (16A) has a first cylinder (26A) and a first rod (27A) and that the second cylinder actuator (16B) has a second cylinder (26B) and a second rod (27B), wherein each rod (27) is being transferable between an extracted state and a retracted state.

7. Canopy (10) according to claims 5 and 6,

characterized in

that the first rod (27A) and the second rod (27B) are both fixed at a respective frame side end (30A, 30B) at the common frame (29), in particular within the closed housing (29).

8. Canopy (10) according to any of the preceding claims,

characterized in

that in a, in particular fully, extracted state of the cylinders actuators (16) the cylinder (26) is at least partially accommodated within the common frame (29), namely the closed housing (29).

9. Canopy (10) according to any of the preceding claims,

characterized in

that the first cylinder actuator (16A) and the second cylinder actuator (16B) are arranged parallel to each other.

9. Passenger boarding bridge (2) comprising a canopy (10) according to any of the

preceding claims.

10. Passenger boarding bridge (2) wherein the canopy (10) is attached at a bridgehead of the passenger boarding bridge (2).

Description:
Canopy of a passenger boarding bridge

The invention refers to a canopy of a passenger boarding bridge, in particular for boarding a ship or an airplane. A passenger boarding bridge (PBB) connects an airplane with a terminal building via a tunnel. The tunnel may be extendible and in particular comprises at least two tunnel sections, which can be telescoped for adjusting the length of the tunnel to the distance between an airplane door and the terminal building. The tunnel is movably supported by a drive unit, which can be mounted below a lift system. The lift unit is used to adjust the height of the tunnel so that the end of the tunnel facing the airplane is aligned to the door of the airplane. At the end of the tunnel facing the airplane a cabin is located, which constitutes the airplane side area of the boarding bridge. A movable canopy constitutes a housing of the cabin, which is adaptable to the shape of the airplane fuselage.

EP 2 803 587 Al, figure 1 of which is shown as figure 1 in this application, discloses a passenger boarding bridge having a canopy 10. The canopy 10 comprises a bellow roof (not shown), terminating in a plane facing flexible frame 6 having an upper bumper 8 at the upper area of the flexible frame 6. During operation the shape of the canopy 10 is to be adjusted to the shape of the fuselage of the airplane in the area, where the PBB is connected to the fuselage.

Figure 2 shows schematically a cross-section of the fuselage 1 of an Airbus A380. The upper PBB 2u is docked to a door in the second floor of the A380; the lower PBB 2 U is docked to a door in the first floor of the A380. Due to the inclination of the fuselage in the second floor the canopy requires an increased range of operation, compared to a usual passenger boarding bridge. In particular, a large lateral shifting range X of the upper passenger boarding bridge is required.

Therefore in the canopy shown in EP 2 803 587 Al the shape of the frame can be adjusted to the shape of the airplane fuselage 1 by a complex suspension system on each side of the canopy, each comprising several levers 14a-d and two actuating cylinders 16. The kinematics of the levers 14a-d enables that the lateral shifting range X is larger than the range of operation of the cylinder upper cylinder IQ U . The lower cylinder 16 L is provided to support the levers in a vertical direction. It is an object of the invention to provide an improved canopy, in particular comprising a simplified suspension system, and providing a comparable or increased range of operation with respect to conventional solutions. This object is solved by a canopy according to claim 1;

preferred embodiments are subject of the dependent claims and the description.

The inventive canopy has the advantages that it provides a large range of operation, in particular a large lateral shifting range, with small amount of parts and a simple structure. In an embodiment the first cylinder actuator is arranged between the fixed frame and the second cylinder actuator, and the second cylinder actuator is arranged between the first cylinder actuator and the flexible frame.

In an embodiment the first cylinder actuator and the second cylinder actuator are fixedly connected to each other by a common frame. In particular the common frame has a main extension direction with a length along a mean pushing direction. In particular the common frame may be a closed housing, which covers movable parts of the cylinder actuators for preventing in particular injuries.

In an embodiment the first cylinder actuator has a first cylinder and a first rod and the second cylinder actuator has a second cylinder and a second rod wherein each rod is being transferable between an extracted state and a retracted state.

Thereby the first rod and the second rod may both be fixed at a respective frame side end at the common frame, in particular within the closed housing.

In an embodiment in a, in particular fully, extracted state of the cylinders actuators the cylinder is at least partially accommodated within the common frame, namely the closed housing. So the risk of injuries caused by a cylinder moving into and out of the housing is reduced.

In an embodiment the first cylinder actuator and the second cylinder actuator are arranged parallel to each other.

In this regard the canopy may comprise one suspension system for the left side of the canopy and one suspension system on the right side of the canopy. The present description refers to only one suspension system, however it is to be understood that the description is applicable to any second or third suspension system.

The invention is described in more details with the help of the attached figures; herein shows figure 1 a canopy according to EP 2 803 587 Al;

figure 2 a fuselage of an A380 with two Passenger boarding bridges connected;

figure 3 an inventive canopy in side view in two operational states having a suspension system in a first embodiment;

figure 4 the suspension system of the canopy according to figure 3 in exploded view; figure 5 schematically some suitable opposite pushing directions;

figure 6 a suspension system in a second embodiment suitable for the canopy of figure 3. Figure 3 shows an inventive canopy 10. The canopy 10 comprising a bellow roof 5, terminating in a plane facing flexible frame 6 having an upper bumper 8 at the upper area of the flexible frame 6. During operation the shape of the canopy 10 can be adjusted to the shape of the fuselage of the airplane in the area, where the PBB is connected to the fuselage. In figure 3a the canopy is shown in an undocked stated, in figure 3b the canopy 10 is shown in a deformed state, in which the flexible frame 6 if adapted to the shape of a plane fuselage, comparable to the situation in figure 2.

The term "flexible frame" does not require a flexibility of certain parts; it is rather to be understood as describing the fuselage facing side of the canopy, which has the ability to change its overall shape in a certain amount to follow the shape of the fuselage as a consequence of the operation of the cylinders 26. Therefore the suspension system has cylinders 16 as actuators for changing the shape of the canopy.

The suspension system of the flexible frame comprises two cylinders actuators 16 A , 16 B fixedly coupled to each other.

To each cylinder actuator 16 A , 16 B a rod 27 A , 27 B and a cylinder 26 A , 26 B is allocated. The first cylinder 26 A can push the first rod 27 A in a first pushing direction D A , the second cylinder 26 B can push the second rod 27 B in a second pushing direction D B .

In the embodiment shown in figure 1 the first rod 27 A is arranged between a fixed frame 3 and the first cylinder 26 A . The second rod 27 B is arranged between the flexible frame 6 and the second cylinder 26 B . A first fixation joint 28 A of the first rod 27 A to the fixed frame 3 is located vertically below than a fixation point 28 B of the second rod 27 B to the flexible frame 6. Thus the rods 27 and the cylinders 16 are capable to provide a vertical supporting force component to the flexible frame 6.

The cylinder actuators 16 are located parallel to each other as illustrated in figure 4, but are connected in series. Thereby the suspension system is capable to increase its overall length nearly by the double of the length of one cylinder. In the retracted state (the rods are retracted as far as possible into the cylinders) the suspension has in main the length L 29 of one cylinder. In the extracted state the rods can be shifted out of the cylinders by ΔΙ_ Α and ΔΙ_ Β , each of which is nearly the length L 29 of one cylinder 16. In sum the overall extraction length AL is (ΔΙ_ Α + ΔΙ_ Β ). So in sum, the in optimized solution may be capable of nearly triplicating the length of the cylinder. With the term "suspension" is meant the arrangement of all rods 27 and cylinders 16.

The cylinders 26 A and 26 B push the respective rods 27 A , 27 B in directions opposite to each other. The term "opposite" comprises and exact opposite direction of 180° (figure 5a) as well as deviations from the exact opposite direction (shown in figure 5b) within a limited scope.

Figure 6 shows an alternative embodiment of the suspension. Compared to the embodiment of figure 3 the cylinders actuators 16 are arranged inverted. That means that both rods 27 A , 27 B are connected to each other by the common frame 29. The respective cylinders 16 A , 16 B each are connected to the fixed frame 3 or the flexible frame 6 via the respective fixing points 28 A , 28 B .

Figure 6a shows the cylinders actuators 16 in the retracted state. Thereby the cylinders 26 are nearly fully accommodated within the common frame 29, which in this case is designed as a closed housing. In the fully extracted state, shown in figure 6b, the cylinders are still

accommodated within the housing at a small amount. So here the cylinder does not completely leave the housing 29. That means in reverse that during retraction the no end of the cylinder does enter the housing, which could bear a dangerous shear effect for fingers of passengers. The risk of injuries caused is thus reduced. The geometrical advantages described with reference to figure 4 are maintained.

List of reference signs

1 fuselage

2 passenger boarding bridge

3 fixed frame

5 bellow roof

6 flexible frame

8 upper bumper

10 canopy

14 lever

16 cylinder actuator

26 cylinder

27 rod

28 fixing joint

29 common frame / closed housing

30 frame side end

30 frame side end of cylinder actuator

D pushing direction

X lateral shifting range

L Length