Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THE CASCADED AUTONOMOUSLY ROTATING HEATH EXCHANGER USED FOR THE PRODUCTION OF RENEWABLE ENERGY.
Document Type and Number:
WIPO Patent Application WO/2011/140615
Kind Code:
A1
Abstract:
Provided is a "Cascaded Autonomously Rotating Heath Exchanger" (CARHE). This device will transform power of the sun (or any other heat source) into rotating power. This mechanical power can easily be transformed into electrical power. A CARHE will function as the receptor for high or moderate temperature air (or fluid) through an inlet. Additionally, an inlet for relatively cold air (or fluid) is provisioned. The provided heath at the inlet will work it's way through a battery of heath exchangers. During this process, each heath exchanger will rotate and it will transfer heath from one "rotating heat exchanger" to the next. This rotation movement will deliver the mechanical power to an axis.

Inventors:
PROVOOST BART ANDREA ROBERT (BE)
Application Number:
PCT/BE2010/000031
Publication Date:
November 17, 2011
Filing Date:
May 13, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PROVOOST BART ANDREA ROBERT (BE)
International Classes:
F03B17/04; F03G7/10
Domestic Patent References:
WO2002088544A12002-11-07
Foreign References:
NL1035296C12008-06-18
DE202008007881U12009-10-22
Other References:
ANONYMOUS: "PERPETUAL MOTION", PERPETUAL MOTION: THE HISTORY OF AN OBSESSION, ST. MARTINS, GB, 1 January 1977 (1977-01-01), pages 100 - 103, XP008079115
VAN LIER J J C: "HET PERPETUUM MOBILE VAN DI WESSELI", INGENIEUR, KIVI. DEN HAAG, NL, vol. 100, no. 2, 1 February 1988 (1988-02-01), pages 60/61, XP002068246, ISSN: 0020-1146
HUME A W J G ED - ORD-HUME A: "Perpetual Motion: The history of an obsession", 1 January 1994, PERPETUAL MOTION. HISTORY OF AN OBSESSION, NEW YORK, ST. MARTIN'S PRESS, US, PAGE(S) 58 - 75,100/101, XP002106851
Download PDF:
Claims:
CLAIMS

1. The concept of an automotive rotating heat exchanger (RHE) without the use of an external engine, as explained in description part A.

2. The concept of a ring of connected boxes partially filled with liquid to function as a heat exchanger.

3. The concept of a unidirectional flow of liquids to create a continuous mechanical movement based on heating and cooling of a liquid.

4. The concept of an isolated evaporation compartment in a heat exchanger to evaporate a designed portion of the liquid.

5. The concept of cascading heat exchangers containing liquids with descending evaporation temperatures from one to the next.

6. The concept of reusing heat from one heat exchanger to the next to increase the efficiency of the total set-up.

7. The use of the received heat in different levels of the CARHE by stepping up the individual RHE's as the evaporation temperature of the liquid drops.

Description:
DESCRIPTION

A. The rotating heat exchanger (RHE)

The concept of one RHE should be explained first before a cascaded autonomously rotating heath exchanger can be explained.

See "figure 1" for the conceptual design of the RHE.

A RHE consists of a number of airtight (and fluid- tight) boxes. The direction of the installation is vertical. The boxes are connected to each other forming a ring. Each box is connected to an upper box, and it is connected to a lower box. The connection between the boxes is a tube permitting fluid or gas to be transported from one box to the other.

Within the connection tube, a valve is mounted. This valve permits fluid or gas to be transported in one direction, but not in the opposite direction (unidirectional valve). The orientation of all the valves is in the same direction. This allows fluid and gas to circle the ring of boxes in one direction (e.g. counter clockwise as in "figure 1", right side) but not in the other direction (clockwise).

The RHE has two axes. The ring of boxes can circulate around them.

Within each box, a evaporation compartment (EC) exists (see "figure 2") that can hold a limited amount of liquid, compared to the total volume of the box. The EC is, as much as possible, isolated from the main container.

The volume of the boxes is partially filled with a liquid that has a specific boiling point. The remainder of the boxes is filled with the same liquid in gasified form.

Applied heat should be targeted to the EC (see "figure 2"). Fluid in the EC will evaporate by the applied heat. Gas is formed and fluids, that are present in the box, will be pushed outside because of the rising pressure. The only way for the fluids to go is through the unidirectional valve in the lower part of the box. The unidirectional valves should point downward at the side of the RHE where heat is applied.

The fluid and the gas are separated by floating isolation to prevent condensation of the gas in the fluid.

Because some of the fluid is moved within the boxes, the balance of the ring of boxes changes. The ring of boxes will move around the axes to restore its balance. Because evaporation has made the specific box lighter, it will move upwards. In the case that the fluid will move counter clockwise then the RHE will move clockwise. During this movement, the axes will turn and energy is gained from them when the axis is connected to a useful load.

On the opposite side of the RHE, the boxes are being cooled (see "figure 3").

In order to separate the cool and the warm side, isolation is present in between the two halves of the RHE (see figure 1). Cooling will force part of the gas fraction to condensate. This will cause an under-pressure in the box. Because of the direction of the valves, the only way the under-pressure can be undone is by sucking fluid from the box below into the higher box. The direction of the unidirectional valves will be upward on the cooling side.

If there is no fluid in the box below, then gas will flow into the upper box.

The pressure on the hot side ("figure 1", front) tends to be high while the pressure on the cool side ("figure 1", rear) tends to be low. Because of these differences in pressure in the RHE, there can only be a flow of liquids at the bottom of the RHE. No flow of gas at the top side is possible because of the direction of the valves and the pressure within the boxes. The EC is refilled with fluid when the box passes at the bottom of the RHE (see "figure 1") where the EC is at its lowest point in the chain.

B. Cascaded autonomously rotating heat exchanger

An arbitrary number of RHE's can be cascaded as shown in "figure 4".

"Figure 4" shows 4 RHE's (1, 2, 3 and 4) that are combined in one housing frame.

The housing is airtight, except for the inlets and outlets for hot and cold air (or another medium). At the right side, the hot air is fed from the bottom into the hot air inlet. It will heat the liquid present in RHE 1.

The hot air should evaporate the liquids in EC of RHE 1, therefore the temperature should be high enough in comparison to the evaporation temperature of the liquid. Lets assume an example where the liquid boils at 100 °C and the hot air is 120 °C.

The gasified liquid will push the remaining liquid in clockwise direction down and to the left side of RHE 1. The ring of boxes will rotate counter clockwise around the two axes.

Assume in the example that the boiling temperature in RHE 2 is 80 °C.

A box from RHE 1 will move in counterclockwise direction from the right hand side to the left hand side at the top of RHE 1.

The temperature in the box of RHE 1 will be 100 °C; this is the boiling temperature of the liquid in RHE 1. The box will radiate heat in the space between RHE 1 end RHE 2. The heat will be absorbed by the liquid in the boxes of RHE 2. This liquid will start to evaporate. Because the evaporation temperature is 80 °C, the liquid will effectively cool the gas in the box of RHE 1.

The gas in the box of RHE 1 will condensate because it is dropping to 80°C.

Assume that the boiling temperature in RHE 3 is 60 °C, and in RHE 4 it is 40 °C.

The same mechanism as described in - page 2 line 23 through page 3 line 3 - will be true for RHE 2, 3 and 4 considering the lower temperatures and the correct numbering of the RHE's.

Because the incoming hot air will be cooled to 100°C after passing RHE 1, it has still energy left to heat RHE 2. After RHE 2 it can still heat RHE 3, and after that RHE 4. For this reason, the RHE's are placed stepwise (see "figure 4") to use the maximum energy out of the incoming air.

RHE 4 is cooled with incoming air of lower temperature than the boiling temperature of the liquid in RHE 4. In this case the temperature should be below 40 °C; e.g. 20 °C.

The hot air that is fed into the CARHE can be harvested from the sun using known technologies, but other heat sources can be used too.

Assuming that the efficiency of one RHE is 10%, then the efficiency of the CARHE increases with the number of RHE's in use. See "figure 5" for the maximum possible extracted energy based on the number of cascaded RHE's. Note that the horizontal asymptote of this function is situated at 100%.




 
Previous Patent: WO/2011/140614

Next Patent: DEVICE FOR COMPRESSING AND DRYING GAS