Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CATALYSTS FOR LOW TEMPERATURE ELECTROLYTIC CO2 OR CO REDUCTION
Document Type and Number:
WIPO Patent Application WO/2014/018091
Kind Code:
A1
Abstract:
A method for electrochemically reducing CO or CO2 is provided. A cathode is provided, wherein the cathode comprises a conductive substrate with a catalyst of a metal and a metal oxide based coating on a side of the cathode. An anode is spaced apart from the cathode. An ionic transport is provided between the anode and cathode. The cathode is exposed to CO or CO2 and H2O. The anode is exposed to H2O. A voltage is provided between the cathode and anode.

Inventors:
CHEN YIHONG (US)
LI CHRISTINA (US)
KANAN MATTHEW W (US)
Application Number:
PCT/US2013/025791
Publication Date:
January 30, 2014
Filing Date:
February 12, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV LELAND STANFORD JUNIOR (US)
International Classes:
C01B32/40; C25B3/25
Foreign References:
JPH07188961A1995-07-25
US7566388B22009-07-28
US20080283411A12008-11-20
US20070054170A12007-03-08
US5064733A1991-11-12
US20090016948A12009-01-15
Attorney, Agent or Firm:
LEE, Michael et al. (P.O. Box 1687Cupertino, California, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method for electrochemically reducing CO2, comprising:

providing a cathode, wherein the cathode comprises a conductive substrate with a catalyst of a metal and a metal oxide based coating on a side of the cathode;

providing an anode spaced apart from the cathode;

providing an ionic transport between the anode and cathode;

exposing the cathode to C02 and H20;

exposing the anode to ¾0; and

providing a voltage between the cathode and anode.

2. The method, as recited in claim 1 , wherein the metal oxide is tin oxide, copper oxide, silver oxide, palladium oxide, gold oxide, molybdenum oxide, lead oxide, platinum oxide, nickel oxide, bismuth oxide, antimony oxide or cerium oxide.

3. The method, as recited in any of claims 1 or 2, wherein the metal oxide is thicker than the native oxide.

4. The method, as recited in any of claims 1-3, wherein the providing the cathode comprises:

providing a conductive substrate with a metal coating; and

providing on the conductive substrate a metal oxide coating that is thicker than a native oxide layer by either annealing the metal coating, electrochemically oxidizing the metal coating, chemically oxidizing the metal coating or depositing a metal oxide layer.

5. The method, as recited in any of claims 1-4, further comprising reducing metal oxide in the metal and metal oxide based coating to the metal 0 oxidation state.

6. The method, as recited in any of claims 1-5, where the metal oxide in the metal and metal oxide based coating has a thickness that is greater than 50 nm.

7. The method, as recited in any of claims 1-6, where the metal oxide in the metal and metal oxide based coating has a thickness that is greater than twice a thickness of a native oxide layer.

8. The method, as recited in any of claims 1-7, wherein the metal oxide and metal are of the same metal material.

9. The method, as recited in any of claims 1-8, wherein the metal and metal oxide containing coating provide a metal and metal oxide interface.

10. The method, as recited in any of claims 1-9, wherein the exposing the cathode to CO2 and H2O, comprises:

exposing a first side of the cathode to ¾0; and

flowing CO2 past a second side of the cathode.

11. The method, as recited in any of claims 1-10, wherein the providing the cathode, comprises:

providing a conductive substrate with a metal coating; and

applying an anodic square wave potential to the metal coating to form an oxide layer.

12. The method, as recited in claim 11, wherein the metal coating is gold or silver. 13. The method, as recited in any of claims 1-12, wherein the exposing the cathode to CO2 and H2O further exposes the cathode to CO.

14. The method, as recited in claim 13, wherein the metal oxide is copper oxide.

15. The method, as recited in any of claims 13-14, further comprising flowing CO past the second side of the cathode from a CO source.

16. A method for electrochemically reducing CO2, comprising:

providing on a cathode a coating formed by heating a metal layer of the cathode in air, electrochemically oxidizing the metal layer of the cathode, chemically oxidizing the metal layer or by a metal oxide deposition to form a metal and metal oxide interface; providing an anode spaced apart from the cathode;

providing an ionic transport between the anode and cathode;

exposing the coating to CO2 and ¾0;

exposing the anode to H20; and

providing a voltage between the cathode and anode.

17. The method, as recited in claim 16, wherein the cathode is copper and the coating is formed by heating the cathode to a temperature of at least 500 C for at least 15 minutes.

18. The method, as recited in claim 16, wherein the cathode is copper and the coating is formed by heating the cathode to a temperature of at least 300 °C for at least 15 minutes.

19. The method, as recited in any of claims 16-18, further comprising reducing the metal oxide to metal.

20. The method, as recited in any of claims 16-19, where the metal oxide has a thickness that is greater than 50 nm.

21. The method, as recited in any of claims 16-20, where the metal oxide has a thickness that is greater than twice a thickness of a native oxide layer.

22. The method, as recited in any of claims 16-21, wherein the providing on a cathode a coating, comprises applying an anodic square wave potential to the metal layer to form an oxide layer.

23. The method, as recited in claim 22, wherein the metal layer is gold or silver.

24. The method, as recited in any of claims 16-23, wherein the exposing the cathode to CO2 and H20 further exposes the cathode to CO.

25. The method, as recited in claim 24, wherein the metal oxide is copper oxide. 26. The method, as recited in any of claims 24-25, further comprising flowing CO past the second side of the cathode from a CO source.

27. An apparatus, for electrochemically reducing CO2, comprising:

an anode;

an oxidized cathode spaced apart from the anode;

a chamber for exposing the anode and oxidized cathode to at least one electrolyte adjacent to the anode and oxidized cathode;

a gas chamber for exposing the oxidized cathode to CO2 adjacent to the oxidized cathode; and

a CO2 source for providing CO2 to the gas chamber, connected to the gas chamber. 28. The apparatus, as recited in claim 27, wherein the oxidized cathode comprises: a conductive substrate; and

an oxidized layer over the conductive substrate.

29. The apparatus, as recited in claim 28, wherein the oxidized layer, comprises: a metal layer formed over the conductive substrate; and

a metal oxide layer formed over the conductive substrate and forming a metal layer metal oxide layer interface.

30. The apparatus, as recited in claim 29, wherein the oxidized layer is subsequently reduced.

31. The apparatus, as recited in claim 27, wherein the oxidized cathode comprises a metal layer that has been oxidized using an anodic square wave potential.

32. The apparatus, as recited in claim 31, wherein the metal layer is gold or silver.

33. The apparatus, as recited in any of claims 27-32, further comprising a CO source for providing CO to the gas chamber.

34. The apparatus, as recited in claim 33, wherein the oxide layer is copper oxide.

35. A method for electrochemically reducing CO, comprising:

providing a cathode, wherein the cathode comprises a conductive substrate with a catalyst of a metal and a metal oxide based coating on a side of the cathode;

providing an anode spaced apart from the cathode;

providing an ionic transport between the anode and cathode;

exposing the cathode to CO and H20;

exposing the anode to H20; and

providing a voltage between the cathode and anode.

36. The method, as recited in claim 35, wherein the metal oxide is copper oxide.

37. The method, as recited in any of claims 35 or 36, wherein the metal oxide is thicker than the native oxide.

38. The method, as recited in any of claims 35-37, wherein the providing the cathode comprises:

providing a conductive substrate with a metal coating; and

providing on the conductive substrate a metal oxide coating that is thicker than a native oxide layer by either annealing the metal coating, electrochemically oxidizing the metal coating, chemically oxidizing the metal coating or depositing a metal oxide layer.

39. The method, as recited in any of claims 35-38, further comprising reducing metal oxide in the metal and metal oxide based coating to the metal 0 oxidation state.

40. The method, as recited in any of claims 35-39, where the metal oxide in the metal and metal oxide based coating has a thickness that is greater than 50 nm.

41. The method, as recited in any of claims 35-40, wherein the metal oxide and metal are of the same metal material.

42. The method, as recited in any of claims 35-41, wherein the metal and metal oxide containing coating provide a metal and metal oxide interface.

43. The method, as recited in any of claims 35-42, wherein the exposing the cathode to CO2 and H2O, comprises:

exposing a first side of the cathode to ¾0; and

flowing CO2 past a second side of the cathode.

44. The method, as recited in any of claims 35-43, wherein the providing the cathode, comprises:

providing a conductive substrate with a metal coating; and applying an anodic square wave potential to the metal coating to form an oxide layer.

45. The method, as recited in any of claims 35-44, wherein the metal coating is copper or copper alloy.

46. The method, as recited in any of claims 35-45, wherein the ionic transport is an aqueous basic solution.

47. A method for electrochemically reducing CO, comprising:

providing on a cathode a coating formed by heating a metal layer of the cathode in air, electrochemically oxidizing the metal layer of the cathode, chemically oxidizing the metal layer or by a metal oxide deposition to form a metal and metal oxide interface; providing an anode spaced apart from the cathode;

providing an ionic transport between the anode and cathode;

exposing the coating to CO and ¾0;

exposing the anode to ¾0; and

providing a voltage between the cathode and anode.

48. The method, as recited in claim 47, wherein the cathode is copper and the coating is formed by heating the cathode to a temperature of at least 500 C for at least 15 minutes.

49. The method, as recited in claim 47, wherein the cathode is copper and the coating is formed by heating the cathode to a temperature of at least 300 °C for at least 15 minutes.

50. The method, as recited in any of claims 47-49, further comprising reducing the metal oxide to metal.

51. The method, as recited in any of claims 47-50, where the metal oxide has a thickness that is greater than 50 nm.

52. The method, as recited in any of claims 47-51, where the metal oxide has a thickness that is greater than twice a thickness of a native oxide layer.

53. The method, as recited in any of claims 47-52, wherein the providing on a cathode a coating, comprises applying an anodic square wave potential to the metal layer to form an oxide layer.

54. The method, as recited in any of claims 47-53, wherein the metal layer is copper or copper alloy.

55. The method, as recited in any of claims 47-54, wherein the metal oxide is copper oxide.

56. The method, as recited in any of claims 47-55, wherein the ionic transport is an aqueous basic solution.

57. An apparatus, for electrochemically reducing CO, comprising:

an anode;

an oxidized cathode spaced apart from the anode;

a chamber for exposing the anode and oxidized cathode to at least one electrolyte adjacent to the anode and oxidized cathode;

a gas chamber for exposing the oxidized cathode to CO2 adjacent to the oxidized cathode; and

a CO source for providing CO to the gas chamber, connected to the gas chamber.

58. The apparatus, as recited in claim 57, wherein the oxidized cathode comprises: a conductive substrate; and

an oxidized layer over the conductive substrate.

59. The apparatus, as recited in claim 58, wherein the oxidized layer, comprises: a metal layer formed over the conductive substrate; and

a metal oxide layer formed over the conductive substrate and forming a metal layer metal oxide layer interface.

60. The apparatus, as recited in claim 59, wherein the oxidized layer is subsequently reduced.

61. The apparatus, as recited in claim 57, wherein the oxidized cathode comprises a metal layer that has been oxidized using an anodic square wave potential.

62. The apparatus, as recited in any of claims 57-61, wherein the metal layer is copper or copper alloy.

63. The apparatus, as recited in any of claims 59-62, wherein the metal oxide layer is copper oxide.

Description:
CATALYSTS FOR LOW TEMPERATURE ELECTROLYTIC C02 OR CO

REDUCTION

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of and claims priority under 35 U.S.C §120 from PCT Application No. PCT/US2012/048179, filed July 25, 2012 entitled

CATALYSTS FOR LOW TEMPERATURE ELECTROLYTIC C02 REDUCTION which claims priority under 35 U.S.C. §119 from U.S. Provisional Patent Application No.

61/511,824, filed July 26, 2011, entitled CERIA-BASED ELECTROREDUCTION

CATALYSTS FOR LOW-TEMPERATURE ELECTROLYTIC SYNGAS

PRODUCTION and U.S. Provisional Patent Application No. 61/579,422, filed December 22, 2011, entitled CATALYSTS FOR LOW TEMPERATURE ELECTROLYTIC C02 REDUCTION, which are incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

[0002] This invention relates generally to the reduction of CO 2 . Sustainable production of C-based fuel requires using renewable energy to power the reductive fixation of CO 2 . Coupling renewable electricity to an electrolytic device is an attractive strategy for this goal because it enables the use of multiple renewable energy sources and independent optimization of catalysis. Solid oxide electrolytic cells reduce CO 2 to CO efficiently at high current densities, but require operating temperatures of 750-900 °C and cannot access other products.

[0003] Materials that catalyze electrochemical CO 2 reduction under mild conditions would enable the development of electrolyzers that operate at more convenient temperatures and provide access to alternative reduction products such as formic acid, alcohols and hydrocarbons. Researchers over the past three decades have identified several materials that are capable of reducing CO 2 electrochemically in aqueous solutions, but none that is efficient and stable enough for practical use. In general, available electrodes suffer from one or more of three major problems: 1) a requirement for excessive reducing potentials ("overpotentials") to reduce CO 2 in preference to reducing H 2 O, resulting in low energetic efficiency; 2) rapid loss of CO 2 reduction activity resulting from electrode poisoning; 3) production of multiple CO 2 reduction products with little selectivity. There is a pressing need to discover and develop new

electrochemical CO 2 reduction catalysts in order for sustainable fuels to be a significant contributor to a renewable energy economy. SUMMARY OF THE INVENTION

[0004] In accordance with the invention, a method for electrochemically reducing CO or CO 2 is provided. A cathode is provided, wherein the cathode comprises a conductive substrate with a catalyst of a metal and a metal oxide based coating on a side of the cathode. An anode is spaced apart from the cathode. An ionic transport is provided between the anode and cathode. The cathode is exposed to CO or CO 2 and ¾0. The anode is exposed to H 2 0. A voltage is provided between the cathode and anode.

[0005] In another manifestation of the invention, a method for electrochemically reducing CO or CO 2 is provided. A coating is formed on a cathode by heating a metal layer of the cathode in air, electrochemically oxidizing the metal layer of the cathode, or by a metal oxide deposition to form a metal and metal oxide interface. An anode is spaced apart from the cathode. An ionic transport is provided between the anode and cathode. The coating is exposed to CO or CO 2 and H 2 O. The anode is exposed to H 2 O. A voltage is provided between the cathode and anode.

[0006] In another manifestation of the invention an apparatus, for electrochemically reducing CO or CO 2 is provided. An anode is provided. An oxidized cathode is spaced apart from the anode. A chamber for exposing the anode and oxidized cathode to at least one electrolyte is adjacent to the anode and oxidized cathode. A gas chamber for exposing the oxidized cathode to CO or CO 2 is adjacent to the oxidized cathode. A CO or CO 2 source for providing CO or CO 2 to the gas chamber is connected to the gas chamber.

[0007] The invention and objects and features thereof will be more readily apparent from the following detailed description and appended claims when taken with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 A shows the XPS spectra of untreated Sn foil before and after electrolysis and Sn foil after etching in HBr.

[0009] FIG. IB is a plot of total current density vs time, CO faradaic efficiency vs time, and overall HCO 2 H faradaic efficiency at -0.7 V vs RHE in C0 2 -saturated 0.5 M NaHC0 3 for unetched Sn.

[0010] FIG. 1C is a plot of total current density vs time, CO faradaic efficiency vs time, and overall HCO 2 H faradaic efficiency for untreated Sn at -0.7 V vs RHE in CO 2 - saturated 0.5 M NaHC0 3 for etched Sn. [0011] FIG. 2A depicts the bulk electrolysis trace at -0.7 V in NaHC0 3 /C0 2 electrolyte for a Ti cathode before and after the addition of 1 mM SnCi 2 to the electrolyte.

[0012] FIG. 2B shows SEM images of a Ti electrode before and after deposition showing the formation of a porous, particulate film with -100 nm-diameter pieces atop a more uniform layer.

[0013] FIG. 2C is a high resolution Sn 3d 5/2 XPS of a Sn/SnO x catalyst removed 30 min or 12 h after the addition of Sn 2+ .

[0014] FIG. 2D provides graphs of XRD patterns showing Sn°, SnC> 2 , and Ti peaks after 30 min or 12 h.

[0015] FIGS. 3A-C shows the comparison of CO 2 reduction catalysis for unexcited Sn foil and in situ deposited Sn/SnO^ thin film electrodes.

[0016] FIGS. 4A-E shows the total geometric current density (j tot ) vs time, the faradaic efficiency (FE) for CO vs time and the overall FE for HCO 2 H for the polycrystalline Cu electrode and several of the annealed electrodes with progressively thicker initial C¾0 layers at -0.5 V vs the reversible hydrogen electrode.

[0017] FIG. 4F shows the average FE for CO vs the amount of charge required to reduce the C¾0 layer per electrode area.

[0018] FIGS. 5A-F show the scanning electron microscopy (SEM) images, X-ray diffraction (XRD) patterns, and high-resolution Cu 2p X-ray photoelectron spectroscopy (XPS) spectra for a Cu electrode after annealing procedure and after subsequent CO 2 reduction electrolysis.

[0019] FIGS. 6A-C show the total current densities and faradaic efficiencies for the major products for a Cu electrode annealed at 500 °C for 12 h and for polycrystalline Cu.

[0020] FIG. 7 shows Tafel data for a Cu electrode annealed at 500 °C for 12 h and Tafel data for polycrystalline Cu.

[0021] FIG. 8 is a high level flow chart of an embodiment of the invention.

[0022] FIGS. 9A-B are enlarged cross-sectional views of part of a conductive substrate with a metal coating, forming part of a cathode.

[0023] FIG. 10 is a schematic view of an electrolyzer that may be used in an embodiment of the invention.

[0024] FIG. 11 is a high level flow chart of another embodiment of the invention. [0025] FIG. 12 is a schematic view of an electrolyzer that may be used in another embodiment of the invention.

DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

Tin

[0026] Metal electrodes have been the focus of extensive C(¾ electroreduction studies in aqueous solutions at ambient temperature. Sn has attracted considerable interest because it is one of the most active metals and its low cost is amenable to large-scale use. Despite its appeal relative to other electrodes, the energy efficiency of Sn is too low for practical electrolysis. Sn is reported to require at least 0.86 V of overpotential to attain a CO 2 reduction partial current density of 4-5 mA/cm 2 in an aqueous solution saturated with 1 atm of C(¾. It is generally assumed that the bare Sn surface is the catalytically active surface for CO 2 reduction. The large overpotential required for CO 2 reduction is thought to result from the barrier associated with the initial e ~ transfer to form a CO 2 * intermediate that is poorly stabilized by the Sn surface. This mechanistic scenario is commonly invoked for many metal electrodes.

[0027] In an embodiment of the invention, SnO^ is essential to CO 2 reduction catalysis on Sn. This may be shown by demonstrating that removal of SnO^ from a Sn electrode results in nearly exclusive ¾ evolution activity. This insight is subsequently applied to prepare a composite Sn/SnO^ thin film catalyst that exhibits greatly enhanced CO 2 reduction activity relative to a typical Sn electrode.

[0028] To evaluate the importance of SnO x on the surface of Sn in CO 2 reduction, we compared the activity of Sn electrodes that had been etched in strong acid to the activity of untreated electrodes. In both cases, new pieces of high purity Sn foil (99.998%) were used. The surface of the untreated foil was examined by XPS to characterize the native SnOx layer. FIG. 1A shows the XPS spectra of untreated Sn foil before and after electrolysis (left) and Sn foil after etching in HBr (right). The curves are combinations of two Gaussian/Lorentzian curves at 486.5 eV and 484.7 eV. FIG. IB is a plot of total current density vs time (indicated by the line), CO faradaic efficiency vs time (indicated by the■ points) and overall HCO 2 H faradaic efficiency for untreated Sn at -0.7 V vs RHE in C0 2 -saturated 0.5 M NaHC0 3 for unetched Sn. FIG. 1C is a plot of total current density vs time (indicated by the line), CO faradaic efficiency vs time (indicated by the■ points) and overall HCO 2 H faradaic efficiency for untreated Sn at -0.7 V vs RHE in C0 2 -saturated 0.5 M NaHC0 3 for etched Sn.

[0029] The high resolution Sn 3d 5 2 spectrum was fit to two peaks at 486.5 eV and 484.7 eV that correspond to Sn 4+ 2+ (SnO x ) and Sn°, respectively. The ratio of corrected peak areas for SnO x to Sn° is 95:5, indicating the presence of a > 5 nm native SnO x layer.

[0030] Etched electrodes were prepared by immersing the Sn foil in 24% HBr at 90° C for 10 min. An XPS spectrum of the etched electrode taken immediately after removal from the HBr solution exhibited a SnO x :Sn° ratio of 17:83 (FIG. 1A). The residual oxide observed on this electrode is likely due to oxide regrowth in the brief exposure to air upon transferring to the XPS chamber, as assessed by independent XPS experiments with a sputtered electrode. For electrolysis experiments, etched electrodes were rinsed with deionized water at the conclusion of the etching procedure and used immediately to minimize oxide regrowth.

[0031] The electrolyses were performed in an H-cell in 0.5 M aqueous NaHC(¾ saturated with C0 2 ("NaHC0 3 /C0 2 ") at a potential of -0.7 V vs the reversible hydrogen electrode (RHE; all potentials are referenced to this electrode). The headspace of the cathodic compartment was continuously purged with C0 2 into the sampling valve of a gas chromatograph (GC), enabling periodic quantification of the gas phase products. FIG. IB shows the total geometric current density (j tot ) vs time and the faradaic efficiency for CO production at various time points for an untreated Sn electrode. The electrode exhibits a current density of 0.4-0.6 mA/cm 2 and a steady-state faradaic efficiency for CO of 5-10%. NMR analysis of the electrolyte at the conclusion of the experiment indicates 19% faradaic efficiency for HCO 2 H; the remainder of the current is accounted for by ¾ formation. This CO 2 reduction activity is consistent with the best reported activity for Sn at -1.06 V, taking into account the difference in overpotential. An electrode examined by XPS after a 12 h electrolysis at -0.7 V exhibited a SnO x :Sn° ratio of 89: 11, indicating that the native SnO x layer is stable to the reduction conditions (FIG. 1A).

[0032] Strikingly, an etched Sn electrode exhibits a much higher j tot of 3-4 mA/cm 2 , but very low faradaic efficiency for CO (0.5%) and HC0 2 H production (0.3%) (FIG. 1C). The higher j tot likely reflects a larger electrochemical surface area due to etching. Despite the higher surface area, the geometric partial current density for CO 2 reduction is lower for the etched Sn electrode (24-32 μΑ/cm 2 ) than the untreated Sn electrode (92- 140 μΑ/cm 2 ) due to the much lower faradaic efficiency. Very low (< 1%) CO 2 reduction faradaic efficiencies on etched Sn are also observed over a range of potentials from -0.5 V to -1.0 V. Thus, etched Sn is a moderately efficient ¾ evolution catalyst, but is essentially inactive for CO 2 electroreduction. Similar results were obtained if Sn electrodes were etched by polarizing at -3 V in HCl solution instead of treating with hot HBr solution.

[0033] Together, the XPS and electrolysis results indicate that removal of the native SnO x layer from a Sn electrode suppresses C0 2 reduction activity such that H 2 evolution accounts for > 99% of the current density. The small residual CO 2 reduction activity observed on etched Sn likely reflects the growth of a small amount of SnO x on the etched electrode before the start of electrolysis.

[0034] Based on these results, we hypothesized that the simultaneous deposition of Sn° and SnO x on an electrode surface would result in a material with enhanced Sn-SnO x contact that is consequently a more active catalyst for CO 2 reduction than a typical Sn foil electrode with a native SnO x layer. Accordingly, we sought electrodeposition conditions in which the hydrolysis of Sn 2+ by cathodically generated OH would take place concurrently with the reduction of Sn 2+ to Sn° (E° = -0.1375 V vs NHE). As described below, deposition on Ti electrodes under the same conditions used for CO 2 electroreduction proved to be particularly effective.

[0035] FIG. 2A depicts the bulk electrolysis trace at -0.7 V in NaHC0 3 /C0 2 electrolyte for a Ti cathode before and after the addition of 1 mM SnCl 2 to the electrolyte. Prior to the addition of Sn 2+ , the Ti electrode exhibits a current density of -10 μΑ/cm 2 with very little detectable CO 2 reduction. Addition of Sn 2+ results in a sharp rise in the current density to a steady-state value of -1.8 mA/cm 2 and the formation of a grey deposit on the electrode surface. The current density is stable for > 10 h and corresponds to > 85% CO 2 reduction with the remainder accounted for by ¾ evolution. Nearly identical results are obtained if Sn(OTf) 2 is used instead of SnCl 2 , indicating that Cr is not necessary for catalyst formation.

[0036] The composition and structure of the electrodeposited catalyst were characterized by a combination of scanning electron microscopy (SEM), XPS and powder x-ray diffraction (XRD). A catalyst was prepared via in situ deposition as described above and removed from the electrolyte 30 min after the addition of Sn 2+ . FIG. 2B shows SEM images of a Ti electrode before (left) and after (right) deposition showing the formation of a porous, particulate film with -100 nm-diameter pieces atop a more uniform layer. FIG. 2C is a high resolution Sn 3d 5 2 XPS of a Sn/SnO x catalyst removed 30 min (left) or 12 h (right) after the addition of Sn 2+ . XPS analysis indicates a SnO x :Sn° ratio of 93:7, similar to the ratio observed for Sn foil electrodes with a native SnO x layer. FIG. 2D provides graphs of XRD patterns showing Sn° (■), SnC> 2 (*) and Ti (·) peaks after 30 min or 12 h. In the XRD pattern of this electrode, strong Sn° peaks are observed along with small peaks that correspond to SnC> 2 . The latter are absent for a Sn foil electrode with a native SnO x . For comparison, a separate catalyst film was prepared and removed for analysis 12 h after the addition of Sn 2+ . The XPS spectrum, shown in FIG. 2C, and XRD pattern for this electrode are very similar to those of the sample removed after 30 min. Together, these results indicate that a composite Sn/SnO x material is formed under the deposition conditions.

[0037] The electrodeposited catalyst (hereafter referred to as "Sn/SnO x ") exhibits greatly enhanced CO 2 reduction catalysis compared to a typical Sn foil electrode with a native SnO x layer. For both electrodes, CO, HCO 2 H and ¾ together account for > 99% of the reduction products in NaHC0 3 /C0 2 electrolyte. To compare the activities of Sn foil and Sn/SnO x , we measured their partial current densities for CO and HCO 2 H at selected potentials between -0.5 and -0.7 V. Comparison of CO 2 reduction catalysis for Sn foil and in situ deposited Sn/SnO^ thin film electrodes are illustrated in FIGS. 3A-C. FIG. 3A shows Tafel plots for HC0 2 H production. FIG. 3B shows Tafel plots for CO production. FIG. 3C is a bar graph showing Faradaic efficiencies for HCO 2 H and CO at various potentials. These data were obtained by performing stepped-potential electrolyses with periodic quantification of the gaseous products by GC and removal of aliquots after each step for NMR analysis.

[0038] For Sn foil, approximate Tafel slopes of 74 mV/dec and 72 mV/dec are observed for HCO 2 H and CO production, respectively. Similar Tafel slopes are observed for HCO 2 H (67 mV/dec) and CO (77 mV/dec) production on Sn/SnO x , however the geometric partial current densities are 7-8-fold higher than for Sn foil. The higher geometric current densities on Sn/SnOx are not simply the result of greater electroactive surface area, as indicated by cyclic voltammetry and the dramatic differences in faradaic efficiencies for Sn foil and Sn/SnO x . Over the range of potentials used for Tafel analysis, the CO faradaic efficiencies are 4-fold higher and the HCO 2 H faradaic efficiencies are 2-3 -fold higher on Sn/SnO x than on untreated Sn foil. [0039] The Tafel slopes for HC0 2 H and CO production on both Sn foil and Sn/SnO x are inconsistent with CO 2 reduction mechanisms that proceed through an initial rate- determining 1 e ~ transfer to CO 2 . Such a mechanism would result in a 118 mV/dec slope. The observed slopes are instead much closer to 59 mV/dec, which supports mechanisms in which there is a reversible 1 e ~ transfer to CO 2 to form CO 2 ' prior to a chemical rate- determining step. Possibilities for the chemical rate-determining step include protonation of CO 2 ' or migration to an alternative site on the electrode surface.

Competing rate-determining steps, such as protonation at C vs O of CO 2 ' , may determine the HCO 2 H vs CO selectivity.

[0040] The Tafel data, combined with the absence of appreciable CO 2 reduction activity on etched Sn, suggest that SnO x enables CO 2 reduction to occur by stabilizing CO 2 ' . At present, we cannot determine whether reduction takes place at the interface between Sn° and SnO x or on the SnO x surface directly. In the absence of SnO x to stabilize CO 2 ' , Sn° only catalyzes ¾ evolution because the 1 e ~ transfer to CO 2 is prohibitively slow. The higher CO 2 reduction partial current density and faradaic efficiency on Sn/SnO x relative to Sn foil with a native SnO x layer are therefore indicative of a greater density of active sites for CO 2 reduction and a higher ratio of these sites to ¾ evolution sites for the in situ deposited catalyst.

[0041] The CO 2 reduction activity of Sn/SnO x , as indicated by the Tafel plots and faradaic efficiencies in FIGS. 3A-C, compares favorably to all polycrystalline metal electrodes in aqueous electrolytes with the exception of Au, which is comparably active initially, but subject to rapid deactivation. Improving CO 2 and ion mass transport by incorporating Sn/SnOx in a flow cell and/or a gas diffusion electrode may enable increasing the current density by 1-2 orders of magnitude without large overpotential increases. Elucidating the detailed mechanistic role of SnO x in mediating electron transfer to CO 2 is an important objective toward this goal. Moreover, the importance of SnO x to CO 2 reduction on Sn surfaces raises the possibilities that metal oxides may be involved in CO 2 reduction pathways on other metal electrodes and that the preparation of alternative metal/metal oxide composites may yield additional CO 2 reduction catalysts with superior activity.

Copper [0042] Polycrystalline Cu has been the focus of most CO2 reduction studies because it is one of the best available catalysts and is capable of producing hydrocarbon products. Although mechanistic studies have yielded valuable insights into the CO2 reduction pathways on Cu, the principal shortcomings of this electrode have not been addressed. Most significantly, the energetic efficiency of Cu is limited by the large overpotential (> 0.7 V) required for CO2 reduction to outcompete ¾0 reduction. In addition, Cu electrodes rapidly lose their C0 2 reduction activity unless stringently purified electrolytes are used, a requirement that is not compatible with scalable fuel synthesis.

[0043] Achieving efficient Cu-catalyzed CO2 reduction requires preparing Cu particles whose surfaces have active sites that are different from those on the surface of a polycrystalline Cu electrode. Electrochemical reduction of metal oxides provides one possible route to metal particles with altered surface structures. Researchers have previously used electrochemical methods including potential cycling and anodic pulses to form and subsequently reduce oxides on Cu electrodes. These treatments have resulted in increased hydrogen evolution activity in alkaline electrolytes and altered product selectivity at high overpotential in CO2 reduction electrolyses. While these studies provide evidence of altered electrocatalytic properties, substantial improvements to the energetic efficiency of CO2 reduction have not been observed. Researchers have also used copper oxide electrodes in CO2 reduction electrolyses. The oxides were reduced to Cu° in situ during CO2 reduction catalysis, but only transient changes in the CO2 product distribution attributed to oxide catalysis were observed. Here we show that the CO2 reduction properties of Cu° electrodes resulting from copper oxide reduction vary widely depending on the properties of the initial oxide layer. Reduction of thick CU2O layers formed by high temperature annealing results in electrodes that catalyze energy-efficient CO2 reduction and are stable to the deactivation phenomena that plague bulk metal electrodes.

[0044] Electrodes were prepared by electropolishing pieces of polycrystalline Cu foil (99.9999%) in 85% phosphoric acid and subsequently annealing the electrodes in air at selected temperatures for variable amounts of time. The activities of these electrodes were compared to that of a polycrystalline Cu electrode in controlled potential electrolyses performed in C0 2 -saturated 0.5 M NaHC0 3 electrolyte ("NaHC0 3 /C0 2 ") in a two- compartment electrolysis cell. The headspace of the cathodic chamber was continuously purged with CO2 into the sampling loop of a gas chromatograph (GC) to enable periodic quantification of the gas-phase products. The solution-phase products were quantified by NMR analysis of the electrolyte at the conclusion of the electrolyses.

[0045] FIGS. 4A-E shows the total geometric current density (j tot ) vs time, the faradaic efficiency (FE) for CO vs time and the overall FE for HCO 2 H for the

polycrystalline Cu electrode (FIG. 4A) and several of the annealed electrodes (FIG. 4B-E) with progressively thicker initial C¾0 layers at -0.5 V vs the reversible hydrogen electrode (RHE; all potentials are referenced to this electrode). The polycrystalline Cu electrode exhibited aj ' to t of -100 μΑ/cm 2 , a FE for CO that declined from 10% at the start of the electrolysis to < 2% over the course of 7 h and a FE for HCO 2 H of 3%. The majority of the current, > 90%, was due to ¾ evolution. These values are consistent with the previously measured activity for Cu in KHCO 3 electrolytes. Annealing Cu at 130° C, the temperature used to prepare C¾0 electrodes for most previous studies, had very little effect on the activity under these conditions. The electrode annealed at 130° C for 12 h (FIG. 4B) exhibited aj ' tot of 10 mA/cm 2 during the first 4 s in which the thin Cu 2 0 layer was reduced. Subsequently, the j ' tot and FEs were very similar to those of the

polycrystalline electrode.

[0046] In contrast to these results, the electrodes annealed at higher temperatures exhibited larger j tot values and improved CO 2 reduction FEs upon reduction of the C¾0 layer. The electrode annealed at 300 °C for 30 min exhibited an initial j ' tot of 10 mA/cm 2 for 2 min as the C¾0 was reduced and subsequently a stable j tot of 1.0 mA/cm 2 . The FE for CO was 25% during the first hour of electrolysis before declining to 10% over 7 h; the FE for HCO 2 H on the reduced electrode was 5%. Further improvements were obtained by starting with a thicker Cu 2 0 layer. After C¾0 reduction of the electrode annealed at 300 °C for 5 h , j ' tot reached a stable value of 1.3 mA/cm 2 , the FE for CO reached 35% and the FE for HC0 2 H was 24% (FIG. 4D). Annealing at 500 °C for 12 h resulted in an even thicker Cu 2 0 layer and a stable j ' to t of 2.7 mA/cm 2 . This electrode produced CO with -40% FE and HC0 2 H with 33% FE. Notably, the FE for CO was maintained at 40% throughout the electrolysis, indicating not only efficient but also stable activity for CO 2 reduction on this surface.

[0047] A plot of the average CO FEs for the annealed electrodes vs the amount of charge passed per electrode area (Q) in the Cu 2 0 reduction is shown in FIG. 4F. The FEs increased with the amount of charge passed until reaching a plateau at 30-40% for Q > -5 C/cm 2 . Assuming bulk density of C¾0 on the electrode, 5 C/cm 2 corresponds to a -3 μηι-thick layer. Together, these results demonstrate that a threshold thickness of the initial Q1 2 O layer is required to achieve both efficient and stable CO 2 reduction catalysis for the electrode resulting from CU 2 O reduction.

Based on these results, electrodes prepared by annealing Cu at 500 °C for 12 h were selected for further characterization and CO 2 reduction studies. FIGS. 5A-F show the scanning electron microscopy (SEM) images (FIGS. 5A, D), X-ray diffraction (XRD) patterns (FIGS. 5B, E), and high-resolution Cu 2p X-ray photoelectron spectroscopy (XPS) spectra (FIGS. 5C, F) for a Cu electrode after this annealing procedure (FIGS. 5A- C) and after subsequent CO 2 reduction electrolysis (FIGS. 5D-F). After annealing, the SEM showed a dense array of rods with 100-1000 nm diameters on the electrode surface. These rods are the outermost portion of a thick Ο¾0 layer coating the electrode, as evidenced by the large Ο¾0 peaks and the near complete suppression of the Cu° peaks in the XRD pattern. The characteristic Cu 2+ satellite peaks in the XPS spectrum are consistent with the presence of a thin (< 10 nm) CuO layer coating the CU 2 O. Following CO 2 reduction electrolysis, SEM indicated that the rod morphology was intact, but smaller particles (-20 nm) were embedded within the rods (FIG. 5D and Figure S3). Only Cu° peaks were observed in the XRD pattern, FIG. 5F. The Cu 2p XPS spectrum indicated the presence of Cu° or Cu 1+ , but the peaks associated with Cu 2+ in the spectra prior to electrolysis were absent. Together, these results indicate the complete reduction of the C¾0 layer, although we cannot rule out the presence of a thin, metastable Ο¾0 layer or other surface -bound Cu 1+ species during electrocatalysis.

[0048] The electrochemically active surface area of a reduced electrode that had been annealed at 500 °C for 12 h was determined by measuring the double layer capacitance in 0.1 M HCIO 4 after CO 2 reduction electrolysis. The capacitance was 13.9 mF/cm 2 , which is 475x larger than the capacitance of 29 μΕ/cm 2 measured for a polycrystalline Cu electrode. This roughness factor is considerably larger than the difference inj ' to t between the two electrodes (~30x), consistent with the difference in FEs between the two electrodes.

[0049] The presence of 100-1000 nm rods observed in FIG. 5D is not necessary for efficient CO 2 reduction. Electrodes annealed at temperatures >500 °C for variable amounts of time exhibited very different morphological features on this length scale, but nonetheless comparable FEs for CO 2 reduction at -0.5 V. These results suggest that the CO 2 reduction efficiency of electrodes annealed at high temperatures is associated with a Cu particle surface or grain boundary structure that forms when suitably thick Ο¾0 layers are electrochemically reduced.

[0050] To further characterize the effect of high temperature annealing on the CO2 reduction activity of Cu, we measured the partial current densities for the reduction products at a variety of potentials between -0.2 V and -1.0 V in NaHC0 3 /C0 2 using an electrode that had been annealed at 500 °C for 12 h (hereafter referred to as "annealed Cu"). The total current densities and faradaic efficiencies for the major products are shown in FIGS. 6A-C, which provides comparisons of electrocatalytic activities of polycrystalline Cu and Cu annealed at 500 °C for 12 h. FIG. 6A is a graph of total current density vs. potential. FIG. 6B is a graph of faradaic efficiencies for CO and

HCO2H vs potential. FIG. 6C is a graph of faradaic efficiencies for CH4, C2H4 and C2H6 vs potential. Attempts to collect the corresponding data under identical conditions with polycrystalline Cu were unsuccessful due to the rapid degradation of catalytic activity. Instead, optimal data from previous studies with polycrystalline Cu at several potentials in 0.1 M KHCO 3 are included for comparison.

[0051] The annealed Cu electrode exhibits a high efficiency for CO2 reduction at remarkably low overpotentials. A peak faradaic efficiency of -45% for CO production is obtained at potentials ranging from -0.3 V to -0.5 V, corresponding to 0.19 V to 0.39 V of overpotential for this product (FIG. 6B). By comparison, essentially no CO2 reduction to CO is observed for polycrystalline Cu in this potential range; the maximum efficiency for CO with polycrystalline Cu is 20%, which requires -0.8 V (η = 0.69 V). Similarly, annealed Cu attains a peak faradaic efficiency for HCO2H production of 30% at potentials ranging from -0.45 V to -0.65 V (η = 0.25 V to 0.45 V), whereas polycrystalline Cu requires -0.7 V to -0.9 V (η = 0.5 V to 0.7 V) to attain a comparable faradaic efficiency (FIG. 6B).

[0052] At relatively negative potentials (< -0.6 V), annealed Cu catalyzes the reduction of CO2 to ethylene and ethane (FIG. 6C). In contrast, polycrystalline Cu produces only ethylene and methane at high overpotential. Previous work on Cu single crystals has shown that the ratio of ethylene to methane can be boosted by introducing (111) steps in the (100) basal plane, i.e. by using single crystal Cu electrodes with a high index face exposed to the solution. However, methane was never fully suppressed and no ethane was observed in these studies. These results indicate that the surface structures of the Cu particles produced by C¾0 reduction are distinct from the structures of the high index faces of Cu. We also note that no methanol was detected among the reduction products for annealed Cu at any potential examined here, in contrast to what has been reported for CO 2 reduction catalysis with Cu electrodes annealed at lower temperatures.

[0053] The faradaic efficiencies for the hydrocarbon products on annealed Cu are low and ¾ is the major product at high overpotentials. This difference relative to the lower overpotential regime most likely reflects the mass transport limitations at the high current densities observed (> 10 mA/cm 2 ) rather than the intrinsic selectivity of the electrode. Improvements in mass transport by using a flow cell or gas diffusion electrode are expected to enable substantially higher CO 2 reduction current densities without large overpotential increases.

[0054] To obtain insight into the mechanistic pathway(s) for CO 2 reduction with annealed Cu, a plot of overpotential vs the log of the partial current density for CO production (a Tafel plot) was extracted from the data described above. The data are shown in FIG. 7 along with Tafel data for polycrystalline Cu. The plot for annealed Cu is linear over the range of overpotentials from 0.05 V to 0.3 V with a slope of 116 mV/decade. This slope is consistent with a rate-determining initial electron transfer to CO 2 to form a surface-adsorbed CO 2 ' intermediate, a mechanism that is commonly invoked for metal electrodes. A similar slope is evident in the plot for polycrystalline Cu. The dramatic difference in FE between the two electrodes suggests that the Cu surfaces formed by reducing thick Ο¾0 layers enable formation of the CO 2 ' intermediate while suppressing H 2 O reduction.

[0055] In summary, our results show that Cu particles prepared by reducing μιη-thick Cu 2 0 films catalyze the reduction of CO 2 to CO and HCO 2 H with high faradaic efficiencies at exceptionally low overpotentials and produce C2 hydrocarbons to the exclusion of CH 4 at high overpotentials. Electrodes with these characteristics can readily be prepared with high surface areas, enabling > 1 mA/cm 2 geometric current densities for CO 2 reduction at < 0.4 V overpotential and measurable CO 2 reduction current densities at < 0.1 V overpotential, levels of activity that were previously inaccessible with metal electrodes under comparable conditions. Furthermore, CO 2 reduction with these electrodes is resistant to deactivation for at least several hours, a marked improvement over the rapid deactivation of polycrystalline Cu under identical conditions. We anticipate that elucidation of the surface structures of the Cu particles formed by reducing thick C¾0 layers will provide crucial insights into the structural requirements for preferential CO 2 reduction and the formation of C2 products. In addition, this synthetic approach may prove useful for preparing additional electrocatalysts for CO 2 reduction.

Embodiments of Implementation

[0056] To facilitate understanding of the invention, FIG. 8 is a high level flow chart of an embodiment of the invention. In this embodiment, a cathode with a catalyst metal is provided (step 804). A metal oxide coating is formed on the catalyst metal (step 808). The metal oxide coating and the catalyst metal form a metal and metal oxide coating, which may comprise a metal oxide coating over a metal coating or a single coating with both metal oxide particles and metal particles. An anode is spaced apart from the cathode (step 812). An ionic transport is provided between the anode and cathode (step 816). The cathode is exposed to CO 2 and H 2 O (step 820). The anode is exposed to H 2 O (step 824). A voltage is provided between the cathode and anode (step 828). The voltage causes CO 2 and H 2 O to be reduced to CO, ¾ , and (¾. The CO and ¾ may be converted to hydrocarbon or alcohol products.

[0057] In a specific embodiment of the invention, the cathode is formed by providing a conductive substrate (step 804) with a catalyst metal coating (step 808). FIG. 9A is an enlarged cross-sectional view of part of a conductive substrate 904 with a metal coating 908, forming part of a cathode 912. In this example, the conductive substrate 904 is steel. The metal coating 908 is copper. The conductive substrate may be in the form of a net over which the metal coating is applied. In other embodiments, the conductive substrate and metal coating may be a single piece of the same material, such as a copper wire. In such a case, the metal coating may be considered an outer layer of the metal substrate.

[0058] A metal oxide coating is formed on the catalyst metal (step 808). FIG. 9B shows the part of the cathode 912 after the metal oxide coating 916 is formed. In this example, part of the copper catalyst metal coating 908 is formed into copper oxide by heating the cathode to at least 300 °C for at least 15 minutes. Preferably, the metal oxide coating is thicker than a native oxide layer. For example, the metal oxide coating has a thickness of at least twice the thickness of a native metal oxide layer. More preferably, the metal oxide coating is at least 50 nm thick. In other embodiments, the metal oxide coating 916 may be provided by a deposition process to deposit the metal oxide coating on the catalyst metal coating. In this example the copper catalyst metal coating 908 and the metal oxide coating 916 form a metal and metal oxide coating. In other embodiment, metal particles and metal oxide particles may form a single layer to form the metal and metal oxide coating.

[0059] In some embodiments, some or all of the native metal oxide layer may be reduced before or during usage as a cathode. In the specification and claims, the term "oxidized cathode" will apply to a cathode on which an oxide layer is formed on the cathode by a process that increases the thickness of the metal oxide beyond that of a native metal oxide, whether the metal oxide coating remains or is subsequently reduced. Therefore the oxidized cathode is a cathode with an oxidized cathode layer, which is a metal and metal oxide coating where the metal oxide either remains or is reduced back to metal, and wherein the metal oxide is at least twice as thick as native metal oxide.

[0060] An anode is spaced apart from the cathode (step 812). FIG. 10 is a schematic view of an electrolyzer 1000 that may be used in an embodiment of the invention. An anode is formed by a conductive anode substrate 1004 covered with an anode material 1008. In this example, the anode material 1008 is nickel. An anode electrolyte compartment 1012 is adjacent to the anode and holds an anode electrolyte. The anode electrolyte is provided from an anode electrolyte source 1016, which may continuously circulate anode electrolyte through the anode electrolyte compartment 1012. A cathode electrolyte compartment 1020 holds a cathode electrolyte. The cathode electrolyte is provided from a cathode electrolyte source 1024, which may continuously circulate cathode electrolyte through the cathode electrolyte compartment 1020. Alternatively, the cathode electrolyte may flow to a tank where the solution-phase products are collected. A separator 1028 is placed between the anode electrolyte compartment 1012 and the cathode electrolyte compartment 1020. The separator 1028 may be a porous frit or membrane that may allow certain ions to pass through the separator 1028. As described above, a cathode comprising a conductive substrate 904 with an oxidized cathode layer 1032 forms a cathode adjacent to the cathode electrolyte compartment 1020. In this embodiment, a gas chamber 1036 is placed on the backside of the cathode. A CO 2 source 1040 provides a flow of CO 2 into the gas chamber 1036. A product collector 1044 collects gas-phase products and unused CO 2 from the gas chamber 1036. Product in the product collector 1044 may be isolated and the remaining CO 2 may be recycled back to the CO 2 source 1040. A voltage source 1048, such as a battery, provides a voltage between the anode and cathode. [0061] In operation, the anode electrolyte source 1016 flows electrolyte through the anode electrolyte compartment 1012. The cathode electrolyte source 1024 flows electrolyte through the cathode electrolyte compartment 1020. CO 2 is flowed from the CO 2 source 1040 into the gas chamber 1036. The voltage source 1048 applies a positive voltage to the anode substrate 1004 and a negative voltage to the cathode substrate 904 with the anode connected to a positive terminal and the cathode connected to a negative terminal. The process provides electrolysis of the C(¾. Various chemical reactions may occur during the electrolysis of CO 2 , depending on the metal cathode and other factors. One chemical reaction is C0 2 +H 2 0 CO+H 2 +0 2 . Other chemical reactions provide products of HCO 2 H, CH 3 OH or C2H4. In a preferred embodiment, the product collector 1044 provides the product to another system that converts CO, O 2 , and ¾ and possibly other products to methanol or some other fuel or usable chemical.

[0062] It has been unexpectedly found that by providing a metal oxide layer on a cathode that is thicker than the native oxide layer and subsequently reducing the metal oxide layer, the reduction of CO 2 is improved. Without being bound by theory, it is believed that the reduction of the thick metal oxide layer results in metal particles that have unique structures that result in improved CO 2 reduction, however, the reason for the improvement is currently unknown. It has also been unexpectedly found that for some cathodes having a metal and metal oxide interface improves CO 2 reduction. Preferably, the metal and metal oxide use the same metal material. However, in an embodiment using cerium oxide, the metal is something other than cerium such as tin or copper. Since cerium would turn to cerium oxide during electrolysis, tin is used to provide a native metal for an enhanced metal oxide metal interface, which provides improved CO 2 reduction.

[0063] As demonstrated above, copper cathodes that are annealed at 130 C to grow the oxidation layer do not provide the desired improvement. Annealing copper at 300 °C provides some improvement. It has been found that annealing copper at over 500 °C provides the preferred improvement. Anodization at a constant potential for several hours can also be used to obtain a thick Ο¾0 layer on Cu and results in improved CO 2 reduction.

[0064] In the case of some metals such as gold, neither annealing in air or O 2 or anodization at a constant potential is effective for preparing a thick oxide layer. Instead, a square wave potential routine is preferred to obtain the metal oxide layer. In the case of gold, a thick, hydrous Α¾(¾ layer can be formed on the Au electrode by applying a square wave potential alternating between 2.7 V and 0.45 V vs Hg/HgS0 4 at a frequency of 1 kHz for 30-60 min. Subsequent reduction of this Α¾(¾ layer results in a Au electrode with greatly improved CO 2 reduction activity and resistance to catalyst deactivation. Similarly, growth of a silver oxide on silver electrodes by application of a square wave potential routine, followed by electrochemical reduction, results in an Ag electrode with greatly improved C(¾ reduction activity and resistance to catalyst deactivation.

[0065] FIG. 11 is a high level flow chart of another embodiment of the invention. In this embodiment, a cathode with a catalyst metal is provided (step 1104). A metal oxide coating is formed on the catalyst metal (step 1108). The metal oxide coating and the catalyst metal form a metal and metal oxide coating, which may comprise a metal oxide coating over a metal coating or a single coating with both metal oxide particles and metal particles. An anode is spaced apart from the cathode (step 1112). An ionic transport is provided between the anode and cathode (step 1116). The cathode is exposed to CO and H 2 O (step 1120). The anode is exposed to ¾0 (step 1124). A voltage is provided between the cathode and anode (step 1128). The voltage causes CO and ¾0 to be reduced to CH 3 CH 2 OH.

[0066] In a specific embodiment of the invention, the cathode is formed by providing a conductive substrate (step 1104) with a catalyst metal coating (step 1108). In this example, the conductive substrate is steel. The metal coating is copper. The conductive substrate may be in the form of a net over which the metal coating is applied. In other embodiments, the conductive substrate and metal coating may be a single piece of the same material, such as a copper wire. In such a case, the metal coating may be considered an outer layer of the metal substrate.

[0067] A metal oxide coating is formed on the catalyst metal (step 1108). In this example, part of the copper catalyst metal coating is formed into copper oxide by heating the cathode to at least 300 °C for at least 15 minutes. Preferably, the metal oxide coating is thicker than a native oxide layer. For example, the metal oxide coating has a thickness of at least twice the thickness of a native metal oxide layer. More preferably, the metal oxide coating is at least 50 nm thick. In this example the copper catalyst metal coating and the metal oxide coating form a metal and metal oxide coating. [0068] An anode is spaced apart from the cathode (step 1112). FIG. 12 is a schematic view of an electrolyzer 1200 that may be used in an embodiment of the invention. An anode is formed by a conductive anode substrate 1204 covered with an anode material 1208. In this example, the anode material 1208 is nickel. An anode electrolyte compartment 1212 is adjacent to the anode and holds an anode electrolyte. The anode electrolyte is provided from an anode electrolyte source 1216, which may continuously circulate anode electrolyte through the anode electrolyte compartment 1212. A cathode electrolyte compartment 1220 holds a cathode electrolyte. The cathode electrolyte is provided from a cathode electrolyte source 1224, which may continuously circulate cathode electrolyte through the cathode electrolyte compartment 1220. In this embodiment, the cathode electrolyte flows to a product collector 1244 where the solution- phase products are collected. A separator 1228 is placed between the anode electrolyte compartment 1212 and the cathode electrolyte compartment 1220. The separator 1228 may be a porous frit or membrane that may allow certain ions to pass through the separator 1228. As described above, a cathode comprising a conductive substrate 1230 with an oxidized cathode layer 1232 forms a cathode adjacent to the cathode electrolyte compartment 1220. In this embodiment, a gas chamber 1236 is placed on the backside of the cathode. A CO source 1240 provides a flow of CO into the gas chamber 1236. The product collector 1244 collects products and unused CO from the gas chamber 1236. Product in the product collector 1244 may be isolated and the remaining CO may be recycled back to the CO source 1240. A voltage source 1248, such as a battery, provides a voltage between the anode and cathode.

[0069] In operation, the anode electrolyte source 1216 flows electrolyte through the anode electrolyte compartment 1212. The cathode electrolyte source 1224 flows electrolyte through the cathode electrolyte compartment 1220. In this example, the electrolyte is KOH in an aqueous solution. CO is flowed from the CO source 1240 into the gas chamber 1236. The voltage source 1248 applies a positive voltage to the anode substrate 1204 and a negative voltage to the cathode substrate 1230 with the anode connected to a positive terminal and the cathode connected to a negative terminal. The process provides electrolysis of the CO. Various chemical reactions may occur during the electrolysis of CO, depending on the metal cathode and other factors. If the reduction uses an acidic aqueous solution for ion transport, in one embodiment, the following reaction occurs: 2CO + 8e ~ +8H + — >Ο¾Ο¾0Η + ¾0. If the reduction uses a basic aqueous solution for ion transport, in another embodiment, the following reaction occurs: 2CO + 8e " + 7H 2 0→CH 3 CH 2 OH + 80H " . Since the product is CH 3 CH 2 OH, may be produced in liquid phase, the product may diffuse through the conductive substrate 1230 and the oxidized cathode layer 1232 to the cathode electrolyte compartment 1220. In such a case, the product collector 1244 would need to remove the product from the cathode electrolyte.

[0070] In one embodiment, the product collector 1044 for a C0 2 reduction system may provide CO for the CO source 1240 for the CO reduction system. In another embodiment, another source of CO may be used. In another embodiment, a source of a mixture of CO and C0 2 may provide both CO and C0 2 to a reduction system. In some embodiments, the pressure of the CO from the CO source 1240 is provided at a pressure greater than 1 atm. The higher pressure increases the solubility of CO in an aqueous solution. The use of an oxide-derived Cu catalyst in embodiments of the invention proved CO reduction with a high energetic efficiency without requiring H 2 . In another embodiment of the invention, CO is converted to acetate according to the equation 2CO + 4e " + 3H + → CH 3 C0 2 ~ . In another embodiment of the invention, CO is converted to ethylene according to the equation 2CO + 8e " + 8H + → C 2 H4 + 2H 2 0. In other embodiments, the electrolytic reduction reduces CO to other hydrocarbons or alcohols. In other embodiments, the electrolytic reduction reduces C0 2 to hydrocarbons or alcohols.

[0071] While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, modifications and various substitute equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, modifications, and various substitute equivalents as fall within the true spirit and scope of the present invention.