Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CHECK VALVE AND FLUID DYNAMIC ENERGY CONSERVATION WATER PUMP
Document Type and Number:
WIPO Patent Application WO/2014/114062
Kind Code:
A1
Abstract:
A check valve and fluid dynamic energy conservation water pump. The check valve (1) comprises a check valve cover (11), a check valve rod (12), a sealing ring (13), a check valve seat (14), and a check valve spring (15). The water-passing holes (141) in the check valve (1) are at least two in number, and the axis of each of the water-passing hole (141) is a straight line in a different plane from the axis of a central hole (142) of the check valve seat, or the axis of the water-passing hole (141) is a spiral revolving around the axis of the central hole (142) such that water flow ejects from the check valve (1) in a spiral shape. The fluid dynamic energy conversation water pump comprises a pump body (2), an air bottle (3), the check valve (1), and an impact valve (4). The pump body (2) comprises a water inlet, a check valve port, and a water outlet. The water outlet is provided with the impact valve (4). The air bottle (3) is in communication with the pump body at the check valve port via the check valve (1), the check valve being the check valve (1) provided in the present application. The check valve and fluid dynamic energy conservation water pump provided in the present invention can solve the problem that exiting water pumps exert relatively small compression on the gas inside air bottles, thereby enhancing the lift distance and the volume of a water pump.

Inventors:
FU LANRONG (CN)
LI ANG (CN)
Application Number:
PCT/CN2013/079082
Publication Date:
July 31, 2014
Filing Date:
July 09, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FU LANRONG (CN)
LI ANG (CN)
International Classes:
F04F7/02; F16K15/06
Foreign References:
CN201250780Y2009-06-03
GB297121A1929-02-28
GB2241023A1991-08-21
CN2308746Y1999-02-24
CN2110734U1992-07-22
CN201679777U2010-12-22
Attorney, Agent or Firm:
LEADER PATENT & TRADEMARK FIRM (CN)
北京同立钧成知识产权代理有限公司 (CN)
Download PDF:
Claims:
权 利 要 求 书

1、 一种逆水阀, 包括逆水阀盖、 逆水阀杆、 逆水阀座和逆水弹簧; 所 述逆水阀座中开设有贯通的过水孔和中心孔; 所述逆水阀盖遮盖在所述逆 水阀座的过水孔处; 所述逆水阀杆的一端穿过所述逆水阀盖的中心孔, 并 与所述逆水阀盖固定连接; 所述逆水阀杆的另一端穿过所述逆水阀座的中 心孔; 所述逆水弹簧固定在所述逆水阀座和所述逆水阀杆之间, 用于在所 述逆水阀盖受压离开所述过水孔时通过所述逆水阀杆带动所述逆水阀盖 复位至遮盖所述过水孔的位置, 其特征在于: 所述逆水阀座中的过水孔为 至少两个, 且每个过水孔的轴线与所述逆水阀座中心孔的轴线为异面设置的 直线或所述过水孔的轴线为绕所述中心孔轴线的螺旋线, 以使水流呈螺旋状 射出所述逆水阀。

2、 根据权利要求 1所述的逆水阀, 其特征在于, 所述过水孔的螺旋线轴 线在所述螺旋线轴线与所述逆水阀座出水表面相交点处的切线与所述逆水阀 座出水表面呈设定角度。

3、 根据权利要求 2所述的逆水阀, 其特征在于, 所述过水孔的螺旋线轴 线的螺旋半径相等。

4、 根据权利要求 1所述的逆水阀, 其特征在于:

经过所述过水孔的直线形轴线的中点, 且与所述中点与所述逆水阀座中 心孔的轴线所在平面垂直的平面与所述过水孔的直线形轴线呈设定角度。

5、 根据权利要求 2或 4所述的逆水阀, 其特征在于, 所述设定角度为

30-60度。

6、 根据权利要求 5所述的逆水阀, 其特征在于, 逆水阀座中的过水孔的 数量为四个, 各所述过水孔以所述逆水阀座中心孔的轴线呈中心对称排布。

7、 根据权利要求 6所述的逆水阀, 其特征在于, 所述过水孔的孔径均匀 分布。

8、 一种流体动力节能水泵, 包括泵体、 空气罐、 逆水阀和冲击阀, 所 述泵体包括进水口、 逆水口和排水口, 所述排水口处固定设置有所述冲击 阀; 所述空气罐与所述泵体在所述逆水口处通过所述逆水阀相互连通, 其 特征在于, 所述逆水阀采用权利要求 1-7任一所述的逆水阀。

9、 根据权利要求 8所述的流体动力节能水泵, 其特征在于, 所述空 气罐包括罐体、 出水管和扬水管;

所述出水管设置于所述空气罐的罐体上, 位于所述罐体高度的二分之 一处, 所述扬水管与所述出水管连接。

10、 根据权利要求 9所述的流体动力节能水泵, 其特征在于, 所述出 水管的一端焊接在所述罐体的表面, 或与所述罐体设置为一体成型, 所述 出水管的另一端与所述扬水管连接。

11、 根据权利要求 8所述的流体动力节能水泵, 其特征在于: 所述冲击阀包括冲击头、 冲击套管、 冲击盘、 冲击导管、 冲击支架以 及冲击后座; 所述冲击支架固定设置在所述泵体的内部, 所述冲击套管的 一端穿过所述冲击支架的中心孔和所述冲击盘的中心孔, 并与所述冲击盘 固定连接, 所述冲击套管的另一端与所述冲击头连接; 所述冲击导管穿设 在所述冲击套管中, 并固定连接在所述泵体上; 所述冲击后座与所述泵体 可拆卸地连接。

12、 根据权利要求 8或 9或 11所述的流体动力节能水泵, 其特征在 于, 所述泵体上设置有操作杆;

所述操作杆的一端穿设在所述冲击导管中, 与所述冲击头连接, 另一 端露出于所述泵体外, 用于手动操作所述流体动力节能水泵。

13、 根据权利要求 10所述的流体动力节能水泵, 其特征在于, 所述 空气罐中的扬水管的出水口处设置有速度传感器或流量传感器, 用于检测 水流的速度或流量。

Description:
逆水阀和流体动力节能水泵

技术领域

本发明涉及水泵技术, 尤其涉及一种逆水阀和流体动力节能水泵。 背景技术

水泵是一种将位于低处的水流扬高的机械设备 。 常见的水泵包括两 种, 一种是以燃烧柴油、 天然气或煤作为驱动力的机械水泵, 另一种是以 电力作为能源的电力水泵。 其中, 机械水泵会消耗大量能源, 使得运行成 本较高, 且面对全球不可再生能源日益减小的现状, 上述机械水泵已不再 适应市场的需求。 电力水泵的工作电压和功率较高, 在工作过程中存在一 定的安全隐患, 且也会间接地消耗掉大量的能源。

水泵中通常采用逆水阀来控制水流的通过,现 有的逆水阀包括逆水阀 盖、 逆水阀杆、 逆水阀座和逆水弹簧, 其中, 逆水阀座中开设有贯通的过 水孔和中心孔, 逆水阀盖遮盖在逆水阀座的过水孔处, 逆水阀杆的一端穿 过逆水阀盖的中心孔, 并与逆水阀盖固定连接; 逆水阀杆的另一端穿过逆 水阀座的中心孔, 逆水弹簧固定在逆水阀座和逆水阀杆之间, 用于在逆水 阀盖在压力作用下离开过水孔时通过逆水阀杆 带动逆水阀盖复位至遮盖 过水孔的位置。

例如, 专利 ZL 200820135524. 1新提出了 《一种无电源大口径流体力 矩水泵》 , 公开了一种利用水源的水位差作为动力的水泵 , 借助于水流动 的惯性力矩实现自动汲水和扬水, 不消耗任何能源, 且不存在任何安全隐 m、

该专利采用了上述逆水阀,但由于该水泵中逆 水阀的过水孔为垂直设 置或过水孔整体倾斜设置,所喷射的水流冲顶 开逆水阀盖的同时也使部分 水流受逆水阀盖阻挡回落直接影响逆水阀的喷 射效果, 降低了对空气罐中 的气体压缩力度, 使得水泵的扬程高度不能满足要求。 发明内容 本发明提供一种逆水阀和流体动力节能水泵, 用于解决现有的水泵中 对空气罐中的气体压缩力度较小的问题, 实现提高水泵扬程高度。

本发明实施例提供一种逆水阀, 包括逆水阀盖、 逆水阀杆、 逆水阀座 和逆水弹簧; 所述逆水阀座中开设有贯通的过水孔和中心孔 ; 所述逆水阀 盖遮盖在所述逆水阀座的过水孔处; 所述逆水阀杆的一端穿过所述逆水阀 盖的中心孔, 并与所述逆水阀盖固定连接; 所述逆水阀杆的另一端穿过所 述逆水阀座的中心孔; 所述逆水弹簧固定在所述逆水阀座和所述逆水 阀杆 之间, 用于在所述逆水阀盖受压离开所述过水孔时通 过所述逆水阀杆带动 所述逆水阀盖复位至遮盖所述过水孔的位置, 所述逆水阀座中的过水孔为 至少两个, 且每个过水孔的轴线与所述逆水阀座中心孔的 轴线为异面设置的 直线或所述过水孔的轴线为绕所述中心孔轴线 的螺旋线, 以使水流呈螺旋状 射出所述逆水阀。

本发明实施例还提供一种流体动力节能水泵, 包括泵体、 空气罐、 逆 水阀和冲击阀, 所述泵体包括进水口、 逆水口和排水口, 所述排水口处固 定设置有所述冲击阀; 所述空气罐与所述泵体在所述逆水口处通过所 述逆 水阀相互连通, 所述逆水阀采用如上所述的逆水阀。

本发明实施例提供的逆水阀中的过水孔至少两 个, 且每个过水孔的轴线 与逆水阀座中心孔的轴线为异面设置的直线或 过水孔的轴线为绕中心孔轴线 的螺旋线, 以使水流呈螺旋状射出逆水阀, 改变了现有过水孔垂直设置或过 水孔整体倾斜设置的现状, 使喷射出的水流能够不受逆水阀盖的阻挡, 直接 射出逆水阀, 提高水流出射速度和出水量, 加大对水泵中空气罐的气体压缩 力度。 本发明实施例提供的流体动力节能水泵通过采 用泵体、 空气罐、 冲击 阀和上述逆水阀, 形成三个水流加力段, 能够解决现有的水泵中对空气罐中 的气体压缩力度较小的问题, 实现提高水泵扬程高度, 增大水流量。 附图说明

图 1为本发明实施例一提供的逆水阀的主视图;

图 2为本发明实施例一提供的逆水阀座的主视图 ;

图 3为本发明实施例一提供的逆水阀座的俯视图

图 4为本发明实施例一提供的逆水阀座的主视图 ; 图 5为本发明实施例 -提供的逆水阀座的主视图三;

图 6为本发明实施例 -提供的逆水阀座的立体图一;

图 7为本发明实施例 -提供的逆水阀座的立体图二;

图 8为本发明实施例 -提供的逆水阀座的立体图三;

图 9为本发明实施例」 :提供的流体动力节能水泵的剖面^ 具体实施方式

实施例一

图 1为本发明实施例一提供的逆水阀的剖面图, 图 2为本发明实施例一 提供的逆水阀座的主视图一, 图 3为本发明实施例一提供的逆水阀座的俯视 图, 图 4为本发明实施例一提供的逆水阀座的主视图 , 图 5为本发明实施 例一提供的逆水阀座的主视图三, 图 6为本发明实施例一提供的逆水阀座的 立体图一, 图 7为本发明实施例一提供的逆水阀座的立体视 二, 图 8为本 发明实施例一提供的逆水阀座的立体图三。 如图 1至图 8所示, 逆水阀可以 包括逆水阀盖 11、 逆水阀杆 12、 密封圈 13、 逆水阀座 14和逆水弹簧 15。

其中, 逆水阀座 14中开设有贯通的过水孔 141和中心孔 142, 逆水阀 座 14的中心孔 142为圆柱形; 逆水阀盖 11遮盖在逆水阀座 14的过水孔 141处, 逆水阀盖与逆水阀座之间设有密封圈 13, 且逆水阀盖 11 的下表 面与密封圈 13的上表面形状匹配设置,密封圈 13的下表面与逆水阀座 14 的上表面形状匹配, 以使逆水阀盖与逆水阀座能够保持贴紧状态。 逆水阀 盖 11中也开设有贯通的中心孔, 该中心孔也为圆柱形; 逆水阀杆 12的一 端穿过逆水阀盖 11 的中心孔, 并与逆水阀盖 11 固定连接, 逆水阀杆 12 的另一端依次穿过密封圈 13和逆水阀座 14 的中心孔 142。 逆水阀盖 11 的中心孔的直径小于逆水阀座 14的中心孔 142, 相应的, 逆水阀杆 12的 直径与上述各中心孔的直径匹配设置, gP : 逆水阀杆 12位于逆水阀盖 11 中的直径小于位于逆水阀座 14中的部分。 逆水阀杆 12伸出逆水阀盖 11 的一端设置有螺紋, 并通过螺母和垫片配合将逆水阀杆 12与逆水阀盖 11 固定连接。 逆水弹簧 15固定在逆水阀座 14和逆水阀杆 12之间, 用于在 逆水阀盖 11受压离开过水孔时通过逆水阀杆 12带动逆水阀盖 11复位至 遮盖过水孔的位置。逆水阀杆 12伸出逆水阀座 14的一端固定连接一螺母, 该螺母与逆水弹簧 15之间留有一段距离, 使得逆水阀杆 12能够在逆水阀 座 14的中心孔 142中沿中心孔 142的轴线方向移动。逆水阀盖 1 1和逆水 阀座 14之间设置的密封圈 13可以为橡胶密封圈, 用于在逆水阀盖 1 1和 逆水阀座 14贴紧时起到密封的作用。

逆水阀座 14中设置有至少两个过水孔 141,且每个过水孔 141的轴线 与逆水阀座 14的中心孔 142的轴线为异面设置的直线, 或过水孔 141的 轴线为绕逆水阀座 14的中心孔 142 的轴线的螺旋线, 以使水流呈螺旋状 射出逆水阀。 各螺旋线的方向一致, 可以为顺时针, 也可以为逆时针。 对 上述过水孔 141的轴线可以作如下定义:在轴线上任意一点 (假设为 0点) 有唯一的切线和唯一的切平面, 则在该切平面上, 经过 0点并与该切线垂 直的直线与过水孔 141的内壁有两个交点, 均与 0点的距离相等, 具有上 述特征的线条定义为过水孔 141的轴线。 则对于轴线为直线的过水孔 141 为直孔, 对于轴线为螺旋线的过水孔 141为螺旋状的弯曲形孔。 将逆水阀 座 14远离密封圈 13的表面称为入水表面, 靠近密封圈 13的表面称为出 水表面。 将过水孔 141 中远离密封圈 13的一端为逆水入口, 靠近密封圈 13的一端为逆水出口。 上述逆水阀座 14中过水孔 141 的数量优选设置为 四个, 其孔径的尺寸可根据逆水阀座 14的尺寸设定, 各过水孔 141可以以 逆水阀座 14中心孔 142的轴线呈中心对称排布。

对于上述直孔形的过水孔 141, 其轴线为直线, 且与逆水阀座 14中心孔 142的轴线为异面设置, 各过水孔 141沿逆水阀座 14中心孔 142的轴线呈中 心对称, 可参照图 1和图 2中所示的过水孔 141。 对于上述螺旋状的弯曲形 的过水孔 141, 其轴线绕逆水阀座 14中心孔 142呈螺旋线, 其螺旋半径可以 相等, 各过水孔 141沿逆水阀座 14中心孔 142的轴线呈中心对称, 可参照图 4至图 7中所示的过水孔 141。

以过水孔 141为顺时针方向排布为例, 上述逆水阀的工作过程为: 在 逆水阀关闭状态时, 逆水阀盖 1 1 向下贴紧密封圈 13, 进而贴紧逆水阀座 14 , 将逆水阀座 14的过水孔遮盖, 且逆水弹簧 15处于松弛状态。 当一定 压力的水流从逆水阀的逆水入口进入过水孔 141, 从逆水出口流出, 水流 的冲击力将逆水阀盖 1 1 顶开, 即逆水阀处于打开状态, 且水流沿顺时针 方向从各过水孔 141射出逆水阀座 14, 此时逆水弹簧 15处于压缩状态。 当从逆水阀座 14射出的水流压力降低至小于逆水弹簧 15的张力时, 或者 当逆水阀盖 11受到来自于水流方向相反的外部压力且与逆 弹簧 15的张 力之和大于水流压力时, 逆水弹簧 15张开, 并带动逆水阀盖 11朝向逆水 阀座 14移动, 贴紧逆水阀座 14, 以遮盖逆水阀座 14的过水孔 141。 若将 逆水阀与一空气罐密闭连接, 空气罐设置在逆水阀的上方, 当逆水阀打开 时, 水流从逆水阀的下方进入逆水阀座 14, 并朝向密闭的空气罐中喷射水 流, 则水流从各过水孔 141沿顺时针方向呈螺旋状射入空气罐中, 受到空 气罐内壁的阻挡形成涡流, 也带动空气罐中的气体旋转, 形成气旋。 水流 不断增多, 对空气的压缩力也逐渐加大, 使得空气罐内的压力增大。

本实施例采用的技术方案中逆水阀的过水孔至 少两个, 且每个过水孔的 轴线与逆水阀座中心孔 142的轴线为异面设置的直线或过水孔轴线为绕 中心 孔 142轴线的螺旋线, 以使水流呈螺旋状射出逆水阀, 改变了现有过水孔垂 直设置或过水孔整体倾斜设置的现状,使喷射 出的水流减小逆水阀盖的阻挡, 进而能够解决现有的水泵中对空气罐中的气体 压缩力度较小的问题, 实现 提高逆水阀的出水速度和出水量。

在上述技术方案的基础上, 过水孔 141的孔径优选为均匀分布。 对于 轴线为螺旋线的过水孔 141, 其形状还可以设置为: 过水孔 141的螺旋线轴 线在该螺旋线轴线与逆水阀座 14出水表面相交点处的切线与逆水阀座 14出 水表面呈设定角度, 可参照图 5所示的过水孔 141。 对于过水孔 141的轴线 为直线而言, 可以理解为经过过水孔 141 的直线形轴线的中点, 且与该中点 与逆水阀座 14的中心孔 142的轴线所在平面垂直的平面与过水孔 141的直线 形轴线呈设定角度。 该设定角度可以为 30-60度之间的任意角度, 优选为 45度, 能够进一步扩大水流出射的角度, 提高旋流的旋转速度。

各过水孔 141的轴线绕逆水阀座 14中心孔 142的轴线为中心对称, 对于过水孔 141轴线为螺旋线的逆水阀座 14,其螺旋半径可以相等,因此, 可作出多个角度的剖视图, 如图 4和图 5为两个角度得到的剖视图。 当过 水孔 141 的孔径较大时, 在逆水阀座 14的俯视图中可以看到过水孔 141 贯通于逆水阀座 14, 例如图 3 中的 A区域即为从俯视的角度看逆水阀座 14 , 能看到过水孔贯通的区域。

另外, 过水孔与逆水阀座 14的入水表面和出水表面相交得到的形状, 也就是逆水入口和逆水出口的形状可以为如图 6所示的椭圆形或如图 3、 图 7以及图 8所示的形状, 当然也可以由技术人员设定为其它形状。 实施例二

图 9为本发明实施例二提供的流体动力节能水泵 剖面结构示意图。 该 流体动力节能水泵可以包括逆水阀 1、泵体 2、空气罐 3和冲击阀 4,其中, 泵体 2包括进水口、 逆水口和排水口, 该排水口处固定设置有冲击阀 4, 空气罐 3与泵体 2在逆水口处通过逆水阀 1相互连通。 如图 9所示的节能 水泵剖面图, 泵体 2 的左侧为进水口, 右侧为排水口, 上面为逆水口。 泵 体 2还包括有泵体后盖 21, 在排水口处, 泵体后盖 21通过螺栓与泵体 2 固定连接, 并将冲击阀 4固定在泵体 2内部。 逆水阀 1固定设置于泵体 2 的逆水口处, 并延伸至空气罐 3内, 逆水阀 1采用上述实施例所提供的逆 水阀 1。 泵体 2的进水口可与进水管道固定连接, 该进水管道浸入水位差 大于 0. 8m的水源中, 泵体 2置于低水位处, 可以浸没在水中, 设置进水 管道与泵体 2底线形成的夹角在 30度左右, 偏差不超过 15度, 空气罐 3 需保持与地面垂直。 进水管道中可设置有进水闸阀, 用于控制节能水泵的 运行和停止。

空气罐 3包括罐体 31、 出水管 32和扬水管, 其中, 罐体 31的下端通 过法兰与泵体 2固定连接, 出水管 32可设置于罐体 31上, 现有技术中的 出水管 32与罐体 31顶端的距离为罐体 31高度的三分之二, 而本实施例 提供的出水管 32设置在与罐体 31顶端的距离为罐体 31高度的二分之一 处, 或位于二分之一略向下处, 具体可根据空气罐 31 的直径、 高度、 以 及从逆水阀出射的水流速度和角度经过多次试 验和测试来设定, 以使出水 管 32位于水压最大处。 出水管 32的一端可焊接在罐体 31的表面, 另一 端接扬水管, 扬水管作为节能水泵的出水口向上延伸至设定 高度, 扬水管 的长度可根据需要设定。 出水管 32也可以与空气罐的罐体 31设置为一体 成型, 以避免出现漏水的现象。

冲击阀 4包括冲击头 41、 冲击套管 42、 冲击盘 43、 冲击弹簧 44、 冲 击导管 45以及冲击支架 46。其中,冲击支架 46固定设置在泵体 2的内部, 具体通过泵体后盖 21固定在泵体后盖 21与泵体 2的连接处, 该冲击支架 46为圆锥形三角支架, 开设有中心孔。 冲击套管 42的一端依次穿过冲击 支架 46的中心孔和冲击盘 43的中心孔, 并与冲击盘 43固定连接。 该冲 击盘 43通过螺母与冲击套管 42固定连接, 且可沿冲击盘 43的中心孔轴 线方向滑移。 冲击套管 42露出于冲击支架 46的另一端设置有冲击头 41, 该冲击头 41的前端为圆锥体, 后端为圆柱体, 冲击头 41的后端插入冲击 套管 42并与其固定连接。 冲击弹簧 44设置在冲击套管 42的内部, 并与 冲击头 41的后端连接,在冲击阀 4打开状态下,冲击弹簧 44为松弛状态, 在冲击阀 4关闭状态下, 冲击弹簧 44为压缩状态, 冲击弹簧 44用于当水 流压力降低时, 由自身的扩张力推动冲击套管 42带动冲击盘 43复位至冲 击阀 4打开状态。冲击套管 42可在冲击支架 46的中心孔中沿冲击支架 46 的轴线方向滑移, 且带动冲击盘 43同步滑移。 冲击导管 45从泵体 2的外 部穿入泵体 2, 穿设在冲击套管 42中, 且与冲击弹簧 44之间留有一定的 距离。 冲击导管 45与泵体 2固定连接, 具体可与泵体后盖 21固定连接。 冲击导管 45通过调节螺母 48固定在泵体后盖 21上, 当调节螺母 48旋松 时, 冲击导管 45可在冲击套管 42中移动, 以调节冲击头 41与泵体 2进 水口的距离, 进而改变水流撞击冲击头 41 后压力的增量。 调节方法为: 首先将调节螺母 48旋松, 然后调节冲击导管 45伸入泵体 2的长度, 调节 好后再拧紧调节螺母 48将冲击导管 45与泵体后盖 21固定。

该流体动力节能水泵的工作过程为: 当进水闸阀打开时, 水流经过进 水管道的不断加速, 以高于水源压力数十倍的压力进入泵体 2, 撞击在冲 击阀 4中的冲击头 41上, 此过程可以称为为第一加力段。 由于冲击头 41 的前端为圆锥形, 水流被冲击头 41 分散成多股水流, 水流得到增压并扩 散流向冲击阀 4的后方, 同时, 冲击套管 42在水流压力的作用下带动冲 击盘 43 向冲击阀 4的后方滑移, 直至到达极限位置, 封闭排水口, 以使 冲击阀 4处于关闭状态, 此时冲击弹簧 44处于压缩状态。 水流不断涌入 泵体 2, 使得泵体 2内的水压逐渐增大, 当大于逆水阀 1的压力极限时, 逆水阀盖 1 1 自动打开, 水流从逆水口进入逆水阀 1, 经过逆水阀 1中的过 水孔 141, 形成设定角度的螺旋状射流射出逆水阀 1, 进入空气罐 3。 射出 的水流受到空气罐 3内壁的阻挡而转变射流方向, 形成涡流, 并带动空气 罐 3中的气体旋转, 形成气旋。 进入空气罐 3的水流不断增多, 将气体压 缩到空气罐 3的顶部, 该过程可称为第二加力段。 当水流从泵体 2进入空 气罐 3后, 泵体 2 内的压力急速下降, 受压后移的冲击盘 43和冲击套管 42在冲击弹簧 44的作用下快速复位。 在复位过程中, 还会有部分水通过 冲击盘 43和泵体后盖 21的间隙从排水口流出, 减小了泵体 2内的压力。 但泵体 2内的压力下降至逆水阀 1关闭的极限压力时, 逆水阀盖 1 1 自动 下落关闭。 之后, 空气罐 3中的涡流急速扩散, 产生反向压力, 该过程可 以称为第三加力段, 水流进入扬水管 32, 排出空气罐 3外, 实现一次扬水 过程。 当逆水阀 1关闭后, 水流继续涌入泵体 2增压, 当泵体 2中的压力 到达逆水阀 1的压力极限时, 逆水阀 1再次打开, 以使水流射入空气罐 3。 水流源源不断流入泵体 2, 冲击阀 4和逆水阀 1反复重复上述动作, 实现 连续扬水。

上述实施例提供的流体动力节能水泵通过采用 泵体、 空气罐、 逆水阀 和冲击阀形成三个水流加力段, 并采用上述实施例所提供的逆水阀, 使得 从逆水阀喷射出的水流不受逆水阀盖的阻挡, 直接射出逆水阀, 提高水流出 射速度和出水量, 能够解决现有的水泵中对空气罐中的气体压缩 力度较小 的问题, 实现提高水泵扬程高度, 增大水流量。

在上述技术方案的基础上, 冲击阀 4还可以包括冲击后座 47, , 该冲 击后座 47可以与泵体 2可拆卸地连接。 具体的, 冲击后座 47通过螺栓与 泵体 2连接, 具体可以与泵体后盖 21连接, 当需要对泵体内部的器件进 行维修时, 只打开冲击后座 47即可, 而不需要将泵体后盖 21拆下, 能够 简化维修操作, 提高工作效率。

另外, 泵体 2上还可以设置有操作杆, 操作杆的一端穿设在冲击套管 42中, 与冲击头 41连接, 另一端露出于泵体 2外, 用于手动操作该节能 水泵工作。具体的, 操作杆包括第一连杆 51、第二连杆 52和第三连杆 53, 其中, 第一连杆 51的一端连接至冲击后座 47, 另一端与第二连杆 52的其 中一端连接, 第三连杆 53的一端连接至第二连杆 52的中部, 第三连杆 53 的另一端从冲击导管 45中穿过, 再穿入冲击套管 42中, 与冲击头 41连 接。 操作人员可以通过拉动第二连杆 52带动第三连杆 53推动冲击头 41 移动,进而实现冲击阀 4的打开与关闭,其工作原理与自动运行过程 致。 当冲击套管 42后移压缩冲击弹簧 44使得冲击阀 4关闭, 会出现冲击弹簧 44受压较大, 出现过度压缩, 而不能自动复位的情况, 则需要外力通过拉 动第二连杆 52, 推动冲击盘 43和冲击套管 42移动, 以使冲击弹簧 44松 弛, 冲击阀 4复位至打开状态。

本领域技术人员可根据水源的水位差、进水管 道的倾斜角度调节冲击 导管 45的位置, 以使得该节能水泵的扬程达到 10-35米, 出水量为 4-45 吨。

上述节能水泵可采用铸铁、 铸钢、 铝合金或塑钢等多种材料制成, 可 制成多种型号, 可根据水源差和进水管道的倾斜角度来设计不 同尺寸的节 能水泵, 例如扬水管的出水口为 1. 5吋、 3吋、 6吋以及其它尺寸的节能 水泵。 单个节能水泵可独立工作, 也可以将多个节能水泵组合工作, 例如 多个节能水泵中扬水管的出水口均与一个管径 较粗的出水管路连接, 以使 多个节能水泵流出的水汇入出水管路, 可以在各节能水泵中扬水管的出水 口处设置速度传感器或流量传感器, 用于检测出口水流的速度或流量。 各 传感器连接至控制显示设备, 将检测到的数据传送给控制显示设备, 用于 监测各节能水泵的工作状态。还可以将节能水 泵与蓄水池或蓄水塔等设备 配合使用, 更能够拓宽该节能水泵的应用范围。

上述节能水泵不消耗任何资源, 也不会排放任何污染, 仅以水位差作 为动力实现扬水, 可应用在农林业中, 用于浇灌、 喷洒、 滴灌等多种形式; 也可应用在生活中,用于塔供自来水;也可在 旅游景点中设计为人造瀑布、 喷泉以及流溪等景观。 多泵组合可向用水量较大的厂矿供水, 以节省电力 资源、 燃料, 进而节约成本。

以燃烧柴油作为驱动力的机械水泵和以电力作 为能源的电力水泵为 例, 与上述实施例所提供的节能水泵相比较, 其节能效果可参见表一: 表一 节能水泵与柴油机水泵和电力水泵的节能效果 对照表

节能水泵不消耗任何能源, 表一中的 30日费用 5元为平均 30日的维 修费用。 由表一可知, 柴油机水泵消耗的能源费用是节能水泵的 1080倍, 电力水泵是节能水泵的 167倍, 节能水泵的节能效果非常显著。

另外, 从排污量的角度考察节能水泵的优势, 如表二, 在实验过程, 操作人员身穿白色工作服:

由表二可知, 电力水泵和节能水泵无任何有害气体排放, 对操作人员 的健康更有益处。 再从使用效益的角度考察节能水泵的优势, 如表三: 表三: 节能水泵与柴油机水泵和电力水泵的使用效益 对照表

由表三可知, 3吋出水口的节能水泵的扬程要高于柴油机水 , 出水 量均高于柴油机水泵和电力水泵, 且节能水泵最大的优点在于不消耗任何 燃料, 不向周围环境排放任何有害气体, 相对于机械水泵和电力水泵具有 低成本高效益的绝对优势。

再者, 从使用安全性的角度出发, 在柴油机水泵启动时, 需要操作人 员手摇柴油机水泵外壳上设置的飞轮, 飞轮持续转动才能保证柴油机水泵 连续工作。 在启动点火时, 飞轮容易倒转会出现打伤操作人员的手臂的危 险发生, 飞轮高速转动时也很难实现立即停止, 且柴油机水泵经过长时间 工作后, 其排气筒的温度高达 150 ° , 容易出现烫伤事故, 使用过程较危 险。 对于电力水泵, 其输入电源通常为 220V或 380V , 且电力水泵的运行 过程时刻与水接触, 容易发生漏电进而导致人体触电现象发生, 因此电力 水泵也存在着安全隐患。 而节能水泵的机械结构是封闭在泵体内部, 不会 对操作人员身体造成伤害, 且节能水泵在运行过程中不需要操作人员长期 看守, 具有较高的安全性。

综上所述,上述实施例所提供的流体动力节能 水泵能够达到较高的扬 程和出水量, 且不消耗任何燃料, 实现零排放零污染, 有较高的安全性, 其制造成本及维护成本较低。

另外, 专利 ZL 200820135524. 1提出的水泵中逆水阀的过水孔为垂直 设置或过水孔整体倾斜设置, 所喷射的水流冲顶开逆水阀盖的同时也使部 分水流受逆水阀盖阻挡回落直接影响逆水阀的 喷射效果, 降低了对空气罐 中的气体压缩力度, 使得水泵的扬程高度在 2米左右, 出水量在 0. 5吨左 右。 与之相比, 上述实施例提供的节能水泵的扬程高度和每小 时出水量均 有明显提高, 以 3 吋泵为例, 其扬程能达到 (10-20 ) 米, 出水量能达到 ( 20-30 ) 吨 /小时, 当水源落差大于 0. 8米, 或当进水管道增压较大时, 扬程甚至会达到 26米。 对于出水口大于 3吋的节能水泵, 其扬程能够实 现大于 35米, 出水量大于 45吨。

最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的 说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施 例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替 换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例 技术方案的范围。