Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A CELL CULTURE BIOREACTOR WITH CELL HARVESTER AND METHOD OF CELL HARVESTING
Document Type and Number:
WIPO Patent Application WO/2024/079759
Kind Code:
A2
Abstract:
The present invention is relates to a system and method for harvesting of cells by detaching the cells from the cell carrier. In present invention, the cell carrier matrix assembly (6) rotates along with central shaft (5). During rotation of central shaft (5), the rotating members (19) of the bottom ring (8) roll over the ridge of the bottom hub (9). Said rotating members (9) provides vibro-rotational effect and make the cell carrier matrix assembly (6) to experience jerk while moving over the projections on the bottom hub. Thus, it applies vibro-rotation effect to the matrix (6). Due to said configuration, the cell carrier matrix assembly (6) causing cells attached to the discs (7) to detach from the discs (7).

Inventors:
PATEL RAVINDRAKUMAR DHIRUBHAI (IN)
JOSHI ANANDPRAKASH MANUPRASAD (IN)
DARAJI RAVIKUMAR NIKUNJKUMAR (IN)
Application Number:
PCT/IN2023/050942
Publication Date:
April 18, 2024
Filing Date:
October 13, 2023
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OMNIBRX BIOTECHNOLOGIES PRIVATE LTD (IN)
Foreign References:
US20140030805A12014-01-30
US20220033751A12022-02-03
Attorney, Agent or Firm:
ACHARYA, Rajeshkumar H. et al. (IN)
Download PDF:
Claims:
202221058526^&^202221076880 We^Claim:^ 1. A^^cell^culture^bioreactor^with^cell^harvester^comprising:^ a^vessel^ (1)^ having^ a^ cylindrical^ shell,^ a^ bottom^plate^ (3)^ and^ a^ head^ plate^ (4)^ forming^ an^ hollow^ interior,^ a^ central^ shaft^ (5)^ being^ vertically^ disposed^within^the^hollow^interior^of^the^vessel^(1),^a^rotating^means^for^ rotating^ said^ central^ shaft,^ a^ cell^ matrix^ assembly^ (6)^ being^ disposed^ within^ the^hollow^interior^of^ the^vessel^and^comprises^a^one^or^multiple^ stacked^and^spaced^apart^discs^(7)^centrally^and^longitudinally^loaded^on^ the^central^shaft^(5),^a^bottom^ring^(8)^being^secured^along^the^central^shaft^ (5)^ below^ the^ cell^ carrier^ matrix^ assembly^ (6),^ a^ central^ hub^ (9)^ being^ disposed^on^an^inner^surface^of^the^bottom^plate^(3)^and^a^bottom^hub^(10)^ being^snugly^fitted^over^the^central^hub^(9);^ said^ central^ shaft^ (5)^ being^ in^ connection^with^ the^ rotating^means^ at^ its^ first^end^and^is^secured^within^the^central^hub^(9)^at^its^distal^end;^^ wherein^ the^bottom^ring^ (8)^ is^ configured^ to^ rotate^over^ the^bottom^hub^ (10)^ in^ a^ manner^ to^ impart^ jarring/jerky^ rotational^ motion^ to^ the^ cell^ carrier^matrix^assembly^(6)^causing^cells^attached^to^the^discs^(7)^to^detach^ from^the^discs^(7).^ 2. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ the^ bottom^hub^ (10)^ is^ formed^with^ a^ ridge^ that^ define^ a^ hole^ through^ which^ a^ lower^ end^ of^ the^ central^ shaft^ (5)^ is^ extended^ downwardly.^ ^ 202221058526^&^202221076880 3. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^the^ridge^is^formed^with^downwardly^extended^legs^(20).^ 4. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ the^ legs^ (20)^ of^ the^ ridge^ are^ confirmed^within^ grooves^ of^ the^ central^hub^(9).^ 5. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ said^ ridge^ is^ formed^ with^ triangle^ shaped^ projection^ (14)^ at^ regular^interval^on^an^upper^surface^thereof.^ 6. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 5,^ wherein^ said^ projection^ (14)^ is^ formed^with^ a^ first^ surface^ (14.1)^ and^ a^ second^surface^(14.2).^ 7. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 6,^ wherein^ the^ first^ surface^ (14.1)^ of^ said^ projection^ (14)^ is^ formed^ at^ an^ angle^(^)^of^10^80^degree^with^respect^to^a^plane^A^of^the^bottom^hub.^ 8. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 6,^ wherein^ the^ second^ surface^ (14.2)^ of^ said^ projection^ (14)^ formed^ in^ continuation^with^the^first^surface^(14.1)^and^forming^an^angle^(^)^of^80^ 90^degree^with^respect^to^the^plane^A^of^the^bottom^hub^(10).^ 9. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ the^ bottom^ ring^ (8)^ comprises^ an^ outer^ ring^ that^ diametrically^ confirms^ the^ central^ shaft^ (5),^ extended^ members^ (18)^ being^ radially^ ^ 202221058526^&^202221076880 extended^ from^ the^ outer^ ring^ and^ a^ rotating^ member^ (19)^ freely^ and^ rotatably^secured^at^a^free^end^of^each^extended^member^(18).^^ 10. The^cell^culture^bioreactor^with^cell^harvester^as^claimed^in^claims^1^to^9,^ wherein^ each^ rotating^member^ (19)^ is^ configured^ to^ roll^ over^ the^ ridge^ from^a^lower^end^of^the^first^surface^(14.1)^toward^its^second^end^during^ the^rotating^of^the^central^shaft^(5).^ 11. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 9,^ wherein^ the^ rotating^member^ (19)^ rotates^about^an^axis^orthogonal^ to^a^ vertical^axis^of^the^central^shaft^(5).^ 12. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^a^central^protrusion^(32)^is^formed^in^a^center^of^the^head^plate^ to^define^a^headspace^within^the^vessel.^ 13. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 12,^ wherein^a^downwardly^extended^pin^(33)^is^positioned^at^the^center^of^a^ plain^surface^of^the^protrusion^(32).^ 14. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^a^plurality^of^trapezoidal^shaped^projections^(14)^are^distributed^ circumferentially^over^the^ridge^of^the^bottom^hub^(10)^^by^forming^a^gap^ (34)^between^subsequent^projections^(14).^ 15. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 14,^ wherein^the^extended^member^(18)^is^received^in^the^gap^(34).^ ^ 202221058526^&^202221076880 16. The^cell^culture^bioreactor^with^cell^harvester^as^claimed^in^claim^14^and^ 15,^wherein^a^to^and^fro^motion^to^is^given^to^the^extended^member^(18)^ so^ that^ the^ extension^ member^ (18)^ collides^ with^ side^ surfaces^ of^ the^ projections^(14)^of^the^bottom^hub^(10).^ 17. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ the^ central^ shaft^ (5)^ is^ formed^ with^ a^ first^ region^ (22)^ and^ a^ second^region^(23).^ 18. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^the^first^region^(22)^and^second^region^(23)^of^the^central^shaft^(5)^ are^separated^through^a^retaining^member^(17).^ 19. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ the^ rotating^means^ comprises^ a^ first^ magnetic^ ring^ (11)^ being^ disposed^within^ the^ headspace^ and^ a^ second^magnetic^ ring^ (12)^ being^ disposed^on^an^outer^surface^of^the^head^plate^(3).^ 20. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^the^first^magnetic^ring^(11)^includes^a^center^bearing^(31)^being^ fitted^ with^ the^ pin^ (33),^ a^ plurality^ of^ magnets^ (13)^ being^ arranged^ surrounding^ to^ the^ bearing^ and^ an^ elongated^ receiving^ member^ (15)^ being^ extended^ downwardly^ from^ the^ center^ of^ the^ first^magnetic^ ring^ (11).^ 21. ^The^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ the^ elongated^receiving^member^(15)^is^formed^with^an^elongated^space.^ ^ 202221058526^&^202221076880 22. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^said^second^magnetic^ring^(12)^is^formed^with^a^center^opening^ and^a^plurality^of^magnets^ (13)^being^arranged^ surrounding^ the^ central^ opening.^ 23. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ the^magnets^ (13)^of^ the^ first^magnetic^ ring^ (11)^and^ the^second^ magnetic^ ring^ (12)^ are^ opposite^ each^ other^ in^ a^ manner^ that^ a^ pole^ of^ magnets^(13)^of^the^first^magnetic^ring^(11)^faces^an^opposite^pole^of^the^ magnets^ (13)^ of^ the^ second^ magnetic^ ring^ (12)^ to^ create^ a^ magnetic^ attraction^effect^there^between.^ 24. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^ the^ second^ magnetic^ ring^ (12)^ is^ connected^ to^ a^ motor^ (29)^ through^a^drive^shaft^(30).^ 25. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^a^resilient^member^(16)^is^disposed^along^the^first^region^(22)^of^ the^central^ shaft^ (5)^and^ is^ rested^between^ the^ retaining^member^ (17)^of^ the^central^shaft^(5)^and^a^bottom^end^of^the^receiving^member^(15).^ 26. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 20,^ wherein^the^receiving^member^(15)^is^configured^to^slidably^confirm^the^ top^ part^ of^ the^ first^ region^ (22)^ of^ the^ central^ shaft^ (5)^ within^ the^ elongated^space.^ ^ 202221058526^&^202221076880 27. The^ cell^ culture^ bioreactor^ with^ cell^ harvester^ as^ claimed^ in^ claim^ 1,^ wherein^a^central^hub^(9)^formed^with^grooves^and^a^plurality^of^impeller^ (21)^being^radially^extends^within^the^vessel^(1)^with^respect^to^the^central^ hub^(9).^ 28. The^cell^culture^bioreactors^with^cell^harvester^as^claimed^in^claim^1^to^27^ are^connected^with^each^other^in^a^scale^wise^chronological^series.^ 29. A^method^for^harvesting^ cells^ grown^ in^ the^ culture^ comprising^following^steps;^ a. growing^the^cells^on^discs^(7),^wherein^the^cells^are^attached^to^the^ discs^(7);^ b. rotating^ a^ drive^ shaft^ (30)^ of^ a^ motor^ (29)^ for^ rotating^ a^ second^ magnetic^ring^(12)^through^a^drive^shaft^(30);^ c. rotating^ a^ first^ magnetic^ ring^ (11)^ along^ with^ the^ rotation^ of^ the^ second^ magnetic^ ring^ (12)^ through^ magnetic^ attraction^ there^ between;^ d. ^rotating^ a^ central^ shaft^ (5)^ along^ with^ the^ rotation^ of^ the^ first^ magnetic^ ring^ (11)^which^causes^a^ rotation^of^a^ cell^ carrier^matrix^ assembly^(6);^ e. rolling^ a^ rotating^member^ of^ a^ bottom^ ring^ (8)^ over^ a^ ridge^ of^ a^ bottom^ hub^ (9)^ and^ imparting^ a^ jarring/jerky^ rotational^ motion^ ^ 202221058526^&^202221076880 while^ passing^ over^ projections^ (21)^ causing^ cells^ attached^ to^ the^ discs^(7)^to^detach^from^the^disc^(7);^ f. recovering^the^cells.^ 30. The^method^for^cell^ harvesting^ as^ claimed^ in^ claim^ 29,^ wherein^ the^ resilient^ member^ (16)^ is^ configured^ to^ push^ the^ central^ shaft^ (5)^ downwardly.^^ 31. The^method^for^cell^ harvesting^ as^ claimed^ in^ claim^ 29,^ wherein^ said^ receiving^member^(15)^is^configured^to^allow^the^reciprocal^movement^of^ the^central^shaft^(15)^within^the^elongated^space.^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
Description:
202221058526^&^202221076880 The^present^ invention^ is^a^combination^of^Provisional^Patent^Application^ No.^ 202221058526^ Filed^ on^ October^ 13,^ 2022^ and^ Provisional^ Patent^ Application^No.^202221076880^Filed^on^December^29,^2022.^ ^ A^CELL^CULTURE^BIOREACTOR^WITH^CELL^HARVESTER^AND^ METHOD^OF^CELL^HARVESTING^ ^ Field^of^Invention^ ^ The^present^invention^is^generally^relates^to^a^method^and^s ystem^for^ harvesting^ cells^ grown^ in^ culture^ and^more^ particularly,^ it^ relates^ to^ a^ cell^ culture^bioreactor^with^cell^harvester^for^harvesting^cells^ grown^in^culture^by^ applying^jarring/jerky^rotation^motion^to^release^the^cells^ from^the^cell^carrier^ matrix^so^they^may^be^recovered^with^high^yield,^and^high^ce ll^viability^and^ vitality.^ Background^of^Invention^ Generally,^ Living^ cells^ are^ good^ host^ for^ production^ of^ therapeutics^ such^as^monoclonal^antibodies,^vaccines,^cell^&^gene^ therapy^medicines^etc.^ To^ culture^ these^ cells,^ an^ apparatus^ termed^ as^ bioreactor^ are^ used^ which^ facilitate^ the^ growth^ of^ these^ cells^ and^ ultimately^ the^ production^ of^ the^ desired^product.^ Populations^ of^ living^ cells^ are^ becoming^ increasingly^ important^ in^ medicine^as^biologic^agents^useful^for^treating^a^variety^of ^different^medical^ conditions.^For^example,^there^has^been^considerable^interes t^focused^on^the^ therapeutic^ potential^ of^ human^ cells^ for^ various^ medical^ applications^ ^ 202221058526^&^202221076880 including^tissue^repair^of^damaged^organs^such^as^the^brain, ^heart,^bone^and^ liver,^ and^ to^ support^ bone^ marrow^ transplantation^ (BMT).^ One^ class^ of^ human^ cells,^ adult^ stem^ cells,^ have^ been^ evaluated^ for^ treating^ and^ curing^ various^ conditions^ such^ as^ hematopoietic^ disorders,^ heart^ disease,^ Parkinson^s^disease,^Alzheimer^s^disease,^stroke,^burns,^mus cular^dystrophy,^ autoimmune^disorders,^diabetes,^and^arthritis.^ Currently,^ the^ growing^ of^ cells^ on^ a^ large^ scale^ is^ carried^ out^ in^ apparatus^comprising^a^vessel^ for^ the^growth^medium^and^arranged^within^ the^ vessel^ a^plurality^ of^ surfaces^upon^which^ the^ cells^ grow,^ these^ surfaces^ being^discs^or^plates^spaced^apart^from^one^another.^ ^ Now,^in^order^to^harvest^the^cells^from^the^surface^of^the^c ell^carriers^ or^ macro^carriers^ arranged^ inside^ the^ bioreactor,^ conventionally^ particular^ process^ steps^ are^ carried^ out^ like^ removal^ of^ spent^media^ from^ bioreactor,^ addition^of^washing^solution^in^bioreactor,^removal^of^washi ng^solution^from^ bioreactor,^ addition^ of^ cell^ detachment^ solution^ (Enzyme),^ removal^ of^ cell^ detachment^solution^(Enzyme),^addition^of^media^for^cell^col lection,^removal^ of^media^containing^cells^etc.^ For^some^bio^manufacturing^applications,^the^cells^grown^in^ the^fixed^ bed^are^required^to^be^harvested^from^the^bioreactor^after^t he^growth^phase.^ This^may^be^when^the^cell^harvest^is^used^as^a^seed^culture^ to^expand^the^cells^ to^inoculate^another^(e.g.^production)^bioreactor^or^when^th e^cells^themselves^ are^ the^ product^ of^ interest^ (e.g.^ to^ produce^ a^ cell^ bank^ or^ for^ cell^ therapy^ application).^To^harvest^living^cells^from^a^fixed^bed,^chem ical^reagents^such^ ^ 202221058526^&^202221076880 as^ trypsin^ can^ be^ used.^ However,^ this^ alone^ usually^ results^ in^ a^ limited^ amount^of^cell^separation,^often^due^to^the^densely^packed^n ature^of^the^fixed^ bed^material^in^a^typical^bioreactor,^which^makes^it^more^di fficult^to^circulate^ chemicals^throughout^the^bed^and^decrease^the^yield^of^cells ^harvested.^ One^more^ technique^prevailed^ for^ harvesting^ cells^ is^ vibration^ based^ harvesting^method.^In^this^method,^the^cells^are^harvested^f rom^the^vessel^by^ applying^ vibration^ to^ the^ adherent^ material^ to^ dislodge^ the^ cells^ from^ the^ surface^of^the^discs.^One^such^vibration^based^harvesting^me thod^is^described^ in^ the^ patent^ application^ US2014/0030805^ A1.^ In^ said^ patent^ application,^ apparatus^comprising^an^adherent^material^in^a^container,^an d^a^vibrator^for^ imparting^ a^ reciprocating^ motion^ to^ the^ adherent^ material,^ the^ vibrato^ comprising^ one^ or^more^ controls^ for^ adjusting^ amplitude^ and^ frequency^ of^ the^ reciprocating^motion,^wherein^ the^ vibrator^ is^ configured^ to^vibrate^ in^ a^ manner^ causing^ cells^ attached^ to^ the^ adherent^material^ to^ detach^ from^ the^ adherent^material.^^ One^more^patent^application^US2022/0033751Al^describes^the^m ethod^ for^ harvesting^ cells^ by^ oscillating^ the^ basket.^ According^ to^ said^ patent^ application,^basket^is^oscillated^within^culture^vessel,^alo ng^longitudinal^axis^ of^culture^vessel^to^harvest^the^cells.^ Cells^are^attached^to^the^fixed^bed^by^small,^cable^like^pro teins^called^ integrins.^ In^ addition,^ cells^ produce^ other^ proteins,^ like^ collagen^ and^ glycosaminoglycans,^ which^ form^ an^ extracellular^ matrix^ that^ resembles^ a^ mesh.^Even^when^separation^solutions^such^as^trypsin^are^use d^to^achieve^the^ ^ 202221058526^&^202221076880 separation^ of^ cells^ from^ structures,^ these^ proteins^may^ cause^ the^ harvested^ cells^ to^clump^together.^This^may^be^undesirable^ for^recovery^purposes^and^ may^result^in^a^lower^than^desired^cell^yield.^ However,^after^carrying^out^above^given^process,^only^20^40% ^cells^are^ recovered^ from^ the^ surfaces^ of^ the^ cell^ carrier^ discs^ arranged^ inside^ the^ bioreactor.^Further,^such^process^of^recovering^cells^is^ted ious,^time^and^cost^ consuming.^^ Hence,^ it^ is^ desperately^ needed^ to^ invent^ a^ system^ and^method^ that^ substantially^ and^ effectively^ recover/harvest^ the^ cells^ from^ the^ cell^ carrier^ surfaces^over^which^these^cells^are^attached^and^grow.^^ Object^of^the^Invention^ The^main^object^of^present^invention^is^to^provide^a^vibro^r otating^system^ and^method^of^cell^harvesting^that^effectively^and^substanti ally^recover^cells^ from^the^vessel^without^damaging^the^cells.^ One^more^object^of^the^present^invention^is^to^provide^stabl y^recover^the^ cultured^or^grown^cells^on^cell^matrix^assembly.^ Further^object^of^ the^present^ invention^is^ to^provide^system^(bioreactor)^ which^is^beneficial^in^terms^of^efficiency,^cost,^regulatory ^friendly^etc.^ Another^ object^ of^ the^ present^ disclosure^ is^ to^ provide^ a^ cell^ harvesting^ system^that^provides^ease^of^operation.^ ^ 202221058526^&^202221076880 One^ more^ object^ of^ the^ present^ invention^ is^ to^ provide^ a^ system^ that^ delivers^ mechanical^ stress^ to^ the^ cell^ carrier^ matrix^ assembly^ inside^ the^ bioreactor^ to^dislodge^and^detach^ the^grown^cells^more^ efficiently^ from^ the^ cell^carrier^matrix^in^more^healthy^state.^ Yet^another^object^of^the^present^invention^is^to^recover^80 ^95%^cells^from^ the^cell^carrier^matrix^assembly.^ Summary^of^Invention^ The^present^invention^is^relates^to^a^system^and^method^for^ harvesting^ of^ cells^ by^ detaching^ the^ cells^ from^ the^ cell^ carrier^ of^ the^ cell^ culture^ bioreactor.^ In^ present^ invention,^ the^ cell^ carrier^ matrix^ assembly^ being^ disposed^ within^ the^ hollow^ interior^ of^ the^ vessel^ and^ comprises^ a^ one^ or^ multiple^stacked^and^spaced^apart^discs^centrally^and^longit udinally^ loaded^ on^the^central^shaft^and^rotates^along^with^central^shaft.^A ^rotating^member^of^ a^ bottom^ ring^ is^ rotatably^ and^ secured^ at^ free^ end^ of^ respective^ extended^ member.^A^bottom^hub^ is^ formed^with^a^ridge^ is^ formed^with^downwardly^ extended^ legs.^During^ rotation^of^ central^ shaft,^ the^ rotating^members^of^ the^ bottom^ ring^ roll^ over^ the^ ridge^ of^ the^ bottom^ hub.^ Said^ rotating^members^ make^ the^cell^ carrier^matrix^assembly^ to^experience^ jerk^while^moving^over^ the^projections^on^the^bottom^hub.^Due^to^said^configuration ,^the^cell^carrier^ matrix^assembly^causing^cells^attached^to^the^discs^to^detac h^from^the^discs.^ Thus,^the^cells^are^effectively^recovered^from^the^surface^o f^the^discs.^ ^ ^ 202221058526^&^202221076880 Brief^Description^of^Drawings^^ Fig^ 1:^ illustrates^ transparent^ view^ of^ the^ system^ for^ cell^ harvesting^ according^to^the^present^invention.^ Fig^2:^illustrates^perspective^view^of^cell^carrier^matrix^a ssembly^of^the^ system^according^to^the^present^invention.^ Fig^3:^illustrate^exploded^view^of^a^bottom^plate^with^first ^and^second^ magnetic^ring^according^to^the^present^invention.^ Fig^ 4:^ illustrate^ exploded^ view^ of^ a^ system^ according^ to^ the^ present^ invention.^ Fig^ 5A:^ illustrates^ exploded^ view^ of^ bottom^ ring^ according^ to^ the^ present^invention.^^ Fig^ 5B:^ illustrates^ assembled^ perspective^ view^ of^ bottom^ ring^ according^to^the^present^invention.^^ Fig^6:^illustrates^perspective^view^of^a^bottom^hub^assembly ^according^ to^the^present^invention.^^ Fig^7:^illustrates^perspective^view^of^a^vessel^with^impelle r^and^central^ hub^according^to^the^present^invention.^^ Fig^ 8A:^ illustrates^ perspective^ view^ of^ a^ bottom^ ring^ assembly^ according^to^another^embodiment.^^ ^ 202221058526^&^202221076880 Fig^ 8B:^ illustrates^ perspective^ view^ of^ a^ bottom^ hub^ assembly^ according^to^another^embodiment.^^ Fig^9:^illustrates^assembling^of^bottom^ring^and^bottom^hub^ assembly^ illustrated^in^Fig.^8a^and^8b.^^ Fig.^ 10:^ illustrate^ perspective^ view^ of^ bioreactors^ connected^ through^ the^tubing^according^to^the^present^invention.^ ^ Detail^Description^of^Invention^ ^ Before^ explaining^ the^ present^ invention^ in^ detail,^ it^ is^ to^ be^ understood^that^the^invention^is^not^limited^in^its^applicat ion^to^the^details^of^ the^ construction^ and^ arrangement^ of^ parts^ illustrated^ in^ the^ accompanied^ drawings.^ The^ invention^ is^ capable^ of^ other^ embodiments,^ as^ depicted^ in^ different^figures^as^described^above^and^of^being^practiced^ or^carried^out^in^a^ variety^of^ways.^It^is^to^be^understood^that^the^phraseology ^and^terminology^ employed^herein^is^for^the^purpose^of^description^and^not^of ^limitation.^^ ^ It^ is^ to^ be^ inserted^ that^ with^ reference^ to^ the^ Figures,^ exemplary^ embodiments^ of^ the^ invention^ will^ now^ be^ described.^ The^ exemplary^ embodiments^are^described^primarily^with^ reference^ to^drawings.^ It^ should^ be^ appreciated^ that^ not^ all^ components^ necessary^ for^ a^ completed^ implementation^ of^ a^ practical^ system^ are^ illustrated^ or^ described^ in^ detail.^ Rather,^ only^ those^ components^ necessary^ for^ a^ thorough^ understanding^ of^ ^ 202221058526^&^202221076880 the^invention^are^illustrated^and^described.^Furthermore,^co mponents^which^ are^ conventional^ in^ accordance^with^ the^ teachings^ provided^ herein^ are^ not^ described^in^detail.^ ^ As^used^herein,^ “Interior”^means^ the^ inner^volume^of^ the^ container^ volume,^which^is^enclosed^by^the^wall.^ ^ As^used^herein,^^cells^^refers^to^any^mammalian^cell^capable ^of^being^ cultured^in^vitro.^In^certain^embodiments,^the^cells^are^hum an.^ ^ As^used^herein^the^phrase^^adherent^cells^^refers^to^a^homog eneous^or^ heterogeneous^ population^ of^ cells^which^ are^ anchorage^ dependent,^ that^ is,^ require^to^attach^with^the^surface^in^order^to^grow^in^vitro .^ ^ As^used^herein^the^phrase^^harvesting^^means^removing^cells^ from^a^ 2^dimensional^or^a^3^^dimensional^carrier.^ ^ It^is^to^be^understood^that^the^bioreactor^system^according^ to^present^ invention^ is^ used^ for^ cell^ growth.^ It^ is^ configured^ to^ provide^ an^ optimal^ environment^for^cell^growth^allowing^for^precise^control^of^ temperature,^PH,^ dissolve^ oxygen,^ and^ other^ factors.^ Said^ system^ is^ also^ configured^ for^ providing^an^efficient^system^for^monitoring^cell^growth^as^ well^as^the^ability^ to^scale^up^the^production^when^necessary.^In^the^present^in vention,^the^cells^ in^culture^are^grown^on^the^adherent^material^by^any^convent ional^method.^ Hence,^ in^ the^ description^ below,^ the^ method^ for^ growing^ cells^ is^ not^ described^in^detailed^since^it^is^well^very^understood^by^th e^person^skilled^in^ the^art.^^ ^ 202221058526^&^202221076880 ^ In^ particular,^ the^ cells^ are^ grown^ on^ an^ adherent^ Surface,^which^ in^ some^cases^is^a^2^or^3^dimensional^matrix.^After^the^cells^h ave^been^cultured^ in^ the^ bioreactor,^ they^ must^ be^ harvested^ for^ further^ processing.^ The^ harvesting^process^typically^involves^removing^the^cells^fro m^collecting^them^ in^a^sterile^container.^The^cell^carrier^is^used^for^their^i ntended^applications.^ ^ The^ present^ invention^ provides^ a^ system^ (100)^ and^ method^ for^ detachment^ and^ harvesting^ of^ cells^ grown^ in^ the^ culture^ by^ applying^ intermittent^ jarring/jerky^ rotational^motion^ to^ the^matrix^ (7).^ The^ cells^ that^ grow^ attached^ to^ the^ adherent^ material^ are^ detached^ with^ high^ efficiency,^ resulting^ in^ recovery^ of^ greater^ quantities^ of^ cells^ compared^ to^ existing^ methods^for^harvesting^cells^that^are^known^in^the^art.^ ^ The^system^according^to^present^invention^may^be,^but^not^li mited^to,^ a^ cell^ culture^ bioreactor^ system^which^ is^ generally^ used^ for^ culturing^ cells^ from^animal^origin.^Now^as^shown^in^preferred^embodiment^of^ Figs.^1^and^4,^ the^system^(100)^comprised^of^a^vertically^disposed^vessel^b ody^(1)^includes^a^ cylindrical^ outer^ shell^ (2),^ a^ bottom^plate^ (3)to^ seal^ the^ bottom^of^ the^ outer^ shell^and^a^head^plate^ (4)^ that^seals^ the^ top^opening^of^ the^outer^ shell.^Said^ configuration^ of^ vessel^ (1)^ forms^ a^ hollow^ interior^ within^ the^ outer^ shell.^ Further,^ said^ vessel^ (1)^ may^ equipped^ with^ an^ inlet^ port^ for^ introducing^ nutrient^(culture)^medium^and/or^biological^cells^ into^and^an^outlet^port^ for^ discharging^the^nutrient^(culture)^medium^from^the^vessel^(1 ).^ ^ The^ system^ (100)^ according^ to^ present^ invention^ may^ further^ comprises^a^fluid^pumping^means^for^driving^the^nutrient^med ium^through^ ^ 202221058526^&^202221076880 the^ vessel^ (1),^ a^ gas^ exchange^ module^ (26)^ for^ dissolving^ gases^ into^ and^ removing^waste^gases^from^the^nutrient^medium^and^a^main^con duit^fluidly^ and^ externally^ connects^ said^ inlet^ port^ and^ outlet^ port^ to^ form^ a^ closed^ external^loop^for^circulation^of^nutrient^medium^and^being^e xtended^through^ the^gas^exchange^module^(26)^and^fluid^pumping^means.^The^ga s^exchanger^ module^(26)^is^also^internally^placed^and^not^need^to^connec t^externally^with^ the^main^bioreactor^vessel.^ ^ It^ is^ within^ the^ scope^ of^ present^ invention^ to^ employ^ pressure^ indicator^and^regulator,^kinetic^energy^sources^for^rotation ^of^discs^(7)^loaded^ within^ the^cell^ carrier^matrix^assembly^ (6)^and^baffling^means,^one^of^more^ sensing^elements,^process^control^means,^variable^ speed^pump^and/or^ fixed^ speed^pump^(not^shown)^in^the^fluid^recirculation^system.^Th e^nutrient^fluid^ is^discharged^through^the^fluid^outlet^port^and^passes^from^ the^gas^exchange^ means^through^the^fluid^pumping^means^and^then^fed^into^the^ culture^vessel^ through^ the^ inlet^ port^ to^ form^ a^ closed^ circulation^ loop^ through^ the^ main^ conduit.^ Said^ gas^ exchange^ means^ is^ capable^ of^ transferring^ process^ gases^ such^as^oxygen^into^and^removing^waste^gases^such^as^carbon^ dioxide^from^ the^nutrient^medium^when^the^Gas^exchanger^module^(26)^is^co nnected^with^ the^main^bioreactor^externally.^Then^the^gas^exchanger^modul e^(26)^is^placed^ inside^ the^ bioreactor,^ it^ is^ placed^ in^ between^ inside^wall^ of^ the^ vessel^ and^ curved^vans/impellers.^^ ^ Now^ as^ shown^ in^ Fig.^ 1,^ said^ vessel^ (1)^ is^ equipped^with^ a^ central^ shaft^ (5)^ being^ extended^ within^ the^ interior^ of^ the^ vessel^ (1),^ means^ for^ ^ 202221058526^&^202221076880 rotating^being^mounted^on^the^head^plate^and^engaged^with^sa id^central^shaft^ (5)^for^providing^rotary^motion^to^the^shaft,^a^cell^carrier ^matrix^assembly^(6)^ being^disposed^within^ the^hollow^ interior^of^ the^vessel^ (1)^ and^comprises^a^ one^ or^ multiple^ stacked^ and^ spaced^ apart^ discs^ (7)^ centrally^ and^ longitudinally^loaded^on^the^central^shaft^(5),^a^bottom^rin g^(8)^being^secured^ along^ the^ central^ shaft^ (5)^ just^ below^ the^ cell^ carrier^matrix^ assembly^ (7),^ a^ central^hub^ (9)^being^disposed^on^ the^upper^ surface^of^ the^bottom^plate^ (3)^ and^ a^ bottom^ hub^ (10)^ being^ snugly^ fitted^ over^ the^ central^ hub^ (9).^ ^ Said^ central^ shaft^ (5)^being^ in^ connection^with^ the^ rotating^means^at^ its^ first^ end^ and^is^secured^within^the^central^hub^(9)^at^its^distal^end. ^ ^ ^ Now^as^shown^ in^Fig.^2,^ said^central^ shaft^ (5)^ is^ formed^with^a^ first^ region^(22)^and^a^second^region^(23).^Said^first^region^(22) ^of^said^shaft^(5)^is^ preferably^ kept^ in^ square^ shape^ and^ the^ second^ region^ (23)^ is^ preferably^ square^ or^ cylindrical.^ Said^ first^ region^ (22)^ and^ the^ second^ region^ (23)^ are^ separated^at^a^retaining^member^(17).^Said^cell^carrier^matr ix^assembly^(6)^is^ disposed^along^the^second^region^(23)^of^the^central^shaft^( 5).^ Referring^ to^ Fig.^ 3,^ the^ center^ of^ the^ head^ plate^ having^ a^ predefined^ diameter^hole^where^a^central^protrusion^(32)^is^positioned. ^Said^protrusion^is^ in^the^form^of^cylindrical^shape^where^the^upper^portion^is^ covered^through^ the^plain^surface^and^define^a^headspace^toward^the^interior ^of^the^vessel^(1).^ A^downwardly^extended^pin^(33)^is^placed^at^the^center^of^th e^plain^surface^of^ protrusion^(32).^ ^ 202221058526^&^202221076880 ^ In^ present^ embodiment,^ means^ for^ rotating^ the^ central^ shaft^ (5),^ as^ shown^ in^ Fig.^ 3^ and^ 4,^ includes^ a^ first^magnetic^ ring^ (11)^ being^ suspended^ and^ supported^ through^ the^ pin^ (33)^ within^ the^ headspace^ and^ a^ second^ magnetic^ring^(12)^being^disposed^opposite^to^the^first^magn etic^ring^(11)^on^ the^ outer^ surface^ of^ the^ protrusion^ (32).^ Said^ second^magnetic^ ring^ (12)^ is^ connected^with^driving^means^i.e.^motor^(29)^through^a^drive ^shaft^(30).^The^ distal^ end^ of^ the^ drive^ shaft^ (30)^ of^ the^motor^ (29)^ is^ drivably^ fitted^ in^ the^ center^opening^of^the^second^magnetic^ring^(12).^^ ^ Referring^ continuous^with^ to^ Figs.^ 3^ and^ 4,^ said^ first^magnetic^ ring^ (11)^includes^a^center^bearing^(31)^being^fitted^with^the^pi n^(33),^a^plurality^of^ magnets^ (13)^ being^ arranged^ surrounding^ to^ the^ bearing^ and^ an^ elongated^ receiving^ member^ (15)^ being^ extended^ downwardly^ within^ the^ elongated^ space^ from^ the^ center^ of^ the^ first^magnetic^ ring^ (11).^ Said^ second^magnetic^ ring^(12)^includes^a^plurality^of^magnets^(13)^being^arrange d^surrounding^the^ central^opening.^Each^magnet^(13)^includes^a^pole^N^and^a^po le^S.^The^poles^ of^ each^ magnet^ (13)^ of^ the^ first^ (11)^ and^ second^ (12)^ magnetic^ rings^ are^ opposite^to^each^other^and^have^opposite^magnetic^polarities ,^so^as^to^create^a^ magnetic^attraction^between^them.^The^magnets^(13)^of^the^fi rst^magnetic^ring^ (11)^and^the^second^magnetic^ring^(12)^are^positioned^such^t hat^the^pole^(for^ example^ S)^ of^ the^ magnets^ of^ second^ magnetic^ ring^ (12)^ faces^ toward^ the^ opposite^pole^(for^example^N)^of^the^corresponding^magnets^( 13)^of^the^first^ magnetic^ ring^ (11).^ Hence,^ the^ magnetic^ field^ lines^ of^ pole^ N^ of^ the^ first^ magnetic^ring^(11)^are^in^the^opposite^direction^relative^to ^those^entering^the^ pole^S^of^the^second^magnetic^ring^(12).^From^that^result,^t he^magnets^(13)^of^ ^ 202221058526^&^202221076880 the^first^(11)^and^second^(12)^magnetic^rings^are^magnetical ly^attracted^to^each^ other,^ and^ the^ first^ (11)^ and^ second^ (12)^ magnetic^ rings^ come^ into^ contact^ through^the^magnetic^force.^ ^ Now,^as^shown^in^Fig.^2,^a^resilient^member^(16)^like,^but^n ot^limited^ to,^spring^or^bellow^is^disposed^along^the^first^region^(22) ^of^the^central^shaft^ (5).^Said^resilient^member^(16)^is^rested^between^the^retain ing^member^(17)^of^ the^central^shaft^(5)^and^a^bottom^end^of^the^receiving^memb er^(15)^of^the^first^ magnetic^ring^(11).^Said^resilient^member^(16)^is^prevented^ from^dropping^off^ and^ is^ limited^ in^ its^ downward^motion^ through^ the^ retaining^member^ (17).^ Said^receiving^member^(15)^ is^configured^to^slidably^receive^the^top^portion^ of^the^first^region^(22)^of^the^shaft^(5)^formed^above^the^r esilient^member^(16).^ ^ It^ is^ within^ the^ scope^ of^ present^ invention^ to^ employ^ means^ for^ rotating^the^shaft^other^than^described^herein.^^^ ^ Now^Figs.^2^and^4^illustrate^an^arrangement^of^discs^(7)^on^ the^central^ shaft^ (5).^ The^ disc^ (cell^ carrier)^ (7)^ having^ a^ surface^ on^which^ the^ cells^ are^ grown^ and^ cultured.^ According^ to^ Fig.2,^ the^ (permeable)^ discs^ (7)^ are^ centrally^ and^ longitudinally^ mounted^ on^ the^ shaft^ (5)^ by^ maintaining^ predetermined^space^between^two^successive^discs^(7)^through ^a^spacer^(not^ shown)^to^define^an^interspatial^space.^Said^spacer^may^be^d isposed^between^ the^discs^(7)^maintains^substantially^equidistant^separation ^between^the^discs^ (7).^Preferably^spacers^can^be^made^of^a^similar^material^wh ich^is^used^for^the^ construction^ of^ discs^ (7)^ or^ spacers^ can^ be^made^ of^ silicon^ rubber.^ Ratio^ of^ spacer^diameter^and^disc^diameter^is^to^be^optimized^accordi ng^to^the^process^ ^ 202221058526^&^202221076880 scale.^ Other^ means^ of^ supporting^ and^ separating^ the^ discs^ (7)^ may^ be^ employed;^for^example,^but^not^limited^to,^each^disc^(7)^hav e^a^ridge^or^spacer^ formed^integrally^during^its^construction^at^the^central^por tion.^This^ridge^or^ spacer^ then^rests^on^ the^spacers^of^ the^discs^ immediately^adjacent^ to^ it.^The^ presence^of^cylindrical^spacers^between^each^disc^essentiall y^ensures^that^the^ discs^mounted^on^a^shaft^are^in^a^separated^state^throughout ^the^operation.^^ ^ The^ discs^ (7)^ according^ to^ present^ invention^ are^ preferably^ constructed^ from,^ but^ not^ limited^ to,^ a^ non^woven^ fibrous^ material.^ cell^ attachment^ can^ occur^ on^ either^ side^ of^ the^ disc,^ thereby^ providing^ a^ very^ large^surface^area^for^attachment^and^growth^of^cells^within ^a^small^space^or^ volume.^Typically,^a^thin^monolayer^or^film^of^the^cell^grow th^is^observed^on^ disc^ surfaces^and^generally^has^a^ thickness^of^ from^a^ few^^m,^e.g.^1^^m,^ to^ about^ 1^ mm,^ i.e.^ 100^ ^m.^ In^ case^ of^ where^ applications^ demand^ for^ multilayered^or^structured^growth^of^cells,^the^discs^(7)^ar e^molded^in^desired^ shape^and^the^surfaces^can^be^created^by^treating^them^physi cally,^chemically^ or^biologically.^ ^ The^ cell^ carrier^ matrix^ assembly^ is^ the^ structure^ of^ different^ arrangements^of^cell^carrier^discs^(7)^over^the^central^shaf t^(5).^The^cell^carrier^ matrix^ assembly^ (9)^may^be^ covered^with^ the^ curved^ vane^ structure^which^ delivers^ the^ impeller^ like^ function^ inside^ the^vessel^ (1)^ and^ it^ is^ specifically^ incorporated^ to^ create^ an^ inward^ flow^ of^ the^ fluid^ content^ within^ the^ bioreactor^whereby^the^fluid^can^penetrate^within^the^intern al^vicinity^of^the^ disc^ loaded^ on^ the^ shaft^ and^ thereby^ provides^ sufficient^ nutrients^ and^ ^ 202221058526^&^202221076880 gaseous^ requirement^ of^ the^ cells^ growing^ inside^ the^ disc^ within^ the^ cell^ carrier^matrix.^^ ^ Referring^Figs.^2^and^5,^the^bottom^ring^(8)^mainly^comprise s^a^outer^ ring^ that^ diametrically^ confirms^ central^ ^ shaft^ (5),^ extended^ members^ (18)^ being^ radially^ extended^ from^ the^ outer^ ring^ and^ a^ plurality^ of^ rotating^ members^ (19)^ such^as^ roller,^bearing,^hose^etc.^Said^ rotating^member^ (19)^ is^ freely^rotatably^and^secured^at^a^free^end^of^respective^ext ended^member^(18).^ The^rotating^member^(19)^rotates^about^the^axis^orthogonal^t o^the^vertical^axis^ of^the^central^shaft^(5).^^The^lower^end^of^the^central^shaf t^is^further^extended^ through^the^bottom^hub^(10)^and^is^rotatably^secured^within^ the^central^hub^ (9).^ ^ Now^as^shown^in^Fig.^6,^said^bottom^hub^(10)^is^formed^with^ a^ridge^ that^defines^a^hole^through^which^the^lower^end^of^the^shaft ^(5)^is^extended^ downwardly.^ Said^ ridge^ of^ the^ bottom^ hub^ is^ formed^ with^ downwardly^ extended^legs^(20).^ The^ ridge^ of^ the^ bottom^ hub^ (10)^ is^ formed^ with^ “triangle”^ shaped^ projections^(14)^at^regular^interval^on^said^ridge^(10).^Eac h^said^projection^(14)^ is^ formed^with^ a^ first^ surface^ (14.1)^ formed^ at^ an^ angle^ (^)^ of^ 10^80^degree^ with^ respect^ to^plane^A^of^ the^bottom^hub^ (10)^ and^ a^ second^ surface^ (14.2)^ formed^in^continuation^with^first^surface^(14.1)and^forming^ an^angle^(^)^of^80^ 90^degree^with^respect^ to^ the^plane^A^of^ the^bottom^hub^(10).^Each^rotating^ member^(19)^is^configured^to^roll^from^a^lower^end^of^the^fi rst^surface^(14.1)^ toward^its^second^end^during^the^rotation^of^the^central^sha ft^(5).^ ^ 202221058526^&^202221076880 ^ Now^ shown^ in^Figs^ 7A^and^7B,^ said^ central^ hub^ (9)^ is^ formed^with^ vertical^ grooves.^The^ legs^ (20)^ of^ the^bottom^hub^ (10)^ are^ confirmed^within^ the^grooves^of^central^hub^(9)^so^that^said^bottom^hub^(10)^ is^firmly^fitted^with^ the^central^hub^(9).^A^plurality^of^impeller^(21)^are^radial ly^extends^within^the^ vessel^(1)^with^respect^to^central^hub^(9).^^ ^ In^operation,^the^cells^are^cultured^and^grown^on^the^adhere nt^material^ i.e.^ surface^ of^ discs^ (7)^ within^ the^ vessel^ (1)^ of^ bioreactor^ in^ conventional^ manner.^Now,^in^the^process^for^harvesting^adherent^cells^fr om^the^surface^of^ discs^ (7)^ according^ to^ present^ invention,^ firstly,^ the^ motor^ (29)^ rotates^ the^ second^ magnetic^ ring^ (12)^ through^ the^ drive^ shaft^ (30).^ Due^ to^ magnetic^ connection^between^the^first^magnetic^ring^(11)^and^the^seco nd^magnetic^ring^ (12),^when^the^second^magnetic^ring^(12)^is^driven^to^rotate ^in^predetermined^ direction,^the^first^magnetic^ring^(1)^is^also^rotated^in^th e^same^manner^that^of^ the^second^rotating^ring^(12).The^rotation^of^the^first^magn etic^ring^(11)^causes^ the^rotating^of^the^central^shaft^(5)^and^accordingly^entire ^cell^carrier^matrix^ assembly^ (6)^ rotates^ along^with^ the^ central^ shaft^ (5).^Due^ to^ the^ rotation^ of^ central^ shaft^ (5),^ the^ rotating^members^ (19)^ of^ the^bottom^ ring^ roll^ over^ the^ ridge^ of^ bottom^ hub^ (10).^ In^ this^ situation,^ each^ rotating^member^ (19)^ pass^ over^ the^projections^ (14)^ formed^on^ the^ ridge.^Each^ rotating^member^ (19)^ is^ uphill^ from^ the^ first^ surface^ (14.1)^ of^ its^ respective^ projection^ (14).^ In^ this^ condition,^as^much^the^rotating^member^(19)^incline^on^the^f irst^surface^of^the^ projection^ (14),^ the^ central^ shaft^ (5)^ moves^ upward^ by^ sliding^ within^ the^ receiving^member^(15)^and^the^resilient^member^(16)^gets^com pressed.^After^ termination^of^first^surface^(14.1)^of^the^projection^(14),^ the^resilient^member^ ^ 202221058526^&^202221076880 (16)^ releases^ the^ pressure^ and^ the^ rotating^ member^ (19)^ hits^ down^ on^ the^ surface^ of^ the^ ridge^ of^ the^ bottom^ hub^ (10).^ This^ process^ will^ be^ repeated^ during^the^rotation^of^the^central^shaft^(5).^^When^the^rota ting^member^(19)^hit^ down,^ the^ cell^ carrier^ matrix^ assembly^ (6)^ experiences^ the^ jarring/jerky^ rotational^motion^during^rotation^of^rotating^member^(19).^ ^ Here,^the^resilient^member^(16)^will^push^the^whole^cell^car rier^matrix^ assembly^(6)^down^with^continual^tension^so^that^the^bottom^ ring^(8)^will^ease^ the^ rotation^ through^ rolling^ over^ the^ bottom^ hub^ (10).^ Due^ to^ continual^ tension^applied^by^the^resilient^member^(16)and^rotation^of^ rotating^member^ (19)^on^the^bottom^hub^(10),^ the^cell^carrier^matrix^assembly^(6)^experiences^ the^ jerk^during^rotation^of^ rotating^member^ (19)^of^ the^bottom^ring^ (8)^onto^ the^bottom^hub^(10)^ that^will^generate^and^deliver^mechanical^disruption^to^ the^ cell^ carrier^ matrix^ assembly^ (6).This^ mechanical^ motion^ generated^ by^ rotational^ and^ descend^ drop^ of^ the^ cell^ carrier^ matrix^ assembly^ (6)^ will^ dislodged^&^detach^the^adherent^cells^inside^the^cell^ca rrier^matrix^assembly^ (6)^efficiently.^ ^ Thus,^the^cells^are^forced^to^detach^from^the^surface^and^ev entually^the^ cell^carriers.^Due^to^the^jarring/jerky^rotational^motion^of ^the^central^shaft^(5)^ and^ cell^ carriers,^ the^ cells^ will^ be^ dislodged^ mechanically^ from^ the^ cell^ carriers^and^it^comes^out^in^the^solution^and^it^can^be^subs equently^harvested.^ Once^ the^solution^ is^having^enough^sufficient^number^of^ cells^detected,^one^ can^harvest^these^cells^in^the^same^enzymatic^solution.^So,^ the^content^is^then^ can^be^drained^or^collected^in^a^separate^container^whereby^ this^content^the^ ^ 202221058526^&^202221076880 cell^ suspension^ harvested.^ Cell^ suspension^ can^ be^ used^ further^ for^ a^ particular^process^or^particular^intended^use^wherever^it^is ^required.^^ ^ The^ cell^ detachment^ is^ visibly^ seen^ by^ increase^ in^ the^ substantial^ increase^in^the^turbidity^of^the^solution^and^the^cell^numbe rs^can^be^measured^ by^ sampling^ the^ suspension^ and^ performing^ the^ cell^ count^ by^ normal^ cell^ counting^methods^such^as^Trypan^blue^cell^counting.^The^cell ^suspension^ is^ collected^in^a^container^where^it^can^be^then^utilized^for^i ts^intended^use.^ ^ Now,^Fig.^8^and^Fig.9^illustrate^another^exemplary^embodimen t^of^the^ bottom^ring^(8)^and^bottom^hub^(10)^of^the^present^invention .^ ^ As^shown^in^Fig.^8A,^the^bottom^ring^(8)^comprises^an^outer^ ring^that^ diametrically^ confirms^ central^ shaft^ (5)^ and^ extended^ members^ (18)^ being^ radially^extended^from^the^outer^ring.^Said^extended^members ^are^preferably^ formed^ in^square^ shape^or^any^other^ suitable^ shape.^Unlike^bottom^ring^ (8)^ illustrated^in^previous^embodiment^shown^in^Fig.2^and^Fig.5, ^the^requirement^ of^rotating^member^(19)^is^eliminated^in^said^embodiment.^ ^ Now^ as^ shown^ in^ Fig.8B,^ the^ bottom^ hub^ (10)^ according^ to^ said^ embodiment^ is^ formed^with^ a^ ridge^ that^ defines^ a^ hole^ through^which^ the^ lower^end^of^the^shaft^(5)^is^extended^downwardly.^Said^ridg e^of^the^bottom^ hub^ is^ formed^with^ downwardly^ extended^ legs^ (20).Further,^ a^ plurality^ of^ trapezoidal^ shaped^projections^ (14)^ is^distributed^ circumferentially^ over^ the^ ^ 202221058526^&^202221076880 ridge^at^equal^distance^by^forming^a^gap^(34)^between^subseq uent^projection^ (14)^wherein^ the^extended^member^ (18)^ is^ received^ in^such^manner^ that^ the^ extended^member^ (18)^ can^ freely^ movable^ between^ subsequent^ projections^ (14)^as^shown^in^Fig.^9.^^ ^ Now,^ in^ preferred^ embodiment,^ the^ motor^ (29)^ is^ configured^ to^ provide^To^&^fro^motion^to^the^center^shaft^(5)^shall^th at^will^result^into^the^to^ and^ fro^ motion^ of^ the^ extended^ member^ (18).^ During^ said^ to^ and^ fro^ movement,^ the^extension^member^ (18)^collides^with^ the^side^surfaces^of^ the^ projections^ (14)^ of^ the^ bottom^ hub^ (10)^ repeatedly.^ This^motion^will^ create^ vibration^ in^ the^ whole^ cell^ carrier^ matrix^ (6)^ inside^ which^ grown^ cells^ are^ attached.^The^vibration^shall^dislodge^the^cells.^ In^accordance^with^ further^ embodiment,^ after^harvesting^of^ cells,^ the^ cells^ are^ transferred^ from^ one^ bioreactor^ to^ another^ for^ scaling^ up^ the^ culturing^ of^ cells.^ Now^ in^ order^ to^ transfer^ the^ harvested^ cells^ from^ one^ bioreactor^ to^another^bioreactor,^ such^SUB^ (single^use^bioreactor)^of^1L,^5L,^ 10L^and^50^L^(27)^are^connected^in^series^ through^tubing^which^is^managed^ (open^&^close)^by^ the^pinch^valves^ (24)^ as^ shown^ in^Fig.^ 10A^and^10B.^The^ pinch^valve^(24)^manipulates^operation^of^trypsinization^pro cess^from^the^one^ bioreactor^ (27)^ to^ another^ bioreactor^ (27).^ Upon^ achieving^ sufficient^ cell^ growth,^ the^ SeedBRx^ 1L^ SUB^ (27)^ is^ trypsinised^ automatically^ by^ the^ integrated^program^in^the^controller^unit^(28).^The^program^ run^the^sequence^ of^ process^ steps^ such^ as^ removal^ of^ media^ (Pump^ rotated^ to^ harvest^ the^ media^ and^ related^ pinch^ valve^ (24)^ open,^ other^ pinch^ valve^ (24)^ are^ closed^ ^ 202221058526^&^202221076880 during^the^operation),^addition^of^buffer^(pump^rotated^to^a dd^the^buffer^into^ the^ bioreactor,^ related^ pinch^ valve^ (24)^ open,^ other^ pinch^ valves^ (24)^ are^ closed^during^the^operation),^Buffer^incubation,^Removal^buf fer,^Addition^of^ enzyme^(Trypsin),^Enzyme^incubation*,^Enzyme^removal^with^ce lls,^Addition^ of^fresh^media,^media^incubation*,^removal^of^media^with^the ^cells.^ ^ Referring^continues^in^Figs.^10A^and^10B,^the^SeedBRx^1L^SUB ^(27)^is^ connected^to^the^SeedBRx^5L^SUB^(27)^through^the^tubing^whic h^is^managed^ (open^ &^ close)^ by^ pinch^ valve,^ the^ SeedBRx^ 5L^ SUB^ (27)^ is^ connected^ to^ SeedBRx^10L^SUB^(27)^through^the^tubing^which^is^managed^(op en^&^close)^ by^pinch^valve^ (24)^ and^ the^SeedBRx^10L^SUB^ (27)^ is^ connected^ to^CellBRx^ 50L^SUB^ (27)through^ the^ tubing^which^ is^managed^ (open^&^close)^by^pinch^ valve^()^for^transferring^harvested^cells^from^1L^SUB^^(27)t o^5L^SUB^(27),^5L^ SUB^^(27)to^10L^SUB^(27),^10L^SUB^(27)^to^50L^SUB^(27).^ ^ Method^provided^in^these^steps,^Rotation^of^the^cell^carrier ^matrix^&^ physical^stress^to^the^cell^carrier^matrix^to^dislodge/remov e^the^attached^cells^ into^the^surrounded^liquid.^The^harvested^cells^are^inoculat ed^in^next^stage^of^ the^SUB^(27)^(SeedBRx^5L)^which^is^pre^connected.^One^tap^in ^the^controller^ unit^run^the^while^sequence^of^the^process^steps^also^called ^as^process^recipe^ starting^from^media^removal^to^harvested^cells^transfer^to^t he^next^scale^SUB.^^ ^ Now,^SeedBRx^5L^(27)^is^inoculated,^it^is^allowed^to^growth^ the^cells^ for^3^6^days.^Upon^achieving^sufficient^cell^growth,^the^See dBRx^5L^SUB^(27)^ is^trypsinized^automatically^by^the^integrated^program^in^th e^controller^unit^ (28).^ During^ the^ growth^ phase^ &^ Trypsinization^ process,^ the^ SUB^ (27)^ is^ ^ 202221058526^&^202221076880 managed^by^the^controller^unit^(28).^This^is^series^of^event s^from^1^L,^to^5^L,^to^ 10L^ to^ 50L^ scale^ production^ SUB^ (27).^ In^ 50L^ scale^ CellBRx^ SUB^ (27),^ cell^ growth^phase^and^production^phase^(i.e.:^vaccine,^viral^vect or,^biologics^etc)^ are^executed.^ ^ The^present^invention^is^experimented^and^illustrated^more^i n^details^ in^ the^ following^ example.^ The^ example^ describes^ and^ demonstrates^ embodiments^ within^ the^ scope^ of^ the^ present^ invention.^ This^ example^ is^ given^ solely^ for^ the^ purpose^ of^ illustration^ and^ is^ not^ to^ be^ construed^ as^ limitations^of^ the^present^ invention,^as^many^variations^ thereof^are^possible^ without^departing^from^spirit^and^scope.^ EXAMPLES: A. Detailed^description^of^the^common^process^steps^and^procedu res^ for^process^variables^ Three^different^cell^types^were^used^in^this^exercise^which^ are,^ A)^VERO:^Vero^cells^are^a^continuous^line^of^monkey^kidney^c ells^that^have^ been^widely^used^in^the^biopharmaceutical^industry^and^in^sc ientific^research^ for^ various^ purposes^ such^ as^ production^ of^ vaccines,^ Viral^ vectors,^ monoclonal^antibodies.^ B)^ HEK:^ HEK^ 293^ cells,^ a^ derivative^ of^ Human^ Embryonic^ Kidney^ (HEK)^ cells,^are^of^ significant^ importance^ in^ the^biopharmaceutical^and^biomedical^ research^industries^such^as^production^of^vaccines,^Viral^ve ctors,^monoclonal^ antibodies.^ ^ 202221058526^&^202221076880 C)^ ADSC:^ ^ Adipose^derived^ stem^ cells^ (ADSCs)^ have^ gained^ significant^ attention^in^the^biopharmaceutical^industry^due^to^their^pot ential^therapeutic^ applications^and^several^advantages^such^as^abundance^&^ easy^accessibility,^ multipotency,^potential^for^regenerative^therapies^etc.^^ 1.1 The^ experiment^ was^ executed^ with^ different^ variables^ to^ study^ growth^profile,^metabolite^profile,^cell^viability^post^harv est^and^cell^ recovery^from^cell^carrier.^ 1.2 DMEM^ high^ glucose^ commercial^ cell^ culture^ media^ was^ used^ in^ these^studies.^ 1.3 Surface^treated^tissue^culture^flasks^for^adherent^cells^wer e^used^for^ propagation^of^cell^numbers^in^initial^seed^expansion^stages .^ 1.4 Cell^bank^vial^was^removed^from^LN2^container^and^thawed^as^ per^ standard^procedure.^ 1.5 Cell^bank^vial^was^ revived^ in^ treated^ tissue^culture^ flask^and^ flask^ was^ incubated^ at^ 37°C^ and^ 5%^ CO2^ in^ static^ incubator^ for^ 3^ to^ 5^ days.^ 1.6 Cell^ expansion^ (Seed^ development)^ was^ carried^ out^ as^ per^ the^ number^of^cells^required^to^inoculate^desired^bioreactor^sca le^as^per^ standard^procedure.^ 1.7 Installation,^media^fill^and^other^bioreactor^related^operat ions^were^ executed^as^per^standard^procedure.^ 1.8 Bioreactor^was^inoculated^with^n^1^seed.^Inoculation^criteri a^for^cells^ growth^study^experiments^(HEK^&^VERO)^was^0.02^to^0.03^m illion^ ^ 202221058526^&^202221076880 cells^ per^ cm2^ surface^ area.^ Whereas^ stem^ cells^ experiment^ inoculation^criteria^was^0.004^ to^0.006^million^cells^per^cm2^surface^ area.^^Process^parameters^were^monitored^and^maintained^as^p er^the^ standard^process^specifications.^ 1.9 Temperature^was^maintained^37^±^0.5^°C^throughout^batch^ex ecution^ in^all^the^scales^of^the^bioreactor.^pH^was^maintained^betwe en^7.2^±^ 0.3^ with^ 7%^ filter^ sterilized^ bicarbonate^ or^ CO2^ gas.^ Dissolved^ oxygen^concentration^was^maintained^at^40^±^10^%^by^a^combi nation^ of^ aeration^ and^ agitation^ strategy.^Dissolved^ oxygen^ concentration^ was^maintained^at^80^±^10^%^for^stem^cell^growth^study^expe riment.^ 1.10 For^ the^ cell^ counting^ purpose,^ sampling^ of^ cell^ carrier^ was^ performed^as^per^manufacturer’s^recommendation.^Sterile^sa mpling^ of^the^cell^carrier^was^performed^by^picking^the^cell^carrie r^from^the^ SUB.^ Cell^ growth^ was^ measured^ by^ nuclei^ count^ method.^ Spent^ media^was^sampled^through^sampling^port^located^at^bottom^of ^the^ SUB.^ Spent^ media^ sample^ was^ used^ to^ analyze^ offline^ pH,^ concentration^of^Glucose,^lactate^&^other^metabolites.^ 1.11 Residual^ glucose^ concentration^was^maintained^ by^ the^ addition^ of^ 20%^ filter^ sterilized^ glucose^ solution^ or^ by^ increasing^ media^ perfusion^rate.^ 1.12 The^ media^ perfusion^ strategy^ (RV/day)^ was^ designed^ based^ on^ growth^profile^and^residual^glucose^concentration^data^of^in ^process^ sample.^ ^ 202221058526^&^202221076880 1.13 Cells^ were^ recovered^ using^ different^ process^ variables.^ Different^ enzymes^were^used^as^cell^dissociation^agents^which^are^desc ribed^ below,^ A) Trypsin:^ Trypsin^ is^ an^ animal^ origin^ enzyme^being^widely^ used^ for^ cell^ detachment^in^cell^culture.^It^is^used^with^a^concentration^ of^0.25^%^w/v.^ B)^Recombinant^Trypsin:^Recombinant^trypsin^was^used because of its benefits over^ trypsin^ such^ as^ consistency^ in^ quality,^ animal^ source^ free,^ regulatory^ friendly^&^mild^proteolytic^activity^compared^to^trypsin .^TrypLE^Express^was^ used^as^recombinant^trypsin^in^this^experiment.^ C)^ ^Accutase:^Accutase™^ is^a^natural^animal^ (crabs^origin)^ enzyme^mixture^ with^ proteolytic^ and^ collagenolytic^ enzyme^ activity.^ It^ is^ used^ for^ sensitive^ cell^ types,^ such^ as^ stem^ cells^ or^ primary^ cells,^ that^ may^ be^more^ prone^ to^ damage^ or^ clumping^ when^ exposed^ to^ stronger^ enzymes^ like^ Trypsine^ or^ TrypLE.^ 1.14 Integrated^Seed^train^(IST):^ The^ Integrated^ seed^ train^ (IST)^ is^ a^ process^ designed^ to^ generate^ an^ adequate^ number^ of^ cells^ required^ for^ the^ inoculation^ of^ large^scale^ production^ bioreactor.^ It^ involves^ serial^ integration^ of^ more^ than^ one^ SeedBRx^ (A^ bioreactors^ with^ innovative^ design^ of^ the^ vibro^rotation,^ generally^used^when^cell^harvesting^is^to^be^performed)^with ^each^other^in^ a^chronological^series,^scale^wise.^The^IST^technology^deliv ers^maximum^ cell^ recovery^ from^ the^ cell^ carrier^ matrix^ at^ every^ scale^ of^ SeedBRx^ as^ compared^to^conventional^methods.^ ^ 202221058526^&^202221076880 1.15 The^whole^study^has^been^divided^into^six^case^studies^on^th e^basis^ of^ its^ application.^ Study^ matrix^ with^ these^ five^ case^ studies^ is^ illustrated^in^table^below.^ 25^ ^ 202221058526^&^202221076880 In^said^experiment,^the^study^was^executed^at^three^differen t^scales^(SeedBRx^ 1L,^ SeedBRx^ 5L^ and^ SeedBRx^ 10L)^with^HEK^ and^ VERO^ cell^ line.^ Process^ steps^and^procedure^were^performed^as^per^section^1.1^for^ba tches^execution.^ 2.1.3^ Two^ vibration^ patterns^ (1:1,^ 3:1)^ and^ three^ enzymes^ (Rec.^ Trypsine,^ Accutase^and^Trypsin)^were^utilized^to^dislodge^cells^from^c arrier.^ Table 1: List of variables of process parameters to study cell growth profile Three^ replicative^ batches^were^ executed^ at^ 1L,^ 5L^ and^ 10L^ scale^with^HEK^ and^VERO^cell^line^to^study^the^cell^harvest^efficiency^with ^innovative^vibro^ rotation^concept^with^different^enzymes^(Rec.^Trypsin,^Accut ase^and^Trypsin)^ which^are^widely^used^in^the^bioprocess^industry.^The^vibrat ion^pattern^(1:1^ and^ 3:1)^ was^ employed^ to^ evaluate^ the^ process^ output^ (Cell^ harvest)^ with^ different^vibration^duration.^ Cells^were^inoculated^and^grown^in^the^bioreactor^as^per^sta ndard^procedure.^ After^reaching^sufficient^cell^count,^cells^were^harvested.^ Sterile^enzyme^was^ added^into^ the^SUB,^and^ incubated^as^per^suppliers’^ recommendations^ (I.e.:^ ^ 202221058526^&^202221076880 15^minutes^in^the^case^of^Accutase).^Vibro^rotation^was^give n^at^time^period^ of^1^minutes^followed^by^pause^of^1^minute^during^the^incuba tion^of^the^cell^ carrier^matrix^with^ the^enzyme^as^well^as^with^ the^media.^This^ is^called^1:1^ vibration^ duration^ strategy.^ In^ 3:1^ vibration^ duration^ strategy,^ the^ vibro^ rotation^time^is^three^times^longer^than^the^pause^period.^^ Growth^profile^data^(cell^density^and^Recovered^cell^viabili ty)^and^recovered^ cells^data^were^summarized^in^below^mentioned^experiments.^ EXEPRIMENT:^1.1^ [Variables^process^parameters^data^for^cell^recovery^with^HE K^cell^ line]^ In^ said^ experiment,^ growth^profilecell^ recovery^ and^ cell^ viability^data^were^ measured^ for^ different^ enzymes^ and^ 1:1^ vibration^ pattern^ at^ 1L^ scale^ with^ HEK^cells^as^shown^in^table^1.^ Table 2 ^ 202221058526^&^202221076880 Below^ graph^ shows^ the^ graphical^ presentation^ of^ cell^ Growth^ profile,^ Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 1:1^ vibration^ pattern^at^1L^scale^as^per^experiment^1.1.^ EXEPRIMENT:^1.2^ In^said^experiment,^growth^profile,^cell^recovery^and^cell^v iability^data^were^ measured^ for^ different^ enzymes^ and^ 1:1^ vibration^ pattern^ at^ 5L^ scale^ with^ HEK^cells^as^shown^in^table^1.^ ^ 202221058526^&^202221076880 Table 3 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,^ Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 1:1^ vibration^ pattern^at^5L^scale^as^per^experiment^1.1.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.3 In^said^experiment,^growth^profile^and^cell^recovery^data^we re^measured^for^ different^ enzymes^ and^ 1:1^ vibration^ pattern^ at^ 10L^ scale^with^HEK^ cells^ as^ shown^in^table^1.^ Table 4 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile^ and^ Cell^ recovery^data^with^different^ enzymes^and^1:1^vibration^pattern^at^10L^scale^ with^HEK^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.4 In^said^experiment,^growth^profile^and^cell^recovery^data^we re^measured^for^ different^ enzymes^ and^ 3:1^ vibration^ pattern^ at^ 1L^ scale^ with^ HEK^ cells^ as^ shown^in^table^1. Table 5 ^ 202221058526^&^202221076880 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,^ Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 3:1^ vibration^ pattern^at^1L^scale^with^HEK^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.5 In^said^experiment,^growth^profile,^cell^recovery^and^cell^v iability^data^were^ measured^for^different^enzymes^and^3:1^vibration^pattern^at^ 5L^scale^with^ HEK^cells^as^shown^in^table^1.^ Table 6 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,^ Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 3:1^ vibration^ pattern^at^5L^scale^with^HEK^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.6 In^said^experiment,^growth^profile,^cell^recovery^and^cell^v iability^data^were^ measured^ for^different^ enzymes^and^3:1^ vibration^pattern^ at^ 10L^ scale^with^ HEK^cells^as^shown^in^table^1.^ Table 7 ^ 202221058526^&^202221076880 ^ Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,^ Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 3:1^ vibration^ pattern^at^10L^scale^with^HEK^cells.^ Different variables process parameters data with VERO cell line. ^ 202221058526^&^202221076880 EXEPRIMENT: 1.7 In^said^experiment,^growth^profile,cell^recovery^and^cell^vi ability^data^were^ measured^for^different^enzymes^and^1:1^vibration^pattern^at^ 1L^scale^with^ VERO^cells^as^shown^in^table^1.^ Table 8 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,^ Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 1:1^ vibration^ pattern^at^1L^scale^with^VERO^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.8 In^said^experiment,^growth^profile,^cell^recovery^and^cell^v iability^data^were^ measured^ for^ different^ enzymes^ and^ 1:1^ vibration^ pattern^ at^ 5L^ scale^ with^ VERO^cells^as^shown^in^table^1.^ Table 9 ^ 202221058526^&^202221076880 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 1:1^ vibration^ pattern^at^5L^scale^with^VERO^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.9 In^said^experiment,^growth^profile,^cell^recovery^and^cell^v iability^data^were^ measured^ for^different^ enzymes^and^1:1^ vibration^pattern^ at^ 10L^ scale^with^ VERO^cells^as^shown^in^table^1.^ Table 10 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,^ ^ Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 1:1^ vibration^ pattern^at^10L^scale^with^VERO^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.10 In^said^experiment,^growth^profile^and^cell^recovery^data^we re^measured^for^ different^enzymes^and^3:1^vibration^pattern^at^1L^scale^with ^VERO^cells^as^ shown^in^table^1.^ Table 11 ^ 202221058526^&^202221076880 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 3:1^ vibration^ pattern^at^1L^scale^with^VERO^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.11 In^said^experiment,^growth^profile,cell^ recovery^and^cell^viability^data^were^ measured^ for^ different^ enzymes^ and^ 3:1^ vibration^ pattern^ at^ 5L^ scale^ with^ VERO^cells^as^shown^in^table^1.^ Table 12 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,^ Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 3:1^ vibration^ pattern^at^5L^scale^with^VERO^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT: 1.12 In^said^experiment,^growth^profile,cell^ recovery^and^cell^viability^data^were^ measured^ for^different^ enzymes^and^3:1^ vibration^pattern^ at^ 10L^ scale^with^ VERO^cells^as^shown^in^table^1.^ Table 13 ^ 202221058526^&^202221076880 Below^ graph^ shows^ the^ graphical^ presentation^ of^ Growth^ profile,Cell^ recovery^ and^ cell^ viability^ data^ with^ different^ enzymes^ and^ 3:1^ vibration^ pattern^at^10L^scale^with^VERO^cells.^ Vero^cells^detachment^with^different^enzymes^at^10L^scale^us ing^^3:1^ vibration^pattern CONCLUSION: Cell^growth^trend^was^similar^irrespective^of^scale.^It^show s^the^robustness^of^ process,^system,^and^clone^phenotypic^stability.^Selected^pa rameters^played^a^ critical^role^in^cell^recovery^procedure^whereas^they^did^no t^affect^cell^growth^ trend.^ Three^ different^ enzymes^ and^ two^ different^ vibration^ patterns^ were^ ^ 202221058526^&^202221076880 used^ to^ dislodge^ cells.^ No^ significant^ differences^ were^ observed^ in^ %^ cell^ recovery^ data.^ HEK^ cells^ recovery^ with^ different^ enzymatic^ treatment^ and^ vibration^pattern^was^about^90^to^95%^whereas^in^case^of^Ver o^cell^line^it^was^ about^ 85^ to^ 90%.^ The^ percentage^ cell^ viability^ of^ recovered^ cells^ was^ comparable^ except^ trypsin^ enzyme^ treated^ cells.^ Cell^ viability^ of^ trysin^ recovered^ cells^ was^ ~80^ to^ 90%^ whereas^ in^ case^ of^ accutase^ and^ trypLE^ enzyme^recovered^cells^viability^was^more^than^90%.^ Thus,^ it^ is^ seen^ that^ significantly^ high^ cell^ recovery^ and^ cell^ viability^ is^ observed.^ EXAMPLE:^2^ [Integrated^seed^train^(IST)^study^with^HEK^and^VERO^cell^li ne]^ The^Integrated^seed^train^(IST)^is^a^process^designed^to^gen erate^an^adequate^ number^ of^ cells^ required^ for^ the^ inoculation^ of^ large^scale^ production^ bioreactor.^It^involves^more^than^one^SeedBRx^(A^bioreactors ^with^innovative^ design^ of^ the^ vibro^rotation,^ generally^ used^ when^ cell^ harvesting^ is^ to^ be^ performed)^connected^with^each^other^in^a^chronological^seri es,^scale^wise.^ ^ The^ IST^ technology^ delivers^ maximum^ cell^ recovery^ from^ the^ cell^ carrier^ matrix^ at^ every^ scale^ of^ SeedBRx^ as^ compared^ to^ conventional^ methods.^ Different^scales^of^SeedBRx^(i.e.:^SeedBRx^1L^to^SeedBRx^5^L ^to^SeedBRx^10)^ are^employed^to^generate^and^recover^sufficient^number^of^ce lls^to^inoculate^ ^ 202221058526^&^202221076880 large^ scale^ bioreactor^ (i.e.:^ CellBRx^ 50L).^ Integration^ and^ automation^ of^ all^ these^ bioreactors^ (Seed^ expansion=SeedBRx^ 1L,^ SeedBRx^ 5^ L,^ SeedBRx^ 10L,^ Production^ =^ CellBRx^ 50L)^makes^ the^ IST^ set^ up^most^ efficient,^ affordable,^ robust^ &^ regulatory^ compliant^ solution^ for^ large^ scale^ bioprocessing^ operations.^ The^study^was^executed^with^HEK^and^VERO^cell^line.^Vibratio n^patterns^of^ 3:1^ and^ Recombinant^ Trypsine^ (TrypLE)^ enzyme^ was^ utilized^ to^ dislodge^ cells^from^carrier^in^this^study.^ Table 14: List of variables process parameters to study cell growth profile EXEPRIMENT:^2.1^ For^HEK^cells,^3.2^ Growth^ profile^ data^ (cell^ density^ and^ Recovered^ cell^ viability)^and^cell^recovery^data^were^summarized^in^below^m entioned^tables^ and^figures.^ ^ 202221058526^&^202221076880 Table 15: Growth profile and cell recovery data with Rec. Trypsin enzyme and 3:1 vibration pattern for IST with HEK cells ^ 202221058526^&^202221076880 Below^gr aph^shows ^the^graph ical^prese ntation^of ^average^g rowth^pro file^and^ cell^ recov ery^ data^ with^ Rec .^ Trypsin^ (TrypLE) enzyme^ and^ 3:1^ v ibration^ pattern^fo r^IST^with ^HEK^cell s.^ ^ EXEPRIM ENT: 2.2 For^ VER O^ cells,^ Growth^ p rofile^ dat a^ (cell^ d ensity^ an d^ Recover ed^ cell^ viability) ^and^cell^r ecovery^da ta^were^su mmarized ^in^below ^mentione d^tables^ and^figur es.^ 202221058526^&^202221076880 Table^16:^Growth^profile^and^Cell^recovery^data^with^Rec.^Tr ypsin^ (TrypLE)^enzyme^and^3:1^vibration^pattern^for^IST^with^VERO^ cells^ ^ 202221058526^&^202221076880 Below^gr aph^shows ^the^graph ical^prese ntation^of ^average^g rowth^pro file^and^ cell^ recov ery^ data^ with^ Rec .^ Trypsin^ (TrypLE) enzyme^ and^ 3:1^ v ibration^ pattern^fo r^IST^with ^VERO^ce lls.^ ^ ^ Conclu sion^of^I ST^vali dation^s tudy:^^ ^ From^afo remention ed^experim ental^dat a,^it^is^see n^that^ade quate^cell ^growth^ was^ achi eved^ acro ss^ all^ scal es^ of^ Seed BRx^ SUB s^ (1L,^ 5L^ &^ 10L)^ on ^ day^ 3^ which^wa s^sufficien t^ to^ inocu late^prod uction^bio reactor^ for ^HEK^and ^VERO^ cell^line.^ Results^sh owed^robu stness^of^b oth^cell^li ne^and^IST .^The^pro prietary^ design^ o f^ SeedBRx ^ support ^ significan tly^ high^ healthy^ c ell^ recove ry^ post^ trypsiniz ation.^Cell ^recovery^ was^90^to^ 95^%^with ^HEK^293 ^cells^and^ 85^to^90^ 202221058526^&^202221076880 %^with^Vero^cells^in^un^optimized^process.^Fully^automated^i ntegrated^seed^ train^ (IST)^ makes^ the^ whole^ seed^ expansion^ and^ large^scale^ production^ activity^cost^effective,^robust^and^immune^to^contamination^ failure.^ EXAMPLE:^3^ The^ experiment^ was^ conducted^ to^ compare^ efficiency^ of^ vertical^ vibration^ (conventional^technology^for^detachment^of^cells^by^vibratio n)^and^upgraded^ vibro^rotation^technology^for^cell^detachment^(present^inven tion).^ The^ study^was^ executed^ at^ three^ different^ scales^with^HEK^ and^VERO^ cell^ line.^ Vibration^ patterns^ (3:1),^ Rec.^ Trypsin^ (TrypLE)^ enzyme^ and^ two^ vibration^parameters^(Vertical^vibration^and^Vibro^rotation) ^were^utilized^to^ dislodge^cells^from^carrier.^ Vertical^ vibration^ is^ the^ cell^ detachment^ process^which^ involves^ generating^ and^transferring^mechanical^stress^in^the^form^of^vibration^ to^the^cell^carrier^ matrix^to^dislodge^the^gown^cells^ in^the^3^D^geometry^of^cell^carrier^matrix.^ Whereas^ Vibro^ Rotation^ is^ the^ technology^ of^ generating^ and^ delivering^ mechanical^ stress^ to^ the^ cell^ carrier^matrix^ in^a^more^efficient^and^healthier^ way.^^ In^the^table^below,^variables^process^parameter^to^study^cel l^growth^profile^of^ both^technologies^is^listed.^ ^ 202221058526^&^202221076880 Table 17 Process^ step^ and^ procedure^ were^ performed^ as^ per^ section^ 1.1^ for^ batches^ execution.^ Batches^were^ executed^ at^ 1L,^ 5L^ and^ 10L^ scale^ of^ SeedBRx^with^ HEK^and^VERO^cell^line^to^study^vertical^vibration^and^Vibro ^rotation^impact^ for^ cells^ dislodgement^ from^ carrier.^ Growth^ profile^ data^ (cell^ density^ and^ Recovered^cell^viability)^and^recovered^cells^data^were^summ arized^in^below^ mentions^tables^and^figures.^ EXEPRIMENT:^3.1^^ In^said^experiment,^ the^Growth^profile,^Cell^ recovery^and^cell^viability^data^ were^ measured^ for^ vertical^ vibration^ and^ vibro^rotation^ parameters^ at^ 1L^ scale^ bioreactor^ with^ HEK^ and^ VERO^ cells.^ The^ process^ parameters^ and^ comparative^results^achieved^are^listed^in^the^table^below.^ ^ Table 18 ^ 202221058526^&^202221076880 Below^ graph^ shows^ the^ graphical^ presentation^ of^ growth^ profile,^ cell^ recovery^ and^ cell^ viability^ data^ with^ vertical^ vibration^ and^ vibro^rotation^ parameters^at^1L^scale^bioreactor^with^HEK^and^VERO^cells.^ ^ 202221058526^&^202221076880 EXEPRIMENT:^3.2^ In^said^experiment,^ the^Growth^profile,^Cell^ recovery^and^cell^viability^data^ were^ measured^ for^ vertical^ vibration^ and^ vibro^rotation^ parameters^ at^ 5L^ scale^ bioreactor^ with^ HEK^ and^ VERO^ cells.^ The^ process^ parameters^ and^ comparative^results^achieved^are^listed^in^the^table^below.^ ^ Table 19 Below^ graph^ shows^ the^ graphical^ presentation^ of^ growth^ profile^ and^ cell^ recovery^ data^ with^ vertical^ vibration^ and^ vibro^rotation^ parameters^ at^ 5L^ scale^bioreactor^with^HEK^and^VERO^cells.^ ^ 202221058526^&^202221076880 HEK^and^VERO^cells^detachment^with^different^Vibration^patte rn^at^5L^scale^ y t i l i b a i V ^ & ^ y r e v o c e r ^ l l e C ^ % Growth^hour (HEK) Vibro^rotation^(HEK) Vertical^vibration^(VERO) Vibro^rotation^(VERO) ^ EXEPRIMENT: 3.3 In^said^experiment,^ the^Growth^profile,^Cell^ recovery^and^cell^viability^data^ were^ measured^ for^ vertical^ vibration^ and^ vibro^rotation^ parameters^ at^ 10L^ scale^ bioreactor^ with^ HEK^ and^ VERO^ cells.^ The^ process^ parameters^ and^ comparative^results^achieved^are^listed^in^below^table.^^ Table 20 ^ 202221058526^&^202221076880 Below^ graph^ shows^ the^ graphical^ presentation^ of^ growth^ profile,^ ^ cell^ recovery^ and^ cell^ viability^ data^ with^ vertical^ vibration^ and^ vibro^rotation^ parameters^at^10L^scale^bioreactor^with^HEK^and^VERO^cells.^ Vertical^vibration^(HEK) Vibro^rotation^(HEK) Vertical^vibration^(VERO) Vibro^rotation^(VERO) ^ Conclusion: Selected^parameters^played^a^critical^role^in^cell^recovery^ procedure,^so^they^ did^ not^ affect^ cell^ growth^ trend.^ Cell^ growth^ trend^ was^ comparable^ irrespective^ of^ scale,^ it^ shows^ the^ robustness^ of^ the^ single^ use^ bioreactor^ system^and^the^process.^ ^ 202221058526^&^202221076880 Different^vibration^patterns^(Vertical^vibration^and^Vibro^r otation)^were^used^ to^dislodge^ cells^with^Rec.^Trypsin^ (TrypLE)^enzyme.^HEK^and^VERO^cells^ percentage^ harvest^ cell^ recovery^with^ vertical^ vibration^ were^ around^ 80^ %^ and^with^ vibro^rotation^ it^was^ about^ 95^%.^ Cell^ viability^ of^ harvested^ cells^ with^vertical^vibration^was^around^86^%^and^with^vibro^rotat ion^it^was^about^ 93%.^Vibro^rotation^had^a^positive^impact^on^the^percentage^ cell^recovery^and^ cell^ viability^ post^ recovery.^ Because^ of^ the^ innovative^ design^ of^ the^ vibro^ rotation^ technique,^ cell^ health^ was^ maintained^ which^ was^ reflected^ in^ percentage^ viability^ and^ it^ also^ yield^ more^ cells^ compared^ with^ vertical^ vibration^technique.^ EXAMPLE: 4 The^ experiment^ was^ conducted^ to^ compare^ the^ consistency^ between^ first^ embodiment^ (Fig.^ 5)^ and^ second^ embodiment^ (Fig.^ 8^ and^ 9)^ on^ cell^ growth^ and^cell^detachment.^^ The^comparative^study^was^executed^at^5L^bioreactor^scale^(d ata^shown^are^ average^ 3^ three^ batches)^ with^ control^ design^ and^ second^ embodiment^ (Horizontal^ vibration).^ Vibration^ patterns^ (3:1),^ Rec.^ Trypsin^ (TrypLE)^ enzyme^was^utilized^to^dislodge^cells^from^carrier.^ Table 21: Cell growth profile study after second embodiment in system with HEK cells ^ 202221058526^&^202221076880 EXEPRIMENT: 4.1 In^said^experiment,^the^Growth^profile,^ ^cell^recovery^and^cell^recovery^data^ of^ first^ embodiment^ (Fig.^ 5)^ and^ second^ embodiment^ (Fig.^ 8^ and^ 9)^ were^ measured^with^HEK^cell^line^at^5L^scale^as^listed^in^below^t able.^^ Table 22 ^ Below^ graph^ shows^ the^ graphical^ presentation^ of^ growth^ profile,^ cell^ recovery^ and^ cell^ viability^ comparison^ with^ Standard^ embodiment^ and^ second^embodiment^at^5L^scale^bioreactor^with^HEK^cells.^ ^ 202221058526^&^202221076880 ^ Conclusion:^ Growth^ profile^ was^ comparable^ in^ both^ control^ design^ and^ second^ embodiment^design^at^5L^scale^bioreactor^in^all^the^three^ba tches.^HEK^cells^ recovery^ and^ cell^ viability^ of^ recovered^ cells^were^ significantly^ high^ ^^ 90%^ and^comparable^to^each^other^so^the^second^embodiment^also^d elivered^same^ process^ output^ compared^ to^ vibro^rotation^ design^ mentioned^ in^ this^ document.^ ^ ^ ^ ^ 202221058526^&^202221076880 EXAMPLE:^5^ [Growth^compatibility^study^of^adipose^derived^stem^cells^wi th^ IST]^ The^Adipose^derived^stem^cell^expansion^study^was^executed^w ith^integrated^ seed^train.^The^Integrated^seed^train^(IST)^is^a^process^des igned^to^generate^an^ adequate^number^of^cells^for^which^require^for^the^inoculati on^of^large^scale^ production^bioreactor.^ Vibration^patterns^(3:1)^and^Accutase^enzyme^were^utilized^t o^dislodge^cells^ from^carrier.^ Table^23:^Cell^growth^profile^study^with^Adipose^derived^ste m^cell^line^ EXEPRIMENT: 5.1 In^said^experiment,^6.2,^Growth^profile^data^(cell^density^a nd^Recovered^cell^ viability)^ and^ recovered^ cells^ data^ were^ measured^ as^ shown^ in^ below^ mentioned^tables^and^figures.^ ^ ^ 202221058526^&^202221076880 Table 14: ^ 202221058526^&^202221076880 Below^ g raph^ show s^ the^ g raphical^ p resentatio n^ of^ gro wth^ prof ile,^ cell^ recovery^ and^cell^v iability^da ta^with^R ec.^Trypsi n^ (TrypLE )^enzyme^ and^3:1^ vibration ^pattern^fo r^IST^with ^Adipose^d erived^ste m^cell^line .^ ^ ^ Conclu sion:^ The^ IST^ technolog y^ delivers ^ maximum ^ cell^ rec overy^ from ^ the^ cell ^ carrier^ matrix^ at ^ every^ sc ale^ of^ See dBRx^ as^ compared ^ to^ conve ntional^ m ethods.^ Different ^ scales^of^ SeedBRx^ ( i.e.:^ SeedB Rx^1L^ to^ SeedBRx^1 ^L^ to^See dBRx^5)^ are^empl oyed^to^ge nerate^an d^recover^ sufficient^ number^of ^cells^to^in oculate^ large^ sca le^ bioreac tor^ (i.e.:^ C ellBRx^ 10 L).^ Integra tion^ and^ automatio n^ of^ all^ 202221058526^&^202221076880 these^ bioreactors^ (Seed^ expansion=SeedBRx^ 1L,^ SeedBRx^ 1^ L,^ SeedBRx^ 5L,^ Production^ =^ CellBRx^ 10L)^makes^ the^ IST^ set^ up^most^ efficient,^ affordable,^ robust^ &^ regulatory^ compliant^ solution^ for^ large^ scale^ bioprocessing^ operations.^ Invitro^ growth^ of^ stem^ cell^ line^ (Adipose^ derived)^ at^ 3D^ platform^ was^ challenging^task^due^to^higher^doubling^time^and^lower^doubl ing^stability.^^ Successful^scaling^up^of^stem^cell’s^growth^up^to^10L^bior eactor^with^25^m2^ area^shows^IST^system’s^robustness.^ Stemness^markers^ such^as^CD105,^CD73^and^CD90^were^monitored^at^ each^ stage^ of^ cell^ recovery^ which^ were^ found^ to^ be^ more^ than^ 90%^ for^ reach^ marker^which^indicated^preserved^cell^health^post^cell^recov ery.^ All^substitution,^alterations^and^modification^of^the^presen t^invention^which^ come^ within^ the^ scope^ of^ the^ following^ claims^ are^ to^ which^ the^ present^ invention^ is^ readily^ susceptible^ without^ departing^ from^ the^ spirit^ of^ the^ invention.^ The^ scope^ of^ the^ invention^ should^ therefore^ be^ determined^ not^ with^ reference^ to^ the^ above^ description^ but^ should^ be^ determined^ with^ reference^ to^appended^claims^along^with^ full^ scope^of^equivalents^ to^which^ such^claims^are^entitled.^ ^ ^ ^ ^ 202221058526^&^202221076880 EXAMPLE:^6^ The^experiment^was^conducted^to^compare^efficiency^of^cell^g rowth^and^cell^ recovery^ with^ microcarrier^ technology^ and^ upgraded^ vibro^rotation^ technology^for^cell^detachment^(present^invention).^ The^study^was^executed^at^two^different^scales^with^HEK^and^ VERO^cell^line.^ Vibration^patterns^(3:1),^Rec.^Trypsin^(tTrypLE)^enzyme^and^ two^different^cell^ growth^&^cell^detachment^parameters^(microcarrier^and^Vi bro^rotation)^were^ utilized^to^dislodge^cells^from^carrier.^ Microcarrier^ technology^ is^a^widely^used^method^in^bioprocess^ industry^ for^ the^growth^and^harvest^of^adherent^mammalian^cells.^Cells^ar e^seeded^onto^ the^microcarrier^ surface^ in^a^ stirrer^ tank^bioreactor^unlike^packed^bed/fixed^ bed/dynamic^ bed^ bioreactors.^ Cells^ adhere^ to^ the^ microcarrier^ surface^ and^ form^a^monolayer.^When^ the^desired^ cell^ density^ is^ reached,^ the^ cells^were^ harvested^from^the^microcarriers^through^enzymatic^detachmen t^along^with^ mechanical^agitation.^ The^Vibro^Rotation^is^the^technology^of^generating^and^deliv ering^mechanical^ stress^to^the^cell^carrier^matrix^in^the^dynamic^bed^reactor s,^SeedBRx.^ In^the^table^below,^variables^process^parameter^to^study^cel l^growth^profile^of^ both^technologies^is^listed.^ ^ ^ ^ 202221058526^&^202221076880 Table^:^25^ Process^ step^ and^ procedure^ were^ performed^ as^ per^ section^ 1.1^ for^ batches^ execution.^In^the^case^of^micro^carrier,^batch^in^the^stirre d^tank^bioreactor^was^ executed^ with^ standard^ process^ parameters.^ Batches^ were^ executed^ at^ different^ scales^ as^mentioned^ in^ table^ 25.^ Growth^ profile^ data^ (cell^ density^ and^Recovered^ cell^ viability)^ and^ recovered^ cells^ data^were^ summarized^ in^ below^mentions^tables^and^figures.^ EXEPRIMENT:^6.1^^ In^said^experiment,^ the^Growth^profile,^Cell^ recovery^and^cell^viability^data^ were^measured^with^microcarrier^ and^vibro^rotation^parameters^ at^ 1L^ scale^ bioreactor^ with^ HEK^ and^ VERO^ cells.^ The^ process^ parameters^ and^ comparative^results^achieved^are^listed^in^below^table.^^ Table:^26^ ^ 202221058526^&^202221076880 ^ Below^ graph^ shows^ the^ graphical^ presentation^ of^ growth^ profile^ and^ cell^ recovery^ data^with^micro^ carrier^ and^ vibro^rotation^ parameters^ at^ 1L^ scale^ bioreactor^with^HEK^and^VERO^cells^ Growth^hour Microcarrier^(HEK) Vibro^rotation^(HEK) Microcarrier^(VERO) Vibro^rotation^(VERO) ^ ^ ^ 202221058526^&^202221076880 EXEPRIMENT:^6.2^ In^said^experiment,^ the^Growth^profile,^Cell^ recovery^and^cell^viability^data^ were^ measured^ for^ micro^ carrier^ and^ vibro^rotation^ parameters^ with^ HEK^ and^ VERO^ cells^ as^ mentioned^ in^ table^ 26.^ The^ process^ parameters^ and^ comparative^results^achieved^are^listed^in^below^table.^^ Table^:^27^ Below^ graph^ shows^ the^ graphical^ presentation^ of^ growth^ profile^ and^ cell^ recovery^data^with^micro^carrier^and^vibro^rotation^paramete rs^at^10L^scale^in^ case^of^micro^carrier^and^at^5L^scale^in^case^of^vibro^rotat ion,^with^HEK^and^ VERO^cells^ ^ 202221058526^&^202221076880 Conclusion: Selected^process^platform^played^a^critical^role^in^cell^rec overy^procedure,^so^ they^ did^ not^ affect^ cell^ growth^ trend.^ Cell^ growth^ trend^ was^ comparable^ irrespective^of^scale^and^the^production^platform,^it^shows^ the^robustness^of^ the^single^use^bioreactor^system^and^the^process.^ Different^platform^(micro^carrier^in^stirrer^tank^bioreactor ^and^Vibro^rotation^ in^SeedBRx^bioreactor)^were^used^to^dislodge^cells^with^tryp LE^enzyme.^HEK^ and^ VERO^ cells^ percentage^ harvest^ cell^ recovery^ with^ micro^ carrier^ were^ around^ 80^ %^ and^ with^ vibro^rotation^ it^ was^ about^ 95^ %.^ Cell^ viability^ of^ harvested^cells^with^micro^carrier^was^around^87^%^and^with^ vibro^rotation^it^ was^about^95%.^Vibro^rotation^had^a^positive^ impact^on^ the^percentage^cell^ ^ 202221058526^&^202221076880 recovery^and^cell^viability^post^recovery.^Because^of^the^in novative^design^of^ the^vibro^rotation^technique,^cell^health^was^maintained^whi ch^was^reflected^ in^ percentage^ viability^ and^ it^ also^ yield^ more^ cells^ compared^ with^ conventional^micro^carrier^platform.^ ^ ^ Reference^Numerals^ 1. Vessel^body^ 2. Side^Wall^ 3. Bottom^Plate^ 4. Head^Plate^ 5. Rotatable^Shaft^ 6. Cell^carrier^matrix^assembly^ 7. Disc^ 8. Bottom^ring^ 9. Central^hub^^ 10. Bottom^hub^ 11. First^magnetic^ring^^ 12. Second^magnetic^ring^^ 13. Magnets^ 14. Projection^ 14.1.^First^surface^ 14.2.^Second^surface^ 15. Receiving^member^ 16. Resilient^member^^ 17. Retaining^member^ 18. Extended^member^ 19. Rotating^member^ 20. Legs^ ^ 202221058526^&^202221076880 21. Impeller^^ 22. First^region^ 23. Second^region^ 24. Pinch^valve^ 25. Docking^Station^ 26. Gas^Exchange^Module^ 27. SUB(1L,^5L,^10L,^50L)^ 28. Controller^Unit^ 29. Motor^^^ 30. DriveShaft^ 31. Bearing^ 32. Protrusion^ 33. Extended^Pin^ 34. Gap^ 100.^Bioreactor^System^ ^ ^