Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CATECHOL-O-METHYL TRANSFERASE (COMT) INHIBITION FOR THE TREATMENT OF GASTROINTESTINAL MOTILITY DISORDERS
Document Type and Number:
WIPO Patent Application WO/2016/029017
Kind Code:
A2
Inventors:
PASRICHA PANKAJ J (US)
Application Number:
PCT/US2015/046111
Publication Date:
February 25, 2016
Filing Date:
August 20, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV JOHNS HOPKINS (US)
International Classes:
A61K31/165; A61K31/12; A61K31/275; A61P1/04; A61P29/00
Attorney, Agent or Firm:
CORLESS, Peter, F. et al. (P.C.One Financial Cente, Boston Massachusetts, US)
Download PDF:
Claims:
CLAIMS

We claim:

1. A method for treating or preventing a gastrointestinal motility disease or disorder in a subject, comprising:

a) identifying a subject as having or at increased risk of developing a gastrointestinal motility disease or disorder, and

b) administering a catechol-O-methyl transferase (COMT) inhibitor to said subject, thereby treating or preventing a gastrointestinal motility disease or disorder in said subject.

2. The method of claim 1, wherein said gastrointestinal motility disease or disorder is selected from the group consisting of inflammatory bowel syndrome (IBS), abdominal pain, gastroparesis and diarrhea.

3. A method for reducing gastrointestinal pain in a subject, comprising:

a) identifying a subject as having or at increased risk of developing gastrointestinal pain, and

b) administering a catechol-O-methyl transferase (COMT) inhibitor to said subject, thereby reducing gastrointestinal pain in said subject.

4. The method of claim 3, wherein said gastrointestinal pain is abdominal pain.

5. The method of claim 3, wherein said gastrointestinal pain is caused by inflammatory bowel syndrome (IBS).

6. The method of any of the preceding claims, wherein said subject is not suffering from or at increased risk of developing a disease or disorder of the central nervous system.

7. The method of claim 6, wherein said disease or disorder of the central nervous system is Parkinson' s disease.

8. The method of any of the preceding claims, wherein said COMT inhibitor is selected from the group consisting of entacapone, tolcapone and nitecapone.

9. The method of any of the preceding claims, wherein said COMT inhibitor is entacapone.

10. The method of any of the preceding claims, wherein said administering step (b) comprises injection of said COMT inhibitor.

11. The method of any of the preceding claims, wherein said administering step (b) comprises oral administration of a COMT inhibitor.

12. The method of any of the preceding claims, wherein said COMT inhibitor is administered at a concentration selected from the group consisting of 10-1000 mg/kg, 20-500 mg/kg, 50-300 mg/kg, 100-200 mg/kg and 100-150 mg/kg to said subject.

13. The method of any of the preceding claims, wherein said COMT inhibitor is administered to said subject at about 100 mg/kg.

14. The method of any of the preceding claims, wherein said administering of said COMT inhibitor promotes gastric emptying.

15. The method of any of the preceding claims, wherein whole-gut transit time (WGTT) or distal colon transit time (DCTT) is increased.

Description:
CATECHOL-O-METHYL TRANSFERASE (COMT) INHIBITION FOR THE TREATMENT OF GASTROINTESTINAL MOTILITY DISORDERS

CROSS-REFERENCE TO RELATED APPLICATION

This application is an International Patent Application which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/039,679, filed August 20, 2014 and entitled, "Catechol-O-Methyl Transferase (COMT) Inhibition for the Treatment of Gastrointestinal Motility Disorders", which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to methods for treating gastrointestinal motility disorders (e.g., gastroparesis, irritable bowel syndrome and/or associated phenotypes such as abdominal pain) by administering pharmaceutical compositions comprising a catechol-O- methyl transferase (COMT) inhibitor (e.g., entacapone).

BACKGROUND OF THE INVENTION

Entacapone is a drug that functions as a catechol-O-methyl transferase (COMT) inhibitor. It is used in the treatment of Parkinson's disease. When administered in conjunction with dopaminergic agents such as L-DOPA, entacapone prevents COMT from metabolizing L-DOPA into 3-methoxy-4-hydroxy-L-phenylalanine (3-OMD) in the periphery, which does not easily cross the blood brain barrier (BBB). Common side effects that have been noted for entacapone administered in combination with L-DOPA (e.g., levodopa) include gastrointestinal problems, such as nausea, abdominal pain and diarrhea. These effects, including abdominal pain and diarrhea, have been described for the combined administration of levodopa and entacapone: entacapone is always administered with levodopa because the only reason identified to date for administering entacapone to patients is to prevent the peripheral breakdown of levodopa.

Gastrointestinal (GI) motility regulates the orderly movement of ingested material through the gut to ensure adequate absorption of nutrients, electrolytes and fluids.

Appropriate transit through the esophagus, stomach, small intestine and colon depends on regional control of intraluminal pressure and several sphincters that regulate forward movement and prevent back-flow of GI contents. The normal GI motility pattern can be impaired (impeded or accelerated) by a variety of circumstances including disease and surgery.

Disorders of gastrointestinal motility can include, for example, irritable bowel syndrome (IBS), gastroparesis (delayed gastric emptying), rapid gastric emptying, functional dyspepsia, gastroesophageal reflux disease (GERD), dysphagia, achalasia (slow emptying of the esophagus), functional diarrhea and constipation. The symptoms of gastrointestinal motility disorders are often managed by treating symptoms or the underlying disease that causes a motility disorder (e.g., the most common underlying disease resulting in

gastroparesis is diabetes), rather than the motility disorder. A need exists for agents and methodologies that treat gastrointestinal motility disorders.

BRIEF SUMMARY OF THE INVENTION

The present invention is based, at least in part, upon the surprising discovery that entacapone, a COMT inhibitor compound commonly used in the treatment of Parkinson's disease only in combination with dopaminergic agents such as L-DOPA, could be used with beneficial effect in treatment or prevention of gastrointestinal motility disorders, when administered on its own. Specifically, administration of only entacapone to mouse models of gastrointestinal motility disorders was independently observed to (1) increase whole-gut transit time (WGTT) and distal colon transit time (DCTT) when administered by ip injection; (2) enhance gastric emptying upon oral administration at 100 mg/kg; and (3) decrease abdominal pain associated with IBS when administered by ip injection.

In one aspect, the invention provides a method for treating or preventing a gastrointestinal motility disease or disorder in a subject that involves identifying a subject as having or at increased risk of developing a gastrointestinal motility disease or disorder, and administering a COMT inhibitor to the subject.

In one embodiment, the gastrointestinal motility disease or disorder is inflammatory bowel syndrome (IBS), abdominal pain, gastroparesis, functional dyspepsia,

gastroesophageal reflux disease (GERD), dysphagia, achalasia, functional chest pain, constipation, diarrhea or Hirschsprung's disease.

Another aspect of the invention provides a method for reducing gastrointestinal pain in a subject that involves identifying a subject as having or at increased risk of developing gastrointestinal pain, and administering a COMT inhibitor to the subject. In one embodiment, the gastrointestinal pain is abdominal pain. Optionally, the gastrointestinal pain is caused by inflammatory bowel syndrome (IBS).

In another embodiment, the subject is not suffering from or at increased risk of developing a disease or disorder of the nervous system, e.g., the central nervous system or the peripheral nervous system. In a related embodiment, the disease or disorder of the nervous system is Parkinson's disease. Indeed, if a subject does not have or possess risk of developing a central nervous system disease, there would be no previously art-recognized basis for administering entacapone to a subject.

In one embodiment, a COMT inhibitor is injected. In another embodiment, a COMT inhibitor is administered at a concentration selected from the group consisting of 10-1000 mg/kg, 20-500 mg/kg, 50-300 mg/kg, 100-200 mg/kg and 100-150 mg/kg to the subject. Optionally, entacapone is administered at about 100 mg/kg.

In certain embodiments, the COMT inhibitor is entacapone, tolcapone or nitecapone. In one embodiment, the COMT inhibitor is entacapone.

In one embodiment, administering a COMT inhibitor to a subject promotes gastric emptying in a subject.

In another embodiment, administering a COMT inhibitor to a subject increases whole- gut transit time (WGTT) or distal colon transit time (DCTT).

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a dose response curve for increasing amounts of entacapone dosed via intraperitoneal (ip) injection to wild type mice, where the response of whole gut transit time (WGTT) was monitored. Data were presented as mean + SEM (n=7-8). *: significant difference from vehicle treated group (0 dose).

Figure 2 shows a time course demonstrating the effect of entacapone administered ip, on distal colon transit time (DCTT). Data were presented as mean + SEM (n=6-8). *: significant difference from vehicle treated group at same time point.

Figure 3 shows the water content in wet stool for vehicle- and entacapone (ip)-treated mice. Data were presented as mean + SEM (n=6-8). *: significant difference from vehicle treated group at same time point. Figure 4 demonstrates the chronic effect of oral entacapone (administered at 100 mg/kg) on gastric emptying. Data were presented as mean + SEM (n=7). *: significant difference from vehicle treated group (0 dose).

Figure 5 demonstrates that treatment with entacapone attenuated pain sensitivity in IBS mice. The VMR to CRD was compared between before and one hour after treatment with vehicle or entacapone (100 mg/kg ip). Data are presented as mean + SEM (n=3-4) *:

Significant difference from before treatment with same pressure.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to methods for use of a catechol-O-methyl transferase (COMT) inhibitor (e.g., entacapone) to treat or prevent gastrointestinal motility disorders, and is based, at least in part, upon the surprising discovery that entacapone exhibited (1) increased whole-gut transit time (WGTT) and distal colon transit time (DCTT) when administered by ip injection to wild-type mice; (2) enhanced gastric emptying upon oral administration at 100 mg/kg to wild-type mice; and (3) decreased abdominal pain associated with IBS when administered by ip injection to IBS model mice (as compared to correspondingly injected wild-type mice).

Definitions

Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.

A "COMT inhibitor" is a drug that inhibits the action of catechol-O-methyl transferase. This enzyme is involved in degrading neurotransmitters. COMT inhibitors have been previously used in the treatment of Parkinson's disease, in combination with

dopaminergic agents such as L-DOPA. Pharmaceutical examples of COMT inhibitors include entacapone, tolcapone, and nitecapone. Entacapone has been described as only peripherally active, whereas both tolcapone and nitecapone are described as active in both the periphery and central nervous system. While tolcapone and nitecapone have been identified as hepatotoxic at certain doses, no such hepatotoxicity has been described for entacapone.

"Gastrointestinal motility" refers to the movement of food through the gastrointestinal tract. A "disorder of gastrointestinal motility" is any abnormality in that process that causes discomfort to a patient. It includes, for example, achalasia, Barrett's syndrome, biliary dyskinesia, Crohn's disease, chronic intestinal pseudo-obstruction, colonic inertia, constipation, cyclic vomiting syndrome, diarrhea, diffuse esophageal spasm, dumping syndrome, dyspepsia, dysphagia, encopresis, fecal incontinence, functional abdominal pain (e.g., chronic proctalgia, epigastric pain syndrome, functional abdominal pain syndrome, proctalgia fugax), functional biliary disorders (e.g., functional biliary SO disorder, functional gallbladder disorder, functional pancreatic SO disorder, functional sphincter of Oddi disorder), functional bowel outlet obstruction, functional dyspepsia disorders (e.g., epigastric pain syndrome, functional dyspepsia, postprandial distress syndrome), functional esophogeal disorders (e.g., functional chest pain of presumed esophogeal origin, functional dysphagia, functional heartburn, globus), functional fecal retention, gastroesophageal reflux disease (GERD), gastroparesis, gastritis, gastropathy, Hirschprung's disease, hypercontractile motility, hypermotility, hypertensive lower esophageal sphincter, hypomotility, intestinal obstruction, irritable bowel syndrome, ischemia, megacolon, non-erosive reflux disease, pancreatitis, pelvic floor dysfunction, short bowel syndrome, small bowel bacterial overgrowth, small bowel intestinal motility disorder, superior mesenteric artery syndrome, ulcerative colitis, and volvulus.

It also includes any symptom produced by disorders of gastrointestinal motility that results in discomfort to a patient, regardless of how one would categorize the disorder that creates the discomfort. Hence, "disorder of gastrointestinal motility" also includes, for example, altered bowel habit (including, for example, change in stool frequency; change in stool form, such as passing hard or loose stools; or change in the manner of passing stool, such as straining, urgency, or feeling or incomplete evacuation), belching, bloating (including a feeling of abdominal distension), blood or mucus in the stool, diarrhea, dyspepsia, dysphagia, flatulence, globus, hoarseness of voice, loss of appetite, nausea, pain in any area or the chest, colon, stomach, or elsewhere in the abdomen, pyrosis (heartburn), regurgitation, sore throat, trapped gas, and uncomfortable fullness after meals.

About: As used herein, the term "about" means +/-10% of the recited value. Use of "about" is contemplated in reference to all ranges and values recited herein.

As used herein "cell" is used in its usual biological sense, and does not refer to an entire multicellular organism, e.g., specifically does not refer to a human. The cell can be present in an organism, e.g., birds, plants and mammals such as humans, cows, sheep, apes, monkeys, swine, dogs, and cats. The cell can be prokaryotic (e.g., bacterial cell) or eukaryotic (e.g., mammalian or plant cell). The cell can be of somatic or germ line origin, totipotent or pluripotent, dividing or non-dividing. The cell can also be derived from or can comprise a gamete or embryo, a stem cell, or a fully differentiated cell. Within certain aspects, the term "cell" refers specifically to mammalian cells, such as human cells, that contain one or more molecules of the present disclosure.

By "subject" is meant an organism, which is a donor or recipient of explanted cells or the cells themselves. "Subject" also refers to an organism to which the agents of the invention can be administered. A subject can be a mammal or mammalian cells, including a human or human cells.

The phrase "pharmaceutically acceptable carrier" refers to a carrier for the administration of a therapeutic agent. Exemplary carriers include saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the

gastrointestinal tract. The pharmaceutically acceptable carrier of the disclosed dsRNA compositions may be micellar structures, such as a liposomes, capsids, capsoids, polymeric nanocapsules, or polymeric microcapsules.

The term "in vitro" has its art recognized meaning, e.g., involving purified reagents or extracts, e.g., cell extracts. The term "in vivo" also has its art recognized meaning, e.g., involving living cells, e.g., immortalized cells, primary cells, cell lines, and/or cells in an organism.

"Treatment", or "treating" as used herein, is defined as the application or

administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disorder with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease or disorder, or symptoms of the disease or disorder. The term "treatment" or "treating" is also used herein in the context of administering agents prophylactically. The term "effective dose" or "effective dosage" is defined as an amount sufficient to achieve or at least partially achieve the desired effect. The term "therapeutically effective dose" is defined as an amount sufficient to cure or at least partially arrest the disease and its complications in a patient already suffering from the disease. The term "patient" includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.

Various methodologies of the instant invention include at least one step that involves comparing a value, level, feature, characteristic, property, etc. to a "suitable control", referred to interchangeably herein as an "appropriate control". A "suitable control" or "appropriate control" is a control or standard familiar to one of ordinary skill in the art useful for comparison purposes. In one embodiment, a "suitable control" or "appropriate control" is a value, level, feature, characteristic, property, etc. determined prior to performing an administration or treatment methodology, as described herein. For example, gut motility or the phenotypic or genotypic status of a disease or disorder such as those associated with gut motility, etc. can be determined prior to introducing a compound of the invention into a cell or organism. In another embodiment, a "suitable control" or "appropriate control" is a value, level, feature, characteristic, property, etc. determined in a cell or organism, e.g., a control or normal cell or organism, exhibiting, for example, normal traits. In yet another embodiment, a "suitable control" or "appropriate control" is a predefined value, level, feature, characteristic, property, etc. Entacapone Chemical Structure and Known Uses

Entacapone is a drug that functions as a catechol-O-methyl transferase (COMT) inhibitor. It is used in the treatment of Parkinson's disease and has the following chemical structure:

When administered in conjunction with dopaminergic agents such as L-DOPA, entacapone prevents COMT from metabolizing L-DOPA into 3-methoxy-4-hydroxy-L- phenylalanine (3-OMD) in the periphery, which does not easily cross the blood brain barrier (BBB). Pharmacologically, entacapone is somewhat similar to carbidopa or benserazide, in that it is an inhibitor of an enzyme that converts L-DOPA into a compound that cannot cross the blood brain barrier. Carbidopa and benserazide inhibit aromatic L-amino acid decarboxylase, which converts L-DOPA into dopamine, which cannot cross the blood brain barrier.

Entacapone is a member of the class of drugs known as nitrocatechols.

The most frequent undesirable effects caused by entacapone relate to the increased effects of L-DOPA, such as involuntary movements (dyskinesias). These occur most frequently at the beginning of entacapone treatment. Other common side effects that have been noted for entacapone include gastrointestinal problems, such as nausea and abdominal pains. Diarrhea is a frequently reported and troublesome side effect that can result in unnecessary investigation, but resolves quickly on withdrawal of the drug (Singer C. Expert Review of Neurotherapeutics 2: 105-118). Entacapone can sometimes cause urine to turn reddish-brown. This is a harmless side effect and is not a cause for concern. In studies with entacapone, some subjects have reported experiencing a dry mouth.

Pharmaceutical Compositions

In one aspect, the present invention provides a pharmaceutical composition which can be administerd in an effective amount thereof. As used herein, the term "composition" or "pharmaceutical composition" refers to a mixture of at least one compound useful within the invention with a pharmaceutically acceptable carrier. The pharmaceutical composition facilitates administration of the compound to a subject.

In one embodiment, the pharmaceutical composition of the invention comprises a COMT inhibitor, e.g., entacapone or a salt or derivative thereof:

In other aspect, the pharmaceutical composition of the invention may comprise effective amounts of the compound of the invention or a pharmaceutically acceptable salt, solvate or hydrate thereof and pharmaceutically acceptable carrier.

As used herein, the term "pharmaceutically acceptable carrier" means a

pharmaceutically acceptable material, composition or carrier, such as a liquid or solid filler, stabilizer, dispersing agent, suspending agent, diluent, excipient, thickening agent, solvent or encapsulating material, involved in carrying or transporting a compound useful within the invention within or to the subject such that it may perform its intended function. Typically, such constructs are carried or transported from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation, including the compound useful within the invention, and not injurious to the subject. Some examples of materials that may serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil;

glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; surface active agents; alginic acid; pyrogen- free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; and other non-toxic compatible substances employed in pharmaceutical formulations. As used herein, "pharmaceutically acceptable carrier" also includes any and all coatings, antibacterial and antifungal agents, and absorption delaying agents, and the like that are compatible with the activity of the compound useful within the invention, and are physiologically acceptable to the subject. Supplementary active compounds may also be incorporated into the compositions. The "pharmaceutically acceptable carrier" may further include a

pharmaceutically acceptable salt of the compound useful within the invention. Other additional ingredients that may be included in the pharmaceutical compositions used in the practice of the invention are known in the art and described, for example in Remington's Pharmaceutical Sciences (Genaro, Ed., Mack Publishing Co., 1985, Easton, PA), which is incorporated herein by reference.

In another aspect, the compounds of invention or a pharmaceutically acceptable salt thereof may be used in combination with or include one or more other therapeutic agents and may be administered either sequentially or simultaneously by any convenient route in separate or combined pharmaceutical compositions. As used herein, combination of two or more compounds may refer to a composition wherein the individual compounds are physically mixed or wherein the individual compounds are physically separated. A combination use encompasses administering the components separately to produce the desired additive, complementary or synergistic effects. In certain exemplary embodiments, the compound and the agent are physically mixed in the composition. In yet certain exemplary embodiments, the compound and the agent are physically separated in the composition.

A pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), intraperitoneal (ip), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL.TM.

(BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in a selected solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle, which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash.

Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer. Such methods include those described in U.S. Pat. No. 6,468,798.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, poly anhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Such formulations can be prepared using standard techniques. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD5 0 (the dose lethal to 50% of the population) and the ED5 0 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD5 0 /ED5 0 . Compounds which exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of local or circulating concentrations that include the ED5 0 with little or no toxicity or other undesirable side effect. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For a compound used in the method of the invention, the therapeutically effective dose can be estimated initially from animal studies. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC5 0 (i. e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

Exemplary doses for the therapeutics of the invention (e.g., entacapone) include about 100 mg/kg, about 80- 120 mg/kg, about 90- 110 mg/kg, at least 90 mg/kg, at least 95 mg/kg, at least 100 mg/kg, about 100-250 mg/kg, about 100-400 mg/kg, about 100-500 mg/kg, about 100 mg/kg to about 1 g/kg, 10- 1000 mg/kg, 20-500 mg/kg, 50-300 mg/kg, 100-200 mg/kg and 100- 150 mg/kg.

The compositions can be administered from one or more times per day to one or more times per week; including once every other day. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a compound (e.g., a COMT inhibitor such as entacapone) can include a single treatment or, preferably, can include a series of treatments.

COMT inhibitors such as entacapone can be formulated as a pharmaceutical composition which comprises a pharmacologically effective amount of the COMT inhibitor (e.g., entacapone) and pharmaceutically acceptable carrier. A pharmacologically or therapeutically effective amount refers to that amount of the COMT inhibitor (e.g., entacapone) effective to produce the intended pharmacological, therapeutic or preventive result. The phrases "pharmacologically effective amount" and "therapeutically effective amount" or simply "effective amount" refer to that amount of the COMT inhibitor (e.g., entacapone) effective to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective when there is at least a 20% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 20% reduction in that parameter.

Suitably formulated pharmaceutical compositions of this invention can be administered by means known in the art such as by parenteral routes, including intravenous, intramuscular, intraperitoneal, subcutaneous, transdermal, airway (aerosol), rectal, vaginal and topical (including buccal and sublingual) administration. In some embodiments, the pharmaceutical compositions are administered by intravenous or intraparenteral infusion or injection.

In certain embodiments, a pharmaceutical composition comprising a COMT inhibitor (e.g., entacapone) can be administered once daily. However, the COMT inhibitor (e.g., entacapone) may also be dosed in dosage units containing two, three, four, five, six or more sub-doses administered at appropriate intervals throughout the day. In that case, the COMT inhibitor (e.g., entacapone) contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage unit. The dosage unit can also be compounded for a single dose over several days, e.g., using a conventional sustained release formulation which provides sustained and consistent release of the COMT inhibitor (e.g., entacapone) over a several day period. Sustained release formulations are well known in the art. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose. Regardless of the formulation, the pharmaceutical composition must contain the COMT inhibitor (e.g., entacapone) in a quantity sufficient to achieve an effect in the animal or human being treated. The composition can be compounded in such a way that the sum of the multiple units of the COMT inhibitor (e.g., entacapone) together contain a sufficient dose.

Data can be obtained from cell culture assays and animal studies to formulate a suitable dosage range for humans. The dosage of compositions of the invention lies within a range of circulating concentrations that include the ED5 0 (as determined by known methods) with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For a compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range of the compound that includes the IC5 0 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels of the COMT inhibitor (e.g., entacapone) in plasma may be measured by standard methods, for example, by high performance liquid chromatography.

The pharmaceutical compositions can be included in a kit, container, pack, or dispenser together with instructions for administration.

The agent(s), alone or in combination, can be combined with any pharmaceutically acceptable carrier or medium. Thus, they can be combined with materials that do not produce an adverse, allergic or otherwise unwanted reaction when administered to a patient. The carriers or mediums used can include solvents, dispersants, coatings, absorption promoting agents, controlled release agents, and one or more inert excipients (which include starches, polyols, granulating agents, microcrystalline cellulose (e.g. celphere, Celphere Beads. RTM.), diluents, lubricants, binders, disintegrating agents, and the like), etc. If desired, tablet dosages of the disclosed compositions may be coated by standard aqueous or nonaqueous techniques.

Compositions of the present invention may also optionally include other therapeutic ingredients, anti-caking agents, preservatives, sweetening agents, colorants, flavors, desiccants, plasticizers, dyes, glidants, anti- adherents, anti-static agents, surfactants (wetting agents), anti-oxidants, film-coating agents, and the like. Any such optional ingredient must be compatible with the compound described herein to insure the stability of the formulation.

The composition may contain other additives as needed, including for example lactose, glucose, fructose, galactose, trehalose, sucrose, maltose, raffinose, maltitol, melezitose, stachyose, lactitol, palatinite, starch, xylitol, mannitol, myoinositol, and the like, and hydrates thereof, and amino acids, for example alanine, glycine and betaine, and polypeptides and proteins, for example albumen. Examples of excipients for use as the pharmaceutically acceptable carriers and the pharmaceutically acceptable inert carriers and the aforementioned additional ingredients include, but are not limited to binders, fillers, disintegrants, lubricants, anti-microbial agents, and coating agents such as:

BINDERS: corn starch, potato starch, other starches, gelatin, natural and synthetic gums such as acacia, xanthan, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone (e.g., povidone, crospovidone, copovidone, etc), methyl cellulose, Methocel, pre-gelatinized starch (e.g., STARCH 1500.RTM. and STARCH 1500 LM.RTM., sold by Colorcon, Ltd.),

hydroxypropyl methyl cellulose, microcrystalline cellulose (e.g. AVICEL.TM., such as, AVICEL-PH-101.TM., -103.TM. and 105.TM., sold by FMC Corporation, Marcus Hook, Pa., USA), or mixtures thereof,

FILLERS: talc, calcium carbonate (e.g., granules or powder), dibasic calcium phosphate, tribasic calcium phosphate, calcium sulfate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre- gelatinized starch, dextrose, fructose, honey, lactose anhydrate, lactose monohydrate, lactose and aspartame, lactose and cellulose, lactose and microcrystalline cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose & guar gum, molasses, sucrose, or mixtures thereof,

DISINTEGRANTS: agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, clays, other algins, other celluloses, gums (like gellan), low-substituted hydroxypropyl cellulose, or mixtures thereof,

LUBRICANTS: calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, sodium stearyl fumarate, vegetable based fatty acids lubricant, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil), zinc stearate, ethyl oleate, ethyl laurate, agar, syloid silica gel (AEROSIL 200, W.R. Grace Co., Baltimore, Md. USA), a coagulated aerosol of synthetic silica (Deaussa Co., Piano, Tex. USA), a pyrogenic silicon dioxide (CAB-O-SIL, Cabot Co., Boston, Mass.

USA), or mixtures thereof,

ANTI-CAKING AGENTS: calcium silicate, magnesium silicate, silicon dioxide, colloidal silicon dioxide, talc, or mixtures thereof,

ANTIMICROBIAL AGENTS: benzalkonium chloride, benzethonium chloride, benzoic acid, benzyl alcohol, butyl paraben, cetylpyridinium chloride, cresol, chlorobutanol, dehydroacetic acid, ethylparaben, methylparaben, phenol, phenylethyl alcohol, phenoxyethanol, phenylmercuric acetate, phenylmercuric nitrate, potassium sorbate, propylparaben, sodium benzoate, sodium dehydroacetate, sodium propionate, sorbic acid, thimersol, thymo, or mixtures thereof, and

COATING AGENTS: sodium carboxymethyl cellulose, cellulose acetate phthalate, ethylcellulose, gelatin, pharmaceutical glaze, hydroxypropyl cellulose, hydroxypropyl methylcellulose (hypromellose), hydroxypropyl methyl cellulose phthalate, methylcellulose, polyethylene glycol, polyvinyl acetate phthalate, shellac, sucrose, titanium dioxide, carnauba wax, microcrystalline wax, gellan gum, maltodextrin, methacrylates, microcrystalline cellulose and carrageenan or mixtures thereof.

The formulation can also include other excipients and categories thereof including but not limited to L-histidine, Pluronic.RTM., Poloxamers (such as Lutrol.RTM. and Poloxamer 188), ascorbic acid, glutathione, permeability enhancers (e.g. lipids, sodium cholate, acylcarnitine, salicylates, mixed bile salts, fatty acid micelles, chelators, fatty acid, surfactants, medium chain glycerides), protease inhibitors (e.g. soybean trypsin inhibitor, organic acids), pH lowering agents and absorption enhancers effective to promote bioavailability (including but not limited to those described in U.S. Pat. No. 6,086,918 and U.S. Pat. No. 5,912,014), creams and lotions (like maltodextrin and carrageenans); materials for chewable tablets (like dextrose, fructose, lactose monohydrate, lactose and aspartame, lactose and cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose and guar gum, sorbitol crystalline); parenterals (like mannitol and povidone); plasticizers (like dibutyl sebacate, plasticizers for coatings, polyvinylacetate phthalate); powder lubricants (like glyceryl behenate); soft gelatin capsules (like sorbitol special solution); spheres for coating (like sugar spheres); spheronization agents (like glyceryl behenate and microcrystalline cellulose); suspending/gelling agents (like carrageenan, gellan gum, mannitol,

microcrystalline cellulose, povidone, sodium starch glycolate, xanthan gum); sweeteners (like aspartame, aspartame and lactose, dextrose, fructose, honey, maltodextrin, maltose, mannitol, molasses, sorbitol crystalline, sorbitol special solution, sucrose); wet granulation agents (like calcium carbonate, lactose anhydrous, lactose monohydrate, maltodextrin, mannitol, microcrystalline cellulose, povidone, starch), caramel, carboxymethylcellulose sodium, cherry cream flavor and cherry flavor, citric acid anhydrous, citric acid, confectioner's sugar, D&C Red No. 33, D&C Yellow #10 Aluminum Lake, disodium edetate, ethyl alcohol 15%, FD&C Yellow No. 6 aluminum lake, FD&C Blue #1 Aluminum Lake, FD&C Blue No. 1, FD&C blue no. 2 aluminum lake, FD&C Green No. 3, FD&C Red No. 40, FD&C Yellow No. 6 Aluminum Lake, FD&C Yellow No. 6, FD&C Yellow No. 10, glycerol

palmitostearate, glyceryl monostearate, indigo carmine, lecithin, manitol, methyl and propyl parabens, mono ammonium glycyrrhizinate, natural and artificial orange flavor,

pharmaceutical glaze, poloxamer 188, Polydextrose, polysorbate 20, polysorbate 80, polyvidone, pregelatinized corn starch, pregelatinized starch, red iron oxide, saccharin sodium, sodium carboxymethyl ether, sodium chloride, sodium citrate, sodium phosphate, strawberry flavor, synthetic black iron oxide, synthetic red iron oxide, titanium dioxide, and white wax.

Solid oral dosage forms may optionally be treated with coating systems (e.g.

Opadry.RTM. fx film coating system, for example Opadry.RTM. blue (OY-LS-20921), Opadry.RTM. white (YS-2-7063), Opadry.RTM. white (YS-1-7040), and black ink (S-l- 8106).

The agents either in their free form or as a salt can be combined with a polymer such as polylactic-glycoloic acid (PLGA), poly-(I)-lactic-glycolic-tartaric acid (P(I)LGT) (WO 01/12233), polyglycolic acid (U.S. Pat. No. 3,773,919), polylactic acid (U.S. Pat. No.

4,767,628), poly(.epsilon.-caprolactone) and poly(alkylene oxide) (U.S. 20030068384) to create a sustained release formulation. Such formulations can be used to implants that release an agent over a period of a few days, a few weeks or several months depending on the polymer, the particle size of the polymer, and the size of the implant (see, e.g., U.S. Pat. No. 6,620,422). Other sustained release formulations and polymers for use in are described in EP 0 467 389 A2, WO 93/24150, U.S. Pat. No. 5,612,052, WO 97/40085, WO 03/075887, WO 01/01964A2, U.S. Pat. No. 5,922,356, WO 94/155587, WO 02/074247 A2, WO 98/25642, U.S. Pat. No. 5,968,895, U.S. Pat. No. 6,180,608, U.S. 20030171296, U.S. 20020176841, U.S. Pat. No. 5,672,659, U.S. Pat. No. 5,893,985, U.S. Pat. No. 5,134,122, U.S. Pat. No. 5,192,741, U.S. Pat. No. 5,192,741, U.S. Pat. No. 4,668,506, U.S. Pat. No. 4,713,244, U.S. Pat. No. 5,445,832 U.S. Pat. No. 4,931,279, U.S. Pat. No. 5,980,945, WO 02/058672, WO 9726015, WO 97/04744, and. US20020019446. In such sustained release formulations microparticles (Delie and Blanco-Prieto 2005 Molecule 10:65-80) of compound are combined with microparticles of polymer. One or more sustained release implants can be placed in the large intestine, the small intestine or both. U.S. Pat. No. 6,011,011 and WO 94/06452 describe a sustained release formulation providing either polyethylene glycols (i.e. PEG 300 and PEG 400) or triacetin. WO 03/053401 describes a formulation which may both enhance bioavailability and provide controlled release of the agent within the GI tract.

Additional controlled release formulations are described in WO 02/38129, EP 326 151, U.S. Pat. No. 5,236,704, WO 02/30398, WO 98/13029; U.S. 20030064105, U.S. 20030138488A1, U.S. 20030216307A1, U.S. Pat. No. 6,667,060, WO 01/49249, WO 01/49311, WO 01/49249, WO 01/49311, and U.S. Pat. No. 5,877,224.

The agents can be administered, e.g., by intravenous injection, intramuscular injection, subcutaneous injection, intraperitoneal injection, topical, sublingual, intraarticular (in the joints), intradermal, buccal, ophthalmic (including intraocular), intranasally (including using a cannula), intraspinally, intrathecally, or by other routes. The agents can be administered orally, e.g., as a tablet or cachet containing a predetermined amount of the active ingredient, gel, pellet, paste, syrup, bolus, electuary, slurry, capsule, powder, lyophilized powder, granules, sachet, as a solution or a suspension in an aqueous liquid or a non-aqueous liquid, as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion, via a micellar formulation (see, e.g. WO 97/11682) via a liposomal formulation (see, e.g., EP 736299, WO 99/59550 and WO 97/13500), via formulations described in WO 03/094886, via bilosome (bile-salt based vesicular system), via a dendrimer, or in some other form. Orally administered compositions can include binders, lubricants, inert diluents, lubricating, surface active or dispersing agents, flavoring agents, and humectants. Orally administered formulations such as tablets may optionally be coated or scored and may be formulated so as to provide sustained, delayed or controlled release of the active ingredient therein. The agents can also be administered transdermally (i.e. via reservoir-type or matrix-type patches, microneedles, thermal poration, hypodermic needles, iontophoresis, electroporation, ultrasound or other forms of sonophoresis, jet injection, or a combination of any of the preceding methods (Prausnitz et al. 2004, Nature Reviews Drug Discovery 3:115-124)). The agents can be administered using high-velocity transdermal particle injection techniques using the hydrogel particle formulation described in U.S. 20020061336. Additional particle formulations are described in WO 00/45792, WO 00/53160, and WO 02/19989. An example of a transdermal formulation containing plaster and the absorption promoter

dimethylisosorbide can be found in WO 89/04179. WO 96/11705 provides formulations suitable for transdermal administration. The agents can be administered in the form a suppository or by other vaginal or rectal means. The agents can be administered in a transmembrane formulation as described in WO 90/07923. The agents can be administered non-invasively via the dehydrated particles described in U.S. Pat. No. 6,485,706. The agent can be administered in an enteric-coated drug formulation as described in WO 02/49621. The agents can be administered intranasally using the formulation described in U.S. Pat. No. 5,179,079. Formulations suitable for parenteral injection are described in WO 00/62759. The agents can be administered using the casein formulation described in U.S. 20030206939 and WO 00/06108. The agents can be administered using the particulate formulations described in U.S. 20020034536.

The agents, alone or in combination with other suitable components, can be administered by pulmonary route utilizing several techniques including but not limited to intratracheal instillation (delivery of solution into the lungs by syringe), intratracheal delivery of liposomes, insufflation (administration of powder formulation by syringe or any other similar device into the lungs) and aerosol inhalation. Aerosols (e.g., jet or ultrasonic nebulizers, metered-dose inhalers (MDIs), and dry-powder inhalers (DPIs)) can also be used in intranasal applications. Aerosol formulations are stable dispersions or suspensions of solid material and liquid droplets in a gaseous medium and can be placed into pressurized acceptable propellants, such as hydrofluoroalkanes (HFAs, i.e. HFA-134a and HFA-227, or a mixture thereof), dichlorodifluoromethane (or other chlorofluocarbon propellants such as a mixture of Propellants 11, 12, and/or 114), propane, nitrogen, and the like. Pulmonary formulations may include permeation enhancers such as fatty acids, saccharides, chelating agents, enzyme inhibitors (e.g., protease inhibitors), adjuvants (e.g., glycocholate, surfactin, span 85, and nafamostat), preservatives (e.g., benzalkonium chloride or chlorobutanol), and ethanol (normally up to 5% but possibly up to 20%, by weight). Ethanol is commonly included in aerosol compositions as it can improve the function of the metering valve and in some cases also improve the stability of the dispersion. Pulmonary formulations may also include surfactants which include but are not limited to bile salts and those described in U.S. Pat. No. 6,524,557 and references therein. The surfactants described in U.S. Pat. No.

6,524,557, e.g., a C8-C16 fatty acid salt, a bile salt, a phospholipid, or alkyl saccaride are advantageous in that some of them also reportedly enhance absorption of active agents in the formulation. Also suitable in the invention are dry powder formulations comprising a therapeutically effective amount of active compound blended with an appropriate carrier and adapted for use in connection with a dry-powder inhaler. Absorption enhancers which can be added to dry powder formulations of the present invention include those described in U.S. Pat. No. 6,632,456. WO 02/080884 describes new methods for the surface modification of powders. Aerosol formulations may include U.S. Pat. No. 5,230,884, U.S. Pat. No.

5,292,499, WO 017/8694, WO 01/78696, U.S. 2003019437, U.S. 20030165436, and WO 96/40089 (which includes vegetable oil). Sustained release formulations suitable for inhalation are described in U.S. 20010036481A1, 20030232019A1, and U.S.

20040018243A1 as well as in WO 01/13891, WO 02/067902, WO 03/072080, and WO 03/079885. Pulmonary formulations containing microparticles are described in WO

03/015750, U.S. 20030008013, and WO 00/00176.

Pulmonary formulations containing stable glassy state powder are described in U.S. 20020141945 and U.S. Pat. No. 6,309,671. Other aerosol formulations are described in EP 1338272A1 WO 90/09781, U.S. Pat. No. 5,348,730, U.S. Pat. No. 6,436,367, WO 91/04011, and U.S. Pat. No. 6,294,153 and U.S. Pat. No. 6,290,987 describes a liposomal based formulation that can be administered via aerosol or other means. Powder formulations for inhalation are described in U.S. 20030053960 and WO 01/60341. The agents can be administered intranasally as described in U.S. 20010038824. The agents can be incorporated into microemulsions, which generally are thermodynamically stable, isotropically clear dispersions of two immiscible liquids, such as oil and water, stabilized by an interfacial film of surfactant molecules (Encyclopedia of Pharmaceutical Technology (New York: Marcel Dekker, 1992), volume 9). For the preparation of microemulsions, surfactant (emulsifier), co- surfactant (co-emulsifier), an oil phase and a water phase are necessary. Suitable surfactants include any surfactants that are useful in the preparation of emulsions, e.g., emulsifiers that are typically used in the preparation of creams. The co-surfactant (or "co-emulsifer") is generally selected from the group of polyglycerol derivatives, glycerol derivatives and fatty alcohols. Preferred emulsifier/co-emulsifier combinations are generally although not necessarily selected from the group consisting of: glyceryl monostearate and polyoxyethylene stearate; polyethylene glycol and ethylene glycol palmitostearate; and caprilic and capric triglycerides and oleoyl macrogolglycerides. The water phase includes not only water but also, typically, buffers, glucose, propylene glycol, polyethylene glycols, preferably lower molecular weight polyethylene glycols (e.g., PEG 300 and PEG 400), and/or glycerol, and the like, while the oil phase will generally comprise, for example, fatty acid esters, modified vegetable oils, silicone oils, mixtures of mono- di- and triglycerides, mono- and di-esters of PEG (e.g., oleoyl macrogol glycerides), etc.

The agents described herein can be incorporated into pharmaceutically-acceptable nanoparticle, nanosphere, and nanocapsule formulations (Delie and Blanco-Prieto 2005 Molecule 10:65-80). Nanocapsules can generally entrap compounds in a stable and reproducible way (Henry-Michelland et al., 1987; Quintanar-Guerrero et al., 1998; Douglas et al., 1987). To avoid side effects due to intracellular polymeric overloading, ultrafine particles (sized around 0.1 μιη) can be designed using polymers able to be degraded in vivo (e.g. biodegradable polyalkyl-cyanoacrylate nanoparticles). Such particles are described in the prior art (Couvreur et al, 1980; 1988; zur Muhlen et al., 1998; Zambaux et al. 1998; Pinto-Alphandry et al., 1995 and U.S. Pat. No. 5,145,684).

The agents described herein can be formulated with pH sensitive materials which may include those described in WO04041195 (including the seal and enteric coating described therein) and pH-sensitive coatings that achieve delivery in the colon including those described in U.S. Pat. No. 4,910,021 and WO9001329. U.S. Pat. No. 4,910,021 describes using a pH-sensitive material to coat a capsule. WO9001329 describes using pH-sensitive coatings on beads containing acid, where the acid in the bead core prolongs dissolution of the pH-sensitive coating. U.S. Pat. No. 5,175,003 discloses a dual mechanism polymer mixture composed of pH-sensitive enteric materials and film-forming plasticizers capable of conferring permeability to the enteric material, for use in drug-delivery systems; a matrix pellet composed of a dual mechanism polymer mixture permeated with a drug and sometimes covering a pharmaceutically neutral nucleus; a membrane-coated pellet comprising a matrix pellet coated with a dual mechanism polymer mixture envelope of the same or different composition; and a pharmaceutical dosage form containing matrix pellets. The matrix pellet releases acid-soluble drugs by diffusion in acid pH and by disintegration at pH levels of nominally about 5.0 or higher. The agents described herein may be formulated in the pH triggered targeted control release systems described in WO04052339. The agents described herein may be formulated according to the methodology described in any of WO03105812 (extruded hyrdratable polymers); WO0243767 (enzyme cleavable membrane translocators); WO03007913 and WO03086297 (mucoadhesive systems); WO02072075 (bilayer laminated formulation comprising pH lowering agent and absorption enhancer); WO04064769

(amidated polypeptides); WO05063156 (solid lipid suspension with pseudotropic and/or thixotropic properties upon melting); WO03035029 and WO03035041 (erodible, gastric retentive dosage forms); U.S. Pat. No. 5,007,790 and U.S. Pat. No. 5,972,389 (sustained release dosage forms); WO04112711 (oral extended release compositions); WO05027878, WO02072033, and WO02072034 (delayed release compositions with natural or synthetic gum); WO05030182 (controlled release formulations with an ascending rate of release); WO05048998 (microencapsulation system); U.S. Pat. No. 5,952,314 (biopolymer); U.S. Pat. No. 5,108,758 (glassy amylose matrix delivery); U.S. Pat. No. 5,840,860 (modified starch based delivery). JP10324642 (delivery system comprising chitosan and gastric resistant material such as wheat gliadin or zein); U.S. Pat. No. 5,866,619 and U.S. Pat. No. 6,368,629 (saccharide containing polymer); U.S. Pat. No. 6,531,152 (describes a drug delivery system containing a water soluble core (Ca pectinate or other water-insoluble polymers) and outer coat which bursts (eg hydrophobic polymer-Eudragrit)); U.S. Pat. No. 6,234,464; U.S. Pat. No. 6,403,130 (coating with polymer containing casein and high methoxy pectin;

WO0174175 (Maillard reaction product); WO05063206 (solubility increasing formulation); WO04019872 (transferring fusion proteins). The agents described herein may be formulated using gastrointestinal retention system technology (GIRES; Merrion Pharmaceuticals).

GIRES comprises a controlled-release dosage form inside an inflatable pouch, which is placed in a drug capsule for oral administration. Upon dissolution of the capsule, a gas- generating system inflates the pouch in the stomach where it is retained for 16-24 hours, all the time releasing agents described herein.

The agents described herein can be formulated in an osmotic device including the ones disclosed in U.S. Pat. No. 4,503,030, U.S. Pat. No. 5,609,590 and U.S. Pat. No.

5,358,502. U.S. Pat. No. 4,503,030 discloses an osmotic device for dispensing a drug to certain pH regions of the gastrointestinal tract. More particularly, the invention relates to an osmotic device comprising a wall formed of a semi-permeable pH sensitive composition that surrounds a compartment containing a drug, with a passageway through the wall connecting the exterior of the device with the compartment. The device delivers the drug at a controlled rate in the region of the gastrointestinal tract having a pH of less than 3.5, and the device self- destructs and releases all its drug in the region of the gastrointestinal tract having a pH greater than 3.5, thereby providing total availability for drug absorption. U.S. Pat. Nos. 5,609,590 and 5,358,502 disclose an osmotic bursting device for dispensing a beneficial agent to an aqueous environment. The device comprises a beneficial agent and osmagent surrounded at least in part by a semi-permeable membrane. The beneficial agent may also function as the osmagent. The semi-permeable membrane is permeable to water and substantially impermeable to the beneficial agent and osmagent. A trigger means is attached to the semipermeable membrane (e.g., joins two capsule halves). The trigger means is activated by a pH of from 3 to 9 and triggers the eventual, but sudden, delivery of the beneficial agent. These devices enable the pH-triggered release of the beneficial agent core as a bolus by osmotic bursting.

The agents described herein may be formulated based on the invention described in U.S. Pat. No. 5,316,774 which discloses a composition for the controlled release of an active substance comprising a polymeric particle matrix, where each particle defines a network of internal pores. The active substance is entrapped within the pore network together with a blocking agent having physical and chemical characteristics selected to modify the release rate of the active substance from the internal pore network. In one embodiment, drugs may be selectively delivered to the intestines using an enteric material as the blocking agent. The enteric material remains intact in the stomach but degrades under the pH conditions of the intestines. In another embodiment, the sustained release formulation employs a blocking agent, which remains stable under the expected conditions of the environment to which the active substance is to be released. The use of pH-sensitive materials alone to achieve site- specific delivery is difficult because of leaking of the beneficial agent prior to the release site or desired delivery time and it is difficult to achieve long time lags before release of the active ingredient after exposure to high pH (because of rapid dissolution or degradation of the pH-sensitive materials).

The agents may also be formulated in a hybrid system which combines pH-sensitive materials and osmotic delivery systems. These hybrid devices provide delayed initiation of sustained-release of the beneficial agent. In one device a pH-sensitive matrix or coating dissolves releasing osmotic devices that provide sustained release of the beneficial agent see U.S. Pat. Nos. 4,578,075, 4,681,583, and 4,851,231. A second device consists of a semipermeable coating made of a polymer blend of an insoluble and a pH-sensitive material. As the pH increases, the permeability of the coating increases, increasing the rate of release of beneficial agent see U.S. Pat. Nos. 4,096,238, 4,503,030, 4,522, 625, and 4,587,117. The agents described herein may be formulated in terpolymers according to U.S. Pat. No. 5,484,610 which discloses terpolymers which are sensitive to pH and temperature which are useful carriers for conducting bioactive agents through the gastric juices of the stomach in a protected form. The terpolymers swell at the higher physiologic pH of the intestinal tract causing release of the bioactive agents into the intestine. The terpolymers are linear and are made up of 35 to 99 wt % of a temperature sensitive component, which imparts to the terpolymer LCST (lower critical solution temperature) properties below body temperatures, 1 to 30 wt % of a pH sensitive component having a pKa in the range of from 2 to 8 which functions through ionization or deionization of carboxylic acid groups to prevent the bioactive agent from being lost at low pH but allows bioactive agent release at physiological pH of about 7.4 and a hydrophobic component which stabilizes the LCST below body temperatures and compensates for bioactive agent effects on the terpolymers. The terpolymers provide for safe bioactive agent loading, a simple procedure for dosage form fabrication and the terpolymer functions as a protective carrier in the acidic environment of the stomach and also protects the bioactive agents from digestive enzymes until the bioactive agent is released in the intestinal tract.

The agents described herein may be formulated in pH sensitive polymers according to those described in U.S. Pat. No. 6,103,865. U.S. Pat. No. 6,103,865 discloses pH-sensitive polymers containing sulfonamide groups, which can be changed in physical properties, such as swellability and solubility, depending on pH and which can be applied for a drug-delivery system, bio-material, sensor, and the like, and a preparation method therefore. The pH- sensitive polymers are prepared by introduction of sulfonamide groups, various in pKa, to hydrophilic groups of polymers either through coupling to the hydrophilic groups of polymers, such as acrylamide, Ν,Ν-dimethylacrylamide, acrylic acid, N-isopropylacrylamide and the like or copolymerization with other polymerizable monomers. These pH-sensitive polymers may have a structure of linear polymer, grafted copolymer, hydrogel or interpenetrating network polymer.

The agents described herein may be formulated according U.S. Pat. No. 5,656,292 which discloses a composition for pH dependent or pH regulated controlled release of active ingredients especially drugs. The composition consists of a compactable mixture of the active ingredient and starch molecules substituted with acetate and dicarboxylate residues. The preferred dicarboxylate acid is succinate. The average substitution degree of the acetate residue is at least 1 and 0.2-1.2 for the dicarboxylate residue. The starch molecules can have the acetate and dicarboxylate residues attached to the same starch molecule backbone or attached to separate starch molecule backbones.

The agents described herein may be formulated according to the methods described in U.S. Pat. Nos. 5,554,147, 5,788,687, and 6,306,422 which disclose a method for the controlled release of a biologically active agent wherein the agent is released from a hydrophobic, pH-sensitive polymer matrix. The polymer matrix swells when the environment reaches pH 8.5, releasing the active agent. A polymer of hydrophobic and weakly acidic comonomers is disclosed for use in the controlled release system. Also disclosed is a specific embodiment in which the controlled release system may be used. The pH-sensitive polymer is coated onto a latex catheter used in ureteral catheterization. A ureteral catheter coated with a pH-sensitive polymer having an antibiotic or urease inhibitor trapped within its matrix will release the active agent when exposed to high pH urine.

The agents can be administered using COLAL™. colonic drug delivery technology (U.S. Pat. No. 6,534,549) BTGInternational, Ltd.; Alizyme, pic; Cambridge, UK) in which small pellets containing the agents are coated with ethylcellulose and a specific form of amylose. This coating prevents drug release in the stomach and small intestine. When the pellets reach the colon the amylose in the coating is broken down by bacterial enzymes and the agent is released. The agents described herein may be formulated in/with bioadhesive polymers according to U.S. Pat. No. 6,365,187. Bioadhesive polymers in the form of, or as a coating on, microcapsules containing drugs or bioactive substances which may serve for therapeutic, or diagnostic purposes in diseases of the gastrointestinal tract, are described in U.S. Pat. No. 6,365,187. The polymeric microspheres all have a bioadhesive force of at least 11 mN/cm.sup.2 (110 N/m2) Techniques for the fabrication of bioadhesive microspheres, as well as a method for measuring bioadhesive forces between microspheres and selected segments of the gastrointestinal tract in vitro are also described. This quantitative method provides a means to establish a correlation between the chemical nature, the surface morphology and the dimensions of drug-loaded microspheres on one hand and bioadhesive forces on the other, allowing the screening of the most promising materials from a relatively large group of natural and synthetic polymers which, from theoretical consideration, should be used for making bioadhesive microspheres. Solutions of medicament in buffered saline and similar vehicles are commonly employed to generate an aerosol in a nebulizer. Simple nebulizers operate on Bernoulli's principle and employ a stream of air or oxygen to generate the spray particles. More complex nebulizers employ ultrasound to create the spray particles. Both types are well known in the art and are described in standard textbooks of pharmacy such as Sprowls' American Pharmacy and Remington's The Science and Practice of

Pharmacy. Other devices for generating aerosols employ compressed gases, usually hydrofluorocarbons and chlorofluorocarbons, which are mixed with the medicament and any necessary excipients in a pressurized container, these devices are likewise described in standard textbooks such as Sprowls and Remington.

The agents can be a free acid or base, or a pharmacologically acceptable salt thereof. Solids can be dissolved or dispersed immediately prior to administration or earlier. In some circumstances the preparations include a preservative to prevent the growth of

microorganisms. The pharmaceutical forms suitable for injection can include sterile aqueous or organic solutions or dispersions which include, e.g., water, an alcohol, an organic solvent, an oil or other solvent or dispersant (e.g., glycerol, propylene glycol, polyethylene glycol, and vegetable oils). The formulations may contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. Pharmaceutical agents can be sterilized by filter sterilization or by other suitable means. The agent can be fused to immunoglobulins or albumin, albumin variants or fragments thereof, or incorporated into a liposome to improve half-life. Thus the peptides described herein may be fused directly or via a peptide linker, water soluble polymer, or prodrug linker to albumin or an analog, fragment, or derivative thereof. Generally, the albumin proteins that are part of the fusion proteins of the present invention may be derived from albumin cloned from any species, including human. Human serum albumin (HSA) consists of a single non- glycosylated polypeptide chain of 585 amino acids with a formula molecular weight of 66,500. The amino acid sequence of human HSA is known [See Meloun, et al. (1975) FEBS Letters 58:136; Behrens, et al. (1975) Fed. Proc. 34:591; Lawn, et al. (1981) Nucleic Acids Research 9:6102-6114; Minghetti, et al. (1986) J. Biol. Chem. 261:6747, each of which are incorporated by reference herein]. A variety of polymorphic variants as well as analogs and fragments of albumin have been described. [See Weitkamp, et al., (1973) Ann. Hum. Genet. 37:219]. For example, in EP 322,094, various shorter forms of HSA. Some of these fragments of HSA are disclosed, including HSA (1- 373), HSA (1-388), HSA (1-389), HSA (1-369), and HSA (1-419) and fragments between 1- 369 and 1-419. EP 399,666 discloses albumin fragments that include HSA (1-177) and HSA (1-200) and fragments between HSA (1-177) and HSA (1-200). Methods related to albumin fusion proteins can be found in U.S. Pat. No. 7,056,701, U.S. Pat. No. 6,994,857, U.S. Pat. No. 6,946,134, U.S. Pat. No. 6,926,898, and U.S. Pat. No. 6,905,688 and the related priority documents and references cited therein. The agent can also be conjugated to polyethylene glycol (PEG) chains. Methods for pegylation and additional formulations containing PEG- conjugates (i.e. PEG-based hydrogels, PEG modified liposomes) can be found in Harris and Chess, Nature Reviews Drug Discovery 2: 214-221 and the references therein. Compounds (e.g., a COMT inhibitor (e.g., entacapone)) can also be modified with alkyl groups (e.g., Cl- C20 straight or branched alkyl groups); fatty acid radicals; and combinations of PEG, alkyl groups and fatty acid radicals (see U.S. Pat. No. 6,309,633; Soltero et al., 2001 Innovations in Pharmaceutical Technology 106-110). The agent can be administered via a nanocochleate or cochleate delivery vehicle (BioDelivery Sciences International). The agents can be delivered transmucosally (i.e. across a mucosal surface such as the vagina, eye or nose) using formulations such as that described in U.S. Pat. No. 5,204,108. The agents can be formulated in microcapsules as described in WO 88/01165. The agent can be administered intra-orally using the formulations described in U.S. 20020055496, WO 00/47203, and U.S. Pat. No. 6,495,120. The agent can be delivered using nanoemulsion formulations described in WO 01/91728A2.

Controlled Release Formulations

In general, one can provide for controlled release of the agents described herein through the use of a wide variety of polymeric carriers and controlled release systems including erodible and non-erodible matrices, osmotic control devices, various reservoir devices, enteric coatings and multiparticulate control devices.

Matrix devices are a common device for controlling the release of various agents. In such devices, the agents described herein are generally present as a dispersion within the polymer matrix, and are typically formed by the compression of a polymer/drug mixture or by dissolution or melting. The dosage release properties of these devices may be dependent upon the solubility of the agent in the polymer matrix or, in the case of porous matrices, the solubility in the sink solution within the pore network, and the tortuosity of the network. In one instance, when utilizing an erodible polymeric matrix, the matrix imbibes water and forms an aqueous-swollen gel that entraps the agent. The matrix then gradually erodes, swells, disintegrates or dissolves in the GI tract, thereby controlling release of one or more of the agents described herein. In non-erodible devices, the agent is released by diffusion through an inert matrix.

Agents described herein can be incorporated into an erodible or non-erodible polymeric matrix controlled release device. By an erodible matrix is meant aqueous -erodible or water- swellable or aqueous-soluble in the sense of being either erodible or swellable or dissolvable in pure water or requiring the presence of an acid or base to ionize the polymeric matrix sufficiently to cause erosion or dissolution. When contacted with the aqueous environment of use, the erodible polymeric matrix imbibes water and forms an aqueous- swollen gel or matrix that entraps the agent described herein. The aqueous-swollen matrix gradually erodes, swells, disintegrates or dissolves in the environment of use, thereby controlling the release of a compound described herein to the environment of use.

The erodible polymeric matrix into which an agent described herein can be incorporated may generally be described as a set of excipients that are mixed with the agent following its formation that, when contacted with the aqueous environment of use imbibes water and forms a water-swollen gel or matrix that entraps the drug form. Drug release may occur by a variety of mechanisms, for example, the matrix may disintegrate or dissolve from around particles or granules of the agent or the agent may dissolve in the imbibed aqueous solution and diffuse from the tablet, beads or granules of the device. One ingredient of this water-swollen matrix is the water-swellable, erodible, or soluble polymer, which may generally be described as an osmopolymer, hydrogel or water-swellable polymer. Such polymers may be linear, branched, or crosslinked. The polymers may be homopolymers or copolymers. In certain embodiments, they may be synthetic polymers derived from vinyl, acrylate, methacrylate, urethane, ester and oxide monomers. In other embodiments, they can be derivatives of naturally occurring polymers such as polysaccharides (e.g. chitin, chitosan, dextran and pullulan; gum agar, gum arabic, gum karaya, locust bean gum, gum tragacanth, carrageenans, gum ghatti, guar gum, xanthan gum and scleroglucan), starches (e.g. dextrin and maltodextrin), hydrophilic colloids (e.g. pectin), phosphatides (e.g. lecithin), alginates (e.g. ammonium alginate, sodium, potassium or calcium alginate, propylene glycol alginate), gelatin, collagen, and cellulosics. Cellulosics are cellulose polymer that has been modified by reaction of at least a portion of the hydroxyl groups on the saccharide repeat units with a compound to form an ester- linked or an ether- linked substituent. For example, the cellulosic ethyl cellulose has an ether linked ethyl substituent attached to the saccharide repeat unit, while the cellulosic cellulose acetate has an ester linked acetate substituent. In certain embodiments, the cellulosics for the erodible matrix comprises aqueous-soluble and aqueous- erodible cellulosics can include, for example, ethyl cellulose (EC), methylethyl cellulose (MEC), carboxymethyl cellulose (CMC), CMEC, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), cellulose acetate (CA), cellulose propionate (CP), cellulose butyrate (CB), cellulose acetate butyrate (CAB), CAP, CAT, hydroxypropyl methyl cellulose (HPMC), HPMCP, HPMCAS, hydroxypropyl methyl cellulose acetate trimellitate

(HPMCAT), and ethylhydroxy ethylcellulose (EHEC). In certain embodiments, the cellulosics comprises various grades of low viscosity (MW less than or equal to 50,000 daltons, for example, the Dow Methocel.TM. series E5, E15LV, E50LV and K100LY) and high viscosity (MW greater than 50,000 daltons, for example, E4MCR, EIOMCR, K4M, K15M and K100M and the Methocel.TM. K series) HPMC. Other commercially available types of HPMC include the Shin Etsu Metolose 90SH series.

The choice of matrix material can have a large effect on the maximum drug concentration attained by the device as well as the maintenance of a high drug concentration. The matrix material can be a concentration-enhancing polymer, for example, as described in WO05/011634.

Other materials useful as the erodible matrix material include, but are not limited to, pullulan, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl acetate, glycerol fatty acid esters, polyacrylamide, polyacrylic acid, copolymers of ethacrylic acid or methacrylic acid (EUDRAGITO, Rohm America, Inc., Piscataway, N.J.) and other acrylic acid derivatives such as homopolymers and copolymers of butylmethacrylate, methylmethacrylate, ethylmethacrylate, ethylacrylate, (2-dimethylaminoethyl) methacrylate, and

(trimethylaminoethyl) methacrylate chloride.

The erodible matrix polymer may contain a wide variety of the same types of additives and excipients known in the pharmaceutical arts, including osmopolymers, osmagens, solubility-enhancing or -retarding agents and excipients that promote stability or processing of the device.

Alternatively, the agents of the present invention may be administered by or incorporated into a non-erodible matrix device. In such devices, an agent described herein is distributed in an inert matrix. The agent is released by diffusion through the inert matrix. Examples of materials suitable for the inert matrix include insoluble plastics (e.g methyl acrylate-methyl methacrylate copolymers, polyvinyl chloride, polyethylene), hydrophilic polymers (e.g. ethyl cellulose, cellulose acetate, crosslinked polyvinylpyrrolidone (also known as crospovidone)), and fatty compounds (e.g. carnauba wax, microcrystalline wax, and triglycerides). Such devices are described further in Remington: The Science and Practice of Pharmacy, 20th edition (2000). Matrix controlled release devices may be prepared by blending an agent described herein and other excipients together, and then forming the blend into a tablet, caplet, pill, or other device formed by compressive forces. Such compressed devices may be formed using any of a wide variety of presses used in the fabrication of pharmaceutical devices. Examples include single-punch presses, rotary tablet presses, and multilayer rotary tablet presses, all well known in the art. See for example, Remington: The Science and Practice of Pharmacy, 20th Edition, 2000. The compressed device may be of any shape, including round, oval, oblong, cylindrical, or triangular. The upper and lower surfaces of the compressed device may be flat, round, concave, or convex.

In certain embodiments, when formed by compression, the device has a strength of at least 5 Kiloponds (Kp)/cm.sup.2 (for example, at least 7 Kp/cm.sup.2). Strength is the fracture force, also known as the tablet hardness required to fracture a tablet formed from the materials, divided by the maximum cross-sectional area of the tablet normal to that force. The fracture force may be measured using a Schleuniger Tablet Hardness Tester, Model 6D. The compression force required to achieve this strength will depend on the size of the tablet, but generally will be greater than about 5 kP/cm.sup.2. Friability is a well-know measure of a device's resistance to surface abrasion that measures weight loss in percentage after subjecting the device to a standardized agitation procedure. Friability values of from 0.8 to 1.0% are regarded as constituting the upper limit of acceptability. Devices having a strength of greater than 5 kP/cm.sup.2 generally are very robust, having a friability of less than 0.5%. Other methods for forming matrix controlled-release devices are well known in the pharmaceutical arts. See for example, Remington: The Science and Practice of Pharmacy, 20th Edition, 2000.

Other materials useful in forming the drug-containing agent, in addition to the agent described herein itself, include HPMC, PEO and PVP and other pharmaceutically acceptable carriers. In addition, osmagents such as sugars or salts, including but not limited to sucrose, lactose, xylitol, mannitol, or sodium chloride, may be added. Materials which are useful for forming the hydrogel layer include sodium CMC, PEO (e.g. polymers having an average molecular weight from about 5,000,000 to about 7,500,000 daltons), poly (acrylic acid), sodium (polyacrylate), sodium croscarmellose, sodium starch glycolat, PVP, crosslinked PVP, and other high molecular weight hydrophilic materials. In the case of a bilayer geometry, the delivery port(s) or exit passageway(s) may be located on the side of the tablet containing the drug agent or may be on both sides of the tablet or even on the edge of the tablet so as to connect both the drug layer and the sweller layer with the exterior of the device. The exit passageway(s) may be produced by mechanical means or by laser drilling, or by creating a difficult-to-coat region on the tablet by use of special tooling during tablet compression or by other means.

The agents described herein may be provided in the form of microparticulates, generally ranging in size from about 10 μιη to about 2 mm (including, for example, from about 100 μιη to 1 mm in diameter). Such multiparticulates may be packaged, for example, in a capsule such as a gelatin capsule or a capsule formed from an aqueous-soluble polymer such as HPMCAS, HPMC or starch; dosed as a suspension or slurry in a liquid; or they may be formed into a tablet, caplet, or pill by compression or other processes known in the art. Such multiparticulates may be made by any known process, such as wet- and dry-granulation processes, extrusion/spheronization, roller-compaction, melt-congealing, or by spray-coating seed cores. For example, in wet- and dry-granulation processes, the agent described herein and optional excipients may be granulated to form multiparticulates of the desired size. Other excipients, such as a binder (e.g., microcrystalline cellulose), may be blended with the agent to aid in processing and forming the multiparticulates. In the case of wet granulation, a binder such as microcrystalline cellulose may be included in the granulation fluid to aid in forming a suitable multiparticulate. See, for example, Remington: The Science and Practice of

Pharmacy, 20" Edition, 2000. In any case, the resulting particles may themselves constitute the therapeutic composition or they may be coated by various film- forming materials such as enteric polymers or water- swellable or water-soluble polymers, or they may be combined with other excipients or vehicles to aid in dosing to patients.

Suitable pharmaceutical compositions in accordance with the invention will generally include an amount of the active compound(s)(a COMT inhibitor (e.g., entacapone)) with an acceptable pharmaceutical diluent or excipient, such as a sterile aqueous solution, to give a range of final concentrations, depending on the intended use. The techniques of preparation are generally well known in the art, as exemplified by Remington's Pharmaceutical Sciences (18th Edition, Mack Publishing Company, 1995). Kits

The agents described herein and combination therapy agents can be packaged as a kit that includes single or multiple doses of two or more agents, each packaged or formulated individually, or single or multiple doses of two or more agents packaged or formulated in combination. Thus, one or more agents can be present in first container, and the kit can optionally include one or more agents in a second container. The container or containers are placed within a package, and the package can optionally include administration or dosage instructions. A kit can include additional components such as syringes or other means for administering the agents as well as diluents or other means for formulation.

Thus, the kits can comprise: a) a pharmaceutical composition comprising a compound described herein and a pharmaceutically acceptable carrier, vehicle or diluent; and b) a container or packaging. The kits may optionally comprise instructions describing a method of using the pharmaceutical compositions in one or more of the methods described herein (e.g. gastrointestinal motility disorders, chronic intestinal pseudo-obstruction, colonic pseudoobstruction, Crohn's disease, duodenogastric reflux, dyspepsia, functional dyspepsia, nonulcer dyspepsia, a functional gastrointestinal disorder, functional heartburn,

gastroesophageal reflux disease (GERD), gastroparesis, irritable bowel syndrome, postoperative ileus, ulcerative colitis, chronic constipation, and disorders and conditions associated with constipation (e.g. constipation associated with use of opiate pain killers, postsurgical constipation, and constipation associated with neuropathic disorders as well as other conditions and disorders described herein). The kit may optionally comprise a second pharmaceutical composition comprising one or more additional agents including but not limited to those including analgesic polypeptides and compounds, a phosphodiesterase inhibitor, an agent used to treat gastrointestinal and other disorders (including those described herein), an agent used to treat constipation, an antidiarrheal agent, an insulin or related compound (including those described herein), an anti-hypertensive agent, an agent useful in the treatment of respiratory and other disorders, an anti-obesity agent, an anti-diabetic agents, an agent that activates soluble guanylate cyclase and a pharmaceutically acceptable carrier, vehicle or diluent. The pharmaceutical composition comprising the compound described herein and the second pharmaceutical composition contained in the kit may be optionally combined in the same pharmaceutical composition.

A kit includes a container or packaging for containing the pharmaceutical compositions and may also include divided containers such as a divided bottle or a divided foil packet. The container can be, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a "refill" of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule. It is feasible that more than one container can be used together in a single package to market a single dosage form. For example, tablets may be contained in a bottle which is in turn contained within a box.

An example of a kit is a so-called blister pack. Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process, recesses are formed in the plastic foil. The recesses have the size and shape of individual tablets or capsules to be packed or may have the size and shape to accommodate multiple tablets and/or capsules to be packed. Next, the tablets or capsules are placed in the recesses accordingly and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are individually sealed or collectively sealed, as desired, in the recesses between the plastic foil and the sheet.

Preferably the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.

It may be desirable to provide a written memory aid containing information and/or instructions for the physician, pharmacist or subject regarding when the medication is to be taken. A "daily dose" can be a single tablet or capsule or several tablets or capsules to be taken on a given day. When the kit contains separate compositions, a daily dose of one or more compositions of the kit can consist of one tablet or capsule while a daily dose of another one or more compositions of the kit can consist of several tablets or capsules. A kit can take the form of a dispenser designed to dispense the daily doses one at a time in the order of their intended use. The dispenser can be equipped with a memory-aid, so as to further facilitate compliance with the regimen. An example of such a memory-aid is a mechanical counter which indicates the number of daily doses that have been dispensed. Another example of such a memory-aid is a battery-powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds one when the next dose is to be taken.

Methods to increase chemical and/or physical stability of the agents the described herein are found in U.S. Pat. No. 6,541,606, U.S. Pat. No. 6,068,850, U.S. Pat. No.

6,124,261, U.S. Pat. No. 5,904,935, and WO 00/15224, U.S. 20030069182 (via the addition of nicotinamide), U.S. 20030175230A1, U.S. 20030175230A1, U.S. 20030175239A1, U.S. 20020045582, U.S. 20010031726, WO 02/26248, WO 03/014304, WO 98/00152A1, WO 98/00157A1, WO 90/12029, WO 00/04880, and WO 91/04743, WO 97/04796 and the references cited therein.

Methods to increase bioavailability of the agents described herein are found in U.S. Pat. No. 6,008,187, U.S. Pat. No. 5,424,289, U.S. 20030198619, WO 90/01329, WO

01/49268, WO 00/32172, and WO 02/064166. Glycyrrhizinate can also be used as an absorption enhancer (see, e.g., EP397447). WO 03/004062 discusses Ulex europaeus I (UEA1) and UEAI mimetics which may be used to target the agents described herein to the GI tract. The bioavailability of the agents described herein can also be increased by addition of oral bioavailability-enhancing agents such as those described in U.S. Pat. No. 6,818,615 including but not limited to: cyclosporins (including cyclosporins A through Z as defined in Table 1 of U.S. Pat. No. 6,818,615), for example, cyclosporin A (cyclosporin), cyclosporin F, cyclosporin D, dihydro cyclosporin A, dihydro cyclosporin C, acetyl cyclosporin A, PSC- 833, (Me-Ile-4)-cyclosporin (SDZ-NIM 811) (both from Sandoz Pharmaceutical Corp.), and related oligopeptides produced by species in the genus Topycladium); antifungals including but not limited to ketoconazole; cardiovascular drug including but not limited to MS -209 (BASF), amiodarone, nifedipine, reserpine, quinidine, nicardipine, ethacrynic acid, propafenone, reserpine, amiloride; anti-migraine natural products including but not limited to ergot alkaloids; antibiotics including but not limited to cefoperazone, tetracycline, chloroquine, fosfomycin; antiparasitics including but not limited to ivermectin; multi-drug resistance reversers including but not limited to VX-710 and VX-853 (Vertex Pharmaceutical Incorporated); tyrosine kinase inhibitors including but not limited to genistein and related isoflavonoids, quercetin; protein kinase C inhibitors including but not limited to calphostin; apoptosis inducers including but not limited to ceramides; and agents active against endorphin receptors including but not limited to morphine, morphine congeners, other opioids and opioid, antagonists including (but not limited to) naloxone, naltrexone and nalmefene). Dosage

The dose range for adult humans is generally from 0.005 mg to 10 g/day orally.

Tablets or other forms of presentation provided in discrete units may conveniently contain an amount of compound described herein which is effective at such dosage or as a multiple of the same, for instance, units containing 5 mg to 500 mg, usually around 10 mg to 200 mg. The precise amount of compound administered to a patient will be the responsibility of the attendant physician. However, the dose employed will depend on a number of factors, including the age and sex of the patient, the precise disorder being treated, and its severity.

A dosage unit (e.g. an oral dosage unit) can include from, for example, 1 to 30 μg, 1 to 40 μg, 1 to 50 μg, 1 to 100 μg, 1 to 200 μg, 1 to 300 μg, 1 to 400 μg, 1 to 500 μg, 1 to 600 μg, 1 to 700 μg, 1 to 800 μg, 1 to 900 μg, 1 to 1000 μg, 10 to 30 μg, 10 to 40 μg, 10 to 50 μg, 10 to 100 μg, 10 to 200 μg, 10 to 300 μg, 10 to 400 μg, 10 to 500 μg, 10 to 600 μg, 10 to 700 μg, 10 to 800 μg, 10 to 900 μg, 10 to 1000 μg, 100 to 200 μg, 100 to 300 μg, 100 to 400 μg, 100 to 500 μg, 100 to 600 μg, 100 to 700 μg, 100 to 800 μg, 100 to 900 μg, 100 to 1000 μg, 100 to 1250 μg, 100 to 1500 μg, 100 to 1750 μg, 100 to 2000 μg, 100 to 2250 μg, 100 to 2500 μg, 100 to 2750 μg, 100 to 3000 μg, 200 to 300 μg, 200 to 400 μg, 200 to 500 μg, 200 to 600 μg, 200 to 700 μg, 200 to 800 μg, 200 to 900 μg, 200 to 1000 μg, 200 to 1250 μg, 200 to 1500 μg, 200 to 1750 μg, 200 to 2000 μg, 200 to 2250 μg, 200 to 2500 μg, 200 to 2750 μg, 200 to 3000 μg, 300 to 400 μg, 300 to 500 μg, 300 to 600 μg, 300 to 700 μg, 300 to 800 μg, 300 to 900 μg, 300 to 1000 μg, 300 to 1250 μg, 300 to 1500 μg, 300 to 1750 μg, 300 to 2000 μg, 300 to 2250 μg, 300 to 2500 μg, 300 to 2750 μg, 300 to 3000 μg, 400 to 500 μg, 400 to 600 μg, 400 to 700 μg, 400 to 800 μg, 400 to 900 μg, 400 to 1000 μg, 400 to 1250 μg, 400 to 1500 μg, 400 to 1750 μg, 400 to 2000 μg, 400 to 2250 μg, 400 to 2500 μg, 400 to 2750 μg, 400 to 3000 μg, 500 to 600 μg, 500 to 700 μg, 500 to 800 μg, 500 to 900 μg, 500 to 1000 μg, 500 to 1250 μg, 500 to 1500 μg, 500 to 1750 μg, 500 to 2000 μg, 500 to 2250 μg, 500 to 2500 μg, 500 to 2750 μg, 500 to 3000 μg, 600 to 700 μg, 600 to 800 μg, 600 to 900 μg, 600 to 1000 μg, 600 to 1250 μg, 600 to 1500 μg, 600 to 1750 μg, 600 to 2000 μg, 600 to 2250 μg, 600 to 2500 μg, 600 to 2750 μg, 600 to 3000 μg, 700 to 800 μg, 700 to 900 μg, 700 to 1000 μg, 700 to 1250 μg, 700 to 1500 μg, 700 to 1750 μg, 700 to 2000 μg, 700 to 2250 μg, 700 to 2500 μg, 700 to 2750 μg, 700 to 3000 μg, 800 to 900 μg, 800 to 1000 μg, 800 to 1250 μg, 800 to 1500 μg, 800 to 1750 μg, 800 to 2000 μg, 800 to 2250 μg, 800 to 2500 μg, 800 to 2750 μg, 800 to 3000 μg, 900 to 1000 μg, 900 to 1250 μg, 900 to 1500 μg, 900 to 1750 μg, 900 to 2000 μg, 900 to 2250 μg, 900 to 2500 μg, 900 to 2750 μg, 900 to 3000 μg, 1000 to 1250 μg, 1000 to 1500 μg, 1000 to 1750 μg, 1000 to 2000 μg, 1000 to 2250 μg, 1000 to 2500 μg, 1000 to 2750 μg, 1000 to 3000 μg, 2 to 500 μg, 50 to 500 μg, 3 to 100 μg, 5 to 20 μg, 5 to 100 μg, 50 μg, 100 μg, 150 μg, 200 μg, 250 μg, 300 μg, 350 μg, 400 μg, 450 μg, 500 μg, 550 μg, 600 μg, 650 μg, 700 μg, 750 μg, 800 μg, 850 μg, 900 μg, 950 μg, 1000 μg, 1050 μg, 1100 μg, 1150 μg, 1200 μg, 1250 μg, 1300 μg, 1350 μg, 1400 μg, 1450 μg, 1500 μg, 1550 μg, 1600 μg, 1650 μg, 1700 μg, 1750 μg, 1800 μg, 1850 μg, 1900 μg, 1950 μg, 2000 μg, 2050 μg, 2100 μg, 2150 μg, 2200 μg, 2250 μg, 2300 μg, 2350 μg, 2400 μg, 2450 μg, 2500 μg, 2550 μg, 2600 μg, 2650 μg, 2700 μg, 2750 μg, 2800 μg, 2850 μg, 2900 μg, 2950 μg, 3000 μg, 3250 μg, 3500 μg, 3750 μg, 4000 μg, 4250 μg, 4500 μg, 4750 μg, 5000 μg of a compound described herein. In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g. with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day, five times a day, six times a day. The dosage unit can optionally comprise other agents.

When two or more active ingredients are combined in single dosage form, chemical interactions between the active ingredients may occur. For example, acidic and basic active ingredients can react with each other and acidic active ingredients can facilitate the degradation of acid labile substances. Thus, in certain dosage forms, acidic and basic substances can be physically separated as two distinct or isolated layers in a compressed tablet, or in the core and shell of a press-coated tablet. Additional agents that are compatible with acidic as well as basic substances, have the flexibility of being placed in either layer. In certain multiple layer compositions at least one active ingredient can be enteric-coated. In certain embodiments thereof at least one active ingredient can be presented in a controlled release form. In certain embodiments where a combination of three or more active substances are used, they can be presented as physically isolated segments of a compressed mutlilayer tablet, which can be optionally film coated.

Therapeutic combinations including the COMT inhibitor (e.g., entacapone) can be formulated as a tablet or capsule comprising a plurality of beads, granules, or pellets. All active ingredients including the vitamins of the combination are formulated into granules or beads or pellets that are further coated with a protective coat, an enteric coat, or a film coat to avoid the possible chemical interactions. Granulation and coating of granules or beads is done using techniques well known to a person skilled in the art. At least one active ingredient can present in a controlled release form. Finally these coated granules or beads are filled into hard gelatin capsules or compressed to form tablets.

Therapeutic combinations that include a COMT inhibitor (e.g., entacapone) can be formulated as a capsule comprising microtablets or minitablets of all active ingredients. Microtablets of the individual agents can be prepared using well known pharmaceutical procedures of tablet making like direct compression, dry granulation or wet granulation. Individual microtablets can be filled into hard gelatin capsules. A final dosage form may comprise one or more microtablets of each individual component. The microtablets may be film coated or enteric coated.

Therapeutic combinations that include a COMT inhibitor (e.g., entacapone) can be formulated as a capsule comprising one or more microtablets and powder, or one or more microtablets and granules or beads. In order to avoid interactions between drugs, some active ingredients of a said combination can be formulated as microtablets and the others filled into capsules as a powder, granules, or beads. The microtablets may be film coated or enteric coated. At least one active ingredient can be presented in controlled release form.

Therapeutic combinations that include a COMT inhibitor (e.g., entacapone) can be formulated wherein the active ingredients are distributed in the inner and outer phase of tablets. In an attempt to divide chemically incompatible components of proposed

combination, few interacting components are converted in granules or beads using well known pharmaceutical procedures in prior art. The prepared granules or beads (inner phase) are then mixed with outer phase comprising the remaining active ingredients and at least one pharmaceutically acceptable excipient. The mixture thus comprising inner and outer phase is compressed into tablets or molded into tablets. The granules or beads can be controlled release or immediate release beads or granules, and can further be coated using an enteric polymer in an aqueous or non-aqueous system, using methods and materials that are known in the art.

Therapeutic combinations that include a COMT inhibitor (e.g., entacapone) can be formulated as single dosage unit comprising suitable buffering agent. All powdered ingredients of said combination are mixed and a suitable quantity of one or more buffering agents is added to the blend to minimize possible interactions.

The agents described herein, alone or in combination, can be combined with any pharmaceutically acceptable carrier or medium. Thus, they can be combined with materials that do not produce an adverse, allergic or otherwise unwanted reaction when administered to a patient. The carriers or mediums used can include solvents, dispersants, coatings, absorption promoting agents, controlled release agents, and one or more inert excipients (which include starches, polyols, granulating agents, microcrystalline cellulose, diluents, lubricants, binders, disintegrating agents, and the like), etc. If desired, tablet dosages of the disclosed compositions may be coated by standard aqueous or nonaqueous techniques.

Methods of Treatment

The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disease or disorder caused, in whole or in part, by aberrant gastrointestinal motility (e.g., misregulated, impeded and/or otherwise delayed transit through the gastrointestinal tract), treatable via administration of a COMT inhibitor (e.g., entacapone).

In certain aspects, the invention provides a method for preventing in a subject a disease or disorder as described herein (including, e.g., treatment of a disease or disorder of gastrointestinal motility such as IBS and/or pain associated with IBS, within a subject via oral, ip or other route of administration of a COMT inhibitor (e.g., entacapone)), by administering to the subject a therapeutic amount of the COMT inhibitor (e.g., entacapone). Subjects at risk for the disease can be identified by, for example, one or a combination of diagnostic or prognostic assays known in the art (e.g., identification of IBS or other gastrointestinal motility disease or disorder in a subject by symptoms/phenotypic evaluation and/or biomarker assessment or genetic testing). Administration of a prophylactic agent can occur prior to the detection of, e.g., abdominal pain in a subject, or other manifestation of symptoms characteristic of the disease or disorder, such that the disease or disorder is prevented or, alternatively, delayed in its progression.

Another aspect of the invention pertains to methods of treating subjects

therapeutically, i.e., altering the onset of symptoms of the disease or disorder. These methods can most readily be performed in vivo (e.g., by administering the COMT inhibitor (e.g., entacapone) to a subject).

With regard to both prophylactic and therapeutic methods of treatment, such treatments may be specifically tailored or modified, based on knowledge obtained from the field of pharmacogenomics. "Pharmacogenomics", as used herein, refers to the application of genomics technologies such as gene sequencing, statistical genetics, and gene expression analysis to drugs in clinical development and on the market. More specifically, the term refers to the study of how a patient's genes determine his or her response to a drug (e.g., a patient's "drug response phenotype", or "drug response genotype"). Thus, another aspect of the invention provides methods for tailoring an individual's prophylactic or therapeutic treatment with the COMT inhibitor (e.g., entacapone) agent of the present invention to that individual's drug response genotype. Pharmacogenomics allows a clinician or physician to target prophylactic or therapeutic treatments to patients who will most benefit from the treatment and to avoid treatment of patients who will experience toxic drug-related side effects.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

EXAMPLES

The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well known in the art or the techniques specifically described below were utilized.

Example 1: Intraperitoneal Injection with Entacapone Acutely Impacted

Gastrointestinal Transit

Entacapone was initially assessed to identify any effect on gastrointestinal transit in wild-type mice. In dose response studies, whole-gut transit time (WGTT) was measured in C57B/6 mice injected with entacapone (0, 20, 50 or 100 mg/kg, ip), followed by gavage with 0.3 ml carmine red solution (6% carmine red in 0.5% methylcellulose). Mice were placed into a white cardboard box. Stool color was then observed every 10 minutes, and the time when the stool first appeared red was recorded as WGTT (min). As shown in Figure 1, entacapone significantly increased WGTT in a dose-dependent manner.

The effect of entacapone administration on distal colon transit time (DCTT) was then examined. In such studies, mice were injected ip with vehicle or entacapone at 100 mg/kg, and DCTT was then measured at 15, 40, 75 or 120 min after the injection by gently pushing a 2 mm glass bead into the rectum 2 cm and placing the mouse into a white box (Time 0). The time that the glass bead was expulsed from the rectum was recorded as DCTT (sec). The results showed that entacapone significantly increased DCTT at the 75 min post-injection timepoint. Remarkably, increased DCTT in entacapone-treated animals peaked at 75 min post- injection yet had returned to baseline by 2 hours post-injection (Fig 2).

Entacapone was also examined for any effects on stool profile. After mice were administered entacapone, stools were collected immediately after expulsion for 1, 2 or 3 hours. Wet stools were weighed for total stool weight and were then dried at 65°C for 24 hours and weighed for dry stool weight. The % of water content in the stool was calculated by (total stool weight- dry stool weight)/ total stool weight x 100%. Entacapone induced diarrhea and increased stool water content in the first hour after the injection (Fig 3). This change was not observed in the second and third hours after the entacapone injection.

Example 2: Oral Entacapone Showed No Acute Gastrointestinal Transit Effects

To examine if oral doses of entacapone could elicit effects similar to corresponding intraperitoneal (ip) doses of entacapone, mice were gavaged with entacapone (0, 20, 50 and 100 mg/Kg), followed by gavage of 0.2 ml of carmine red solution as an indicator of WGTT. No significant difference was observed between entacapone-treated groups and the vehicle- treated group at any dose tested (data not shown).

Stool profile was also unimpacted by oral administration of entacapone. In such studies, after gavaging the mice with entacapone of 0, 20, 50 or 100 mg/Kg, the stools were collected and weighed as described above. The results indicated that oral entacapone had no acute effect on stool water content or stool weight (data not shown). Example 3: Oral Entacapone At 100 mg Kg Showed Certain Chronic Gastrointestinal Motility Effects

To examine whether any chronic effects of oral dosing of entacapone occurred, male C57B/6 mice were orally administrated entacapone at 100 mg/kg (5 ml/kg) or vehicle 3 times a day for 5 days. Baselines (0 time) of WGTT, DCTT and stool profile were measured on the day before the first day of administration. WGTT and stool profile were then tested on Day 1, Day 3 and Day 5 after the first administration on that day. A time-course of the entacapone effect on DCTT was determined on Day 2. An additional DCTT experiment was performed on Day 4, at one hour post- administration. 18 hours after the last administration (day 6), WGTT and stool profile were measured as described above. Then, DCTT was tested 2 hours later. The mice were then fasted overnight. On day 7, a liquid gastric emptying test (GE) was conducted. The mice were gavaged with 0.3 ml 0.05% phenol red solution and sacrificed by cervical dislocation at 0 or 15 minutes post-injection. The stomach was carefully removed by clamping pylorus and cardia, followed by homogenate to release phenol red. The phenol red was then extracted and its concentration was measured by absorption at 560 nm. A value for liquid gastric emptying was then calculated calculated as Liquid GE (%) = (1- absorbance of test sample (15 min)/absorbance of baseline control (0 min)) xl00%.

As demonstrated in Figure 4, chronic oral administration of entacapone significantly increased liquid gastric emptying. In contrast, treatment with entacapone did not alter WGTT and DCTT in any of the days throughout the treatment (data not shown). These results indicated that repeated oral treatment of entacapone induced a faster gastric emptying.

However, the absence of the effects on WGTT and DCTT suggested that the effects of entacapone in the gastrointestinal tract may be more complicated than simply being attributable to a single mechanism/mode of action.

Example 4: 100 mg Kg Entacapone Exhibited Gastrointestinal Pain Alleviating Effects

To examine whether any doses of entacapone were able to reduce visceral pain, the following experiments were performed. Initially, neonatal rectal irritation was induced in a mouse model, and graded colorectal balloon distension was then assessed, with pain sensitivity to such distention (CRD, at 15, 30, 50 or 70 mmHg) also quantitated. Specifically, visceral motor response (VMR) was measured by electromyography of the external oblique muscle. In such experiements, inflammatory bowel syndrome (IBS) mice showed a significant increase in pain sensitivity relative to control mice. Treatment with entacapone (100 mg/kg, ip) significantly attenuated the hyperalgesia normally observed in IBS mice (Two- WAY ANOVA, Fig. 5), whereas no such effect was observed in control mice (data not shown).

These data indicated that entacapone could be used to treat visceral pain.

All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.

One skilled in the art would readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the invention disclosed herein without departing from the scope and spirit of the invention. Thus, such additional embodiments are within the scope of the present invention and the following claims. The present invention teaches one skilled in the art to test various combinations and/or substitutions of compounds described herein toward generating compounds with improved activity for inhibiting GI motility and/or alleviating pain in a subject. Therefore, the specific embodiments described herein are not limiting, and one skilled in the art can readily appreciate that specific combinations of the agents described herein can be tested without undue experimentation.

The invention illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations that are not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of", and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description and the appended claims.

In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and

"containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

Embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description.

The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.