Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CARDIOQVARK HEART MONITOR
Document Type and Number:
WIPO Patent Application WO/2017/111655
Kind Code:
A1
Abstract:
The invention relates to the field of medicine and is directed at increasing the precision and reliability of measurements and the accuracy of information obtained regarding heart activity, and at a simplified design. The technical result is achieved in a device for producing a cardiogram, said device containing, installed on a housing, capacitive electric field sensors, a potentiometer connected to same, a first cascade of a differential amplifier having a common mode interference filter, which receives a signal from the capacitive electric field sensors and which is connected to a second cascade of a differential amplifier having a common mode interference filter and a analog to digital converter driver, which transmits signals in parallel to first and second inputs of a two-channel analog to digital converter (ADC) having a common mode interference filter, a trigger for controlling the reception of data from the ADC to a controller which is connected to a DC power supply having interference suppression filters, a cryptoprocessor, a USB port logical switching unit, and a USB port splitter which is connected to the DC power supply and to a USB port overvoltage protection unit, and which receives signals from a power supply monitor which is connected to the USB port logical switching unit.

Inventors:
EZHKOV ALEXANDER VIKTOROVICH (RU)
BUTKEVICH VLADISLAV HENRYKOVICH (RU)
USANOV VLADIMIR ALEKSANDROVICH (RU)
Application Number:
PCT/RU2016/000282
Publication Date:
June 29, 2017
Filing Date:
May 11, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EZHKOV ALEXANDER VIKTOROVICH (RU)
International Classes:
A61B5/0402; A61B5/0408
Foreign References:
US20150087959A12015-03-26
US20140336519A12014-11-13
US20150005608A12015-01-01
Attorney, Agent or Firm:
KUPTSOVA, Elena Vyacheslavovna (RU)
Download PDF:
Claims:
Формула изобретения

1. Устройство для получения кардиограммы, характеризующееся тем, что содержит установленные на корпусе емкостные датчики электрического поля, связанный с ними потенциометр, первый каскад дифференциального усилителя с фильтром синфазных помех, получающий сигнал от емкостных датчиков электрического поля и связанный со вторым каскадом дифференциального усилителя с фильтром синфазных помех и драйвером аналого-цифрового преобразователя, передающим параллельно сигналы на первый и второй входы двухканального аналого-цифрового преобразователя (АЦП) с фильтром синфазных помех, триггер управления приемом данных с АЦП на контроллер, связанный с источником питания постоянного тока с помехоподавляющими фильтрами, криптопроцессором, логическим блоком коммутации порта USB и разветвителем порта USB, соединенным с источником питания постоянного тока и блоком защиты от перенапряжений порта USB, и получающий сигналы с монитора питания, связанного с логическим блоком коммутации порта USB.

2. Устройство для получения кардиограммы по п. 1 , характеризующееся тем, что потенциометр выполнен цифровым двухканальным.

3. Устройство для получения кардиограммы по п. 1 , характеризующееся тем, что в качестве АЦП применен стереофонический аудио кодер-декодер, содержащий микрофонный вход и цифровые интерфейсные шины.

4. Устройство для получения кардиограммы по п. 1 , характеризующееся тем, что получают кардиограмму по стандартному кардиологическому отведению I.

5. Устройство для получения кардиограммы по п. 1 , характеризующееся тем, что емкостные датчики электрического поля представляют собой емкостные приемники переменного электрического поля со встроенными компактными электродами, исключающими гальваническую связь пользователя с устройством.

6. Устройство для получения кардиограммы по п. 1 , характеризующееся тем, что источник питания постоянного тока выполнен программно- управляемым, с функцией стабилизации и преобразования однополярного питающего напряжения в двухполярное с возможностью частичного отключения потребителей в режиме пониженного энергопотребления.

Description:
Схема кардиомонитора CardioQVARK

Изобретение относится к области медицины, в частности к устройству для получения кардиограммы по стандартному кардиологическому отведению I, и предназначено для снятия кардиограммы с помощью устройств, имеющих интерфейс USB.

В качестве наиболее близкого аналога (прототипа) заявленного изобретения можно принять наручные кардиомонитор-часы для усиления электрокардиосигнала, в которых применяется недифференциальный усилитель, а для съема электрокардиосигнала и подачи его на вход усилителя используются только два электрода: один, ближний, установлен на корпусе часов, а другой, удаленный электрод, предназначен для установления на поверхности грудной клетки, которые соединены с входами усилителя электрокардиосигнала кабелем, выполненным как витая пара проводов в изоляции, при этом один из проводов витой пары соединен одним концом с первым входом усилителя и вторым концом с удаленным электродом; второй провод витой пары одним концом подключен к ближнему электроду, а второй конец оставлен свободным. Для визуализации результатов анализа электрокардиосигнала используется матричный жидкокристаллический индикатор, позволяющий выводить на экран не только цифровые данные, но и текстовые сообщения. Для передачи электрокардиограммы для анализа в медицинское учреждение через компьютерные носители или через сеть Интернет в кардиомониторе содержится инфракрасный порт, работающий по стандартному протоколу IrDA (RU 2308883, 27.10.2007).

Недостатками указанного выше устройства являются недифференциальная схема усиления электрокардиосигнала, которая не позволяет эффективно подавлять синфазную помеху; наличие жгута проводов - кабеля пациента с выносным электродом, нивелирующего преимущества компактного основного устройства; отсутствие возможности оперативно установить электроды и начать регистрацию электрокардиосигнала при потребности в экспресс-анализе; необходимость обеспечения надежного электрического контакта электрода с кожей пациента, что с одной стороны требует обеспечения гальванической развязки на стороне основного устройства, а с другой - предполагает принятие специальных мер для обеспечения постоянства сопротивления перехода «кожа-электрод» на всем периоде измерений, например, контактных гелей и применения гипоаллергенных материалов или покрытий электрода.

Задача, на решение которой направлено предложенное изобретение, заключается в создании устройства для получения кардиограммы, которое устраняло бы указанные выше недостатки.

Технический результат, достигаемый при реализации данного изобретения, заключается в повышении точности и надежности измерений, достоверности полученной информации о сердечной деятельности и упрощении конструкции за счет применения установленных непосредственно на корпусе изделия ёмкостных датчиков со встроенными электродами, которые включены по дифференциальной схеме, не требуют наличия электрического контакта с кожей пациента и обеспечивают гальваническую развязку на стороне основного устройства без дополнительных схемотехнических элементов.

Указанный технический результат достигается в устройстве для получения кардиограммы, содержащем установленные на корпусе емкостные датчики электрического поля, связанный с ними потенциометр, первый каскад дифференциального усилителя с фильтром синфазных помех, получающий сигнал от емкостных датчиков электрического поля и связанный со вторым каскадом дифференциального усилителя с фильтром синфазных помех и драйвером аналого-цифрового преобразователя, передающим параллельно сигналы на первый и второй входы двухканального аналого-цифрового преобразователя (АЦП) с фильтром синфазных помех, триггер управления приемом данных с АЦП на контроллер, связанный с источником питания постоянного тока с помехоподавляющими фильтрами, криптопроцессором, логическим блоком коммутации порта USB и разветвителем порта USB, соединенным с источником питания постоянного тока и блоком защиты от перенапряжений порта USB, и получающий сигналы с монитора питания, связанного с логическим блоком коммутации порта USB.

Потенциометр выполнен цифровым двухканальным.

В качестве АЦП применен стереофонический аудио кодер-декодер, содержащий микрофонный вход и цифровые интерфейсные шины.

Получают кардиограмму по стандартному кардиологическому отведению

I. Емкостные датчики электрического поля представляют собой емкостные приемники переменного электрического поля со встроенными компактными электродами, исключающими гальваническую связь пользователя с устройством.

Источник питания постоянного тока выполнен программно-управляемым, с функцией стабилизации и преобразования однополярного питающего напряжения в двухполярное, с возможностью частичного отключения потребителей в режиме пониженного энергопотребления.

Таким образом, повышение точности и надежности измерений, достоверности полученной информации о сердечной деятельности и упрощение конструкции достигается в устройстве для получения кардиограммы по стандартному кардиологическому отведению I, содержащем ёмкостные датчики со встроенными электродами, дифференциальный усилитель, цифровой потенциометр, контроллер, криптопроцессор, управляемый источник питания, АЦП, интерфейс USB с блоком защиты от перенапряжений.

Датчики представляет собой емкостные приемники переменного электрического поля со встроенными компактными электродами, исключающими гальваническую связь пользователя с устройством и повышающими безопасность пользования устройством.

Потенциометр для управления смещениями в дифференциальном усилителе выбран двухканальный, программируемый, с цифровой стандартной шиной.

Дифференциальный усилитель выполнен по многокаскадной схеме, содержит фильтры синфазных помех и драйвер АЦП для согласования уровня сигнала.

В качестве АЦП выбран стереофонический аудио кодер-декодер, содержащий микрофонный вход и цифровые интерфейсные шины.

Криптопроцессор обеспечивает корректную работу устройства с изделиями Apple.

Источник питания постоянного тока выполнен программно управляемым, с функцией стабилизации и преобразования однополярного питающего напряжения в двухполярное, с возможностью частичного отключения потребителей в режиме пониженного энергопотребления. Порт USB имеет разветвитель с автоматическим коммутатором на одно из двух внешних устройств. Порт USB также служит для подачи внешнего напряжения питания на устройство для получения кардиограммы.

Контроллер выполняет заложенный программный алгоритм, выдает управляющие сигналы функциональным узлам устройства, координирует их работу, задаёт режимы работы, управляет питанием, принимает с АЦП данные от датчиков и обрабатывает их, производит обмен данными с внешними устройствами через порт USB, производит самодиагностику.

Сущность изобретения поясняется чертежом, на котором изображена блок-схема устройства для получения кардиограммы (кардиомонитора).

Устройство для получения кардиограммы содержит емкостные датчики 1 и 3 электрического поля, потенциометр 2 цифровой двухканальный, первый каскад 4 дифференциального усилителя с фильтром синфазных помех, второй каскад 6 дифференциального усилителя с фильтром синфазных помех и драйвером АЦП, двухканальный АЦП 5 с фильтром синфазных помех, триггер 7 управления приемом данных с АЦП на контроллер, программно управляемый источник питания 8 с помехоподавляющими фильтрами, контроллер 9 с шинами управления и данных, криптопроцессор 10, логический блок 1 1 коммутации порта USB, монитор 12 питания, блок 13 защиты от перенапряжений порта USB, разветвитель 14 порта USB.

Конструктивно устройство для получения кардиограммы представляет собой пластиковый чехол, надеваемый на тыльную сторону внешнего устройства - мобильного телефона. Внутри корпуса пластикового чехла находится печатная плата с электронными компонентами и емкостными датчиками. Доступ к датчикам для пальцев двух рук обеспечивается вырезами на внешней стороне корпуса. На внутренней и внешней сторонах чехла расположены разъемы питания и передачи данных.

Внешнее устройство представляет собой мобильный телефон с предварительно установленным программным обеспечением, который служит для передачи команд на контроллер 9 устройства для получения кардиограмм, отображения диагностической информации, результатов измерений в текстовом и графическом виде и обмена с удаленными базами данных по беспроводным каналам связи. В качестве внешнего устройства также может выступать планшетный, персональный компьютер, подключаемый кабелем через порт USB.

Устройство для получения кардиограммы работает следующим образом.

Начальная активация устройства происходит последовательно в несколько этапов.

При подключении внешнего устройства к первому (USB1) либо второму (USB2) выходу разветвителя 14 порта USB напряжение внешнего устройства +5 В с третьего выхода разветвителя 14 подаётся на логический блок 1 1 и активирует встроенный триггер, который, в свою очередь, даёт команду входящему в его состав двухканальному аналоговому коммутатору USB порта на подключение к внутренней шине устройства шины данных внешнего устройства. Одновременно с третьего выхода разветвителя 14 напряжение питания +5 В с внешнего устройства подаётся на второй вход программно управляемого источника питания 8, который на соответствующей выходной шине питания формирует стабилизированное напряжение +3,3 В, питающее цифровую часть устройства.

После этого на выходе монитора питания 12 формируется сигнал инициализации, который подаётся на третий сигнальный вход контроллера 9 и устанавливает его программное обеспечение и порты в начальную конфигурацию, этот же сигнал подаётся на вход логического блока 11 и фиксирует выбранную конфигурацию порта USB.

Вслед за подачей питания +3,3 В также активируется криптопроцессор 10, с выхода которого по шине передаётся на первый вход контроллера 9 состав данных, необходимых для информационного обмена по шине USB с устройством Apple.

По окончании процедуры начальной активации, контроллер 9, следуя заложенному в его энергонезависимую память алгоритму и пользуясь данными криптопроцессора 10, устанавливает информационный обмен с внешним устройством и находится в ожидании внешних команд.

При отсутствии внешних команд, контроллер 9 через заданный промежуток времени переходит в режим пониженного энергопотребления и пребывает в нем до поступления сигнала активации от внешнего устройства, либо до отключения питания через порт USB со стороны внешнего устройства, либо до физического отсоединения внешнего устройства от разъема порта USB кардиомонитора

При наличии запроса внешнего устройства на регистрацию кардиограммы, контроллер 9 активирует соответствующий блок встроенного программного обеспечения и запускает последовательность команд, позволяющих регистрировать кардиологический сигнал, обрабатывать, преобразовывать, декодировать его и передавать через порт USB на внешнее устройство для хранения, отображения, анализа и дальнейших манипуляций.

Перед началом регистрации кардиограммы контроллер 9 подаёт команду включения аналоговой части устройства, которое спроектировано так, что требует двухполярного питания +3,3 В / -3,3 В. Блок программно управляемого источника питания 8, формирующий напряжение отрицательной полярности в дополнение к включенному в ходе начальной активации блоку формирования напряжения +3,3 В, запускается по сигналу, поступающему на первый вход источника питания 8 с четвертого сигнального выхода контроллера 9. В результате на соответствующей выходной шине источника питания 8 появляется стабилизированное напряжение -3,3 В и происходит включение аналоговой части устройства, а именно: датчиков, дифференциального усилителя и АЦП.

При включенной аналоговой части, биологические потенциалы выбранного кардиологического отведения регистрируются ёмкостными датчиками 1 и 3, после чего усиленные сигналы поступают соответственно на первый и второй входы первого каскада 4 малошумящего прецизионного дифференциального усилителя с фильтром синфазных помех, на эти же входы раздельно подаются напряжения смещения с потенциометра 2 цифрового двухканального, запрограммированные при заводской калибровке. Целью калибровки является уравнивание коэффициентов усиления датчиков для повышения достоверности получаемых результатов, управление потенциометром осуществляет контроллер 9 по цифровой шине, для чего третий выход контроллера (шина) соединен со входом потенциометра.

Сигнал с первого выхода первого каскада 4 дифференциального усилителя поступает на первый вход, а сигнал второго выхода первого каскада 4 дифференциального усилителя синхронно поступает на второй вход второго каскада 6 двухканального прецизионного дифференциального усилителя с фильтром синфазных помех и драйвером АЦП, где сигналы нормируются по уровню, а затем параллельно подаются соответственно на первый и второй входы двухканального АЦП 5 с фильтром синфазных помех. Вследствие сходности параметров речевых и кардиологических сигналов в качестве АЦП применен стереоаудиокодек, имеющий стандартные цифровые шины для обмена данными с контроллером 9, при этом в качестве первого и второго входов задействованы выводы одного из имеющихся микрофонных входов. Оцифрованные и предварительно обработанные данные передаются с АЦП по шине команд и данных, соединяющей первый выход АЦП 5 и второй вход контроллера 9, при этом сигнал разрешения на передачу данных формируется триггером 7 управления приемом данных, включенным между первым сигнальным выходом контроллера 9 и третьим входом АЦП 5. Логика работы триггера 7 предполагает запрет передачи данных с АЦП при отсутствии команды включения аналоговой части устройства.

Полученные контроллером 9 от АЦП 5 данные обрабатываются в соответствии с заложенным алгоритмом и передаются со второго выхода контроллера по шине USB на первый вход разветвителя 14, а с первого или второго выхода разветвителя перенаправляются на вход USB подключенного внешнего устройства. По этому же каналу передаются управляющие сигналы.

В зависимости от программных настроек, контроллер может передавать как обработанные данные, так и необработанные, сопровождаемые метками времени.

Длительность промежутка времени для регистрации кардиограммы задаётся программно и управляется контроллером 9. По получении достаточного для анализа объема данных или по истечении выделенного промежутка времени, контроллер 9 прекращает прием данных от АЦП 5, снимает сигналы синхронизации с соответствующей шины, а при наличии команды от внешнего устройства об окончании сеанса работы, контроллер 9 программно отключает аналоговую часть, снимая соответствующий сигнал разрешения с источника питания 8, после чего переходит в режим ожидания внешних команд как после начальной инициализации.

Для предохранения элементов схемы кардиомонитора от разрядов статического электричества и других видов импульсных помех различной мощности и длительности на входных цепях разветвителя 14 установлены распределенные компоненты блока защиты 13, представляющие собой комбинации полупроводниковых ограничителей перенапряжений.