Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CARTRIDGES FOR VAPORIZED DEVICES
Document Type and Number:
WIPO Patent Application WO/2020/081527
Kind Code:
A1
Abstract:
Cartridges for vaporizer devices are provided. In one exemplary embodiment, the cartridge can include a reservoir housing having at least one inner container that is configured to hold a vaporizable material, and a vaporization chamber in communication with the reservoir housing and including at least one wicking element configured to draw the vaporizable material from the at least one inner container to the vaporization chamber to be vaporized by a heating element, in which the at least one inner container is substantially sealed to the at least one wicking element, and wherein the at least one inner container is configured to collapse as the vaporizable material is withdrawn therefrom. Vaporizer devices are also provided.

Inventors:
ROSSER CHRISTOPHER (US)
SMITH SIMON (US)
WESTLEY JAMES (US)
Application Number:
PCT/US2019/056267
Publication Date:
April 23, 2020
Filing Date:
October 15, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
JUUL LABS INC (US)
International Classes:
A24F40/10; A24F40/30; A24F40/42; A24F40/44
Foreign References:
US20160255876A12016-09-08
CN105848505A2016-08-10
EP3127441A12017-02-08
US20140190496A12014-07-10
Attorney, Agent or Firm:
KINGSLAND, Elissa, M. et al. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A cartridge for a vaporizer device, the cartridge comprising:

a reservoir housing having at least one inner container that is configured to hold a vaporizable material; and

a vaporization chamber in communication with the reservoir housing and including at least one wicking element configured to draw the vaporizable material from the at least one inner container to the vaporization chamber to be vaporized by a heating element;

wherein the at least one inner container is substantially sealed to the at least one wicking element, and wherein the at least one inner container is configured to collapse as the vaporizable material is withdrawn therefrom.

2. The cartridge of claim 1, wherein the collapsing of the at least one inner container substantially prevents a headspace vacuum from forming as the vaporizable material is being withdrawn from the at least one inner container.

3. The cartridge of claim 1, further comprising at least one vent extending through a wall of the reservoir housing, the at least one vent allowing ambient air to pass therethrough and into the reservoir housing such that a pressure equilibrium is substantially maintained within the reservoir housing as the vaporizable material is being withdrawn from the at least one inner container.

4. The cartridge of claim 1, wherein the vaporization chamber is defined by at least one sidewall of the reservoir housing.

5. The cartridge of claim 1, wherein the vaporization chamber is defined by at least one wall that is coated with or formed of a hydrophobic material.

6. The cartridge of claim 1, wherein the vaporization chamber is defined by at least one wall that is configured to allow at least a portion of airflow to pass therethrough and into the vaporization chamber.

7. The cartridge of claim 1, wherein the wicking element is formed of one or more porous materials.

8. The cartridge of claim 1, wherein the reservoir housing includes a first reservoir chamber and a second reservoir chamber, and wherein each of the first reservoir chamber and the second reservoir chamber has at least one of the at least one inner container disposed therein.

9. The cartridge of claim 8, wherein the vaporization chamber is positioned between the first reservoir chamber and the second reservoir chamber.

10. A vaporizer device, comprising:

a vaporizer body;

a cartridge that is selectively coupled to and removable from the vaporizer body, the cartridge including a reservoir housing having at least one inner container that is configured to hold a vaporizable material, and a vaporization chamber in communication with the reservoir housing, the vaporization chamber including at least one wicking element configured to draw the vaporizable material from the at least one inner container to the vaporization chamber to be vaporized by a heating element;

wherein the at least one inner container is substantially sealed to the at least one wicking element, and wherein the at least one inner container is configured to collapse as the vaporizable material is withdrawn therefrom.

11. The device of claim 10, wherein the vaporizer body includes a power source.

12. The device of claim 10, wherein the collapsing of the at least one inner container substantially prevents a headspace vacuum from forming as the vaporizable material is being withdrawn from the at least one inner container.

13. The device of claim 10, further comprising at least one hole that extends through a wall of the reservoir housing to allow ambient air to pass therethrough and into the reservoir housing such that a pressure equilibrium is substantially maintained within the reservoir housing as the vaporizable material is being withdrawn from the at least one inner container.

14. The device of claim 10, wherein the vaporization chamber is defined by at least one sidewall of the reservoir housing.

15. The device of claim 10, wherein the vaporization chamber is defined by at least one wall that is coated with or formed of a hydrophobic material.

16. The device of claim 10, wherein the vaporization chamber is defined by at least one wall that is configured to allow at least a portion of airflow to pass therethrough and into the vaporization chamber.

17. The device of claim 10, wherein the wicking element is formed of one or more porous materials.

18. The device of claim 10, wherein the reservoir housing includes a first reservoir chamber and a second reservoir chamber, and wherein each of the first reservoir chamber and the second reservoir chamber has at least one of the at least one inner container disposed therein.

19. The device of claim 18, wherein the vaporization chamber is positioned between the first reservoir chamber and the second reservoir chamber.

Description:
CARTRIDGES FOR VAPORIZER DEVICES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No.

62/745,745 filed on October 15, 2018, and entitled“Cartridges For Vaporizer Devices,” the disclosure of which is incorporated herein by reference in its entirety, to the extent permitted.

TECHNICAL FIELD

[0002] The subject matter described herein relates to vaporizer devices, including vaporizer cartridges.

BACKGROUND

[0003] Vaporizer devices, which can also be referred to as vaporizers, electronic vaporizer devices, or e-vaporizer devices, can be used for delivery of an aerosol (for example, a vapor-phase and/or condensed-phase material suspended in a stationary or moving mass of air or some other gas carrier) containing one or more active ingredients by inhalation of the aerosol by a user of the vaporizing device. For example, electronic nicotine delivery systems (ENDS) include a class of vaporizer devices that are battery powered and that can be used to simulate the experience of smoking, but without burning of tobacco or other substances. Vaporizer devices are gaining increasing popularity both for prescriptive medical use, in delivering medicaments, and for consumption of tobacco, nicotine, and other plant-based materials. Vaporizer devices can be portable, self-contained, and/or convenient for use.

[0004] In use of a vaporizer device, the user inhales an aerosol, colloquially referred to as “vapor,” which can be generated by a heating element that vaporizes (e.g., causes a liquid or solid to at least partially transition to the gas phase) a vaporizable material, which can be liquid, a solution, a solid, a paste, a wax, and/or any other form compatible for use with a specific vaporizer device. The vaporizable material used with a vaporizer device can be provided within a cartridge for example, a separable part of the vaporizer device that contains vaporizable material) that includes an outlet (for example, a mouthpiece) for inhalation of the aerosol by a user.

[0005] To receive the inhalable aerosol generated by a vaporizer device, a user may, in certain examples, activate the vaporizer device by taking a puff, by pressing a button, and/or by some other approach. A puff as used herein can refer to inhalation by the user in a manner that causes a volume of air to be drawn into the vaporizer device such that the inhalable aerosol is generated by a combination of the vaporized vaporizable material with the volume of air.

[0006] An approach by which a vaporizer device generates an inhalable aerosol from a vaporizable material involves heating the vaporizable material in a vaporization chamber (e.g., a heater chamber) to cause the vaporizable material to be converted to the gas (or vapor) phase. A vaporization chamber can refer to an area or volume in the vaporizer device within which a heat source (for example, a conductive, convective, and/or radiative heat source) causes heating of a vaporizable material to produce a mixture of air and vaporized material to form a vapor for inhalation of the vaporizable material by a user of the

vaporization device.

[0007] Vaporizer devices can be controlled by one or more controllers, electronic circuits (for example, sensors, heating elements), and/or the like on the vaporizer device. Vaporizer devices can also wirelessly communicate with an external controller for example, a computing device such as a smartphone).

[0008] In some implementations, the vaporizable material can be drawn out of a reservoir and into the vaporization chamber via a wicking element (e.g., a wick). Drawing of the vaporizable material into the vaporization chamber can be at least partially due to capillary action provided by the wick as the wick pulls the vaporizable material along the wick in the direction of the vaporization chamber. However, as vaporizable material is drawn out of the reservoir, the pressure inside the reservoir is reduced, thereby creating a vacuum and acting against the capillary action. This can reduce the effectiveness of the wick to draw the vaporizable material into the vaporization chamber, thereby reducing the effectiveness of the vaporization device to vaporize a desired amount of vaporizable material, such as when a user takes a puff on the vaporizer device. Furthermore, the vacuum created in the reservoir can ultimately result in the inability to draw all of the vaporizable material into the vaporization chamber, thereby wasting vaporizable material. As such, improved vaporization devices and/or vaporization cartridges that improve upon or overcome these issues is desired.

SUMMARY

[0009] In certain aspects of the current subject matter, challenges associated with the creation of headspace within the reservoir can be addressed by inclusion of one or more of the features described herein or comparable/equivalent approaches as would be understood by one of ordinary skill in the art. Aspects of the current subject matter relate to vaporizer devices and to cartridges for use in a vaporizer device. [0010] In some variations, one or more of the following features may optionally be included in any feasible combination.

[0011] In one exemplary embodiment, a cartridge for a vaporizer device is provided and includes a reservoir housing having at least one inner container that is configured to hold a vaporizable material, and a vaporization chamber in communication with the reservoir housing. The vaporization chamber includes at least one wicking element that is configured to draw the vaporizable material from the at least one inner container to the vaporization chamber to be vaporized by a heating element; in which the at least one inner container is substantially sealed to the at least one wicking element, and the at least one inner container is configured to collapse as the vaporizable material is withdrawn therefrom.

[0012] In some embodiments, the collapsing of the at least one inner container can substantially prevent a headspace vacuum from forming as the vaporizable material is being withdrawn from the at least one inner container.

[0013] In some embodiments, the cartridge can include at least one vent extending through a wall of the reservoir housing, the at least one vent allowing ambient air to pass therethrough and into the reservoir housing such that a pressure equilibrium can be substantially maintained within the reservoir housing as the vaporizable material is being withdrawn from the at least one inner container.

[0014] The vaporization chamber can have a variety of configurations. For example, in some embodiments, the vaporization chamber can be defined by at least one sidewall of the reservoir housing. In other embodiments, the vaporization chamber can be defined by at least one wall that is coated with or formed of a hydrophobic material. In yet other embodiments, the vaporization chamber can be defined by at least one wall that can be configured to allow at least a portion of airflow to pass therethrough and into the vaporization chamber.

[0015] The wicking element can have a variety of configurations. For example, in some embodiments, the wicking element can be formed of one or more porous materials.

[0016] The reservoir housing can have a variety of configurations. In some

embodiments, the reservoir housing can include a first reservoir chamber and a second reservoir chamber, in which each chamber can have at least one of the at least one inner container disposed therein. In such embodiments, the vaporization chamber can be positioned between the first reservoir chamber and the second reservoir chamber.

[0017] In another exemplary embodiment, a vaporizer device is provided and include a vaporizer body and a cartridge that is selectively coupled to and removable from the vaporizer body. The cartridge includes a reservoir housing having at least one inner container that is configured to hold a vaporizable material, and a vaporization chamber in communication with the reservoir housing. The vaporization chamber includes at least one wicking element configured to draw the vaporizable material from the at least one inner container to the vaporization chamber to be vaporized by a heating element, in which the at least one inner container is substantially sealed to the at least one wicking element, and the at least one inner container is configured to collapse as the vaporizable material is withdrawn therefrom.

[0018] The vaporizer body can have a variety of configurations. For example, in some embodiments, the vaporizer body can include a power source.

[0019] In some embodiments, the collapsing of the at least one inner container can substantially prevent a headspace vacuum from forming as the vaporizable material is being withdrawn from the at least one inner container.

[0020] In some embodiments, the cartridge can include at least one vent extending through a wall of the reservoir housing, the at least one vent allowing ambient air to pass therethrough and into the reservoir housing such that a pressure equilibrium can be substantially maintained within the reservoir housing as the vaporizable material is being withdrawn from the at least one inner container.

[0021] The vaporization chamber can have a variety of configurations. For example, in some embodiments, the vaporization chamber can be defined by at least one sidewall of the reservoir housing. In other embodiments, the vaporization chamber can be defined by at least one wall that is coated with or formed of a hydrophobic material. In yet other embodiments, the vaporization chamber can be defined by at least one wall that can be configured to allow at least a portion of airflow to pass therethrough and into the vaporization chamber.

[0022] The wicking element can have a variety of configurations. For example, in some embodiments, the wicking element can be formed of one or more porous materials.

[0023] The reservoir housing can have a variety of configurations. In some

embodiments, the reservoir housing can include a first reservoir chamber and a second reservoir chamber, each of which having at least one inner container disposed therein. In such embodiments, the vaporization chamber can be positioned between the first reservoir chamber and second reservoir chamber.

[0024] The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims. The claims that follow this disclosure are intended to define the scope of the protected subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] The accompanying drawings, which are incorporated into and constitute a part of this specification, show certain aspects of the subject matter disclosed herein and, together with the description, help explain some of the principles associated with the disclosed implementations. In the drawings:

[0026] FIG. 1 A is a block diagram of a vaporizer device;

[0027] FIG. 1B is a top view of an embodiment of a vaporizer device, showing a vaporizer cartridge separated from a vaporizer device body;

[0028] FIG. 1C is a top view of the vaporizer device of FIG. 1B, showing the vaporizer cartridge coupled to the vaporizer device body;

[0029] FIG. 1D is a perspective view of the vaporizer device of FIG. 1C;

[0030] FIG. 1E is a perspective view of the vaporizer cartridge of FIG. 1B;

[0031] FIG. 1F is another perspective view of the vaporizer cartridge of FIG. 1E;

[0032] FIG. 2 illustrates a schematic of another embodiment of a vaporizer cartridge; and

[0033] FIG. 3 illustrates a schematic of another embodiment of a vaporizer cartridge.

[0034] When practical, similar reference numbers denote similar structures, features, or elements.

DETAILED DESCRIPTION

[0035] Implementations of the current subject matter include methods, apparatuses, articles of manufacture, and systems relating to vaporization of one or more materials for inhalation by a user. Example implementations include vaporizer devices and systems including vaporizer devices. The term“vaporizer device” as used in the following description and claims refers to any of a self-contained apparatus, an apparatus that includes two or more separable parts (for example, a vaporizer body that includes a battery and other hardware, and a cartridge that includes a vaporizable material), and/or the like. A“vaporizer system,” as used herein, can include one or more components, such as a vaporizer device. Examples of vaporizer devices consistent with implementations of the current subject matter include electronic vaporizers, electronic nicotine delivery systems (ENDS), and/or the like.

In general, such vaporizer devices are hand-held devices that heat (such as by convection, conduction, radiation, and/or some combination thereof) a vaporizable material to provide an inhalable dose of the material. [0036] The vaporizable material used with a vaporizer device can be provided within a cartridge (for example, a part of the vaporizer device that contains the vaporizable material in a reservoir or other container) which can be refillable when empty, or disposable such that a new cartridge containing additional vaporizable material of a same or different type can be used). A vaporizer device can be a cartridge-using vaporizer device, a cartridge-less vaporizer device, or a multi-use vaporizer device capable of use with or without a cartridge. For example, a vaporizer device can include a heating chamber (for example, an oven or other region in which material is heated by a heating element) configured to receive a vaporizable material directly into the heating chamber, and/or a reservoir or the like for containing the vaporizable material.

[0037] In some implementations, a vaporizer device can be configured for use with a liquid vaporizable material (for example, a carrier solution in which an active and/or inactive ingredient(s) are suspended or held in solution, or a liquid form of the vaporizable material itself). The liquid vaporizable material can be capable of being completely vaporized.

Alternatively, at least a portion of the liquid vaporizable material can remain after all of the material suitable for inhalation has been vaporized.

[0038] Referring to the block diagram of FIG. 1 A, a vaporizer device 100 can include a power source 112 (for example, a battery, which can be a rechargeable battery), and a controller 104 (for example, a processor, circuitry, etc. capable of executing logic) for controlling delivery of heat to an atomizer 141 to cause a vaporizable material 102 to be converted from a condensed form (such as a liquid, a solution, a suspension, a part of an at least partially unprocessed plant material, etc.) to the gas phase. The controller 104 can be part of one or more printed circuit boards (PCBs) consistent with certain implementations of the current subject matter.

[0039] After conversion of the vaporizable material 102 to the gas phase, at least some of the vaporizable material 102 in the gas phase can condense to form particulate matter in at least a partial local equilibrium with the gas phase as part of an aerosol, which can form some or all of an inhalable dose provided by the vaporizer device 100 during a user’s puff or draw on the vaporizer device 100. It should be appreciated that the interplay between gas and condensed phases in an aerosol generated by a vaporizer device 100 can be complex and dynamic, due to factors such as ambient temperature, relative humidity, chemistry, flow conditions in airflow paths (both inside the vaporizer device and in the airways of a human or other animal), and/or mixing of the vaporizable material 102 in the gas phase or in the aerosol phase with other air streams, which can affect one or more physical parameters of an aerosol. In some vaporizer devices, and particularly for vaporizer devices configured for delivery of volatile vaporizable materials, the inhalable dose can exist predominantly in the gas phase (for example, formation of condensed phase particles can be very limited).

[0040] The atomizer 141 in the vaporizer device 100 can be configured to vaporize a vaporizable material 102. The vaporizable material 102 can be a liquid. Examples of the vaporizable material 102 include neat liquids, suspensions, solutions, mixtures, and/or the like. The atomizer 141 can include a wicking element (i.e., a wick) configured to convey an amount of the vaporizable material 102 to a part of the atomizer 141 that includes a heating element (not shown in FIG. 1 A).

[0041] For example, the wicking element can be configured to draw the vaporizable material 102 from a reservoir 140 configured to contain the vaporizable material 102, such that the vaporizable material 102 can be vaporized by heat delivered from a heating element. The wicking element can also optionally allow air to enter the reservoir 140 and replace the volume of vaporizable material 102 removed. In some implementations of the current subject matter, capillary action can pull vaporizable material 102 into the wick for vaporization by the heating element, and air can return to the reservoir 140 through the wick to at least partially equalize pressure in the reservoir 140. Other methods of allowing air back into the reservoir 140 to equalize pressure are also within the scope of the current subject matter.

[0042] As used herein, the terms“wick” or“wicking element” include any material capable of causing fluid motion via capillary pressure.

[0043] The heating element can include one or more of a conductive heater, a radiative heater, and/or a convective heater. One type of heating element is a resistive heating element, which can include a material (such as a metal or alloy, for example a nickel-chromium alloy, or a non-metallic resistor) configured to dissipate electrical power in the form of heat when electrical current is passed through one or more resistive segments of the heating element. In some implementations of the current subject matter, the atomizer 141 can include a heating element which includes a resistive coil or other heating element wrapped around, positioned within, integrated into a bulk shape of, pressed into thermal contact with, or otherwise arranged to deliver heat to a wicking element, to cause the vaporizable material 102 drawn from the reservoir 140 by the wicking element to be vaporized for subsequent inhalation by a user in a gas and/or a condensed (for example, aerosol particles or droplets) phase. Other wicking elements, heating elements, and/or atomizer assembly configurations are also possible. [0044] Certain vaporizer devices may, additionally or alternatively, be configured to create an inhalable dose of the vaporizable material 102 in the gas phase and/or aerosol phase via heating of the vaporizable material 102. The vaporizable material 102 can be a solid- phase material (such as a wax or the like) or plant material (for example, tobacco leaves and/or parts of tobacco leaves). In such vaporizer devices, a resistive heating element can be part of, or otherwise incorporated into or in thermal contact with, the walls of an oven or other heating chamber into which the vaporizable material 102 is placed. Alternatively, a resistive heating element or elements can be used to heat air passing through or past the vaporizable material 102, to cause convective heating of the vaporizable material 102. In still other examples, a resistive heating element or elements can be disposed in intimate contact with plant material such that direct conductive heating of the plant material occurs from within a mass of the plant material, as opposed to only by conduction inward from walls of an oven.

[0045] The heating element can be activated in association with a user puffing (i.e., drawing, inhaling, etc.) on a mouthpiece 130 of the vaporizer device 100 to cause air to flow from an air inlet, along an airflow path that passes the atomizer 141 (i.e., wicking element and heating element). Optionally, air can flow from an air inlet through one or more condensation areas or chambers, to an air outlet in the mouthpiece 130. Incoming air moving along the airflow path moves over or through the atomizer 141, where vaporizable material 102 in the gas phase is entrained into the air. The heating element can be activated via the controller 104, which can optionally be a part of a vaporizer body 110 as discussed herein, causing current to pass from the power source 112 through a circuit including the resistive heating element, which is optionally part of a vaporizer cartridge 120 as discussed herein. As noted herein, the entrained vaporizable material 102 in the gas phase can condense as it passes through the remainder of the airflow path such that an inhalable dose of the vaporizable material 102 in an aerosol form can be delivered from the air outlet (for example, the mouthpiece 130) for inhalation by a user.

[0046] Activation of the heating element can be caused by automatic detection of a puff based on one or more signals generated by one or more of a sensor 113. The sensor 113 and the signals generated by the sensor 113 can include one or more of: a pressure sensor or sensors disposed to detect pressure along the airflow path relative to ambient pressure (or optionally to measure changes in absolute pressure), a motion sensor or sensors (for example, an accelerometer) of the vaporizer device 100, a flow sensor or sensors of the vaporizer device 100, a capacitive lip sensor of the vaporizer device 100, detection of interaction of a user with the vaporizer device 100 via one or more input devices 116 (for example, buttons or other tactile control devices of the vaporizer device 100), receipt of signals from a computing device in communication with the vaporizer device 100, and/or via other approaches for determining that a puff is occurring or imminent.

[0047] As discussed herein, the vaporizer device 100 consistent with implementations of the current subject matter can be configured to connect (such as, for example, wirelessly or via a wired connection) to a computing device (or optionally two or more devices) in communication with the vaporizer device 100. To this end, the controller 104 can include communication hardware 105. The controller 104 can also include a memory 108. The communication hardware 105 can include firmware and/or can be controlled by software for executing one or more cryptographic protocols for the communication.

[0048] A computing device can be a component of a vaporizer system that also includes the vaporizer device 100, and can include its own hardware for communication, which can establish a wireless communication channel with the communication hardware 105 of the vaporizer device 100. For example, a computing device used as part of a vaporizer system can include a general-purpose computing device (such as a smartphone, a tablet, a personal computer, some other portable device such as a smartwatch, or the like) that executes software to produce a user interface for enabling a user to interact with the vaporizer device 100. In other implementations of the current subject matter, such a device used as part of a vaporizer system can be a dedicated piece of hardware such as a remote control or other wireless or wired device having one or more physical or soft (i.e., configurable on a screen or other display device and selectable via user interaction with a touch-sensitive screen or some other input device like a mouse, pointer, trackball, cursor buttons, or the like) interface controls. The vaporizer device 100 can also include one or more outputs 117 or devices for providing information to the user. For example, the outputs 117 can include one or more light emitting diodes (LEDs) configured to provide feedback to a user based on a status and/or mode of operation of the vaporizer device 100.

[0049] In the example in which a computing device provides signals related to activation of the resistive heating element, or in other examples of coupling of a computing device with the vaporizer device 100 for implementation of various control or other functions, the computing device executes one or more computer instruction sets to provide a user interface and underlying data handling. In one example, detection by the computing device of user interaction with one or more user interface elements can cause the computing device to signal the vaporizer device 100 to activate the heating element to reach an operating temperature for creation of an inhalable dose of vapor/aerosol. Other functions of the vaporizer device 100 can be controlled by interaction of a user with a user interface on a computing device in communication with the vaporizer device 100.

[0050] The temperature of a resistive heating element of the vaporizer device 100 can depend on a number of factors, including an amount of electrical power delivered to the resistive heating element and/or a duty cycle at which the electrical power is delivered, conductive heat transfer to other parts of the electronic vaporizer device 100 and/or to the environment, latent heat losses due to vaporization of the vaporizable material 102 from the wicking element and/or the atomizer 141 as a whole, and convective heat losses due to airflow (i.e., air moving across the heating element or the atomizer 141 as a whole when a user inhales on the vaporizer device 100). As noted herein, to reliably activate the heating element or heat the heating element to a desired temperature, the vaporizer device 100 may, in some implementations of the current subject matter, make use of signals from the sensor 113 (for example, a pressure sensor) to determine when a user is inhaling. The sensor 113 can be positioned in the airflow path and/or can be connected (for example, by a passageway or other path) to an airflow path containing an inlet for air to enter the vaporizer device 100 and an outlet via which the user inhales the resulting vapor and/or aerosol such that the sensor 113 experiences changes (for example, pressure changes) concurrently with air passing through the vaporizer device 100 from the air inlet to the air outlet. In some implementations of the current subject matter, the heating element can be activated in association with a user’s puff, for example by automatic detection of the puff, or by the sensor 113 detecting a change (.such as a pressure change) in the airflow path.

[0051] The sensor 113 can be positioned on or coupled to (i.e., electrically or

electronically connected, either physically or via a wireless connection) the controller 104 (for example, a printed circuit board assembly or other type of circuit board). To take measurements accurately and maintain durability of the vaporizer device 100, it can be beneficial to provide a seal 127 resilient enough to separate an airflow path from other parts of the vaporizer device 100. The seal 127, which can be a gasket, can be configured to at least partially surround the sensor 113 such that connections of the sensor 113 to the internal circuitry of the vaporizer device 100 are separated from a part of the sensor 113 exposed to the airflow path. In an example of a cartridge-based vaporizer device, the seal 127 can also separate parts of one or more electrical connections between the vaporizer body 110 and the vaporizer cartridge 120. Such arrangements of the seal 127 in the vaporizer device 100 can be helpful in mitigating against potentially disruptive impacts on vaporizer components resulting from interactions with environmental factors such as water in the vapor or liquid phases, other fluids such as the vaporizable material 102, etc., and/or to reduce the escape of air from the designated airflow path in the vaporizer device 100. Unwanted air, liquid or other fluid passing and/or contacting circuitry of the vaporizer device 100 can cause various unwanted effects, such as altered pressure readings, and/or can result in the buildup of unwanted material, such as moisture, excess vaporizable material 102, etc., in parts of the vaporizer device 100 where they can result in poor pressure signal, degradation of the sensor 113 or other components, and/or a shorter life of the vaporizer device 100. Leaks in the seal 127 can also result in a user inhaling air that has passed over parts of the vaporizer device 100 containing, or constructed of, materials that may not be desirable to be inhaled.

[0052] In some implementations, the vaporizer body 110 includes the controller 104, the power source 112 (for example, a battery), one more of the sensor 113, charging contacts (such as those for charging the power source 112), the seal 127, and a cartridge receptacle 118 configured to receive the vaporizer cartridge 120 for coupling with the vaporizer body 110 through one or more of a variety of attachment structures. In some examples, the vaporizer cartridge 120 includes the reservoir 140 for containing the vaporizable material 102, and the mouthpiece 130 has an aerosol outlet for delivering an inhalable dose to a user. The vaporizer cartridge 120 can include the atomizer 141 having a wi eking element and a heating element. Alternatively, one or both of the wicking element and the heating element can be part of the vaporizer body 110. In implementations in which any part of the atomizer 141 (i.e., heating element and/or wicking element) is part of the vaporizer body 110, the vaporizer device 100 can be configured to supply vaporizable material 102 from the reservoir 140 in the vaporizer cartridge 120 to the part(s) of the atomizer 141 included in the vaporizer body 110.

[0053] In an embodiment of the vaporizer device 100 in which the power source 112 is part of the vaporizer body 110, and a heating element is disposed in the vaporizer cartridge 120 and configured to couple with the vaporizer body 110, the vaporizer device 100 can include electrical connection features (for example, means for completing a circuit) for completing a circuit that includes the controller 104 (for example, a printed circuit board, a microcontroller, or the like), the power source 112, and the heating element (for example, a heating element within the atomizer 141). These features can include one or more contacts (referred to herein as cartridge contacts l24a and l24b) on a bottom surface of the vaporizer cartridge 120 and at least two contacts (referred to herein as receptacle contacts l25a and l25b) disposed near a base of the cartridge receptacle 118 of the vaporizer device 100 such that the cartridge contacts l24a and l24b and the receptacle contacts l25a and l25b make electrical connections when the vaporizer cartridge 120 is inserted into and coupled with the cartridge receptacle 118. The circuit completed by these electrical connections can allow delivery of electrical current to a heating element and can further be used for additional functions, such as measuring a resistance of the heating element for use in determining and/or controlling a temperature of the heating element based on a thermal coefficient of resistivity of the heating element.

[0054] In some implementations of the current subject matter, the cartridge contacts l24a and l24b and the receptacle contacts l25a and l25b can be configured to electrically connect in either of at least two orientations. In other words, one or more circuits necessary for operation of the vaporizer device 100 can be completed by insertion of the vaporizer cartridge 120 into the cartridge receptacle 118 in a first rotational orientation (around an axis along which the vaporizer cartridge 120 is inserted into the cartridge receptacle 118 of the vaporizer body 110) such that the cartridge contact l24a is electrically connected to the receptacle contact l25a and the cartridge contact l24b is electrically connected to the receptacle contact l25b. Furthermore, the one or more circuits necessary for operation of the vaporizer device 100 can be completed by insertion of the vaporizer cartridge 120 in the cartridge receptacle 118 in a second rotational orientation such cartridge contact l24a is electrically connected to the receptacle contact l25b and cartridge contact l24b is electrically connected to the receptacle contact l25a.

[0055] For example, the vaporizer cartridge 120 or at least the insertable end 122 of the vaporizer cartridge 120 can be symmetrical upon a rotation of 180° around an axis along which the vaporizer cartridge 120 is inserted into the cartridge receptacle 118. In such a configuration, the circuitry of the vaporizer device 100 can support identical operation regardless of which symmetrical orientation of the vaporizer cartridge 120 occurs.

[0056] In one example of an attachment structure for coupling the vaporizer cartridge 120 to the vaporizer body 110, the vaporizer body 110 includes one or more detents (for example, dimples, protrusions, etc.) protruding inwardly from an inner surface of the cartridge receptacle 118, additional material (such as metal, plastic, etc.) formed to include a portion protruding into the cartridge receptacle 118, and/or the like. One or more exterior surfaces of the vaporizer cartridge 120 can include corresponding recesses (not shown in FIG. 1 A) that can fit and/or otherwise snap over such detents or protruding portions when the vaporizer cartridge 120 is inserted into the cartridge receptacle 118 on the vaporizer body 110. When the vaporizer cartridge 120 and the vaporizer body 110 are coupled (e.g., by insertion of the vaporizer cartridge 120 into the cartridge receptacle 118 of the vaporizer body 110), the detents or protrusions of the vaporizer body 110 can fit within and/or otherwise be held within the recesses of the vaporizer cartridge 120, to hold the vaporizer cartridge 120 in place when assembled. Such an assembly can provide enough support to hold the vaporizer cartridge 120 in place to ensure good contact between the cartridge contacts l24a and l24b and the receptacle contacts l25a and l25b, while allowing release of the vaporizer cartridge 120 from the vaporizer body 110 when a user pulls with reasonable force on the vaporizer cartridge 120 to disengage the vaporizer cartridge 120 from the cartridge receptacle 118.

[0057] In some implementations, the vaporizer cartridge 120, or at least an insertable end 122 of the vaporizer cartridge 120 configured for insertion in the cartridge receptacle 118, can have a non-circular cross section transverse to the axis along which the vaporizer cartridge 120 is inserted into the cartridge receptacle 118. For example, the non-circular cross section can be approximately rectangular, approximately elliptical (i.e., have an approximately oval shape), non-rectangular but with two sets of parallel or approximately parallel opposing sides (i.e., having a parallelogram-like shape), or other shapes having rotational symmetry of at least order two. In this context, approximate shape indicates that a basic likeness to the described shape is apparent, but that sides of the shape in question need not be completely linear and vertices need not be completely sharp. Rounding of both or either of the edges or the vertices of the cross-sectional shape is contemplated in the description of any non-circular cross section referred to herein.

[0058] The cartridge contacts l24a and l24b and the receptacle contacts l25a and l25b can take various forms. For example, one or both sets of contacts can include conductive pins, tabs, posts, receiving holes for pins or posts, or the like. Some types of contacts can include springs or other features to facilitate better physical and electrical contact between the contacts on the vaporizer cartridge 120 and the vaporizer body 110. The electrical contacts can optionally be gold-plated, and/or include other materials.

[0059] FIGS. 1B-1D illustrate an embodiment of the vaporizer body 110 having a cartridge receptacle 118 into which the vaporizer cartridge 120 can be releasably inserted. FIGS. 1B and 1C show top views of the vaporization device 100 illustrating the vaporizer cartridge 120 being positioned for insertion and inserted, respectively, into the vaporizer body 110. FIG. 1D illustrates the reservoir 140 of the vaporizer cartridge 120 being formed in whole or in part from translucent material such that a level of the vaporizable material 102 is visible from a window 132 (e.g., translucent material) along the vaporizer cartridge 120. The vaporizer cartridge 120 can be configured such that the window 132 remains visible when insertably received by the vaporizer cartridge receptacle 118 of the vaporizer body 110. For example, in one exemplary configuration, the window 132 can be disposed between a bottom edge of the mouthpiece 130 and a top edge of the vaporizer body 110 when the vaporizer cartridge 120 is coupled with the cartridge receptacle 118.

[0060] FIGS. 1E illustrates an example airflow path 134 created during a puff by a user on the vaporizer device 100. The airflow path 134 can direct air to a vaporization chamber 150 (see FIG. 1F) contained in a wick housing where the air is combined with inhalable aerosol for delivery to a user via a mouthpiece 130, which can also be part of the vaporizer cartridge 120. For example, when a user puffs on the vaporizer device 100 device 100, air can pass between an outer surface of the vaporizer cartridge 120 (for example, window 132 shown in FIG. 1D) and an inner surface of the cartridge receptacle 118 on the vaporizer body 110. Air can then be drawn into the insertable end 122 of the vaporizer cartridge 120, through the vaporization chamber 150 that includes or contains the heating element and wick, and out through an outlet 136 of the mouthpiece 130 for delivery of the inhalable aerosol to a user.

[0061] As shown in FIG. 1E, this configuration causes air to flow down around the insertable end 122 of the vaporizer cartridge 120 into the cartridge receptacle 118 and then flow back in the opposite direction after passing around the insertable end 122 (e.g., an end opposite of the end including the mouthpiece 130) of the vaporizer cartridge 120 as it enters into the cartridge body toward the vaporization chamber 150. The airflow path 134 then travels through the interior of the vaporizer cartridge 120, for example via one or more tubes or internal channels (such as cannula 128 shown in FIG. 1F) and through one or more outlets (such as outlet 136) formed in the mouthpiece 130. The mouthpiece 130 can be a separable component of the vaporizer cartridge 120 or can be integrally formed with other

component(s) of the vaporizer cartridge 120 (for example, formed as a unitary structure with the reservoir 140 and/or the like).

[0062] FIG. 1F shows additional features that can be included in the vaporizer cartridge 120 consistent with implementations of the current subject matter. For example, the vaporizer cartridge 120 can include a plurality of cartridge contacts (such as cartridge contacts l24a, l24b) disposed on the insertable end 122. The cartridge contacts l24a, l24b can optionally each be part of a single piece of metal that forms a conductive structure (such as conductive structure 126) connected to one of two ends of a resistive heating element. The conductive structure can optionally form opposing sides of a heating chamber and can act as heat shields and/or heat sinks to reduce transmission of heat to outer walls of the vaporizer cartridge 120. FIG. 1F also shows the cannula 128 within the vaporizer cartridge 120 that defines part of the airflow path 134 between the heating chamber formed between the conductive structure 126 and the mouthpiece 130.

[0063] As mentioned above, a vacuum can be created in the reservoir 140 when the vaporizable material 102 is pulled from the reservoir. The presence of the vacuum in the reservoir 140 can reduce or prevent the capillary action provided by the wick. This can reduce the effectiveness of the wick to draw the vaporizable material 102 into the

vaporization chamber 150, thereby reducing the effectiveness of the vaporizer device 100 to vaporize a desired amount of the vaporizable material 102, such as when a user takes a puff on the vaporizer device 100. Furthermore, the vacuum created in the reservoir 140 can ultimately result in the inability to draw all of the vaporizable material 102 into the vaporization chamber 150, thereby wasting vaporizable material. Various features and devices are described below that improve upon or overcome these issues. For example, various features are described herein for inhibiting a vacuum from being created in a reservoir housing as a vaporizable material is withdrawn therefrom and into a vaporization chamber in a vaporizer device. Avoiding creating a vacuum can provide advantages and improvements relative to existing approaches, while also introducing additional benefits as described herein. As used herein,“reservoir housing” is used synonymously with“reservoir.”

[0064] The vaporizer cartridges described herein allow a vaporizable material to be drawn out of a reservoir housing of the vaporizing device using at least one wicking element (e.g., a wick) while reducing headspace that acts against the capillary action of the wicking element. The vaporizer cartridges generally include a reservoir housing having at least one inner container that is configured to hold a vaporizable material. As discussed in more detail below, the at least one inner container is configured to collapse or deform as the vaporizable material is drawn into the at least one wicking material such that the pressure within the at least one inner container remains substantially constant. That is, as the at least one wicking element draws the vaporizable material out of the at least one inner container, the volume of the at least one inner container decreases, thereby substantially preventing the creation of a headspace vacuum. As such, the at least one wicking element can more effectively draw out the vaporizable material from the reservoir housing, resulting in greater saturation. The greater the saturation of the at least one wicking element, the more effective the vaporizer device can be in vaporizing a desired amount of vaporizable material. Further, the at least one inner container is substantially sealed to the at least one wicking element to prevent undesirable leakage of the vaporizable material. This seal promotes the vaporizable material to be substantially dispensed only through the at least one wicking element.

[0065] FIG. 2 illustrates an exemplary vaporizer cartridge 200 that can be selectively coupled to and removable from a vaporizer body, such as vaporizer body 110 shown in FIGS. 1 A-1D). More specifically, the vaporizer cartridge 200 includes an inner container 202 that is configured to collapse, and consequently, decrease in volume, as a vaporizable material 206 is drawn therefrom, for example concurrent with and/or after a user puffs on a mouthpiece 230 coupled with the vaporizer cartridge 200.

[0066] As shown, the vaporizer cartridge 200 includes a reservoir housing 204 and a vaporization chamber 208 with a wicking element 210 extending therebetween. The reservoir housing 204 has an inner volume defined by reservoir walls 204a, 204b, 204c, and 204d. The reservoir housing 204 includes the inner container 202, which holds the vaporizable material 206.

[0067] The reservoir housing 204 can be formed of a material and/or in a structural configuration having more rigidity as compared to the inner container 202. As such, the reservoir housing 204 can also protect the inner container 202 from being damaged. For example, the reservoir housing 204 and the inner container 202 can serve as two lines of defense against undesirable leakage of the vaporizable material 206 to the environment and/or to other portions of the vaporizer cartridge 200, such as the portion of the mouthpiece 230 where a user applies his or her lips.

[0068] While the reservoir housing 204 and the inner container 202 can have a variety of shapes and configurations, the reservoir housing 204 and the inner container 202, as shown in FIG. 2, can each have a substantially rectangular shape. In other embodiments, the inner container 202 can have a different shape than that of the reservoir housing 204. Further, an initial volume of the inner container 202 can be substantially equal to the inner volume of the reservoir housing 204. As such, the size and shape of the inner container 202, and thus, the amount of vaporizable material 206 disposed therein, is dependent at least in part on the size and shape of the reservoir housing 204.

[0069] In general, as discussed above, the inner container 202 is configured to collapse as the vaporizable material 206 is drawn out of the inner container 202 and into the wicking element 210. As a result, the volume of the inner container 202 decreases as the volume of vaporizable material 206 decreases. This decrease in volume of the inner container 202can substantially prevent a headspace vacuum from forming within the inner container 202. This allows the capillary action of the wicking element 210 to effectively draw vaporizable material 206 from the reservoir housing 204 and into the vaporization chamber 208 after each puff on the mouthpiece 230 by the user.

[0070] As shown, the inner container 202 is substantially sealed to the wicking element 210 at an interface 212. As a result, the removal of the vaporizable material 206 from the inner container 202 occurs primarily, if not completely, through the wicking element 210, thereby increase leak tightness therebetween. That is, substantially sealing the inner container 202 to the wicking element 210 can help prevent leakage of vaporizable material to the environment and/or to other portions of the vaporizer cartridge, such as the portion of the mouthpiece 230 where a user applies his or her lips. Any suitable method can be used to seal the inner container 202 to the wicking element 210, for example, by way of heat sealing and the like.

[0071] The inner container 202 can have a variety of configurations. For example, as shown in FIG. 2, the inner container 202 has a pouch configuration. The inner container 202 can be formed of a flexible material. Any flexible material that can reduce in size (decrease in volume within the reservoir housing 204) as the vaporizable material 206 is withdrawn from the inner container 202 can be used. For example, the flexible material can be an elastic material that expands to a stretched state when a volume of vaporizable material 206 is disposed therein and returns to a collapsed state as the volume of the vaporizable material 206 is drawn out. Non-limiting examples of suitable flexible materials include elastomers and the like. The flexible material can be a single or multi-layered structure. The flexible material can also be non-permeable to air thereby inhibiting air within the reservoir housing 204 from entering the inner container 202 and replacing the volume of the withdrawn vaporizable material 206. Alternatively, or in addition, the flexible material can be coated with a non-permeable coating. Other suitable structural configurations of the inner container 202 are also contemplated herein.

[0072] In use, as the volume of the inner container 202 decreases, negative pressure can be created in the reservoir housing 204. This negative pressure can exert a pulling force on the inner container 202 that draws the inner container 202 in an outward direction relative to the wicking element 210, which can therefore hinder the ability of the inner container 202 to collapse. To eliminate or reduce this negative pressure, the pressure within reservoir housing 204 can be increased as the inner container 202 collapses. For example, the vaporizer cartridge 200 can include at least one vent 214 that is configured to selectively allow the passage of air into the reservoir housing 204 from the environment to thereby substantially maintain an inner pressure (e.g., an inner pressure that is substantially equal to ambient pressure) of the reservoir housing 204. This at least one vent 214 can be a passive valve or an active valve.

[0073] The at least one vent 214 can have a variety of configurations. For example, as shown in FIG. 2, the at least one vent 214 can include one or more holes that extend through a sidewall of reservoir housing 204 and selectively allow air to pass into (or out of) the reservoir housing 204. For example, the one or more holes can allow air to pass into the reservoir housing 2014 to increase pressure the pressure therein. This increase in pressure effectively relieves any vacuum (negative pressure) that is created within the reservoir housing 204 itself as the volume of the inner container 202 decreases. That is, as the vaporizable material 206 is withdrawn from the inner container 202, during use, an influx of air can enter the reservoir housing 204 through the one or more holes to equalize the pressure within the reservoir housing 204 itself. Further, this influx of air can also aid in collapsing the inner container 202.

[0074] The one or more holes can have any suitable size that allows an effective amount of air to enter the reservoir housing 204. That is, the one or more holes are sized such that they are not substantively restrictive to airflow. For example, in some embodiments, the size of the one or more holes can effect at an influx rate of air that corresponds to the absorption rate of the wi eking element 210. Further, in certain embodiments, the size of the one or more holes can be the same, whereas in other embodiments, the size of the one or more holes can vary.

[0075] The at least one vent 214 can be positioned in a variety of locations along the reservoir housing 204, such as to achieve the pressure equalization. For example, as shown in FIG. 2, the at least one vent 214 is positioned proximal to a top end 203 of the reservoir housing 204. As such, an effective position of the at least one vent 214 can therefore depend at least in part on the location of the wi eking element 210 relative thereto and the direction of the gravitational flow of the vaporizable material within the inner container 202.

[0076] While the vaporization chamber 208 can have a variety of configurations, the vaporization chamber 208, as shown in FIG. 2, is defined by two opposing sidewalls 208a, 208b, one of which is the sidewall 204b of the reservoir housing 204, and a bottom wall 208c extending therebetween. As such, in this illustrated embodiment, the vaporization chamber 208 extends co-planar with the reservoir housing 204. As shown, an airflow passageway 216 extends through the vaporization chamber 208. The airflow passageway 216 is configured to direct airflow 218 and aerosol through the vaporization chamber 208 and into the mouthpiece 230 for inhalation by a user. [0077] The airflow 218 enters the vaporization chamber 208 through the bottom wall 208c as a user puffs on the mouthpiece 230. As such, the bottom wall 208c is configured to allow airflow 218 to readily pass therethrough and into the vaporization chamber 208. While the bottom wall 208c can have a variety of configurations, the bottom wall 208c is perforated, as shown in FIG. 2. The perforations can be of any suitable size that allows air to pass through the bottom wall 208c. In certain embodiments, the size of the perforations can prevent the vaporizable material 206 or aerosol to pass through the bottom wall 208c, and therefore prevent undesirable leakage into other portions of the device. The bottom wall 208c can include any suitable number of perforations, and therefore the number of perforations is not limited by what is illustrated in the FIG. 2. Alternatively or in addition, the bottom wall 208c can be formed of an air permeable material. Thus, the bottom wall 208c functions as an air inlet for the vaporization chamber 208.

[0078] The bottom wall 208c can also be configured to prevent airflow 218 and/or aerosol within the vaporization chamber 208 from passing therethrough. That is, the bottom wall 208c can be configured as a one-way valve, and therefore only allow airflow 218 to pass through and into the vaporization chamber 208. In some embodiments, any of the remaining walls of the vaporization chamber 208 can be perforated and/or formed of an air permeable material to allow air to pass into (or out of) the vaporization chamber 208 as desired.

[0079] In some embodiments, at least one wall of the vaporization chamber 208, such as sidewall 208b which is also sidewall 204b of the reservoir housing 204, can be formed of or coated with a hydrophobic material so as to prevent any condensation from accumulating within the vaporization chamber 208. As such, any water that may be present in the aerosol and airflow 218 can be carried through and out of the vaporization chamber 208 as the user puffs on the mouthpiece 230.

[0080] A heating element or heater can be contained within the vaporization chamber 208 and coupled to the wi eking element 210. The wi eking element 210 is configured to provide the capillary action that draws the vaporizable material 206 from the inner container 202 of the reservoir housing 204 to the vaporization chamber 208 to be vaporized into aerosol by heat generated by the heating element. The aerosol is then combined with airflow 218 traveling along the airflow passageway 216 for inhalation by a user.

[0081] While the wi eking element 210 can be positioned anywhere along the airflow passageway 216, the wicking element 210, as shown in FIG. 2, is positioned proximate to the bottom wall 208c of the vaporization chamber 208. The wicking element 210 can be any suitable porous material that allows the vaporizable material 206 to flow therethrough under capillary pressure. For example, the wi eking element 210 can be formed of one or more ceramic materials, such as silica. Alternatively or in addition, the wi eking element 210 can be a composite of two or more materials, such as an inner material (e.g., graphite) surrounded by an outer material (e.g., a ceramic material).

[0082] In some embodiments, the wi eking element 210 can be formed of a porous material that includes a conductive material. For example, the ceramic material of the wi eking element 210 can be doped to include resistive properties. Such doping of the wick material (e.g., ceramic) can increase the rate of heating of the wi eking element 210, and thus the rate of vaporization of the vaporizable material 206.

[0083] Some embodiments can include a wi eking element 210 having a cross-section that varies along a length of the wicking element 210. For example, a part of the wicking element 210 that includes a smaller cross-section compared to another part of the wicking element 210 can, for example, result in greater resistance against energy flow, thereby allowing faster evaporation and vaporization of vaporizable material 206, such as for forming an aerosol for inhalation by a user. In some implementations, at least one of the cross-section dimensions and the density of conductive material can vary along a length of the wicking element 210, such as to achieve varying results (e.g., rate of vaporization, rate of heating, etc.).

[0084] In some embodiments, the vaporizer cartridge 200 includes two or more cartridge contacts such as, for example, two cartridge contact 232a, 232b. The two or more cartridge contacts can be configured to couple, for example, with the receptacle contacts l25a and l25b in order to form one or more electrical connections with the vaporizer device 100. The circuit completed by these electrical connections can allow delivery of electrical current to the heating element or heater in the vaporization chamber 208 and coupled to the wicking element 210. As noted, the wicking element 210 provides the capillary action for drawing the vaporizable material 206 from the inner container 202 of the reservoir housing 204 into the vaporization chamber 208, where the vaporizable material 206 is vaporized into aerosol by heat generated by the heating element. The aerosol is then combined with airflow 218 traveling along the airflow passageway 216 for inhalation by a user. The circuit can also serve additional functions such as, for example, measuring a resistance of the heating element for use in determining and/or controlling a temperature of the heating element based on a thermal coefficient of resistivity of the heating element.

[0085] While the embodiments of the vaporizer cartridge have been discussed in the context of a single inner container and a single wick, alternative embodiments of the vaporizer cartridge can employ multiple inner containers and/or multiple wicks. For example, as shown in FIG. 3, the vaporizer cartridge 300 can include a wi eking element 310, such as wi eking element 210 (FIG. 2), extending between two chambers 304a, 304b of a reservoir housing 304, such as reservoir housing 204 (FIG. 2). Each chamber 304a, and 304b includes an inner container 302a, 302b, such as inner container 202 (FIG. 2). As further shown in FIG. 3, the vaporizer cartridge 300 includes a vaporization chamber 308, like vaporization chamber 208 (FIG. 2), that extends between the two chambers 304a, 304b of the reservoir housing 304, thereby forming a central air passageway 316. Moreover, FIG. 3 shows the vaporizer cartridge 300 as including a mouthpiece 312 and one or more cartridge contacts such as, for example, a first cartridge contact 3 l4a and a second cartridge contact 3 l4b.

Terminology

[0086] For purposes of describing and defining the present teachings, it is noted that unless indicated otherwise, the term“substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term“substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.

[0087] When a feature or element is herein referred to as being“on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”,“attached” or“coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”,“directly attached” or“directly coupled” to another feature or element, there are no intervening features or elements present.

[0088] Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed“adjacent” another feature may have portions that overlap or underlie the adjacent feature.

[0089] Terminology used herein is for the purpose of describing particular embodiments and implementations only and is not intended to be limiting. For example, as used herein, the singular forms“a,”“an,” and“the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.

[0090] In the descriptions above and in the claims, phrases such as“at least one of’ or “one or more of’ may occur followed by a conjunctive list of elements or features. The term “and/or” may also occur in a list of two or more elements or features. Unless otherwise implicitly or explicitly contradicted by the context in which it used, such a phrase is intended to mean any of the listed elements or features individually or any of the recited elements or features in combination with any of the other recited elements or features. For example, the phrases“at least one of A and B;”“one or more of A and B;” and“A and/or B” are each intended to mean“A alone, B alone, or A and B together.” A similar interpretation is also intended for lists including three or more items. For example, the phrases“at least one of A, B, and C;”“one or more of A, B, and C;” and“A, B, and/or C” are each intended to mean“A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.” Use of the term“based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.

[0091] Spatially relative terms, such as“forward”,“rearward”,“under”,“below”,

“lower”,“over”,“upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or“beneath” other elements or features would then be oriented“over” the other elements or features. Thus, the exemplary term“under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Similarly, the terms“upwardly”,“downwardly”,“vertical”,“horiz ontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.

[0092] Although the terms“first” and“second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings provided herein. [0093] As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or“approximately,” even if the term does not expressly appear. The phrase“about” or“approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/- 0.1% of the stated value (or range of values), +/- 1% of the stated value (or range of values), +/- 2% of the stated value (or range of values), +/- 5% of the stated value (or range of values), +/- 10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value“10” is disclosed, then“about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that“less than or equal to” the value,“greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value“X” is disclosed the“less than or equal to X” as well as“greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point“10” and a particular data point“15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.

[0094] Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the teachings herein. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments, one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the claims.

[0095] One or more aspects or features of the subject matter described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) computer hardware, firmware, software, and/or combinations thereof. These various aspects or features can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which can be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. The programmable system or computing system may include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.

[0096] These computer programs, which can also be referred to programs, software, software applications, applications, components, or code, include machine instructions for a programmable processor, and can be implemented in a high-level procedural language, an object-oriented programming language, a functional programming language, a logical programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any computer program product, apparatus and/or device, such as for example magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs), used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term“machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor. The machine- readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid-state memory or a magnetic hard drive or any equivalent storage medium. The machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example, as would a processor cache or other random access memory associated with one or more physical processor cores.

[0097] The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term“invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description. Use of the term “based on,” herein and in the claims is intended to mean,“based at least in part on,” such that an unrecited feature or element is also permissible.

[0098] The subject matter described herein can be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. The implementations set forth in the foregoing description do not represent all implementations consistent with the subject matter described herein. Instead, they are merely some examples consistent with aspects related to the described subject matter. Although a few variations have been described in detail herein, other modifications or additions are possible. In particular, further features and/or variations can be provided in addition to those set forth herein. For example, the implementations described herein can be directed to various combinations and subcombinations of the disclosed features and/or combinations and subcombinations of several further features disclosed herein. In addition, the logic flows depicted in the accompanying figures and/or described herein do not necessarily require the particular order shown, or sequential order, to achieve desirable results. Other implementations may be within the scope of the following claims.