Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CARBOXYLIC ACID DERIVATIVES WITH AN AGGREGATION-INHIBITING ACTION
Document Type and Number:
WIPO Patent Application WO/1997/037975
Kind Code:
A1
Abstract:
The invention concerns carboxylic acid derivatives of the general formula (I), in which Ra to Rc, A, B, D, E and X1 to X3 are as defined in claim 1, their stereoisomers, including mixtures and salts, in particular physiologically tolerated salts, with inorganic or organic acids or bases, which exhibit useful pharmacological properties, preferably an aggregation-inhibiting action. The invention also concerns drugs containing such compounds, their use and methods of preparing them.

Inventors:
PIEPER HELMUT
LINZ GUENTER
AUSTEL VOLKHARD
HIMMELSBACH FRANK
GUTH BRIAN
WEISENBERGER JOHANNES
Application Number:
PCT/EP1997/001698
Publication Date:
October 16, 1997
Filing Date:
April 04, 1997
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THOMAE GMBH DR K (DE)
International Classes:
A61K31/00; A61K31/4427; A61K31/443; A61K31/445; A61K31/495; C07D295/08; A61K31/496; A61K31/50; A61K31/501; A61P7/00; A61P7/02; C07D211/22; C07D211/26; C07D211/34; C07D211/46; C07D211/58; C07D295/20; C07D401/04; C07D401/08; C07D401/14; C07D405/14; (IPC1-7): C07D211/22; C07D211/26; C07D211/46; C07D211/58; A61K31/445
Foreign References:
EP0604800A11994-07-06
EP0638553A11995-02-15
EP0528369A21993-02-24
Download PDF:
Claims:
Patentansprüche
1. Carbonsäurederivate der allgemeinen Formel Ra " 3 " B D E , (I) R, in der Ra ein Wasserstoffatom, eine Cι_5Alkyl oder PhenylCι_3al¬ kylgruppe, in denen jeweils der Alkylteil durch eine Carboxy, Ci_3Alkoxycarbonyl, Aminocarbonyl, NCι_3Alkylamino carbonyl, N,NDi (Cι_3alkyl)aminocarbonyl, Vinyl oder Ethinylgruppe oder auch, sofern die vorstehend erwähnten Sub¬ stituenten nicht an einem zu einem Stickstoffatom benachbarten αKohlenstoffatom stehen, durch eine Hydroxy, Cι_3Alkoxy, Amino, Cι_3Alkylamino oder Di (Cι_3alkyl)aminogruppe substituiert sein kann, oder einen in vivo abspaltbaren Rest, Rj, und Rc, die gleich oder verschieden sein können, jeweils ein Wasserεtoffatom oder die Seitenkette einer natürlichen D oder LαAminosäure sowie deren Ester und Ether, A eine HCRιHCR2, COHCRi, HCRiCO, NR3HCR_, HCR1NR3, NR2C0, CONR2, OCO, COO, 0HCRι~ oder CHRiOGruppe, in denen Rl ein Wasserstoffatom, eine Cι_3Alkyl, PhenylCι_3al¬ kyl oder Phenylgruppe, R2 ein Wasserstoffatom, eine Cι_3Alkyl oder Phenyl Cι_3alkylgruppe und R3 ein Wasserstoffatom, eine Cι_3Alkyl, PhenylCι_3al¬ kyl, Cι_3Alkylcarbonyl oder Cι_5Alkylsulfonylgruppe darstellen, Xl, X2 und X3, die gleich oder verschieden sein können, je¬ weils ein Stickstoffatom oder eine Methingruppe, wobei in vorstehend erwähnten heterocylischen Ringen, in denen X2 oder X3 oder X2 und X3 jeweils ein Stickstoffatom darstellen, zu¬ sätzlich jeweils eine mit einem Ringstickstoffatom verknüpfte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, B eine 3Piperidinylen, 4Piperidinylen oder 1,4Piper azinylengruppe, in denen jeweils eine zu einem Stickstoffatom benachbarte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, wobei zusätzlich eine 1,4Piperazinylengruppe durch RK und Rc substituiert sein kann sowie R_, und Rc wie vorste¬ hend erwähnt definiert sind, eine Phenylen, Cyclohexylen, Pyridinylen, Pyridazinylen, Pyrimidinylen oder Pyrazinylen gruppe, D eine OR1CR4CO, NR3HCR1CO, NR3CH2CH2CO, CH2CO, CHRιCH2CO oder (0) 2CHC0Gruppe, in denen Rl und R3 wie vorstehend erwähnt definiert sind und R4 ein Wasserstoffatom, eine Cι_3Alkyl, Hydroxy Cι_3alkyl, CarboxyCι_3alkyl, Cι_3Alkoxycarbonyl Cι_3alkyl, C3_7CycloalkoxycarbonylCι_3alkyl, PhenylCι_3alkyl, Phenyl, PyridylCι_3alkyl oder Pyridylgruppe darstellt, und E eine Hydroxygruppe, eine Alkoxygruppe mit 1 bis 6 Koh¬ lenstoffatomen, eine Phenylalkoxygruppe, in der der Alkoxyteil 1 bis 3 Kohlenstoffatome enthalten kann, eine Cycloalkoxygrup pe mit 3 bis 9 Kohlenstoffatomen, in welcher der Cycloalkyl¬ teil mit 5 bis 8 Kohlenstoffatomen zusätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen sub¬ stituiert sein kann, eine Cycloalkoxygruppe mit 5 bis 8 Koh lenstoffatomen, in der im Cycloalkylteil eine Methylengruppe in 3 oder 4Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine Alkyl, Phenylalkyl oder Phenyl alkoxycarbonylgruppe, in denen der Alkyl und Alkoxyteil je¬ weils 1 bis 3 Kohlenstoffatomen enthalten kann, oder durch eine Alkanoylgruppe mit 2 bis 6 Kohlenstoffatomen substi¬ tuierte Iminogruppe ersetzt ist und der Cycloalkylteil zu¬ sätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, eine Cycloalkenyl oxygruppe, in der der Cycloalkenylteil 4 bis 7 Kohlenstoff atome enthalten kann, eine Alkenyloxy, Phenylalkenyloxy, Alkinyloxy oder Phenylalkinyloxygruppe mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel oder Dreifachbindung trägt und in denen der Alkenyl und Alkinylteil jeweils 3 bis 5 Kohlen¬ stoffatome enthalten kann, eine Cycloalkylalkoxygruppe, in der der Cycloalkylteil 3 bis 8 Kohlenstoffatome und der Alkoxyteil 1 bis 3 Kohlenstoffatome enthalten kann, eine Bicycloalkoxy gruppe mit insgesamt 8 bis 10 Kohlenstoffatomen, die im Bicyc loalkylteil zusätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, eine 1, 3Dihydro3oxolisobenzfuranyloxygruppe oder eine R7COO (R5CRg) OGruppe, in der R5 ein Wasserstoffatom, eine Cι_gAlkyl, C3_7Cycloalkyl oder Phenylgruppe, Rg ein Wasserstoffatom oder eine Cι_gAlkylgruppe und R7 eine Cι_5Alkyl, Cι_5Alkoxy, Cs_7Cycloalkyl oder C5_7Cycloalkoxygruppe darstellen, oder E eine αAminogruppe einer natürlichen D oder LAmino säure und deren Esterbedeuten, wobei unter den bei der Definition der vorstehenden Reste erwähnten Ausdrücken "eine Phenylgruppe" oder "eine Phenylengruppe" ist jeweils insbesondere eine gegebenenfalls durch Fluor, Chlor, Brom oder Jodatome, durch C1_3Alkyl, Trifluormethyl, Ni tro, Amino, Ci.3Alkylamino, Di (Cι_3alkyl) amino, Cι_4Alkanoylamino, Hydroxy, Cι_3Alkoxy, Carboxy, Cι_3Alkoxycarbonyl, C3_7Cycloalkoxycarbonylalkoxy, HydroxycarbonylCi_3alkoxy, Ci_3AlkoxycarbonylCi_3alk oxy, Aminocarbonyl, Cι_3Alkylaminocarbonyl oder Di (Cι_3alkyl) aminocarbonylgruppen mono, di oder tri substituierte Phenyl oder Phenylengruppe, wobei die Substi¬ tuenten gleich oder verschieden sein können, unter den Estern einer natürlichen αAminosäure deren Cι_gAl¬ kyl, C2_gAlkenyl, C5_7Cycloalkyl, Phenyl oder Phenyl Cι_3alkylester wie der Methyl, Ethyl, nPropyl, Isopro pyl, tert.Butyl, Allyl, Phenyl oder Benzylester, unter den Ethern der Seitenkette einer natürlichen D oder LαAminosäure deren Cι_5Alkyl, PhenylCι_3alkyl, Phenyl oder C4_7Cycloalkylether und unter einem in vivo abspaltbaren Rest eine Alkanoylgruppe mit insgesamt 1 bis 6 Kohlenstoffatomen, eine Benzoyl, Allyloxy carbonyl, Cι_5Alkoxycarbonyl oder PhenylCι_3alkoxy carbonylgruppe wie die Formyl, Acetyl, Propionyl, Buta noyl, Pentanoyl, Hexanoyl, Benzoyl, Allyloxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopro poxycarbonyl, Butoxycarbonyl, tert. Butoxycarbonyl, Pen toxycarbonyl, Hexoxycarbonyl, Benzyloxycarbonyl, Phenyleth oxycarbonyl oder Phenylpropoxycarbonylgruppe zu verstehen ist, deren Tautomere, deren Stereoisomere, einschließlich ihrer Ge¬ mische, und deren Salze.
2. Carbonsäurederivate der allgemeinen Formel I gemäß Anspruch 1, in der Ra ein Wasserstoffatom, eine Cι_5Alkyl oder PhenylCι_3al¬ kylgruppe, in denen jeweils der Alkylteil durch eine Carboxy, Cι_3Alkoxycarbonyl, Aminocarbonyl, NCι_3Alkylamino carbonyl, N,NDi (C__3alkyl)aminocarbonyl, Vinyl oder Ethinylgruppe oder auch, sofern die vorstehend erwähnten Sub¬ stituenten nicht an einem zu einem Stickstoffatom benachbarten αKohlenstoffatom stehen, durch eine Hydroxy, Cι_3Alkoxy, Amino, Cι_3Alkylamino oder Di (Cι_3alkyl)aminogruppe substituiert sein kann, oder einen in vivo abspaltbaren Rest, RD und Rc, die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder die Seitenkette einer natürlichen D oder LαAminosäure sowie deren Ester und Ether, A eine HCRιHCR2, COHCR;_f HCRiCO, NR3HCR1, HCR1NR3, NR2CO, CONR2, OCO, COO, 0HCRι oder CHRiOGruppe, in denen Rl ein Wasserstoffatom, eine Cι_3Alkyl, PhenylCι_3al¬ kyl oder Phenylgruppe, R2 ein Wasserstoffatom, eine Cι_3Alkyl oder Phenyl Cι_3alkylgruppe und R.
3. ein Wasserstoffatom, eine Cι_3Alkyl, PhenylCι_3al¬ kyl, Cι_3Alkylcarbonyl oder Cι_5Alkylsulfonylgruppe darstellen, Xl, X2 und X3, die gleich oder verschieden sein können, je¬ weils ein Stickstoffatom oder eine Methingruppe, wobei in vorstehend erwähnten heterocylischen Ringen, in denen X2 oder X3 oder X2 und X3 jeweils ein Stickstoffatom darstellen, zu¬ sätzlich jeweils eine mit einem Ringstickstoffatom verknüpfte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, B eine 3Piperidinylen, 4Piperidinylen oder 1,4Piper azinylengruppe, in denen jeweils eine zu einem Stickstoffatom benachbarte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, wobei zusätzlich eine 1,4Piperazinylengruppe durch RD und Rc substituiert sein kann sowie R , und Rc wie vorste¬ hend erwähnt definiert sind, eine Phenylen, Cyclohexylen oder Pyridazinylengruppe, D eine OR1CR4CO, NR3HCR1CO, NR3CH2CH2CO, CH2CO, CHRιCH2CO oder (0)2CHC0Gruppe, in denen Rl und R3 wie vorstehend erwähnt definiert sind und R4 ein Wasserstoffatom, eine Cι_3~Alkyl, Hydroxy Cι_3alkyl, CarboxyCι_3~alkyl, Cι_3Alkoxycarbonyl Cι_3alkyl, C3_7CycloalkoxycarbonylCι_3alkyl, PhenylCι_3alkyl, Phenyl, PyridylCi.3alkyl oder Pyridylgruppe darstellt, und E eine Hydroxy, Cι_gAlkoxy, C3_9Cycloalkoxy, Phenyl Cι_3~alkoxy oder R7COO (R5CRg) OGruppe, in der R5 ein Wasserstoffatom, eine Cι_gAlkyl, C3_7Cycloalkyl oder Phenylgruppe, Rg ein Wasserstoffatom oder eine Cι_gAlkylgruppe und R7 eine Cι_5Alkyl, Ci.5Alkoxy, 05.7Cycloalkyl oder C5_7~Cycloalkoxygruppe darstellen, bedeuten, wobei unter den bei der Definition der vorstehenden Reste erwähnten Ausdrücken "eine Phenylgruppe" oder "eine Phenylengruppe" ist jeweils insbesondere eine gegebenenfalls durch Fluor, Chlor, Brom oder Jodatome, durch Cι_3~Alkyl, Trifluormethyl, Nitro, Amino, Cι_3Alkylamino, Di (Cι_3alkyl) amino, Cι_4Alkanoylamino, Hydroxy, Cι_3Alk oxy, Carboxy, Cχ_3Alkoxycarbonyl, C3_7Cycloalkoxycarbo¬ nylalkoxy, HydroxycarbonylCι_3alkoxy, C_.3Alkoxycarbonyl Cι_3alkoxy, Aminocarbonyl, Cι_3Alkylaminocarbonyl oder Di (Cι_3alkyl) aminocarbonylgruppen mono, di oder trisub stituierte Phenyl oder Phenylengruppe, wobei die Substituen¬ ten gleich oder verschieden sein können, unter den Estern einer natürlichen αAminosäure deren Cι_gAl¬ kyl, C2gAlkenyl, C5_7Cycloalkyl, Phenyl oder Phenyl Cι_3~alkylester wie der Methyl, Ethyl, nPropyl, Isopro pyl, tert.Butyl, Allyl, Phenyl oder Benzylester, unter den Ethern der Seitenkette einer natürlichen D oder LαAminosäure deren Cι_5Alkyl, PhenylCχ_3alkyl, Phenyl oder C4_7Cycloalkylether und unter einem in vivo abspaltbaren Rest eine Alkanoylgruppe mit insgesamt 1 bis 6 Kohlenstoffatomen, eine Benzoyl, Allyloxy carbonyl, Cι_5Alkoxycarbonyl oder PhenylCι_3alkoxy carbonylgruppe wie die Formyl, Acetyl, Propionyl, Buta noyl, Pentanoyl, Hexanoyl, Benzoyl, Allyloxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopro poxycarbonyl, Butoxycarbonyl, tert. Butoxycarbonyl, Pen¬ toxycarbonyl, Hexoxycarbonyl, Benzyloxycarbonyl, Phenyleth oxycarbonyl oder Phenylpropoxycarbonylgruppe zu verstehen ist, deren Tautomere, deren Stereoisomere, einschließlich ihrer Ge¬ mische, und deren Salze.
4. 3 Carbonsäurederivate der allgemeinen Formel I gemäß Anspruch l, in der Ra ein Wasserstoffatom, eine Cι_3Alkyl, PhenylCι_3alkyl, Cι_5Alkoxycarbonyl oder PhenylCι_3alkoxycarbonylgruppe, RD und Rc, die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder die Seitenkette einer natürlichen D oder LαAminosäure sowie deren Ester und Ether, A eine CH2CH2, COCH2, CH2CO, CH2NR3, NR3CH2, NHCO, OCO oder CH2OGruppe, in denen R3 ein Wasserstoffatom, eine Cι_3Alkyl, PhenylCι_3al¬ kyl, Cι_3Alkylcarbonyl oder Cι_5Alkylsulfonylgruppe darstellt, Xl, X2 und X3, die gleich oder verschieden sein können, je¬ weils ein Stickstoffatom oder eine Methingruppe, wobei in vorstehend erwähnten heterocylischen Ringen, in denen X2 oder X3 oder X2 und X3 jeweils ein Stickstoffatom darstellen, zu¬ sätzlich jeweils eine mit einem Ringstickstoffatom verknüpfte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, B eine 4Piperidinylengruppe oder eine 1,4Piperazinylengrup pe, in der eine zu einem Stickstoffatom benachbarte Methylen¬ gruppe durch eine Carbonylgruppe ersetzt sein kann, wobei zu¬ sätzlich die vorstehend erwähnten 1,4Piperazinylengruppen durch eine Carboxymethyl oder Cι_5Alkoxycarbonylgruppe substituiert sein können, eine gegebenenfalls durch eine ECOCH2Gruppe substituierte 1,3 oder 1,4Phenylengruppe, wobei E wie nachstehend definiert ist, eine 1,4Cyclohexylen oder 2,5Pyridazinylengruppe, D eine OR1CR4CO, CH2CO, CHRιCH2CO, NR3CH2CO oder (0)2CHCOGruppe, in denen R3 wie vorstehend erwähnt definiert ist und Rl ein Wasserstoffatom oder eine Cι_3Alkylgruppe und R4 ein Wasserstoffatom, eine Cι_3Alkyl, HydroxyCι_2al¬ kyl, Carboxymethyl, Benzyl, Chlorbenzyl oder Phenyl¬ gruppe darstellen, und E eine Hydroxy, Cι_gAlkoxy, C3_9Cycloalkoxy oder PhenylCi_3alkoxygruppe bedeuten, wobei unter den bei der Definition der vorstehenden erwähnten Ester einer natürlichen αAminosäure deren Cι_gAlkyl, C2_gAlkenyl, C5_7Cycloalkyl, Phenyl oder PhenylCι_3al kylester wie der Methyl, Ethyl, nPropyl, Isopropyl, tert.Butyl, Allyl, Phenyl oder Benzylester und unter den Ethern der Seitenkette einer natürlichen D oder LαAminosäure deren Cι_5Alkyl, PhenylCι_3alkyl, Phenyl oder C4_7Cycloalkylether zu verstehen sind, deren Tautomere, deren Stereoisomere, einschließlich ihrer Ge¬ mische, und deren Salze.
5. Carbonsäurederivate der allgemeinen Formel I gemäß Anspruch 1, in der Ra ein Wasserstoffatom, eine Benzyl, Cι_5Alkoxycarbonyl oder Benzyloxycarbonylgruppe, R_, und Rc, die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder die Seitenkette einer natürlichen D oder LαAminosäure sowie deren Ester und Ether, A eine CH2CH2, COCH2, CH2CO, CH2NR3, NR3CH2 oder NHCOGruppe, in denen R3 ein Wasserstoffatom, eine Methyl, Benzyl, Acetyl oder nButylsulfonylgruppe darstellt, Xl, X2 und X3, die gleich oder verschieden sein können, je¬ weils ein Stickstoffatom oder eine Methingruppe, wobei in vorstehend erwähnten heterocylischen Ringen, in denen X2 oder X3 oder X2 und X3 jeweils ein Stickstoffatcm darstellen, zu¬ sätzlich jeweils eine mit einem Ringstickstoffatom verknüpfte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, B eine 4Piperidinylengruppe oder eine 1,4Piperazinylengrup¬ pe, in der eine zu einem Stickstoffatom benachbarte Methylen¬ gruppe durch eine Carbonylgruppe ersetzt sein kann, wobei zu¬ sätzlich die vorstehend erwähnten 1,4Piperazinylengruppen durch eine Carboxymethyl oder Cι_5Alkoxycarbonylgruppe substituiert sein können, eine gegebenenfalls durch eine ECOCH2Gruppe substituierte 1,3 oder 1,4Phenylengruppe, wobei E wie nachstehend definiert ist, eine 1,4Cyclohexylen oder 2,5Pyridazinylengruppe, D eine ORiCHCO, O (CH3CCH3) CO, CH2CH2CO, (CHCH3)CH2CO, NHCH2CO oder (0)2CHC0Gruppe, in denen R3 wie vorstehend erwähnt definiert ist und Rl ein Wasserstoffatom, Methyl, 2Hydroxyethyl, Carboxy¬ methyl, Benzyl, Chlorbenzyl oder Phenylgruppe dar¬ stellt, und E eine Hydroxy, Ci_gAlkoxy, C3_9Cycloalkoxy oder PhenylCi_3alkoxygruppe bedeuten, wobei unter den bei der Definition der vorstehenden erwähnten Estern einer natürlichen αAminosäure deren Cι_gAlkyl, C2_gAlkenyl, C5.7Cycloalkyl, Phenyl oder PhenylCι_3 alkylester wie der Methyl, Ethyl, nPropyl, Isopropyl, tert.Butyl, Allyl, Phenyl oder Benzylester und unter den Ethern der Seitenkette einer natürlichen D oder LαAminosäure deren Cι_5Alkyl, PhenylCι_3alkyl, Phenyl oder C4_7Cycloalkylether zu verstehen sind, deren Tautomere, deren Stereoisomere, einschließlich ihrer Ge¬ mische, und deren Salze.
6. Folgende Carbonsäurederivate der allgemeinen Formel I gemäß Anspruch 1: (1) 1 (4Carboxymethyloxyphenyl) 4 [2 (piperidin4yl) ethyl] piperazin, (2) 1 (4Carboxymethyloxyphenyl) 4 [2 (piperidin4yl) ethyl] piperazin2on, (3) 1 [3.4Di (carboxymethyloxy) phenyl] 4 [2 (piperidin 4yl) ethyl] piperazin, (4) 1 (4Carboxymethyloxyphenyl) 2methyl4 [2 (piperidin 4yl) ethyl] piperazin, (5) trans1 (4Carboxymethyloxyphenyl) 4 [ (piperidin4yl) Nmethylmethylamino] cyclohexan, (6) 1 (trans4Carboxymethyloxycyclohexyl) 4 [2 (piperidin 4yl) ethyl] piperazin2on, (7) 1 [4 (1Carboxybenzyloxy) phenyl] 4 [2 (piperidin4yl) ethyl] piperazin, deren Cι_4Alkyl, Cyclopentyl und Cyclohexylester, deren Stereoisomere, einschließlich deren Gemische, und deren Salze.
7. 1 (4Cyclohexyloxycarbonylmethyloxyphenyl) 4 [2 (piperi din4yl) ethyl] piperazin und dessen Salze.
8. l [3.4Di (cyclopentyloxycarbonylmethyloxy) phenyl] 4 [2 (piperidin4yl) ethyl] piperazin und dessen Salze.
9. Physiologisch verträgliche Salze der Verbindungen nach min¬ destens einem der Ansprüche 1 bis 7 mit anorganischen oder or¬ ganischen Säuren oder Basen.
10. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 7 oder ein physiologisch verträg¬ liches Salz gemäß Anspruch 8 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
11. Verwendung einer Verbindung nach mindestens einem der An¬ sprüche 1 bis 8 zur Herstellung eines Arzneimittels, das zur Bekämpfung bzw. Verhütung von Krankheiten, bei denen kleinere oder größere ZeilAggregate auftreten oder ZeilMatrixinter¬ aktionen eine Rolle spielen, geeignet ist.
12. Verfahren zur Herstellung eines Arzneimittels gemäß An¬ spruch 9, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 8 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmit¬ tel eingearbeitet wird.
13. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß a) zur Herstellung einer Verbindung der allgemeinen Formel I, in der Ra wie in den Ansprüchen 1 bis 7 definiert ist und E eine Hydroxygruppe oder E mit Ausnahme der Hydroxy und R7CO 0 (RsCRg) OGruppe wie in den Ansprüchen 1 bis 7 definiert ist und Ra ein Wasserstoffatom darstellt, eine Verbindung der all¬ gemeinen Formel in der RD, Rc, A, B, D und Xi bis X3 mit der Maßgabe wie in den An¬ sprüchen 1 bis 7 definiert sind, daß E' die für E in den An¬ sprüchen 1 bis 7 erwähnten Bedeutungen besitzt und Ra' einen mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermo¬ lyse oder Hydrogenolyse abspaltbaren Schutzrest für eine Imino¬ gruppe oder Ra' die für Ra in den Ansprüchen l bis 7 erwähnten Bedeutungen besitzt und E' eine mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Hydroxy¬ gruppe überführbare Gruppe bedeutet, mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermo¬ lyse oder Hydrogenolyse in eine Verbindung der allgemeinen For¬ mel I, in der Ra wie in den Ansprüchen 1 bis 7 definiert ist und E eine Hydroxygruppe darstellt oder E mit Ausnahme der Hy¬ droxy und R7COO (RsCRg) OGruppe wie in den Ansprüchen 1 bis 7 definiert ist und Ra ein Wasserstoffatom darstellt, überge¬ führt wird oder b) zur Herstellung einer Verbindung der allgemeinen Formel I, in der X2 ein Stickstoffatom und A eine HCRιHCR2, COHCRi oder HCRiCOGruppe darstellen, eine Verbindung der allgemei¬ nen Formel H R, in der Rp, Rc, X3, B, D und E wie in den Ansprüchen 1 bis 7 definiert sind und X2 ein Stickstoffatom darstellt, mit einer Verbindung der all¬ gemeinen Formel in der Xl wie in den Ansprüchen 1 bis 7 definiert ist sowie Ra' mit Ausnahme des Wasserstoffatoms die für Ra in den Ansprü¬ chen l bis 7 erwähnten Bedeutungen aufweist oder einen Schutz rest für eine Iminogruppe, A' HCRιHCR2, COHCRi oder HCRiCOGruppe, wobei Rx und R2 wie in den Ansprüchen 1 bis 7 definiert sind, und Zi eine Hydroxygruppe oder eine nukleofuge Austrittsgruppe be¬ deuten, umgesetzt und von einer so erhaltenen Verbindung gege¬ benenfalls anschließend ein verwendeter Schutzrest abgespalten wird oder c) zur Herstellung einer Verbindung der allgemeinen Formel I, in der A eine NR3COGruppe und X2 ein Stickstoffatom dar¬ stellen, eine Verbindung der allgemeinen Formel in der Rb, Rc, X3, B, D und E wie in den Ansprüchen 1 bis 7 definiert sind und X2' ein Stickstoffatom darstellt, mit einer Verbindung der all¬ gemeinen Formel in der R2 wie in den Ansprüchen 1 bis 7 definiert ist, Ra' mit Ausnahme des Wasserstoffatoms die für Ra in den Ansprü¬ chen 1 bis 7 erwähnten Bedeutungen aufweist oder einen Schutz rest für eine Iminogruppe und Z2 eine nukleofuge Austrittsgruppe oder Z2 zusammen mit R2 eine weitere KohlenstoffStickstoffBindung bedeuten, umgesetzt und von einer so erhaltenen Verbindung ge gebenenfalls anschließend ein verwendeter Schutzrest abgespal¬ ten wird oder d) zur Herstellung einer Verbindung der allgemeinen Formel I, in der D eine OR1CR4COGruppe darstellt, eine Verbindung der allgemeinen Formel RC in der R_, Rc, A, B und Xi bis X3 wie in den Ansprüchen 1 bis 7 defi¬ niert sind und Ra' mit Ausnahme des Wasserstoffatoms die für Ra in den Ansprü¬ chen 1 bis 7 erwähnten Bedeutungen aufweist oder einen Schutz rest für eine Iminogruppe bedeutet, mit einer Verbindung der allgemeinen Formel Z3R1CR4COE , (VII) in der Rl, R4 und E wie in den Ansprüchen 1 bis 7 definiert sind und Z3 eine Austrittsgruppe oder auch, wenn B eine der in den An¬ sprüchen 1 bis 7 erwähnten Phenylengruppen darstellt, eine Hy¬ droxygruppe bedeutet, umgesetzt und von einer so erhaltenen Verbindung gegebenenfalls anschließend ein verwendeter Schutz rest abgespalten wird oder e) zur Herstellung einer Verbindung der allgemeinen Formel I, in der B eine 3Piperidinylen , 4Piperidinylen oder 1,4Pi perazinylengruppe, wobei zusätzlich eine 1,4Piperazinylen gruppe durch RK und Rc substituiert kann, in der RK und Rc wie vorstehend erwähnt definiert sind, und D eine Ethylengruppe be¬ deuten, eine Verbindung der allgemeinen Formel N X. R "c in der Ra bis Rc, Xi bis X3 und A wie in den Ansprüchen 1 bis 7 defi¬ niert sind und B' eine 3Piperidinylen , 4Piperidinylen oder 1,4Pipera ∑inylengruppe bedeutet, mit einer Verbindung der allgemeinen Formel CH2=CH2COE , (IX) in der E mit Ausnahme der Hydroxygruppe wie in den Ansprüchen 1 bis 7 definiert ist, umgesetzt wird oder f) zur Herstellung einer Verbindung der allgemeinen Formel I, in der die Reste B und X3 über eine KohlenstoffStickstoff oder StickstoffKohlenstoffBindung miteinander verknüpft sind, eine Verbindung der allgemeinen Formel Rc mit einer Verbindung der allgemeinen Formel B" D E , (XI) in denen Ra bis Rc, Xi, X2, A, D und E wie in den Ansprüchen l bis 7 definiert sind, U eine Carbonylgruppe und B" eine 3Piperidinylen, 4Piperidinylen oder 1,4Pipera¬ zinylengruppe, wobei zusätzlich eine 1,4Piperazinylengruppe durch RD und Rc substituiert sein kann, in der R_ und Rc wie vorstehend erwähnt definiert sind, oder U eine Iminogruppe und B" eine Cylohexanongruppe bedeuten, reduktiv aminiert wird oder g) zur Herstellung einer Verbindung der allgemeinen Formel I, in der E mit Ausnahme der Hydroxygruppe wie in den Ansprüchen l bis 7 definiert ist, eine Verbindung der allgemeinen Formel in der Ra bis Rc, Xi bis X3, A, B und D wie in den Ansprüchen 1 bis 7 definiert sind, oder deren reaktionsfähigen Derivaten mit einem Alkohol der allgemeinen Formel HO Rd , (XIII) oder mit dessen Formamidacetal oder einer Verbindung der allgemeinen Formel XII mit einer Ver¬ bindung der allgemeinen Formel Z4 Re , (XIV) in denen R_ eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen, eine Phenyl alkylgruppe, in der der Alkylteil l bis 3 Kohlenstoffatome ent¬ halten kann, eine Cycloalkylgruppe mit 3 bis 9 Kohlenstoffato men, in welcher der Cycloalkylteil mit 5 bis 8 Kohlenstoffato¬ men zusätzlich durch eine oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, eine Cycloal¬ kylgruppe mit 5 bis 8 Kohlenstoffatomen, in der im Cycloalkyl¬ teil eine Methylengruppe in 3 oder 4Stellung durch ein Sauer¬ stoffatom oder durch eine gegebenenfalls durch eine Alkyl, Phenylalkyl oder Phenylalkoxycarbonylgruppe, in denen der Al¬ kyl und Alkoxyteil jeweils l bis 3 Kohlenstoffatomen enthalten kann, oder durch eine Alkanoylgruppe mit 2 bis 6 Kohlenstoff atomen substituierte Iminogruppe ersetzt ist und der Cycloal¬ kylteil zusätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, eine Cycloal¬ kenylgruppe, in der der Cycloalkenylteil 4 bis 7 Kohlenstoff atome enthalten kann, eine Alkenyl, Phenylalkenyl, Alkinyl oder Phenylalkinylgruppe mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel oder Dreifachbindung trägt und in denen der Alke¬ nyl und Alkinylteil jeweils 3 bis 5 Kohlenstoffatome enthalten kann, eine Cycloalkylalkylgruppe, in der der Cycloalkylteil 3 bis 8 Kohlenstoffatome und der Alkylteil 1 bis 3 Kohlenstoff¬ atome enthalten kann, eine Bicycloalkylgruppe mit insgesamt 8 bis 10 Kohlenstoffatomen, die im Bicycloalkylteil zusätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlen¬ stoffatomen substituiert sein kann, oder eine 1,3Dihydro 3oxo1isobenzfürany1oxygruppe, Re die für Rd vorstehend erwähnten Bedeutungen aufweist und zusätzlich eine R7COO (R5CR6) OGruppe, in der R5 bis R7 wie in den Ansprüchen l bis 7 definiert sind, und Z4 eine Austrittsgruppe darstellen, umgesetzt wird oder h) zur Herstellung einer Verbindung der allgemeinen Formel I, in der A eine HCRiNHGruppe darstellt, eine Verbindung der allgemeinen Formel Rc in der Ra bis Rc, Xi bis X3, B und D wie in den Ansprüchen 1 bis 7 definiert sind und A" eine HCRιN= Gruppe darstellt, in der Ri wie in den Ansprüchen 1 bis 7 definiert ist, reduziert wird und gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, die eine Iminogruppe enthält, mittels nachträglicher Alkylierung oder Acylierung in die gewünschte alkylierte oder acylierte Verbindung der allgemeinen Formel I übergeführt wird und/oder erforderlichenfalls ein bei den vorstehend beschriebenen Umset¬ zung verwendeter Schutzrest wieder abgespalten wird und/oder eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträgliche Salze übergeführt wird.
Description:
CARBONSÄUREDERIVATE MIT AGGREGATIONSHEMMENDER WIRKUNG

Die vorliegende Erfindung betrifft Carbonsäurederivate der allgemeinen Formel

deren Tautomere, deren Stereoisomere, einschließlich ihrer Ge¬ mische, und deren Salze, insbesondere deren Salze mit physio¬ logisch verträglichen Säuren oder Basen, welche wertvolle pharmakologische Eigenschaften aufweisen, vorzugsweise aggre¬ gationshemmende Wirkungen, diese Verbindungen enthaltende Arz¬ neimittel und deren Verwendung sowie Verfahren zu ihrer Her¬ stellung.

In der obigen allgemeinen Formel I bedeutet

R a ein Wasserstoffatom, eine C-j__5-Alkyl- oder Phenyl-Cι__3-al¬ kylgruppe, in denen jeweils der Alkylteil durch eine Carboxy-, C- ] __3-Alkoxycarbonyl-, Aminocarbonyl-, N-C- j __ 3 -Alkylamino- carbonyl-, N,N-Di- (Cτ._3-alkyl)aminocarbonyl-, Vinyl- oder Ethinylgruppe oder auch, sofern die vorstehend erwähnten Sub¬ stituenten nicht an einem zu einem Stickstoffatom benachbarten α-Kohlenstoffatom stehen, durch eine Hydroxy-, C- L _ 3 -Alkoxy-, Amino-, C-j__3-Alkylamino- oder Di- (C-j__3-alkyl)aminogruppe substituiert sein kann, oder einen in vivo abspaltbaren Rest,

R]-, und R c , die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder die Seitenkette einer natürlichen D- oder L-α-Aminosäure sowie deren Ester und Ether,

A eine -HCRX-HCR2-, -CO-HCR--.-, -HCRi-CO-, -M^-HCR ] .-, -HCR 1 -NR 3 -, -NR 2 -C0-, -CO-NR 2 "' -O-CO-, -CO-O-, -0-HCRχ- oder -CHRχ-0-Gruppe, in denen

R-j_ ein Wasserstoffatom, eine C- j ^-Alkyl-, Phenyl-C χ _3-al¬ kyl- oder Phenylgruppe,

R 2 ein Wasserstoffatom, eine C-j__3-Alkyl- oder Phenyl- Cχ_ 3 -alkylgruppe und

R 3 ein Wasserstoffatom, eine C 1 _ 3 -Alkyl-, Phenyl-C- j __ 3 -al¬ kyl-, C-L_3-Alkylcarbonyl- oder C- ] __5-AlkylΞulfonylgruppe darstellen,

X l , X2 und X3, die gleich oder verschieden sein können, je¬ weils ein Stickstoffatom oder eine Methingruppe, wobei in vor¬ stehend erwähnten heterocylischen Ringen, in denen X 2 oder X 3 oder X 2 und X3 jeweils ein Stickstoffatom darstellen, zusätz¬ lich jeweils eine mit einem Ringstickstoffatom verknüpfte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

B eine 3-Piperidinylen-, 4-Piperidinylen- oder 1,4-Piper¬ azinylengruppe, in denen jeweils eine zu einem Stickstoffatom benachbarte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, wobei zusätzlich eine 1,4-Piperazinylengruppe durch Ri-, und R c substituiert sein kann sowie Rj-, und R c wie vorste¬ hend erwähnt definiert sind, eine Phenylen-, Cyclohexylen-, Pyridinylen-, Pyridazinylen-, Pyrimidinylen- oder Pyrazinylen- gruppe,

D eine -O-R 1 CR 4 -CO-, -NI^-HCR-L-CO-, -NR 3 -CH 2 CH 2 C0-, -CH 2 CO-, -CHRιCH 2 CO- oder (-0-) 2 CH-C0-Gruppe, in denen

R- j _ und R3 wie vorstehend erwähnt definiert sind und R 4 ein Wasserstoffatom, eine C-j__3-Alkyl-, Hydroxy- C 1 _3-alkyl-, Carboxy-Cχ_ 3 -alkyl-, Cj_.3-Alkoxycarbonyl- c l -3"alkyl-, C3_7-Cycloalkoxycarbonyl-Ci_3-alkyl-, Phenyl-Cι_3-alkyl-, Phenyl-, Pyridyl-C*j__3-alkyl- oder Pyridylgruppe darstellt,

und E eine Hydroxygruppe, eine Alkoxygruppe mit 1 bis 6 Koh¬ lenstoffatomen, eine Phenylalkoxygruppe, in der der Alkoxyteil 1 bis 3 Kohlenstoffatome enthalten kann, eine Cycloalkoxygrup- pe mit 3 bis 9 Kohlenstoffatomen, in welcher der Cycloalkyl- teil mit 5 bis 8 Kohlenstoffatomen zusätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen sub¬ stituiert sein kann, eine Cycloalkoxygruppe mit 5 bis 8 Koh¬ lenstoffatomen, in der im Cycloalkylteil eine Methylengruppe in 3- oder 4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine Alkyl-, Phenylalkyl- oder Phenyl- alkoxycarbonylgruppe, in denen der Alkyl- und Alkoxyteil je¬ weils 1 bis 3 Kohlenstoffatomen enthalten kann, oder durch eine AIkanoylgruppe mit 2 bis 6 Kohlenstoffatomen substi¬ tuierte Iminogruppe ersetzt ist und der Cycloalkylteil zu¬ sätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, eine Cycloalkenyl- oxygruppe, in der der Cyclσalkenylteil 4 bis 7 Kohlenstoff- atome enthalten kann, eine Alkenyloxy-, Phenylalkenyloxy-, Alkinyloxy- oder Phenylalkinyloxygruppe mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt und in denen der Alkenyl- und Alkinylteil jeweils 3 bis 5 Kohlen¬ stoffatome enthalten kann, eine Cycloalkylalkoxygruppe, in der der Cycloalkylteil 3 bis 8 Kohlenstoffatome und der Alkoxyteil 1 bis 3 Kohlenstoffatome enthalten kann, eine Bicycloalkoxy- gruppe mit insgesamt 8 bis 10 Kohlenstoffatomen, die im Bicyc- loalkylteil zusätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, eine l,3-Dihydro-3-oxo-l-isobenzfuranyloxygruppe oder eine R 7 -CO-O- (R5CRg) -0-Gruppe, in der

R5 ein Wasserstoffatom, eine C-*__g-Alkyl-, C3.. 7 -Cycloalkyl- oder Phenylgruppe,

Rg ein Wasserstoffatom oder eine C-j__g-Alkylgruppe und R 7 eine C^5-Alkyl-, C-j__5-Alkoxy- , C 5 _7-Cycloalkyl- oder C5_7-Cycloalkoxygruppe darstellen,

oder E eine α-Aminogruppe einer natürlichen D- oder L-Amino- säure und deren Ester.

Unter den bei der Definition der vorstehenden Reste erwähnten Ausdrücken "eine Phenylgruppe" oder "eine Phenylengruppe" ist jeweils insbesondere eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch C-j__3-Alkyl- , Trifluormethyl-, Ni¬ tro-, Amino-, C-j_.3-Alkylamino-, Di- (C-*__3-alkyl) -amino- , C 1 _4-Alkanoylamino-, Hydroxy-, C-]__3-Alkoxy- , Carboxy-, Cι_3-Alkoxycarbonyl- , C3_7-Cycloalkoxycarbonylalkoxy- , Hydroxycarbonyl-C-*__3-alkoxy- , C-]__3-Alkoxycarbonyl-C- j __3-alk- oxy-, Aminocarbonyl-, Cι__3-Alkylaminocarbonyl- oder Di- (C- j __3-alkyl) -aminocarbonylgruppen mono-, di- oder tri- substituierte Phenyl- oder Phenylengruppe, wobei die Substi¬ tuenten gleich oder verschieden sein können,

unter den Estern einer natürlichen α-Aminosäure deren C- ] __g_Alkyl-, C 2 _g-Alkenyl- , C5_7-Cycloalkyl- , Phenyl- oder Phenyl-Cι_3-alkylester wie der Methyl-, Ethyl-, n-Propyl-, Isopropyl-, tert.Butyl-, Allyl-, Phenyl- oder Benzylester,

unter den Ethern der Seitenkette einer natürlichen D- oder L-α-Aminosäure deren C-ι__5-Alkyl-, Phenyl-Cι__3-alkyl- , Phenyl- oder C 4 _7-Cycloalkylether und

unter einem in vivo abspaltbaren Rest eine AIkanoylgruppe mit insgesamt 1 bis 6 Kohlenstoffatomen, eine Benzoyl-, Allyloxy- carbonyl-, Cι_5-Alkoxycarbonyl- oder Phenyl-C;-__3-alkoxy- carbonylgruppe wie die Formyl-, Acetyl-, Propionyl-, Buta- noyl-, Pentanoyl-, Hexanoyl-, Benzoyl-, Allyloxycarbonyl- ,

Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopro- poxycarbonyl-, Butoxycarbonyl-, tert. Butoxycarbonyl-, Pen- toxycarbonyl-, Hexoxycarbonyl-, Benzyloxycarbonyl-, Phenyleth- oxycarbonyl- oder Phenylpropoxycarbonylgruppe zu verstehen.

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

R a ein Wasserstoffatom, eine oder Phenyl-C-*__3-al¬ kylgruppe, in denen jeweils der Alkylteil durch eine Carboxy-, C ] __ 3 -Alkoxycarbonyl-, Aminocarbonyl-, N-C-j__ 3 -Alkylamino- carbonyl-, N,N-Di- (C-*__3-alkyl)aminocarbonyl-, Vinyl- oder Ethinylgruppe oder auch, sofern die vorstehend erwähnten Sub¬ stituenten nicht an einem zu einem Stickstoffatom benachbarten α-Kohlenstoffatom stehen, durch eine Hydroxy-, C-*__3-Alkoxy-, Amino-, C-]__3-Alkylamino- oder Di- (Cχ_3-alkyl)aminogruppe substituiert sein kann, oder einen in vivo abspaltbaren Rest,

Rj-, und R c , die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder die Seitenkette einer natürlichen D- oder L-α-Aminosäure sowie deren Ester und Ether,

A eine -HCR 1 -HCR 2 -, -CO-HCR-i-, -HCR-i-CO-, -NR 3 -HCR- 1 .-, -HCR-L-NR3-, -NR 2 -CO-, -CO-NR 2 -, -O-CO-, -CO-O-, -0-HCRχ- oder -CHRi-O-Gruppe, in denen

R l ein Wasserstoffatom, eine C 1 _3*-Alkyl-, Phenyl-Ci.3-al¬ kyl- oder Phenylgruppe,

R 2 ein Wasserstoffatom, eine C-t__3-Alkyl- oder Phenyl- C- j __3-alkylgruppe und

R3 ein Wasserstoffatom, eine Cχ_3-Alkyl-, Phenyl-Cι_3-al¬ kyl-, Cι_3-Alkylcarbonyl- oder Cι_5-Alkylsulfonylgruppe darstellen,

Xι_, X 2 und X 3 , die gleich oder verschieden sein können, je¬ weils ein Stickstoffatom oder eine Methingruppe, wobei in vorstehend erwähnten heterocylischen Ringen, in denen X 2 oder X3 oder X 2 und X3 jeweils ein Stickstoffatom darstellen, zu¬ sätzlich jeweils eine mit einem Ringstickstoffatom verknüpfte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

B eine 3-Piperidinylen-, 4-Piperidinylen- oder 1,4-Piper¬ azinylengruppe, in denen jeweils eine zu einem Stickstoffatom benachbarte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, wobei zusätzlich eine 1,4-Piperazinylengruppe durch R-- ) und R c substituiert sein kann sowie R^ und R c wie vorste¬ hend erwähnt definiert sind, eine Phenylen-, Cyclohexylen- oder Pyridazinylengruppe,

D eine -0-R 1 CR 4 -CO-, -NR 3 -KCR 1 -CO- , -NR 3 -CH 2 CH 2 CO-, -CH 2 CO-, -CHR 1 CH 2 CO- oder (-0-) 2 CH-CO-Gruppe, in denen

R l und R3 wie vorstehend erwähnt definiert sind und R 4 ein Wasserstoffatom, eine Cι_3*-Alkyl-, Hydroxy- Cι_3-alkyl-, Carboxy-Cι_3-alkyl-, Ci. 3 -Alkoxycarbonyl- Cι_ 3 *-alkyl-, C 3 _ 7 -Cycloalkoxycarbonyl-Cι_ 3 -alkyl-, Phenyl-C x _3-alkyl-, Phenyl-, Pyridyl-Cι_ 3 -alkyl- oder Pyridylgruppe darstellt,

und E eine Hydroxy-, Cι_ 6 -Alkoxy-, C 3 _9-Cycloalkoxy-, Phenyl- Cι_ 3 ~alkoxy- oder R7-CO-O- (R 5 CRg) -O-Gruppe, in der

R 5 ein Wasserstoffatom, eine Cχ_g-Alkyl-, C3_ 7 -Cycloalkyl- oder Phenylgruppe,

Rg ein Wasserstoffatom oder eine Cι_g-Alkylgruppe und R 7 eine Cι_ 5 -Alkyl-, C x _5-Alkoxy-, C 5 _ 7 -Cycloalkyl- oder C5_ 7 -Cycloalkoxygruppe darstellen,

bedeuten, wobei unter den bei der Definition der vorstehenden Reste erwähnten Ausdrücken "eine Phenylgruppe" oder "eine Phenylengruppe" ist jeweils insbesondere eine gegebenenfalls

durch Fluor-, Chlor-, Brom- oder Jodatome, durch Cι_ 3 -Alkyl-, Trifluormethyl-, Nitro-, Amino-, Cι_ 3 -Alkylamino-, Di- (Cι_3-alkyl) -amino-, Cι_ 4 -Alkanoylamino-, Hydroxy-, Cι_3-Alk- oxy-, Carboxy-, Cι_3-Alkoxycarbonyl-, C3_7-Cycloalkoxycarbo- nylalkoxy-, Hydroxycarbonyl-Cι_ 3 -alkoxy-, Cχ_ 3 -Alkoxycarbonyl• Cι_ 3 -alkoxy-, Aminocarbonyl-, Cι_3-Alkylaminocarbonyl- oder Di- (Cι_3~alkyl) -aminocarbonylgruppen mono-, di- oder trisub- stituierte Phenyl- oder Phenylengruppe, wobei die Substituen¬ ten gleich oder verschieden sein können,

unter den Estern einer natürlichen α-Aminosäure deren Cι_g-Al- kyl-, C 2 -g-Alkenyl-, C 5 _ 7 -Cycloalkyl-, Phenyl- oder Phenyl- Cχ_ 3 -alkylester wie der Methyl-, Ethyl-, n-Propyl-, Isopro- pyl-, tert.Butyl-, Allyl-, Phenyl- oder Ben∑ylester,

unter den Ethern der Seitenkette einer natürlichen D- oder L-α-Aminosäure deren Cι_5-Alkyl-, Pheny1-Ci_ 3 -alkyl-, Phenyl- oder C 4 _7-Cycloalkylether und

unter einem in vivo abspaltbaren Rest eine AIkanoylgruppe mit insgesamt 1 bis 6 Kohlenstoffatomen, eine Benzoyl-, Allyloxy- carbonyl-, Cι_5-Alkoxycarbonyl- oder Phenyl-Cι_3-alkoxy¬ carbonylgruppe wie die Formyl-, Acetyl-, Propionyl-, Buta- noyl-, Pentanoyl-, Hexanoyl-, Benzoyl-, Allyloxycarbonyl-, Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopro- poxycarbonyl-, Butoxycarbonyl-, tert. Butoxycarbonyl-, Pen- toxycarbonyl-, Hexoxycarbonyl-, Benzyloxycarbonyl-, Phenyleth- oxycarbonyl- oder Phenylpropoxycarbonylgruppe zu verstehen ist,

deren Tautomere, deren Stereoisomere, einschließlich ihrer Ge¬ mische, und deren Salze.

Besonders bevorzugte Verbindungen der obigen allgemeinen For¬ mel I sind diejenigen, in denen

R a ein Wasserstoffatom, eine Cι_3-Alkyl-, Phenyl-Cι_3-alkyl-, Cι_5-Alkoxycarbonyl- oder Phenyl-Cι_ 3 -alkoxycarbonylgruppe,

Rj-, und R c , die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder die Seitenkette einer natürlichen D- oder L-α-Aminosäure sowie deren Ester und Ether,

A eine -CH 2 CH 2 -, -CO-CH 2 -, -CH 2 -CO-, -CH 2 -NR 3 -, -NR 3 -CH2-, -NH-CO-, -O-CO- oder -CH2"0-Gruppe, in denen

R3 ein Wasserstoffatom, eine Cι_ 3 -Alkyl-, Phenyl-Cι_3-al¬ kyl-, Cι_3-Alkylcarbonyl- oder Cι_ 5 -Alkylsulfonylgruppe darstellt,

X l , X2 und X3, die gleich oder verschieden sein können, je¬ weils ein Stickstoffatom oder eine Methingruppe, wobei in vorstehend erwähnten heterocylischen Ringen, in denen X2 oder X3 oder X2 und X3 jeweils ein Stickstoffatom darstellen, zu¬ sätzlich jeweils eine mit einem Ringstickstoffatom verknüpfte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

B eine 4-Piperidinylengruppe oder eine l,4-Piperazinylengrup- pe, in der eine zu einem Stickstoffatom benachbarte Methylen¬ gruppe durch eine Carbonylgruppe ersetzt sein kann, wobei zu¬ sätzlich die vorstehend erwähnten 1,4-Piperazinylengruppen durch eine Carboxymethyl- oder Cι_5-Alkoxycarbonylgruppe substituiert sein können, eine gegebenenfalls durch eine E-CO-CH 2 -Gruppe substituierte 1,3- oder 1,4-Phenylengruppe, wobei E wie nachstehend definiert ist, eine 1,4-Cyclohexylen- oder 2,5-Pyridazinylengruppe,

D eine -0-R ! CR 4 -C0-, -CH 2 CO-, -CHRιCH 2 C0-, -NR 3 CH 2 CO- oder (-0-)2CH-CO-Gruppe, in denen

R3 wie vorstehend erwähnt definiert ist,

R l ein Wasserstoffatom oder eine Cι_3-Alkylgruppe und

R 4 ein Wasserstoffatom, eine Cι_3-Alkyl-, Hydroxy-Cι_2-al¬ kyl-, Carboxymethyl-, Benzyl-, Chlorbenzyl- oder Phenyl¬ gruppe darstellen,

und E eine Hydroxy-, Ci_g-Alkoxy-, C3_9-Cycloalkoxy- oder Phenyl-Ci_3-alkoxygruppe bedeuten,

wobei unter den bei der Definition der vorstehenden erwähnten Ester einer natürlichen α-Aminosäure deren Cι_g-Alkyl-, C 2 _6-Alkenyl-, C 5 _ 7 -Cycloalkyl-, Phenyl- oder Phenyl-Cι_ 3 -al- kylester wie der Methyl-, Ethyl-, n-Propyl-, Isopropyl-, tert.Butyl-, Allyl-, Phenyl- oder Benzylester und

unter den Ethern der Seitenkette einer natürlichen D- oder L-α-Aminosäure deren Cι_ 5 -Alkyl-, Phenyl-Cι_3-alkyl-, Phenyl- oder C 4 _ 7 -Cycloalkylether zu verstehen sind,

deren Tautomere, deren Stereoisomere, einschließlich ihrer Ge¬ mische, und deren Salze.

Ganz besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

R a ein Wasserstoffatom, eine Benzyl-, Cι_5-Alkoxycarbonyl- oder Benzyloxycarbonylgruppe,

R D und R c , die gleich oder verschieden sein können, jeweils ein Wasserstoffatom oder die Seitenkette einer natürlichen D- oder L-α-Aminosäure sowie deren Ester und Ether,

A eine -CH 2 CH 2 -, -CO-CH 2 -, -CH 2 -CO-, -CH 2 -NR 3 -, -NR 3 -CH 2 - oder -NH-CO-Gruppe, in denen

R3 ein Wasserstoffatom, eine Methyl-, Benzyl-, Acetyl- oder n-Butylsulfonylgruppe darstellt,

X l , X 2 und X 3 , die gleich oder verschieden sein können, je¬ weils ein Stickstoffatom oder eine Methingruppe, wobei in vorstehend erwähnten heterocylischen Ringen, in denen X 2 oder X 3 oder X 2 und X3 jeweils ein Stickstoffatom darstellen, zu¬ sätzlich jeweils eine mit einem Ringstickstoffatom verknüpfte Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

B eine 4-Piperidinylengruppe oder eine 1,4-Piperazinylengrup¬ pe, in der eine zu einem Stickstoffatom benachbarte Methylen¬ gruppe durch eine Carbonylgruppe ersetzt sein kann, wobei zu¬ sätzlich die vorstehend erwähnten 1,4-Piperazinylengruppen durch eine Carboxymethyl- oder Cι_5-Alkoxycarbonylgruppe substituiert sein können, eine gegebenenfalls durch eine E-CO-CH 2 -Gruppe substituierte 1,3- oder 1,4-Phenylengruppe, wobei E wie nachstehend definiert ist, eine 1,4-Cyclohexylen- oder 2,5-Pyridazinylengruppe,

D eine -O-RiCH-CO-, -0- (CH3CCH 3 ) -CO-, -CH 2 CH 2 C0-,

- (CHCH 3 )CH 2 CO-, -NR 3 CH 2 CO- oder (-0-) 2 CH-C0-Gruppe, in denen

R3 wie vorstehend erwähnt definiert ist und R l ein Wasserstoffatom, Methyl-, 2-Hydroxyethyl-, Carboxy¬ methyl-, Benzyl-, Chlorben∑yl- oder Phenylgruppe dar¬ stellt,

und E eine Hydroxy-, Cι_g-Alkoxy-, C 3 _9-Cycloalkoxy- oder Phenyl-Ci_3-alkoxygruppe bedeuten,

wobei unter den bei der Definition der vorstehenden erwähnten Estern einer natürlichen α-Aminosäure deren Cι_g-Alkyl-, C 2 _g-Alkenyl-, C5_7-Cycloalkyl-, Phenyl- oder Phenyl-Ci.3- alkylester wie der Methyl-, Ethyl-, n-Propyl-, Isopropyl-, tert.Butyl-, Allyl-, Phenyl- oder Benzylester und

unter den Ethern der Seitenkette einer natürlichen D- oder L-α-Aminosäure deren C-^s-Alkyl-, Phenyl-Cι_ 3 -alkyl-, Phenyl- oder C 4 _ 7 -Cycloalkylether zu verstehen sind,

deren Tautomere, deren Stereoisomere, einschließlich ihrer Ge¬ mische, und deren Salze.

Beispielsweise seien folgende besonders bevorzugte Verbindungen der allgemeinen Formel I erwähnt:

(1) 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin-4-yl) - ethyl] -piperazin,

(2) 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin-4-yl) - ethyl] -piperazin-2-on,

(3) 1- [3.4-Di- (carboxymethyloxy) -phenyl] -4- [2- (piperidin- 4-yl) -ethyl] -piperazin,

(4) 1- (4-Carboxymethyloxy-phenyl) -2-methyl-4- [2- (piperidin- 4-yl) -ethyl] -piperazin,

(5) trans-1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) - N-methyl-methylamino] -cyclohexan,

(6) 1- (trans-4-Carboxymethyloxy-cyclohexyl) -4- [2- (piperidin- 4-yl) -ethyl] -piperazin-2-on,

(7) l- [4- (1-Carboxybenzyloxy) -phenyl] -4- [2- (piperidin-4-yl) - ethyl] -piperazin,

deren Cι_ 4 -Alkyl-, Cyclopentyl- und Cyclohexylester, deren Stereoisomere, einschließlich deren Gemische, und deren Salze,

insbesondere jedoch die Verbindungen

1- (4-Cyclohexyloxycarbonylmethyloxy-phenyl) -4- [2- (piperidin- 4-yl) -ethyl] -piperazin und

1- [3.4-Di- (cyclopentyloxycarbonylmethyloxy) -phenyl] -4- [2- (pi- peridin-4-yl) -ethyl] -piperazin

sowie deren Salze.

a) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R a wie eingangs definiert ist und E eine Hydroxygruppe oder E mit Ausnahme der Hydroxy- und R 7 -CO-O- (R 5 CRg) -O-Gruppe wie eingangs definiert ist und R a ein Wasserstoffatom dar¬ stellt:

Überführung einer Verbindung der allgemeinen Formel

in der

Rb, R c , A, B, D und Xi bis X 3 mit der Maßgabe wie eingangs de¬ finiert sind, daß E' die für E eingangs erwähnten Bedeutungen besitzt und R a ' einen mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse abspaltbaren Schutzrest für eine Iminogruppe oder

R a ' die für R a eingangs erwähnten Bedeutungen besitzt und E' eine mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Hydroxygruppe überführ¬ bare Gruppe bedeutet,

in eine Verbindung der allgemeinen Formel I, in der R a wie ein¬ gangs definiert ist und E eine Hydroxygruppe darstellt oder E mit Ausnahme der Hydroxy- und R 7 -CO-O- (R 5 CRg) -O-Gruppe wie ein¬ gangs definiert ist und R a ein Wasserstoffatom darstellt.

Als Schutzgruppen für eine Hydroxygruppe einer Carboxylgruppe können beispielsweise die funktioneile Derivate einer Carb-

oxygruppe wie deren unsubstituierte oder substituierte Amide, Ester, Thioester, Trimethylsilylester, Orthoester oder Imino- ester mittels Hydrolyse in eine Carboxylgruppe,

Ester mit tertiären Alkoholen, z.B. der tert. Butylester, mit¬ tels Behandlung mit einer Säure oder Thermolyse in eine Carb¬ oxylgruppe und

Ester mit Aralkanolen, z.B. der Benzylester, mittels Hydroge¬ nolyse in eine Carboxylgruppe übergeführt werden.

Die Hydrolyse wird zweckmäßigerweise entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essig¬ säure, Trichloressigsäure, Trifluoressigsaure oder deren Gemi¬ schen oder in Gegenwart einer Base wie Lithiumhydroxid, Natri¬ umhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmit¬ tel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopro- panol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/ Dioxan bei Temperaturen zwischen -10 und 120°C, z.B. bei Tem¬ peraturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, durchgeführt.

Unter den vorstehend erwähnten Reaktionsbedingungen können ge¬ gebenenfalls vorhandene N-Acylamino- oder Cι_5-Alkoxycarbonyl- aminogruppen wie eine N-Trifluoracetylamino- oder tert.Butyl- oxycarbonylaminogruppe in die entsprechenden Aminogruppen über¬ geführt werden.

Bedeutet E' in einer Verbindung der allgemeinen Formel II bei¬ spielsweise die tert.Butyloxygruppe und/oder R a ' die tert.Bu- tyloxycarbonylgruppe, so können diese Gruppen auch durch Be¬ handlung mit einer Säure wie Trifluoressigsaure, Ameisensäure, p-Toluolsulfonsäure, Schwefelsäure, Salzsäure, Phosphorsäure oder Polyphosphorsaure gegebenenfalls in einem inerten Lösungs¬ mittel wie Methylenchlorid, Chloroform, Benzol, Toluol, Di¬ ethylether, Tetrahydrofuran oder Dioxan vorzugsweise bei Tem¬ peraturen zwischen -10 und 120°C, z.B. bei Temperaturen zwi-

sehen 0 und 60°C, oder auch thermisch gegebenenfalls in einem inerten Lösungsmittel wie Methylenchlorid, Chloroform, Benzol, Toluol, Tetrahydrofuran oder Dioxan und vorzugsweise in Gegen¬ wart einer katalytischen Menge einer Säure wie p-Toluolsulfon- säure, Schwefelsäure, Phosphorsäure oder Polyphosphorsaure vor¬ zugsweise bei der Siedetemperatur des verwendeten Lösungsmit¬ tels, z.B. bei Temperaturen zwischen 40 und 120°C, abgespalten werden. Bei den vorstehend erwähnten Reaktionsbedingungen kön¬ nen gegebenenfalls vorhandene N-tert.Butyloxycarbonylamino- gruppen in die entsprechenden Aminogruppen übergeführt werden.

Bedeutet E' in einer Verbindung der Formel II beispielsweise die Benzyloxygruppe und/oder R a ' die Benzylgruppe, so können diese Gruppen auch hydrogenolytisch in Gegenwart eines Hydrie¬ rungskatalysators wie Palladium/Kohle in einem geeigneten Lö¬ sungsmittel wie Methanol, Ethanol, Ethanol/Wasser, Eisessig, Essigsaureethylester, Dioxan oder Dimethylformamid vorzugsweise bei Temperaturen zwischen 0 und 50°C, z.B. bei Raumtemperatur, und einem Wasserstoffdruck von 1 bis 5 bar abgespalten werden. Bei der Hydrogenolyse können gleichzeitig andere Reste, z.B. eine Nitrogruppe in eine Aminogruppe, eine Benzyloxygruppe in eine Hydroxygruppe und eine N-Benzylamino-, N-Benzylimino-, N-Benzyloxycarbonylamino- oder N-Benzyloxycarbonyliminogruppe in eine entsprechende Amino- oder Iminogruppe übergeführt wer¬ den.

b) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der X 2 ein Stickstoffatom und A eine -HCR 1 -HCR2-, -CO-HCRi- oder -HCRi-CO-Gruppe darstellen:

Umsetzung einer Verbindung der allgemeinen Formel

R c

in der

R*-,, R c , X3 , B, D und E wie eingangs definiert sind und X2 ein Stickstoffatom darstellt, mit einer Verbindung der all¬ gemeinen Formel

R. - Z, , (IV)

V-/ 1

in der

Xl wie eingangs definiert ist sowie

R a ' mit Ausnahme des Wasserstoffatoms die für R a eingangs er¬ wähnten Bedeutungen aufweist oder einen Schutzrest für eine Iminogruppe,

A' -HCR1-HCR2-, -CO-HCRi- oder -HCRi-CO-Gruppe, wobei R x und R2 wie eingangs definiert sind, und

Zi eine Hydroxygruppe oder eine nukleofuge Austrittsgruppe wie ein Halogenatom, z.B. ein Chlor-, Brom- oder Jodatom, eine Sul- fonsäureestergruppe, z.B. eine Methansulfonyloxy- oder p-Tolu- olsulfonyloxygruppe, eine Imidazolyl-, Triazolyl- oder 4-Nitro- phenyloxygruppe bedeuten und gegebenenfalls anschließende Ab¬ spaltung eines verwendeten Schutzrestes.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Me¬ thanol, Ethanol, Methylenchlorid, Tetrahydrofuran, Toluol, Di¬ oxan, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base oder gegebenfalls in Gegenwart eines wasserentziehenden oder die Säure aktivierenden Mittels bei Temperaturen zwischen -30 und 200°C durchgeführt.

Die Umsetzung einer Carbonsäure der allgemeinen Formel IV wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlor¬ benzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan oder in einem entsprechenden Amin der allgemeinen Formel III

gegebenenfalls in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Orthokoh- lensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Di- methoxypropan, Tetramethoxysilan, Thionylchlorid, Trimethyl- chlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N' -Dicyclo- hexylcarbodiimid, N,N' -Dicyclohexylcarbodiimid/N-Hydroxysuc- cinimid, N,N' -Dicyclohexylcarbodiimid/l-Hydroxy-benztriazol, 2- (lH-Benzotriazol-1-yl) -1, 1,3, 3-tetramethyluronium-tetrafluor- borat, 2- (lH-Benzotriazol-1-yl) -l, l,3,3-tetramethyluronium-te¬ trafluorborat/1-Hydroxy-benztriazol, N,N' -Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, und gegebenen¬ falls unter Zusatz einer Base wie Pyridin, 4-Dimethylaminopyri- din, N-Methyl-morpholin oder Triethylamin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperatu¬ ren zwischen 0 und 100°C, durchgeführt.

Die Umsetzung einer Verbindung der allgemeinen Formel IV, in der Zi eine nukleofuge Austrittsgruppe darstellt, wird vorzugs¬ weise in einem Lösungsmittel wie Methylenchlorid, Acetonitril, Tetrahydrofuran, Dioxan, Toluol, Dimethylformamid oder Dime¬ thylsulfoxid gegebenenfalls in Gegenwart einer Base wie Natri¬ umhydrid, Kaliumcarbonat, Kalium-tert.butylat oder N-Ethyl-di- isopropylamin bei Temperaturen zwischen -20 und 100°C, vorzugs¬ weise bei Temperaturen zwischen 0 und 60°C, durchgeführt.

Die anschließende Abspaltung eines verwendeten Schutzrestes er¬ folgt zweckmäßigerweise hydrolytisch entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essig¬ säure, Trichloressigsäure, Trifluoressigsaure oder deren Gemi¬ schen oder in Gegenwart einer Base wie Lithiumhydroxid, Natri¬ umhydroxid oder Kaiiumhydroxid in einem geeigneten Lösungsmit¬ tel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopro- panol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/ Dioxan bei Temperaturen zwischen -10 und 120°C, z.B. bei Tem¬ peraturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, oder hydrogenolytisch in Gegenwart eines Hydrierungskatalysators wie Palladium/Kohle in einem geeigneten

Lösungsmittel wie Methanol, Ethanol, Ethanol/Wasser, Eisessig, Essigsaureethylester, Dioxan oder Dimethylformamid vorzugsweise bei Temperaturen zwischen 0 und 50°C, z.B. bei Raumtemperatur, und einem Wasserstoffdruck von l bis 5 bar.

c) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der A eine -NR3-CO-Gruppe und X2 ein Stickstoffatom dar¬ stellen:

Umsetzung einer Verbindung der allgemeinen Formel

H X, Ä - B (III) j

R,

in der

Rj-,, R c , X 3 , B, D und E wie eingangs definiert sind und X2 ' ein Stickstoffatom darstellt, mit einer Verbindung der all¬ gemeinen Formel

R a ' - N rv) - NR 2 -COZ 2 , (V)

in der

R 2 wie eingangs definiert ist,

R a ' mit Ausnahme des Wasserstoffatoms die für R a eingangs er¬ wähnten Bedeutungen aufweist oder einen Schutzrest für eine Iminogruppe und

Z 2 eine nukleofuge Austrittsgruppe wie ein Halogenatom, z.B. ein Chlor-, Brom- oder Jodatom, eine Imidazolyl-, Triazolyl- oder 4-Nitrophenyloxygruppe oder

Z2 zusammen mit R2 eine weitere Kohlenstoff-Stickstoff-Bindung bedeuten und gegebenenfalls anschließende Abspaltung eines ver¬ wendeten Schutzrestes.

Die Umsetzung wird vorzugsweise in einem geeigneten Lösungsmit¬ tel wie Methylenchlorid, Tetrahydrofuran, Toluol, Dioxan, Dime¬ thylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base oder gegebenfalls in Gegenwart eines wasserentziehenden Mittels bei Temperaturen zwischen -30 und 200°C durchgeführt.

Die Umsetzung einer Verbindung der allgemeinen Formel V, in der Z 2 eine nukleofuge Austrittsgruppe darstellt, oder mit einem Isocyanat der allgemeinen Formel V wird vorzugsweise in einem Lösungsmittel wie Methylenchlorid, Acetonitril, Tetrahydrofu¬ ran, Dioxan, Toluol, Dimethylformamid oder Dimethylsulfoxid gegebenenfalls in Gegenwart einer Base wie Natriumhydrid, Kali¬ umcarbonat, Kalium-tert.butylat oder N-Ethyl-diisopropylamin bei Temperaturen zwischen -20 und 100°C, vorzugsweise bei Tem¬ peraturen zwischen 0 und 60°C, durchgeführt.

Die anschließende Abspaltung eines verwendeten Schutzrestes er¬ folgt zweckmäßigerweise hydrolytisch entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essig¬ säure, Trichloressigsäure, Trifluoressigsaure oder deren Gemi¬ schen oder in Gegenwart einer Base wie Lithiumhydroxid, Natri¬ umhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmit¬ tel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopro- panol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/ Dioxan bei Temperaturen zwischen -10 und 120°C, z.B. bei Tem¬ peraturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, oder hydrogenolytisch in Gegenwart eines Hydrierungskatalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Ethanol/Wasser, Eisessig, Essigsaureethylester, Dioxan oder Dimethylformamid vorzugsweise bei Temperaturen zwischen 0 und 50°C, z.B. bei Raumtemperatur, und einem Wasserstoffdruck von 1 bis 5 bar.

d) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der D eine -O-R 1 CR4-CO-Gruppe darstellt:

Umsetzung einer Verbindung der allgemeinen Formel

R - B - OH , (VI)

R C

in der

R^, R c , A, B und Xi bis X3 wie eingangs definiert sind und R a ' mit Ausnahme des Wasserstoffatoms die für R a eingangs er¬ wähnten Bedeutungen aufweist oder einen Schutzrest für eine Iminogruppe bedeutet, mit einer Verbindung der allgemeinen Formel

Z3-R 1 CR4-CO-E , (VII)

in der

R l , R 4 und E wie eingangs definiert sind und

Z3 eine Austrittsgruppe wie ein Halogenatom, z. B. ein Chlor¬ oder Bromatom, oder auch, wenn B eine der eingangs erwähnten Phenylengruppen darstellt, eine Hydroxygruppe bedeutet und gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Di¬ methylformamid oder Aceton gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie Natrium- oder Kaliumiodid und vor¬ zugsweise in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, oder gegebenenfalls in Gegenwart von Silbercarbonat oder Silberoxid oder in Gegenwart eines Azodicarbonsäurediesters und eines Phos- phins bei Temperaturen zwischen -30 und der Siedetemperatur des

verwendeten Lösungsmittels, vorzugsweise jedoch bei Temperaturen zwischen -10 und 80°C, durchgeführt.

Bedeutet Z 3 eine Hydroxygruppe, so wird die Umsetzung vorzugs¬ weise in einem aprotischen Lösungsmittel wie Diethylether, Te¬ trahydrofuran, Dioxan, Diglyme, Benzol oder Toluol in Gegenwart eines Azodicarbonsäurediesters wie Azodicarbonsäure-diethyl- ester und eines Phosphins wie Triphenylphosphin bei Temperatu¬ ren zwischen -20°C und der Siedetemperatur des verwendeten Lösungsmittels durchgeführt.

Die anschließende Abspaltung eines verwendeten Schutzrestes er¬ folgt zweckmäßigerweise hydrolytisch entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essig¬ säure, Trichloressigsäure, Trifluoressigsaure oder deren Gemi¬ schen oder in Gegenwart einer Base wie Lithiumhydroxid, Natri¬ umhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmit¬ tel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopro- panol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/ Dioxan bei Temperaturen zwischen -10 und 120°C, z.B. bei Tem¬ peraturen zwischen Raumtemperatur und- der Siedetemperatur des Reaktionsgemisches, oder hydrogenolytisch in Gegenwart eines Hydrierungskatalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Ethanol/Wasser, Eisessig, Essigsaureethylester, Dioxan oder Dimethylformamid vorzugsweise bei Temperaturen zwischen 0 und 50°C, z.B. bei Raumtemperatur, und einem Wasserstoffdruck von 1 bis 5 bar.

e) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der B eine 3-Piperidinylen-, 4-Piperidinylen- oder 1,4-Piperazinylengruppe, wobei zusätzlich eine 1,4-Pipera- zinylengruppe durch Rfc, und R c substituiert kann, in der Rj-, und R c wie vorstehend erwähnt definiert sind, und D eine Ethylen- gruppe bedeuten:

Umsetzung einer Verbindung der allgemeinen Formel

in der

R a bis R c , Xi bis X3 und A wie eingangs definiert sind und

B' eine 3-Piperidinylen-, 4-Piperidinylen- oder 1,4-Pipera- zinylengruppe bedeutet, mit einer Verbindung der allgemeinen

Formel

CH 2 =CH 2 -CO-E , (IX)

in der

E mit Ausnahme der Hydroxygruppe wie eingangs definiert ist.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Me¬ thanol, Ethanol, Methylenchlorid, Tetrahydrofuran, Toluol, Di¬ oxan, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer tertiären organischen Base wie N-Ethyl-diiso- propylamin oder N-Methyl-morpholin bei Temperaturen zwischen -30 und 150°C, vorzugsweise jedoch bei Temperaturen zwischen 0 und 100°C, durchgeführt.

f) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der die Reste B und X3 über eine Kohlenstoff-Stickstoff¬ oder Stickstoff-Kohlenstoff-Bindung miteinander verknüpft sind:

Reduktive Aminierung einer Verbindung der allgemeinen Formel

, (X)

mit einer Verbindung der allgemeinen Formel

B" - D - E , (XI)

in denen

R a bis R c , Xi, X 2 , A, D und E wie eingangs definiert sind,

U eine Carbonylgruppe und

B" eine 3-Piperidinylen-, 4-Piperidinylen- oder 1,4-Pipera- zinylengruppe, wobei zusätzlich eine 1,4-Piperazinylengruppe durch Rj-, und R c substituiert sein kann, in der R D und R c wie vorstehend erwähnt definiert sind, oder

U eine Iminogruppe und

B" eine Cyclohexanongruppe bedeuten.

Die reduktive Aminierung wird vorzugsweise in Gegenwart eines komplexen Metallhydrids wie Natriumborhydrid, Lithiumborhydrid, Natriumcyanborhydrid, Zinkborhydrid, Natriumtriacetoxyborhydrid oder Boran/Pyridin zweckmäßigerweise bei einem pH-Wert von 1-7 gegebenenfalls in Gegenwart eines wasserentziehenden Mittels wie Molekularsieb oder Titan-IV-isopropylat und bei Raumtem¬ peratur oder mit Wasserstoff in Gegenwart eines Hydrierungska- talysators, z.B. in Gegenwart von Palladium/Kohle, bei einem Wasserstoffdruck von 1 bis 5 bar vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungs¬ mittel, durchgeführt.

g) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der E mit Ausnahme der Hydroxygruppe wie eingangs definiert ist:

Umsetzung einer Verbindung der allgemeinen Formel

R. N X- - A X, X. B - D OH (XII)

< - Rκ,

in der

R a bis R c , Xi bis X3, A, B und D wie eingangs definiert sind, oder deren reaktionsfähigen Derivaten mit einem Alkohol der allgemeinen Formel

HO - R d , (XIII)

oder mit dessen Formamidacetal

oder einer Verbindung der allgemeinen Formel XII mit einer Ver¬ bindung der allgemeinen Formel

Z 4 - R e , (XIV) in denen

R Q - eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen, eine Phenyl- alkylgruppe, in der der Alkylteil 1 bis 3 Kohlenstoffatome ent¬ halten kann, eine Cycloalkylgruppe mit 3 bis 9 Kohlenstoffato¬ men, in welcher der Cycloalkylteil mit 5 bis 8 Kohlenstoffato¬ men zusätzlich durch eine oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, eine Cycloal¬ kylgruppe mit 5 bis 8 Kohlenstoffatomen, in der im Cycloalkyl¬ teil eine Methylengruppe in 3- oder 4-Stellung durch ein Sauer¬ stoffatom oder durch eine gegebenenfalls durch eine Alkyl-, Phenylalkyl- oder Phenylalkoxycarbonylgruppe, in denen der Al¬ kyl- und Alkoxyteil jeweils 1 bis 3 Kohlenstoffatomen enthalten kann, oder durch eine Alkanoylgruppe mit 2 bis 6 Kohlenstoff¬ atomen substituierte Iminogruppe ersetzt ist und der Cycloal¬ kylteil zusätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, eine Cycloal- kenylgruppe, in der der Cycloalkenylteil 4 bis 7 Kohlenstoff- atome enthalten kann, eine Alkenyl-, Phenylalkenyl-, Alkinyl- oder Phenylalkinylgruppe mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt und in denen der Alke¬ nyl- und Alkinylteil jeweils 3 bis 5 Kohlenstoffatome enthalten kann, eine Cycloalkylalkylgruppe, in der der Cycloalkylteil 3 bis 8 Kohlenstoffatome und der Alkylteil 1 bis 3 Kohlenstoff-

atome enthalten kann, eine Bicycloalkylgruppe mit insgesamt 8 bis 10 Kohlenstoffatomen, die im Bicycloalkylteil zusätzlich durch ein oder zwei Alkylgruppen mit jeweils 1 bis 3 Kohlen¬ stoffatomen substituiert sein kann, oder eine 1,3-Dihydro- 3-oxo-1-isobenzfuranyloxygruppe,

R e die für R Q ; vorstehend erwähnten Bedeutungen aufweist und zusätzlich eine R 7 -CO-O- (R 5 CRg) -O-Gruppe, in der

R5 bis R7 wie eingangs definiert sind, und

Z 4 eine Austrittsgruppe wie ein Halogenatom, z. B. ein Chlor¬ oder Bromatom, darstellen.

Die Umsetzung mit einem Alkohol der allgemeinen Formel XII wird zweckmäßigerweise in einem Lösungsmittel oder Lösungsmittelge¬ misch wie Methylenchlorid, Benzol, Toluol, Chlorbenzol, Tetra¬ hydrofuran, Benzol/Tetrahydrofuran oder Dioxan, vorzugsweise jedoch in einem Alkohol der allgemeinen Formel XII, gegebenen¬ falls in Gegenwart einer Säure wie Salzsäure oder in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlor¬ ameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Salzsäure, Schwefelsäure, Methansulfonsäure, p-Toluolsulfon¬ säure, Phosphortrichlorid, Phosphorpentoxid, N,N' -Dicyclohexyl- carbodiimid, N,N' -Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N,N' -Carbonyldiimidazol-, N,N' -Thionyldiimidazol, Triphenyl- phosphin/Tetrachlorkohlenstoff oder Triphenylphosphin/Azodicar- bonsäurediethylester gegebenenfalls in Gegenwart einer Base wie Kaliumcarbonat, N-Ethyl-diisopropylamin oder N,N-Dimethylamino- pyridin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Mit einer Verbindung der allgemeinen Formel XIV wird die Umset¬ zung zweckmäßigerweise in einem Lösungsmittel wie Methylenchlo¬ rid, Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylform¬ amid oder Aceton gegebenenfalls in Gegenwart eines Reaktionsbe-

schleunigers wie Natrium- oder Kaliumiodid und vorzugsweise in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyl- diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, oder gegebenenfalls in Gegenwart von Silbercarbonat oder Silberoxid bei Temperaturen zwischen -30 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 80°C, durchgeführt.

h) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der A eine -HCRi-NH-Gruppe darstellt:

Reduktion einer Verbindung der allgemeinen Formel

/ — \

R a - N X - A"- X /-hX - B - D - E , (XV)

R c

in der

R a bis R c , Xi bis X 3 , B und D wie eingangs definiert sind und A" eine Gruppe darstellt, in der Ri wie eingangs de¬ finiert ist.

Die Reduktion wird vorzugsweise in Gegenwart eines komplexen Metallhydrids wie Natriumborhydrid, Lithiumborhydrid, Natrium¬ cyanborhydrid, Zinkborhydrid, Natriumtriacetoxyborhydrid oder Boran/Pyridin zweckmäßigerweise bei einem pH-Wert von 1-7 gegebenenfalls in Gegenwart eines wasserentziehenden Mittels wie Molekularsieb oder Titan-IV-isopropylat und bei Raumtem¬ peratur oder mit Wasserstoff in Gegenwart eines Hydrierungs- katalysators, z.B. in Gegenwart von Palladium/Kohle, bei einem Wasserstoffdruck von 1 bis 5 bar vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungs¬ mittel, durchgeführt.

Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine Iminogruppe enthält, so kann diese mittels nachträglicher Alkylierung oder Acylierung in die gewünschte alkylierte oder acylierte Verbindung der allgemeinen Formel I übergeführt werden.

Die nachträgliche Alkylierung wird gegebenenfalls in einem Lö¬ sungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Di¬ methylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan mit einem Alkylierungsmit- tel wie einem entsprechenden Halogenid oder Sulfonsäureester, z.B. mit Methyljodid, Ethylbromid, Dimethylsulfat oder Ben- zylchlorid, gegebenenfalls in Gegenwart einer tertiären or¬ ganischen Base oder in Gegenwart einer anorganischen Base zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vor¬ zugsweise bei Temperaturen zwischen 0 und 100°C, oder mit einer entsprechenden Carbonylverbindung wie Formaldehyd, Ace- taldehyd, Propionaldehyd oder Aceton in Gegenwart eines kom¬ plexen Metallhydrids wie Natriumborhydrid, Lithiumborhydrid oder Natriumcyanoborhydrid zweckmäßigerweise bei einem pH-Wert von 6-7 und bei Raumtemperatur oder in Gegenwart eines Hydrie¬ rungskatalysators, z.B. mit Wasserstoff in Gegenwart von Pal¬ ladium/Kohle, bei einem Wasserstoffdruck von 1 bis 5 bar durchgeführt. Die Methylierung kann jedoch auch in Gegenwart von Ameisensäure als Reduktionsmittel bei erhöhten Tempera¬ turen, z.B. bei Temperaturen zwischen 60 und 120°C, durchge¬ führt werden.

Die nachträgliche Acylierung wird mit einem entsprechenden re¬ aktionsfähigen Carbonsäurederivat wie dem Saurehalogenid gege¬ benenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlor¬ benzol, Tetrahydrofuran oder Dioxan gegebenenfalls in Gegen¬ wart einer tertiären organischen Base oder in Gegenwart einer anorganischen Base oder mit einer entsprechenden Carbonsäure in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegen¬ wart von Chlorameisensäureisobutylester, Thionylchlorid, Tri-

methylchlorsilan, Phosphortrichlorid, 2- (lH-Benzotriazol- 1-yl) -1,1,3,3-tetramethyluronium-tetrafluorborat, N,N'-Di- cyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hy- droxysuccinimid oder l-Hydroxybenztriazol und gegebenfalls in Gegenwart von 4-Dimethylaminopyridin, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, zweckmäßiger¬ weise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenen¬ falls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Ami¬ no-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umset¬ zung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Benzoyl-, tert.Butyl-, Trityl-, Ben¬ zyl- oder Tetrahydropyrany1gruppe,

als Schutzreste für eine Carboxylgruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.Butyl-, Benzyl- oder Tetrahydropyranyl- gruppe und

als Schutzrest für eine Amino-, Alkylamino- oder Iminogruppe die Formyl-, Acetyl-, Trifluoracetyl-, Methoxycarbonyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe, für die Iminogruppe zusätzlich die Methylgruppe und für die Aminogruppe die Phthalylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wä߬ rigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essig¬ säure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Ge¬ genwart einer Säure wie Trifluoressigsaure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhy¬ droxid oder Kaliumhydroxid oder mittels Etherspaltung, z.B. in

Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxy- carbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palla¬ dium/Kohle in einem Lösungsmittel wie Methanol, Ethanol, Iso¬ propanol, Essigsaureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwi¬ schen 0 und 100°C, vorzugsweise jedoch bei Temperaturen zwi¬ schen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar.

Die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonyl- restes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsaure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lö¬ sungsmittels wie Methylenchlorid, Dioxan, Methanol oder Ether.

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure oder Methanol bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmit¬ tels wie Tetrahydrofuran oder Methanol bei Temperaturen zwi¬ schen 0 und 50°C.

Die Abspaltung einer Methylgruppe von einer Methyliminogruppe erfolgt vorzugsweise in Gegenwart von Chlorameisensäure- l-chloralkylestern wie Chlorameisensäure-l-chlorethylester vor¬ zugsweise in Gegenwart einer Base wie 1,8-Bis- (dimethylamino) - naphthalin in Gegenwart eines Lösungsmittels wie Methylenchlo¬ rid, 1,2-Dichlorethan, Toluol oder Dioxan bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des Reaktionsgemisches, und nach¬ folgender Behandlung mit einem Alkohol wie Methanol bei Tempe-

raturen zwischen 20°C und der Siedetemperatur des verwendeten Alkohols.

Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Ge¬ genwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperatu¬ ren zwischen 20 und 50°C.

Ferner können die erhaltenen Verbindungen der allgemeinen For¬ mel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können bei¬ spielsweise cis-/trans-Gemische in ihre eis- und trans-Isomere, und chirale Verbindungen in ihre Enantiomeren aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen cis-/trans-Ge- mische durch Chromatographie in ihre eis- und trans-Isomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestes 2 stereogenen Zentren auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chro¬ matographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren ge¬ trennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulen¬ trennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit ei¬ ner, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, ins¬ besondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salz-

gemisches oder Derivates, z.B. auf Grund von verschiedenen Lös¬ lichkeiten, wobei aus den reinen diastereomeren Salzen oder De¬ rivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch ak¬ tive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Äpfelsäure, Mandel¬ säure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+) - oder (-) -Menthol und als optisch aktiver Acylrest in Amiden beispielsweise (+) -oder (-) -Menthyloxycarbonyl in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hier¬ für beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefel¬ säure, Phosphorsäure, Fumarsäure, Bernsteinsaure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine Carboxylgruppe enthalten, gewünsch¬ tenfalls anschließend in ihre Salze mit anorganischen oder or¬ ganischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Ba¬ sen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhy¬ droxid, Arginin, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Die als Ausgangsstoffe verwendeten Verbindungen sind teilweise literaturbekannt oder man erhält diese nach literaturbekannten Verfahren (siehe Beispiele I bis XXIII) .

Wie bereits eingangs erwähnt, weisen die neuen Carbonsäurederi¬ vate der allgemeinen Formel I und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, wertvolle Eigenschaften auf,

insbesondere wertvolle pharmakologische Eigenschaften, neben einer entzündungshemmenden und den Knochenabbau hemmenden Wir¬ kung insbesondere antithrombotische, antiaggregatorische und tumor- bzw. metastasenhemmende Wirkungen.

Beispielsweise wurden die Verbindungen der allgemeinen Formel I auf ihre biologischen Wirkungen wie folgt untersucht:

1. Hemmung der Bindung von 3 H-BIBU 52 an Humanthrombozyten:

Eine Suspension von Humanthrombozyten in Plasma wird mit 3 H-BIBU 52 [= (3S,5S) -5- [ (4' -Amidino-4-biphenylyl)oxymethyl] - 3- [ (carboxy)methyl] -2-pyrrolidinon[3- 3 H-4-biphenylyl] ] , das den literaturbekannten Liganden 125 J-Fibrinogen ersetzt, (siehe DE-A-4,214,245) und verschiedenen Konzentrationen der zu testenden Substanz inkubiert. Der freie und gebundene Ligand wird durch Zentrifugation getrennt und durch Szintillations- zählung quantitativ bestimmt. Aus den Meßwerten wird die Hem¬ mung der 3 H-BIBU 52-Bindung durch die Testsubstanz bestimmt.

Hierzu wird aus einer Antekubitalvene Spenderblut entnommen und mit Trinatriumzitrat antikoaguliert (Endkonzentration 13 mM) . Das Blut wird 10 Minuten bei 170 x g zentrifugiert und das überstehende plättchenreiche Plasma (PRP) abgenommen. Das Rest- blut wird zur Gewinnung von Plasma nocheinmal scharf abzentri- fugiert. Das PRP wird mit autologem Plasma 1:10 verdünnt. 750 μl werden mit 50 ml physiologischer Kochsalzlösung, 100 μl Testsubstanzlösung, 50 μl 14 C-Sucrose (3.700 Bq) und 50 μl 3 H-BIBU 52 (Endkonzentration: 5 nM) bei Raumtemperatur 20 Minu¬ ten inkubiert. Zur Messung der unspezifischen Bindung wird an¬ stelle der Testsubstanz 100 μl BIBU 52 (Endkonzentration: 30 μM) eingesetzt. Die Proben werden 20 Sekunden bei 10000 x g zentrifugiert und der Überstand abgezogen. 100 μl hiervon wer¬ den zur Bestimmung des freien Liganden gemessen. Das Pellet wird in 500 μl 0,2N NaOH gelöst, 450 μl werden mit 2 ml Szin- tillator und 25 μl 5N HCl versetzt und gemessen. Das im Pellet noch verbliebene Restplasma wird aus dem 14 C-Gehalt bestimmt,

der gebundene Ligand aus der 3 H-Messung. Nach Abzug der unspezifischen Bindung wird die Pelletaktivität gegen die Konzentration der Testsubstanz aufgetragen und die Konzentra¬ tion für eine 50%ige Hemmung der Bindung ermittelt.

2. Antithrombotische Wirkung:

Methodik

Die Thrombozytenaggregation wird nach der Methode von Born und Cross (J. Physiol. 170, 397 (1964)) in plättchenreichem Plasma gesunder Versuchspersonen gemessen. Zur Gerinnungshemmung wird das Blut mit Natriumeitrat 3,14 % im Volumenverhältnis 1:10 versetzt.

Collagen-induzierte Aggregation

Der Verlauf der Abnahme der optischen Dichte der Plättchen- suspension wird nach Zugabe der aggregationsauslösenden Sub¬ stanz photometrisch gemessen und registriert. Aus dem Neigungs¬ winkel der Dichtekurve wird auf die Aggregationsgeschwindigkeit geschlossen. Der Punkt der Kurve, bei dem die größte Licht- durchlässigkeit vorliegt, dient zur Berechnung der "optical density" .

Die Collagen-Menge wird möglichst gering gewählt, aber doch so, daß sich eine irreversibel verlaufende Reaktionskurve ergibt. Verwendet wird das handelsübliche Collagen der Firma Hormonche¬ mie, München.

Vor der Collagen-Zugabe wird das Plasma jeweils 10 Minuten mit der Substanz bei 37°C inkubiert.

Aus den erhaltenen Meßzahlen wird graphisch eine EC5 0 bestimmt, die sich auf eine 50%ige Änderung der "optical density" im Sin¬ ne einer Aggregationshemmung bezieht.

Die nachfolgende Tabelle enthält die gefundenen Ergebnisse:

Außerdem weisen die Verbindungen der Beispiele 2, 9, 9(1), 9(2) und 2(4) an Rhesus-Affen nach peroraler Gabe von l mg/kg hohe Plasmaspiegel über einen Zeitraum von mehr als 8 Stunden auf.

Die neuen Verbindungen sind gut verträglich, da beispielsweise nach intravenöser Gabe von 100 mg/kg der erfindungsgemäßen Ver¬ bindung der vorstehenden Beispiele an der Maus keine toxischen Nebenwirkungen beobachtet werden konnten.

Auf Grund ihrer Hemmwirkung auf Zeil-Zeil- bzw. Zeil-Matrix- Wechselwirkungen eignen sich die neuen Carbonsäurederivate der allgemeinen Formel I und ihre physiologisch verträglichen Salze zur Bekämpfung bzw. Verhütung von Krankheiten, bei denen klei¬ nere oder größere Zeil-Aggregate auftreten oder Zeil-Matrix¬ interaktionen eine Rolle spielen, z.B. bei der Bekämpfung bzw. Verhütung vcn venösen und arteriellen Thrombosen, von zerebro- vasculären Erkrankungen, von Lungenembolien, des Herzinfarktes, der Arteriosklerose, der Osteoporose und der Metastasierung von Tumoren und der Therapie genetisch bedingter oder auch erworbe¬ ner Störungen der Interaktionen von Zellen untereinander oder mit soliden Strukturen. Weiterhin eignen sich diese zur Be- gleittherapie bei der Thromboiyse mit Fibrinolytica oder Gefäß-

Interventionen wie transluminaler Angioplastie oder auch bei der Therapie von Schockzuständen, der Psoriasis, des Diabetes und von Entzündungen.

Für die Bekämpfung bzw. Verhütung der vorstehend erwähnten Krankheiten liegt die Dosis zwischen 0,1 mg und 30 mg/kg Kör¬ pergewicht, vorzugsweise bei 1 mg bis 15 mg/kg Körpergewicht, bei bis zu 4 Gaben pro Tag. Hierzu lassen sich die erfindungs- gemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen wie Thromboxan-Re- zeptor-Antagonisten und Thromboxansynthesehemmer oder deren Kombinationen, Serotonin-Antagonisten, α-Rezeptorantagonisten, Alkylnitrate wie Glycerintrinitrat, Phosphodiesterasehemmer, Prostacyclin und deren Analoga, Fibrinolytica wie tPA, Prouro- kinase, Urokinase, Streptokinase, oder Antikoagulantien wie Heparin, Dermatansulfat, aktiviertes Protein C, Vitamin K-An¬ tagonisten, Hirudin, Inhibitoren des Thrombins oder anderer aktivierter Gerinnungsfaktoren, zusammen mit einem oder mehre¬ ren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäu¬ re, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Was¬ ser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Stearyl- alkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche ga- lenische Zubereitungen wie Tabletten, Dragees, Kapseln, Pulver, Suspensionen, Lösungen, Sprays oder Zäpfchen einarbeiten.

Die nachfolgenden Beispiele sollen die Erfindung näher erläu¬ tern:

Herstellung der Ausgangsprodukte:

Beispiel I

1- (4-Methoxycarbonylmethyloxy-phenyl) -piperazin-trifluoracetat

a) 1- (tert.Butyloxvcarbonvl) -4- (4-hydroxyphenvl) -piperazin

Zu einer Lösung von 35.6 g (0.2 Mol) 4-Hydroxyphenylpiperazin in 300 ml Dioxan und 300 ml Wasser tropft man bei 0°C unter Rühren eine Lösung von 52.4 g (0.24 Mol) Di-tert.Butyldicarbo- nat in 50 ml Dioxan. Nach beendeter Zugabe läßt man das Reak¬ tionsgemisch auf Raumtemperatur erwärmen und rührt über Nacht bei dieser Temperatur weiter. Anschließend wird die Lösung un¬ ter Vakuum auf ein kleines Volumen eingeengt und mit Kaliumhy- drogensulfat bis pH 3 angesäuert. Man extrahiert mit Essig¬ ester, trocknet die vereinigten Extrakte über Natriumsulfat und engt unter Vakuum zur Trockne ein. Der Rückstand wird aus Ether kristallisiert und getrocknet. Ausbeute: 38 g (68 % der Theorie) , Rf-Wert: 0.40 (Kieselgel,* Methylenchlorid/Methanol = 9:1)

b) 1- (tert.Butyloxycarbonyl) -4- (4-methoxycarbonylmethyloxy- phenyl) -piperazin

Zu einer Lösung von 38 g (0.137 Mol) 1- (tert.Butyloxycarbo¬ nyl) -4- (4-hydroxyphenyl) -piperazin in 150 ml trockenem Di¬ methylformamid gibt man unter Rühren bei Raumtemperatur 20.5 g

(0.15 Mol) Kaliumcarbonat und rührt 45 Minuten lang weiter. Anschließend gibt man unter weiterem Rühren 23.0 g = 14.2 ml (0.15 Mol) Bromessigsäuremethylester zu und rührt über Nacht weiter. Die Lösung wird hiernach unter Vakuum zur Trockne ein¬ geengt und der Rückstand zwischen Wasser und Essigester ver¬ teilt. Die vereinigten organischen Phasen werden über Natri¬ umsulfat getrocknet und eingeengt. Der verbleibende Rückstand wird mit Ether verrieben, abgesaugt und getrocknet. Ausbeute: 35.7 g (75 % der Theorie), Schmelzpunkt: 102-104°C Rf-Wert: 0.65 (Kieselgel,* Methylenchlorid/Methanol = 9.5:0.5)

c) 1- (4-Methoxycarbonylmethyloxy-phenyl) -piperazin-trifluor- acetat

Eine Lösung von 35.7g (0.1 Mol) 1- (tert.Butyloxycarbonyl) - 4- (4-methoxycarbonylmethyloxy-phenyl) -piperazin in 190 ml Trifluoressigsaure und 190 ml Methylenchlorid wird während 3 Stunden bei Raumtemperatur stehen gelassen. Nach dieser Zeit wird die Lösung unter Vakuum zur Trockne eingeengt. Der Rück¬ stand wird aus Ether kristallisiert, abgesaugt und getrocknet. Ausbeute: 38 g (quantitativ), Schmelzpunkt: 106-108°C Rf-Wert: 0.40 (Kieselgel,* Methylenchlorid/Methanol = 9:1)

Beispiel II

1- (1-tert.Butyloxycarbonyl-piperidin-4-yl) -2-methansulfonyl- oxy-ethan

a) 2- (1-tert.Butγloxycarbonyl-piüeridin-4-yl) -ethanol Eine Lösung von 100 g (0.812 Mol) 4- (2-Hydroxyethyl) -pyridin in l 1 50%iger Essigsäure wird über 10 g Platindioxid bei Raumtemperatur und einem Wasserstoffdruck von 50 psi erschöp¬ fend hydriert. Der Katalysator wird abgesaugt und die Lösung unter Vakuum zur Trockne eingeengt. Der verbleibende ölige Rückstand von 4- (2-Hydroxyethyl) -piperidin-acetat wird in 500 ml Dioxan und 500 ml Wasser gelöst, mit ION Natronlauge auf pH 10 eingestellt und mit einer Lösung von 177.2 g (0.812 Mol) Di-tert.Butyldicarbonat in 200 ml Dioxan vesetzt. Man rührt über Nacht bei Raumtemperatur, verdünnt mit Wasser und extrahiert mit Essigester. Die vereinigten organischen Phasen werden getrocknet und unter Vakuum zur Trockne einge¬ engt. Der Rückstand wird mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Essigester/Cyclohexan = 1:2 und 1:1 als Elutionsmittel verwendet wird. Ausbeute: 44.3 g (24 % der Theorie),

Rf-Wert: 0.40 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

b) 1- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -2-methansul- fonyloxy-ethan

Zu einer Lösung von 44.3 g (0.193 Mol) 2- (l-tert.Butyloxycar- bonyl-piperidin-4-yl) -ethanol in 200 ml Methylenchlorid gibt man 28 ml (0.193 Mol) Triethylamin. Anschließend tropft man unter Eiskühlung und Rühren 15 ml (0.193 Mol) Methansulfon- säurechlorid zu und läßt nach beendeter Zugabe über Nacht bei Raumtemperatur stehen. Man versetzt anschließend mit Wasser, trennt die organische Phase ab und extrahiert die wäßrige Phase noch einmal mit Methylenchlorid. Die vereinigten organi¬ schen Phasen werden getrocknet und unter Vakuum zur Trockne eingeengt. Der verbleibende Rückstand wird aus Petrolether kristallisiert.

Ausbeute: 51 g (86 % der Theorie), Schmelzpunkt: 76-78°C Rf-Wert: 0.30 (Kieselgel; Essigester/Cyclohexan = 1:1)

Beispiel III

1- (4-Ethoxycarbonylmethyloxy-phenyl) -piperazin-2-on-hydro- chlorid

a) 4-Nitrophenoxyessigsäureethylester

125.4 g (0.9 Mol) 4-Nitrophenol werden in 1000 ml absolutem Dimethylformamid gelöst und nach Zugabe von 150.6 g (0.9 Mol) getrocknetem Kaliumcarbonat 45 Minuten bei Raumtemperatur gerührt. Danach werden unter Rühren 150.6 g = 100 ml (0.9 Mol) Bromessigsäureethylester zugetropft, um anschließend die Sus¬ pension 5 Stunden auf 80°C Ölbadtemperatur zu erhitzen. Die Heizung wird abgeschaltet und die Suspension weitere 15 Stun¬ den nachgerührt, wobei das Reaktionsgemisch langsam auf Raum¬ temperatur kommt. Die ungelösten anorganischen Salze werden abgesaugt und das Filtrat im Vakuum zur Trockene eingeengt. Der Rückstand wird zwischen Esssigester und Wasser verteilt. Die organische Phase wird noch 2 x mit Wasser extrahiert und dann über Natriumsulfat getrocknet, filtriert und eingeengt.

Der Rückstand wird mit Petrolether verrieben und abgesaugt. Man erhält 192.0 g (95 % der Theorie) des gewünschten Produk¬ tes, das ohne weitere Reinigung weiterverarbeitet wird. Rf-Wert: 0.80 (Kieselgel,* Methylenchlorid)

b) 4-Aminophenoxyessigsäureethylester

144.9 g (0.643 Mol) 4-Nitrophenoxyessigsäuremethylester werden in 1500 ml Essigester über 1.5 g Palladium auf Kohle (10%ig) bei Raumtemperatur und unter einem Wasserstoffdruck von 50 psi erschöpfend hydriert. Der Katalysator wird abgesaugt und das Flitrat unter Vakuum zur Trockne eingeengt. Der Rückstand wird mit Petrolether verrieben und abgesaugt. Ausbeute: 123.4 g (98 % der Theorie), Rf-Wert: 0.26 (Kieselgel; Methylenchlorid)

c) 4- (2.2-Diethoxvethγlamino) -phenoxyessigsäureethylester Eine Lösung von 20 g (0.102 Mol) 4-Aminophenoxyessigsäure- ethylester, 18.5 ml (0.123 Mol) Bromacetaldehyd-diethylacetal und 21.4 ml (0.123 Mol) N-Ethyl-diisopropylamin in 60 ml trockenem Dimethylformamid wird 30 Stunden lang auf 100°C er¬ hitzt und anschließend unter Vakuum zur Trockne eingeengt. Der Rückstand wird zwischen Essigester und Wasser verteilt, die organische Phase mit Wasser gewaschen, getrocknet und unter Vakuum zur Trockne eingeengt. Der Rückstand wird mittels Chro¬ matographie über eine Kieselgel-Säule gereinigt, wobei Cyclo- hexan/Essigester = 4:1 als Elutionsmittel verwendet wird. Ausbeute: 18.05 g (57 % der Theorie),

Massenspektrum: M + = 311

Rf-Wert: 0.78 (Kieselgel,* Methylenchlorid/Methanol = 9:1)

d) 4- [N- (Benzyloxycarbonylglycyl) -N- (2.2-diethoxyethyl)amino] - phenoxyessigsäureethylester _

Eine Mischung von 6 g (0.0193 Mol) 4- (2.2-Diethoxyethylamino) - phenoxyessigsäureethylester, 4.03 g (0.0193 Mol) N-Benzyloxy- carbonyl-glycin, 3.2 ml (0.029 Mol) N-Methyl-morpholin und 7.1 g (0.0193 Mol) 2- (lH-Benzotriazol-1-yl) -1,1,3,3-tetrame- thyluronium-tetrafluorborat in 150 ml trockenem Tetrahydro-

furan wird über Nacht bei Raumtemperatur gerührt und dann wäh¬ rend 8 Stunden auf Rückflußtemperatur erhitzt. Anschließend wird unter Vakuum zur Trockne eingeengt. Der Rückstand wird zwischen gesättigter wäßriger Natriumhydrogencarbonat-Lösung und Essigester verteilt und die wäßrige Phase noch zweimal mit Essigester extrahiert. Die vereinigten organischen Phasen wer¬ den getrocknet und unter Vakuum zur Trockne eingeengt. Der Rückstand wird mittels Chromatographie über eine Kieselgel- Säule gereinigt, wobei Cyclohexan-Essigester = 1:1 als Elu- tionsmittel verwendet wird. Ausbeute: 9.69 g (quantitativ) öl, Massenspektrum: M + = 502 Rf-Wert: 0.42 (Kieselgel; Cyclohexan/Essigester = 1:1)

e) 4-Benzyloxycarbonyl-l- (4-ethoxycarbonylmethyloxy-phenyl) - piperazin-5-en-2-on

Zu einer Lösung von 9.6 g (0.019 Mol) 4- [N- (Benzyloxycarbonyl- glycyl) -N- (2.2-diethoxyethyl) -amino] -phenoxyessigsäureethyl¬ ester in 200 ml Toluol gibt man 2 g p-Toluolsulfonsäure und erhitzt während 4 Stunden auf 75°C. Man engt unter Vakuum zur Trockne ein und verteilt den Rückstand zwischen gesättigter wäßriger Natriumhydrogencarbonat-Lösung und Essigester. Die wäßrige Phase wird noch zweimal mit Essigester extrahiert. Die vereinigten Essigester-Extrakte werden getrocknet und unter Vakuum zur Trockne eingeengt. Der rohe Rückstand (7 g) wird mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Essigester/Cyclohexan = 1:1 als Elutionsmittel verwendet wird. Der Rückstand wird nach Eindampfen aus Ether/Petrolether kristallisiert.

Ausbeute: 1.64 g (21 % der Theorie), Schmelzpunkt: 85-88°C Rf-Wert: 0.60 (Kieselgel; Essigester/Cyclohexan = 1:1)

f) 1- (4-Ethoxycarbonylmethyloxy-phenyl) -piperazin-2-on-hydro- chlorid

1.6 g (0.0039 Mol) 4-Benzyloxycarbonyl-l- (4-ethoxycarbonyl- methyloxyphenyl) -piperazin-5-en-2-on werden in 100 ml Essig¬ ester nach Zusatz einer äquimoleren Menge Salzsäure über 1 g Palladium auf Kohle (10%ig) als Katalysator bei Raumtemperatur und unter einem Wasserstoffdruck von 50 psi erschöpfend hy¬ driert. Nach Entfernen des Katalysators und Einengen des Fil¬ trats unter Vakuum wird der Rückstand mit Ether verrieben, ab¬ gesaugt und getrocknet. Ausbeute: 0.97 g (77 % der Theorie) , Schmelzpunkt: 163-168°C

Rf-Wert: 0.45 (Kieselgel,* Methylenchlorid/Methanol/konz . Ammo¬ niak = 9:1:0.1)

Beispiel IV

1- [4- (2-Methoxycarbonylethyl) -phenyl] -piperazin

a) 4-Nitro-zimtsäuremethylester

Eine Suspension von 50 g (0.258 Mol) 4-Nitrozimtsäure und 5 ml konz. Schwefelsäure in 1200 ml Methanol wird während 10 Stun¬ den auf Rückflußtemperatur erhitzt. Nach dem Abkühlen wird der Festkörper abgesaugt und getrocknet. Ausbeute: 51.1 g (96 % der Theorie), Schmelzpunkt: 135-138°C Rf-Wert: 0.9 (Kieselgel; Methylenchlorid/Methanol = 9:1)

b) 3- (4-Aminophenyl) -propionsäuremethylester

50 g (0.241 Mol) 4-Nitro-zimtsäuremethylester werden in 1000 ml Essigester über 5 g Palladium auf Kohle (10%ig) als Katalysator bei Raumtemperatur und 50 psi Wasserstoffdruck er¬ schöpfend hydriert. Der Katalysator wird abfiltriert und das Filtrat unter Vakuum zur Trockne eingeengt . Der Rückstand wird aus Ether/Petrolether kristallisiert.

Ausbeute: 40.5 g (94 % der Theorie),

Schmelzpunkt: 52-54°C

Rf-Wert: 0.75 (Kieselgel; Methylenchlorid/Methanol = 9.5:0.5)

c) 4-Benzyl-l- T4- (2-methoxycarbonylethγl) -phenyll -piperazin Eine Mischung von 3 g (0.0167 Mol) 3- (4-Aminophenyl) -propion- säuremethylester, 4.5 g (0.0167 Mol) Bis (2-chlorethyl) -benzyl- amin und 7.57 g (10 ml) (0.059 Mol) N-Ethyl-diisopropylamin in 60 ml absolutem Ethanol wird während 20 Stunden auf Rückfluß- Temperatur erhitzt. Anschließend wird unter Vakuum zur Trockne eingeengt und der Rückstand durch Chromatographie über eine Kieselgel-Säule gereinigt, wobei Methylenchlorid/Methanol = 50:1 als Elutionsmittel verwendet wird.

Ausbeute: 2.9 g (51 % der Theorie) ,

Schmelzpunkt: 56-58°C

Rf-Wert: 0.80 (Kieselgel; Methylenchlorid/Methanol = 9:1)

d) 1- f4- (2-Methoxycarbonγlethyl) -phenyll -piperazin

2.9 g (0.0083 Mol) 4-Benzyl-1- [4- (2-methoxycarbonylethyl) -phe¬ nyl] -piperazin werden in 100 ml Methanol über 1 g Palladium auf Kohle (10%ig) bei Raumtemperatur und unter einem Wasser¬ stoff-Druck von 45 psi erschöpfend hydriert. Der Katalysator wird abgesaugt und das Filtrat unter Vakuum zur Trockne einge¬ engt.

Ausbeute: 2.2 g (78 % der Theorie) Harz, Rf-Wert: 0.13 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel V

l- (3.4-Dimethoxycarbonylmethyloxy-phenyl) -piperazin

a) 3.4-Dimethoxycarbonylmethyloxy-nitrobenzol Eine Mischung von 10 g (0.0645 Mol) 4-Nitrobrenzkatechin, 12.8 ml (0.1354 Mol) Bromessigsäuremethylester und 18.7 g (0.1354 Mol) Kaliumcarbonat in 100 ml trockenem Dimethylform¬ amid wird während 5 Stunden unter Rühren auf 80°C erwärmt. Anschließend wird unter Vakuum zur Trockne eingeengt und der

Rückstand zwischen Wasser und Essigester verteilt . Die wäßrige Phase wird noch zweimal mit Essigester extrahiert. Die verei¬ nigten organischen Extrakte werden getrocknet und unter Vakuum eingeengt . Der Rückstand wird mit Ether verrieben und abge¬ saugt .

Ausbeute: 11.4 g (59 % der Theorie) , Rf-Wert: 0.85 (Kieselgel; Methylenchlorid)

b) 3.4-Dimethoxycarbonylmethγloxy-anilin-hydrochlorid

11.4 g (0.0381 Mol) 3.4-Dimethoxycarbonylmethyloxy-nitrobenzol werden in Gegenwart von 40 ml IN Salzsäsure über 2 g Palladium auf Kohle (10%ig) in 160 ml Methanol bei Raumtemperatur und unter einem Wasserstoff-Druck von 50 psi erschöpfend hydriert.

Der Katalysator wird abfiltriert, das Filtrat unter Vakuum zur

Trockne eingeengt und der Rückstand mit Aceton verrieben und abgesaugt.

Ausbeute: 10.96 g (94 % der Theorie) ,

Rf-Wert: 0.65 (Kieselgel; Methylenchlorid/Methanol = 9:1)

c) 4-Benzyl-l- (3.4-dimethoxycarbonylmethyloxy-phenyl) - piperazin

Eine Suspension von 4 g (0.013 Mol) 3.4-Dimethoxycarbonylme- thyloxy-anilin-hydrochlorid, 3.5 g (0.013 Mol) Bis(2-chlor- ethyl) -benzylamin und 5.09 g (6.74 ml) (0.039 Mol) N-Ethyl-di- isopropylamin in 50 ml absolutem Ethanol wird unter Rühren während 20 Stunden am Rückfluß erhitzt, wobei eine klare Lö¬ sung entsteht . Nach Einengen zur Trockne unter Vakuum wird der verbleibende Rückstand durch Chromatographie über eine Kiesel- gel-Säule gereinigt, wobei Methylenchlorid/Methanol = 50:1 als Elutionsmittel verwendet wird.

Ausbeute: 1.3 g (23 % der Theorie) Öl,

Rf-Wert: 0.15 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

d) 1- (3.4-Dimethoxycarbonylmethyloxy-phenyl) -piperazin 1.25 g (0.0029 Mol) 4-Benzyl-l- (3.4-dimethoxycarbonylmethyl- oxy-phenyl) -piperazin werden in 100 ml Methanol bei 50°C über 1 g Palladium auf Kohle als Katalysator unter einem Wasser¬ stoff-Druck von 50 psi erschöpfend hydriert. Der Katalysator wird abgesaugt und das Filtrat unter Vakuum zur Trockne einge¬ engt. Der Rückstand wird ohne Reinigung weiter umgesetzt. Ausbeute: 0.7 g (71 % der Theorie) Harz, Rf-Wert: 0.11 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel VI

1-tert .Butyloxycarbonyl-piperidin-4-yl-essigsaure

a) Piperidin-4-yl-essigsaure

75 g 4-Pyridylessigsäure-hydrochlorid werden mit 750 ml Eises¬ sig (50%ig) versetzt, 6 g Platindioxid zugegeben und bei 3 bar und Raumtemperatur innerhalb 3 Stunden hydriert . Der Katalysa¬ tor wird abgesaugt und die Mutterlauge im Vakuum zur Trockne eingeengt . Der Rückstand wird mit Aceton verrieben und abge¬ saugt . Es wird zweimal mit Aceton und einmal mit Ether nachge¬ waschen.

Ausbeute: 71.7 g (92 % der Theorie) weiße Substanz, Schmelzpunkt: 150-153°C

b) l-tert .Butyloxycarbonyl-piperidin-4-γl-essigsaure

Zu einer Lösung von 20 g (0.11 Mol) Piperidin-4-yl-essigsäure in 250 ml IN Natronlauge tropft man eine Lösung von 24.3 g (0.11 Mol) Di-tert.Butyldicarbonat in 20 ml Tetrahydrofuran und läßt über Nacht bei Raumtemperatur stehen. Anschließend neutralisiert man mit 250 ml IN Salzsäure und extrahiert drei¬ mal mit Methylenchlorid. Die vereinigten organischen Phasen werden getrocknet und unter Vakuum zur Trockne eingedampft. Der ölige Rückstand wird aus Petrolether kristallisiert. Ausbeute: 19 g (70 % der Theorie) , Schmelzpunkt: 97-99°C

Beispiel VII

1-Benzyl-4-carboxymethyl-piperazin

a) 1-Benzyl-4-methoxycarbonylmethyl-piperazin

Zu einer Lösung von 8.5 g (0.048 Mol) 1-Benzyl-piperazin in 100 ml Methanol gibt man 4.9 g = 6.7 ml (0.048 Mol) Triethyl¬ amin und 7.4 g = 4.6 ml (0.048 Mol) Bromessigsäuremethylester und rührt über Nacht bei Raumtemperatur. Anschließend engt man unter Vakuum zur Trockne ein. Der Rückstand wird zwischen ge¬ sättigter wäßriger Natriumhydrogencarbonat-Lösung und Essig¬ ester verteilt und die wäßrige Phase erneut mit Essigester ex¬ trahiert . Die vereinigten organischen Extrakte werden getrock¬ net und unter Vakuum zur Trockne eingeengt . Ausbeute: 10.4 g (87 % der Theorie) Öl, Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol = 9:1)

b) 1-Benzyl-4-carboxymethyl-piperazin

Zu einer Lösung von 10,4 g (41.9 mMol) 1-Benzyl-4-methoxycar- bonylmethyl-piperazin in 120 ml Tetrahydrofuran und 60 ml Wasser gibt man 83.8 ml IN Natronlauge und rührt 4 Stunden lang bei Raumtemperatur. Anschließend gibt man 83.8 ml IN Salzsäure zu und engt unter Vakuum zur Trockne ein. Der Rückstand wird dreimal mit absolutem Ethanol versetzt, welches jedesmal unter Vakuum abdestilliert wird. Der verbleibende Rückstand wird mit Methylenchlorid/Methanol = 1:1 verrührt, anschließend der ausgeschiedene, organische Festkörper abfil¬ triert und das Filtrat unter Vakuum zur Trockne eingeengt. Ausbeute: 7.3 g (74 % der Theorie), Schmelzpunkt: 190-192°C Rf-Wert: 0.16 (Kieselgel; Methylenchlorid/Methanol = 4:1)

Beispiel VIII

4-Carboxymethyl-1- (4-methoxycarbonylmethyloxy-phenyl) - piperazin

a) 4-Benzyloxycarbonylmethyl-1- (4-methoxycarbonylmethyloxy- phenyl) -piperazin

Zu einer Lösung von 9.6 g (0.02 Mol) 1- (4-Methoxycarbonylme- thyloxy-phenyl) -piperazin-trifluoracetat und 6.1 g = 8.4 ml (0.06 Mol) Triethylamin in 150 ml Methanol gibt man 4.6 g = 3.2 ml (0.02 Mol) Bromessigsäurebenzylester, erhitzt während

8 Stunden auf Rückflußtemperatur und läßt über Nacht bei Raum¬ temperatur stehen. Die Lösung wird unter Vakuum zur Trockne eingeengt und der Rückstand zwischen gesättigter Natriumhy¬ drogencarbonat-Lösung und Essigester verteilt. Die wäßrige Phase wird noch einmal mit Essigester extrahiert. Die verei¬ nigten Essigester-Extrakte werden getrocknet und unter Vakuum zur Trockne eingeengt. Der verbleibende Rückstand wird mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Methylenchlorid, das 2 % Methanol enthält, als Elutionsmittel verwendet wird.

Ausbeute: 3.2 g (40 % der Theorie) , Schmelzpunkt: 93-94°C Rf-Wert: 0.80 (Kieselgel; Methylenchlorid/Methanol = 9:1)

b) 4-Carboxymethyl-l- (4-methoxycarbonylmethyloxy-phenyl) - piperazj-n

Hergestellt aus 4-Benzyloxycarbonylmethyl-l- (4-methoxycar- bonylmethyloxy-phenyl) -piperazin durch Hydrieren über Pal¬ ladium auf Kohle (10%ig) analog Beispiel 5, aber ohne Salz¬ säure.

Ausbeute: 2.2 g (92 % der Theorie),

Rf-Wert: 0.09 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel IX

1- (4-Methoxycarbonylmethyloxy-phenyl) -2-methyl-piperazin- trifluoracetat

a) 4-tert .Buty1oxycarbonyl-1- (4-hydroxyphenyl) -2-methyl- piperazin

Eine Lösung von 10 g (0.0485 Mol) 1- (4-Methoxyphenyl) -2-me¬ thyl-piperazin in 50 ml konzentrierter Salzsäure wird während

10 Stunden in einem Autoklaven auf 180°C erhitzt und an¬ schließend unter Vakuum zur Trockne eingeengt. Der verblei¬ bende Rückstand wird in 100 ml Dioxan/Wasser = 1:1 gelöst. Man stellt mit ION Natronlauge pH 11 ein, tropft eine Lösung von

11 g Di-tert.Butyldicarbonat in 15 ml Dioxan unter Eiskühlung zu und rührt über Nacht bei Raumtemperatur. Anschließend wird unter Vakuum zur Trockne eingeengt. Der Rückstand wird aus Me- thanol/Ether kristallisiert. Die Kristalle werden abgesaugt und mit Ether gewaschen.

Ausbeute: 8.09 g (57 % der Theorie),

Rf-Wert: 0.45 (Kieselgel; Methylenchlorid/Methanol = 9:1)

b) 4-tert .Butyloxycarbonyl-1- (4-methoxycarbonylmethyloxy- phenyl) -2-methyl-piperazin

Eine Suspension von 6 g (0.0205 Mol) 4-tert.Butyloxycarbonyl- 1- (4-hydroxyphenyl) -2-methyl-piperazin, 2.4 ml (0.0246 Mol) Bromessigsäuremethylester und 3.4 g (0.0246 Mol) Kaliumcar¬ bonat in 50 ml Dimethylformamid wird während 6 Stunden auf 100°C erhitzt und nach Abkühlen unter Vakuum zur Trockne ein¬ geengt. Der Rückstand wird zwischen Essigester und Wasser ver¬ teilt und die wäßrige Phase noch einmal mit Essigester extra¬ hiert. Die vereinigten Essigester-Extrakte werden unter Vakuum zur Trockne eingeengt . Der Rückstand wird mittels Chromato¬ graphie über eine Kieselgel-Säule gereinigt, wobei Essig¬ ester/Cyclohexan als Elutionsmittel verwendet wird. Der Rück¬ stand wird nach Eindampfen aus Ether/Petrolether kristalli¬ siert.

Ausbeute: 6 g (80 % der Theorie), Schmelzpunkt: 62-65°C

c) 1- (4-Methoxycarbonylmethyloxy-phenyl) -2-methyl-piperazin- trifluoracetat

6 g (0.0165 Mol) 4-tert.Butyloxycarbonyl-1- (4-methoxycarbonyl- methyloxy-phenyl) -2-methyl-piperazin werden in 20 ml Methylen¬ chlorid und 20 ml Trifluoressigsaure gelöst. Man läßt diese Lösung 4 Stunden lang bei Raumtemperatur stehen und engt dann unter Vakuum zur Trockne ein. Der Rückstand wird dreimal mit Aceton versetzt und jedesmal unter Vakuum zur Trockne einge¬ engt. Der verbleibende Rückstand wird mit Ether verrieben und abgesaugt.

Ausbeute: 8.95 g (quantitativ), Schmelzpunkt: 140-143°C

Rf-Wert: 0.22 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Beispiel X

2 - (l-tert.Butyloxycarbonyl-piperazin-4-yl) -ethylbromid

Eine Lösung von 1,0 g l-tert.Butyloxycarbonyl-piperazin und 0.7 g (0.005 Mol) N-Ethyl-diisopropylamin in 5 ml 1.2-Di- brommethan wird 3 Tage lang bei Raumtemperatur stehen gelassen und anschließend unter Vakuum zur Trockne eingeengt. Der Rück¬ stand wird mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Methylenchlorid, das zunächst 1 % und an¬ schließend 2 % Methanol enthält, als Elutionsmittel verwendet wird.

Ausbeute: 0.6 g (38 % der Theorie), Massenspektrum: (M+H) + = 293/295 R f -Wert: 0.40 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel XI

1- (4-Methoxycarbonylmethyl-phenyl) -piperazin-hydrochlorid

a) 4-Aminophenylessi g säuremethylester-hydrochlorid

Man tropft bei -10°C bis -20°C unter Rühren 7.6 g = 4.7 ml Thionylchlorid in 100 ml Methanol und rührt anschließend während einer halben Stunde bei -20°C. Zu dieser Lösung gibt man bei -20°C 8.0 g (0.053 Mol) 4-Aminophenylessigsäure, rührt weitere 2 Stunden bei -20°C und anschließend über Nacht bei Raumtemperatur. Die Lösung wird unter Vakuum zur Trockne ein¬ geengt und der Rückstand mit Petrolether verrieben und abge¬ saugt .

Ausbeute: 9.0 g (84 % der Theorie) , Schmelzpunkt: 194-196°C Rf-Wert: 0.85 (Kieselgel; Methylenchlorid/Methanol = 9:1)

b) 4-Benzvl-l- (4-methoxvcarbonvlmethvl-phenyl) -piperazin Hergestellt aus 4-Aminophenylessigsäuremethylester-hydro- chlorid, Bis (2-chlorethyl) -benzylamin und N-Ethyl-diisopro¬ pylamin analog Beispiel IVc.

Ausbeute: 1.8 g (55 % der Theorie),

Schmelzpunkt: 73-75°C

Massenspektrum: M + = 324

Rf-Wert: 0.7 (Kieselgel; Methylenchlorid/Methanol = 9.5:0.5)

c) 1- (4-Methyloxycarbonylmethyl-phenyl) -piperazin-hydrochlorid Hergestellt durch Hydrieren von 4-Benzyl-1- (4-methoxycarbonyl- methyl-phenyl) -piperazin über Palladium auf Kohle (10%ig) ana¬ log Beispiel IVd.

Ausbeute: 1.5 g (quantitativ) Öl,

Rf-Wert: 0.10 (Kieselgel; Methylenchlorid/Methanol = 9.5:0.5)

Beispiel XII

(S) -1- (4-Ethoxycarbonylmethyloxy-phenyl) -3- (4-methoxybenzyl) - piperazin-2-on

a) 4- (2.2-Diethoxγethylamino) -phenoxyessigsäureethylester Eine Lösung von 10 g (0.051 Mol) 4-Amino-phenoxyessigsäure¬ ethylester, 8.5 ml (0.056 Mol) Bromacetaldehyddiethylacetal und 9.8 ml (0.056 Mol) N-Ethyl-diisopropylamin in 30 ml trockenem Dimethylformamid wird während 30 Stunden auf 100°C erwärmt . Nach Abkühlen wird unter Vakuum zur Trockne eingeengt und das verbleibende Öl zwischen Essigester und Wasser ver¬ teilt. Die organische Phase wird mit Wasser gewaschen, ge¬ trocknet und unter Vakuum zur Trockne eingeengt. Der Rückstand wird mittels Chromatographie über eine Kieselgel-Säule gerei¬ nigt, wobei Cyclohexan/Essigester = 1:1 als Elutionsmittel verwendet wird. Nach Eindampfen verbleiben 9.9 g (62 % der Theorie) eines fast farblosen Öls.

Rf-Wert: 0.70 (Kieselgel; Methylenchlorid/Methanol = 1:1)

b) 4- [N- (Benzyloxycarbonyl-O-methyl-L-tyrosyl) -2.2-diethoxy- ethylaminol -phenoxyessigsäureethylester

Man läßt eine Lösung von 2.1 g (67 mMol) 4- (2.2-Diethoxyethyl- amino) -phenoxyessigsäureethylester, 2 g (61 mMol) Benzyloxy- carbonyl-O-methyl-L-tyrosin, 0.73 ml (67 mMol) N-Methyl-mor- pholin und 0.9 ml (67 mMol) Chlorameisensäureisobutylester in 50 ml trockenem Dimethylformamid über Nacht bei Raumtemperatur stehen und engt anschließend unter Vakuum zur Trockne ein. Der Rückstand wird zwischen 0.5 molarer Kaliumhydrogensulfat-Lö¬ sung und Essigester verteilt. Die organische Phase wird ge¬ trocknet und unter Vakuum zur Trockne eingeengt. Der verblei¬ bende Rückstand wird mittels Chromatographie über eine Kiesel- gel-Säule gereinigt, wobei Essigester/Cyclohexan = 1:2 als Elutionsmittel verwendet wird. Nach Eindampfen verbleiben

3.3 g (87 % der Theorie) eines fast farblosen Öls. Rf-Wert: 0.60 (Kieselgel; Methylenchlorid/Methanol = 1:1)

c) (S) -4-Benzyloxycarbonyl-1- (4-ethoxycarbonylmethyloxy- phenyl) -3- (4-methoxybenzyl) -piperazin-5-en-2-on

Eine Lösung von 3.3 g (53 mMol) 4- [N- (Benzyloxycarbonyl-O-me- thyl-L-tyrosyl) -2.2-diethoxyethylamino] -phenoxyessigsäure¬ ethylester in 15 ml Trifluoressigsaure wird über Nacht bei Raumtemperatur stehen gelassen und anschließend unter Vakuum zur Trockne eingeengt. Der Rückstand wird zwischen gesättig¬ ter, wäßriger Natriumhydrogencarbonat-Lösung und Essigester verteilt. Die Essigester-Phase wird getrocknet und unter Vaku¬ um zur Trockne eingeengt. Der verbleibende Rückstand wird mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Essigester/Cyclohexan = 1:2 als Elutionsmittel verwendet wird. Nach dem Eindampfen verbleiben 3.6 g (76 % der Theorie) als fast farbloses Öl.

Rf-Wert: 0.50 (Kieselgel,- Cyclohexan/Essigester = 1:1)

d) (S) -1- (4-Ethoxycarbonylmethyloxy-phenyl) -3- (4-methoxyben- zyl) -piperazin-2-on

Hergestellt durch Hydrieren von 1.7 g (82 mMol) (S) -4-Benzyl- oxycarbonyl-1- (4-ethoxycarbonylmethyloxy-phenyl) -3- (4-methoxy- benzyl) -piperazin-5-en-2-on über Palladium auf Kohle (10%ig) analog Beispiel IVd.

Ausbeute: 1.2 g (98 % der Theorie) Öl,

Schmelzpunkt: 93-94°C

Rf-Wert: 0.05 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel XIII

1- (4-tert.Butyloxycarbonylmethyloxy-phenyl) -4- [(1-tert.butyl- oxycarbonyl-piperidin-4-yl) -methylenamino] -cyclohexan

a) 4- (4-tert.Butyloxycarbonylmethyloxy-phenyl) -cyclohexanon Zu einer Mischung von 15.0 g (78.8 mMol) 4- (4-Hydroxyphenyl) - cyclohexanon und 12.4 g (90 mMol) Kaliumcarbonat in 100 ml Dimethylformamid tropft man bei Raumtemperatur unter Rühren 13 ml (78.9 mMol) Bromessigsäure-tert.butylester und rührt über Nacht weiter. Man engt unter Vakuum zur Trockne ein und

verteilt den Rückstand zwischen Wasser und Essigester. Die or¬ ganische Phase wird getrocknet und unter Vakuum zur Trockne eingedampft. Der Rückstand wird aus Cyclohexan kristallisiert. Ausbeute: 17.5 g (73 % der Theorie), Schmelzpunkt: 78-80°C Rf-Wert: 0.50 (Kieselgel; Cyclohexan/Essigester 2:1)

b) 1- (4-tert.Butyloxycarbonylmethyloxy-phenyl) -4- [ (l-tert.- butyloxycarbonγl-piperidin-4-yl) -methyleniminol -cyclohexan Eine Mischung aus 4.57 g (15 mMol) 4- (4-tert.Butyloxycarbonyl- methyloxy-phenyl) -cyclohexanon, 3.21 g (15 mMol) l-(tert.Bu- tyloxycarbonyl) -piperidin-4-yl-methylamin und 10 g Molekular¬ sieb 3Ä in 100 ml Toluol wird über Nacht bei Raumtemperatur gerührt. Anschließend fügt man erneut 0.75 g 1- (tert.Butyloxy- carbonyl) -piperidin-4-yl-methylamin zu und rührt weitere 8 Stunden bei 60°C und anschließend über Nacht bei Raumtem¬ peratur. Man filtriert vom Molekularsieb ab und engt das Fil¬ trat unter Vakuum zur Trockne ein. Ausbeute: 8.85 g Rohprodukt.

Beispiel XIV

4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -methoxy] -1- (4-hy- droxyphenyl) -piperidin

a) l-Benzyl-4- [ (l-tert.butyloxycarbonyl-piperidin-4-yl) -me- thyloxy] -piperidin

Man gibt zu einer Lösung von 20 g (0.1 Mol) N-Benzyl-4-hy- droxy-piperidin in 300 ml trockenem Tetrahydrofuran 4.71 g (0.108 Mol) einer 55%igen Natriumhydrid/Öl-Suspension und rührt 4 Stunden bei Raumtemperatur. Nach dieser Zeit gibt man eine Aufschlämmung von 29.3 g (0.1 Mol) 1- (l-tert.Butyloxycar¬ bonyl) -piperidin-4-yl] -2-methansulfonyloxy-ethan in 30 ml Te¬ trahydrofuran zu, rührt 2 Tage bei Raumtemperatur weiter und verteilt anschließend zwischen Wasser und Essigester. Die or¬ ganische Phase wird getrocknet und unter Vakuum zur Trockne eingeengt. Der Rückstand wird mittels Chromatographie über

eine Kieselgel-Säule gereinigt, wobei Methylenchlorid/Methanol (30:1) und (10:1) als Elutionsmittel verwendt wird. Ausbeute: 16.6 g (42 % der Theorie) oranges Öl, Rf-Wert; 0.17 (Kieselgel; Methylenchlorid/Methanol = 15:1)

b) 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -methyloxy] - piperidin

8.04 g (21 mMol) l-Benzyl-4- [ (l-tert.butyloxycarbonyl-piperi- din-4-yl) -methyloxy] -piperidin werden in Methanol über Palla¬ diumhydroxid auf Kohle analog Beispiel 5 erschöpfend hydriert. Ausbeute: 6.21 g (99 % der Theorie) .

c) 1- (4-Benzyloxyphenyl) -4- [ (l-tert .butyloxycarbonyl-piperi- din-4-yl) -methoxy! -piperidin

Eine Mischung aus 600 mg (2 mMol) 4- (l-tert .Butyloxycarbonyl- piperidin-4-yl) -methoxy] -piperidin, 526 mg (2 mMol) 4-Benzyl- oxy-brombenzol, 314 mg (2.8 mMol) Kaiium-tert .butylat, 23 mg (0.04 mMol) Bis (dibenzylidenaceton) -palladium(O) und 24 mg (0.08 mMol) Tri-o-tolylphosphin in 20 ml Toluol wird unter Stickstoff 6 Stunden auf Rückflußtemperatur erhitzt. Nach Ab¬ kühlen wird zwischen Wasser und Essigester verteilt, die or¬ ganische Phase getrocknet und zur Trockne eingedampft. Der verbleibende Rückstand wird mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Cyclohexan/Essigester = 2:1 als Elutionsmittel verwendet wird.

Ausbeute: 420 mg (44 % der Theorie) ,

Rf-Wert: 0.35 (Kieselgel; Cyclohexan/Essigester 2:1)

d) 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -methoxy] -

1- (4-hydroxyphenyl) -piperidin

540 mg (1.1 mMol) l- (4-Benzyloxyphenyl) -4- [ (l-tert.butyloxy¬ carbonyl-piperidin-4-yl) -methoxy] -piperidin werden in Methanol über Palladium auf Kohle (10%ig) analog Beispiel 5 erschöpfend hydriert.

Ausbeute: 410 mg (93 % der Theorie) zähes Öl,

Rf-Wert: 0.60 (Kieselgel; Methylenchlorid/Methanol/konz . Ammo¬ niak = 9:1:0.1)

Beispiel XV

1- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -piperazin

a) l-Benzyl-4- [2- (l-tert.butyloxycarbonyl-piperidin-4-yl) - ethyl] -p perazin

Hergestellt aus 1- (l-tert.Butyloxycarbonyl) -piperidin-4-yl] - 2-methansulfonyloxy-ethan und 1-Benzylpiperazin analog Bei¬ spiel 3.

Ausbeute: 21 g (90 % der Theorie),

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

b) 1- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] - piperazin

Hergestellt aus l-Benzyl-4- [2- (l-tert.butyloxycarbonyl-pipe- ridin-4-yl) -ethyl] -piperazin durch erschöpfendes Hydrieren über Palladium auf Kohle (10%ig) analog Beispiel 5. Ausbeute: 12.4 g (95 % der Theorie) Öl,

R f -Wert: 0.19 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Beispiel XVI

1- (trans-4-Methoxycarbonylmethyloxy-cyclohexyl) -piperazin-2-on

a) 4-trans- [N- (Benzyloxycarbonylglycyl) -N- (2.2-diethoxyethyl) - amino! -cvclohexvloxvessigsäuremethylester

Hergestellt aus N-Benzyloxycarbonyl-glycin, 4-trans-2.2-Dieth- σxyethylamino-cyclohexyloxyessigsäuremethylester und 2-(lH- Benzotriazol-1-yl) -1.1.3.3-tetramethyluronium-tetrafluorborat analog Beispiel Illd.

Ausbeute: 2.42 g (93 % der Theorie) zähes Öl,

Rf-Wert: 0.75 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

b) 4-Benzyloxycarbonyl-l- (trans-4-methoxycarbonylmethyloxy- cyclohexyl) -piperazin-5-en-2-on

Hergestellt aus 4-trans- [N- (Benzyloxycarbonylglycyl) -

N- (2.2-diethoxyethyl) -amino] -cyclohexyloxyessigsäuremethyl- ester und Trifluoressigsaure analog Beispiel Ille. Ausbeute: 1.33 g (68 % der Theorie) Harz,

Rf-Wert*. 0.55 (Kieselgel; Methylenchlorid/Methanol/konz . Ammo¬ niak = 9:1:0.1)

c) 1- (trans-4-Methoxycarbonylmethyloxy-cyclohexyl) -piperazin-

2-on

Hergestellt durch Hydrieren von 4-Benzyloxycarbonyl-l- (trans- 4-methoxycarbonylmethyloxy-cyclohexyl) -piperazin-5-en-2-on analog Beispiel Ulf.

Ausbeute: 780 mg (90 % der Theorie) Öl,

Rf-Wert: 0.45 (Kieselgel; Methylenchlorid/Methanol/konz . Ammo¬ niak = 9:1:0.1)

Beispiel XVII

4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -1- (pi- peridin-4-yl) -piperazin a) 1- (l-Benzyl-piperidin-4-yl) -4- [2- (l-tert.butyloxycar- bonyl-piperidin-4-yl) -ethyl! -piperazin

Hergestellt aus l- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -piperazin, l-Benzyl-piperidin-4-on und Natriumcyanbor¬ hydrid analog Beispiel 11.

Ausbeute: 4.27 g (91 % der Theorie) ,

Rf-Wert: 0.45 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

b) 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -1- (pi- peridin-4-yl) -piperazin

Hergestellt durch Hydrierung von 1- (l-Benzyl-piperidin-4-yl) - 4- [2- (l-tert.butyloxycarbonyl-piperidin-4-yl) -ethyl] -piperazin über Palladium auf Kohle (10%ig) analog Beispiel 5.

Ausbeute: 1.55 g (87 % der Theorie),

Rf-Wert: 0.38 (Kieselgel; Methylenchlorid/Methanol/konz . Ammo¬ niak = 4:1:0.25)

Beispiel XVIII

trans-4- [ (l-tert .Butyloxycarbonyl-piperidin-4-yl) -methyloxy] - 1- (4-hydroxyphenyl) -cyclohexan

a) trans-4- (4-Hydroxyphenyl) -cylohexanol

Hergestellt aus 4- (4-Hydroxyphenyl) -cyclohexanon und Natrium¬ borhydrid analog Beispiel 10. Ausbeute: 3.9 g (68 % der Theorie), Rf-Wert: 0.34 (Kieselgel; Methylenchlorid/Methanol = 15:1)

b) trans-4- (4-Benzyloxyphenyl) -cyclohexanol

Eine Mischung von 3.9 g (0.02 Mol) trans-4- (4-Hydroxyphenyl) - cyclohexanol, 2.4 ml (0.02 Mol) Benzylbromid und 3.45 g (0.025 Mol) Kaliumcarbonat in 30 ml Dimethylformamid wird einen Tag lang bei Raumtemperatur gerührt, eine Stunde auf 70°C erwärmt und dann nach Abkühlen unter Rühren langsam in 200 ml Wasser eingegossen. Die ausgeschiedenen Kristalle wer¬ den abfiltriert und getrocknet.

Ausbeute: 5.07 g (89 % der Theorie) weiße Kristalle, Rf-Wert: 0.45 (Kieselgel; Methylenchlorid/Methanol = 15:1)

c) trans-1- (4-Benzyloxyphenyl-4- [ (l-tert.butyloxycarbonyl- pjperidin-4-vl) -methvloxv! -cyclohexan

Hergestellt aus trans-4- (4-Benzyloxyphenyl) -cyclohexanol und 1- (l-tert.Butyloxycarbonyl) -piperidin-4-yl] -2-methansulfonyl- oxy-ethan analog Beispiel XlVa.

Ausbeute: 1.3 g (39 % der Theorie),

Rf-Wert: 0.55 (Kieselgel; Cyclohexan/Essigester = 2:1)

d) trans-4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -methyl- oxy! -1- (4-hydroxyphenyl) -cyclohexan

Hergestellt durch Hydrieren von trans-1- (4-Benzyloxyphenyl) - 4- [ (l-tert.butyloxycarbonyl-piperidin-4-yl) -methyloxy] -cyclo¬ hexan über Palladium auf Kohle (10%ig) analog Beispiel 5. Ausbeute: 850 mg (81 % der Theorie), Rf-Wert: 0.45 (Kieselgel; Cyclohexan/Essigester = 2:1)

Beispiel XIX

[ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -methoxy] -cyclo¬ hexan-4-on

a) 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -methyloxy] - cyclohexan-ethylenketal

Hergestellt aus 4-Hydroxy-cyclohexan-ethylenketal und

1- (l-tert.Butyloxycarbonyl) -piperidin-4-yl] -2-methansulfonyl- oxy-ethan analog Beispiel XlVa.

Ausbeute: 6.2 g (27 % der Theorie) Öl,

Rf-Wert: 0.35 (Kieselgel; Cyclohexan/Essigester = 1:1)

b) [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -methoxy] -cyclo- hexan-4-on

Eine Lösung von 8.5 g (0.024 Mol) 4- [ (l-tert.Butyloxycarbonyl- piperidin-4-yl) -methyloxy] -cyclohexan-ethylenketal in 120 ml Eisessig und 30 ml Wasser wird 5 Minuten lang auf 65°C er¬ hitzt. Nach Abkühlen wird zwischen gesättigter Natriumhydro¬ gencarbonat-Lösung und Essigester verteilt. Die wässrige Phase wird noch dreimal mit Essigester extrahiert. Die vereinigten organischen Extrakte werden getrocknet und unter Vakuum zur Trockne eingeengt. Der Rückstand wird mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Cyclohexan/Essig¬ ester = 2:1 als Elutionsmittel verwendet wird.

Ausbeute: 4 g (54 % der Theorie),

Schmelzpunkt: 48-52°C

R f -Wert: 0.50 (Kieselgel; Cyclohexan/Essigester = 1:1)

Beispiel XX

1- (3-Ethoxycarbonylmethyloxy-phenyl) -piperazin-trifluoracetat

a) 4-tert.Butyloxycarbonyl-1- (3-hydroxyphenyl) -piperazin Hergestellt durch saure Hydrolyse von 1- (3-Methoxyphenyl) -pi¬ perazin mit konzentrierter Salzsäure und anschließende Umset¬ zung des so hergestellten l- (3-Hydroxyphenyl) -piperazins mit Di-tert.Butyldicarbonat analog Beispiel IXa.

Ausbeute: 6.5 g roh (quantitativ) Öl,

Rf-Wert: 0.60 (Kieselgel; Methylenchlorid/Methanol/konz . Ammo¬ niak = 9:1:0.1)

b) 4-tert.Butyloxycarbonyl-1- (3-ethoxycarbonylmethyloxy-phen- yl) -piperazin

Hergestellt aus 4-tert .Butyloxycarbonyl-1- (3-hydroxyphenyl) - piperazin, Bromessigsäureethylester und Kaliumcarbonat analog Beispiel IXb.

Ausbeute: 3.9 g (46 % der Theorie) amorpher Festkörper, Rf-Wert: 0.85 (Kieselgel; Cyclohexan/Essigester = 1:1)

c) 1- (3-Ethoxycarbonylmethyloxy-phenyl) -piperazin-trifluorace- tat

Hergestellt aus 4-tert.Butyloxycarbonyl-1- (3-ethoxycarbonyl- methyloxy-phenyl) -piperazin und Trifluoressigsaure analog Bei¬ spiel IXc.

Ausbeute: 3 g (74 % der Theorie) , amorpher Festkörper Rf-Wert: 0.15 (Kieselgel; Cyclohexan/Essigester = 1:1)

Beispiel XXI

(S) -4- [1- (2-Ethoxycarbonyl-ethyl) -3-isopropyloxycarbonyl- methyl-2-oxo-piperazinyl] -piperidin

a) (S) -l- (2-Ethoxycarbonyl-ethyl) -3-methoxycarbonylmethyl- 2-oxo-piperazin

Zu einer Lösong von 0.8 g N- (2.2-Dimethoxyethyl) -ß-alanin- ethylester und 1 g N-Benzyloxycarbonyl-L-asparaginsäure- ß-methylester in 20 ml Methylenchlorid gibt man unter Rühren und Kühlen mit Eis 44 g l-Ethyl-3- (3-dimethylaminopropyl) -car- bodiimid. Diese Mischung wird 10 Minuten unter Eiskühlung und anschließend 50 Minuten bei Raumtemperatur weiter gerührt. Man gibt unter weiterem Rühren 20 ml Wasser und 10 ml einer 5%igen wässrigen Kaiiumhydrogensulfat-Lösung zu. Die organische Phase wird abgetrennt und die wässrige Phase mit 20 ml Methylenchlo¬ rid extrahiert . Die vereinigten organischen Phasen werden mit Wasser gewaschen, über Natriumsulfat getrocknet und unter ver¬ mindertem Druck zur Trockne eingeengt. Der verbleibende Rück¬ stand (1.3 g) wird in 2.5 ml Trifluoressigsaure über Nacht bei Raumtemperatur stehen gelassen und anschließend gibt man 0.5 g p-Toluolsulfonsäure und rührt 4 Stunden bei 70-75°C. Nach Ab¬ kühlen wird die Toluol-Lösung mit wässriger Natriumhydrogen¬ carbonat-Lösung gewaschen und unter vermindertem Druck zur Trockne eingeengt. Der Rückstand wird mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Essigester/Cyclo¬ hexan = 1:1 als Elutionsmittel verwendet wird. Nach Eindampfen wird der Rückstand (0.9 g) in 25 ml Ethanol gelöst und über 0.3 g Palladium auf Kohle (10%ig) mit Wasserstoff erschöpfend hydriert. Der Katalysator wird abfiltriert und das Filtrat unter Vakuum zur Trockne eingeengt. Es verbleiben 0.9 g eines farblosen Öls.

b) (S) -1-Benzyloxycarbonyl-4- [l- (2-ethoxycarbonyl-ethyl) - 3-isopropγloxycarbonylmethyl-2-oxo-piperazinvn -piperidin Man löst 2 g (0.0083 Mol) N-Benzyloxycarbonyl-4-piperidon und 2.27 g (0.0083 Mol) (S) -1- (2-Ethoxycarbonyl-ethyl) -3-methoxy-

carbonylmethyl-2-oxo-piperazin in 40 ml absolutem Ethanol und gibt zu dieser Lösung nach 2-stündigem Stehen bei Raumtempera¬ tur unter Rühren 3.4 g (0.016 Mol) Triacetoxyborhydrid, 2.8 ml (0.0092 Mol) Titan(IV) -isopropylat und 1.05 ml Essigsäure und rührt über Nacht bei Raumtemperatur weiter. Man engt unter Va¬ kuum zur Trockne ein und verteilt den Rückstand zwischen Es¬ sigester und Natriumhydrogencarbonat-Lösung und extrahiert die wäßrige Phase noch zweimal mit Essigester. Die vereinigten Essigester-Phasen werden getrocknet und unter Vakuum zur Trockne eingeengt. Der Rückstand wird über eine Kieselgel- Säule gereinigt, wobei Methylenchlorid, das 2 % bzw. 3 % Methanol enthält, als Elutionsmittel verwendet wird. Ausbeute: 1.64 g (66 % der Theorie), Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol = 9:1)

c) (S) -4- [1- (2-Ethoxycarbonyl-ethyl) -3-isopropyloxycarbonyl- methyl-2-oxo-piperazinyπ -piperidin

0.8 g (1.5 mMol) (S) -1-Benzyloxycarbonyl-l- [1- (2-ethoxycar- bonyl-ethyl) -3-isopropyloxycarbonylmethyl-2-oxo-piperazinyl] - piperidin werden in 80 ml Ethanol über 0.5 g Palladium auf Kohle (10%ig) bei einem Wasserstoff-Druck von 50 psi erschöp¬ fend hydriert. Die Katalysator wird abgesaugt und das Filtrat unter Vakuum zur Trockne eingeengt. Ausbeute: 0.52 g (88 % der Theorie), Öl Rf-Wert: 0.10 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel XXII

1- [4- (N-Acetyl-N-methoxycarbonylmethyl-amino) -phenyl] -pi- perazin-hydrochlorid

a) 4-tert.Butyloxycarbonyl-4- (4-nitro-phenyl) -piperazin Eine Lösung von 16.5 g (0.067 Mol) 4-Nitrophenyl-piperazin in 500 ml Tetrahydrofuran wird bei Raumtemperatur und unter Rüh¬ ren mit 148 ml IN Natronlauge versetzt und anschließend mit 17,7 g (0.081 Mol) Di-tert.butyldicarbonat. Man rührt über Nacht bei Raumtemperatur weiter, destilliert anschließend

unter reduziertem Druck das Tetrahydrofuran ab und extrahiert mit Essigester. Die vereinigten Essigester-Extrakte werden mit Wasser gewaschen, getrocknet und unter Vakuum zur Trockne ein¬ geengt. Der Rückstand wird mit Ether verrieben, der Festkörper abgesaugt und getrocknet. Ausbeute: 17.4 g (83.6 % der Theorie), Schmelzpunkt: 146°C Rf-Wert: 0.8 (Kieselgel; Methylenchlorid/Methanol = 9.5:0.5)

b) l- (4-Amino-phenyl) -4- (4-tert-butyloxycarbonyl-piperazin Eine Lösung von 10.7 g (0.035 Mol) 4-tert.Butyloxycarbonyl- 1- (4-nitro-phenyl) -piperazin in 200 ml Essigester wird bei Raumtemperatur und unter einem Wasserstoff-Druck von 50-psi über 1 g Palladium auf Kohle (10%ig) erschöpfend hydriert. Nach Abfiltrieren des Katalysators wird die Mutterlauge unter Vakuum zur Trockne eingeengt.

Ausbeute: 9.6 g (100 % der Theorie) Öl, welches kristalli¬ siert,

Schmelzpunkt: 92°C Rf-Wert: 0.41 (Kieselgel; Methylenchlorid/Methanol = 9:1)

c) l- (4-Acetamino-phenyl) -4-tert.butyloxycarbonyl-piperazin Man löst 2.8 g (0,01 Mol) 1- (4-Aminophenyl) -4-tert.butyloxy¬ carbonyl-piperazin und 0.78 g = 0.7 ml (0.01 Mol) Acetylchlo- rid in 50 ml trockenem Dimethylformamid, fügt unter Rühren und bei Raumtemperatur tropfenweise 1.3 g = 1.8 ml (0.013 Mol) Triethylamin zu und rührt über Nacht weiter. Anschließend engt man unter Vakuum zur Trockne ein und verteilt den Rückstand zwischen Essigester und 1 Salzsäure. Die vereinigten organi¬ schen Extrakte werden mit gesättigter Natriumhydrogencarbonat- Lösung gewaschen, getrocknet und unter Vakuum zur Trockne eingeengt.

Ausbeute: 2.0 g (62.0 % der Theorie),

Schmelzpunkt: 143°C

Rf-Wert: 0.49 (Kieselgel; Methylenchlorid/Methanol = 9:1)

d) 1- [4- (N-Acetyl-N-methoxycarbonylmethyl-amino) -phenyl] -

1-tert .butyloxycarbonyl-piperazin

Zu einer Lösung von 2.0 g (6.3 mMol) 1- (4-Acetaminophenyl) - 4-tert.butyloxycarbonyl-piperazin in 20 ml Dimethylsulfoxid gibt man bei Raumtemperatur und unter Rühren 0.74 g (6.6 mMol) Kalium-tert.butylat und rührt während weiterer 30 Minuten. An¬ schließend tropft man unter weiterem Rühren 1.0 g = 0.6 ml (6.3 mMol) Bromessigsäuremethylester zu und rührt über Nacht bei Raumtemperatur weiter. Nach dieser Zeit gießt man auf Was¬ ser und extrahiert mit Methylenchlorid. Die vereinigten or¬ ganischen Extrakte werden nacheinander mit 0.5 molarer Kalium¬ hydrogensulfat-Lösung und gesättigter Natriumhydrogencarbonat- Lösung gewaschen, getrocknet und unter Vakuum zur Trockne ein¬ gedampft .

Ausbeute: 1.8 g (73.4 % der Theorie), Massenspektrum: M + = 391 Rf-Wert: 0.55 (Kieselgel; Methylenchlorid/Methanol = 9:1)

e) 1- [4- (N-Acetyl-N-methoxycarbonylmethyl-amino) -phenyl] - piperazin-hydrochlorid

Zu einer Lösung von 1.77 g (4.5 mMol) 1- [4- (N-Acetyl-N-meth- oxycarbonylmethyl-amino) -phenyl] -4-tert.butyloxycarbonyl-pipe¬ razin in 20 ml Methanol gibt man 15 ml etherischer Salzsäure und läßt 5 Stunden lang bei Raumtemperatur stehen. Hiernach engt man unter Vakuum zur Trockne ein.

Ausbeute: 1.5 g (quantitativ) Öl,

Rf-Wert.* 0.13 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel XXIII

1- [4- (N-n-Butylsulfonyl-N-methoxycarbonylmethyl-amino) - phenyl] -piperazin-hydrochlorid

a) 4-tert.Butyloxycarbonyl-l- (4-n-butylsulfonylamino-phenyl) - piperazin

Man löst 2,8 g (0,01 Mol) 1- (4-Aminophenyl) -4-tert .butyloxy¬ carbonyl-piperazin und 1,7 g = 1,4 ml (0,01 Mol) n-Butansulfo-

nylchlorid in 50 ml trockenem Methylenchlorid, fügt unter Rühren und bei Raumtemperatur tropfenweise 1,0 g = 1,0 ml (0,013 Mol) Pyridin zu und rührt über Nacht weiter. Anschlie¬ ßend engt man unter Vakuum zur Trockne ein und verteilt den Rückstand zwischen Essigester und In Salzsäure. Die vereinig¬ ten organischen Extrakte werden mit gesättigter Natriumhydro¬ gencarbonat-Lösung gewaschen, getrocknet und unter Vakuum zur Trockne eingeengt. Ausbeute: 3.9 g (quantitativ) Öl, Massenspektrum: M + = 397 Rf-Wert: 0.52 (Kieselgel; Methylenchlorid/Methanol = 9:1)

b) 4-tert.Butyloxycarbonyl-1- [4- (N-n-butylsulfonyl-N-methoxy- carbonylmethyl-amino) -phenyll -piperazin

Hergestellt aus 4,0 g (0,01 Mol) 4-tert.Butyloxycarbonyl-

1- (4-n-butylsulfonylamino-phenyl) -piperazin, 1,3 g (0,011 Mol) Kalium-tert.butylat und 1,8 g = 1,1 ml (0,011 Mol) Bromessig¬ säuremethylester in 10 ml trockenem Dimethylsulfoxid analog Beispiel XXIId.

Ausbeute: 4.6 g (97,3 % der Theorie) Öl, Rf-Wert: 0.73 (Kieselgel; Methylenchlorid/Methanol = 9:1)

c) 1- [4- (N-n-Butylsulfonyl-N-methoxycarbonylmethyl-amino) - phenyll -piperazin-hydrochlorid

Hergestellt aus 3,0 g (6,4 Mol) 4-tert.Butyloxycarbonyl-

1- [4- (N-n-butylsulfonyl-N-methoxycarbonylmethyl-amino) - phenyl] -piperazin und 10 ml etherischer Salzsäure in 10 ml

Methanol analog Beispiel XXIIe.

Ausbeute: 2.6 g (quantitativ) Öl,

Rf-Wert: 0.27 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Herstellung der Endprodukte:

Beispiel 1

1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin-4-yl) -ethyl] - piperazin-dihydrochlorid

Man läßt eine Lösung von 450 mg (1.2 mMol) 1- (4-Methoxycar- bonylmethyloxy-phenyl) -4- [2- (piperidin-4-yl) -ethyl] -piperazin- dihydrochlorid in 25 ml 3N Salzsäure während 5 Stunden bei Raumtemperatur stehen und engt anschließend unter Vakuum zur Trockne ein. Der verbleibende feste Rückstand wird mit Aceton verrieben, abgesaugt und getrocknet. Ausbeute: 400 mg (76 % der Theorie), Schmelzpunkt: 258-260°C Massenspektrum: (M+H) + = 348

Rf-Wert: 0.08 (Kieselgel; Methylenchlorid/Methanol/konz . Ammo¬ niak = 4:1:0.2)

Analog Beispiel 1 können folgende Verbindugen hergestellt werden:

(1) 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin-4-yl) - ethyl1 -piperazin-2-on-dihydrochlorid

Hergestellt aus 1- (4-Ethoxycarbonylmethyloxy-phenyl) -4- [2- (pi- peridin-4-yl) -ethyl] -piperazin-2-on-dihydrochlorid. Ausbeute: 96 % der Theorie amorpher Festkörper, Massenspektrum: M + = 361

Rf-Wert: 0.70 (Reversed-Phase Platte RP 18; Methanol/50%ige

Kochsalz-Lösung = 3:2)

(2) 1- [4- (2-Carboxy-ethyl) -phenyl] -4- [2- (piperidin-4-yl) - ethyl1 -piperazin-dihydrochlorid

Hergestellt aus 1- [4- (2-Methoxycarbonyl-ethyl) -phenyl) - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid. Ausbeute: 98 % der Theorie,

Schmelzpunkt: 268-271°C (Zers.)

Massenspektrum: (M+H) + = 346

Rf-Wert: 0.65 (Reversed-Phase Platte RP 18; Methanol/50%ige

Kochsalz-Lösung = 3:2)

(3) 1- [3.4-Di- (carboxymethyloxy) -phenyl] -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -l- [3.4-di- (methoxycarbonylmethyloxy) -phenyl] -piperazin. Ausbeute: 99 % der Theorie,

Schmelzpunkt: 118-121°C (Zers.) Massenspektrum: M + = 421

Rf-Wert: 0.65 (Reversed-Phase Platte RP 18,* Methanol/50%ige

Kochsalz-Lösung = 3:2)

(4) 1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -acetyl] - piperazin-hydrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (pi- peridin-4-yl) -acetyl] -piperazin-hydrochlorid.

Ausbeute: 93 % der Theorie, Schmelzpunkt: 88-90°C Massenspektrum: M + = 361

Rf-Wert: 0.08 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(5) 1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -amino- carbonvll -pjperazin-hvdrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (pi- peridin-4-yl) -aminocarbonyl] -piperazin-hydrochlorid. Ausbeute: 91 % der Theorie,

Schmelzpunkt: 73-78°C Massenspektrum: (M+H) + = 363

Rf-Wert: 0.18 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(6) l- (4-Carboxymethyloxy-phenyl) -4- [ (4-piperazinyl) -carbonyl- methyl! -piperazin

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -

4- [ (4-piperazinyl) -carbonylmethyl] -piperazin-dihydrochlorid. Ausbeute: 62 % der Theorie, Schmelzpunkt: 248-252°C Massenspektrum: M + = 362

Rf-Wert: 0.40 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(7) 1- (4-Carboxymethyloxy-phenyl) -2-methyl-4- [2- (piperidin-

4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus l- (4-Methoxycarbonylmethyloxy-phenyl) -2-me¬ thyl-4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid. Ausbeute: 83 % der Theorie amorpher Festkörper, Massenspektrum: M + = 361

Rf-Wert: 0.70 (Reversed Phase Platte RP 18; Methanol/5%ige

Kochsalz-Lösung = 3:2)

(8) 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperazin-4-yl) - ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) - 4- [2- (piperazin-4-yl) -ethyl] -piperazin-dihydrochlorid. Ausbeute: 78 % der Theorie,

Schmelzpunkt: 253-256°C Massenspektrum: M + = 348

Rf-Wert: 0.07 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(9) 1- (4-Carboxymethyl-phenyl) -4- [2- (piperazin-4-yl) -ethyl] - piperazin-dihydrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyl-phenyl) -4- [2- (pi- perazin-4-yl) -ethyl] -piperazin-dihydrochlorid.

Ausbeute: 69 % der Theorie, Schmelzpunkt: 235-238°C Massenspektrum: M + = 332

Rf-Wert: 0.35 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(10) (S) -1- (4-Carboxymethyloxy-phenyl) -3- (4-methoxybenzyl) - 4- \ 2 - (piperidin-4-vl) -ethvll -piperazin-2-on-dihvdrochlorid Hergestellt aus (S) -1- (4-Ethoxycarbonylmethyloxy-phenyl) -3-

(4-methoxybenzyl) -4- [2- (piperidin-4-yl) -ethyl] -piperazin-2-on- dihydrochlorid. Ausbeute: 81 % der Theorie, Schmelzpunkt: 109-115°C (Zers.) Massenspektrum: (M+H) + = 482

Rf-Wert: 0.55 (Reversed Phase Platte RP 18; Methanol/5%ige

Kochsalzlösung = 3:2)

(11) 1- [2.4-Di- (carboxymethyloxy) -phenyl] -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- [2.4-Di- (ethoxycarbonylmethyloxy) -phenyl] - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid.

(12) l- [3.5-Di- (carboxymethyloxy) -phenyl] -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- [3.5-Di- (ethoxycarbonylmethyloxy-phenyl] - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid.

(13) 1- (3-Carboxymethyloxy-phenyl) -4- [2- (piperidin-4-yl) - ethyl1 -piperazin-dihydrochlorid

Hergestellt aus 1- (3-Methoxycarbonylmethyloxy-phenyl) -

4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid. Ausbeute: 98 % der Theorie, Schmelzpunkt: 218-220°C Massenspektrum: M + = 347

Rf-Wert: 0.20 (Kieselgel; Methylenchlorid/Methanol/Ammoniak =

2:1:0.25)

(14) 1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) - oxycarbonyl1 -piperazin-hydrochlorid

Hergestellt aus 1- (4-tert.Butyloxycarbonylmethyloxy-phenyl) - 4- [ (piperidin-4-yl) -oxycarbonyl] -piperazin-hydrochlorid und Trifluoressigsaure.

(15) 1- (2-Carboxy-benzo-1.3-dioxol-5-yl) -4- [2- (piperidin-

4-γl) -ethyl] -piperazin-dihydrochlorid

Hergestellt aus 1- (2-Ethoxycarbonyl-benzo-1.3-dioxol-5-yl) - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid.

(16) 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin-4-yl) - ethyl! -piperidin-hvdrochlorid

Hergestellt aus 1- (4-Ethoxycarbonylmethyloxy-phenyl) -4- [2- (pi- peridin-4-yl) -ethyl] -piperidin-hydrochlorid.

(17) 1- (4-Carboxymethylamino-phenyl) -4- [2- (piperidin-4-yl) - ethyl1 -piperazin-dihydrochlorid

Hergestellt aus l- (4-Ethoxycarbonylmethylamino-phenyl) -

4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid.

(18) 1- (4-Carboxymethyloxy-phenyl) -2- (4-methoxybenzyl) - 4- , 2 - (piperidin-4-yl) -ethyl! -piperazin-3-on-hvdrochlorid Hergestellt aus 1- (4-Ethoxycarbonylmethyloxy-phenyl) -

2- (4-methoxybenzyl) -4- [2- (piperidin-4-yl) -ethyl] -piperazin- 3-on-hydrochlorid.

(19) (S) -4- [1- (2-Carboxyethyl) -3-isopropyloxycarbonyl-2-oxo- piperazinyl] -1- [2- (piperidin-4-yl) -ethyl] -piperidin-hydrochlo- rid

Hergestellt aus (S) -4- [1- (2-Ethoxycarbonylethyl) -3--isopro- pyloxycarbonylmethyl-2-oxo-piperazinyl] -1- [2- (piperidin-4-yl) - ethyl] -piperidin-hydrochlorid.

Ausbeute: 83 % der Theorie, amorph Massenspektrum: (M+H) = 467

Rf-Wert: 0.65 (Reversed Phase Platte RP18; Methanol/5%ige

Kochsalzlösung = 3:2)

(20) (R) -2-Benzyl-l- (4-carboxymethyloxy-phenyl) -4- [2 - (pipe- ridin-4-yl) -ethyll -piperazin-3-on-hydrochlorid

Hergestellt aus (R) -2-Benzyl-l- (4-ethoxycarbonylmethyloxy- phenyl) -4- [2- (piperidin-4-yl) -ethyl] -piperazin-3-on-hydro- chlorid.

(21) trans-1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) - methylamino! -cyclohexan-dihydrochlorid

Hergestellt aus trans-1- (4-tert.Butyloxycarbonylmethyloxyphe- nyl) -4- (l-tert.butyloxycarbonyl-piperidin-4-yl) -methylamino] - cyclohexan und 6N Salzsäure/Essigsäure = 1:1.

Ausbeute: 98 % der Theorie, Schmelzpunkt: 309-311°C (Zers.) Massenspektrum: M + = 346

Rf-Wert: 0.12 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(22) trans-1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -

N-methyl-methylamino! -cyclohexan-dihydrochlorid

Hergestellt aus trans-1- (4-tert.Butyloxycarbonylmethyloxy- phenyl) -4- [ (l-tert.butyloxycarbonyl-piperidin-4-yl) -N-methyl- methylamino] -cyclohexan und 6n-Salzsäure/Essigsäure = 1:1. Ausbeute: 99 % der Theorie,

Schmelzpunkt: 123-126°C (Zers.) Massenspektrum: M + = 360

Rf-Wert: 0.18 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(23) 1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) - methyloxy! -piperidin-hydrochlorid

Hergestellt aus 1- (4-Methyloxycarbonylmethyloxy-phenyl) - 4- [ (piperidin-4-yl) -methyloxy] -piperidin-hydrochlorid. Ausbeute: 99 % der Theorie, amorpher Festkörper

Massenspektrum: M + = 348

Rf-Wert: 0.30 (Kieselgel,* Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(24) 1- [l- (2-Carboxyethyl) -piperidin-4-yl] -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-trihydrochlorid

Hergestellt aus 1- [1- (2-Methoxycarbonylethyl) -piperidin-4-yl] - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-trihydrochlorid. Ausbeute: 99 % der Theorie,

Schmelzpunkt: 341-345°C (Zers.) Massenspektrum: M + = 352

R f -Wert: 0.09 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(25) trans-1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) - methyloxy) 1 -cyclohexan-hydrochlorid

Hergestellt aus trans-1- (4-Methoxycarbonylmethyloxy-phenyl) - 4- [ (piperidin-4-yl) -methyloxy] -cyclohexan-hydrochlorid und

6N Salzsäure/Essigsäure = 1:1. Ausbeute: 95 % der Theorie, Schmelzpunkt: 242-245°C (Zers.) Massenspektrum: (M+H) + = 348

Rf-Wert: 0.40 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(26) trans-1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -

N-acetyl-methylamino! -cyclohexan-hydrochlorid

Hergestellt aus trans-1- (4-Methoxycarbonylmethyloxy-phenyl) - 4- [ (piperidin-4-yl) -N-acetyl-methylamino] -cyclohexan-hydro¬ chlorid und 6N Salzsäure.

Ausbeute: quantitativ, Schmelzpunkt: 113-115°C (Zers.) Massenspektrum: M + = 388

Rf-Wert: 0.35 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(27) trans-1- (4-Carboxymethyloxy-piperidino) -4- [ (piperidin-

4-γl) -methyloxy! -cyclohexan-ditrifluoracetat

Hergestellt aus trans-1- (4-tert.Butyloxycarbonylmethyloxy- piperidino) -4- [ (l-tert.butyloxycarbonyl-piperidin-4-yl) - methyloxy] -cyclohexan und Trifluoressigsaure.

Ausbeute: quantitativ, Harz Massenspektrum: M + = 354

Rf-Wert: 0.10 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.2)

(28) 1- (3-Carboxymethyloxy-pyridazin-6-yl) -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (3-methoxycarbonylmethyloxy-pyridazin-6-yl) -pipera¬ zin.

Ausbeute: 6 % der Theorie, Schmelzpunkt: 265-270°C Massenspektrum: (M+H) + = 350

Rf-Wert: 0.20 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.2)

(29) cis/trans-1- (4-Carboxymethyl-piperazino) -4- [ (piperidin-

4-γl) -methyloxy! -cyclohexan-trihydrochlorid

Hergestellt aus cis/trans-1- (4-Methoxycarbonylmethyl-pipera¬ zino) -4- [ (piperidin-4-yl) -methyloxy] -cyclohexan-trihydrochlo¬ rid.

Ausbeute: quantitativ, Massenspektrum: (M+H) + = 340

Rf-Wert: 0.13 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.2)

(30) cis/trans-1- [4- (l-Carboxyprop-2-yl) -piperazino] -4- [(pi- peridin-4-vl) -methvloxvl -cyclohexan-trihydrochlorid

Hergestellt aus cis/trans-1- [4- (l-Methoxycarbonylprop-2-yl) - piperazino] -4- [ (piperidin-4-yl) -methyloxy] -cyclohexan-trihy¬ drochlorid.

Ausbeute: 80 % der Theorie, Schmelzpunkt: 90-110°C Massenspektrum: (M+H) + = 368

Rf-Wert: 0.15 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.2)

(31) 1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -methyl- aminol -piperidin-dihydrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (pi- peridin-4-yl) -methylamino] -piperidin-dihydrochlorid.

(32) 1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -N-me- thyl-methylamino! -piperidin-dihydrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (pi¬ peridin-4-yl) -N-methyl-methylamino] -piperidin-dihydrochlorid.

(33) l- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -N-ben- zyl-methylamino] -piperidin-dihydrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (pi- peridin-4-yl) -N-benzyl-methylamino] -piperidin-dihydrochlorid.

(34) 1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -amino- methyl! -piperidin-dihydrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (pi- peridin-4-yl) -aminomethyl] -piperidin-dihydrochlorid.

(35) 1- (4-Carboxymethyloxy-phenyl) -4- [ (piperidin-4-yl) -N-ben- zyl-aminomethyl! -piperidin-dihydrochlorid

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (pi- peridin-4-yl) -N-benzyl-aminomethyl] -piperidin-dihydrochlorid.

(36) 4- (4-Carboxymethyloxy-phenyl) -1- [2 - (piperidin-4-yl) - ethvll -piperidin-dihydrochlorid

Hergestellt aus 4- (4-Methoxycarbonylmethyloxy-phenyl) -

1- [2- (piperidin-4-yl) -ethyl] -piperidin-dihydrochlorid.

(37) l- [4- (1,2-Dicarboxy-ethyloxy) -phenyl] -4- [2- (piperidin- 4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- [4- (1.2-Dirnethoxycarbonyl-ethoxy) -phenyl) - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid.

(38) 1- [4- (l-Carboxy-2-phenyl-ethyloxy) -phenyl] -4- [2- (pipe- ridin-4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- [4- (1-Methoxycarbonyl-2-phenyl-ethyloxy- phenyl] -4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid.

(39) 1- [4- (1-Carboxy-3-hydroxy-propyloxy) -phenyl] -4- [2- (pipe- ridin-4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- [4- (1-Methoxycarbonyl-3-hydroxy-propyl) - phenyl] -4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid.

(40) l- [4- (i-Carboxy-2- (4-chlorphenyl) -ethyloxy) -phenyl] -

4- f2- (piperidin-4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- [4- (2- (4-Chlorphenyl) -l-methoxycarbonyl- ethyloxy] -phenyl] -4- [2- (piperidin-4-yl) -ethyl] -piperazin- dihydrochlorid.

(41) l- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin-4-yl) - ethyl! -piperazin-3-on-hydrochlorid

Hergestellt aus 1- (4-Ethoxycarbonylmethyloxy-phenyl) -

4- [2- (piperidin-4-yl) -ethyl] -piperazin-3-on-hydrochlorid.

(42) 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin-4-yl) - ethyl! -piperazin-2.5-dion-hvdrochlorid

Hergestellt aus 1- (4-Ethoxycarbonylmethyloxy-phenyl) -

4- [2- (piperidin-4-yl) -ethyl] -piperazin-2.5-dior.-hydrochlorid.

(43) 1- [4- (N-Acetyl-N-carboxymethyl-amino) -phenyl] -4- [2- (pipe- ridin-4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- [4- (N-Acetyl-N-methoxycarbonylmethyl-amino) - phenyl] -4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid. Ausbeute: 78.3 % der Theorie,

Schmelzpunkt: 118-121°C Massenspektrum: M + = 388

R f -Wert: 0.19 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0,25)

(44) 1- [4- (N-n-Butylsulfonyl-N-carboxymethyl-amino) -phenyl] -

4- \2 - (piperidin-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 1- [4- (N-n-Butylsulfonyl-N-methoxycarbonyl- methyl-amino) -phenyl] -4- [2- (piperidin-4-yl) -ethyl] -piperazin- dihydrochlorid. Ausbeute: 75.9 % der Theorie, Schmelzpunkt: 104-105°C Massenspektrum: M + = 466

Rf-Wert: 0.22 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0,25)

Beispiel 2

1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [2- (piperidin-4-yl) - ethyl] -piperazin-dihydrochlorid

Eine Lösung von 1.0 g (2.2 mMol) 4- [2- (l-tert.Butyloxycar¬ bonyl-piperidin-4-yl) -ethyl] -1- (4-methoxycarbonylmethyloxy- phenyl) -piperazin in 20 ml Methanol und 30 ml etherischer Salzsäure wird während 5 Stunden bei Raumtemperatur stehen gelassen. Anschließend engt man unter Vakuum zur Trockne ein. Der verbleibende feste Rückstand wird mit Aceton verrieben, abgesaugt und getrocknet. Ausbeute: 900 mg (96 % der Theorie), Schmelzpunkt: 225-227°C Massenspektrum: M + = 361 Rf-Wert: 0.08 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Analog Beispiel 2 können folgende Verbindungen hergestellt werden:

(1) 1- (4-Ethoxycarbonylmethyloxy-phenyl) -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-2-on-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (4-ethoxycarbonylmethyloxy-phenyl) -piperazin-2-on und etherischer Salzsäure.

Ausbeute: 92 % der Theorie,

Schmelzpunkt: 212-217°C (Zers.)

Massenspektrum: M + = 389

Rf-Wert: 0.09 (Kieselgel; Methylenchlorid/Methanol = 9:1)

(2) 1- [4- (2-Methoxycarbonyl-ethyl) -phenyl] -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (2-methoxycarbonyl-ethyl) -phenyl] -piperazin und Trifluoressigsaure.

Ausbeute: 96 % der Theorie, Schmelzpunkt: 253-256°C (Zers.) Massenspektrum: M + = 359

Rf-Wert: 0.36 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(3) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperidin-

4-yl) -acetyl! -piperazin-hydrochlorid

Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - acetyl] -1- (4-methoxycarbonylmethyloxy-phenyl) -piperazin und etherischer Salzsäure.

Ausbeute: 82 % der Theorie,

Schmelzpunkt: 98-99°C

Massenspektrum: M + = 375

Rf-Wert: 0.10 (Kieselgel; Methylenchlorid/Methanol = 9:1)

(4) 1- (4-Methoxycarbonylmethyloxy-phenyl) -2-methyl-4- [2- (pipe- ridin-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (4-methoxycarbonylmethyloxy-phenyl) -2-methyl-pipera¬ zin und Trifluoressigsaure.

Ausbeute: 27 % der Theorie, Schmelzpunkt: 230-231°C (Zers.) Massenspektrum: M + = 375

Rf-Wert: 0.25 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(5) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [2- (piperazin-

4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert .Butyloxycarbonyl-piperazin-4-yl) - ethyl] -1- (4-methoxycarbonylmethyloxy-phenyl) -piperazin und Trifluoressigsaure.

Ausbeute: 93 % der Theorie, Schmelzpunkt: 210-212°C (Sintern ab 160°C) Massenspektrum: M + = 362

Rf-Wert: 0.13 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(6) 1- (4-Methoxycarbonylmethyl-phenyl) -4- [2- (piperazin-4-yl) - ethyll -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert .Butyloxycarbonyl-piperazin-4-yl) - ethyl] -l- (4-methoxycarbonylmethyl-phenyl) -piperazin und Tri¬ fluoressigsaure.

Ausbeute: 93 % der Theorie, Schmelzpunkt: 238-242°C Massenspektrum: M + = 346

Rf-Wert: 0.25 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(7) (S) -1- (4-Ethoxycarbonylmethyloxy-phenyl) -3- (4-methoxy- benzyl) -4- [2- (piperidin-4-yl) -ethyl] -piperazin-2-on-dihydro- chlorid

Hergestellt aus (S) -4- [2- (l-tert .Butyloxycarbonyl-piperidin- 4-yl) -ethyl] -1- (4-ethoxycarbonylmethyloxy-phenyl) -3- (4-meth- oxybenzyl-piperazin-2-on und Trifluoressigsaure. Ausbeute: 77 % der Theorie, Schaum

Schmelzpunkt: 212-217°C (Zers.)

Massenspektrum: M + = 509

Rf-Wert: 0.20 (Kieselgel; Methylenchlorid/Methanol = 9:1)

(8) 1- [2.4-Di- (ethoxycarbonylmethyloxy) -phenyl] -4- [2- (piperi- din-4-γl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [2.4-di- (ethoxycarbonylmethyloxy) -phenyl] -piperazin und Trifluoressigsaure.

(9) 1- [3.5-Di- (ethoxycarbonylmethyloxy) -phenyl] -4- [2- (piperi- din-4-γl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [3.5-di- (ethoxycarbonylmethyloxy) -phenyl] -piperazin und Trifluoressigsaure.

(10) 1- (3-Methoxycarbonylmethyloxy-phenyl) -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (3-ethoxycarbonylmethyloxy-phenyl) -piperazin und etherischer Salzsäure in Methanol.

Ausbeute: 34 % der Theorie, Schmelzpunkt: >270°C Massenspektrum: M + = 361

Rf-Wert: 0.65 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak 2:1:0.25)

(11) 1- (2-Ethoxycarbonyl-benzo-l.3-dioxo-5-yl) -4- [2- (piperi- din-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (2-ethoxycarbonyl-benzo-1.3-dioxo-5-yl) -piperazin und Trifluoressigsaure.

(12) 1- (4-Ethoxycarbonylmethyloxy-phenyl) -4- [2- (piperidin-

4-yl) -ethyl! -piperidin-hydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (4-ethoxycarbonylmethyloxy-phenyl) -piperidin und Tri¬ fluoressigsaure.

(13) 1- (4-Ethoxycarbonylmethylamino-phenyl) -4- [2- (piperidin-

4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (4-ethoxycarbonylmethyloxy-phenyl) -piperazin und Tri¬ fluoressigsaure.

(14) l- (4-Ethoxycarbonylmethyloxy-phenyl) -2- (4-methoxybenzyl) - 4- \2 - (piperidin-4-γl) -ethyll -piperazin-3-on-hydrochlorid Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -l- (4-ethoxycarbonylmethyloxy-phenyl) -2- (4-methoxyben- zyl) -piperazin-3-on und Trifluoressigsaure.

(15) (S) -4- [1- (2-Ethoxycarbonyl-ethyl) -3-isopropyloxycarbo- nylmethyl-2-oxo-piperazinyl] -1- [2- (piperidin-4-yl) -ethyl] - piperidin-hydrochlorid

Hergestellt aus (S) -4- [2- (l-tert.Butyloxycarbonyl-piperidin- 4-yl) -ethyl] -4- [1- (2-ethoxycarbonyl-ethyl) -3-isopropyloxycar- bonylmethyl] -2-oxo-piperazinyl] -piperidin und Trifluoressig¬ saure.

Massenspektrum: (M+H) + = 495

Rf-Wert: 0.10 (Kieselgel; Methylenchlorid/Methanol = 9:1)

(16) (R) -2-Benzyl-l- (4-ethoxycarbonylmethyloxy-phenyl) - 4- f2- (piperidin-4-yl) -ethyll -piperazin-3-on-hydrochlorid Hergestellt aus (R) -2-Benzyl-4- [2- (l-tert.Butyloxycarbonyl- piperidin-4-yl) -ethyl] -1- (4-ethoxycarbonylmethyloxy-phenyl) - piperazin-3-on und Trifluoressigsaure.

(17) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperidin-

4-yl) -methyloxy! -piperidin-hydrochlorid

Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - methyloxy] -1- (4-methoxycarbonylmethyloxy-phenyl) -piperazin und etherischer Salzsäure.

Ausbeute: quantitativ, Schmelzpunkt: 195-198°C Massenspektrum: M + = 362

Rf-Wert: 0.12 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(18) 1- (trans-4-Carboxylmethyloxy-cyclohexyl) -4- [2- (piperidin-

4-yl) -ethyl] -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (trans-4-carboxymethyloxy-cyclohexyl) -piperazin und konz. Salzsäure/Wasser = 1:1.

Ausbeute: quantitativ, Schmelzpunkt: 288-289°C (Zers.) Massenspektrum: (M+H) + = 354

Rf-Wert*. 0.12 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(19) 1- (trans-4-Methoxycarbonylmethyloxy-cyclohexyl) -4- [2- (pi- peridin-4-γl) -ethyl! -piperazin-2-on-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (trans-4-methoxycarbonylmethyloxy-cyclohexyl) -pipera- zin-2-on und etherischer Salzsäure.

Ausbeute: 80 % der Theorie, Schmelzpunkt: 255-256°C (Zers.) Massenspektrum: M + = 381

Rf-Wert: 0.26 (Kieselgel,- Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.25)

(20) 1- (1-Methoxycarbonylmethyl-piperidin-4-yl) -4- [2- (pipe- ridin-4-vl) -ethvll -piperazin-trihvdrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -l- (l-methoxycarbonylmethyl-piperidin-4-yl) -piperazin und methanolischer Salzsäure.

Ausbeute: 93 % der Theorie, Schmelzpunkt: 294-297°C (Zers.) Massenspektrum: M + = 352

Rf-Wert: 0.20 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.25)

(21) 1- [1- (2-Methoxycarbonylethyl) -piperidin-4-yl] -4- [2- (pi- peridin-4-yl) -ethyll -piperazin-trihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [1- (2-methoxycarbonylethyl) -piperidin-4-yl] -piperazin und methanolischer Salzsäure.

Ausbeute: 97 % der Theorie, Schmelzpunkt: 324-326°C (Zers.) Massenspektrum: M + = 366

Rf-Wert: 0.37 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.25)

(22) trans- [1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperi- din-4-yl) -methyloxy! -cyclohexan-hydrochlorid

Hergestellt aus trans-4- [ (l-tert.Butyloxycarbonyl-piperidin- 4-yl) -methyloxy] -1- (4-methoxycarbonylmethyloxy-phenyl) -cyclo¬ hexan und etherischer Salzsäure.

Ausbeute: 86 % der Theorie, Schmelzpunkt: 198-200°C (Zers.) Massenspektrum: M + = 361

Rf-Wert: 0.10 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(23) trans-1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperi- din-4-yl) -N-acetyl-methylamino! -cyclohexan-hydrochlorid

Hergestellt aus trans- [1- (4-tert.Butyloxycarbonylmethyloxy- phenyl) -4- [ (l-tert.butyloxycarbonyl-piperidin-4-yl) -N-acetyl- methylamino] -cyclohexan and etherischer Salzsäure. Ausbeute: quantitativ,

Schmelzpunkt: 90-92°C Massenspektrum: M + = 402

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.25)

(24) cis/trans-l- (4-Methoxycarbonylmethyl) -piperazino) -4- [ (pi- peridin-4-yl) -methyloxy! -cyclohexan-trihydrochlorid

Hergestellt aus cis/trans-4- [ (l-tert.Butyloxycarbonyl-pipe- ridin-4-yl) -methyloxy] -1- (4-methoxycarbonylmethyl) -pipera¬ zino] -cyclohexan und methanolischer Salzsäure.

Ausbeute: 46 % der Theorie, Schmelzpunkt: 218-228°C Massenspektrum: M + = 353

Rf-Wert: 0.35 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(25) cis/trans-l-* [4- (2-Ethoxycarbonylethyl) -piperazino] - 4- r (piperidin-4-yl) -methyloxy! -cyclohexan-trihydrochlorid Hergestellt aus cis/trans-4- [ (l-tert.Butyloxycarbonyl-pipe- ridin-4-yl) .-.ethyloxy] -1- [4- (2-ethoxycarbonylethyl) -pipera¬ zino] -cyclohexan und etherischer Salzsäure.

Ausbeute: 98 % der Theorie, Schmelzpunkt: 285-288°C Massenspektrum: M + = 381

Rf-Wert: 0.20 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(26) cis/trans-l- [4- (l-Methoxycarbonylprop-2-yl) -piperazino] -

4- ' (pjperidin-4-vl) -methvloxvl -cyclohexan-trihydrochlorid

Hergestellt aus cis/trans-4- [ (l-tert.Butyloxycarbonyl-piperi- din-4-yl) -methyloxy] -l- [4- (l-methoxycarbonylprop-2-yl) -pipera¬ zino] -cyclohexan und methanolischer Salzsäure.

Ausbeute: 90 % der Theorie, Schmelzpunkt: 281-285°C Massenspektrum: M + = 381

Rf-Wert: 0.33 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(27) 1- [4- (1-Methoxycarbonylethyloxy) -phenyl] -4- [2- (piperidin-

4-yl) -ethyl] -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (1-methoxycarbonylethyloxy) -phenyl] -piperazin und etherischer Salzsäure.

Ausbeute: 80 % der Theorie, Schmelzpunkt: 265-270°C Massenspektrum: M + = 375

Rf-Wert: 0.25 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(28) 1- [4- (2-Ethoxycarbonylprop-2-yloxy) -phenyl] -4- [2- (piperi- din-4-yl) -ethyl] -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (2-ethoxycarbonylprop-2-yloxy) -phenyl] -piperazin und etherischer Salzsäure.

Ausbeute: 76 % der Theorie, Schmelzpunkt: 260-266°C Massenspektrum: M + = 403

Rf-Wert: 0.35 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo-

Ammoniak = 2:1:0.2)

(29) 1- [4- (1-Methoxycarbonylbenzyl) -phenyl] -4- [2- [piperidin-

4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (1-methoxycarbonylbenzyl) -phenyl] -piperazin und etherischer Salzsäure.

Ausbeute: 76 % der Theorie, Schmelzpunkt: 224-228°C Massenspektrum: (M+H) + = 438

Rf-Wert: 0.27 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(30) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperidin-

4-yl) -methylamino! -piperidin-dihydrochlorid

Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - methylamino] -1- (4-methoxycarbonylmethyloxy-phenyl) -piperidin und etherischer Salzsäure.

(31) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperidin-

4-yl) -N-methyl-methylamino! -piperidin-dihydrochlorid

Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - N-methyl-methylamino] -1- (4-methoxycarbonylmethyloxy-phenyl) - piperidin und etherischer Salzsäure.

(32) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperidin-

4-yl) -N-benzyl-methylamino! -piperidin-dihydrochlorid

Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - N-benzyl-methylamino] -1- (4-methoxycarbonylmethyloxy-phenyl) - piperidin und etherischer Salzsäure.

(33) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperidin-

4-yl) -aminomethyl! -piperidin-dihydrochlorid

Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - aminomethyl] -1- (4-methoxycarbonylmethyloxy-phenyl) -piperidin und etherischer Salzsäure.

(34) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperidin- 4-yl) -N-benzyl-aminomethyl! -piperidin-dihydrochlorid Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - N-benzyl-aminomethyl] -1- (4-methoxycarbonylmethyloxy-phenyl) - piperidin und etherischer Salzsäure.

(35) 4- (4-Methoxycarbonylmethyloxy-phenyl) -1- [2- (piperidin-

4-γl) -ethyll -piperidin-dihydrochlorid

Hergestellt aus 1- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -4- (4-methoxycarbonylmethyloxy-phenyl) -piperidin und etherischer Salzsäure.

(36) 1- [4- (l.2-Dimethoxycarbonyl-ethyloxy) -phenyl] -4- [2- (pipe- ridin-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (1.2-dimethoxycarbonyl-ethyloxy) -phenyl] -piperazin und Trifluoressigsaure.

(37) 1- [4- (l-Methoxycarbonyl-2-phenyl-ethyloxy) -phenyl] - 4- f2- (piperidin-4-yl) -ethyll -piperazin-dihydrochlorid Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (1-methoxycarbonyl-2-phenyl-ethyloxy) -phenyl] -pi¬ perazin und Trifluoressigsaure.

(38) 1- [4- (2- (4-Chlorphenyl) -l-methoxycarbonyl-ethyloxy) -phen- yll -4- " 2- (piperidin-4-γl) -ethyll -piperazin-dihydrochlorid Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (2- (4-chlorphenyl) -1-methoxycarbonyl-ethyloxy) - phenyl] -piperazin und etherische Salzsäure.

(39) l- (4-Ethoxycarbonylmethyloxy-phenyl) -4- [2- (piperidin-

4-yl) -ethyll -piperazin-3-on-hydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (4-ethoxycarbonylmethyloxy-phenyl) -piperazin-3-on und etherischer Salzsäure.

(40) 1- (4-Ethoxycarbonylmethyloxy-phenyl) -4- [2- (piperidin-

4-yl) -ethyll -pjperazin-2.5-dion-hydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (4-ethoxycarbonylmethyloxy-phenyl) -piperazin-2.5-dion und etherischer Salzsäure.

(41) 1- [4- (N-Acetyl-N-methoxycarbonylmethyl-amino) -phenyl] -

4- \2 - (piperidin-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 1- [4- (N-Acetyl-N-methoxycarbonylmethyl-amino) - phenyl] -4- [2- (l-tert.butyloxycarbonyl-piperidin-4-yl) -ethyl] - piperazin.

Ausbeute: 99,1 % der Theorie, Schmelzpunkt: 198-199°C

Massenspektrum: M + = 402

Rf-Wert: 0.25 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0,2)

(42) 1- [4- (N-n-Butylsulfonyl N-methoxycarbonylmethyl-amino) - phenyll -4- " 2- (piperidin-4-yl) -ethyll -piperazin-dihydrochlorid Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (N-n-butylsulfonyl-N-methoxycarbonylmethyl-amino) - phenyl] -piperazin. Ausbeute: 85,2 % der Theorie, Schmelzpunkt: 194-196°C Massenspektrum: M + = 480

Rf-Wert: 0.27 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0,2)

Beispiel 3

4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] - 1- (4-methoxycarbonylmethyloxy-phenyl) -piperazin

Eine Lösung von 4.8 g (0.01 Mol) 1- (4-Methoxycarbonylmethyl- oxy-phenyl) -piperazin-trifluoracetat, 3.0 g (0.01 Mol) 1- [ (l-tert.Butyloxycarbonyl) -piperidin-4-yl] -2-methansulfonyl- oxy-ethan und 3.9 g = 5.2 ml (0.03 Mol) N-Ethyl-diisopropyl¬ amin in 100 ml Methanol wird während 24 Stunden auf Rückfluß- Temperatur erhitzt. Anschließend wird das Methanol unter Vaku¬ um abdestilliert. Der verbleibende Rückstand wird durch Chro¬ matographie über eine Kieselgel-Säule gereinigt, wobei Methy¬ lenchlorid, das 3 % Methanol enthält, als Elutionsmittel ver¬ wendet wird.

Ausbeute: 2.1 g (46.6 % der Theorie), Schmelzpunkt: 197-199°C Massenspektrum: M + = 461 R f -Wert: 0.55 (Kieselgel,- Methylenchlorid/Methanol = 9:1)

Analog Beispiel 3 können folgende Verbindungen hergestellt werden:

(1) 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] - l- (4-ethoxγcarbonylmethyloxy-phenyl) -piperazin-2-on ■

Hergestellt aus 1- (4-Ethoxycarbonylmethyloxy-phenyl) -pipera- zin-2-on-hydrochlorid und l- [ (l-tert .Butyloxycarbonyl) -piperi¬ din-4-yl] -2-methansulfonyloxy-ethan.

Ausbeute: 48 % der Theorie,

Schmelzpunkt: 94-96°C

Rf-Wert: 0.65 (Kieselgel; Methylenchlorid/Methanol = 9:1)

(2) 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- " 4- (2-methoxycarbonyl-ethyl) -phenyll -piperazin

Hergestellt aus 1- [4- (2-Methoxycarbonyl-ethyl) -phenyl] -pipe¬ razin und 1- [ (l-tert .Butyloxycarbonyl) -piperidin-4-yl] -2-me- thansulfonyloxy-ethan.

Ausbeute: 56 % der Theorie, Schmelzpunkt: 92-94°C

Rf-Wert: 0.75 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(3) 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] - 1- f3.4-di- (methoxycarbonylmethyloxy) -phenyll -piperazin Hergestellt aus 1- [3.4-Di- (methoxycarbonylmethyloxy) -phenyl] - piperazin und 1- [ (l-tert .Butyloxycarbonyl) -piperidin-4-yl] -

2-methansulfonyloxy-ethan. Ausbeute: 30 % der Theorie, Harz Massenspektrum: M + = 549

Rf-Wert: 0.70 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo- Ammoniak = 9:1:0.1)

(4) 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] - 1- r4-methoxγcarbonylmethyloxy-phenγl) -2-methyl-piperazin Hergestellt aus l- (4-Methoxycarbonylmethyloxyphenyl) -2-methyl- piperazin-trifluoracetat und 1- [ (l-tert .Butyloxycarbonyl) -pi¬ peridin-4-yl] -2-methansulfonyloxy-ethan.

Ausbeute: 70 % der Theorie, Öl

Massenspektrum: M + = 475

Rf-Wert: 0.55 (Kieselgel,- Methylenchlorid/Methanol = 9:1)

(5) (S) -4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] - 1- (4-ethoxycarbonylmethyloxy-phenyl) -3- (4-methoxybenzyl) -pipe- razin-2-on

Hergestellt aus (S) -1- (4-Ethoxycarbonylmethyloxy-phenyl) -3- (4- methoxybenzyl) -piperazin-2-on und 1- [ (l-tert .Butyloxycarbo¬ nyl) -piperidin-4-yl] -2-methansulfonyloxy-ethan.

Ausbeute: 42 % der Theorie, amorpher Festkörper

Massenspektrum: M + = 609

Rf-Wert: 0.25 (Kieselgel; Essigester/Cyclohexan = 1:1)

(6) 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] - l- \2.4-di- (ethoxycarbonylmethyloxy) -phenyl! -piperazin Hergestellt aus 1- [2.4-Di- (ethoxycarbonylmethyloxy) -phenyl] - piperazin und l- [ (l-tert .Butyloxycarbonyl) -piperidin-4-yl] - 2-methansulfonyloxy-ethan.

(7) 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- ' 3.5-di- (ethoxvcarbonvlmethvloxy) -phenvll -piperazin

Hergestellt aus l- [3.5-Di- (ethoxycarbonylmethyloxy) -phenyl] - piperazin und 1- [ (l-tert .Butyloxycarbonyl) -piperidin-4-yl] - 2-methansulfonyloxy-ethan.

(8) 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- (3-ethoxycarbonylmethγloxy-phenyl) -piperazin

Hergestellt aus 1- (3-Ethoxycarbonylmethyloxy-phenyl) -piperazin und 1- [ (l-tert .Butyloxycarbonyl) -piperidin-4-yl] -2-methansul- fonyloxy-ethan.

Ausbeute: 29 % der Theorie,

Schmelzpunkt: 80-82°C

Massenspektrum: M + = 475

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol = 9:1)

(9) 4- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- (4-ethoxycarbonylmethγlamino-phenyl) -piperazin

Hergestellt aus 1- (4-Ethoxycarbonylmethylamino-phenyl) -pipe¬ razin und 1- [ (l-tert .Butyloxycarbonyl) -piperidin-4-yl] -2-me¬ thansulfonyloxy-ethan.

(10) (S) -1- [2- (l-tert .Butyloxycarbonyl-piperidin-4-yl) -ethyl] - 4- [1- (2-ethoxycarbonyl-ethyl) -3-isopropyloxycarbonylmethyl-

2-oxo-piperazinyll -piperidin

Hergestellt aus (S) -4- [1- (2-Ethoxycarbonylethyl) -3-isopropyl- oxycarbonylmethyl-2-oxo-piperazinyl] -piperidin und 1- [ (1- tert .Butyloxycarbonyl) -piperidin-4-yl] -2-methansulfonyloxy- ethan.

Ausbeute: 26 % der Theorie, amorpher Festkörper

Massenspektrum: M + = 594

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol = 9:1)

(11) 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- (trans-4-methoxycarbonylmethyloxy-cyclohexyl) -piperazin-2-on Hergeteilt aus 1- (trans-4-Methoxycarbonylmethyloxy-cyclo¬ hexyl) -piperazin-2-on und 1- [ (l-tert .Butyloxycarbonyl) -piperi- din-4-yl] -2-methansulfonyloxy-ethan. Ausbeute: 71 % der Theorie, Massenspektrum: M + = 481 Schmelzpunkt: 85-87°C

Rf-Wert: 0.65 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(12) 1- [4- (N-Acetyl-N-methoxycarbonylmethyl-amino) -phenyl] -

4- " 2- (l-tert .butyloxycarbonyl-piperidin-4-yl) -ethyll -piperazin Hergestellt aus 1- [4- (N-Acetyl-N-methoxycarbonylmethyl-amino) - phenyl] -piperazin-hydrochlorid und 1- [ (l-tert .Butyloxycarbo¬ nyl) -piperidin-4-yl] -2-methansulfonyloxy-ethan. Ausbeute: 34.8 % der Theorie, Öl Massenspektrum: M + = 502 Rf-Wert: 0.6 (Kieselgel; Methylenchlorid/Methanol = 9:1)

(13) 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] - 1- [4- (N-n-butylsulfonyl-N-methoxycarbonylmethyl-amino) - phenyll -piperazin

Hergestellt aus 1- [4- (N-n-butylsulfonyl-N-methoxycarbonyl- methyl-amino) -phenyl] -piperazin-hydrochlorid und 1- [ (l-tert. -

Butyloxycarbonyl) -piperidin-4-yl] -2-methansulfonyloxy-ethan.

Ausbeute: 69.9 % der Theorie, Öl

Massenspektrum: M + = 580

Rf-Wert: 0.77 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel 4

4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -acetyl] -1- (4-meth- oxycarbonylmethyloxy-phenyl) -piperazin

Eine Mischung von 1.5 g (0.062 Mol) l-tert.Butyloxycarbonyl- piperidin-4-yl-essigsäure, 2.94 g(0.0062 Mol) 1- (4-Methoxycar- bonylmethyloxy-phenyl) -piperazin-trifluoracetat, 1.9 g = 2.6 ml (0.0185 Mol) Triethylamin und 2.0 g (0.0062 Mol) 2- (lH-Benzotriazol-1-yl) -1.1.3.3-tetramethyluronium-tetra- fluorborat in 100 ml trockenem Dimethylformamid wird über Nacht bei Raumtemperatur gerührt. Anschließend wird unter Va¬ kuum zur Trockne eingeengt und der verbleibende Rückstand zwischen gesättigter, wäßriger Natriumhydrogenkarbont-Lösung und Essigester verteilt und die wäßrige Phase noch zweimal mit Essigester extrahiert. Die vereinigten organischen Extrakte werden getrocknet und unter Vakuum zur Trockne eingeengt. Der Rückstand wird mittels Chromatographie über eine Kieselgel- Säule gereinigt, wobei Methylenchlorid, das 3 % Methanol ent¬ hält als Elutionsmittel verwendet wird. Ausbeute: 1.3 g (44 % der Theorie), amorpher Festkörper Rf-Wert: 0.40 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Analog Beispiel 4 können folgende Verbindungen hergestellt werden:

(1) 4- [4- (1-Benzyl-piperazinyl) -acetyl] -1- (4-methoxycar- bonylmethyloxy-phenyl) -piperazin

Hergestellt aus 1- (4-Methoxycarbonylmethyloxy-phenyl) -pipe- razin-trifluoracetat und l-Benzyl-4-carboxymethyl-piperazin. Ausbeute: 45 % der Theorie,

Schmelzpunkt: 128-130°C Massenspektrum: M + = 466

Rf-Wert: 0.75 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(2) 4- [4- (1-Benzyl-piperazinyl) -carbonylmethyl] -1- (4-methoxy- carbonylmethyloxy-phenyl) -piperazin

Hergestellt aus 4-Carboxymethyl-1- (4-methoxycarbonylmethyloxy- phenyl) -piperazin und 1-Benzyl-piperazin.

Ausbeute: 81 % der Theorie,

Schmelzpunkt: 95-96°C

Massenspektrum: M + = 466

Rf-Wert: 0.40 (Kieselgel; Methylenchlorid/Methanol= 9:1)

Beispiel 5

1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (piperidin-4-yl) - aminocarbonyl] -piperazin-hydrochlorid

2.0 g (4.3 mMol) 4- [ (l-Benzyl-piperidin-4-yl) -aminocarbonyl] - 1- (4-methoxycarbonylmethyloxy-phenyl) -piperazin werden in Gegenwart von 4.3 ml IN Salzsäure über 0.5 g Palladium auf Kohle (10%ig) in 50 ml Methanol bei Raumtemperatur und unter einem Wasserstoffdruck von 50 psi erschöpfend hydriert. Der Katalysator wird abfiltriert, das Filtrat unter Vakuum zur Trockne eingeengt und der Rückstand mit Ether verrieben und abgesaugt .

Ausbeute: 1.5 g (84.8 % der Theorie) , Schmelzpunkt: 90-92°C Massenspektrum: M + = 376

Rf-Wert: 0.20 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

Analog Beispiel 5 können folgende Verbindungen hergestellt werden:

(1) l- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (4-piperazinyl) - acetyl! -piperazin-dihydrochlorid

Hergestellt aus 4- [4- (1-Benzyl-piperazinyl) -acetyl] -1- (4-meth- oxycarbonylmethyloxy-phenyl) -piperazin.

Ausbeute: 96 % der Theorie, Schmelzpunkt: 70-72°C Massenspektrum: M + = 376

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(2) 1- (4-Methoxycarbonylmethyloxy-phenyl) -4- [ (4-piperazinyl) - carbonylmethyl! -piperazin-dihydrochlorid

Hergestellt aus 4- [4- (1-Benzyl-piperazinyl) -carbonylmethyl] - 1- (4-methoxycarbonylmethyloxy-phenyl) -piperazin.

Ausbeute: 96 % der Theorie, Schmelzpunkt: 53-58°C Massenspektrum: M + = 376

Rf-Wert: 0.10 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(3) l- (4-tert.Butyloxycarbonylmethyloxy-phenyl) -4- [ (piperidin-

4-yl) -oxycarbonyl1 -piperazin

Hergestellt aus 4- [ (i-Benzyl-piperidin-4-yl) -oxycarbonyl] -

1- (4-tert.butyloxycarbonylmethyloxy-phenyl) -piperazin.

Beispiel 6

4- [ (l-Benzyl-piperidin-4-yl) -aminocarbonyl] -1- (4-methoxycarbo¬ nylmethyloxy-phenyl) -piperazin

Zu einer Lösung von 1.3 g (0.008 Mol) 1.1' -Carbonyl-di- (1.2.4- triazol) in 100 ml trockenem Dimethylformamid gibt man bei 0°C 1.5 g (0.008 Mol) l-Benzyl-4-amino-piperidin und rührt 30 Mi-

nuten lang bei 0°C und 1 Stunde bei Raumtemperatur. Anschlie¬ ßend gibt man 3.8 g (0.008 Mol) 1- (4-Methoxycarbonylmethyloxy- phenyl) -piperazin-trifluoracetat und 2.4 g = 3.3 ml (0.024 Mol) Triethylamin zu, erhitzt während 2 Stunden auf 80°C und rührt noch weitere 16 Stunden bei Raumtemperatur. Die Lösung wird unter Vakuum zur Trockne eingeengt und der Rück¬ stand zwischen gesättigter Natriumhydrogencarbonat-Lösung und Methylenchlorid verteilt. Die wäßrige Phase wird noch zweimal mit Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden getrocknet und unter Vakuum zur Trockne einge¬ engt. Der Rückstand wird durch Chromatographie über eine Kie¬ selgel-Säule gereinigt, wobei Methylenchlorid, das 3 % Metha¬ nol enthält als Elutionsmittel verwendet wird. Ausbeute: 2.0 g (54 % der Theorie), Schmelzpunkt: 140-141°C Massenspektrum: M + = 466 Rf-Wert: 0.40 (Kieselgel; Methylenchlorid/Methanol = 9:1)

Beispiel 7

l- (4-Carboxymethyloxy-phenyl) -4- [ (4-piperazinyl) -acetyl] - piperazin

Zu einer Lösung von 0.6 g (1.3 mMol) 1- (4-Methoxycarbonyl- methyloxyphenyl) -4- [ (4-piperazinyl) -acetyl] -piperazin-di¬ hydrochlorid in 8 ml Tetrahydrofuran und 4 ml Wasser gibt man 5.3 ml einer IN Natronlauge und läßt bei Raumtemperatur 3 Stunden lang stehen. Nach dieser Zeit gibt man 5.3 ml IN Salzsäure zu und engt die Lösung unter Vakuum zur Trockne ein. Der Rückstand wird dreimal mit Aceton versetzt und jedes¬ mal zur Trockne eingeengt. Der verbleibende Rückstand wird mit einer Mischung aus Methylenchlorid/Methanol = 1:1 verrührt. Die ausgeschiedenen anorganischen Salze werden abgesaugt. Die Mutterlauge wird unter Vakuum zur Trockne eingeengt. Ausbeute: 52 % der Theorie, amorpher Schaum Massenspektrum: (M+H) + = 363

Rf-Wert.* 0.22 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

Analog Beispiel 7 können folgende Verbindungen hergestellt wreden:

(1) 1- (trans-4-Carboxymethyloxy-cyclohexyl) -4- [2- (piperidin-

4-yl) -ethyll -piperazin-2-on

Hergestellt aus 1- (trans-4-Methoxycarbonylmethyloxy-cyclo¬ hexyl) -4- [2- (piperidin-4-yl) -ethyl] -piperazin-2-on-dihydro¬ chlorid.

Ausbeute: quantitativ, Schmelzpunkt: 305-307°C (Zers.) Massenspektrum: (M+H) + = 368

Rf-Wert: 0.15 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

(2) 1- (1-Carboxymethyl-piperidin-4-yl) -4- [2- (piperidin-4-yl) - ethyl! -piperazin

Hergestellt aus 1- (l-Methoxycarbonylmethyl-piperidin-4-yl) - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-trihydrochorid. Ausbeute: quantitativ,

Schmelzpunkt: 262-264°C (Zers.) Massenspektrum: (M+H) + = 339

Rf-Wert: 0.065 (Kieselgel; Methylenchlorid/Methanol/konz.

Ammoniak = 2:1:0.25)

(3) cis/trans-l- [4- (2-Carboxyethyl) -piperazino] -4- [ (piperidin-

4-yl) -methyloxy! -cyclohexan-trihydrochlorid

Hergestellt aus cis/trans-l- [4- (2-Ethoxycarbonylethyl) -pipe¬ razino] -4- [ (4-piperidin-4-yl) -methyloxy]cyclohexan-trihydro¬ chlorid und Lithiumhydroxid.

Ausbeute: 58 % der Theorie, Schmelzpunkt: 248-256°C Massenspektrum: (M+H) + = 354

R f -Wert: 0.16 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.2)

(4) 1- [4- (1-Carboxyethyloxy) -phenyl] -4- [2- (piperidin-4-yl) - ethyll -piperazin

Hergestellt aus 1- [4- (1-Methoxycarbonylethyloxy) -phenyl] -

4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid und Lithiumhydroxid. Ausbeute: 79 % der Theorie, Schmelzpunkt: 278-288°C Massenspektrum: M + = 361

Rf-Wert: 0.17 (Kieselgel,* Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.2)

(5) 1- [4- (2-Carboxyprop-2-yloxy) -phenyl] -4- [2- (piperidin-

4-yl) -ethyll -piperazin

Hergestellt aus 1- [4- (2-Ethoxycarbonylprop-2-yloxy) -phenyl] - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid und Lithiumhydroxid.

Ausbeute: 61 % der Theorie, Schmelzpunkt: 262-265°C

Massenspektrum: M + = 375

Rf-Wert: 0.30 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 1:1:0.2)

(6) 1- [4- (l-Carboxybenzyloxy) -phenyl] -4- [2- (piperidin-4-yl) - ethyll -piperazin-dihydrochlorid

Hergestellt aus l- [4- (1-Methoxycarbonylbenzyloxy) -phenyl] - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid und Lithiumhydroxid.

Ausbeute: 89 % der Theorie, Schmelzpunkt: >250°C Massenspektrum: M + = 423

Rf-Wert: 0.12 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.2)

94

Beispiel 8

4- [2- (l-tert.Butyloxycarbonyl-piperazin-4-yl) -ethyl] -

1- (4-methoxycarbonylmethyloxy-phenyl) -piperazin

Eine Lösung von 1.63 g (3.4 mMol) 1- (4-Methoxycarbonylmethyl- oxy-phenyl) -piperazin-trifluoracetat, 1.0 g (3.4 mMol) 2- (l-tert.Butyloxycarbonyl-piperazin-4-yl) -ethylbromid und 1.32 g = 1.8 ml (10.2 mMol) N-Ethyl-diisopropylamin in 5 ml Methanol wird 24 Stunden lang bei Raumtemperatur stehen gelas¬ sen. Das Methanol wird unter Vakuum abdestilliert und der Rückstand mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Methylenchlorid/Methanol/konz. Ammoniak = 99:1:0.1 als Elutionsmittel verwendet wird. Ausbeute: 1.6 g (quantitativ) Öl, Massenspektrum: M + = 462

Rf-Wert: 0.55 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Analog Beispiel 8 kann folgende Verbindung hergestellt werden:

(1) 4- [2- (l-tert.Butyloxycarbonyl-piperazin-4-yl) -ethyl] -

1- (4-methoxycarbonylmethyl-phenyl) -piperazin

Hergestellt aus 1- (4-Methoxycarbonylmethyl-phenyl) -piperazin- hydrochlorid und 2- (l-tert.Butyloxycarbonyl-piperazin-4-yl) - ethylbromid.

Ausbeute: 45 % der Theorie, Schmelzpunkt: 161-180°C (Zers.) Massenspektrum: M + = 446

Rf-Wert: 0.37 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Beispiel 9

1- [3.4-Di- (ethoxycarbonylmethyloxy) -phenyl] -4- [2- (piperidin- 4-yl) -ethyl] -piperazin-dihydrochlorid

In eine Suspension von 200 mg (0.405 mMol) 1- [3.4-Di- (carboxy¬ methyloxy) -phenyl] -4- [2- (piperidin-4-yl) -ethyl] -piperidin-di¬ hydrochlorid in 50 ml absolutem Ethanol wird unter Rühren und Kühlen mit Eis Chlorwasserstoff bis zur Sättigung eingeleitet, wobei eine klare Lösung entsteht . Diese Lösung wird über Nacht bei Raumtemperatur stehen gelassen und dann unter Vakuum zur Trockne eingeengt . Der Rückstand wird mit Aceton verrieben und abgesaugt .

Ausbeute: 0.2 g (83 % der Theorie, Schmelzpunkt: 161-163°C (Zers.) Massenspektrum: M + = 477

Rf-Wert: 0.35 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

Analog Beispiel 9 können folgende Verbindungen hergestellt werden:

(1) 1- [3.4-Di- (isobutyloxycarbonylmethyloxy) -phenyl] -4- [2-pi- peridin-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus l- [3.4-Di- (carboxymethyloxy) -phenyl] -4- [2- (pi¬ peridin-4-yl) -ethyl] -piperazin-dihydrochlorid und Isobutanol . Schmelzpunkt: 156-158°C (Zers.)

Massenspektrum: M + = 533

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(2) l-[3.4-Di- (cyclohexyloxycarbonylmethy1oxy) -phenyl] - 4- f2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid Hergestellt aus 1- [3.4-Di- (carboxymethyloxy) -phenyl] -4- [2- (pi- peridin-4-yl) -ethyl] -piperazin-dihydrochlorid und Cyclohexa¬ nol .

Schmelzpunkt: 148-152°C

Massenspektrum: M + = 585

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

(3) 1- [3.4-Di- [ (cyclopentyloxycarbonylmethyloxy) -phenyl] -

4- \2 - (piperidin-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 1- [3.4-Di- [ (carboxymethyloxy) -phenyl] - 4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid und Cyclopentanol. Schmelzpunkt: 88-90°C Massenspektrum: M + = 557

Rf-Wert: 0.5 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.25)

Beispiel 10

1- (4-Isobutyloxycarbonylmethyloxy-phenyl) -4- [2- (piperidin- 4-yl) -ethyl] -piperazin

Zu einer Suspension von 0.6 g (1.4 mMol) 1- (4-Carboxymethyl- oxy-phenyl) -4- [2- (piperidin-4-yl) -ethyl] -piperazin-dihydro¬ chlorid in 30 ml Isobutanol gibt man 20 ml etherischer Salz¬ säure und destilliert den Ether bei 50°C ab. Anschließend er¬ hitzt man während 12 Stunden auf 130°C. Die so entstandene Lö¬ sung wird abgekühlt und mit Ether verdünnt. Der ausgeschiedene Festkörper wird abgesaugt und mittels Chromatographie über eine Kieselgel-Säule gereinigt, wobei Methylenchlorid/Metha¬ nol/konz. Ammoniak = 4:1:0.2 als Elutionsmittel verwendet wird.

Ausbeute: 250 mg (43.4 % der Theorie), Schmelzpunkt: 137-139°C Massenspektrum: M + = 403

R f -Wert: 0.30 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

Analog Beispiel 10 können folgende Verbindungen hergestellt werden:

(1) 1- (4-Cyclohexyloxycarbonylmethyloxy-phenyl) -4- [2 - (piperi- din-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin- 4-yl) -ethyl] -piperazin-dihydrochlorid und Cyclohexanol bei 180°C.

Ausbeute: 42 % der Theorie, Schmelzpunkt: 248-250°C Massenspektrum: M + = 429

Rf-Wert: 0.40 (Reversed Phase Platte RP 18; Methanol/50%ige

Kochsalz-Lösung = 3:2)

(2) 1- (4-Cyclopentyloxycarbonylmethyloxy-phenyl) -4- [2- (piperi- din-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus l- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin- 4-yl) -ethyl] -piperazin-dihydrochlorid und Cyclopentanol .

(3) 1- (4-n-Butyloxycarbonylmethyloxy-phenyl) -4- [2- (piperidin-

4-yl) -ethyl! -piperazin-dihydrochlorid

Hergestellt aus 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin- 4-yl) -ethyl] -piperazin-dihydrochlorid und n-Butanol.

(4) 1- (4-Cycloheptyloxycarbonylmethyloxy-phenyl) -4- [2- (piperi- din-4-yl) -ethyll -piperazin-dihydrochlorid

Hergestellt aus 1- (4-Carboxymethyloxy-phenyl) -4- [2- (piperidin- 4-yl) -ethyl] -piperazin-dihydrochlorid und Cycloheptanol .

(5) 1- (4-Cyclohexyloxycarbonylmethyloxy-phenyl) -2-methyl- 4- \ 2 - (piperidin-4-yl) -ethyll -piperazin-dihydrochlorid Hergestellt aus 1- (4-Carboxymethyloxy-phenyl) -2-methyl- 4- [2-piperidin-4-yl) -ethyl] -piperazin-dihydrochlorid und Cyclohexanol .

Ausbeute: 63 % der Theorie, amorpher Festkörper Massenspektrum: M + = 443

Rf-Wert: 0.27 (Reversed Phase Platte RP18; Methanol/5%ige

Kochsalzlösung = 3:2)

Beispiel 11

trans-1- (4-tert.Butyloxycarbonylmethyloxy-phenyl) -4- [ (l-tert. - butyloxycarbonyl-piperidin-4-yl) -methylamino] -cyclohexan

Zu einer Lösung von 8.85 g (15 mMol) l- (4-tert.Butyloxycar- bonylmethyloxy-phenyl) -4- [ (l-tert.butyloxycarbonyl-piperidin- 4-yl) -methylenimino] -cyclohexan in 40 ml trockenem Methanol gibt man bei -18°C unter Rühren portionsweise 0.23 g (6.1 mMol) Natriumborhydrid und rührt weitere 2.5 Stunden bei -15°C und anschließend 1 Tag bei Raumtemperatur. Man engt die Lösung unter Vakuum zur Trockne ein, verteilt den Rückstand zwischen Wasser und Essigester, trocknet die organische Phase und dampft sie unter Vakuum zur Trockne ein. Der verbleibende Rückstand wird mittels Chromatographie über eine Kieselgel- Säule gereinigt, wobei Methylenchlorid/Methanol/konz. Ammoniak = 9:1:0.1 als Elutionsmittel verwendet wird. Ausbeute: 3.88 g (44 % der Theorie), Scmelzpunkt: 64-67°C Massenspektrum: M + = 502

R f -Wert: 0.47 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Beispiel 12

trans-1- (4-tert.Butyloxycarbonylmethyloxy-phenyl) -4- [ (l-tert.- butyloxycarbonyl-piperidin-4-yl) -N-methyl-methylamino] -cyclo¬ hexan

Zu einer Lösung von 502 mg (1 mMol) trans-1- (4-tert.Butyloxy- carbonylmethyloxy-phenyl) -4- [ (l-tert.butyloxycarbonyl-piperi¬ din-4-yl) -methylamino] -cyclohexan in 20 ml Methanol gibt man bei Raumtemperatur und unter Rühren 160 ml (2 mMol) Formalin- Lösung (37%ig) und 135 mg (2 mMol) Natriumcyanborhydrid, rührt 1 Stunde lang weiter und dampft unter Vakuum zur Trockne ein. Der Rückstand wird mittels Chromatographie über eine Kiesel¬ gel-Säule gereinigt, wobei Methylenchlorid/Methanol/konz. Am-

moniak = 19:1:0.1 und 9:1:0.1 als Elutionsmittel verwendet wird.

Ausbeute: 370 mg (72 % der Theorie), Öl Massenspektrum: M + = 516

Rf-Wert: 0.60 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Analog Beispiel 12 können folgende Verbindungen hergestellt werden:

(1) 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- (trans-4-carboxymethyloxy-cyclohexyl) -piperazin

Hergestellt aus 450 mg (2.6 mMol) 4-Carboxymethyloxy-cyclo¬ hexanon, 770 mg (2.6 mMol) l- [2- (l-tert.Butyloxycarbonyl- piperidin-4-yl) -ethyl] -piperazin, 0.15 ml (2.6 mMol) Essig¬ säure und 260 mg (3.9 mMol) Natriumcyanborhydrid in 30 ml Te¬ trahydrofuran.

Ausbeute: 28 % der Theorie, Schaum

Rf-Wert: 0.22 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.25)

(2) trans-l- (4-tert.Butyloxycarbonylmethyloxy-piperidino) -

4- [ (l-tert.butyloxycarbonyl-piperidin-4-yl) -methyloxy] -cyclo- hexan

Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - methyloxy] -cyclohexanon, 4-tert.Butyloxycarbonylmethyloxy- piperidin und Natriumtriacetoxyborhydrid. Ausbeute: 9 % der Theorie,

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(3) cis/trans-4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - methyloxyl -1- (4-methoxycarbonylmethyl-piperazino) -cyclohexan Hergestellt aus 4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) - methyloxy] -cyclohexanon, 1-Methyloxycarbonylmethyl-piperazin und Natriumtriacetoxyborhydrid.

Ausbeute: 18 % der Theorie, Öl

Rf-Wert: 0.90 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.2)

(4) cis/trans-4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -me- thyloxyl -1- f4- (2-ethoxycarbonylethγl) -piperazinol -cyclohexan Hergestellt aus 4- [ (l-tert .Butyloxycarbonyl-piperidin-4-yl) - methyloxy] -cyclohexanon, 1- (2-Ethoxycarbonylethyl) -piperazin und Natriumtriacetoxyborhydrid.

Ausbeute: 85 % der Theorie, Öl Massenspektrum: M + = 481

Rf-Wert: 0.45 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(5) cis/trans-4- ( [l-tert .Butyloxycarbonyl-piperidin-4-yl) - methyloxy] -1- [4- (l-methoxycarbonylprop-2-yl) -piperazino] - cyclohexan

Hergestellt aus 4- [ (l-tert .Butyloxycarbonyl-piperidin-4-yl) - methyloxy] -cyclohexanon, 1- (l-Methoxycarbonylprop-2-yl) -pi¬ perazin und Natriumcyanborhydrid.

Ausbeute: 13 % der Theorie, Schmelzpunkt: 70-72°C

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Beispiel 13

4- [ (l-tert .Butyloxycarbonyl-piperidin-4-yl) -methyloxy] - 1- (4-methoxycarbonylmethyloxy-phenyl) -piperidin

Hergestellt aus 400 mg (l mMol) 4- [ (l-tert .Butyloxycarbonyl- piperidin-4-yl) -methyloxy] -1- (4-hydroxyphenyl) -piperidin,

0.1 ml (1 mMol) Bromessigsäuremethylester und 166 mg

(1.2 mMol) Kaliumcarbonat und 10 ml Dimethylformamid analog

Beispiel Xllla.

Ausbeute: 340 mg (72 % der Theorie) ,

Scmelzpunkt: 77-79°C

Massenspektrum: M + = 462

R f -Wert: 0.60 (Kieselgel; Methylenchlorid/Methanol = 15:1)

Analog Beispiel 13 können folgende Verbindungen hergestellt werden:

(1) 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- (l-methoxycarbonylmethyl-piperidin-4-yl) -piperazin

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (piperidin-4-yl) -piperazin und Bromessigsäuremethyl- ester.

Ausbeute: 85 % der Theorie, Scmelzpunkt: 71-74°C Massenspektrum: M + = 452

Rf-Wert: 0.50 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

(2) trans-4- [ (l-tert.Butyloxycarbonyl-piperidin-4-yl) -me- thyloxy! -1- (4-methoxycarbonylmethyloxγ-phenyl) -cyclohexan Hergestellt aus trans-4- [ (l-tert.Butyloxycarbonyl-piperidin- 4-yl) -methyloxy] -1- (4-hydroxyphenyl)-cyclohexan und Bromessig¬ säuremethylester.

Ausbeute: 82 % der Theorie,

Scmelzpunkt: 70-72°C

Massenspektrum: M + = 461

Rf-Wert: 0.55 (Kieselgel; Methylenchlorid/Methanol = 15:1)

(3) 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- f4- (1-methoxycarbonylethyloχy) -phenyll -piperazin

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (4-hydroxyphenyl) -piperazin und 2-Brom-propionsäure- methylester.

Ausbeute: 90 % der Theorie, Öl

Rf-Wert: 0.30 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 2:1:0.1)

(4) 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- " 4- (2-ethoxycarbonylpropyloχy) -phenyl! -piperazin

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) ■ ethyl] -1- (4-hydroxyphenyl) -piperazin und 2-Brom-isobutter- säureethylester.

Ausbeute: 47 % der Theorie, Öl

Rf-Wert: 0.60 (Kieselgel; Methylenchlorid/Methanol/ = 20:1)

(5) 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] -

1- ' 4- (1-methoxycarbonylbenzyl) -phenyl! -piperazin

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- (4-hydroxyphenyl) -piperazin und α-Brom-phenylessig- säuremethyleε_er. Ausbeute: 93 % der Theorie, Öl

Rf-Wert: 0.23 (Kieselgel,- Methylenchlorid/Methanol/konz. Ammo¬ niak = 20:1:0.1)

Beispiel 14

4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) -ethyl] - 1- [1- (2-methoxycarbonylethyl) -piperidin-4-yl] -piperazin

Eine Lösung von 730 mg (1.9 mMol) 4- [2- (l-tert.Butyloxycarbo- nyl-piperidin-4-yl) -ethyl] -1- (piperidin-4-yl) -piperazin und 0.18 ml (2 mMol) Acrylsäuremethylester in 10 ml Methanol wird über Nacht bei Raumtemperatur stehen gelassen und dann unter Vakuum zur Trockne eingeengt. Der Rückstand wird mittels Chro¬ matographie über eine Kieselgel-Säule gereinigt, wobei Methy¬ lenchlorid/Methanol/konz. Ammoniak = 19:1:0.1 als Elutionsmit¬ tel verwendet wird.

Ausbeute: 840 mg (94 % der Theorie), Scmelzpunkt: 95-97°C

Rf-Wert: 0.55 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Beispiel 15

trans- [1- (4-tert.Butyloxycarbonylmethyloxyphenyl) -4- [ (l-tert. - butyloxycarbonyl-piperidin-4-yl) -N-acetyl-methylamino] -cyclo¬ hexan

Zu einer Lösung von 740 mg (1.5 mMol) trans-1- (4-tert.Butyl- oxycarbonylmethyloxy-phenyl) -4- [ (l-tert.butyloxycarbonyl-pipe- ridin-4-yl) -methylamino] -cyclohexan und 0.3 ml (2.1 mMol) Tri¬ ethylamin in 50 ml Methylenchlorid tropft man unter Rühren und bei -10°C eine Lösung von 0.14 ml (2.0 mMol) Acetylchlorid in 5 ml Methylenchlorid und läßt über Nacht bei Raumtemperatur stehen. Man wäscht mit Wasser und engt die organische Phase unter Vakuum zur Trockne ein. Der Rückstand wird mittels Chro¬ matographie über eine Kieselgel-Säule gereinigt, wobei Methy¬ lenchlorid/Methanol = 30:1 als Elutionsmittel verwendet wird. Ausbeute: 690 mg (86 % der Theorie), Harz Massenspekktrum: M + = 544

Rf-Wert: 0.65 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 9:1:0.1)

Beispiel 16

1- [4- (l-Methoxycarbonyl-3-hydroxy-propyloxy) -phenyl] -4- [2- (pi- peridin-4-yl) -ethyl] -piperazin-dihydrochlorid

Hergestellt aus 4- [2- (l-tert.Butyloxycarbonyl-piperidin-4-yl) - ethyl] -1- [4- (2-oxo-tetrahydrofuran-3-yl-oxy) -phenyl] -piperazin und etherischer Salzsäure in Methanol. Das Produkt ist mit dem entsprechenden Lacton verunreinigt. Schmelzpunkt: ab 220°C (Zers.) Massenspektrum: (M+H) + = 406

Rf-Wert: 0.22 (Kieselgel; Methylenchlorid/Methanol/konz. Ammo¬ niak = 4:1:0.2)

Beispiel 17

Trockenampulle mit 2,5 mg Wirkstoff pro 1 ml

Zusammensetzung:

Wirkstoff 2,5 mg

Mannitol 50,0 mg

Wasser für Injektionszwecke ad 1,0 ml

Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet. Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

Beispiel 18

Trockenampulle mit 35 mg Wirkstoff pro 2 ml

Zusammensetzung:

Wirkstoff 35, 0 mg

Mannitol 100,0 mg

Wasser für Injektionszwecke ad 2,0 ml

Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet.

Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

Beispiel 19

Tablette mit 50 mg Wirkstoff

Zusammensetzung:

(1) Wirkstoff 50,0 mg

(2) Milchzucker 98,0 mg

(3) Maisstärke 50,0 mg

(4) Polyvinylpyrrolidon 15,0 mg

(5) Magnesiumstearat 2.0 mg

215, 0 mg

Herstellung:

(1) , (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zuge¬ mischt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe. Durchmesser der Tabletten: 9 mm.

Beispiel 20

Tablette mit 350 mg Wirkstoff

Zusammensetzung:

(1) Wirkstoff 350,0 mg

(2) Milchzucker 136,0 mg

(3) Maisstärke 80,0 mg

(4) Polyvinylpyrrolidon 30,0 mg

(5) Magnesiumstearat 4.0 mg

600, 0 mg

Herstellung:

(1) , (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zuge¬ mischt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe. Durchmesser der Tabletten: 12 mm.

Beispiel 21

Kapseln mit 50 mg Wirkstoff

Zusammensetzung:

(1) Wirkstoff 50,0 mg

(2) Maisstärke getrocknet 58,0 mg

(3) Milchzucker pulverisiert 50,0 mg

(4) Magnesiumstearat 2.0 mg

160, 0 mg

Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 3 abgefüllt.

Beispiel 22

Kapseln mit 350 mg Wirkstoff

Zusammensetzung:

(1) Wirkstoff 350,0 mg

(2) Maisstärke getrocknet 46,0 mg

(3 ) Milchzucker pulverisiert 30 , 0 mg

( 4 ) Magnesiumstearat 4 , 0 mg

430 , 0 mg

Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 0 abgefüllt.