Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CARGO CONTAINER AND METHOD OF UNLOADING THE SAME
Document Type and Number:
WIPO Patent Application WO/1993/002004
Kind Code:
A2
Abstract:
The bulk material in a cargo container rests on a convoluted floor liner of the container. The convolutions may be flat folds resting on the floor of the container or such folds may be rolled up to form spaced rolls of liner on the floor of the container. The container is unloaded by pulling the floor liner out at the back of the container. A bulkhead may be mounted adjacent the back opening of the container.

Inventors:
PODD STEPHEN D (US)
PODD VICTOR I JR (US)
Application Number:
PCT/US1992/006008
Publication Date:
February 04, 1993
Filing Date:
July 17, 1992
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PODD STEPHEN D (US)
PODD VICTOR I JR (US)
International Classes:
B60P1/38; B65D88/62; B65D90/04; B65G65/40; B65G67/24; (IPC1-7): B60P1/38; B65D88/62; B65G65/40; B65G67/24
Foreign References:
EP0067483A11982-12-22
AU551301B21986-04-24
GB2228468A1990-08-29
US4784287A1988-11-15
GB2226300A1990-06-27
US4168667A1979-09-25
CA1239052A1988-07-12
Other References:
See also references of EP 0593678A1
Download PDF:
Claims:
CLAIMS;
1. A cargo container comprising: a container body including a floor and a front wall, and defining a cargo space for holding a cargo, and a back opening for loading cargo into and discharging cargo from the cargo space; and a liner positioned on said floor in a sequence of overlapping folded sections to expand the length of the liner as the liner is pulled away from the back opening to .„ discharge cargo from the cargo container; wherein the liner extends forward in the con¬ tainer body, away from the back opening, at least substan¬ tially completely between the back opening and the front wall of the container body; and wherein over substantially . c the complete length of the liner, in each pair of adjacent forward and rearward folded sections, the back edge of the forward one of said pair of sections is positioned on top of the rearward one of said pair of sections.
2. A cargo container according to Claim 1, 2Q wherein the folded sections are randomly spaced along the length of the liner sheet.
3. A cargo container comprising: a container body including a floor, and defining a cargo space for holding a cargo, and a back opening for pr loading cargo into and discharging cargo from the cargo space; and a liner positioned on said floor and including a multitude of rolled sections located along the length of the liner to allow the length of the liner to expand as*& 30.
4. 24 the liner is pulled away from said back opening to dis¬ charge cargo from the cargo container.
5. 4 A cargo container according to Claim 3, wherein the rolled sections are spaced apart along the length of the liner.
6. A cargo container according to Claim 4, wherein the rolled sections are uniformly spaced along the length of the liner.
7. A cargo container according to Claim 3, wherein: 10 the liner defines a first longitudinal axis; and each rolled section defined a respective second longitudinal axis extending substantially perpendicular to the longitudinal axis of the liner. .,_.
8. A cargo container according to Claim 3, wherein each of the rolled sections includes: a portion of the liner rolled around an axis and into a roll; and means to hold said roll around said axis.
9. 20 8.
10. A cargo container according to Claim 7, wherein the holding means of each rolled section includes at least one pin extending into the roll of the rolled section.
11. A method for loading and unloading bulk cargo from a cargo container of the type including a 25 floor, and defining a cargo space for holding the bulk cargo, and a back opening for loading cargo into and discharging cargo from the cargo space, the method com¬ prising the steps of: *& 30.
12. 25*& 35.
13. positioning on said floor a liner including a multitude of rolled sections disposed along the length of the liner; loading a bulk cargo into the cargo space and over the liner; and pulling the liner outwardly away from the back opening of the cargo container to unload the cargo from the cargo space, wherein said rolled sections allow the length of the liner to expand as the liner is pulled out¬ 10 wardly.
14. 10 A method according to Claim 9, wherein the pulling step includes the step of unrolling each rolled section, one at a time, in sequence over the length of the liner as the liner is pulled outwardly. ,[.
15. A method according to Claim 10, wherein the positioning step includes the step of uniformly spacing the rolled sections apart along the length of the liner.
16. A method according to Claim 9, wherein the positioning step includes the step of forming the liner 20 from a sheet of material, including the steps of: at a plurality of selected positions along the length of said sheet, folding adjacent portions of the sheet against each other to form a folded section having a top edge; and 5 rolling each folded section over itself, about the top edge of the folded section, to form a roll of material.
17. A method according to Claim 12, wherein the forming step includes the further step of holding each 0 26 roll of material in a roll after the rolling step is completed^ .
18. A method according to Claim 13, wherein the holding step includes the step of forming at least one pin heat seal in each roll.
19. A method according to Claim 13, wherein the holding step includes the step of applying an adhesive tape over each roll of material to inhibit the roll from unrolling.
20. 10 16. A method according to Claim 12, wherein: each of the folded sections has a length and a width; and the folded sections have substantially uniform widths before each folded section is rolled.
21. 15 17. A method of securing a bulkhead in a cargo container including a floor and forming a back opening, the method comprising: locating the bulkhead forward of and adjacent the back opening; 20 suspending the bulkhead from a portion of the cargo container above the floor thereof; and securing at least one reinforcing bar rearward of the bulkhead, said reinforcing bar extending laterally across the bulkhead and engaging both the bulkhead and the pc cargo container to transfer loads on the bulkhead to the cargo container.
22. 18 A method according to Claim 17, wherein the suspending step includes the steps of:*& 30.
23. 27*& 35.
24. connecting at least one strap to an upper por¬ tion of the cargo container; and employing said strap to suspend the bulkhead.
25. A method according to Claim 18, wherein the employing step includes the steps of: forming at least one slit in the bulkhead; and inserting the strap through the slit and con¬ necting the strap to the bulkhead to hold the bulkhead.
26. A method according to Claim 18, wherein the 0 employing step includes the steps of: forming at least first and second spaced apart slits in the bulkhead; and inserting the strap through the first and second slits and connecting the strap to the bulkhead to hold the 5 bulkhead.
27. A method according to Claim 20, wherein the securing step includes the step of looping a portion of the strap over the reinforcing bar to connect the rein¬ forcing bar to the bulkhead. 0.
28. A method according to Claim 20, wherein the looping step includes the step of looping a portion of the strap, between the first and second slits, over the rein¬ forcing bar.
29. A method according to Claim 18, wherein the c employing step includes the steps of: suspending the reinforcing bar from the first strap; mounting a second strap on the reinforcing bar; and 0 suspending the bulkhead from the second strap.
30. A method according to Claim 23, wherein the step of suspending the bulkhead includes the steps of: forming first and second spaced apart slits in the bulkhead; and inserting the second strap through the first and second slits to connect the bulkhead to the reinforcing bar.
31. A method according to Claim 17, wherein the suspending step includes the step of suspending the bulk¬ head from the reinforcing bar.
32. A method according to Claim 25, wherein the step of suspending the bulkhead from the reinforcing bar includes the steps of: forming first and second slits in the bulkhead; mounting a strap on the reinforcing bar; and inserting the strap through the first and second slits in the bulkhead to connect the bulkhead to the reinforcing bar.
33. A method according to Claim 17, wherein the bulkhead includes upper and lower sections, and the sus¬ pending step includes the steps of: suspending the upper section of the bulkhead from the cargo container; and releasably connecting the lower section of the bulkhead to the upper section thereof.
34. A method of securing a bulkhead in a cargo containe of the type including a container body forming a back opening, the method comprising: 9 connecting first and second straps to upper portions of the container body; locating the bulkhead forward of and adjacent the back opening; employing the first and second straps to suspend the bulkhead inside the cargo container; and securing at least one reinforcing bar rearward of the bulkhead, said reinforcing bar extending laterally across the bulkhead and engaging both the bulkhead and the container body to transfer loads on the bulkhead to the container body.
35. A method according to Claim 28, wherein the employing step includes the steps of: forming at least first and second laterally spaced apart slits in the bulkhead; inserting the first strap through the first slit, and connecting the first strap to the bulkhead; and inserting the second strap through the second slit, and connecting the second strap to the bulkhead.
36. A method according to Claim 28, wherein the employing step includes the steps of: suspending the reinforcing bar froir the first and second straps; mounting third and fourth straps on the rein¬ forcing bar; and suspending the bulkhead from the third and fourth straps.
37. A cargo container comprising: a container body including a floor, and forming a back opening; a bulkhead located forward of and adjacent the back opening; means connected to the container body and to the bulkhead, and suspending the bulkhead inside the container body; and a reinforcing bar secured inside the container body and extending laterally across the bulkhead and rearward thereof, the reinforcing bar engaging both the bulkhead and the container body to transfer loads on the bulkhead to the container body.
38. A cargo container according to Claim 31, wherein the means suspending the bulkhead includes at least a first strap connected to an upper portion of the container body.
39. A cargo container according to Claim 32, wherein: the bulkhead includes at least a first slit; and the strap extends through the slit and is con¬ nected to the bulkhead.
40. A cargo container according to Claim 33, wherein the strap also extends over the reinforcing bar and connects the bulkhead to the reinforcing bar.
41. A cargo container according to Claim 32, wherein: the strap is connected to and supports the reinforcing bar inside the container body; and the means suspending the bulkhead further in¬ cludes a second strap mounted on the reinforcing bar and connected to the bulkhead to support the bulkhead inside the container body.
42. An unloading apparatus for use with a cargo container having a floor and a liner disposed on said floor, the unloading apparatus comprising: a frame; connecting means mounted on the frame to connect the unloading apparatus to the cargo container; 10 a mandrel rotatably supported by and laterally extending across the frame, and including means to connect the liner to the mandrel; and drive means mounted on the frame and engaging the mandrel to rotate the mandrel to wind the liner there 15 around, wherein winding the liner around the mandrel pulls the liner outward from the cargo container to unload cargo therefrom.
43. An unloading apparatus according to Claim 20 36, wherein the means to connect the liner to the mandrel includes a slot axially extending along and radially extending through the mandrel.
44. Unloading apparatus according to Claim 36, wherein the cargo container has left and right sides and a pr back opening disposed between said sides, and wherein the means to connect the unloading apparatus to the cargo container includes:*& 30.
45. 32 a left connecting assembly mounted on a left side of the frame to connect the frame to the left side of the cargo container; and a right connecting assembly mounted on a right side of the frame to connect the frame to the right side of the cargo container.
46. 39 Unloading apparatus according to Claim 38, wherein: the left connecting assembly includes i) a left twist lock rotatably mounted on the 10 frame, and ii) a left handle connected to the left twist lock to pivot the left twist lock to facilitate inserting the left twist lock into, and locking the left twist lock ,. in, the left side of the cargo container; and the right connecting assembly includes i) a right twist lock rotatably mounted on the frame, and ii) a right handle connected to the right twist 2Q lock to pivot the right twist lock to facilitate inserting the right twist lock into, and locking the right twist lock in, the right side of the cargo container.
47. An unloading apparatus according to Claim 39, wherein: pc the frame includes a main transverse beam having front and back sides, and adapted to extend laterally across the cargo container adjacent the back opening thereof; the left and right twist locks are located on the front side of the transverse beam; and*& 30.
48. 33*& 35.
49. the left and right handles are located on the back side of the transverse beam.
50. 41 An unloading apparatus according to Claim 39, wherein: the left and right twist locks are supported for 5 limited movement toward and away from the frame; the left connecting assembly further includes tightening means connected to the left twist lock to pull the left twist lock toward the frame and to connect the 10 frame tightly to the left side of the cargo container; and the right connecting assembly further includes tightening means connected to the right twist lock to pull the right twist lock toward the frame and to connect the frame tightly to the right side of the cargo container. 11 42. An unloading apparatus according to Claim 36 wherein the cargo container has left and right sides and a back opening disposed between said sides, and where¬ in the frame includes: a main transverse beam adapted to extend later p0 ally across the cargo container adjacent the back opening thereof; a left stabilizing bracket connected to and extending upward from the transverse beam; and a right stabilizing bracket connected to and p. extending upward from the transverse beam; wherein the left and right stabilizing brackets are adapted to abut against the left and right sides, respectively, of the cargo container as the mandrel pulls the liner outward therefrom. *& 30.
51. 34 43 An unloading apparatus according to Claim 36, wherein the drive means includes an electric motor.
52. 44 An unloading apparatus according to Claim 43, wherein the drive means includes a 12 volt DC electric motor.
53. An unloading apparatus according to Claim 36, wherein said apparatus is adapted to unload at least 40,000 pounds of cargo from the cargo container in approx¬ imately 15 minutes.
54. A method of unloading a bulk cargo from a 0 cargo container of the type including a floor and a liner disposed on said floor, and defining a cargo space for holding the bulk cargo, and a back opening for loading cargo into and discharging cargo from the cargo space, the ,_ method comprising the steps of: mounting an unloading apparatus directly onto the cargo container, adjacent the back opening; connecting the liner to the unloading apparatus, and 0 while the unloading apparatus is directly mount¬ ed on the cargo container, operating the unloading appara¬ tus to pull the liner and the bulk cargo outward from the cargo container, through the back opening thereof.
55. A method according to Claim 46, for use 5 with a cargo container of the type that is connected to a vehicle having a power supply, and wherein the operating step includes the steps of: . connecting the unloading apparatus to the power supply; and 0 using said power supply to operate the unloading apparatus.
56. A method according to Claim 47, wherein the power supply is an electric power source.
57. A method according to Claim 47, wherein the power supply is a hydraulic power source.
58. A method according to Claim 46, wherein the unloading apparatus includes a rotatable mandrel having an axially and radially extending slot; and wherein: 10 the connecting step includes the step of insert¬ ing the liner into said slot; and the operating step includes the step of rotating the mandrel to wind the liner therearound.
59. A method according to Claim 46, wherein the 15 cargo container includes left and right lower corner members adjacent the back opening of the cargo container, each of the corner members forming an opening, and the unloading apparatus includes left and right twist locks, and wherein the mounting step includes the steps of: 20 inserting the left and right twist locks into the openings in the left and right lower corner members, respectively; locking the left twist lock inside the left corner member; and per locking the right twist lock inside the right corner member.
60. A method according to Claim 51, wherein the mounting step further includes the steps of:*& 30.
61. 36*& 10.
62. 15*& 20.
63. 25*& 30.
64. 37 35.
Description:
CARGO CONTAINER AND METHOD OF UNLOADING THE SAME

BACKGROUND OF THE INVENTION

This invention generally relates to cargo con¬ tainers; and more specifically, to cargo containers of the 5 type from which bulk cargo is discharged by pulling a bottom or floor liner out from the container.

Standardized containers or boxes have come into very extensive use for the shipment of freight by land and sea, and the many advantages of such intermodal containers

10 have made it very desirable to adapt them for use with as many types of cargo as possible. Accordingly, there have been attempts, with varying degrees of success, to use such standardized containers to carry bulk cargo such as dry bulk chemicals, powdered and pelletized resins, flour,

15 coffee beans, and grains. In particular, considerable attention has been given over the last several years to transporting such cargo in bulk in standardized intermodal cargo containers —that is, in containers in which the cargo is loaded, unwrapped, and unpackaged directly into

20 containers, without first loading or packing the cargo in smaller boxes or packages and then loading those smaller boxes or packages into the intermodal containers.

Commonly, when a cargo is transported in bulk in a large, intermodal container, the cargo is discharged

25 from the container by tilting the container εo that the cargo slides out the back of the container under the force of gravity. While this cargo discharging method has received significant commercial acceptance, it. has a

30

-1-

*

^

35

disadvantage in that it requires an expensive apparatus to tilt the container.

With another method for discharging bulk cargo from a cargo container, a pleated liner is first placed on the container floor when the container is empty, and then the cargo is loaded into the container, over the liner. To discharge the cargo from the container, the liner is pulled out from the cargo container, pulling the product out from the container with the liner. This cargo dis¬ charging procedure has not received widespread commercial

10 use, however. A primary reason for the lack of commercial use is that, heretofore, the industry has not been able to provide a discharging method of this general type that, on the one hand, effectively unloads the entire contents of -._ the cargo container, and on the other hand, is still comparatively simple and economically acceptable.

SUMMARY OF THE INVENTION

An object of this invention is to improve meth¬ 0 ods and apparatus for discharging bulk cargos from cargo containers.

Another object of the present invention is to provide an economical and effective method for discharging bulk cargo from a cargo container, of the type in which a r- bottom liner is pulled out from the cargo container to pull the cargo out therefrom.

A further object of this invention is to provide an improved liner for lining the bottom of a bulk cargo container, and that facilitates completely unloading the 0

-2-

5

cargo from the container when the liner is pulled out from the container.

A still another object of this invention is to provide a system for securing a bulkhead inside a bulk cargo container, that eliminates the need to use the floor or a bottom portion of the cargo container to support the bulkhead.

An object of the present invention is to suspend a bulkhead inside a cargo container so that an entire bottom section of the bulkhead can be removed, to allow cargo to be discharged from the cargo container without interfering with the way in which the bulkhead is support¬ ed inside the cargo container.

A further object of this invention is to pull a liner out from a bulk cargo container by winding the liner onto a mechanism that is mounted and locked directly onto the cargo container.

Another object of the present invention is to provide a mechanism for pulling a liner from a bulk cargo container, that can be easily mounted and locked directly onto standard size intermodal cargo containers.

A still further object of this invention is to provide a mechanism to pull a liner from a cargo contain¬ er, and that is very simple and economical to manufacture, install, and operate.

These and other objectives are attained with a cargo container comprising a container body, a floor liner, and a rear bulkhead. The container body defines an interior cargo space for holding a cargo, and a back

opening for conducting cargo into and discharging cargo from that cargo space. The liner is positioned on the container floor in a sequence of overlapping pleats or with a series of spaced rolls that allow the length of the liner to expand. The bulkhead is held inside the contain¬ er body, immediately forward of a back wall thereof, to hold the cargo in the cargo space. In particular, the bulkhead is suspended inside the cargo container --that is, the bulkhead is not significantly supported by the floor of the container, but instead is supported by the

10 sides, the roof, or by both the sides and the roof of the container.

To unload cargo from the container, an opening is formed in the bottom of the bulkhead, and the liner is

-. c pulled out from the cargo container. As the liner is so pulled, cargo is pulled out with the liner; and at the same time, the pleats or rolls of the liner unfold and unroll, expanding the length of the liner. The dimensions of the liner, particularly the size and number of pleats

2 Q or rolls, are selected so that the liner is able to pull out substantially all of the cargo from the container as the liner itself is pulled out of the cargo container.

Preferably, a mechanical apparatus is directly mounted on the cargo container to pull the liner out r therefrom; and this pulling apparatus comprises a frame, a mandrel, drive means, and connecting means. The mandrel is rotatably supported by and laterally extends across the frame of the pulling apparatus, and the mandrel includes means to connect the floor liner of the cargo container to 0

-4-

5

the mandrel. The drive means of the pulling apparatus is mounted on the frame and engages the mandrel to rotate the mandrel and wind the container floor liner therearound. The connecting means of the pulling apparatus is mounted on the frame to connect the pulling apparatus to the cargo container, preferably immediately rearward of and below the bottom edge of the back opening of the cargo contain¬ er.

Further benefits and advantages of the invention will become apparent from a consideration of the following detailed description given with reference to the accompa¬ nying drawings, which specify and show preferred embodi¬ ments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a bulk cargo container.

Figure 2 illustrates a cargo being loaded into the container of Figure 1.

Figure 3 shows the cargo being discharged from the cargo container.

Figure 4 is a back perspective view of a pleated sheet used to line the floor of the cargo container.

Figure 5 is an enlarged, perspective view of a portion of the pleated liner of Figure 4.

Figure 6 is a back perspective view of an alter¬ nate liner that may be used in the cargo container of Figures 1-3.

Figure 7 is an enlarged, perspective view of a portion of the liner of Figure 6, showing how the rolls of the liner may be formed.

Figure 8 is a side view of a portion of the liner shown in Figure 7.

Figure 9 is a back view of the bulkhead used in the cargo container of Figures 1-3, and shows one arrange¬ ment for suspending the bulkhead inside the cargo contain¬ er.

Figure 10 illustrates how a support strap for the bulkhead may be mounted on the cargo container.

Figure 11 shows an alternate arrangement for suspending the bulkhead inside the cargo container.

Figure 12 shows a third arrangement for suspend¬ ing the bulkhead inside the cargo container.

Figure 13 illustrates how a reinforcing bar for the bulkhead may be supported inside the cargo container.

Figure 14 is a perspective view of an apparatus for pulling a floor liner from the cargo container of Figures 1-3.

Figure 15 is a top view of the pulling apparatus of Figure 14.

Figure 16 is a perspective view of a corner casting of the cargo container shown in Figures 1-3.

Figure 17 is a top view of one of the connecting assemblies of the apparatus of Figures 14 and 15.

Figure 18 shows the connecting assembly of Figure 17-inserted into the corner casting of Figure 16.

Figure 19 shows the connecting assembly locked inside the corner casting.

Figure 20 shows the connecting assembly tightly clamped onto the corner casting.

5

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figures 1-3 illustrate cargo container 100 generally comprising container body 102, liner 104, and bulkhead 106. Generally, container body 102 defines an

10 interior cargo space 110 for holding a cargo; and the container body includes a floor 112, roof 114, front and back walls 116 and 120, and left and right side walls 122 and 124. Back wall 120 includes a pair of outwardly hinged doors 120a and 120b, and when these doors are open,

, £ . the back wall forms an opening that provides access to the interior of the cargo container. Liner 104 is positioned on container floor 112 in a sequence of overlapping pleats or folded sections 126 that allow the length of the liner to expand; and the bulkhead 106 is secured inside contain-

2 Q er body 102, immediately forward of back wall 120, to hold a cargo in cargo space 110.

Generally, in operation, a bulk cargo 128 is loaded into cargo space 110 and onto liner 104. Suitable inlet openings (not shown) may be provided in bulkhead 106

2c to allow the cargo to pass therethrough and into cargo space 110, or the cargo may be conducted into that cargo space through the area above the top of the bulkhead. Once the container is loaded with cargo, it is transport-

30

-7-

35

ed, and the container is unloaded after it reaches its destination.

To unload cargo 128 from container 100, an opening 130 is formed in the bottom of bulkhead 106 and liner 104 is pulled outward from the cargo container. As the liner is so pulled, cargo 128 is pulled out with the liner; and at the same time, the pleats 126 of the liner unfold, expanding the length of the liner. The dimensions of liner 104, particularly the size and number of pleats 126, are selected so that the liner is able to ' pull out substantially all of the cargo from the container as the liner itself is pulled out of the container cargo. Pref¬ erably, as discussed in detail below, a mechanical appara¬ tus is mounted on cargo container 100 to pull liner 104 out therefrom.

Any suitable cargo container 100 may be employed in the practice of this invention, although preferably container body 102 has a conventional size and shape. Even more preferably, container body 102 is of the type referred to in the art as intermodal and can be transport¬ ed by truck, railroad, and ship.

Figures 4 and 5 illustrate liner 104 in greater detail. With particular reference to Figure 4, liner 104 has a generally elongated, rectangular shape, including front and back edges 104a and 104b. Also, the folded sections 126 of liner 104 are spaced apart along the length of the liner; and each of the folded sections of the liner.extends completely across the width of the liner, substantially perpendicular to the longitudinal

axis of the liner. Moreover, over substantially, and preferably over completely, the entire length of the liner, the folds are directed toward the back edge of the liner.

More specifically, each folded section includes 5 front and back edges; and in each pair of adjacent forward and rearward folded sections, the back edge of the forward one of that pair of sections is positioned on top of the rearward one of that pair of sections. For example, in

_ Figures 4 and 5, four folded sections are specifically referenced at 126a, 126b, 126c, and 126d. The front and back edges of section 126a are referenced at 126a-l and 126a-2 respectively, and the front and back edges of section 126b are referenced at 126b-l and 126b-2 respec-

- c tively. Similarly, the front and back edges of section

126c are respectively referenced at 126c-l and 126c-2, and the front and back edges of section 126c are respectively referenced at 126d-l and 126d-2. The back edge 122a-2 of section 122a is on top of folded section 122b r the back p 0 edge 122b-2 of section 122b is on top of folded section 122c, and the back edge 122c-2 of this latter section is on top of folded section 122d.

The number and widths of the folded sections 126 of liner 104 are chosen to help ensure that cargo 128 is pt - completely unloaded from cargo container 100 as the liner is pulled out therefrom. However, each folded section may have a random width, and these folded sections may be randomly spaced along the length of liner 104. That length is another variable that may be selected to help

30

-9-

35

ensure that cargo 128 is completely unloaded from cargo container 100 as the liner is pulled out therefrom; and indeed, preferably, when the liner is installed in the cargo container, the liner extends at least over the p . complete length of floor 112, and also partially or com¬ pletely extend over front wall 116. The front portion of liner 104 may be provided with attachment means, such as eyelets or loops to help secure the liner inside cargo container 100; and the back end portion of the liner

,_. preferably has truncated corner portions to heip pull the liner out of the cargo container, as discussed in greater detail below.

In addition, small heat welds, for example, as shown at 132, may be used to connect together folded sec-

-. 1 - tions 126 to maintain those folded sections held against each other inside cargo container 100 until liner 104 is pulled out of the container. Each heat weld has very little resistance and is broken as soon as an appreciable pulling force is applied to the bottom of the two layers

2 Q joined by the heat weld. Adjacent folded sections may be suitably connected together in other ways, though; and, for example, adjacent sections may be stitched together for this purpose.

Figures 6-8 illustrate an alternate liner 134 ryr- that may also be used to pull a bulk cargo from cargo container 100, and that includes a multitude of rolled sections 136, rather than a multitude of overlapping pleats 126, spaced along the liner to allow the length of the liner to expand as it is pulled outward from the cargo

30

-10-

5

container. Each rolled section 136 includes a section of liner 134 " rolled about a given axis. Preferably, each rolled section 136 laterally extends completely across the width of liner 134, substantially perpendicular to the longitudinal axis thereof. The specific number of rolled sections 136 in liner 134, and the size of each rolled section may vary, however, depending on the specific application for which a particular liner is intended. Figures 7 and 8 particularly illustrate one

10 procedure that may be used to form rolled sections 136. To form a rolled section, two adjacent portions of liner 132 are brought together, for example as shown at 140, so as to form a top edge 142; and then these two adjacent portions of the liner are progressively rolled together

,,- about that edge, as shown at 144a, 144b, 144c, and 144d, until the desired length or amount of material has been rolled together.

Preferably, after a given section of liner 134 has been rolled together, means are applied to the formed Q roll to hold the material thereof in that roll. For instance, one or more heated pins 146 may be inserted into or through each roll to prevent the material thereof from prematurely unravelling; and preferably, a multitude of such pins are inserted into each roll at a multitude of

2i- locations uniformly spaced along the length of the roll. Alternatively, adhesive tape may applied over each roll and connected to adjacent portions of liner 134, on one or both sides of the roll, to prevent the roll from prema¬ turely unravelling.

30

-11-

35

Both liners 104 and 134 may be made from any suitable material, although preferably the liners have a high resistance to stretching at least along the lengths of the liners. For example, the liners may be constructed of woven polyethylene and polypropylene fabric having a 5 thickness of about seven mils. Alternatively, the liners may be made from strips, such as two inch strips, of fiberglass tape, metal reinforced tape, or polyester rein¬ forced tape, or the liners could be made from coextruded

_ cross-laminated plastic film, or coextruded, o cross laminated film. As still additional examples, the liner may be made from natural materials such as cotton.

As previously mentioned, and with reference again to Figures 1-3, bulkhead 106 is secured inside cargo

,,- container 100, immediately forward of back wall 120, to hold a cargo in cargo space 110. In particular, the bulkhead is used to hold the cargo in that space both while the cargo is being loaded thereinto and while the container is being transported. As will be understood by

2 Q those of ordinary skill in the art, typically, a discharge opening must be formed in the bulkhead to allow cargo to be discharged from the cargo container. In order to achieve a complete unloading of the cargo when cargo is discharged from container 100 by means of a procedure in pc which a bottom liner is pulled out from the container, it is important that a wide opening be formed across the bottom of the bulkhead.

.. Heretofore, however, it has been difficult to form suitable wide openings in the bottoms of bulkheads of

30

-12-

5

the general type used to hold bulk cargo in cargo contain¬ ers. This is because these prior art bulkheads have been supported by the floors of the cargo containers; and any very wide opening formed in the bottom of such a bulkhead weakens the bulkhead, and the bulkhead may partially collapse and interfere with the flow of the product out¬ ward from the cargo container.

In accordance with one aspect of the present invention, these prior art difficulties are overcome by suspending bulkhead 106 inside cargo container 100 --that is, the bulkhead is supported by a portion of the cargo container other than floor 112 thereof, and for example, the bulkhead may be supported by the sides 122, 124, by the roof 114, or by both the sides and the roof of the cargo container. In this way, an opening may be formed completely across the bottom of the bulkhead, or a bottom portion of the bulkhead may be removed, to allow cargo to be discharged from the cargo container without signifi¬ cantly interfering with the way in which the bulkhead is supported inside the cargo container.

Figures 9-13 illustrate a preferred embodiment of bulkhead 106 and various arrangement for suspending the bulkhead inside cargo container 100. Figures 9, 11, and 13 also show a pair of reinforcing members or bars 152 that are mounted inside cargo container 100 to reinforce bulkhead 106. More specifically, reinforcing bars 152 are located rearward of bulkhead 106, extend laterally across the bulkhead, and engage both the bulkhead and the- cargo

container body to transfer loads on the bulkhead to the cargo container body.

With the support arrangements shown in Figures 9-11, at least one and preferably two straps 154, 156 are connected to upper portions of cargo container 100 and used, either directly or indirectly, to suspend bulkhead 106 therewithin. For example, with particular reference to Figures 9 and 10, a first end of each strap, for exam¬ ple end 156a of strap 156, may be looped over a hook or

10 bar 160 mounted on an inside surface of cargo container 100, and a second end of each strap may be inserted through one or more slits 162 formed in the bulkhead. The ends of each strap may be tied or connected together, forming one large loop from strap 154 and one large loop

-,,- from strap 156 to mount the bulkhead on the cargo contain¬ er. Alternatively, each end of each strap 154, 156 may be tied to a respective adjacent portion of the strap, form¬ ing top and bottom smaller loops on strap 154, and top and bottom smaller loops on strap 156 to mount the bulkhead on

2 Q the cargo container. As a still further alternative, each strap end may be tied to a respective portion of cargo container 100, or to a respective hook or bar mounted on the inside surface of the cargo container, to hold bulk¬ head 106 thereon. c As will be appreciated by those of ordinary skill in the art, numerous other procedures may be used to connect straps 154, 156 to cargo container 100 and to bulkhead 106, and for instance, the straps may be stapled to the bulkhead. Further, straps 154, 156 may be employed 0

-14-

5

to hold reinforcing bars 152 in place; and for example, as generally depicted in Figure 9, each strap may be wrapped or looped around, or simply extend over a respective one side of each of bars 154 and 156, for instance as shown at 164, to hold those bars.

Figure 11 illustrates a technique for using straps 154, 156 to indirectly suspend bulkhead 106. With this procedure, one of the reinforcing bars 152, for example the lower of these two bars, is directly suspended by straps 154 and 156, and then a second set of straps, referenced at 166, are mounted on or wrapped around that one reinforcing bar and used to suspend bulkhead 106. More particularly, straps 154, 156, preferably the lower ends 154b, 156b thereof, are looped around, wrapped around, or otherwise connected to one of the reinforcing bars, preferably to sides thereof, to hold the reinforcing bar in place. Similarly, each of straps 166 is looped or wrapped around or otherwise mounted on the one reinforcing bar and connected to bulkhead 106. These straps 166 may be connected to bulkhead 106 in any suitable way; and for example, ends of straps 166 may be inserted through slits 162 and tied together on the front side of the bulkhead. Alternatively, straps 166 may be stapled or glued to the bulkhead. With this general procedure, a third set of straps 170 may be connected to or mounted on bulkhead 106 and looped or wrapped around the second of the reinforcing bars to hold that bar in its desired position adjacent the bulkhead.

O 93/02004

Figures 12 and 13 illustrate another procedure for suspending bulkhead 106 from one or both of the rein¬ forcing bars 152. In this case, however, the ends of that one or both of the reinforcing bars extend into small recesses or notches (one of which is shown at 172 in Figure 13) formed in the side walls 122, 124 of cargo container 100, and are thus directly supported by those side walls, rather than by straps 154, 156. In the event that only one of the reinforcing bars 152 is supported in notches 172, a set of straps 174 is wrapped or looped around that reinforcing bar and connected to bulkhead 106 to suspend the bulkhead from that reinforcing bar. A second set of straps 176 may be connected to bulkhead 106 and wrapped or looped around the second reinforcing bar to hold that bar in place. In the event that both reinforc¬ ing bars 152 extend into receiving notches 172 in the side walls of cargo container 100, a set of straps is mounted on either of those bars and connected to the bulkhead to support the bulkhead; and if desired, a second set of straps may be mounted on the other of the reinforcing bars and also connected to the bulkhead to further support the bulkhead.

Straps 154, 156, 166, 170, 174 may be made of any suitable material, although preferably they are made from a high strength material. For instance, the straps may be constructed of woven polyethylene and polypropyl¬ ene, or the straps may be made from strips of fiberglass tapes, metal reinforced tapes, or polyester reinforced tapes. As still additional examples, the support straps

154, 156, 166, 170, 174 may be made from coextruded cross laminated plastic film, or coextruded, or cross laminated film.

Preferably, bulkhead 106 is comprised of upper and lower separable sections 106a and 106b; and in use, the lower section of the bulkhead is separated and removed from the upper section to form a discharge opening or outlet in the bulkhead. Bulkhead sections 106a and 106b may be releasably connected together in any suitable manner; and for example, these bulkhead sections may be stapled or nailed together. Alternatively, one of these bulkhead sections may be provided with a plurality of hooks, and the other of the bulkhead sections may be provided with a plurality of openings or eyelets adapted to mount onto those hooks to connect the two bulkhead sections together. As will be understood, it is not necessary that the bulkhead be comprised of separable sections; and for instance, the bulkhead may be formed from one piece or section of material, and a lower portion or area of the bulkhead may be cut away from an upper portion thereof to form the desired discharge opening in the bulkhead.

Preferably, bulkhead 106 is made from a corru¬ gated cardboard material, and is provided with suitable openings or suitable score lines to facilitate the forma¬ tion of suitable openings, to allow material to be loaded into the cargo container through the bulkhead. The bulk¬ head may be made of any other suitable material, though; and, for instance, the bulkhead may be made from wood.

Moreover, reinforcing bars 152 are preferably made from a metal, although these bars may be made from other materi¬ als such as wood.

Figures 14 and 15 illustrate an apparatus 200 for pulling liner 104 outward from cargo container 100; and, generally, this apparatus comprises frame 202, man¬ drel 204, drive means 206, and connecting means 210. Connecting means 210 is mounted on frame 202 to connect unloading apparatus 200 to cargo container 100, preferably

10 immediately rearward of and below the bottom edge of the back opening thereof. Mandrel 204 is rotatably supported by and laterally extends across frame 202 and includes means 212 to connect liner 104 to the mandrel, and drive means 206 is mounted on the frame and engages the mandrel to rotate the mandrel to wind the liner therearound and,

15 thereby, to pull the liner outward from cargo container 100.

More specifically, frame 202 includes main transverse beam 214, left and right side beams 216 and

20 220, and left and right stabilizing members 222 and 224. Transverse beam 214 is adapted to extend laterally across cargo container 100, immediately adjacent or slightly below the bottom edge of the back opening thereof. Left and right side beams 216 and 220 are connected to and p .. extend rearward from the left and right sides, respective¬ ly, of beam 214, and mandrel 204 is rotatably supported by and laterally extends between the left and right side members...

30

18-

5

In use, as liner 104 is wound around mandrel 204, apparatus 200 may tend to pivot upward about main transverse beam 214, and stabilizing members 222 and 224 are provided to limit or to prevent such pivoting move¬ ment. In particular, left and right stabilizing brackets 222 and 224 are connected to and extend upward from the left and right sides of beam 214, respectively; and in case apparatus 200 tends to pivot upward about transverse beam 214, those stabilizing brackets engage or abut

10 against the left and right back sides of cargo container 100, preventing further such pivoting movement and thereby stabilizing frame 202 and the entire unloading apparatus 200 during the unloading process.

The various members or elements of frame 202 may -,[- be made of any suitable material and can be connected together in any suitable way. For instance, these ele¬ ments may be made from a metal and welded or bolted to¬ gether.

Mandrel 204 is rotatably mounted on frame 202;

20 and more specifically, the mandrel is rotatably supported by and laterally extends between side beams 216 and 220 of the frame. To pull a liner 104 from cargo container 100, the back end of that liner is connected to mandrel 204, and then the mandrel is rotated to wind the liner onto and

25 around the mandrel 204. To facilitate connecting liner 104 to the mandrel, the mandrel preferably includes an axially extending slot 212 that radially extends complete¬ ly through the mandrel; and with particular reference to Figures 4 and 14, to connect liner 104 to mandrel 204, the

30

19-

35

back edge 104b of the liner is pulled through slot 212, and then the mandrel is rotated to wind the liner onto the mandrel.

Drive means 206 is mounted on frame 202 and is provided to rotate mandrel 204, and preferably the drive means includes a winch 226 and a motor or engine 230. Winch 226 is mounted on frame 202, specifically left side member 216, and is directly connected to mandrel 204 to rotate the mandrel. Engine or motor 230 is also mounted on frame 202 and is connected to winch 216 to operate that

10 winch. Any suitable winch, motor, or engine may be used in the practice of the present invention.

However, often cargo containers of the general type disclosed in Figures 1-3 are transported by trucks or other vehicles that includes a power source, such as a

15 hydraulic pump, an electric battery or an electric gener¬ ator; and preferably, motor 230 is one that can be oper¬ ated by the power source on the vehicle that carries the cargo container 100. In particular, if this vehicle has a

20 hydraulic pump, it may be preferred to provide unloading apparatus 200 with a hydraulic motor; while if the trans¬ porting vehicle has an electric battery or generator, it may be appropriate to provide apparatus 200 with an elec¬ tric motor, p t - Connecting means 210 preferably includes left and right connecting assemblies 232 and 234 mounted, respectively, on the left and right sides of frame 202 to connect the frame, respectively, to left and right sides of cargo container 100. An important advantage of appara-

30

-20-

5

tus 200 is that the connecting assemblies 232 and 234 thereof are particularly well adapted to mount apparatus 200 onto an intermodal cargo container having convention¬ al, lower back corner castings spaced apart a standard distance.

To elaborate, standard intermodal cargo contain¬ ers of the type shown in Figures 1-3 typically have corner members, referred to as corner castings, located at, among other places, the back lower left and back lower right

10 corners of the container body. One corner casting is shown at 236 in Figure 16; and as illustrated therein, corner castings form a multitude of openings 240 that are used to lock the cargo containers onto supporting members such as trucks or railroad car frames or other containers. ,.- Because of the way in which these corner castings are used, industry standards have developed that govern the size, shape, and spacing of the corner castings. In order to make apparatus 200 very easy to mount onto a cargo container having such lower back corner castings, connect¬

20 ing assemblies 232 and 234, first, are specifically de¬ signed to lock into corner castings, and second, are spaced apart a distance substantially equal to a standard distance between such corner castings.

Left and right connecting assemblies 232 and 234

25 are substantially identical, and thus only one will be described herein in detail. With reference to Figure 17, each of the connecting assemblies includes twist lock 242, handle 244, spacer 246, support rod 250, and adjusting nut 252. Twist lock 242 is rotatably mounted on frame 202,

30

-21-

35

specifically transverse beam 214, adjacent one end there¬ of; and handle 244 is connected to the twist lock to pivot that lock to facilitate inserting the twist lock into, and then locking it inside, one of the corner castings of cargo container 100. More specifically, twist lock 242 is pivotal between, and handle 244 is used to pivot the twist lock between, first and second positions shown in Figures 18 and 19, respectively. In this first position, twist lock 242 can be inserted through an opening 240 in, and into the interior of, corner casting 236; and in the second position, twist lock 242 is locked inside corner casting 236. Preferably, as illustrated in the drawings, twist lock 242 is disposed on a forward or front side of beam 214, and handle 244 is disposed on a rearward or back side of that beam.

Twist lock 242 may be pivotally mounted on beam 214 and handle 244 may be connected to the twist lock in any suitable way. For example, a through opening 254 may be formed in beam 214, and rod 250 may be inserted through that opening such that the rod is supported by beam 214 and is rotatable in opening 254. At the same time, twist lock 242 is rigidly mounted on a forward end of rod 250, and handle 244 is connected to a back end of rod 250.

Spacing member 246 is connected to transverse beam 214, between that beam and twist lock 242, to main¬ tain the twist lock spaced from the transverse beam. This facilitates inserting the twist lock into the interior of corner casting 236 and locking the twist lock therein. As

shown in Figure 17, preferably, support rod 250 also extends through spacing member 246.

Preferably, each connecting assembly 232 and 234 also includes tightening means connected to the twist lock to pull the twist lock toward transverse beam 214 and thereby to connect frame 202 tightly to a respective one of the corner casting members on container 100. With the embodiment of connecting assembly 232 illustrated in the drawings, this tightening means comprises adjusting nut 252, which is threadably mounted on rod 250, rearward of beam 214. In operation, once twist lock 242 is locked inside corner casting 236, nut 252 is threaded forward on rod 250 to bring the nut into engagement with the backside of beam 214 and then to pull rod 250 and twist lock 242 rearward, thereby clamping the corner casting securely between twist lock 242 and beam 214, as shown in Figure 20.

While it is apparent that the invention herein disclosed is well calculated to fulfill the objects previ¬ ously stated, it will be appreciated that numerous modifi¬ cations and embodiments may be devised by those skilled in the art, and it is intended that the appended claims cover all such modifications and embodiments as fall within the true spirit and scope of the present invention.