Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CLEAVAGE OF A B-O-4 BOND IN ETHERS
Document Type and Number:
WIPO Patent Application WO/2014/039002
Kind Code:
A1
Abstract:
The present invention relates to a method of cleaving a β-O-4 bond to the corresponding C-H bond in a substrate, by use of a hydrogen donor and a metal catalyst in a solvent. Thereby it is possible to depolymerize a polymer having a repeating β-O-4 bond.

Inventors:
SAMEC JOSEPH (SE)
GALKIN MAXIM (SE)
LOEFSTEDT JOAKIM (SE)
Application Number:
PCT/SE2013/051045
Publication Date:
March 13, 2014
Filing Date:
September 09, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KAT2BIZAB (SE)
International Classes:
B01J23/755; C07C37/055; B01J25/02; C07G1/00
Domestic Patent References:
WO2011003029A22011-01-06
WO2011117705A22011-09-29
Other References:
WU, A. ET AL.: "Hydrogenolysis of [beta]-O-4 lignin model dimers by a ruthenium-xantphos catalyst", DALTON TRANSACTIONS, vol. 41, 2012, pages 11093 - 11106, XP055236910
WANG, X. ET AL.: "Solvent effects on the hydrogenolysis of diphenyl ether with raney nickel and their implications for the conversion of lignin", CHEMSUSCHEM, vol. 5, 2012, pages 1455 - 1466, XP055235929
WANG, X. ET AL., EXPLOITING H-TRANSFER REACTIONS WITH RANEY(R) NI FOR UPGRADE OF PHENOLIC AND AROMATIC BIOREFINERY FEEDS UNDER UNUSUAL, LOW-SEVERITY CONDITIONS., XP055067243
NAGY, M. ET AL.: "Catalytic hydrogenolysis of ethanol organosolv lignin", HOLZFORSCHUNG, vol. 63, 2009, pages 513 - 520, XP009179139
ZAKZESKI, J. ET AL.: "Catalytic Lignin Valorization Process for the Production of Aromatic Chemicals and Hydrogen", CHEMSUSCHEM, vol. 5, 2012, pages 1602 - 1609, XP055199904
THRING, R. ET AL.: "Hydrocracking of solvolysis lignin in a batch reactor", FUEL, vol. 75, no. 7, 1996, pages 795 - 800, XP055235948
Attorney, Agent or Firm:
BRANN AB (S- Stockholm, SE)
Download PDF:
Claims:
CLAIMS

1. A method of cleaving a β-Ο-4 bond in a substrate comprising providing a substrate, a hydrogen donor, a transition metal based catalyst and at least one solvent, wherein the hydrogen donor is an alcohol and / or formic acid; forming a mixture of the substrate, the hydrogen donor, the metal catalyst and the solvent; and letting the mixture react in order to cleave the β-Ο-4 bond in the substrate at a temperature of not higher than 200° C. 2. The method according to claim 1 wherein the hydrogen donor is selected from glycol, glucose, glycerol, ethanol, methanol, butanol or isopropanol or mixtures thereof.

3. The method according to any one of the preceding claims wherein the solvent is polar or non-polar and wherein the solvent may be protic or aprotic. 4. The method according to any one of the preceding claims wherein the solvent is water when formic acid is used as a hydrogen donor.

5. The method according to any one of the preceding claims in which the reaction is conducted at a temperature of at least 25 °C, preferably 70-120 °C.

6. The method according to any one of the preceding claims wherein the catalyst is based on nickel, such as Raney nickel or nickel on carbon, or a palladium based catalyst.

7. The method according to any one of the preceding claims wherein the amount of catalyst is a catalytic amount, or 1 equivalent or more, or 1.5 equivalents or more, or 2 equivalents or more, or 3 equivalents or more. 8. The method according to any one of the preceding claims, in which the substrate is an ether.

9. The method according to any one of claims 1-8 wherein the substrate is a biopolymer such as lignin.

10. The method according to any one of claims 1-8 wherein the substrate is a polymer or a biopolymer such as lignin, from a pulping process. 1 1. The method according to any one of claims 1-8 wherein the substrate is a polymer or a biopolymer such as lignin, for example obtained from a steam separation or other separation process.

12. The method according to any one of the preceding claims wherein the hydrogen donor is not hydrogen gas. 13. The method according to any one of the preceding claims wherein a base is added to the mixture.

14. The method according to claim 13 wherein said base is selected from KOH, NaOH, NaBH4, NH4COOH or K2C03.

15. The method according to claim 3 wherein the solvent is an alkane. 16. The method according to claim 3 wherein the solvent is an alcohol.

17. The method according to claim 3 wherein the solvent is an ether or an ester.

18. The method according to any one of the preceding claims wherein more than 50% of the β-ο-4 bonds are cleaved.

19. The method according to claim 1 wherein the solvent is a mixture of methanol and iso-propanol.

20. The method according to claim 1 wherein a second solvent is added during the reaction and wherein the second solvent is iso-propanol.

Description:
CATALYTIC REDUCTIVE CLEAVAGE OF A β-Ο-4 BOND OF ETHERS OR

POLYETHERS SUCH AS LIGNIN

TECHNICAL FIELD

The present invention relates to a methodology to cleave the β-Ο-4 ether bond in a monomeric or polymeric compound. BACKGROUND

Reductive cleavage of the β-Ο-4 bond in lignin is a rare transformation. One example using a simplified lignin model compound was performed by the Bergman group (Nichols, J.M.; Bishop, L.M.; Bergman, R.G.; Ellman, J.A. "Catalytic C-0 Bond Cleavage of 2-Aryloxy- l-arylethanols and its Application to the

Depolymerization of Lignin Related Polymers" J. Am. Chem. Soc. 2010, 132, 12554- 12555). In this publication, a Ru-based catalyst performed the cleavage to generate the acetophenone and the phenol. A disadvantage is that inert atmosphere was required for efficient catalysis. Very recently, a Ni catalyzed reduction of different model compounds and also pyrolysis oil was reported using isopropanol as hydrogen donor (X. Wang, R.

Rinaldi, "Exploiting H-transfer reactions with RANEY Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions", Energy Environ. Sci., 2012, 5, 8244). The main transformation described in said publication is the reduction of the aromaticity in aromatic compounds to generate the saturated hydrocarbons. The authors also show with a few examples that phenolic and benzylic ethers are cleaved to generate saturated alcohols or hydrocarbons.

However, the authors do not include the β-Ο-4 bond in a simplified or parent model. This bond is much more difficult to cleave than to cleave the highly activated phenolic and benzylic bonds, which are considered standard procedures. Another disadvantage with the previous report using Ni was that an excess of the metal was used. Thereby, the metal was not used in catalytic amount, and may only be considered to mediate and not catalyze the reaction. It is well known that Ni is active in the hydrogenolysis of aryl ethers using hydrogen gas (A. G. Sergeev, J. F. Hartwig, "Selective, Nickel-catalyzed Hydrogenolysis of Aryl Ethers" Science, 2011, 332, 439-443). Also, that Ni and hydrogen gas or hydrogen donor is active in the reduction of the aromaticity in phenols and other aromatic compounds (C. Zhao, Y. Kou, A. A. Lemonidou, X. Li, J. A. Lercher,

"Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion /Si0 2 catalysts," Chem. Commun., 2010, 46, 412-414).

SUMMARY OF THE INVENTION

As described above, Ni with hydrogen or a hydrogen donor is known to reduce the aromaticity and also to cleave benzyl and phenyl ether bonds. However, the combination of Ni and a mild hydrogen donor is not known to cleave the β-Ο-4 bond in simplified or parent lignin model, lignin, lignosulfonate, or lignin from other pulping or separation method.

The object of the present invention is to provide a way to perform a cleavage of the β-Ο-4 bond in for example lignin using an alcohol as the hydrogen donor by means of catalysis. This has to the knowledge of the present inventors never before been presented.

The invention can be used in the depolymerization of lignin to generate hydrocarbon monomers that can be used as fine chemical feed-stock, fuel additives or as a component or starting material in fuel production.

One aspect of the present invention relates to a method of cleaving a β-Ο-4 bond to the corresponding C-H bond in a compound using a hydrogen donor and a transition metal based catalyst as defined in claim 1.

Another aspect of the present invention relates to a method in which the metal catalyst is not used in stoichiometric or over stoichiometric amount.

Preferred embodiments of the above mentioned aspect are described below; all the embodiments below should be understood to refer to both aspects described above.

In one embodiment the hydrogen donor is glycerol, glycol, glucose, isopropanol, methanol or ethanol. In another embodiment one solvent is polar or non-polar and wherein said solvent may be protic or aprotic. In another embodiment one solvent is selected between isopropanol, methanol, ethanol, water, ethylacetate, or a combination of two or more of the listed solvents.

In another embodiment the hydrogen donor is formic acid or hydrogen gas. In another embodiment the hydrogen donor is not hydrogen gas.

In another embodiment the reaction is conducted at a temperature of at least 40°C, preferably 70- 120 °C.

In another embodiment the catalyst is nickel on carbon, Ni/Si, Ni/Fe, Nickel nanopowder or Raney nickel, or a palladium catalyst. In another embodiment the compound is a β-Ο-4 bond in a lignin model compound.

In another embodiment the compound is a polymer.

In another embodiment the compound is a biopolymer.

In another embodiment the compound is lignin.

In another embodiment the compound is lignosulfonate. In another embodiment the reaction is conducted in an atmosphere of carbon dioxide.

In another embodiment the catalyst is used in 0.1-500 mol%. DESCRIPTION OF FIGURES

Figure 1. GPC-results, Comparison of Lignin type A, solvolysis of Lignin type A and nonsoluble polymer after solvolysis.

Figure 2, GPC-results. Comparison of Lignin type A, solvolysis of Lignin type A, and Lignin type A reacted with Nickel Nanoparticles. Figure 3, GPC-results showing the results from the reaction mixtures, Lignin type A reacted with NaBH 4 , KOH and K 2 C0 3 .

Figure 4, GPC-results showing the results from the reaction mixtures Lignin type A reacted with 6mg Nickel, 16mg Nickel and 43mg Nickel. Figure 5, shows the results from the reaction mixtures

Figure 6, shows the results from the reaction mixtures

Figure 7, shows the results from the reaction mixtures of Lignin type B with Nickel nanoparticle and Raney Nickel.

Figure 8, HSQC of Lignin type B Figure 9, HSQC of product from Example 38

Figure 10, HSQC Overlay: Lignin type B in red/pink, reacted lignin type B in blue / green.

Figure 11 , shows the results from the reaction mixtures (Lignin type B and Lignin type B reacted in MeOH, in t-BuOH and in MeOH/t-BuOH Figure 12, shows the results from the reaction mixtures Lignin type B reacted with MeOH/i-PrOH 16: 1

Figure 13, shows the results from the reaction mixtures (Lignin type B reaction in glycerol and reaction in MeOH.

Figure 14, GPC showing the results from the reaction mixture Figure 15, GPC showing the results from the reaction mixtures.

Figure 16, showing the results from the reaction mixture and the reaction mixture after water treatment.

Figure 17, show the results from the reaction mixture, water treated reaction and as a comparison reaction in MeOH Figure 18, shows the results from the reaction mixtures.

Figure 19 shows the results from the reaction mixtures.

Figure 20 shows the results from the reaction mixtures.

Figure 21 shows the results from the reaction mixtures. Figure 22 shows the results from the reaction mixtures.

Figure 23 shows the results from the reaction mixtures.

Figure 24 compares different lignin sources, Lignin type A, B and C.

Figure 25 shows the results from the reaction mixture and the reaction mixture after water treatment. Figure 26 shows HSQC experiment from Prod 2.

DETAILED DESCRIPTION

In the present invention the term "hydrogen donor" should be interpreted as a substance or compound that gives or transfers hydrogen atoms to another substance or compound. The invention relates to a method to cleave a substrate, wherein said substrate involves the β-Ο-4 bond,

which is abundant in lignin. Without being bound by theory but it is believed that the cleavage is a reductive cleavage. A general method comprises adding a catalyst to a reaction flask or container, adding a solvent followed by addition of a hydrogen donor and the substrate to be treated or cleaved. The reaction is then stopped or quenched and the obtained product is isolated and preferably dried. The method comprises of providing a set of components, a substrate to be cleaved, a hydrogen donor, a transition metal based catalyst and at least one solvent. The hydrogen donor is preferably an alcohol or a combination of alcohols. The components are then mixed to form a mixture. The mixing may be done using any suitable technique for example shaking or stirring. The order of addition of each component is not crucial. The mixture is heated to a temperature of not more than 200°C and left to react, i.e. to cleave the β-Ο-4 bond in the substrate, for a suitable period of time.

The solvent may be a mixture of solvents or a second solvent may be added during the reaction wherein the second solvent may be reducing the aromatic parts of the substrate as well as cleaving β-Ο-4 bonds. In one embodiment the mixture contains iso-propanol. In another embodiment the second solvent is iso-propanol.

The method may further comprise one or more additional steps where the method is repeated. For example the method may comprise a first step as described above thereafter the obtained product (the cleaved substrate) may be isolated and dissolved in a second solvent together with a second catalyst. The second solvent may be the same as the solvent in the first step but may be a different solvent as well. For example the second solvent may be iso-propanol or a mixture comprising iso-propanol. The second catalyst may be the same as the catalyst in the first step. A base may added in the second step as well and the reaction mixture may be neutralized using any suitable acid. Before isolation the catalyst from the first step may be removed, for example by the use of a magnet. The isolation may be performed using any suitable technique and the isolated product may be washed with a suitable solvent for example water. The additional, or the second, step may be performed at a temperature of not higher than 200°C. The additional/ second step is believed to reduce the aromatic feature (CH-groups in the rings are reduced to CH 2 -groups) of the substrate and making the substrate more oil like, besides cleaving β-Ο-4 bonds. This solves the problem of dissolving the substrate in oils or solvents suitable for the fuel preparation steps for example. All embodiments described herein apply to both the first and the second step. The phenyl group may be substituted in ortho, meta or para position. The reaction is performed using a transition metal catalyst (for example catalysts based on Ni, Pd, Pt) to generate the hydrocarbon in good (45-65% yield) to excellent yields (65- 100% yield) with only water as side product. A suitable catalytic amount of catalyst can be 0.1 to 500 mol%, such as 0.5 mol% or more, or 1 mol% or more, or 2 mol% or more, or 4 mol% or more, or 5 mol% or more, or 8 mol% or more, or 400 mol% or less, or 250 mol% or less, or 200 mol% or less, or 150 mol% or less, or 100 mol% or less, or 50 mol% or less, or 20 mol% or less, or 15 mol% or less or 12 mol% or less or 10 mol% or less. The amount in equivalents may be at least 0.5 equivalents, or at least 1 equivalent, or at least 1.5 equivalent, or at least 2 equivalents, or at least 3 equivalents, or at least 4 equivalents.

The hydrogen donor may be any suitable compound that may act as a hydrogen donor, for example alcohol and/ or formic acid. A non-limiting list of suitable alcohols is methanol (MeOH), ethanol (EtOH), propanol, iso-propanol (i-PrOH), glycerol, glycol, butanol, t-butanol (i-BuOH) or combinations thereof. In one embodiment the solvent is the hydrogen donor.

The reaction may be performed in any suitable solvent, or solvents, and the solvent may for example be selected from water, alkanes, alcohols, esters or ethers such as hexane, heptane, methanol (MeOH), ethanol (EtOH), propanol, iso-propanol (i- PrOH), glycerol, glycol, butanol, t-butanol (i-BuOH), ethyl acetate, or tert-butyl methyl ether (TBME), acetone or mixtures thereof. Non-limiting examples of mixtures are methanol-iso-propanol, methanol-t-butanol, ethanol-iso-propanol and hexane-iso-propanol. The solvents may be used as received or they may be degassed prior to use. In one embodiment at least one of the solvents are water when formic acid is used as a hydrogen donor. When the method is performed using two or more steps, the solvent of the first step may be an alcohol preferably methanol or ethanol, and the solvent of the second step an alcohol preferably iso- propanol.

In one embodiment the method is performed in the presence of an added base. A non-limiting list of suitable bases is KOH, NaOH, NaBH 4 , ammonium formate

(NH 4 COOH) or K 2 CO3. The amount of base may be not more than 500 weight%, or not more than 400 weight %, or not more than 300 weight %, or not more than 200 weight %, or not more than 100 weight %. In one embodiment the amount of base is 10 weight % or more, or 50 weight% or more. Hydrogen peroxide (H2O2) may also be added, preferably dissolved in water, to form radicals in order to break down lignin. In order to neutralize the reaction mixture an acid may be added, for example HC1. The reactions can be performed under mild reaction conditions (25 °C - 200 °C) by conventional heating or by heating in a microwave oven, but can also be performed at higher reaction temperatures. In one embodiment the temperature is 180°C or less, or 150°C or less, or 120°C or less. In another embodiment the temperature is 45°C or more, or 70°C or more, or 80°C or more. When using a carbon dioxide atmosphere, the atmosphere may comprise other compounds such as oxygen and nitrogen. The atmosphere could be air comprising carbon dioxide or an inert atmosphere (such as argon or nitrogen gas) comprising carbon dioxide.

The following compounds are non-limiting examples of substrates that could be treated or cleaved by the method according to the invention: phenylmethanesulfonic acid, 3-(4-(2-(4-hydroxy-3-methoxyphenyl)-2-oxoethoxy)phenyl)acryl aldehyde, ethyl 3-(4-(2-(4-hydroxy-3-methoxyphenyl)-2-oxoethoxy)phenyl)acryl ate, 2-phenoxy- l- phenylethanone and l,4-bis(benzo[d][l,3]dioxol-5-yl)hexahydrofuro[3,4-c]furan, 1- (3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane- l,3-diol, lignin, black liquor from Kraft pulping, green liquor, red or brown liquor, lignosulfonate, extracted or separated lignin or lignin from ethanol production.

When the substrate is a solution or mixture containing lignin, for example black or green liquor, the substrate may be pretreated in any suitable way. For example the substrate may be acidified and precipitated, solvolysed or filtrated using any suitable technique such as ultra- or microfiltration and/ or cross-flow filtration for example.

In one embodiment the substrate is a sample comprising lignin or lignin derivatives having an average molecular weight of 5000 g/mol or less, or 3000 g/mol or less, or 1500 g/mol or less. The method may cleave more than 50% of the present β-Ο-4 bonds, or preferably more than 75%, or preferably more than 90% or preferably more than 95%, or more than 98%, or even more preferably near 100% analyzed using 2D NMR (HSQC) (Bruker Avance II equipped with a QCI-P cryoprobe, 600 Mhz, solvent DMSO- d6/pyridine-d5 4: 1.) at 298K. This cleavage percentage may in one embodiment be obtained within 50 hours, or preferably within 36 hours, or even more preferably within 18 hours, or even more preferably within 12 hours, preferably within 6 hours, or preferably within 2 hours, or even more preferably within 1 hour.

EXAMPLES In some of the examples below the following lignin types have been used

Lignin type A - acid precipitated lignin from black liquor

Lignin type B - filtrated black liquor

Lignin type C - extracted from pine using dioxane, and

Lignin type D - from sulfite liquor Lignin type E - from ethanol production

Example 1: Reaction of Trans-Ferulic acid.

Trans-Ferulic acid (39 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 35mg of a reaction mixture which is, according to analysis by HNMR, 4-hydroxy-3-methoxy benzenepropanoic acid. The double bond was saturated.

Example 2: Reaction of Vanillin. Vanillin (31 mg, 2 10 mol) and wet Raney Ni 4200 (12 mg, 2 10 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 25mg of a reaction mixture which is, according to analysis by HNMR, 2-methoxy-4-methylphenol. The aldehyde was reduced to methyl.

Example 3: Reaction of 4-Methyl catechol.

4-Methyl catechol (25 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 20mg of a reaction mixture which is, according to analysis by HNMR, a complex mixture of mainly, 2-hydroxy-4- methyl-Cyclohexanone; 2-hydroxy-5-methyl-Cyclohexanone; 4-methyl- 1,2- Cyclohexanediol. The aromatic ring was saturated. Example 4: Reaction of 4-hydroxybenzaldehyde.

4-hydroxybenzaldehyde (25 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10" 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 20 mg of a reaction mixture which is, according to analysis by HNMR, is 4-methylphenol. The aldehyde was reduced to methyl.

Example 5: Reaction of Syringaldehyde.

Syringaldehyde (25 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 10 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 20 mg of a reaction mixture which is, according to analysis by HNMR, is 2,6-dimethoxy-4-methylphenol. The aldehyde was reduced to methyl. Example 6: Reaction of Catechol.

Catechol (22 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 20mg of a reaction mixture which is, according to analysis by HNMR, a complex mixture of mainly, cyclohexane- l,2-diol. The aromatic ring was saturated.

Example 7: Reaction of 3-Methoxy catechol. 3-Methoxy catechol (29 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 1(H mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 26mg of a reaction mixture which is, according to analysis by HNMR, a complex mixture of mainly, 3-methoxy cyclohexane- l,2-diol. The aromatic ring was saturated.

Example 8: Reaction of Para-Coumaric acid.

Para-Coumaric acid (32 mg, 2 10 mol) and wet Raney Ni 4200 (12 mg, 2 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 30mg of a reaction mixture which is, according to analysis by HNMR, 3-(4-hydroxyphenyl)propanoic acid. The double bond was saturated. Example 9: Reaction of 4-Hydroxyacetophenone.

4- Hydroxy acetophenone (27 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10" 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 25mg of a reaction mixture which is, according to analysis by HNMR, 4-ethylcyclohexan- l-ol. The ketone and the aromatic ring were reduced.

ExamplelO: Reaction of 2,6-Dimethoxyphenol. 2,6-Dimethoxyphenol (30 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 28mg of a reaction mixture which is, according to analysis by HNMR, starting material + cyclohexanol. The aromatic ring was saturated.

Example 11: Reaction of Guaiacol.

Guaiacol (24 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 20mg of a reaction mixture which is, according to analysis by HNMR, starting material + phenol + cyclohexanol. The aromatic ring was partly saturated. Example 12: Reaction of Phenol.

Phenol (18 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave lOmg of a reaction mixture which is, according to analysis by HNMR, cyclohexanol. The aromatic ring was saturated.

Example 13: Reaction of 3,5-Dimethoxy-4-hydroxyacetophenone.

3,5-Dimethoxy-4-hydroxyacetophenone (39 mg, 2 x 10 4 mol) and wet Raney Ni 4200 (12 mg, 2 x 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 35mg of a reaction mixture which is, according to analysis by HNMR, 4-ethylphenol + 4- ethylcyclohexan- l-ol. The ketone was reduced and the aromatic ring was partly reduced.

Example 14: Reaction of Acetovanillone.

Acetovanillone (33 mg, 2 x 10 mol) and wet Raney Ni 4200 (12 mg, 2 x 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 30mg of a reaction mixture which is, according to analysis by HNMR, only non-aromatic compounds 4-ethylcyclohexan-

1- ol.The ketone /aromatic ring was reduced. Examplel5: Reaction of 2 -phenoxy- l-phenylethan- l-ol.

2- phenoxy-l-phenylethan- l-ol (30 mg, 1.4 x 10 4 mol) and wet Raney Ni 4200 (25 mg, 4.2 x 10" 4 mol, 100 mol%) is weighed into a reaction flask under argon.

Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 25mg of a reaction mixture which is, according to analysis by HNMR, 1-cyclohexylethan- l-ol. The β-Ο-4 bond was broken and the aromatic ring was saturated.

Example 16: Reaction of 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol.

2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol (30 mg, 1.4 x 10 4 mol) and wet Raney Ni 4200 (25 mg, 4.2 * 10 4 mol, 100 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 25mg of a reaction mixture which is, according to analysis by HNMR, is l-(4- methoxyphenyl)ethan- l-ol and 2-methoxyphenol. The β-Ο-4 bond was 100% broken.

Example 17: Reaction of 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol.

To a vial was added wet Raney Ni 4200 (8 mg, 7 x 10 5 mol, 50 mol%) then 3mL hexane followed by 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol (38mg, 1.4 10- 4 mol) and of NaBH 4 (3 mg, 7 x 10 5 mol, 50 mol%). The vial was capped and heated to 80°C for 24hours. The reaction was cooled, opened and lOmg of NH4COOH was added. 50mL of Et 2 0 was used to transfer the crude to an

erlenmeyer containing MgS0 4 . After drying the solution was filtered and

concentrated. HNMR gave 63% conversion to l-(4-methoxyphenyl)ethan- l-one and

1- (4-methoxyphenyl)ethan- l-ol in a ratio 3:7. 63% of the β-Ο-4 bond was broken.

Example 18: Reaction of 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol.

To a vial was added wet Raney Ni 4200 (8 mg, 7 x 10 5 mol, 50 mol%), then 3mL degassed hexane followed by 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol (38mg, 1.4 x 10 4 mol). The vial was capped and heated to 80°C for 24hours. The reaction was cooled, opened and lOmg of NH 4 COOH was added. 50mL of Et 2 0 was used to transfer the crude to an erlenmeyer containing MgS0 4 . After drying the solution was filtered and concentrated. HNMR gave 88% conversion to l-(4- methoxyphenyl)ethan- l-one and only traces of l-(4-methoxyphenyl)ethan- l-ol was detected. 88% of the β-Ο-4 bond was broken.

Example 19: Reaction of 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol.

Wet Raney Ni 4200 was dried under vacuum and carefully weight (20 mg (dry weight), 3.5 x 10 4 mol, 250 mol%). 4mL degassed heptane was added, followed by

2- (2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol (38mg, 1.4 x 10 4 mol). The reaction was heated at 120°C for 24hours. Workup: The reaction was cooled, opened and lOmg of NH 4 COOH was added. 50mL of Et 2 0 was used to transfer the crude to an erlenmeyer containing MgS0 4 . After drying the solution was filtered and concentrated. HNMR gave 100% conversion to l-(4-methoxyphenyl)ethan- l-one, 100% of the β-Ο-4 bond was broken. Example 20: Reaction of 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol.

Wet Raney Ni 4200 was dried under vacuum and carefully weight (39 mg (dry weight), 6.8 x 10 4 mol, 150 mol%). 6mL degassed heptane was added, followed by 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)ethan- l-ol (120mg, 4.4 x 10 4 mol). The reaction was heated at 120°C for 24hours. The reaction was cooled, opened and lOmg of NH4COOH was added. 50mL of Et 2 0 was used to transfer the crude to an erlenmeyer containing MgS0 4 . After drying the solution was filtered and

concentrated. HNMR gave 38% conversion to l-(4-methoxyphenyl)ethan- l-one, 38% of the β-Ο-4 bond was broken. Example 21: Reaction of reference compounds.

2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)propane- l,3-diol (24 mg, 8 x 10 5 mol) and wet Raney Ni 4200 (23 mg, 3.9 x KM mol, 500 mol%) and KOH (13 mg, 2.4 x lO" 4 mol, 300%) is weighed into a reaction flask under argon. Degassed MeOH (2 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave lOmg of a reaction mixture which is, according to analysis by HNMR, contains a complex mixture of starting material and decomposition products.

Example 22: Reaction of reference compounds. 2-(2-methoxyphenoxy)- l-(4-methoxyphenyl)propane- l,3-diol (24 mg, 8 x 10 5 mol) and wet Raney Ni 4200 (23 mg, 3.9 x 10 4 mol, 500 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (2 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet.

Concentration gave lOmg of a reaction mixture which, according to analysis by

HNMR, contains a complex mixture of nonaromatic decomposition products and no starting material.

Example 23: Reaction of reference compounds. 2-(2-hydroxyphenyl)phenol (20 mg, 1.1 10 4 mol) and wet Raney Ni 4200 (32 mg, 5.4 x 10" 4 mol, 500 mol%) is weighed into a reaction flask under argon. Degassed i- PrOH (2 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave lOmg of a reaction mixture which is, according to analysis by HNMR, contains 2-(2-hydroxycyclohexyl) cyclohexan- l-ol. The aromatic rings were saturated.

Example 24: Reaction of reference compounds.

5-[4-(2H- l,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan- l-yl]-2H-l,3-benzodioxole (38 mg, 1.1 10 4 mol) and wet Raney Ni 4200 (32 mg, 5.4 x 10 4 mol, 500 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (2 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave 20mg of a reaction mixture which, according to analysis by HNMR, contains 4-[4-(3,4-dihydroxycyclohexyl)-hexahydrofuro[3,4- c]furan- l-yl]cyclohexane- l,2-diol. The aromatic rings were saturated.

Example 25: Reaction of reference compounds.

Phenoxybenzene (18 mg, 1.1 x 10 4 mol) and wet Raney Ni 4200 (32 mg, 5.4 x 10 4 mol, 500 mol%) is weighed into a reaction flask under argon. Degassed i-PrOH (2 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 4hours and the reaction mixture is cooled. Nickel was removed with a magnet. Concentration gave lOmg of a reaction mixture which is, according to analysis by HNMR, contains cyclohexanol. The aromatic rings were saturated and the ether bond was cleaved. Example 26: Solvolysis of Lignin type A

To 40mg of Lignin type A under Argon, was added 4mL degassed EtOH and the reaction was stirred at 120°C for 50hours. Solids were visible. The reaction was cooled and the solvent (without solids) was transferred to a clean round bottom flask. The solvent was evaporated to yield 20mg of product which was dissolved in 1.3mL of THF, filtered through a syringe-filter into a HPLC-vial. The remaining solid (7mg) was dissolved in THF, filtered through a syringe-filter into a HPLC-vial. Both are injected into an HPLC-system (GPC).

See figure 1 , Comparison of Lignin type A, solvolysis of Lignin type A and nonsoluble polymer after solvolysis. Example 27: Reaction of Lignin type A with nickel nanoparticles and base.

Nickel nanoparticles (4 mg, 7 x lO 4 mol, 30 mol%) and Lignin type A (40 mg, 2.2 x 10-4 mol, 300mol%), is weighed into a reaction flask under argon. Degassed ethanol (4 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 50hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the reaction mixture is injected into an HPLC-system (GPC).

See figure 2, Comparison of Lignin type A, solvolysis of Lignin type A, and Lignin type A reacted with Nickel Nanoparticles.

Example 28: Reaction of Lignin type A with nickel nanoparticles and base. Nickel nanoparticles (4 mg, 7 x 10 4 mol, 30 mol%), NaBH 4 (25 mg, 6.7 x 10- 4 mol, 300mol%) and Lignin type A (40 mg, 2.2 x 10- 4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (4 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 50hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the reaction mixture is injected into an HPLC-system (GPC).

Example 29: Reaction of Lignin type A with nickel nanoparticles and base.

Nickel nanoparticles (4 mg, 7 x 10 4 mol, 30 mol%), KOH (37 mg, 6.7 x 10- 4 mol, 300mol%) and Lignin type A (40 mg, 2.2 x 10-4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (4 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 50hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the reaction mixture is injected into an HPLC-system (GPC).

Example 30: Reaction of Lignin type A with nickel nanoparticles and base. Nickel nanoparticles (4 mg, 7 x 10 4 mol, 30 mol%), K 2 C0 3 (46 mg, 3.3 x 10 4 mol, 150mol%) and Lignin type A (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (4 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 50hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the reaction mixture is injected into an HPLC-system (GPC).

See figure 3, show the results from the reaction mixtures, Lignin type A reacted with NaBH 4 , KOH and K 2 C0 3 .

Example 31: Reaction of Lignin type A with nickel nanoparticles and hydrogen peroxide.

Nickel nanoparticles (6mg, 6 x 10 5 mol, 15 mol%) and Lignin type A (40 mg, 2.2 x 10" 4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (3 mL) is added followed by H 2 0 2 (0.2mL, 30% in water, 1.78 x 10 3 mol, 800%). The flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

Example 32: Reaction of Lignin type A with nickel nanoparticles and hydrogen peroxide. Nickel nanoparticles (16mg, 2.7 x 10 4 mol, 40 mol%) and Lignin type A (40 mg, 2.2 x 10" 4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (3 mL) is added followed by of H 2 0 2 (0.2mL, 30% in water, 1.78 x 10 3 mol, 800%). The flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

Example 33: Reaction of Lignin type A with nickel nanoparticles and hydrogen peroxide. Nickel nanoparticles (43mg, 7.3 x 10 4 mol, 110 mol%) and Lignin type A (120 mg, 6.7 x 10" 4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (3 mL) is added followed by H 2 0 2 (0.3mL, 30% in water, 2.67 x 10 3 mol, 400%). The flask is capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 4, show the results from the reaction mixtures Lignin type A reacted with 6mg Nickel, 16mg Nickel and 43mg Nickel. Example 34: Reaction of Lignin type A

Nickel nanoparticles (3 mg, 6 x 10 4 mol, 25 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) and Lignin type A (40 mg, 2.2 x 10-4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 5, show the results from the reaction mixture.

Example 35: Reaction of Lignin type B.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10- 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed methanol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC). See figure 6, show the results from the reaction mixtures

Example 36: Reaction of Lignin type B.

Nickel nanoparticles (15mg, 2.4 x 10 3 mol, 110 mol%) and Lignin type B (40 mg, 2.2 x 10" 4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (3 mL) is added followed by H 2 0 2 (0.2mL, 30% in water, 1.78 x 10 3 mol, 800%). The flask is capped with a rubber septa and the mixture is heated to 80 °C. The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

Example 37: Reaction of Lignin type B.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 , mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed ethanol (3 mL) is added followed by H2O2 (0.2mL, 30% in water, 1.78 x 10 3 mol, 800%). The flask is capped with a rubber septa and the mixture is heated to 80 °C. The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is

neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 7, show the results from the reaction mixtures Reaction of Lignin type B with Nickel nanoparticle and Raney Nickel.

Example 38: Reaction of Lignin type B.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed methanol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC) and analyzed by 2dNMR (HSQC). The size was reduced and no β-Ο-4 bonds could be detected. Example 39: Reaction of Lignin type B, t-BuOH effect.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed methanol/ t-BuOH 1 : 1 (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC- system (GPC).

Example 40: Reaction of Lignin type B, t-BuOH effect. Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10- 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed t-BuOH (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figures 8 to 10 (HSQC) and figure 11 show the results from the reaction mixtures (Lignin type B reacted in MeOH, in t-BuOH and in MeOH/t-BuOH 1 : 1.

Example 41: Reaction of Lignin type B, i-PrOH.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), Lignin type B (40 mg, 2.2 x 10" 4 mol, dry), is weighed into a reaction flask under argon. Degassed MeOH (3 mL) followed by i-PrOH (0.2mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is

neutralized. The reaction mixture is injected into an HPLC-system (GPC). See figure 12, show the results from the reaction mixtures Lignin type B reacted with MeOH/i-PrOH 16: 1.

Example 42: Reaction of Lignin type B, in MeOH.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed MeOH (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 50hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC). Example 43: Reaction of Lignin type B, in Glycerol.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed Glycerol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (150 °C). The reaction is run for 50hours and the reaction mixture is cooled. MeOH is added and Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 13, show the results from the reaction mixtures (Lignin type B reaction in Glycerol and reaction in MeOH.

Example 44: Reaction of artificial polymer.

Poly (4-acetophenone)

(10 mg, 7 10-5 mol) and wet Raney Ni 4200 (22 mg, 3.6 x lfr 4 mol, 500 mol%) and KOH (12 mg, 2.2 x 10 4 mol, 300%) is weighed into a reaction flask under argon. Degassed MeOH (1 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is

neutralized. The reaction mixture is injected into an HPLC-system (GPC). See figure 14, show the results from the reaction mixture.

Example 45: Reaction of artificial polymer.

Poly (Apocynin)

(12 mg, 7 10-5 mol) and wet Raney Ni 4200 (22 mg, 3.6 x lfr 4 mol, 500 mol%) and KOH (12 mg, 2.2 x 10 4 mol, 300%) is weighed into a reaction flask under argon. Degassed MeOH (1 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 24hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is

neutralized. The reaction mixture is injected into an HPLC- system (GPC).

See figure 15, show the results from the reaction mixtures.

Example 46: Reaction of Lignin type B. (as in Example 38 with water wash) Wet Raney Ni 4200 (-70 mg, 1 x l 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed methanol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized 3 drops of using concentrated HCl. The solvent is evaporated. 15mL of water is added, the suspension is sonicated and the solid is filtered off. The solid reaction mixture is again dissolved in MeOH and injected into an HPLC- system (GPC). Analysis gave that water treatment did not change the size of the reacted polymer and that salts can easily be removed. See figure 16, show the results from the reaction mixture and the reaction mixture after water treatment.

Example 47: Reaction of Lignin type B. (180 °C in glycerol)

Wet Raney Ni 4200 (-70 mg, 1 x l 3 mol, 500 mol%), KOH (37 mg, 6.7 x lO 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed Glycerol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (180 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized 3 drops of using concentrated HC1 and injected into an HPLC-system (GPC). 15mL of water is added, the suspension is sonicated and the solid is filtered off. The solid reaction mixture is again dissolved in MeOH and injected into an HPLC-system (GPC).

See figure 17, show the results from the reaction mixture, water treated reaction and as a comparison reaction in MeOH.

Example 48: Reaction of Lignin type C.

Wet Raney Ni 4200 (-30 mg, 5 x 10 4 mol, 500 mol%), KOH (18 mg, 3 x 10 4 mol, 300%) and Lignin type C (20 mg, dry), is weighed into a reaction flask under argon. Degassed methanol (1.5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is

neutralized. The reaction mixture is injected into an HPLC-system (GPC). Example 49: Reaction of Lignin type C.

Wet Raney Ni 4200 (-30 mg, 5 x 10 4 mol, 500 mol%) and Lignin type C (20 mg, dry), is weighed into a reaction flask under argon. Degassed i-PrOH (1.5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 18, show the results from the reaction mixtures.

Example 50: Reaction of Lignin type B. (in Dioxane/i-PrOH 3: 1)

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 7 x 10 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed Dioxane (3mL) and i-PrOH (1 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. MeOH is added and Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

Example 51: Reaction of Lignin type B. (in ethylene glycol)

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 7 x 10 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed ethylene glycol (3mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. MeOH is added and Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 19, show the results from the reaction mixtures.

Example 52: Reaction of Lignin type B.

Ni/ KOH/ MeOH Ni/MeOH MeOH KOH/MeOH Ni/Et 3 N/MeOH

Rank 1 Rank 2 Rank 5 Rank 3 Rank 4

Omitting reagents as in table above. Procedure as follows: Lignin type B (40 mg, 2.2 x 10- 4 mol, dry), wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 7 x 10- 4 mol, 300%) or alternatively Et 3 N (94μL, 7 x 10 4 mol, 300%) is weighed into a reaction flask under argon. Degassed MeOH (3mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. MeOH is added and Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 20, show the results from the reaction mixtures.

Example 53: Reaction of Lignin type A.

Ni/KOH/MeOH Ni/MeOH MeOH KOH/MeOH Ni/Et 3 N/MeOH

Rank 1 Rank 2 Rank 2 Rank 2 Rank 2 Omitting reagents as in table above. Procedure as follows: Lignin type A (40 mg, 2.2 x 10- 4 mol, dry), wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 7 x 10- 4 mol, 300%) or alternatively Et 3 N (94μΙ., 7 x 10 4 mol, 300%) is weighed into a reaction flask under argon. Degassed MeOH (3mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. MeOH is added and Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 21 , show the results from the reaction mixtures. Example 54: Reaction of Lignin type B.

Lignin type B (40 mg, 2.2 x 10 4 mol, dry), wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), base (7 x 10 4 mol, 300%) [Bases used: NaOH (27mg), K 2 C0 3 (92mg), NaBH 4 (25mg), NH 4 COOH (42mg)] is weighed into a reaction flask under argon. Degassed MeOH (3mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. MeOH is added and Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

See figure 22, show the results from the reaction mixtures.

Example 55: Reaction of Lignin type D. Lignin type D (80 mg, 4.4 x 10 4 mol, dry), wet Raney Ni 4200 (- 140 mg, 2 x 10 3 mol, 500 mol%), KOH (74mg, 1.4 x 10 3 mol, 300%) is weighed into a reaction flask under argon. Degassed MeOH (6mL) and water (2mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with magnet, and the reaction was neutralized with 2drops of concentrated HCl. The mixture was concentrated, washed with lOmL of water and dried. 30mg of a solid was collected. The solid was dissolved in THF/ MeOH 1: 1 and the mixture was injected into an HPLC-system (GPC). The starting material is not soluble in THF but soluble in water and cannot be analyzed in the GCP. After the reaction a THF soluble solid was collected in 38% yield. See figure 23, show the results from the reaction mixtures.

See figure 24, compares different lignin sources. Lignin type A , Lignin type B.

Lignin type C.

Example 57: 2-phenoxy-l-phenylethanol Nickel on carbon (50 mg, 20 x 10 4 mol, 10 mol%) is weighed into a reaction flask. Isopropanol (4 mL) and 2-phenoxy- l-phenylethanol (1.6 x 10 4 mol, 34 mg), is added and the flask capped with a rubber septa and the mixture is heated (80 °C). The reaction is run for 4 hours and the reaction mixture is filtered. The solvents are evaporated and the product is purified by column chromatography. The product acetophenone and phenol was analyzed by Ή NMR and produced in 80% yield.

Example 58: Reaction of Lignin type B in glycerol at 180°C for 60min.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed methanol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (180 °C). The reaction is run for 60 minutes and the reaction mixture is cooled. The reaction is diluted with

MeOH/THF, the mixture was neutralized and nickel was removed with a magnet. The reaction mixture is injected into an HPLC-system (GPC). The results showed that the reaction was fully completed. Example 59: Reaction of Lignin type B at 45°C.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed methanol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (45 °C). The reaction is run for 50hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC). The results showed that the reaction had gone half way.

Example 60: Reaction of Lignin type C with Pd/C. Pd/C (5 wt %) (0.027 g, 5 mol %), NH 4 HC0 2 (0.064 g, 1.0 mmol) and lignin type C (0.050 g, 0.252 mmol) were added to a 5 mL vial. The vial was sealed and 2.4 mL of ethyl acetate and 0.6 mL of water were added via syringe. Another needle was inserted through a septum to release pressure during the solvent addition. The needle was removed and the vial was placed in a preheated oil bath (120 °C) with a stirring speed of 1000 rpm for 24 h. The vial was cooled to room temperature and then formic acid (20μΙ ^ , 0.5 mmol) was added via syringe and the reaction was run for 12 h. The vial was cooled to room temperature and reaction mixture was filtrated through a filter paper, using acetone (10 mL) following by ethanol (10 mL) as eluent. Solvent was removed in vaccuo and the crude oil was co-evaporated two times with 15 mL of ethanol (99.5%). The oil obtained was analyzed by 2D NMR (HSQC). The reaction mixture is injected into an HPLC-system (GPC).

Example 61 : Reaction of Lignin type B at 120°C for 60min.

Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10 4 mol, 300%) and Lignin type B (40 mg, 2.2 x 10 4 mol, dry), is weighed into a reaction flask under argon. Degassed methanol (3 mL) is added and the flask is capped with a rubber septa and the mixture is heated (45 °C). The reaction is run for 50hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC). Example 62: Reaction of Lignin type E.

Lignin type E (40 mg, 2.2 x 10 4 mol, dry), wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37mg, 0.7 x 10 3 mol, 300%) is weighed into a reaction flask under argon. Degassed MeOH (3mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with magnet, and the reaction was neutralized with 2 drops of concentrated HC1. The product was mostly not dissolved in THF/MeOH 1: 1 but the soluble mixture was injected into an HPLC-system (GPC). The starting material is not soluble in THF but soluble in water and cannot be analyzed in the GCP. After the reaction a THF soluble solid was collected in 5% yield.

Example 63: Reaction of Lignin type C with Pd/C. Pd/C (5 wt %) (0.054 g, 0.02 mmol, 10 mol %), KOH (0.037 g, 0.67 mmol, 300 mol%) and lignin type B (0.040 g, 0.22 mmol) were added to a 5 mL vial. The vial was sealed and 3 mL of MeOH were added. The vial was placed in a preheated oil bath (120 °C) and the reaction was run for 12 h. The vial was cooled to room temperature and reaction mixture was filtrated through a filter paper, using

THF/MeOH. The reaction mixture is injected into an HPLC-system (GPC).

Example 64: Reaction of Lignin type C in acetone.

Wet Raney Ni 4200 (-30 mg, 5 x 10 4 mol, 500 mol%) and Lignin type C (20 mg, dry), is weighed into a reaction flask under argon. Degassed acetone (5 mL) is added and the flask is capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture is cooled. Nickel was removed with a magnet, and the mixture is neutralized. The reaction mixture is injected into an HPLC-system (GPC).

Example 64: Reaction of Lignin type C, water wash and a second reduction step. Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%), KOH (37 mg, 6.7 x 10- 4 mol, 300%) and Lignin type C (40 mg, 2.2 x 10 4 mol, dry), was weighed into a reaction flask under argon. Degassed methanol (3 mL) is added and the flask was capped with a rubber septa and the mixture is heated (120 °C). The reaction was run for 18 hours and the reaction mixture was cooled. Nickel was removed with a magnet, and the mixture was neutralized using 3 drops of concentrated HC1. The solvent was evaporated. 15mL of water was added, the suspension was sonicated and the solid was filtered off. The solid reaction mixture was again dissolved in MeOH and injected into a HPLC-system (GPC).

See figure 25, show the results from the reaction mixture after water treatment. The product (Prod 1) obtained above was dissolved in 3mL degassed isopropanol and again Wet Raney Ni 4200 (-70 mg, 1 x 10 3 mol, 500 mol%) was added. The flask was capped with a rubber septa and the mixture is heated (120 °C). The reaction is run for 18hours and the reaction mixture was cooled. Nickel was removed with a magnet. The solvent was evaporated, giving a second product mixture (Prod 2). The reaction mixture was again dissolved in THF and injected into an HPLC-system (GPC). Analysis gave a very weak signal. NMR (HSQC) analysis showed that most of the aromatic protons had disappeared and new CH2 signals had appeared, figure 26. Benzene rings present in lignin type C is reduced to cyclohexanes.