Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CIRCUIT ASSEMBLY FOR A SWITCHABLE LINE TERMINATION OF A SERIAL BUS
Document Type and Number:
WIPO Patent Application WO/2017/102479
Kind Code:
A1
Abstract:
The invention relates to a circuit assembly for a switchable line termination of a serial bus, containing an electronic switching device (T4, T5) which is connected between signal lines of the serial bus and which is arranged so as to connect a specific line termination to the serial bus or to disconnect the line termination from the serial bus in a controlled manner by means of a controller of an electronic control unit. The electronic switching device (T4, T5) contains a first and a second electronic switching device (T4,T5), and the line termination (R5, R6) contains a first and a second line termination element (R5, R6). The first and the second electronic switching device (T4, T5) are connected anti-serially to each other and are arranged so as to connect or disconnect each of the first and the second line termination element (R5, R6) to or from the first and the second signal line (CAN_H; CAN_L) of the serial bus in a symmetrical and voltage-controlled manner.

Inventors:
GSCHEIDLE WOLFGANG (DE)
Application Number:
PCT/EP2016/079994
Publication Date:
June 22, 2017
Filing Date:
December 07, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KNORR BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH (DE)
International Classes:
H04L25/02
Foreign References:
EP2166717A12010-03-24
Other References:
None
Download PDF:
Claims:
PATENTANSPRÜCHE

1. Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses, gekennzeichnet durch

eine elektronische Schaltvorrichtung (T4, T5), die zwischen Signalleitungen des seriellen Busses geschaltet und dazu angeordnet ist, gesteuert durch eine Steuereinrichtung einer elektronischen Steuereinheit einen vorbestimmten Leitungsabschluss (R5, R6) an den seriellen Bus zu schalten oder den Leitungsabschluss von dem seriellen Bus wegzuschalten.

2. Schaltungsanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass

die elektronische Schaltvorrichtung (T4, T5) eine erste und eine zweite elektronische Schalteinrichtung (T4, T5) beinhaltet;

der Leitungsabschluss (R5, R6) ein erstes und ein zweites Leitungsabschlusselement (R5, R6) beinhaltet;

die erste und die zweite elektronische Schalteinrichtung (T4, T5) antiseriell zueinander beschaltet sind; und

die erste und die zweite elektronische Schalteinrichtung (T4, T5) dazu angeordnet sind, symmetrisch und spannungsgesteuert jeweils das erste und das zweite Leitungsabschlusselement (R5, R6) an die erste und die zweite Signalleitung (CAN_H, CAN_L) des seriellen Busses anzuschalten oder von dieser wegzuschalten.

3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erste Leitungsabschlusselement (R5) ein ohmscher Widerstand ist;

das zweite Leitungsabschlusselement (R6) ein ohmscher Widerstand ist; und das erste und das zweite Leitungsabschlusselement (R5, R6) seriell geschaltet und dazu angeordnet sind, eine Terminierungseinrichtung mit einem vorbestimmten Leitungsabschlusswiderstand für ein physisches Ende des seriellen Busses bereitzustellen.

4. Schaltungsanordnung nach einem der vorangehenden Ansprüche, gekennzeichnet durch

eine Sperreinrichtung mit einem Sperrelement (R4); und

eine dritte elektronische Schalteinrichtung (T2), die dazu angeordnet ist, die erste elektronische Schalteinrichtung (T4) und die zweite elektronische Schalteinrichtung (T5) durch Zuführen oder Vorenthalten einer Ansteuerspannung (Vcc) anzusteuern, wobei das Sperrelement (R4) die erste elektronische Schalteinrichtung (T4) und die zweite elektronische Schalteinrichtung (T5) in einem gesperrten Zustand hält, wenn die dritte elektronische Schalteinrichtung (T2) der ersten elektronischen Schalteinrichtung (T4) und der zweiten elektronischen Schalteinrichtung (T5) die Ansteuerspannung (Vcc) vorenthält.

5. Schaltungsanordnung nach Anspruch 4, dadurch gekennzeichnet, dass das

Sperrelement (R4) ein ohmscher Widerstand ist, der an einen gemeinsamen Knotenpunkt des ersten Leitungsabschlusselements (R5) und des zweiten Leitungsabschlusselements (R6) beschaltet ist, und die dritte elektronische Schalteinrichtung (T2) ein in Abhängigkeit eines von der externen Steuereinrichtung zugeführten Steuersignals schaltender elektronischer Schalter, insbesondere ein Bipolartransistor oder ein MOSFET ist.

6. Schaltungsanordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass

die erste elektronische Schalteinrichtung (T4) und die zweite elektronische Schalteinrichtung (T5) eine Sperreinrichtung bilden, die dazu angeordnet ist, ein eine Wechselspannungscharakteristik aufweisendes Signal des seriellen Busses zu sperren.

7. Schaltungsanordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass

die erste elektronische Schalteinrichtung (T4) und die zweite elektronische Schalteinrichtung (T5) Feldeffekttransistoren, insbesondere MOSFETs sind.

8. Schaltungsanordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass

der serielle Bus ein differenzieller Bus, insbesondere ein CAN-Bus ist und die erste elektronische Schalteinrichtung (T4) und die zweite elektronische Schalteinrichtung (T5) dazu angeordnet sind, in einem Gleichtaktbereich des Busses zu arbeiten.

9. Schaltungsanordnung nach einem der vorangehenden Ansprüche, gekennzeichnet durch

eine Spannungsauskopplungseinrichtung (R1 , R2, C1 ), die dazu angeordnet ist, eine mittlere Busspannung (U_rez) des seriellen Busses hochohmig auszukoppeln.

10. Schaltungsanordnung nach Anspruch 9, gekennzeichnet durch eine Spannungsquellen-Erzeugungseinrichtung (OP1 ), die dazu angeordnet ist, aus der ausgekoppelten mittleren Busspannung eine niederohmige Spannungsquelle zur Bereitstellung der Ansteuerspannung (Vcc) für die erste und die zweite elektronische Schalteinrichtung (T4, T5) zu erzeugen, wobei die Ansteuerspannung (Vcc) derart erzeugt wird, dass innerhalb eines Gleichtaktbereichs des seriellen Busses für die erste elektronische Schalteinrichtung (T4) und die zweite elektronische Schalteinrichtung (T5) eine die erste elektronische Schalteinrichtung (T4) und die zweite elektronische Schalteinrichtung (T5) sicher durchschaltende Gate-Source-Spannung bereitgestellt wird.

1 1 . Schaltungsanordnung nach Anspruch 10, dadurch gekennzeichnet, dass

die Spannungsquellen-Erzeugungseinrichtung (OP1 ) dazu angeordnet ist, die Ansteuerspannung (Vcc) für die erste und die zweite elektronische Schalteinrichtung (T4, T5) innerhalb des Gleichtaktbereichs des seriellen Busses auf der Grundlage der ausgekoppelten mittleren Busspannung zu erzeugen und bei einer betriebsbedingt auftretenden Verschiebung der mittleren Busspannung die Ansteuerspannung (Vcc) und damit verbunden die Schaltbarkeit der ersten elektronischen Schalteinrichtung (T4) und der zweiten elektronischen Schalteinrichtung (T5) zumindest innerhalb der Grenzen des Gleichtaktbereichs des seriellen Busses nachzuführen.

12. Schaltungsanordnung nach einem der vorangehenden Ansprüche 10 oder 1 1 , gekennzeichnet durch

eine Spannungsregeleinrichtung (OP1 , D1 , R3, T1 ), die dazu angeordnet ist, die durch die Spannungsregler (OP1 ) erzeugte Ansteuerspannung (Vcc) auf einen vorbestimmten Wert zu regeln.

13. Schaltungsanordnung nach einem der vorangehenden Ansprüche 4 bis 12, gekennzeichnet durch

eine Überspannungsbegrenzungseinrichtung (D2) zur Entstörung von Spannungsspitzen an der Ansteuerspannung (Vcc)

14. Schaltungsanordnung nach einem der vorangehenden Ansprüche 10 bis 13, gekennzeichnet durch

eine Überspannungsschutzeinrichtung (D2) zum Schutz der Spannungsquellen- Erzeugungseinrichtung (OP1 ) vor Überspannung.

15. Schaltungsanordnung nach einem der vorangehenden Ansprüche 10 bis 14, gekennzeichnet durch einen Spannungsausgang, an dem die Ausgangsspannung der Spannungsquellen-Erzeugungseinrichtung (OP1 ) zu Diagnosezwecken an eine externe Einrichtung ausleitbar ist.

Description:
BESCHREIBUNG

Schaltungsanordnung für einen

schaltbaren Leitungsabschluss eines seriellen Busses

Die Erfindung betrifft eine Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses, und bezieht sich insbesondere auf eine Schaltungsanordnung zum elektronischen Zu- und/oder Wegschalten einer Terminierung an einem CAN-Bus.

In verschiedenartigen technischen Gebieten, wie beispielsweise der Automobiltechnik, sind serielle Busanordnungen wie CAN (Controller Area Network), FlexRay und dergleichen für die Vernetzung von Steuergeräten verbreitet. Der CAN-Bus zum Beispiel arbeitet nach dem so genannten Multi-Master-Prinzip und verbindet mehrere gleichberechtigte Steuergeräte. Ein CSMA CR-Verfahren löst Kollisionen, d.h. gleichzeitige Buszugriffe, auf, ohne dass die gewinnende, höher priorisierte Nachricht beschädigt wird. Dazu sind die Bits - je nach Zustand - dominant bzw. rezessiv (ein dominantes Bit überschreibt ein rezessives Bit). Die logische 1 ist dabei rezessiv (Wired- AND). Der Bus kann physisch mit etwa Kupferleitungen oder über Glasfaser ausgeführt sein.

Datenbusse der vorgenannten Art müssen aufgrund der insbesondere im automotiven Umfeld geforderten Störfestigkeit sehr stabil sein und sind deshalb in der Regel als linearer Bus ausgeführt. Der Bus ist dabei an beiden physischen Enden seiner geometrischen Ausbreitung mit jeweils einem an den Wellenwiderstand der Busleitungen angepassten Abschlusswiderstand (Busterminierung) abgeschlossen bzw. terminiert. Dadurch können bei höherfrequenten Datenübertragungsraten entstehende Reflexionen auf den Busleitungen minimiert und der Bus optimal betrieben werden. Da das CAN- Bussystem ein seriell arbeitender 2-Draht-Bus mit offener Architektur ist, der als Übertragungsmedium vorwiegend verdrillte TP (twisted pair)-Kabel mit einer Nennimpedanz von 120 Ohm verwendet, beträgt bei einem CAN-Bus ein üblicher Abschlusswiderstand bzw. eine übliche Busterminierung etwa 120 Ω jeweils an den beiden Enden des Busses.

Da die Baudraten aktueller Bussysteme aufgrund ihrer Echtzeitfähigkeit und zunehmender Busbelastung zu immer höheren Werten tendieren, ist ein korrekter Busabschluss für eine sichere Kommunikation zwingend notwendig. Innerhalb eines Fahrzeugnetzwerks kann aufgrund unterschiedlicher Ausrüstungsgrade jeweiliger Fahrzeuge oder durch Verbau ein und desselben Steuergerätes bzw. ein und derselben ECU (Electronic Control Unit) in unterschiedlichen Fahrzeugtypen an unterschiedlichen Stellen des Busses die Notwendigkeit bestehen, die vorgenannten Abschlusswiderstände jeweils anzuordnen oder wegzulassen. In anderen Worten muss in Abhängigkeit von einem Anschaltungsort einer ECU an den Bus ein Abschlusswiderstand vorhanden sein, oder kann oder muss dieser entfallen.

Bekannte Anordnungen, die beispielsweise manuell, durch Drahtbrücken, Brücken in einem Kabelbaum und dergleichen zuschaltbare Abschlusswiderstände beinhalten können, sind insoweit unflexibel und dahingehend nachteilig, dass Veränderungen der Kenndaten eines Busses nicht ausgeschlossen werden können und eine Funktion ohne jegliche Beeinflussung der Buskommunikation nicht sichergestellt werden kann.

Der Erfindung liegt daher als eine Aufgabe zugrunde, eine elektronische Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses bereitzustellen, die es in Abhängigkeit von einer vorliegenden Konfiguration eines seriellen Busses bzw. einer entsprechenden Bus- und Steuergerätekonfiguration erlaubt, erforderliche Abschlusswiderstände zuzuschalten (vorzusehen) oder abzuschalten (entfallen zu lassen).

Darüber hinaus soll eine elektronische Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses bereitgestellt werden, die Kenndaten eines beschalteten Busses nicht verändert und die Funktion ohne Beeinflussung der Kommunikation sicherstellt.

Erfindungsgemäß wird diese Aufgabe durch eine Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der beigefügten Unteransprüche.

Der Erfindung liegt die allgemeine Idee zugrunde, eine elektronische Schaltungsanordnung bereitzustellen, mittels welcher ein Leitungsabschluss bzw. Abschlusswiderstand eines seriellen Busses, wie beispielsweise eines CAN-Busses, schaltbar realisiert wird und durch elektronisch arbeitende Schaltelemente und einen in einer elektronischen Steuereinheit ohnehin vorhandenen Mikrocontroller, bzw. bevorzugt einen Rechnerport desselben, elektronisch zu- oder abgeschaltet werden kann. Dadurch kann vorteilhaft das Zu-/Abschalten des Abschlusswiderstands (Terminierungs- widerstands) beispielsweise im Rahmen einer Bandendeprogrammierung während der Herstellung beispielsweise eines Fahrzeugs durchgeführt werden.

Erfindungsgemäß sind als Vorteile zumindest eine Programmierbarkeit verschiedener Widerstandswerte, ein variabler, an fahrzeugtechnische und/oder geometrische Gegebenheiten anpassbarer und optimierbarer Busabschluss, eine bestmögliche Datenübertragungsqualität und der Wegfall von Fehlanpassungen an die Busleitungen erzielbar.

In Übereinstimmung mit dem Vorstehenden wird die Aufgabe im Einzelnen gelöst durch eine Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses, die eine elektronische Schaltvorrichtung beinhaltet, die zwischen Signalleitungen des seriellen Busses geschaltet und dazu angeordnet ist, gesteuert durch eine Steuereinrichtung einer elektronischen Steuereinheit einen vorbestimmten Leitungsabschluss an den seriellen Bus zu schalten oder den Leitungsabschluss von dem seriellen Bus wegzuschalten.

Bevorzugt beinhaltet die elektronische Schaltvorrichtung eine erste und eine zweite elektronische Schalteinrichtung, und beinhaltet der Leitungsabschluss ein erstes und ein zweites Leitungsabschlusselement, wobei die erste und die zweite elektronische Schalteinrichtung antiseriell zueinander beschaltet sind, und die erste und die zweite elektronische Schalteinrichtung dazu angeordnet sind, symmetrisch und spannungsgesteuert jeweils das erste und das zweite Leitungsabschlusselement an die erste und die zweite Signalleitung des seriellen Busses gleichzeitig anzuschalten oder von dieser gleichzeitig wegzuschalten.

Bevorzugt ist das erste Leitungsabschlusselement ein ohmscher Widerstand, ist das zweite Leitungsabschlusselement ein ohmscher Widerstand und sind das erste und das zweite Leitungsabschlusselement seriell geschaltet und dazu angeordnet, eine Terminierungseinrichtung mit einem vorbestimmten Leitungsabschlusswiderstand für ein physisches Ende des seriellen Busses bereitzustellen.

Bevorzugt sind eine Sperreinrichtung mit einem Sperrelement und eine dritte elektronische Schalteinrichtung vorgesehen, die dazu angeordnet ist, die erste elektronische Schalteinrichtung und die zweite elektronische Schalteinrichtung durch Zuführen oder Vorenthalten einer Ansteuerspannung anzusteuern, wobei das

Sperrelement die erste elektronische Schalteinrichtung und die zweite elektronische

Schalteinrichtung in einem gesperrten Zustand hält, wenn die dritte elektronische

Schalteinrichtung der ersten elektronischen Schalteinrichtung und der zweiten elektronischen Schalteinrichtung die Ansteuerspannung vorenthält.

Bevorzugt sind die erste elektronische Schalteinrichtung und die zweite elektronische Schalteinrichtung jeweils Feldeffekttransistoren (FETs). Aufgrund der Wechselspannungscharakteristik des Bussignals eignen sich Feldeffekttransistoren besser als beispielsweise Bipolartransistoren zum Zuschalten oder Abschalten der Abschlusswiderstände, da sie im Gegensatz zu Bipolartransistoren bipolare Spannungen/Ströme schalten können.

Bevorzugt ist der serielle Bus ein CAN-Bus und sind die erste elektronische Schalteinrichtung und die zweite elektronische Schalteinrichtung dazu angeordnet, in einem Gleichtaktbereich des CAN-Busses zu arbeiten. Es sind aber auch andere differenzielle Busse anschließbar.

Bevorzugt ist eine Spannungsauskopplungseinrichtung vorgesehen, die dazu angeordnet ist, eine mittlere Busspannung des seriellen Busses hochohmig auszukoppeln.

Bevorzugt ist eine Spannungsquellen-Erzeugungseinrichtung vorgesehen, die dazu angeordnet ist, aus der ausgekoppelten mittleren Busspannung eine niederohmige Spannungsquelle zur Bereitstellung der Ansteuerspannung für die erste und die zweite elektronische Schalteinrichtung zu erzeugen, wobei die Ansteuerspannung derart erzeugt wird, dass innerhalb eines Gleichtaktbereichs des seriellen Busses für die erste elektronische Schalteinrichtung und die zweite elektronische Schalteinrichtung eine die erste elektronische Schalteinrichtung und die zweite elektronische Schalteinrichtung sicher durchschaltende Gate-Source-Spannung bereitgestellt wird.

Bevorzugt ist die Spannungsquellen-Erzeugungseinrichtung dazu angeordnet, die Ansteuerspannung für die erste und die zweite elektronische Schalteinrichtung innerhalb des Gleichtaktbereichs des seriellen Busses auf der Grundlage der ausgekoppelten mittleren Busspannung zu erzeugen und bei einer betriebsbedingt auftretenden Verschiebung der mittleren Busspannung die Ansteuerspannung und damit verbunden die Schaltbarkeit der ersten elektronischen Schalteinrichtung und der zweiten elektronischen Schalteinrichtung zumindest innerhalb der Grenzen des Gleichtaktbereichs des seriellen Busses nachzuführen. Bevorzugt ist eine Spannungsregeleinrichtung vorgesehen, die dazu angeordnet ist, die durch die Spannungsquellen-Erzeugungseinrichtung erzeugte Ansteuerspannung auf einen vorbestimmten Wert zu regeln.

Bevorzugt ist ein Filter, eine Entstöreinrichtung oder ein Integrationsglied zur Entstörung von Spannungsspitzen an der Ansteuerspannung vorgesehen, insbesondere zur Erzeugung einer mittleren Busspannung.

Bevorzugt ist eine Überspannungsschutzeinrichtung zum Schutz der Spannungsquellen- Erzeugungseinrichtung vor Überspannung vorgesehen.

Bevorzugt ist ein Spannungsausgang vorgesehen, an dem die Ausgangsspannung der Spannungsquellen-Erzeugungseinrichtung zu Diagnosezwecken an eine externe Einrichtung ausleitbar ist.

Die Erfindung wird nachstehend anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung näher beschrieben. Es zeigen:

Fig. 1 eine schematische Darstellung einer erfindungsgemäß zugrunde liegenden prinzipiellen Konfiguration einer Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses;

Fig. 2 eine ausschnittsweise, schematische Darstellung der Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses gemäß einem bevorzugten Ausführungsbeispiel; und

Fig. 3 eine schematische Darstellung mit Bezug auf einen ausschnittsweisen Signalverlauf am Beispiel eines CAN-Busses.

Es wird angemerkt, dass in der Zeichnung äquivalente oder gleich wirkende Elemente dieselben oder zumindest ähnliche Bezugszeichen tragen können und in diesem Fall jeweils nicht nochmals beschrieben werden.

Fig. 1 zeigt eine schematische Darstellung einer erfindungsgemäß zugrunde liegenden prinzipiellen Konfiguration einer Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses. Gemäß Fig. 1 ist ein Mikrocontroller μθ bzw. sind vorbestimmte Ports desselben über Eingangs-/Ausgangs-Leitungen bzw. Ansteuerleitungen mit einer Schaltungsanordnung K verbunden, die in dem vorliegenden Ausführungsbeispiel eine Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses bildet. Die Schaltungsanordnung K beinhaltet Terminierungs- bzw. (Leitungs)Abschlusswiderstände für den seriellen Bus und ist dazu angeordnet, diese Terminierungs- bzw. Abschlusswiderstände mittels elektronischen Schalteinrichtungen bzw. Schaltern S1 , S2 fallweise an Signalleitungen CAN_H, CAN_L des seriellen Busses anzuschalten oder wegzuschalten.

Zwischen den elektronischen Schalteinrichtungen S1 , S2 liegen seriell verschaltet ein erster Widerstand R1 und ein zweiter Widerstand R2 mit einem gemeinsamen Knotenpunkt, an welchem ein erster Kondensator C1 zur Masse bzw. einem Bezugspotenzial hin verbunden ist. Der erste Widerstand R1 , der zweite Widerstand R2 und der Kondensator C1 dienen dazu, den angeschlossenen differenziellen Bus möglichst symmetrisch zu dessen Mittelspannung U_rez abzuschließen, da Asymmetrien zur Mittenspannung U_rez die Funktion des Busses stören können.

Fig. 2 zeigt eine ausschnittsweise, schematische Darstellung der Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses gemäß einem bevorzugten Ausführungsbeispiel.

Gemäß Fig. 2 beinhaltet die Schaltungsanordnung gemäß dem vorliegenden Ausführungsbeispiel den ersten Kondensator C1 , den ersten Widerstand R1 , den zweiten Widerstand R2, einen Operationsverstärker OP1 , eine erste Diode D1 (z.B. 10V) und eine zweite Diode D2, die beispielsweise als Zenerdioden vorgesehen sind, einen ersten Transistor T1 , einen dritten Widerstand R3, der beispielsweise mit einem Wert von 10 kQ vorgesehen sein kann, einen zweiten Transistor T2, einen dritten Transistor T3, einen vierten Widerstand R4, einen fünften Widerstand R5, einen sechsten Widerstand R6, einen vierten Transistor T4, der vorzugsweise in Form eines Feldeffekttransistors vorgesehen ist, einen fünften Transistor T5, der vorzugsweise ebenfalls in Form eines Feldeffekttransistors vorgesehen ist, und einen zweiten Kondensator C2.

In dem vorliegenden Ausführungsbeispiel bilden der vierte Transistor T4 und der fünfte Transistor T5 eine elektronische Schaltvorrichtung mit einer ersten elektronischen Schalteinrichtung und einer zweiten elektronischen Schalteinrichtung, und bilden der fünfte Widerstand R5 und der sechste Widerstand R6 einen vorbestimmten Leitungsabschluss mit einem ersten Leitungsabschlusselement und einem zweiten Leitungsabschlusselement. Darüber hinaus bildet der vierte Widerstand R4 ein Sperrelement einer Sperreinrichtung, die die beiden Transistoren T4 und T5 im gesperrten (abgeschalteten Zustand) hält, wenn der Schalttransistor T2 abgeschaltet ist bildet der zweite Transistor T2 eine dritte elektronische Schalteinrichtung, bilden der vierte Transistor T4 und der fünfte Transistor T5 eine Sperreinrichtung zum Sperren der beiden Schalter , die den Abschlusswiderstand an den Bus schalten, und bilden der erste Widerstand R1 , der zweite Widerstand R2 und der erste Kondensator C1 eine Spannungsauskopplungseinrichtung.

Im Wesentlichen kann die Schaltungsanordnung gemäß dem Ausführungsbeispiel als zwischen den Signalleitungen des seriellen Busses liegend betrachtet werden. D.h., ein Teil der von der Schaltungsanordnung benötigten Ansteuerung und/oder Versorgung wird aus dem seriellen Bus abgeleitet. Weiterhin wird von außerhalb der Schaltungsanordnung eine Versorgungsspannung zugeführt, und ist die Schaltungsanordnung mit Portleitungen zu bzw. von dem MikroController μθ einer extern ansteuernden elektronischen Steuereinheit bzw. ECU verbunden.

Im Einzelnen liegt der erste Kondensator C1 einerseits an Masse bzw. einem Bezugspotenzial und andererseits an einem Knotenpunkt, der auch den ersten Widerstand R1 und den zweiten Widerstand R2 verbindet. An dem ersten Kondensator C1 liegt die vorstehend erwähnte mittlere Busspannung U_rez an. Einer der Anschlüsse des ersten Widerstands R1 ist mit einer der CAN-Signalleitungen, im vorliegenden Ausführungsbeispiel mit CAN_H, verbunden, und einer der Anschlüsse des zweiten Widerstands R2 ist mit der anderen der CAN-Signalleitungen, im vorliegenden Ausführungsbeispiel mit CAN_L, verbunden.

Der Knotenpunkt führt darüber hinaus zu einem positiven ("+"-) Eingang des Operationsverstärkers OP1 , der in der vorliegenden Konfiguration als Spannungsfolger bzw. Impedanzwandler arbeitet. Ein invertierender ("-"-) Eingang des Operationsverstärkers bzw. Impedanzwandlers OP1 ist mit der Anode der ersten Diode D1 verbunden, deren Kathode über einen weiteren Knotenpunkt mit dem dritten Widerstand R3 verbunden ist. Der andere Anschluss des dritten Widerstands R3 liegt auf einem (Versorgungs-)Potenzial UB_S. Der Operationsverstärker OP1 ist weiter mit dem ersten Transistor T1 beschaltet, dessen Kollektor vor dem Widerstand R3 auf dem Potenzial UB_S liegt und dessen Emitter mit dem positiven Spannungseingang des Operationsverstärkers OP1 verbunden ist. Die Basis des ersten Transistors T1 ist mit der Kathode der ersten Diode D1 und der Kathode der zweiten Diode D2 verbunden.

Die in diesem Ausführungsbeispiel eine Entstöreinrichtung und eine Überspannungsschutzeinrichtung bildende zweite Diode D2 ist zur Entstörung von zu hohen Spannungsspitzen an einer Ansteuerspannung Vcc und als ein Überspannungsschutz für den Operationsverstärker OP1 vorgesehen. Der negative Spannungseingang des Operationsverstärkers ist mit der Masse bzw. dem Bezugspotenzial und der Anode der zweiten Diode D2 verbunden.

In der hier verwendeten Konfiguration bildet der als Spannungsfolger bzw. Impedanzwandler arbeitende Operationsverstärker OP1 einen nichtinvertierenden (linearen) Verstärker aus, dessen invertierender Eingang direkt mit dem Ausgang verbunden ist. Die direkte Gegenkopplung ergibt einen Verstärkungsfaktor von 1 , so dass die Ausgangsspannung bei normaler Funktion genau der Eingangsspannung entspricht und die Ausgangsspannung direkt der Eingangsspannung folgt. Da der Eingangswiderstand des positiven Eingangs sehr groß und im Vergleich dazu der Ausgangswiderstand sehr klein ist, wirkt der Operationsverstärker OP1 als Puffer zwischen einer hochohmigen Spannungsquelle (hier der hochohmig ausgekoppelten mittleren Busspannung U_rez) und einer nachfolgenden niederohmigen Last. Damit wird die hochohmige Spannungsquelle am Eingang minimal belastet und in der Spannungshöhe geringstmöglich verfälscht. Der Operationsverstärker OP1 als Impedanzwandler kann daher aus einer relativ hochohmigen Spannungsquelle (d.h. der ausgekoppelten mittleren Busspannung) eine niederohmige, durch Folgeschaltungen belastbare Spannungsquelle machen bzw. erzeugen und bildet daher in diesem Ausführungsbeispiel eine Spannungsquellen-Erzeugungseinrichtung bzw. eine Spannungsregeleinrichtung in Verbindung mit der ersten Diode D1 , dem dritten Widerstand R3 und dem ersten Transistor T1.

Andere Verstärkungsfaktoren sind natürlich möglich.

Die Spannung am Ausgang des Operationsverstärkers OP1 (näherungsweise U_rez) die ebenfalls an der Anode der ersten Diode D1 liegt, kann in dem vorliegenden Ausführungsbeispiel zu beispielsweise Diagnosezwecken und dergleichen, einem Analog/Digital- bzw. A/D-Port des MikroControllers μθ zugeführt werden und bei einem unterhalb oder oberhalb eines Grenzwertes liegenden Wertes eine Fehlermeldung in einem Gesamtsystem, beispielsweise in einem Fahrzeug, auslösen.

In dem vorliegenden Ausführungsbeispiel wird darüber hinaus mittels der ersten (Zener-) Diode D1 und dem dritten Widerstand R3, die in dieser Konfiguration eine Stabilisierungsschaltung bilden, auf zweckmäßige Weise die Versogrungsspannung für OP1 erzeugt. Im Einzelnen wird die Schaltung wie folgt beschrieben: OP1 wird durch die Spannung Vcc versorgt. Vcc wird, unter der Annahme, dass direkt nach dem Einschalten der ECU der Ausgang von OP1 noch auf einer Undefinierten Spannung nahe 0 V liegt, durch die Z-Diode D2 auf den Spannungswert von D2 begrenzt (z.B. 20V). OP1 erfasst die mittlere Busspannung U_rez und koppelt sie niederohmig am Ausgang von OP1 aus, die Anode von D1 ist an den Ausgang von OP1 angeschlossen. Damit ergibt sich Vcc zu Vcc = U_rez + UD1 , d.h. Vcc wird jetzt durch OP1 geregelt und nicht mehr durch UD2. Es gilt: UD1 < UD2 und Vcc muss immer kleiner sein als die zulässige UGS der beiden FETs T4/T5

Gemäß Fig. 2 liegt in der Schaltungsanordnung gemäß dem Ausführungsbeispiel weiter der Emitter des zweiten Transistors T2 auf der Spannung Vcc, ist die Basis des zweiten Transistors T2 mit dem siebten Widerstand R7 verbunden und die andere Seite des siebten (bitte ggf. umnummerieren !) Widerstands R7 mit dem Kollektor des dritten Transistors T3 verbunden, und ist der Kollektor des zweiten Transistors T2 mit dem Gate des vierten (Feldeffekt)Transistors T4, dem Gate des fünften (Feldeffekt)Transistor T5 und einem der Anschlüsse des vierten Widerstands R4 verbunden. Der Basis des dritten Transistors T3 wird ein Terminierungs- Zuschalt- oder Wegschaltsignal von dem MikroController μθ der externen elektronischen Steuereinheit zugeführt, und der Emitter des dritten Transistors T3 ist mit der Masse bzw. dem Bezugspotenzial verbunden.

Im Falle des vierten Transistors T4 ist darüber hinaus dessen Drain mit der höherpegeligen Busleitung CAN_H verbunden, und ist dessen Source mit einem Anschluss des fünften Widerstands R5 verbunden, wohingegen im Falle des fünften Transistors T5 dessen Drain mit der niedrigerpegeligen Busleitung CAN_L und dessen Source mit einem Anschluss des sechsten Widerstands R6 verbunden ist. Die jeweils anderen Anschlüsse des vierten Widerstands R4, des fünften Widerstands R5 und des sechsten Widerstands R6 sind an einem gemeinsamen Knotenpunkt zusammengeführt, mit welchem auch der zweite Kondensator C2 verbunden ist, dessen anderer Anschluss auf Masse bzw. dem Bezugspotenzial liegt. Insoweit sind in dieser Konfiguration der vierte Transistor T4 und der fünfte Transistor T5 antiseriell angeordnet (die jeweiligen Source- Regionen liegen über die Widerstände R5, R6 an einem gemeinsamen Knoten). Es wird angemerkt, dass auch an dem zweiten Kondensator C2 die mittlere Busspannung U_rez anliegt.

Nachstehend wird die Funktionsweise der so weit unter Bezugnahme auf Fig. 2 beschriebenen Schaltungsanordnung unter weiterer Bezugnahme auf Fig. 3 ergänzend und näher erläutert.

Gemäß dem vorliegenden Ausführungsbeispiel werden die beiden Abschluss- bzw. Terminierungswiderstände, d.h. der fünfte Widerstand R5 und der sechste Widerstand R6, die in diesem Ausführungsbeispiel eine Terminierungseinrichtung bilden, symmetrisch bzw. gleichzeitig mit den beiden Feldeffekttransistoren, d.h. dem vierten Transistor T4 bzw. dem fünften Transistor T5, geschaltet.

Die beiden FETs T4, T5 sind antiseriell zueinander verschaltet und schalten im durchgesteuerten Zustand die beiden Widerstände R5, R6 an den angeschlossenen Bus. Die FETs werden spannungsgesteuert, d.h. stromlos.

Der vierte Widerstand R4 ist in diesem Zusammenhang dazu angeordnet, beide Feldeffekttransistoren T4, T5 gesperrt zu halten, solange der zweite Transistor T2 kein Spannungssignal liefert, d.h. ein solches dem vierten und dem fünften Transistor T4, T5 vorenthält. Dies entspricht einem Zustand, in welchem die Terminierungswiderstände R5, R6 von dem seriellen Bus weg- bzw. abgeschaltet sind.

Um Durchzuschalten, benötigen die Feldeffekttransistoren T4, T5 eine Gate-Source- Spannung bzw. Durchschaltespannung oder Ansteuerspannung Vcc von wenigstens 5 V. Vorzugsweise sollte die Ansteuerspannung Vcc wenigstens 10 V, max. ca. 20V, betragen. Da der Gleichtakt- bzw. Common Mode-Bereich des seriellen Busses, z.B. der bei dem in diesem Ausführungsbeispiel verwendeten CAN-Bus zwischen -5 V und +12 V liegt, nicht eingeschränkt werden darf, muss daher die Ansteuerspannung Vcc innerhalb dieses gesamten Gleichtaktbereichs eine Gate-Source-Spannung von wenigstens 5 V bzw. vorzugsweise 10 V bereitstellen können. Fig. 3 zeigt eine schematische Darstellung mit Bezug auf einen ausschnittsweisen Signalverlauf am Beispiel eines CAN-Busses, genauer auf Spannungsänderungen auf den CAN-Leitungen bei Wechsel zwischen dominantem und rezessivem Zustand.

In einem Ruhezustand liegen beide Busleitungen auf einem gleichen voreingestellten Ruhepegel von 2,5 V. Dieser Ruhepegel wird auch als rezessiver Zustand bezeichnet. Im dominanten Zustand steigt die Spannung auf der CAN-High-Leitung um mindestens 1V über den Rezessivpegel an. Die Spannung auf der CAN-Low-Leitung fällt um mindestens 1V unter den Rezessivpegel. Daraus ergibt sich, dass die Spannung auf der CAN-High- Leitung im aktiven Zustand auf mindestens 3,5V ansteigt (2,5V + 1V = 3,5V), und die Spannung auf der CAN-Low-Leitung auf noch maximal 1 ,5V abfällt (2,5V - 1 V = 1 ,5V). Die Spannungsdifferenz zwischen der CAN-High-Leitung und der CAN-Low-Leitung beträgt daher im rezessiven Zustand 0V und im dominanten Zustand mindestens 2V.

Zur Gewinnung der vorgenannten Ansteuerspannung wird auf der vorgenannten Grundlage daher in diesem Ausführungsbeispiel die mittlere Busspannung U_rez (wie vorstehend angegeben etwa. +2,5V) über den ersten und den zweiten Widerstand R1 , R2, die als solche gleich ausgebildet sind, und den ersten Kondensator C1 als Filter hochohmig von dem CAN-Bus ausgekoppelt. Die hochohmige Auskopplung gewährleistet hierbei eine geringstmögliche Beeinflussung des Busses. Der als Impedanzwandler arbeitende Operationsverstärker OP1 wandelt die ausgekoppelte mittlere Busspannung U_rez wie vorstehend beschrieben in eine niederohmige Spannungsquelle um. Ausgehend von dem Ausgang des Operationsverstärkers OP1 ist eine die erste (Zener)Diode D1 mit beispielsweise 10V an den als Vorwiderstand arbeitenden dritten Widerstand R3 und den als Längstransistor arbeitenden ersten Transistor T1 geschaltet, die in Zusammenwirkung einen variablen Spannungsregler bilden. Die Ansteuerspannung Vcc wird dabei auf den Wert von etwa der Summe der Z-Diodenspannung der ersten D1 und der Spannung U_rez am Ausgang des Operationsverstärkers OP1 geregelt.

Die ausgekoppelte mittlere Busspannung U_rez liegt ebenfalls am Knoten- bzw. Mittenpunkt der beiden Abschluss- bzw. Terminierungswiderstände R5, R6 und des zweiten Kondensators C2 an, sofern der vierte Transistor T4 und der fünfte Transistor T5 durchgeschaltet sind. Die ausgekoppelte mittlere Busspannung U_rez liegt darüber hinaus an den beiden Source-Anschlüssen des vierten Transistors T4 und des fünften Transistors T5 an. Um den vierten Transistor T4 und den fünften Transistor T5 durchzuschalten, muss die Gate-Source-Spannung an den Transistoren T4, T5 zumindest 5V betragen. Dazu muss die Ansteuerspannung Vcc größer als die ausgekoppelte mittlere Busspannung U_rez + 5V sein. Die Schaltungsanordnung des vorliegenden Ausführungsbeispiels ist für eine Gate-Source-Spannung von etwa 10 V ausgelegt, und kann daher den vierten Transistor T4 und den fünften Transistor T5 voll durchsteuern. Ein durchgesteuerter bzw. durchgeschalteter Zustand des vierten Transistors T4 und des fünften Transistors T5 entspricht einem Zustand, in welchem die Terminierungswiderstände R5, R6 an den seriellen Bus zu- bzw. angeschaltet sind.

Nachstehend erfolgt eine Grenzbetrachtung für den Gleichtaktbereich des seriellen Busses, der wie vorstehend erwähnt nicht eingeschränkt werden darf und der bei zwischen etwa -5 V und +12 V liegt.

Wenn durch beispielsweise einen Busfehler oder Masseversätze die mittlere Bus- oder Signalspannung bzw. Gleichtaktspannung nach maximal 12V als der oberen Grenze des Gleichtaktbereichs verschoben wird, führt der Operationsverstärker OP1 die Ansteuerspannung Vcc auf dieses Niveau nach, und werden in diesem Fall der erste Transistor T4 und der zweite Transistor T5 entsprechend mit einer Gate-Source- Spannung von etwa 22V angesteuert. Der Gleichtaktbereich wird daher durch die Schaltungsanordnung gemäß dem vorliegenden Ausführungsbeispiel in dieser Richtung nicht eingeschränkt.

Wenn demgegenüber die ausgekoppelte mittlere Busspannung U_rez unter das Massepotenzial bzw. Bezugspotenzial (z.B. GND) sinkt, verharrt der Ausgang des Operationsverstärkers OP1 dem Massepotenzial bzw. Bezugspotential. In diesem Fall erreicht die Ansteuerspannung Vcc aufgrund der ersten Diode D1 jedenfalls etwa 10V, und werden der vierte Transistor T4 und der fünfte Transistor T5 mit einer Gate-Source- Spannung von etwa 10 V bzw. 15V sicher durchgeschaltet. Der Gleichtaktbereich wird daher durch die Schaltungsanordnung gemäß dem vorliegenden Ausführungsbeispiel auch in dieser Richtung nicht eingeschränkt.

Vorstehend wurde somit eine Schaltungsanordnung für einen schaltbaren Leitungsabschluss eines seriellen Busses beschrieben, die eine elektronische Schaltvorrichtung T4, T5 beinhaltet, die zwischen Signalleitungen des seriellen Busses geschaltet und dazu angeordnet ist, gesteuert durch eine Steuereinrichtung einer elektronischen Steuereinheit einen vorbestimmten Leitungsabschluss an den seriellen Bus zu schalten oder den Leitungsabschluss von dem seriellen Bus wegzuschalten. Die elektronische Schaltvorrichtung T4, T5 beinhaltet eine erste und eine zweite elektronische Schalteinrichtung T4, T5, und der Leitungsabschluss R5, R6 beinhaltet ein erstes und ein zweites Leitungsabschlusselement R5, R6. Die erste und die zweite elektronische Schalteinrichtung T4, T5 sind antiseriell zueinander beschaltet und dazu angeordnet, symmetrisch und spannungsgesteuert jeweils das erste und das zweite Leitungsabschlusselement (R5, R6) an die erste und die zweite Signalleitung CAN_H, CAN_L des seriellen Busses anzuschalten oder von dieser wegzuschalten.

In anderen Worten beinhaltet die elektronische Schaltvorrichtung T4, T5 eine erste elektronische Schalteinrichtung T4 und eine zweite elektronische Schalteinrichtung T5, und beinhaltet der Leitungsabschluss R5, R6 ein erstes Leitungsabschlusselement R5 und ein zweites Leitungsabschlusselement R6. Die erste elektronische Schalteinrichtung T4 ist zwischen einer ersten Signalleitung CAN_H des seriellen Busses und dem ersten Leitungsabschlusselement R5 liegend und dazu angeordnet, spannungsgesteuert das erste Leitungsabschlusselement R5 an die erste Signalleitung CAN_H des seriellen Busses anzuschalten oder von dieser wegzuschalten. Die zweite elektronische Schalteinrichtung T5 ist zwischen einer zweiten Signalleitung CAN_L des seriellen Busses und einem zweiten Leitungsabschlusselement R6 liegend und dazu angeordnet, spannungsgesteuert das zweite Leitungsabschlusselement R6 an die zweite Signalleitung CAN_L des seriellen Busses anzuschalten oder von dieser wegzuschalten. Die erste und die zweite elektronische Schalteinrichtung T4, T5 sind antiseriell zueinander beschaltet und dazu ansteuerbar, symmetrisch das erste Leitungsabschlusselement R5 und das zweite Leitungsabschlusselement R6 zu schalten und mit den jeweiligen Signalleitungen CAN_H, CAN_L des seriellen Busses zu verbinden oder von diesen zu trennen.

Es versteht sich, dass die Erfindung nicht auf das vorstehend konkret beschriebene Ausführungsbeispiel beschränkt ist, sondern dass Modifikationen, die in äquivalenten, vergleichbaren oder ähnlichen Konfigurationen resultieren, für den Fachmann ohne weiteres ersichtlich und daher nicht als Abweichen vom Gegenstand der Erfindung wie in den nachfolgenden Ansprüchen definiert zu werten sind. BEZUGSZEICHENLISTE

K Schaltungsanordnung C MikroController

C1 erster Kondensator

C2 zweiter Kondensator

T1 erster Transistor

T2 zweiter Transistor

T3 dritter Transistor

T4 vierter Transistor

T5 fünfter Transistor

R1 erster Widerstand

R2 zweiter Widerstand

R3 dritter Widerstand

R4 vierter Widerstand

R5 fünfter Widerstand

R6 sechster Widerstand

R7 siebter Widerstand

D1 erste Diode

D2 zweite Diode

0P1 Operationsverstärker

Vcc Ansteuerspannung

UB_S Versorgungsspannung U_rez mittlere Busspannung