Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CHARGER FOR AN AEROSOL DELIVERY DEVICE
Document Type and Number:
WIPO Patent Application WO/2018/092096
Kind Code:
A1
Abstract:
A charger for an aerosol delivery device (100) is provided. The aerosol delivery device includes a control body (102) equipped with a power source (212), and a cartridge (104) equipped with a heating element and containing an aerosol precursor composition. The control body is coupled or coupleable with the cartridge to form the aerosol delivery device. The charger (300) comprises a housing (302), a connector (304) and a power supply (306) from which the power source is rechargeable when the charger is engaged with the control body. The connector is coupled to the housing and configured to engage the charger with the control body. The power supply comprises a photovoltaic cell (PC) configured to convert light energy to electrical energy and generate a corresponding voltage output, and a buck converter (404) configured to step down the corresponding voltage output to a lower voltage from which the power source is rechargeable.

Inventors:
SUR RAJESH (US)
SEARS STEPHEN B (US)
HUNT ERIC T (US)
Application Number:
PCT/IB2017/057234
Publication Date:
May 24, 2018
Filing Date:
November 17, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RAI STRATEGIC HOLDINGS INC (US)
International Classes:
H02J7/00; A24F40/90; H02J7/35
Domestic Patent References:
WO2010003480A12010-01-14
WO2014182736A12014-11-13
Foreign References:
US20160308570A12016-10-20
CN205319754U2016-06-15
GB2521455A2015-06-24
US20140041655A12014-02-13
US20140096782A12014-04-10
US8881737B22014-11-11
US20130255702A12013-10-03
US20140000638A12014-01-02
US20140096781A12014-04-10
US20140096782A12014-04-10
US20150059780A12015-03-05
US201615222615A2016-07-28
US5388594A1995-02-14
US8079371B22011-12-20
US8910639B22014-12-16
US201514918926A2015-10-21
US20140261495A12014-09-18
US20100028766A12010-02-04
US5261424A1993-11-16
US5372148A1994-12-13
US4735217A1988-04-05
US4947874A1990-08-14
US6040560A2000-03-21
US7040314B22006-05-09
US8205622B22012-06-26
US20090230117A12009-09-17
US20140060554A12014-03-06
US20140270727A12014-09-18
US20150257445A12015-09-17
US8528569B12013-09-10
US20140261487A12014-09-18
US20150216232A12015-08-06
US20140209105A12014-07-31
US7217320B22007-05-15
US20130008457A12013-01-10
US20130213417A12013-08-22
US20150020823A12015-01-22
US20150020830A12015-01-22
US5154192A1992-10-13
US8499766B12013-08-06
US8539959B12013-09-24
US20150216233A12015-08-06
US5967148A1999-10-19
US5934289A1999-08-10
US5954979A1999-09-21
US8365742B22013-02-05
US8402976B22013-03-26
US20050016550A12005-01-27
US20100163063A12010-07-01
US20130192623A12013-08-01
US20130298905A12013-11-14
US20130180553A12013-07-18
US20140261408A12014-09-18
US201514638562A2015-03-04
US20160007651A12016-01-14
US20160021933A12016-01-28
Attorney, Agent or Firm:
SPENCE, Andrew T. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A charger for an aerosol delivery device including a control body equipped with a power source, and a cartridge equipped with a heating element and containing an aerosol precursor composition, the charger comprising:

a housing;

a connector coupled to the housing and configured to engage the charger with the control body coupled or coupleable with the cartridge to form the aerosol delivery device; and

a power supply from which the power source is rechargeable when the charger is engaged with the control body, the power supply comprising:

a photovoltaic cell configured to convert light energy to electrical energy and generate a corresponding voltage output; and

a buck converter configured to step down the corresponding voltage output to a lower voltage from which the power source is rechargeable.

2. The charger of Claim 1, further comprising an input device including a capacitive sensor configured to detect a user input indicating a selected voltage, the power supply being configured to adjust the corresponding voltage output to the selected voltage in response to the user input so detected.

3. The charger of Claim 2, wherein the capacitive sensor is a zero-, one-, or two-dimensional capacitive sensor configured to implement respectively a button, slider or wheel, or touchscreen or touchpad.

4. The charger of Claim 2, wherein the selected voltage is of a plurality of selectable voltages for which the buck converter includes a corresponding plurality of output terminals, and the power supply further comprises a plurality of arrays of resistors each array of which is operatively coupled to a respective one of the corresponding plurality of output terminals and whose resistance is directly proportional to a respective one of the plurality of selectable voltages.

5. The charger of Claim 1, wherein the buck converter has a quiescent current of one milliamp

(1 mA). 6. The charger of Claim 1, wherein the voltage output from the photovoltaic cell is between 14 to 22 volts (V), and the lower voltage output from the buck converter is between 2.7V and 8.4V.

7. The charger of Claim 1, wherein the power source rechargeable from the power supply is or includes at least one of a supercapacitor or thin-film solid state battery.

8. The charger of Claim 1, wherein the power source rechargeable from the power supply is or includes a supercapacitor, and the lower voltage is sufficient to cause the supercapacitor to reach or exceed an end-of-charge voltage threshold within one (1) minute of recharging.

9. The charger of Claim 1, wherein the power source rechargeable from the power supply is or includes a thin-film solid state battery, and the lower voltage is sufficient to cause the thin-film solid state battery to reach or exceed an end-of-charge voltage threshold within five (5) minutes of recharging.

10. A method of charging an aerosol delivery device including a control body equipped with a power source, and a cartridge equipped with a heating element and containing an aerosol precursor composition, the charger including a housing, a connector coupled to the housing, and a power supply from which the power source is rechargeable when the charger is engaged with the control body, the method comprising at the charger:

engaging, using the connector, the charger with the control body coupled or coupleable with the cartridge to form the aerosol delivery device;

converting, using a photovoltaic cell of the power supply, light energy to electrical energy and generating a corresponding voltage output; and

stepping down, using a buck converter of the power supply, the corresponding voltage output to a lower voltage from which the power source is rechargeable, and thereby providing power to recharge the power source.

11. The method of Claim 10, wherein the charger further includes an input device comprising a capacitive sensor, and the method further comprises:

detecting, using a capacitive sensor, a user input indicating a selected voltage, and adjusting, using the power supply, the corresponding voltage output to the selected voltage in response to the user input so detected.

12. The method of Claim 11, wherein the capacitive sensor is a zero-, one-, or two-dimensional capacitive sensor configured to implement respectively a button, slider or wheel, or touchscreen or touchpad.

13. The method of Claim 11, wherein the selected voltage is of a plurality of selectable voltages for which the buck converter includes a corresponding plurality of output terminals, and the power supply further comprises a plurality of arrays of resistors each array of which is operatively coupled to a respective one of the corresponding plurality of output terminals and whose resistance is directly proportional to a respective one of the plurality of selectable voltages.

14. The method of Claim 10, wherein the buck converter has a quiescent current of one milliamp (1 mA).

15. The method of Claim 10, wherein the voltage output from the photovoltaic cell is between 14 to 22 volts (V), and the lower voltage output from the buck converter is between 2.7V and 8.4V.

16. The method of Claim 10, wherein the power source rechargeable from the power supply is or includes at least one of a supercapacitor or thin-film solid state battery. 17. The method of Claim 10, wherein the power source rechargeable from the power supply is or includes the supercapacitor, and the lower voltage is sufficient to cause the supercapacitor to reach or exceed an end-of-charge voltage threshold within one (1) minute of recharging.

18. The method of Claim 10, wherein the power source rechargeable from the power supply is or includes the thin-film solid state battery, and the lower voltage is sufficient to cause the thin-film solid state battery to reach or exceed an end-of-charge voltage threshold within five (5) minutes of recharging.

Description:
CHARGER FOR AN AEROSOL DELIVERY DEVICE

TECHNOLOGICAL FIELD

The present disclosure relates to aerosol delivery devices such as smoking articles, and more particularly to aerosol delivery devices that may utilize electrically generated heat for the production of aerosol (e.g., smoking articles commonly referred to as electronic cigarettes). The smoking articles may be configured to heat an aerosol precursor, which may incorporate materials that may be made or derived from, or otherwise incorporate tobacco, the precursor being capable of forming an inhalable substance for human consumption.

BACKGROUND

Many devices have been proposed through the years as improvements upon, or alternatives to, smoking products that require combusting tobacco for use. Many of those devices purportedly have been designed to provide the sensations associated with cigarette, cigar, or pipe smoking, but without delivering considerable quantities of incomplete combustion and pyrolysis products that result from the burning of tobacco. To this end, there have been proposed numerous alternative smoking products, flavor generators, and medicinal inhalers that utilize electrical energy to vaporize or heat a volatile material, or attempt to provide the sensations of cigarette, cigar, or pipe smoking without burning tobacco to a significant degree. See, for example, the various alternative smoking articles, aerosol delivery devices and heat generating sources set forth in the background art described in U.S. Pat. No. 8,881,737 to Collett et al., U.S. Pat. App. Pub. No. 2013/0255702 to Griffith Jr. et al., U.S. Pat. App. Pub. No. 2014/0000638 to Sebastian et al., U.S. Pat. App. Pub. No. 2014/0096781 to Sears et al., U.S. Pat. App. Pub. No. 2014/0096782 to Ampolini et al., U.S. Pat. App. Pub. No. 2015/0059780 to Davis et al., and U.S. Pat. App. Ser. No. 15/222,615 to Watson et al., filed July 28, 2016, all of which are incorporated herein by reference. See also, for example, the various embodiments of products and heating configurations described in the background sections of U.S. Pat. Nos. 5,388,594 to Counts et al. and 8,079,371 to Robinson et al., which are incorporated by reference in their entireties.

However, it may be desirable to provide a charger for aerosol delivery devices with improved electronics such as high current charging of the devices.

BREIF SUMMARY

The present disclosure relates to aerosol delivery devices, methods of forming such devices, and elements of such devices. The present disclosure thus includes, without limitation, the following example implementations.

Example Implementation 1: A charger for an aerosol delivery device including a control body equipped with a power source, and a cartridge equipped with a heating element and containing an aerosol precursor composition, the charger comprising a housing; a connector coupled to the housing and configured to engage the charger with the control body coupled or coupleable with the cartridge to form the aerosol delivery device; and a power supply from which the power source is rechargeable when the charger is engaged with the control body, the power supply comprising: a photovoltaic cell configured to convert light energy to electrical energy and generate a corresponding voltage output; and a buck converter configured to step down the corresponding voltage output to a lower voltage from which the power source is rechargeable.

Example Implementation 2: The charger of any preceding example implementation, or any combination of any preceding example implementations, wherein the charger further comprises an input device including a capacitive sensor configured to detect a user input indicating a selected voltage, the power supply being configured to adjust the corresponding voltage output to the selected voltage in response to the user input so detected.

Example Implementation 3: The charger of any preceding example implementation, or any combination of any preceding example implementations, wherein the capacitive sensor is a zero-, one-, or two-dimensional capacitive sensor configured to implement respectively a button, slider or wheel, or touchscreen or touchpad.

Example Implementation 4: The charger of any preceding example implementation, or any combination of any preceding example implementations, wherein the selected voltage is of a plurality of selectable voltages for which the buck converter includes a corresponding plurality of output terminals, and the power supply further comprises a plurality of arrays of resistors each array of which is operatively coupled to a respective one of the corresponding plurality of output terminals and whose resistance is directly proportional to a respective one of the plurality of selectable voltages.

Example Implementation 5: The charger of any preceding example implementation, or any combination of any preceding example implementations, wherein the buck converter has a quiescent current of one milliamp (1 mA).

Example Implementation 6: The charger of any preceding example implementation, or any combination of any preceding example implementations, wherein the voltage output from the photovoltaic cell is between 14 to 22 volts (V), and the lower voltage output from the buck converter is between 2.7V and 8.4V.

Example Implementation 7: The charger of any preceding example implementation, or any combination of any preceding example implementations, wherein the power source rechargeable from the power supply is or includes at least one of a supercapacitor or thin-film solid state battery.

Example Implementation 8: The charger of any preceding example implementation, or any combination of any preceding example implementations, wherein the power source rechargeable from the power supply is or includes a supercapacitor, and the lower voltage is sufficient to cause the supercapacitor to reach or exceed an end-of-charge voltage threshold within one (1) minute of recharging.

Example Implementation 9: The charger of any preceding example implementation, or any combination of any preceding example implementations, wherein the power source rechargeable from the power supply is or includes a thin-film solid state battery, and the lower voltage is sufficient to cause the thin-film solid state battery to reach or exceed an end-of -charge voltage threshold within five (5) minutes of recharging.

Example Implementation 10: A method of charging an aerosol delivery device including a control body equipped with a power source, and a cartridge equipped with a heating element and containing an aerosol precursor composition, the charger including a housing, a connector coupled to the housing, and a power supply from which the power source is rechargeable when the charger is engaged with the control body, the method comprising at the charger engaging, using the connector, the charger with the control body coupled or coupleable with the cartridge to form the aerosol delivery device; converting, using a photovoltaic cell of the power supply, light energy to electrical energy and generating a corresponding voltage output; and stepping down, using a buck converter of the power supply, the corresponding voltage output to a lower voltage from which the power source is rechargeable, and thereby providing power to recharge the power source.

Example Implementation 11: The method of any preceding example implementation, or any combination of any preceding example implementations, wherein the charger further includes an input device comprising a capacitive sensor, and the method further comprises detecting, using a capacitive sensor, a user input indicating a selected voltage, and adjusting, using the power supply, the corresponding voltage output to the selected voltage in response to the user input so detected.

Example Implementation 12: The method of any preceding example implementation, or any combination of any preceding example implementations, wherein the capacitive sensor is a zero-, one-, or two-dimensional capacitive sensor configured to implement respectively a button, slider or wheel, or touchscreen or touchpad.

Example Implementation 13: The method of any preceding example implementation, or any combination of any preceding example implementations, wherein the selected voltage is of a plurality of selectable voltages for which the buck converter includes a corresponding plurality of output terminals, and the power supply further comprises a plurality of arrays of resistors each array of which is operatively coupled to a respective one of the corresponding plurality of output terminals and whose resistance is directly proportional to a respective one of the plurality of selectable voltages.

Example Implementation 14: The method of any preceding example implementation, or any combination of any preceding example implementations, wherein the buck converter has a quiescent current of one milliamp (1 mA).

Example Implementation 15: The method of any preceding example implementation, or any combination of any preceding example implementations, wherein the voltage output from the photovoltaic cell is between 14 to 22 volts (V), and the lower voltage output from the buck converter is between 2.7V and 8.4V.

Example Implementation 16: The method of any preceding example implementation, or any combination of any preceding example implementations, wherein the power source rechargeable from the power supply is or includes at least one of a supercapacitor or thin-film solid state battery. Example Implementation 17: The method of any preceding example implementation, or any combination of any preceding example implementations, wherein the power source rechargeable from the power supply is or includes the supercapacitor, and the lower voltage is sufficient to cause the supercapacitor to reach or exceed an end-of-charge voltage threshold within one (1) minute of recharging.

Example Implementation 18: The method of any preceding example implementation, or any combination of any preceding example implementations, wherein the power source rechargeable from the power supply is or includes the thin-film solid state battery, and the lower voltage is sufficient to cause the thin-film solid state battery to reach or exceed an end-of-charge voltage threshold within five (5) minutes of recharging.

These and other features, aspects, and advantages of the present disclosure will be apparent from a reading of the following detailed description together with the accompanying drawings, which are briefly described below. The present disclosure includes any combination of two, three, four or more features or elements set forth in this disclosure, regardless of whether such features or elements are expressly combined or otherwise recited in a specific example implementation described herein. This disclosure is intended to be read holistically such that any separable features or elements of the disclosure, in any of its aspects and example implementations, should be viewed as combinable, unless the context of the disclosure clearly dictates otherwise.

It will therefore be appreciated that this Brief Summary is provided merely for purposes of summarizing some example implementations so as to provide a basic understanding of some aspects of the disclosure. Accordingly, it will be appreciated that the above described example implementations are merely examples and should not be construed to narrow the scope or spirit of the disclosure in any way. Other example implementations, aspects and advantages will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of some described example implementations.

BRIEF DESCRIPTION OF THE DRAWING(S)

Having thus described the disclosure in the foregoing general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:

Figure 1 illustrates a side view of an aerosol delivery device including a cartridge coupled to a control body, according to an example implementation of the present disclosure;

Figure 2 is a partially cut-away view of the aerosol delivery device according to various example implementations;

Figure 3 is a partially cut-away view of a charger coupleable to a control body of the aerosol delivery device, according to various example implementations;

Figures 4 and 5 illustrate various elements of the charger and control body, according to various example implementations; and Figure 6 illustrates various operations in a method for controlling a charger for an aerosol delivery device, according to an example implementation.

DETAILED DESCRIPTION

The present disclosure will now be described more fully hereinafter with reference to example implementations thereof. These example implementations are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Indeed, the disclosure may be embodied in many different forms and should not be construed as limited to the implementations set forth herein; rather, these implementations are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification and the appended claims, the singular forms "a," "an," "the" and the like include plural referents unless the context clearly dictates otherwise. Also, while reference may be made herein to quantitative measures, values, geometric relationships or the like, unless otherwise stated, any one or more if not all of these may be absolute or approximate to account for acceptable variations that may occur, such as those due to engineering tolerances or the like.

As described hereinafter, example implementations of the present disclosure relate to aerosol delivery systems. Aerosol delivery systems according to the present disclosure use electrical energy to heat a material (preferably without combusting the material to any significant degree) to form an inhalable substance; and components of such systems have the form of articles most preferably are sufficiently compact to be considered hand-held devices. That is, use of components of preferred aerosol delivery systems does not result in the production of smoke in the sense that aerosol results principally from byproducts of combustion or pyrolysis of tobacco, but rather, use of those preferred systems results in the production of vapors resulting from volatilization or vaporization of certain components incorporated therein. In some example implementations, components of aerosol delivery systems may be characterized as electronic cigarettes, and those electronic cigarettes most preferably incorporate tobacco and/or components derived from tobacco, and hence deliver tobacco derived components in aerosol form.

Aerosol generating pieces of certain preferred aerosol delivery systems may provide many of the sensations (e.g., inhalation and exhalation rituals, types of tastes or flavors, organoleptic effects, physical feel, use rituals, visual cues such as those provided by visible aerosol, and the like) of smoking a cigarette, cigar or pipe that is employed by lighting and burning tobacco (and hence inhaling tobacco smoke), without any substantial degree of combustion of any component thereof. For example, the user of an aerosol generating piece of the present disclosure can hold and use that piece much like a smoker employs a traditional type of smoking article, draw on one end of that piece for inhalation of aerosol produced by that piece, take or draw puffs at selected intervals of time, and the like.

Aerosol delivery systems of the present disclosure also can be characterized as being vapor- producing articles or medicament delivery articles. Thus, such articles or devices can be adapted so as to provide one or more substances (e.g., flavors and/or pharmaceutical active ingredients) in an inhalable form or state. For example, inhalable substances can be substantially in the form of a vapor (i.e., a substance that is in the gas phase at a temperature lower than its critical point). Alternatively, inhalable substances can be in the form of an aerosol (i.e., a suspension of fine solid particles or liquid droplets in a gas). For purposes of simplicity, the term "aerosol" as used herein is meant to include vapors, gases and aerosols of a form or type suitable for human inhalation, whether or not visible, and whether or not of a form that might be considered to be smoke-like.

Aerosol delivery systems of the present disclosure generally include a number of components provided within an outer body or shell, which may be referred to as a housing. The overall design of the outer body or shell can vary, and the format or configuration of the outer body that can define the overall size and shape of the aerosol delivery device can vary. Typically, an elongated body resembling the shape of a cigarette or cigar can be a formed from a single, unitary housing or the elongated housing can be formed of two or more separable bodies. For example, an aerosol delivery device can comprise an elongated shell or body that can be substantially tubular in shape and, as such, resemble the shape of a conventional cigarette or cigar. In one example, all of the components of the aerosol delivery device are contained within one housing. Alternatively, an aerosol delivery device can comprise two or more housings that are joined and are separable. For example, an aerosol delivery device can possess at one end a control body comprising a housing containing one or more reusable components (e.g., an accumulator such as a rechargeable battery and/or supercapacitor, and various electronics for controlling the operation of that article), and at the other end and removably coupleable thereto, an outer body or shell containing a disposable portion (e.g., a disposable flavor-containing cartridge).

Aerosol delivery systems of the present disclosure most preferably comprise some combination of a power source (i.e., an electrical power source), at least one control component (e.g., means for actuating, controlling, regulating and ceasing power for heat generation, such as by controlling electrical current flow the power source to other components of the article - e.g., a microprocessor, individually or as part of a microcontroller), a heater or heat generation member (e.g., an electrical resistance heating element or other component, which alone or in combination with one or more further elements may be commonly referred to as an "atomizer"), an aerosol precursor composition (e.g., commonly a liquid capable of yielding an aerosol upon application of sufficient heat, such as ingredients commonly referred to as "smoke juice," "e-liquid" and "e-juice"), and a mouthend region or tip for allowing draw upon the aerosol delivery device for aerosol inhalation (e.g., a defined airflow path through the article such that aerosol generated can be withdrawn therefrom upon draw).

More specific formats, configurations and arrangements of components within the aerosol delivery systems of the present disclosure will be evident in light of the further disclosure provided hereinafter. Additionally, the selection and arrangement of various aerosol delivery system components can be appreciated upon consideration of the commercially available electronic aerosol delivery devices, such as those representative products referenced in background art section of the present disclosure. Further, the arrangement of the components within the aerosol delivery device can also be appreciated upon consideration of the commercially available electronic aerosol delivery devices. Examples of commercially available products, for which the components thereof, methods of operation thereof, materials included therein, and/or other attributes thereof may be included in the devices of the present disclosure have been marketed as ACCORD ® by Philip Morris Incorporated; ALPHA™, JO YE 510™ and M4™ by InnoVapor LLC; CIRRUS™ and FLING™ by White Cloud Cigarettes; BLU™ by Lorillard Technologies, Inc.;

COHITA™, COLIBRI™, ELITE CLASSIC™, MAGNUM™, PHANTOM™ and SENSE™ by Epuffer ® International Inc.; DUOPRO™, STORM™ and VAPORKING ® by Electronic Cigarettes, Inc.; EGAR™ by Egar Australia; eGo-C™ and eGo-T™ by Joyetech; ELUSION™ by Elusion UK Ltd; EONSMOKE ® by Eonsmoke LLC; FIN™ by FIN Branding Group, LLC; SMOKE ® by Green Smoke Inc. USA;

GREENARETTE™ by Greenarette LLC; HALLIGAN™, HENDU™, JET™, MAXXQ™, PINK™ and PITBULL™ by Smoke Stik ® ; HEATBAR™ by Philip Morris International, Inc.; HYDRO IMPERIAL™ and LXE™ from Crown7; LOGIC™ and THE CUBAN™ by LOGIC Technology; LUCI ® by Luciano Smokes Inc.; METRO ® by Nicotek, LLC; NJOY ® and ONEJOY™ by Sottera, Inc.; NO. 7™ by SS Choice LLC; PREMIUM ELECTRONIC CIGARETTE™ by PremiumEstore LLC; RAPP E-MYSTICK™ by Ruyan America, Inc.; RED DRAGON™ by Red Dragon Products, LLC; RUYAN ® by Ruyan Group (Holdings) Ltd.; SF® by Smoker Friendly International, LLC; GREEN SMART SMOKER ® by The Smart Smoking Electronic Cigarette Company Ltd.; SMOKE ASSIST ® by Coastline Products LLC; SMOKING EVERYWHERE ® by Smoking Everywhere, Inc.; V2CIGS™ by VMR Products LLC; VAPOR NINE™ by VaporNine LLC; VAPOR4LIFE ® by Vapor 4 Life, Inc.; VEPPO™ by E-CigaretteDirect, LLC; AVIGO, VUSE, VUSE CONNECT, VUSE FOB, VUSE HYBRID, ALTO, ALTO+, MODO, CIRO, FOX + FOG, AND SOLO+ by R. J. Reynolds Vapor Company; MISTIC MENTHOL by Mistic Ecigs; and VYPE by CN Creative Ltd. Yet other electrically powered aerosol delivery devices, and in particular those devices that have been characterized as so-called electronic cigarettes, have been marketed under the tradenames COOLER VISIONS™; DIRECT E-CIG™; DRAGONFLY™; EMIST™; EVERSMOKE™; GAMUCCI ® ; HYBRID FLAME™; KNIGHT STICKS™; ROYAL BLUES™; SMOKETIP ® ; SOUTH BEACH

SMOKE™.

Additional manufacturers, designers, and/or assignees of components and related technologies that may be employed in the aerosol delivery device of the present disclosure include Shenzhen Jieshibo Technology of Shenzhen, China; Shenzhen First Union Technology of Shenzhen City, China; Safe Cig of Los Angeles, CA; Janty Asia Company of the Philippines; Joyetech Changzhou Electronics of Shenzhen, China; SIS Resources; B2B International Holdings of Dover, DE; Evolv LLC of OH; Montrade of Bologna, Italy; Shenzhen Bauway Technology of Shenzhen, China; Global Vapor Trademarks Inc. of Pompano Beach, FL; Vapor Corp. of Fort Lauderdale, FL; Nemtra GMBH of Raschau-Markersbach, Germany, Perrigo L. Co. of Allegan, MI; Needs Co., Ltd.; Smokefree Innotec of Las Vegas, NV; McNeil AB of Helsingborg, Sweden; Chong Corp; Alexza Pharmaceuticals of Mountain View, CA; BLEC, LLC of Charlotte, NC; Gaitrend Sari of Rohrbach-les-Bitche, France; FeelLife Bioscience International of

Shenzhen, China; Vishay Electronic BMGH of Selb, Germany; Shenzhen Smaco Technology Ltd. of Shenzhen, China; Vapor Systems International of Boca Raton, FL; Exonoid Medical Devices of Israel; Shenzhen Nowotech Electronic of Shenzhen, China; Minilogic Device Corporation of Hong Kong, China; Shenzhen Kontle Electronics of Shenzhen, China, and Fuma International, LLC of Medina, OH, 21st Century Smoke of Beloit, WI, and Kimree Holdings (HK) Co. Limited of Hong Kong, China.

In various examples, an aerosol delivery device can comprise a reservoir configured to retain the aerosol precursor composition. The reservoir particularly can be formed of a porous material (e.g., a fibrous material) and thus may be referred to as a porous substrate (e.g., a fibrous substrate).

A fibrous substrate useful as a reservoir in an aerosol delivery device can be a woven or nonwoven material formed of a plurality of fibers or filaments and can be formed of one or both of natural fibers and synthetic fibers. For example, a fibrous substrate may comprise a fiberglass material. In particular examples, a cellulose acetate material can be used. In other example implementations, a carbon material can be used. A reservoir may be substantially in the form of a container and may include a fibrous material included therein.

Figure. 1 illustrates a side view of an aerosol delivery device 100 including a control body 102 and a cartridge 104, according to various example implementations of the present disclosure. In particular, Figure 1 illustrates the control body and the cartridge coupled to one another. The control body and the cartridge may be detachably aligned in a functioning relationship. Various mechanisms may connect the cartridge to the control body to result in a threaded engagement, a press-fit engagement, an interference fit, a magnetic engagement or the like. The aerosol delivery device may be substantially rod-like, substantially tubular shaped, or substantially cylindrically shaped in some example implementations when the cartridge and the control body are in an assembled configuration. The aerosol delivery device may also be substantially rectangular or rhomboidal in cross-section, which may lend itself to greater compatibility with a substantially flat or thin-film power source, such as a power source including a flat battery. The cartridge and control body may include separate, respective housings or outer bodies, which may be formed of any of a number of different materials. The housing may be formed of any suitable, structurally-sound material. In some examples, the housing may be formed of a metal or alloy, such as stainless steel, aluminum or the like. Other suitable materials include various plastics (e.g., polycarbonate), metal-plating over plastic, ceramics and the like.

In some example implementations, one or both of the control body 102 or the cartridge 104 of the aerosol delivery device 100 may be referred to as being disposable or as being reusable. For example, the control body may have a replaceable battery or a rechargeable battery and thus may be combined with any type of recharging technology, including connection to a typical wall outlet, connection to a car charger (i.e., a cigarette lighter receptacle), connection to a computer, such as through a universal serial bus (USB) cable or connector, connection to a photovoltaic cell (sometimes referred to as a solar cell) or solar panel of solar cells, or connection to a RF-to-DC converter. Further, in some example implementations, the cartridge may comprise a single-use cartridge, as disclosed in U.S. Pat. No. 8,910,639 to Chang et al., which is incorporated herein by reference. Figure 2 more particularly illustrates the aerosol delivery device 100, in accordance with some example implementations. As seen in the cut-away view illustrated therein, again, the aerosol delivery device can comprise a control body 102 and a cartridge 104 each of which include a number of respective components. The components illustrated in Figure 2 are representative of the components that may be present in a control body and cartridge and are not intended to limit the scope of components that are encompassed by the present disclosure. As shown, for example, the control body can be formed of a control body shell 206 that can include a control component 208 (e.g., a microprocessor, individually or as part of a microcontroller), a flow sensor 210, a power source 212 and one or more light-emitting diodes (LEDs) 214, and such components can be variably aligned. The LED may be one example of a suitable visual indicator with which the aerosol delivery device may be equipped. Other indicators such as audio indicators (e.g., speakers), haptic indicators (e.g., vibration motors) or the like can be included in addition to or as an alternative to visual indicators such as the LED.

The power source 212 may include, for example, a battery (single-use or rechargeable), lithium-ion battery (LiB), solid-state battery (SSB), thin-film SSB, supercapacitor or the like, or some combination thereof. Some examples of a suitable power source are provided in U.S. Pat. App. Ser. No. 14/918,926 to Sur et al., filed October 21, 2015, which is incorporated herein by reference.

Examples of suitable solid-state batteries are STMicroelectronics' EnFilm™ rechargeable solid-state lithium thin-film batteries, which feature a L1C0O 2 cathode, LiPON ceramic electrolyte and a lithium anode. In particular, the EFL700A39 battery from STMicroelectronics has a nominal voltage of 4.1V and thickness of only 220 um. The battery is rated for a 10-year life time, and a 4000 charge-discharge cycle life. The battery also has a relatively short typical charge, in some instances charging in approximately 30 minutes. The battery has a ceramic electrolyte, which may produce currents by movements of electrons and thus reduce the risk of undesirable dendrite growth in the cathode and anode that may otherwise lead to a short circuit. The ceramic electrolyte may also prevent a fire hazard upon contact with fire.

The supercapacitor may be any of a number of different types of supercapacitors, such as an electric double-layer capacitor (EDLC), a hybrid capacitor such as a lithium-ion capacitor (LIC), or the like.

Supercapacitors such as EDLCs may be rated for a fast charge (e.g., three seconds). The supercapacitor be rated for a long lifetime (e.g., 32 years) and cycle life (e.g., 1,000,000 charge-discharge cycles), and provide an environmentally-friendly, lower-cost solution. The supercapacitor may provide high-current pulses to the electrical load. And as the supercapacitor does not include an inflammable electrolyte between the electrodes, the supercapacitor may therefore operate with only a negligible probability of a short circuit.

Hybrid capacitors such as the LIC generally have features of a battery (high voltage and high energy density), while maintaining the traditional characteristics of a capacitor of rapid charge (e.g., three (3) to one-hundred twenty (120) seconds). A hybrid capacitor may be rechargeable, and have the ability to operate on its own for a longer period without the need of another source of energy from which the hybrid capacitor may be chargeable. The hybrid capacitor may have a longer lifetime (e.g., 10 years) and cycle life as compared to other options, and is more environmentally friendly. The cartridge 104 can be formed of a cartridge shell 216 enclosing a reservoir 218 configured to retain the aerosol precursor composition, and including a heater 220 (sometimes referred to as a heating element). In various configurations, this structure may be referred to as a tank; and accordingly, the terms "cartridge," "tank" and the like may be used interchangeably to refer to a shell or other housing enclosing a reservoir for aerosol precursor composition, and including a heater.

As shown, in some examples, the reservoir 218 may be in fluid communication with a liquid transport element 222 adapted to wick or otherwise transport an aerosol precursor composition stored in the reservoir housing to the heater 220. In some examples, a valve may be positioned between the reservoir and heater, and configured to control an amount of aerosol precursor composition passed or delivered from the reservoir to the heater.

Various examples of materials configured to produce heat when electrical current is applied therethrough may be employed to form the heater 220. The heater in these examples may be a resistive heating element such as a wire coil, micro heater or the like. Example materials from which the heating element may be formed include Kanthal (FeCrAl), Nichrome, stainless steel, Molybdenum disilicide (M0S1 2 ), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al) 2 ), graphite and graphite-based materials (e.g., carbon-based foams and yarns) and ceramics (e.g., positive or negative temperature coefficient ceramics). Example implementations of heaters or heating members useful in aerosol delivery devices according to the present disclosure are further described below, and can be incorporated into devices such as illustrated in Figure 2 as described herein.

An opening 224 may be present in the cartridge shell 216 (e.g., at the mouthend) to allow for egress of formed aerosol from the cartridge 104.

The cartridge 104 also may include one or more electronic components 226, which may include an integrated circuit, a memory component, a sensor, or the like. The electronic components may be adapted to communicate with the control component 208 and/or with an external device by wired or wireless means. The electronic components may be positioned anywhere within the cartridge or a base 228 thereof.

Although the control component 208 and the flow sensor 210 are illustrated separately, it is understood that various electronic components including the control component and the flow sensor may be combined on an electronic printed circuit board (PCB) that supports and electrically connects the electronic components. Further, the PCB may be positioned horizontally relative the illustration of Figure 1 in that the PCB can be lengthwise parallel to the central axis of the control body. In some examples, the air flow sensor may comprise its own PCB or other base element to which it can be attached. In some examples, a flexible PCB may be utilized. A flexible PCB may be configured into a variety of shapes, include substantially tubular shapes. In some examples, a flexible PCB may be combined with, layered onto, or form part or all of a heater substrate.

The control body 102 and the cartridge 104 may include components adapted to facilitate a fluid engagement therebetween. As illustrated in Figure 2, the control body can include a coupler 230 having a cavity 232 therein. The base 228 of the cartridge can be adapted to engage the coupler and can include a projection 234 adapted to fit within the cavity. Such engagement can facilitate a stable connection between the control body and the cartridge as well as establish an electrical connection between the power source 212 and control component 208 in the control body and the heater 220 in the cartridge. Further, the control body shell 206 can include an air intake 236, which may be a notch in the shell where it connects to the coupler that allows for passage of ambient air around the coupler and into the shell where it then passes through the cavity 232 of the coupler and into the cartridge through the projection 234.

A coupler and a base useful according to the present disclosure are described in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference. For example, the coupler 230 as seen in Figure 2 may define an outer periphery 238 configured to mate with an inner periphery 240 of the base 228. In one example the inner periphery of the base may define a radius that is substantially equal to, or slightly greater than, a radius of the outer periphery of the coupler. Further, the coupler may define one or more protrusions 242 at the outer periphery configured to engage one or more recesses 244 defined at the inner periphery of the base. However, various other examples of structures, shapes and components may be employed to couple the base to the coupler. In some examples the connection between the base of the cartridge 104 and the coupler of the control body 102 may be substantially permanent, whereas in other examples the connection therebetween may be releasable such that, for example, the control body may be reused with one or more additional cartridges that may be disposable and/or refillable.

The aerosol delivery device 100 may be substantially rod-like or substantially tubular shaped or substantially cylindrically shaped in some examples. In other examples, further shapes and dimensions are encompassed - e.g., a rectangular or triangular cross-section, multifaceted shapes, or the like.

The reservoir 218 illustrated in Figure 2 can be a container or can be a fibrous reservoir, as presently described. For example, the reservoir can comprise one or more layers of nonwoven fibers substantially formed into the shape of a tube encircling the interior of the cartridge shell 216, in this example. An aerosol precursor composition can be retained in the reservoir. Liquid components, for example, can be sorptively retained by the reservoir. The reservoir can be in fluid connection with the liquid transport element 222. The liquid transport element can transport the aerosol precursor composition stored in the reservoir via capillary action to the heater 220 that is in the form of a metal wire coil in this example. As such, the heater is in a heating arrangement with the liquid transport element. Example implementations of reservoirs and transport elements useful in aerosol delivery devices according to the present disclosure are further described below, and such reservoirs and/or transport elements can be incorporated into devices such as illustrated in Figure 2 as described herein. In particular, specific combinations of heating members and transport elements as further described below may be incorporated into devices such as illustrated in Figure 2 as described herein.

In use, when a user draws on the aerosol delivery device 100, airflow is detected by the flow sensor 210, and the heater 220 is activated to vaporize components of the aerosol precursor composition. Drawing upon the mouthend of the aerosol delivery device causes ambient air to enter the air intake 236 and pass through the cavity 232 in the coupler 230 and the central opening in the projection 234 of the base 228. In the cartridge 104, the drawn air combines with the formed vapor to form an aerosol. The aerosol is whisked, aspirated or otherwise drawn away from the heater and out the opening 224 in the mouthend of the aerosol delivery device.

In some examples, the aerosol delivery device 100 may include a number of additional software- controlled functions. For example, the aerosol delivery device may include a power-source protection circuit configured to detect power-source input, loads on the power-source terminals, and charging input. The power-source protection circuit may include short-circuit protection, under-voltage lock out and/or over-voltage charge protection. The aerosol delivery device may also include components for ambient temperature measurement, and its control component 208 may be configured to control at least one functional element to inhibit power-source charging - particularly of any battery - if the ambient temperature is below a certain temperature (e.g., 0 °C) or above a certain temperature (e.g., 45 °C) prior to start of charging or during charging.

Power delivery from the power source 212 may vary over the course of each puff on the device 100 according to a power control mechanism. The device may include a "long puff safety timer such that in the event that a user or component failure (e.g., flow sensor 210) causes the device to attempt to puff continuously, the control component 208 may control at least one functional element to terminate the puff automatically after some period of time (e.g., four seconds). Further, the time between puffs on the device may be restricted to less than a period of time (e.g., 100 seconds). A watchdog safety timer may automatically reset the aerosol delivery device if its control component or software running on it becomes unstable and does not service the timer within an appropriate time interval (e.g., eight seconds). Further safety protection may be provided in the event of a defective or otherwise failed flow sensor 210, such as by permanently disabling the aerosol delivery device in order to prevent inadvertent heating. A puffing limit switch may deactivate the device in the event of a pressure sensor fail causing the device to continuously activate without stopping after the four second maximum puff time.

The aerosol delivery device 100 may include a puff tracking algorithm configured for heater lockout once a defined number of puffs has been achieved for an attached cartridge (based on the number of available puffs calculated in light of the e-liquid charge in the cartridge). The aerosol delivery device may include a sleep, standby or low-power mode function whereby power delivery may be automatically cut off after a defined period of non-use. Further safety protection may be provided in that all charge/discharge cycles of the power source 212 may be monitored by the control component 208 over its lifetime. After the power source has attained the equivalent of a predetermined number (e.g., 200) of full discharge and full recharge cycles, it may be declared depleted, and the control component may control at least one functional element to prevent further charging of the power source.

The various components of an aerosol delivery device according to the present disclosure can be chosen from components described in the art and commercially available. Examples of batteries that can be used according to the disclosure are described in U.S. Pat. App. Pub. No. 2010/0028766 to Peckerar et al., which is incorporated herein by reference. The aerosol delivery device 100 can incorporate the sensor 210 or another sensor or detector for control of supply of electric power to the heater 220 when aerosol generation is desired (e.g., upon draw during use). As such, for example, there is provided a manner or method of turning off power to the heater when the aerosol delivery device is not be drawn upon during use, and for turning on power to actuate or trigger the generation of heat by the heater during draw. Additional representative types of sensing or detection mechanisms, structure and configuration thereof, components thereof, and general methods of operation thereof, are described in U.S. Pat. No. 5,261,424 to Sprinkel, Jr., U.S. Pat. No. 5,372,148 to McCafferty et al., and PCT Pat. App. Pub. No. WO 2010/003480 to Flick, all of which are incorporated herein by reference.

The aerosol delivery device 100 most preferably incorporates the control component 208 or another control mechanism for controlling the amount of electric power to the heater 220 during draw.

Representative types of electronic components, structure and configuration thereof, features thereof, and general methods of operation thereof, are described in U.S. Pat. No. 4,735,217 to Gerth et al., U.S. Pat. No. 4,947,874 to Brooks et al., U.S. Pat. No. 5,372,148 to McCafferty et al., U.S. Pat. No. 6,040,560 to Fleischhauer et al., U.S. Pat. No. 7,040,314 to Nguyen et al., U.S. Pat. No. 8,205,622 to Pan, U.S. Pat. App. Pub. No. 2009/0230117 to Fernando et al., U.S. Pat. App. Pub. No. 2014/0060554 to Collet et al., U.S. Pat. App. Pub. No. 2014/0270727 to Ampolini et al., and U.S. Pat. App. Pub. No. 2015/0257445 to Henry et al., all of which are incorporated herein by reference.

Representative types of substrates, reservoirs or other components for supporting the aerosol precursor are described in U.S. Pat. No. 8,528,569 to Newton, U.S. Pat. App. Pub. No. 2014/0261487 to Chapman et al., U.S. Pat. App. Pub. No. 2015/0059780 to Davis et al., and U.S. Pat. App. Pub. No.

2015/0216232 to Bless et al., all of which are incorporated herein by reference. Additionally, various wicking materials, and the configuration and operation of those wicking materials within certain types of electronic cigarettes, are set forth in U.S. Pat. App. Pub. No. 2014/0209105 to Sears et al., which is incorporated herein by reference.

The aerosol precursor composition, also referred to as a vapor precursor composition, may comprise a variety of components including, by way of example, a polyhydric alcohol (e.g., glycerin, propylene glycol or a mixture thereof), nicotine, tobacco, tobacco extract and/or flavorants. Representative types of aerosol precursor components and formulations also are set forth and characterized in U.S. Pat. No. 7,217,320 to Robinson et al. and U.S. Pat. Pub. Nos. 2013/0008457 to Zheng et al.; 2013/0213417 to Chong et al.;

2014/0060554 to Collett et al.; 2015/0020823 to Lipowicz et al.; and 2015/0020830 to Roller, as well as WO 2014/182736 to Bowen et al., and U.S. Pat. App. Ser. No. 15/222,615 to Watson et al., filed July 28, 2016, the disclosures of which are incorporated herein by reference. Other aerosol precursors that may be employed include the aerosol precursors that have been incorporated in the VUSE® product by R. J.

Reynolds Vapor Company, the BLU™ product by Imperial Tobacco Group PLC, the MISTIC MENTHOL product by Mistic Ecigs, and the VYPE product by CN Creative Ltd. Also desirable are the so-called "smoke juices" for electronic cigarettes that have been available from Johnson Creek Enterprises LLC. Additional representative types of components that yield visual cues or indicators may be employed in the aerosol delivery device 100, such as visual indicators and related components, audio indicators, haptic indicators and the like. Examples of suitable LED components, and the configurations and uses thereof, are described in U.S. Pat. No. 5,154,192 to Sprinkel et al., U.S. Pat. No. 8,499,766 to Newton, U.S. Pat. No. 8,539,959 to Scatterday, and U.S. Pat. App. Pub. No. 2015/0216233 to Sears et al., all of which are incorporated herein by reference.

Yet other features, controls or components that can be incorporated into aerosol delivery devices of the present disclosure are described in U.S. Pat. No. 5,967,148 to Harris et al., U.S. Pat. No. 5,934,289 to Watkins et al., U.S. Pat. No. 5,954,979 to Counts et al., U.S. Pat. No. 6,040,560 to Fleischhauer et al., U.S. Pat. No. 8,365,742 to Hon, U.S. Pat. No. 8,402,976 to Fernando et al., U.S. Pat. App. Pub. No.

2005/0016550 to Katase, U.S. Pat. App. Pub. No. 2010/0163063 to Fernando et al., U.S. Pat. App. Pub. No. 2013/0192623 to Tucker et al., U.S. Pat. App. Pub. No. 2013/0298905 to Leven et al., U.S. Pat. App. Pub. No. 2013/0180553 to Kim et al., U.S. Pat. App. Pub. No. 2014/0000638 to Sebastian et al., U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., and U.S. Pat. App. Pub. No. 2014/0261408 to DePiano et al., all of which are incorporated herein by reference.

As indicated above, the control component 208 includes a number of electronic components, and in some examples may be formed of a PCB. The electronic components may include a microprocessor or processor core, and a memory. In some examples, the control component may include a microcontroller with integrated processor core and memory, and may further include one or more integrated input/output peripherals. In some examples, the control component may be coupled to a communication interface to enable wireless communication with one or more networks, computing devices or other appropriately- enabled devices. Examples of suitable communication interfaces are disclosed in U.S. Pat. App. Ser. No. 14/638,562, filed March 4, 2015, to Marion et al., the content of which is incorporated herein by reference. And examples of suitable manners according to which the aerosol delivery device may be configured to wirelessly communicate are disclosed in U.S. Pat. App. Pub. No. 2016/0007651 to Ampolini et al., and U.S. Pat. App. Pub. No. 2016/0219933 to Henry, Jr. et al., each of which is incorporated herein by reference.

In accordance with some example implementations, the power source 212 of the control body 102 may be a rechargeable power source and thus may be combined with any type of recharging technology. Figure 3 illustrates a charger 300 for an aerosol delivery device 100 according to various example implementations of the present disclosure. As shown, charger may include a housing 302 and a connector

304 coupled to the housing. The connector may be configured to engage the control body 102 which may be coupled or coupleable with the cartridge 104 to form the aerosol delivery device 100. The charger may also include a power supply 306 from which the power source is rechargeable when the charger is engaged with the control body. Although the charger shown and described herein may be a detachably coupled charger, the charger and its configuration may promote implementations in which the charger is a fixed charger.

Figure 4 more particularly illustrates the power supply 306 of the charger 300, according to various example implementations. As described above, the power source 212 of the control body 102 for providing power to activate and vaporize components of an aerosol precursor composition. As shown in Figure 4, the power source may be connected to an electrical load 402 that includes various components of the control body, as well as various components of the cartridge 104 when the control body is coupled with the cartridge. More particularly, the electrical load may include the control component 208 and heater 220, which may be coupled with the power source to form an electrical circuit. This may additionally include, for example, the flow sensor 210, an indicator and the like.

As also shown in Figure 4, the power supply 306 of the charger 300 may include a photovoltaic cell PC (e.g., an organic and/or inorganic photovoltaic cell) and a buck converter 404. The photovoltaic cell may be configured to convert light energy to electrical energy and generate a corresponding voltage output, and the buck converter may be configured to step down the corresponding voltage output to a lower voltage from which the power source is rechargeable.

In some implementations, the voltage output from the photovoltaic cell PC may be between 14 to 22 volts (V), and the lower voltage output from the buck converter 404 may be between 2.7V and 8.4V.

Further in some examples, the buck converter may have a quiescent current of one milliamp (1 mA) such as when the charger 300 is not being used. It should be noted that as discussed herein the voltage and current outputs may refer to actual or approximate values with respect to and within an acceptable error of the design specifications of the charger, engineering tolerances, and the like.

The power supply 306 may be configured to provide a high current, low voltage output for rapid recharging of the power source 212. As previously indicated, the power source may be or include at least one of a supercapacitor or thin-film solid state battery. In some examples, the power source includes a supercapacitor, and the lower voltage is sufficient to cause the supercapacitor to reach or exceed an end-of- charge voltage threshold within one (1) minute of recharging. In other examples, the power source includes the thin-film solid state battery, and the lower voltage is sufficient to cause the thin-film solid state battery to reach or exceed an end-of-charge voltage threshold within five (5) minutes of recharging.

Figure 5 more particularly illustrates the charger 300, according to other example implementations.

As shown in Figure 5, in some examples, the charger may include an input device 502 configured to detect a user input that indicates a selected voltage. In these examples, the power supply 306 is configured to adjust the corresponding voltage output to the selected voltage in response to the detected user input. As shown, the input device may be or include a capacitive sensor. In some examples, the capacitive sensor is or includes a zero-, one-, or two-dimensional capacitive sensor configured to implement respectively a button, slider or wheel, or touchscreen or touchpad.

In some implementations, the selected voltage is of a plurality of selectable voltages for which the buck converter 404 includes a corresponding plurality of output terminals. In these implementations, the power supply 306 further comprises a plurality of arrays of resistors (e.g., Ri, R 2> R3, R4), in which each array is operatively coupled to a respective one of the corresponding plurality of output terminals. The resistance of the respective array of resistors is directly proportional to a respective one of the plurality of selectable voltages. Figure 6 illustrates various operations in a method 600 of charging an aerosol delivery device according to example implementations of the present disclosure. The aerosol delivery device may include a control body equipped with a power source, and a cartridge equipped with a heating element and containing an aerosol precursor composition. The charger may include a housing, a connector coupled to the housing, and a power supply from which the power source is rechargeable when the charger is engaged with the control body. As shown at step 602, the method may comprise engaging, using the connector, the charger with the control body coupled or coupleable with the cartridge to form the aerosol delivery device. The method may also comprise converting, using a photovoltaic cell of the power supply, light energy to electrical energy and generating a corresponding voltage output, as shown at step 604. The method may also comprise stepping down, using a buck converter of the power supply, the corresponding voltage output to a lower voltage from which the power source is rechargeable, and thereby providing power to recharge the power source, as shown at step 606.

The foregoing description of use of the article(s) can be applied to the various example implementations described herein through minor modifications, which can be apparent to the person of skill in the art in light of the further disclosure provided herein. The above description of use, however, is not intended to limit the use of the article but is provided to comply with all necessary requirements of disclosure of the present disclosure. Any of the elements shown in the article(s) illustrated in Figures 1-6 or as otherwise described above may be included in an aerosol delivery device according to the present disclosure.

Many modifications and other implementations of the disclosure set forth herein will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific implementations disclosed, and that modifications and other

implementations are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe example implementations in the context of certain example combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative implementations without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as may be set forth in some of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.